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A B S T R A C T

Plant photosynthetic traits may be indicative of stress tolerance and performance in the field, making their
accurate assessment critical in phenotyping trials. The maximum rate of carboxylation (Vcmax) is a key para-
meter for estimating CO2 assimilation (A), as it controls the CO2 fixation rate. This study demonstrates the utility
of combining airborne-based solar-induced chlorophyll fluorescence (SIF) and hyperspectral imagery through
the inversion of the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model to estimate Vcmax,
using sensor resolutions available in precision agriculture technologies. Vcmax was quantified in three wheat
phenotyping experimental fields during the 2015–2018 growing seasons, comprising both rainfed and irrigated
conditions. Airborne campaigns were carried out with two hyperspectral sensors, covering the 400–850 nm
(20 cm resolution) and 950–1750 nm (70 cm resolution) spectral regions, and with a thermal camera (25 cm
resolution) in the 8–14 μm region. Validation between model-estimated and field-measured Vcmax was statis-
tically significant (r2= 0.77; p-value ≤2.2e−16), and Vcmax was reliably associated with net assimilation both
in irrigated and rainfed conditions (r2= 0.65 and 0.5, respectively). By contrast, simulated chlorophyll content
(Cab) and airborne-derived structural and chlorophyll indicators (NDVI and PSSRb) lacked significant correla-
tions with assimilation rate in irrigated plots, while the relationship between assimilation rate and the crop
water stress index (CWSI) was not significant in rainfed plots. The superior sensitivity of remotely-sensed Vcmax
under irrigated conditions was likely related to its robustness to distortions from high canopy densities observed
in other indices. The remote sensing retrieval of Vcmax, and the methodology demonstrated in this study is
directly relevant for high-throughput plant phenotyping and for precision agriculture applications.

1. Introduction

CO2 assimilation (A) occurs in the chloroplasts and involves light
biochemical reactions (Quebbeman and Ramirez, 2016). Environmental
conditions such as light intensity and temperature, biophysical pro-
cesses such as CO2 transport through the leaf and stomata, and leaf
biochemistry determine the assimilation rate (Sharkey et al., 2007). At
the leaf level, the photosynthetic capacity is defined by the maximum
rate of carboxylation (Vcmax) and the maximum rate of electron
transport (Jmax). Vcmax is the maximum rate of Ribulose−1,5-Bi-
sphosphate (RuBP) carboxylation, which controls CO2 fixation
(Farquhar et al., 1980). Jmax is the maximum rate of electron transport,
which limits the supply of ATP and NADPH during the carboxylation
and the regeneration of RuBP in the Calvin-Benson cycle (Quebbeman

and Ramirez, 2016). Wullschleger (1993) demonstrated that Jmax
should follow Vcmax across plant species, a relationship not affected by
nitrogen content within leaves (Walker et al., 2014).

The most common biochemical photosynthesis model for estimating
the CO2 assimilation at leaf level is the Farquhar–von Caemmerer–Berry
(FvCB) model (Farquhar et al., 1980). The FvCB model and its sub-
sequent variants (Caemmerer and Farquhar, 1981; Farquhar and Wong,
1984; Collatz et al., 1992; Harley et al., 1992a) relate the kinetic
properties of Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase (Ru-
BisCo) to photosynthetic capacity (Caemmerer, 2000). The FvCB model
is typically embedded in terrestrial biosphere models (TBM), which
have been used to estimate photosynthetic carbon uptake (Norton et al.,
2017), gross primary productivity (Sellers, 1987; Koffi et al., 2015) and
leaf respiration (Sitch et al., 2003; Oleson et al., 2013). In recent years,
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progress has been made to quantify photosynthetic capacity from hy-
perspectral satellite imagery, enabling the development of TBMs at new
spatial scales. In the context of a plant phenotyping study, Silva-Perez
et al. (2018) demonstrated the use of hyperspectral reflectance to es-
timate Vcmax and other physiological traits in wheat crops. However,
imagery was obtained at the leaf level, where the remote sensing signal
was not affected by canopy structure, as it is for larger-scale applica-
tions. For images at the canopy level, standard reflectance indices such
as the normalized difference vegetation index (NDVI) (Rouse et al.,
1973) have been widely used for detecting vigor, growth, yield and
senescence patterns from airborne and near-field scales in maize and
wheat crops (Cairns et al., 2012; Kipp et al., 2014). However, NDVI has
well-known disadvantages associated with its saturation at high bio-
mass levels, its sensitivity to canopy background, and the inability to
track short-term physiological changes due to its strong relationship
with tissue structure (Huete, 1988; Huete et al., 2002). Despite these
disadvantages, NDVI is still one of the most widely used indicators for
the remote assessment of canopy characteristics by plant breeders.

Several studies have demonstrated that canopy temperature can be
related to physiological processes (Gonzalez-Dugo et al., 2015) or even
used to detect nutritional deficiencies (Rodriguez et al., 2006). The
thermal-based Crop Water Stress Index (CWSI) developed by Idso et al.
(1978) and Jackson et al. (1981) is inversely related to transpiration
and stomatal conductance, and therefore a potentially good proxy for
estimating crop photosynthesis rates under stress. However, a range of
environmental factors may affect the relationship between stomatal
closure and canopy temperature, such as changes in radiation exposure,
nutrient deficiency or soil water deficit (Radin et al., 1985; Jones et al.,
1995; Zweifel et al., 2002).

In the last twenty years the quantification of sun-induced

chlorophyll fluorescence (SIF) through hyperspectral imaging has pro-
vided a new tool for monitoring crop photosynthetic activity and ve-
getation functioning (Frankenberg et al., 2011; Houborg et al., 2013;
Zarco-Tejada et al., 2016; Norton et al., 2017). Chlorophyll fluores-
cence is closely related to the electron transport rate and hence to
photosynthetic activity (Genty et al., 1989; Weis and Berry, 1987).
Chlorophyll fluorescence may therefore be useful for detecting nutrient-
limitation in crops (Camino et al., 2018a). Chlorophyll fluorescence
may also be used to estimate Vcmax since both are linked with chlor-
ophyll content (Houborg et al., 2013; Croft et al., 2017) and therefore
photosynthetic activity (Rascher et al., 2015; Yang et al., 2015).

Recent studies have successfully estimated Vcmax from satellite SIF
retrievals (Guan et al., 2016; Zhang et al., 2014, 2018) using the Soil
Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model
(Guanter et al., 2014; Koffi et al., 2015; Zhang et al., 2014, 2018).
Nevertheless, further progress is needed for the assessment of Vcmax
under both water and nutrient-limited conditions (i.e. under stress) and
in the context of plant phenotyping experiments with high-resolution
imagery. In some cases, SIF retrievals have been performed using cost-
effective hyperspectral imagers with broader spectral resolutions (i.e.
2–7 nm FWHM) (Damm et al., 2015; Zarco-Tejada et al., 2016; Camino
et al., 2018b). Although offsets in the fluorescence retrievals may occur
due to the broader spectral resolutions used in these imagers, the
consequences may be negligible for most precision agriculture appli-
cations since emphasis is on relative spatio-temporal variability of stress
rather than absolute fluorescence emission levels.

The remote assessment of plant photosynthesis requires careful at-
tention to the influence of stress. Photosynthesis is strongly affected by
stress, with assimilation affected by water deficit (Chaves, 1991) and
carboxylation capacity sensitive to leaf nitrogen levels (Walker et al.,

Fig. 1. Overview of the field trial sites at Ecija (a and b), Carmona (c) and Santaella (d). Figures a and c were obtained with a CIR camera (a: 800 (R), 670 (G) and 550
(B) nm; d: true color). Figure b shows a sample of the thermal imagery. Figure d was obtained with a VNIR hyperspectral imager (composite: 706 (R), 679 (G) and
520 (B) nm).
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2014). However, under drought conditions, water deficit may alter the
nitrogen balance as growth rate diminishes (Gonzalez-Dugo et al.,
2010). In bread wheat, populations display heritable variation in pho-
tosynthetic traits, amenable to artificial selection (Carmo-Silva et al.,
2017). As a result, remotely sensed chlorophyll fluorescence may be
useful for phenotyping photosynthetic traits desirable for breeding. In
this study we quantify Vcmax as a proxy for photosynthetic activity in
wheat phenotyping trials using airborne hyperspectral-based SIF re-
trievals through SCOPE model inversions. Specifically, we evaluated
airborne estimates of Vcmax under both well-watered and water-lim-
ited regimes.

2. Material and methods

2.1. Study area

Experiments took place at three field trial sites for bread wheat
(Triticum aestivum L.) and durum wheat (Triticum turgidum L. var.
durum) in Southern Spain in 2015, 2016 and 2018 (Fig. 1). The regional
climate is Mediterranean, characterized by mild winters, warm and dry
summers and with annual rainfall averages around 600mm. The first
trial site was located in Ecija (37°32′17″N, 5°06′57″W), which was
managed under rainfed conditions in 2015 and 2018. The plot size was
12.5 m2 (10m×1.25m) with a spacing of 1m×1.25m between plots
(Fig. 1a and d).

The second site trial was located in Carmona (37°30′29″N,
5°34′42″W) in 2015, which was managed under both rainfed and irri-
gated conditions. Severe drought at the Carmona experimental site
during the spring of 2015 (precipitation<30mm in preceding months
of the airborne campaign) prompted irrigation in rainfed plots the week
before the flights to partially recover the experiment and to avoid da-
mage. At Carmona, 882 individual plots (7.5× 1.25m) were divided
across two blocks according to water regime. There was a space of
1.50m×0.25m between plots (Fig. 1b). Forty-nine varieties of durum
or bread wheat were replicated three times per block.

The third trial site was located in Santaella (37°31′34″N,
4°50′40″W), which was also managed under rainfed and irrigated
conditions in 2016. Twenty varieties of durum wheat and 20 varieties
of bread wheat were replicated three times across a total of 120 plots
(Fig. 1c). The plot size was 15 m2 (10×1.5m) with a spacing of
2.50m×0.50m between plots.

At all trial sites, plots consisted of five rows of wheat with a spacing
of 0.25 cm per row. Physiological measurements and spectral re-
flectance were taken from the three central rows. The remaining two
rows were excluded from analysis. The soil in the three trial sites was
dominated by vertisols (FAO classification), which ranged in texture
from clay, clay loam to silt. Slope across sites ranged from 2 to 4%.
Vertisols are often poor in organic matter and associated with nitrogen
and phosphorus deficiencies. Fertilization with diammonium phosphate
and urea was carried out in early November to ensure fertility levels.

The wheat growth stage during the airborne campaigns corre-
sponded to i) stem elongation stage, and ii) the grain filling (milking
stage) (Table 1). All flights were performed under clear sky conditions.
Average meteorological conditions during each flight (ERA-Interim at-
mospheric reanalysis data; http://www.ecmwf.int) are presented in
Table 1.

2.2. Field physiological measurements and leaf gas exchange curves

A summary of the physiological variables measured for each site
and sampling date is included in Table 1. Field measurements of as-
similation rate (A; μmol·m−2·s−1) and leaf water potential (ψL; MPa)
were made at the same time (± 1 h) as acquisition of high-resolution
airborne imagery over the experimental field sites. These measurements
were performed on leaves at the top of the canopy at noontime, under
clear skies and with photosynthetically active radiation (PAR) values

ranging from 1700 to 2200 μmol·m−2·s−1. To assess the physiology and
nutritional status of the wheat plots under different water regimes,
some additional leaf measurements were made at the trial sites
(Table 1). Leaf photosynthesis was measured with a photosynthesis
measurement system (LC pro- SD, ADC Bioscientific Ltd., Herts, UK) on
two leaves per plot. The LCpro-SD plant leaf photosynthesis chamber
has a flow rate accuracy of± 2% of its range. Leaf water potential (ψL)
was measured on two sunlit leaves per plot with a pressure chamber
(Model 600 Pressure Chamber Instrument, PMI Instrument Company,
Albany, NY, USA). Chlorophyll content was measured on 10–15 leaves
per plot using a hand-held chlorophyll meter (SPAD-502, Minolta Corp.,
Ramsey, NJ, USA). The SPAD-502 chlorophyll meter has an accuracy
of± 1 SPAD units. In 2018, leaf chlorophyll content was measured with
the Dualex instrument (FORCE-A, Orsay, France), which has an accu-
racy of 5%. The SPAD and Dualex readings were converted to chlor-
ophyll content (μg·cm−2) according to Uddling et al. (2007). Total N
concentration (%) was determined by the Kjeldahl method (Kjeldahl,
1883) in random samples of 20–25 leaves from the top of the canopy in
select plots. This value was demonstrated to be a good proxy of the crop
nutritional status (Farruggia et al., 2004).

The response of assimilation to intercellular CO2 concentration was
measured using the portable LCpro-SD photosynthesis measurement
system during the field campaign at Ecija in 2018. To assess variability
in CO2 response curves, six wheat varieties (WI to WVI) displaying
contrasting nutritional and physiological statuses were selected across
the trial site (Fig. 2). Varieties were selected based on patterns in
chlorophyll content, nitrogen, and assimilation rate (red asterisks in
Fig. 2). The photosynthetic photon flux density was kept constant at
1900 μmol·m−2·s−1 during measurements. Prior to sampling, selected
leaves were adapted to the chamber light conditions, humidity and
temperature for about 5min. CO2 concentration was then ramped in
steps of 100 ppm, with each step lasting a minimum of 1min and a
maximum of 3min.

Leaf Vcmax was estimated from assimilation-intercellular CO2

concentration (A-Ci) curves (Fig. 3) using the C3 FvCB photosynthesis
model (Farquhar et al., 1980). Photosynthetic response [CO2] curves
developed by Sharkey et al. (2007) were used to estimate Vcmax ac-
cording to the FvCB model. Following this method, field measurements
with intercellular CO2 partial pressure between 20 and 30 Pa were ex-
cluded to reduce errors associated with the interface between the Ru-
BisCo-limited and RuBP-regeneration-limited state.

Kinetic parameters for respiration (Rd) and the mesophyll con-
ductance (gm) were estimated for each wheat variety following the
nonlinear curve fitting procedures outlined in Sharkey et al. (2007).
The temperature dependence of the Michaelis-Menten constant of Ru-
BisCo (Kc) for CO2, inhibition constant (Ko), photorespiratory com-
pensation point (Γ*), Rd, gm, Vcmax, rate of photosynthetic electron
transport (J) and triose phosphate use (TPU) were estimated using ex-
ponential functions of temperature responses described in Harley et al.
(1992b). The scaling constant (c), enthalpies of activation (ΔHa), de-
activation (ΔHd) and entropy (ΔS) were taken from Sharkey et al.
(2007) in Table 1.

The retrievals of Vcmax were adjusted to 25 °C using the FvCB
model. Only measurements where leaf temperatures were±0.5 °C of
the average were used in generating these estimates. Atmospheric
pressure and intercellular concentration of oxygen (Oi) for all collected
wheat varieties were set to 21 kPa and 99.75 kPa, respectively. Rd and
gm values used to estimate Vcmax are provided in Table 2.

2.3. Airborne campaigns

Five airborne campaigns were conducted using an aircraft operated
by the Laboratory for Research Methods in Quantitative Remote
Sensing (QuantaLab), Consejo Superior de Investigaciones Científicas
(IAS-CSIC, Spain). Flights occurred at 250m above ground level (AGL)
with heading on the solar plane. Images were acquired concurrently

C. Camino, et al. Remote Sensing of Environment 231 (2019) 111186

3

http://www.ecmwf.int


with field data acquisitions (Table 1) between 12:00 and 13:00 h (local
time) under clear sky conditions and free of coarse aerosol (i.e.: dust
mineral, biomass burning). To minimize differences due to sun angle
effects, the flights were performed at solar zenith angle between 45°
and 60°, which varied according to the day, place and the exact flight
time. The viewing zenith angle was 0° for all flights. Images were col-
lected with a micro-hyperspectral imager (Micro-Hyperspec VNIR
model, Headwall Photonics, Fitchburg, MA, USA), a Micro-Hyperspec
NIR-100 (Headwall Photonics) and a thermal infrared camera (FLIR
SC655, FLIR Systems, Wilsonville, OR, USA). The Micro-Hyperspec
VNIR was configured to acquire 260 spectral bands with a light dis-
persion of 1.85 nm/pixel with 12-bit radiometric resolution in the
400–885 nm spectral region, yielding a 6.4 nm full width at half max-
imum (FWHM) with an entrance slit width of 25-μm. The acquisition
and storage module obtained 50 frames per second at 25ms integration
time. The 8-mm focal length lens yielded an IFOV of 0.93 mrad and an
angular FOV of 50° with a spatial resolution of 20 cm (Fig. 1c). The
micro-hyperspec NIR-100 sensor was configured for 165 spectral bands
at 16-bit radiometric resolution covering the 950–1750 nm spectral
region, yielding 6.05 nm FWHM with a spatial resolution of 70 cm.
Radiometric calibration of the VNIR and NIR-100 cameras was per-
formed with an integrating sphere (CSTM-USS-2000C LabSphere, North
Sutton, NH, USA) using four levels of illumination and six integration
times.

Hyperspectral imagery was atmospherically corrected using

incoming irradiance measured with a field spectrometer (FieldSpec
Handheld Pro, ASD Inc., Longmont, Colorado, USA) for the VNIR
sensor, and simulated by the SMARTS model (Gueymard, 1995;
Gueymard et al., 2002) for the NIR-100 sensor. In addition, the view
and illumination angle effects were corrected using a bidirectional

Table 1
Flight dates and field measurements collected during the airborne campaigns. The meteorological conditions at the time of the flights are included.

Year Site Flight dates Growth stage Airborne imagery Field measurements Meteorological conditions

Ta RH Rin

2015 Ecija 28/05 Grain filling T+VNIR + NIR ψL, A, Cab, N 295.1 38.0 944.2
Carmona 30/05 Grain filling T+VNIR + NIR ψL, A, Cab, N 296.8 38.8 935.8

2016 Santaella 17/03 Stem elongation T+VNIR + NIR ψL, A, Cab, N 289.6 49.2 558.2
Santaella 26/04 Grain filling T+VNIR + NIR ψL, A, Cab, N 297.5 42.5 933.3

2018 Ecija 18/04 Stem elongation T+VNIR + NIR A, Cab, N,
Curve A/Ci

297.1 43.6 924.8

T= thermal, VNIR=hyperspectral visible and infrared region, NIR=hyperspectral near-short wave infrared region,
ψL= leaf water potential (MPa), A= net assimilation rate (μ·mol·m−2·s−1), Cab= chlorophyll content (μg·cm−2),
N=nitrogen concentration (%), Curve A/Ci= response curves of A to the intercellular CO2 concentration,
Ta= air temperature (K), RH= relative humidity (%) and Rin= Incoming shortwave radiation (W·m−2).

Fig. 2. Leaf physiological measurements on durum wheat plots (in blue) and bread wheat plots (in grey) carried out during the field campaign in Ecija 2018 under
rainfed conditions: a) the nitrogen balance index (NBI) in dimensionless units (d.u.), b) chlorophyll content (Cab) in Dualex units (both measurements were collected
with the hand-held Dualex device) and c) assimilation rate (A) in μmol·m−2·s−1, measured with the plant leaf photosynthesis chamber. The red asterisks indicate
wheat plots selected for A/Ci curves. In the box plots, the black line within the box is the median, and the top and bottom of the box represent the 75th and 25th
quartiles, respectively. The whiskers represent the upper and lower range. The average values are shown with a white point over each box plot. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Relationship obtained between assimilation rate (A; μmol·m−2·s−1) and
intercellular CO2 partial pressure (Pa). Each color is associated with different
wheat varieties (Wn). The dashed lines represent the RuBisCo-limited (left) and
RuBP-regeneration-limited (right) state according to Sharkey et al. (2007).
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reflectance distribution function (BRDF) in the VNIR and NIR-100 hy-
perspectral imagery. Irradiance measurements were interpolated and
convoluted to the bandwidth of each sensor. To simulate incoming ir-
radiance, aerosol optical measurements (Table 3) were acquired at
flight time with a Microtops II handheld multichannel sunphotometer
(Solar Light, Philadelphia, USA) connected to a GPS-12 model (Garmin,
Olathe, KS). The aerosol measurements carried out with the sunphot-
ometer instrument at flight-time confirmed the absence of dust mineral,
biomass burning (AOD500nm≤ 0.25 and Ångström exponent
(AE)≥ 0.6, according to Cuevas et al. (2015)) and other extinction

aerosols which could affect the reflectance and radiance spectrum
during the airborne campaign. A portable weather station (Transmitter
PTU30, Vaisala, Helsinki, Finland) was used for simultaneous readings
of the relative humidity, temperature and pressure at the time of hy-
perspectral and thermal acquisitions. Ortho-rectification of hyperspec-
tral imagery was performed following Zarco-Tejada et al. (2016).
Sample average radiance and reflectance spectra of wheat plots ob-
tained with the VNIR hyperspectral sensor at the Ecija trial site in 2018
are shown in Fig. 4.

The FLIR SC655 thermal camera used in this study had a resolution
of 640×480 pixels with a 13.1 mm focal length at 16 bits, providing
an angular FOV of 45× 33.7° and a ground resolution of 25 cm at the
flight altitude (Fig. 1d). Thermal imagery was calibrated using ground
temperature data collected with a handheld infrared thermometer
(LaserSight, Optris, Germany) on each flight date.

2.4. Fluorescence retrieval and calculation of narrow-band indices and
CWSI from hyperspectral and thermal imagery

According to the method developed by Camino et al. (2018b), an
automatic segmentation based on quartile breaks was applied to the
high-resolution hyperspectral imagery for minimizing the effect of the
soil background inside wheat plots. The average radiance and re-
flectance spectra (Fig. 4) were extracted from the high-resolution hy-
perspectral imagery using the segmented areas, which corresponded
with the central region of each wheat plot. Using the same scheme as
for the hyperspectral imagery, the watershed segmentation method was
applied to high-resolution thermal imagery for separating the vegeta-
tion from the soil background.

Solar induced fluorescence (SIF) was quantified from radiance
spectra (Fig. 4a) by the in-filling method using the Fraunhofer Line
Depth (FLD) principle (Plascyk and Gabriel, 1975). The FLD method
compares canopy radiance to incoming irradiance at the 760.5 nm at-
mospheric O2-A oxygen absorption Fraunhofer Line, as described in
Moya et al. (2004) and Meroni et al. (2010). We compared the radiance
values Lin (L762 nm) and Lout (L750 nm) extracted from the VNIR hy-
perspectral imagery, to incoming irradiances Ein (E762 nm) and Eout
(E750 nm) measured at the time of the flights. Reasonable SIF retrieval
via the FLD method using broader spectral bandwidths (i.e., 5–7 nm
FWHM) has been demonstrated in a simulation study (Damm et al.,
2011) and experimentally (Zarco-Tejada et al., 2012, 2016; Damm
et al., 2015; Hernández-Clemente et al., 2017). The configuration of the
hyperspectral imager during the airborne campaigns carried out in this
study (1.85 nm sampling interval, 6.4 nm bandwidths and SNR of 300:1

Table 2
Input parameters and constants (adjusted to 25 °C), maximum carboxylation rate (Vcmax), photosynthetic electron transport rate (J) and triose phosphate use (TPU)
obtained from the A/Ci curves shown in Fig. 3 for six wheat varieties using exclusively measures with a leaf temperature equal to the average ± 0.5 °C. The kinetic
parameters include the Michaelis constant of RuBisCo for carbon dioxide (Kc), the inhibition constant (Ko), and the photorespiratory compensation point (Γ*). Day
respiration (Rd) and the mesophyll conductance (gm) were used for adjusting estimates to 25 °C. Temperature responses were estimated using the equations described
in Harley et al. (1992b). The specific kinetic constants [scaling constant (c), enthalpies of activation (ΔHa), deactivation (ΔHd) and entropy (ΔS)] were taken from
Sharkey et al. (2007).

Parameters WI WII WIII WIV WV WVI

Temperature leaf (°C) 32.6 ± 0.2 24.12 ± 0.5 25.2 ± 0.2 26.2 ± 0.2 26.42 ± 0.5 23.5 ± 0.5

Constants for fitting
Kc (Pa) 61.87 24.73 27.84 31.05 31.82 23.09
Ko (kPa) 21.08 16.12 16.69 17.23 17.35 15.80
Γ*(Pa) 4.79 3.63 3.77 3.89 3.92 3.56

Constant for adjusting to 25 °C
Rd (mmol·m−2·s−1) 1.601 0.947 1.013 1.078 1.094 0.910
gm (mmolm−2 s−1·Pa−1) 1.611 0.943 1.014 1.083 1.100 0.904

Outputs adjusting to 25 °C
Vcmax (μmol·m−2·s−1) 109 118 106 109 101 104
J (μmol·m−2·s−1) 201 292 275 259 227 299
TPU (μmol·m−2·s−1) 18.6 24.1 23.1 21.2 2.5 25.0

Table 3
Average values of aerosol optical depth (AOD) at 500 nm, the Ångström ex-
ponent (AE) at 440–936 nm, air mass and the precipitable water vapor column
(in cm) measured using a hand-held sun photometer (MicroTops-II) instrument.
The sun photometer measurements were performed at each trial site during the
airborne campaigns of 2015–2018.

Year Site Flight
dates

AOD500 nn AE440-
936nm

Air mass H2O atm (in
cm)

2015 Ecija 28/05 0.09 0.84 1.30 1.05
Carmona 30/05 0.07 0.75 1.28 1.30

2016 Santaella 17/03 0.13 0.69 1.31 1.06
Santaella 26/04 0.09 0.65 1.27 1.22

2018 Ecija 18/04 0.12 0.61 1.25 0.98

Fig. 4. Mean radiance (W·sr−1·m−2·nm−1) (a) and reflectance spectra (b) re-
trieved from the VNIR hyperspectral camera at the Ecija site in 2018. The black
lines correspond to the average spectra of all wheat plots. Shaded areas com-
prise the±1 standard deviation of the average radiance and reflectance pro-
files.
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with spatial binning) is comparable to that of Zarco-Tejada et al.
(2012), and observations with the Airborne Prism EXperiment (APEX)
sensor in Damm et al. (2015). In addition, NDVI and the pigment-spe-
cific simple ratio chlorophyll b index (PSSRb) proposed by Blackburn
(1998) were calculated from the average reflectance values for each
experimental plot (Fig. 4b).

The Crop Water Stress Index (CWSI) was calculated from the
thermal imagery according to the methodology proposed by Idso et al.
(1981, Eq. 1). For the assessment of CWSI, the average canopy tem-
perature (Tc) retrieved from the top of the wheat canopy at sunlit
conditions and the air temperature (Ta) registered at the flight time
were used.

=
− − −

− − −
CWSI Tc Ta Tc Ta

Tc Ta Tc Ta
( ) ( )

( ) ( )
LL

UL LL (1)

(TceTa)LL represents the canopy-air temperature differential of a
canopy transpiring at the maximum rate, and (TceTa)UL represents this
temperature differential when transpiration is completely halted. The
Non-Water-Stress-Baseline (NWSB) was used to derive (TceTa)LL, de-
fined as the relationship between the TceTa of a well-irrigated wheat
plot at a given vapor pressure deficit (VPD). The NWSB used in this
study (Tc-Ta=3.38–3.25∙VPD) was obtained by Idso (1982), while the
upper limit was calculated according to the methodology proposed by
Idso et al. (1981).

2.5. Modelling methods

Vcmax, standardized to a reference temperature at 25 °C (herein-
after referred to Vcmax), was estimated by inversion of the SCOPE
model v1.70 (van der Tol et al., 2009a) using biophysical parameter
retrievals and SIF quantification for each wheat plot. SCOPE is a ver-
tical (1-D) integrated radiative transfer and energy balance model.

SCOPE models the relationship between chlorophyll fluorescence
and photosynthesis at the leaf level as a function of environmental
conditions (van der Tol et al., 2009b). Photosynthesis and chlorophyll
fluorescence simulations are carried out in SCOPE with meteorological
forcing inputs (incoming shortwave and long-wave radiation, air tem-
perature, humidity, wind speed and CO2 concentration) and four kinds
of parameters: i) leaf parameters including leaf mesophyll structure (N-
struct), leaf chlorophyll content (Cab), dry matter content (Cm), leaf
equivalent water thickness (Cw), senescent material (Cs) and antho-
cyanins (Cant); ii) vegetation structural parameters, including the leaf
area index (LAI), leaf angle distribution, leaf size and canopy height
(hc); iii) optical parameters, including vegetation emissivity and soil
reflectance in the visible, near infrared and thermal bands; and iv)
physiological parameters, including stomatal conductance (m) and
maximum carboxylation capacity. A summary of the relevant SCOPE
inputs for this study is given in Table 4.

The canopy geometry effects on the outgoing spectrum and on the
heterogeneity of net radiation are treated stochastically with 60 ele-
mentary layers, with a maximum LAI of 0.1 each, 13 discrete leaf zenith
inclinations and 36 leaf azimuth classes for shaded and sunlit leaves.
The fluorescence contributions from individual leaves are integrated
over the canopy layer to calculate top of canopy (TOC) fluorescence in
the viewing direction of the hyperspectral sensor based on absorbed
fluxes over the photosynthetic active radiation (PAR) region
(400–700 nm). The chlorophyll fluorescence at leaf level is computed as
a product of the FvCB photosynthesis model, stomatal resistance
(Cowan, 1978), the Ball–Berry stomatal conductance model (Ball et al.,
1987), the coupled photosynthesis-stomatal model (Collatz et al.,
1991), and the emission of chlorophyll fluorescence. The SCOPE model
combines the Collatz et al. (1991) model and the Farquhar et al. (1980)
photosynthesis model for retrieving the Vcmax, taking into account the
stomatal conductance and assimilation rate. For further details see van
der Tol et al. (2009b) and van der Tol et al. (2014).

2.5.1. Ancillary climatic data
The meteorological inputs required for SCOPE simulations were

extracted from ERA-Interim atmospheric reanalysis data (Dee et al.,
2011) produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF). The ERA-Interim is the latest global atmospheric
reanalysis produced by the ECMWF (http://www.ecmwf.int). Surface
parameters extracted from 3-hourly time step ERA-Interim reanalysis
included 2-meter air temperature, air pressure, water vapor pressure,
incoming shortwave and long-wave downward radiation, and 10-meter
wind speeds. The data from ERA-Interim atmospheric reanalysis was
spatially interpolated from their native spatial grid (0.75° by 0.75°) to a
finer 0.25° by 0.25° resolution using nearest-neighbour resampling. To
assess the meteorological variables retrieved from ERA-Interim atmo-
spheric reanalysis, data were compared with observations from the
nearest meteorological stations in the regional agro-climatic network
(Consejería de Agricultura y Pesca, Junta de Andalucía). Errors asso-
ciated with convective processes at surface level were reduced using
wind speed at 2m from this network.

2.5.2. Leaf biophysical and structural parameters
The leaf and canopy parameters needed for SCOPE simulations were

estimated using a multi-step PROSPECT-SAILH model inversion scheme
from reflectance in the 400–1700 nm spectral region. A look-up table
(LUT) of 200,000 simulations was built to minimize the ill-posed in-
version problem (Combal et al., 2003; Li and Wang, 2011; Yebra and
Chuvieco, 2009). The range of variation for Cab was determined based
on prior field information. The main input parameters were calculated
using specific spectral ranges (Table 4) where the biophysical para-
meters are known to have the greatest influence on reflectance and
transmittance spectra. The iterative-optimization numerical (I-optN)
approach was used to invert the PROSPECT-SAILH model for the esti-
mation of leaf traits and canopy parameters from reflectance across the
observed spectrum. The I-optN method estimates the set of parameters,
symbolized by the vector θ=[LADF, LAI, N, Cab, Cm, Cw] which
minimizes Δ2 (Eq. (2)). The method calculates the root mean square
error (RMSE) between the simulated reflectance and the hyperspectral
image reflectance by successive input parameter iteration.

∑= −ρ ρΔ [ ]sim
2

n λ,obs λ,
2

(2)

Where ρλ,obs is the image (canopy level) spectral reflectance, and
ρλ,sim is the modeled canopy spectral reflectance with a set of para-
meters defined in the LUT for each wavelength n. The procedure was
conducted in several steps: 1) a leaf angle distribution function (LADF)
was estimated over the VNIR and SWIR spectral range (400–1750 nm)
with variables Cab, Cw and Cm. LADF was first retrieved by model in-
version, given its key role in canopy structure; 2) the mesophyll
structural parameter (N-struct) and the leaf area index (LAI) were si-
multaneously determined over the range 960–1300 nm using the LADF
from step 1, and variable Cab, Cw and Cm inputs; 3) Cab was then cal-
culated using reflectances in the 455–690 nm range, where chlorophyll
absorption has the strongest effect, with fixed LADF, LAI and N esti-
mated in previous steps; 4) Finally, Cm and Cw were estimated over
900–1700 nm, where dry and water matter have the largest absorption
effects (Baret and Fourty, 1997; Feret et al., 2008; Fourty et al., 1996;
Jacquemoud et al., 2009, 1996), fixing Cab, LADF, LAI and N obtained
previously.

2.5.3. SCOPE iterative-optimization for LIDFs and Rin parameters
After meteorological, leaf, and canopy parameters had been ob-

tained, the SCOPE model was run using an I-optN approach with a LUT
table of 27,500 simulations for optimizing the LADF and the broadband
incoming shortwave radiation (Rin). The LADF retrievals derived from
PROSPECT-SAILH were optimized with SCOPE iterative-optimization
using the radiance spectrum, varying the leaf inclination angle dis-
tribution function (LIDF) parameters. The LIDFa and LIDFb parameters
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mathematically describe the LAD function estimated using PROSP-
ECT-SAILH inversions, where LIDFa determines the average leaf in-
clination and LIDFb describes the variation in leaf inclination, con-
trolling the distribution's bimodality.

The I-optN method minimizes a cost function (Eq. (3)) to estimate
the set of parameters symbolized by the vector θ=[Rin, LIDFa, LIDFb].
In this step, the I-optN method was based on the calculation of the
RMSE between the at-sensor canopy spectral radiance and the SCOPE-
simulated spectra by successive input parameter iterations over the
spectral region used for the SIF retrievals (740–780 nm).

∑= −LΔ [ L ]2
n λ,obs λ,sim

2
(3)

Where Lλobs is the measured canopy spectral radiance, and Lλsim is
the canopy spectral radiance modeled by SCOPE with the set of para-
meters defined in the LUT for a given wavelength n. The LUT was built
varying Rin and LIDFs, but keeping the Vcmax constant at
80 μmol·m−2·s−1 and the remaining default values fixed, as shown in

Table 1. Rin varied 100W·m−2 with a step of 5–10W·m−2 from the
incoming shortwave radiation from the ERA-Interim reanalysis for each
trial site. The leaf inclination distribution factors (LIDFa and LIDFb)
varied according to the LADF obtained from PROSPECT-SAILH inver-
sions, using a total of 500 variations. Among the canopy structural
variables, LIDFa, representing the inclination distribution of leaves, had
the greatest effect on SIF variability. In fact, LIDFa had a large influence
on modeled reflectance with a contribution of over 20% of the variation
between 720 and 1150 nm, while the LAI parameter governed over
≥50% of variation in reflectance at wavelengths longer than 1400 nm.
The remaining structural inputs used in SCOPE (leaf width, LIDFb, and
canopy height) had a marginal impact on the modeled reflectance
(Verrelst et al., 2015). Recent studies (Koffi et al., 2015; Verrelst et al.,
2016, 2015) have demonstrated the importance of Rin, since the
fluorescence spectrum is proportional to the absorbed PAR.

Table 4
Range of the PROSPECT-SAILH and SCOPE parameters used in this study.

Parameters Definition Unit Range Step

PROSPECT
Leaf biophysical
N-struct Leaf mesophyll structure parameter [−] 1.25–1.85 0.1
Cab Chlorophyll a+ b content μg·cm−2 10–70 0.5
Cw Equivalent water thickness g·cm−2 0.001–0.05 0. 0005
Cm Dry matter content g·cm−2 0.001–0.05 0. 0005
Cs Senescence factor [−] 0 …

FLUSPECT (integrated into SCOPE model)
Cant Anthocyanin content μg·cm−2 3,5,10 …

SAILH
Canopy
LAI Leaf area index m2·m−2 2–5 0.1
LADF Leaf inclination distribution function [−] 1,2,3 and 4a …
TV Solar zenith angle deg 45,60,85 5
Phi Viewing zenith angle deg 0 …
PSR Relative azimuth angle deg 0 …
Sl Hot-spot parameter [−] 0d …

SCOPE
Leaf biochemistry
Vcmax Maximum carboxylation capacity at 25 °C μmol·m−1·s−1 0–260 10
m Ball-Berry stomatal conductance [−] 8 …
Rdparam Parameter for dark respiration [−] 0.015 …
Kv Extinction coefficient for vertical Vcmax profile [−] 0.64 …
Kc Cowan's water use efficiency [−] 700 …
ρ(thermal) Leaf thermal reflectance [−] 0.01 …
τ(thermal) Leaf thermal transmittance [−] 0.01 …
ρs(thermal) Soil thermal reflectance [−] 0.06 …
Stressfactor Stress multiplier for Vcmax [−] 1 …
kNPQs Rate thermal dissipation [−] 0 …
qLs Fraction active photosystems [−] 1 …
fqe Fraction of photons partitioned to PSII [−] 0.02 …

Canopy
lw Leaf width − 0.1 …
LIDFa Leaf inclination distribution of leaves [−] −1–1 0.05
LIDFb Variation in leaf inclination [−] −1–1 0.05
hc Canopy height m 1.2 …

Micrometeorological
p Air pressure hPa 988–997b …
u Wind speed m−1 2.2–2.8c …
Oa O2 concentration in the air per mille 209 …
ea Atmospheric vapor pressure hPa 15 …
Ca CO2 concentration in the air ppm 392.2 …
Ta Air temperature °C 18–25b …
Rin Incoming shortwave radiation W·m−2 500–950b …
Rli Incoming longwave radiation W·m−2 70–150b …

a Canopy types proposed to define LADF: planophile (1), erectophile (2), plagiophile (3) and spherical (4).
b Meteorological variables retrieved from hourly ERA-Interim reanalysis dataset for each trial sites.
c Wind speed at 2-meter from a weather station located close to each trial sites.
d Leaves were under sunlit conditions without shadowing effects on the bidirectional reflectance.
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2.5.4. Vcmax estimation from SCOPE model inversion
Once the leaf, canopy and meteorological parameters were obtained

following the I-optN approaches using the PROSPECT-SAILH and
SCOPE simulations, the relationships between Vcmax and canopy
fluorescence (Vcmax= f(SIF); Fig. 5b) were established for all wheat
plots. For this purpose, the SCOPE model was run in forward mode with
the Vcmax range set to 0–260 μmol·m−2·s−1, divided into 27 intervals.
As an additional step, the simulated radiance spectra from SCOPE at
1 nm resolution in the 640–800 spectral windows was convoluted using
the Whittaker-Shannon interpolation, as described in Butzer et al.
(2011). Fig. 5a shows the comparison between the radiance retrieved
with the VNIR hyperspectral sensor, the original radiance simulated by
SCOPE at 1 nm, and the simulated SCOPE radiance spectra convoluted
to match the airborne hyperspectral data. The spectral convolution of
the radiance simulated by SCOPE was critical to match the broader
resolution of the hyperspectral imager, and therefore to obtain com-
parable SIF values. Fig. 5b shows the effect of the convoluted radiance
signal when applied to the SCOPE simulations, observing the relation-
ship between SIF and Vcmax.

3. Results

3.1. Nutrient and water-stress variability in rainfed and irrigated study sites

Field-based leaf physiological measurements (net assimilation, N
concentration and water potential), Vcmax estimated by SCOPE in-
versions, Cab estimated by PROSPECT-SAILH inversions, and CWSI for
the entire experiment comprising rainfed and irrigated plots are shown
in Fig. 6. There were large differences in the crop photosynthesis, water
and nitrogen status between water regimes. As expected, irrigated plots
had better water and nutritional status compared to rainfed plots
overall. Irrigated plots had higher assimilation rates, N concentrations,
Vcmax, and Cab (Fig. 6a, b, d and e) than rainfed plots. ANOVA analysis
confirmed statistically significant differences between the means of the
two water stress regimes for all field physiological measurements (all p-
values ≤0.0036).

There was a significant correlation between CWSI and water po-
tential in rainfed plots (r2= 0.30, p-value=0.7e-4), although the
correlation was stronger for irrigated plots (r2= 0.72, p-value=1.7e-
5). The high variability in N concentration for both treatments (Fig. 6b)
suggests that rainfed plots were also affected by N deficit. Assimilation
rate was significantly correlated with the N concentration (r2= 0.51

and 0.56 for irrigated and rainfed, respectively) indicating that the N
concentration also affected the photosynthetic capacity in both water
regimes.

3.2. Effects of the biochemical and environmental parameters on SIF and
Vcmax estimation

The sensitivity of the convoluted radiance signal simulated with
SCOPE to chlorophyll content, LAI and the broadband incoming
shortwave radiation are shown in Fig. 7. Variation in Cab had a rela-
tively small effect on radiance at the spectral region typically used to
quantify chlorophyll fluorescence (750–775 nm), particularly as com-
pared to LAI and Rin (Fig. 7b and c). In general, for the same value of
Cab, the radiance significantly increased with the increase of LAI and Rin

in the O2-A region. However, large differences were observed as a
function of Rin variation, reaching>30W·sr−1·m−2·nm−2. These re-
sults showed that Rin was a key micrometeorological variable in driving
SIF variability simulated by the SCOPE model.

Fig. 8 shows the relationship between SCOPE-simulated SIF and
Vcmax, as a function of LAI, Cab and Rin. At constant radiation
(Rin= 800W·m−2) and LAI (2), fluorescence increased with increasing
values of Cab and Vcmax. The largest increase in the SIF retrievals oc-
curred for Vcmax between 10 and 60 μmol·m−2·s−1. For larger Vcmax
values (≥150 μmol·m−2·s−1), SIF retrievals remained steady, with a
tendency to increase with Cab.

At constant Cab, there were dramatic changes in the relationship
between simulated SIF and Vcmax with increased with LAI and Rin

(Fig. 9b and c). SIF significantly increased with LAI, nearly doubling
with an increase in LAI from 1 to 5 (Fig. 8b). Unsurprisingly, SIF in-
creased proportionally to Rin (Fig. 8c).

3.3. Validation of Vcmax estimated by SCOPE using leaf photosynthesis
measurements

The relationship between the SCOPE-estimated Vcmax and the field-
measured Vcmax is shown in Fig. 9a. There was an almost 1:1 linear
relationship (r2= 0.77; p-value ≤2.2e-16 and
RMSE=2.6 μmol·m−2·s−1) between measured and estimated Vcmax,
using the FvCB approach on the six wheat varieties from the airborne
campaign in 2018. The relationships between net photosynthetic rate
and both measured and simulated Vcmax also displayed a significant
relationship for both types of Vcmax estimates (all r2≥ 0.68; p-value

Fig. 5. Radiance spectra obtained by the VNIR hyperspectral sensor (in grey), the radiance simulated by SCOPE model at 1 nm (in black) and the convoluted SCOPE-
simulated radiance using Whittaker-Shannon interpolation and moving average filters (in red) (a). For the same wheat plot, the SCOPE-simulated SIF (black line) and
the SIF obtained after convolution (red line) are shown as a function of Vcmax (μmol·m−2·s−1) (b) for simulations with Cab= 33 μg·cm−2, LAI= 2 and
Rin= 575W·m−2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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≤0.005) (Fig. 9b).
The relationship between Vcmax simulated by SCOPE model in-

version and SIF quantified from the hyperspectral imagery at the dif-
ferent trial sites yielded a significant non-linear relationship (r2= 0.84;
p-value ≤2.2e-16; Fig. 11). Irrigated plots had high SIF values
(≥4.92W·sr−1·m−2·nm−2) that were related to large values of Vcmax,
mainly over 100 μmol·m−2·s−1. Under the severe water stress condi-
tions in most rainfed plots, Vcmax was lower than 90 μmol·m−2·s−1.
However, for some rainfed plots (Ecija 2018), which were in an early
growth stage and under moderate water stress, Vcmax and SIF re-
trievals were larger than 90 μmol·m−2·s−1 and 5W·sr−1·m−2·nm−2 for

Vcmax and SIF, respectively.

3.4. Relationships between Vcmax and net assimilation under irrigation and
rainfed conditions

The relationships between net assimilation and SCOPE-estimated
Vcmax, CWSI, leaf Cab, and NDVI are shown in Fig. 11 and Fig. 12 for
each water regime. The SCOPE-estimated Vcmax was significantly
correlated with the assimilation rate (r2= 0.50, p-value= 2.91e-6)
under rainfed conditions. This relationship was stronger under irrigated
conditions (r2= 0.65, p-value= 9.31e-5). The slightly weaker

Fig. 6. Leaf- and canopy-level physiological data acquired in plots under rainfed (red) and irrigated (blue) conditions: a) assimilation rate (μmol·m−2·s−1); b) leaf N
concentration (%); c) water potential (MPa); d) Vcmax estimated by SCOPE (μmol·m−2·s−1); e) chlorophyll content estimated by PROSPECT-SAILH (μg·cm−2); and f)
CWSI calculated from high-resolution thermal imagery. In the box plots, the horizontal line represents the median, and the top and bottom are the 75th and 25th
quartiles, respectively. The whiskers represent the upper and lower range. Average values shown with a white point over the box plot. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Sensitivity of SCOPE radiance profiles convoluted to match the FWHM of the hyperspectral imager used in the study, as a function of chlorophyll content (Cab)
in μg·cm−2 (a), leaf area index (LAI) (b) and the broadband incoming shortwave radiation (Rin) in W·m−2 (c) for Vcmax=80 μmol·m−2·s−1. CO2 and O2 con-
centration at the interface of the canopy were set to 382.17 ppm and 200×103 ppm, respectively.
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correlation obtained in rainfed plots could be associated with nutrient
and water limitations, as well as an increased influence of background
effects under stress conditions. In this context, variation in Vcmax was
reduced and values were smaller (< 90 μmol·m−2·s−1), relative to ir-
rigated conditions.

Net assimilation was significantly related to Cab (r2= 0.56; p-
value=3.93e-7), NDVI (r2= 0.46; p-value= 1.19e-5) and PSSRb

(r2= 0.56; p-value= 4.21e-7) under rainfed conditions (Fig. 12b, c
and d). Under rainfed conditions, chlorophyll indicators (Cab and
PSSRb) had better correspondence to net assimilation than remote
sensing estimates of Vcmax (r2= 0.50). By contrast, the relationship
between the assimilation rate and the thermal-based CWSI (Fig. 12a)
was weak (r2= 0.14, p-value<0.03), suggesting that the chronic
water-stress may have resulted in an associated nutrient deficiency that

limited assimilation rates. Indeed, net assimilation under rainfed con-
ditions was more related to nitrogen and pigment indicators rather than
to CWSI. Furthermore, after the supplemental irrigation in the Carmona
plots in 2015, photosynthetic rates remained low despite partially re-
covered water status. For these plots, CWSI reached values close to 0.4,
while assimilation rates were maintained below 15 μmol·m−2·s−1.

Under well-irrigated conditions, the relationships between net as-
similation and Cab, NDVI and PSSRb showed weak, nonsignificant re-
lationships (r2 < 0.13; p-value= 0.83 for leaf Cab content; p-
value= 0.41 for PSSRb; p-value=0.15 for NDVI, Fig. 12). It is likely
that these relationships exhibited scaling problems due to saturation
effects associated with high canopy densities in irrigated plots. By
contrast, the relationship between net assimilation and CWSI was
strongly correlated for irrigated plots (r2= 0.73, p-value=1.30e-5).

Fig. 8. Relationships between SIF estimated from SCOPE radiance simulations and Vcmax (μmol·m−2·s−1) as a function of chlorophyll content (Cab) in μg·cm−2 (a),
LAI (b) and the broadband incoming shortwave radiation (Rin) in W·m−2 (c).

Fig. 9. a) Relationship between carboxylation maximum capacity (Vcmax; μmol·m−2·s−1) retrieved from the hyperspectral image through the SCOPE model in-
version vs. field measured Vcmax through Farquhar–von Caemmerer–Berry (FvCB) model using the curve A/Ci (wheat Ecija plots, 2018). The black line is the fit line
and the dashed line is the one-to-one line; b) relationships between the average net assimilation (A; μmol·m−2·s−1) measured using the photosynthesis chamber at
flight time and the simulated Vcmax (in black dots) and the Vcmax calculated from FvCB model (in blue dots). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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The estimation of Vcmax as a function of SIF retrievals enabled the
calculation of the spatial distribution of Vcmax and the net assimilation
in the wheat experimental plots (Fig. 13). These pixel-level estimates of
Vcmax and assimilation for rainfed and irrigated wheat varieties were
retrieved using the modelled regression between SIF and Vcmax shown
in Fig. 10.

4. Discussion

Several studies have shown the utility of remotely-sensed SIF as an
indicator of the photosynthetic activity at across spatial resolutions
(Meroni et al., 2009; Porcar-Castell et al., 2014; Rascher et al., 2015).
SIF retrieved from satellite imagery has improved estimations of gross
primary productivity at ecosystem to global scales (Frankenberg et al.,
2011; Guanter et al., 2014; Smith et al., 2018). However, SIF-GPP re-
lationships require appropriate modelling methods to compensate for
structural effects of vegetation canopies (Levula et al., 2019), spatial
and temporal scales (Hu et al., 2018), seasonal changes in photo-
synthetic pigments (Campbell et al., 2018), environmental conditions
(Verma et al., 2017) and other confounding factors. In this regard, He
et al. (2017) showed that the sun-satellite view observation geometry
could produce unwanted SIF variations, affecting the accuracy of GPP.
Due to its close link to photosynthetic activity, SIF also has great po-
tential for use in precision agriculture and plant breeding programs. At
both global (satellite) and local (airborne and drone) scales, remote
estimation of the maximum rate of carboxylation, Vcmax is thought to
be a suitable proxy for photosynthesis. Zhang et al. (2014) demon-
strated that estimation of Vcmax from space-based SIF retrievals com-
bined with SCOPE simulations in corn and soybean crops was feasible.
Nevertheless, further work was needed to understand if these methods
are applicable to remote sensing instruments readily available in the
context of routine precision agriculture operations and in plant
breeding programs. In particular, it is necessary to test whether SIF and
Vcmax retrievals are feasible with the technical constraints of the
spectral resolution available for operational and commercial remote
sensing work, the high spatial resolution required, and the general aim
of detecting subtle physiological changes across varieties and under
water and nutrient stress levels.

The work presented here demonstrates that the Vcmax estimated
from airborne hyperspectral imagery through SCOPE model inversion
was able to detect physiological changes induced by differing irrigation
regimes and crop varieties. The relationships between net photo-
synthetic rates and both measured Vcmax and simulated Vcmax
(Fig. 9b) at the Ecija site were significantly correlated (r2≥ 0.68 and p-
value ≤0.005). The sample size used in the validation of SCOPE-si-
mulated Vcmax was low due to the time-consuming nature of obtaining
CO2 response curves. Nevertheless, a larger dataset (n > 50) was used

to demonstrate the relationship between Vcmax retrieved from SCOPE
and plant physiological traits (Fig. 11 and Fig. 12). It demonstrates that
Vcmax estimates are related to the physiological changes associated to
water status. Issues related to the coarser spectral resolution of hyper-
spectral instruments used in precision agriculture and plant breeding
programs were evaluated with respect to SIF retrieval, and its impact on
Vcmax estimation, as validated by field measurements of plant traits
and net assimilation. In particular, the small plot sizes normally used by
plant breeders during their wheat selection trials may limit the accu-
racy of remotely-sensed SIF. The planting-row designs with 25-cm row
spacing used in this study could affect the retrievals of narrow-band and
high-resolution hyperspectral (25 cm) and thermal (20 cm) imagery.
When the plots are too small, soil and background effects may con-
taminate the signal due to the mixing of the soil and vegetation re-
flectance. Therefore, segmentation algorithms should be implemented
to reduce soil background effects on estimates of plant physiological
traits at canopy level, especially in early growth stages where these
effects could significantly reduce the accuracy of retrievals. This issue is
especially relevant for coarse-resolution sensors such as the SWIR
camera (70 cm) and the thermal sensors. Spatial resolution issues
should be considered during the experimental design in breeding pro-
grams where the remote sensing sensors are expected to be used.

The SCOPE-simulated radiance data which was convoluted to match
the spectral resolution of the airborne hyperspectral imager used in our
study was critical for obtaining SIF and Vcmax parameters within ex-
pected ranges. Analysis confirmed that the canopy structure and the
incoming shortwave radiation were the main driving variables for
modeled SIF emissions (Verrelst et al., 2015, 2016). In particular, Rin

had a dominant influence on SIF, as expected based on the pivotal role
of PAR load on fluorescence emission. As explained in Van der Tol et al.
(2014), PAR and Vcmax are the main contributors to the fluorescence
yield in SCOPE. The effects of chlorophyll content, LAI and Rin on the
relationship between SIF and Vcmax were also included in the sensi-
tivity analysis reported in our manuscript, showing the large impact of
Cab on the SIF-Vcmax relationships (Fig. 8a), which is in agreement
with Koffi et al. (2015).

Estimates of Vcmax from wheat plot image spectra through SCOPE
model inversion were within the ranges reported by other studies for
wheat crops (10–219 μmol·m−2·s−1; Wullschleger, 1993; Silva-Pérez
et al., 2017). The relationship between the estimated Vcmax and
chlorophyll fluorescence (r2= 0.84; Fig. 10) differed greatly between
irrigated and water-stressed plots. As shown in Fig. 10, the SIF and
Vcmax are modulated by water status. In this regard, Zheng et al.
(2017) showed that photosynthesis at noon is mainly limited by Vcmax,
further indicating that Vcmax may be a suitable proxy for evaluating
plant stress levels. For irrigated conditions, the relationship was almost

Fig. 10. Relationship between carboxylation maximum capacity (Vcmax,
μmol·m−2·s−1) estimated by hyperspectral imagery through SCOPE model in-
version and SIF quantified from the hyperspectral imagery, displaying rainfed
(red) and irrigated (blue) conditions. Each symbol corresponds with a single
plot measurement. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 11. Relationships between average assimilation (A; μmol·m−2·s−1) mea-
sured in leaves and Vcmax (μmol·m−2·s−1) estimated by hyperspectral imagery
through SCOPE model inversion under rainfed (red; n=33) and irrigated
(blue, n=18) conditions. The average net assimilation per plot was obtained
using two leaves from the top of the canopy and a portable photosynthesis
chamber. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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linear and displayed a steeper slope with larger Vcmax values
(≥100 μmol·m−2·s−1). Under water deficit the relationship was weak.
As crops reduce stomatal and mesophyll conductance in response to
stress, the CO2 concentration within the chloroplast drops, causing a
reduction in the photosynthesis capacity (Vcmax). Under low CO2

concentrations, plant carboxylation rates are limited by RuBisCo rather
than Vcmax (Sharkey et al., 2007). Consequently, under severe water
stress, both Vcmax and SIF retrievals were suppressed, which is in
agreement with the findings by Zheng et al. (2017).

Due to the intensive field-work required to estimate the relation-
ships between A and Ci, the number of observations used to estimate
Vcmax in the field was small. Nevertheless, our data suggests that si-
mulated Vcmax corresponded well with in situ measurements. The re-
sults were satisfactory (r2= 0.77; p-value ≤2.2e-16 and
RMSE=2.6 μmol·m−2·s−1) despite the limited number of leaf Vcmax
samples, suggesting that Vcmax could reasonably be estimated from
SCOPE and convoluted SIF retrievals using hyperspectral imaging
technology suitable for precision agriculture. Simulated Vcmax yielded

Fig. 12. Relationships between average net assimilation (A, μmol·m−2·s−1) and (a) CWSI, (b) chlorophyll content (Cab; μg·cm−2) estimated by PROSPECT-SAILH
model inversion, (c) NDVI, and (d) PSSRb calculated from hyperspectral imagery under rainfed (red points; n= 33) and irrigated (blue points, n= 18) conditions.
Average net assimilation per plot was obtained from two leaves at the top of the canopy with a portable photosynthesis chamber. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Maps of Vcmax (μmol·m−2·s−1) (a) and assimilation rate (A; μmol·m−2·s−1) (b) predicted from Vcmax, under irrigated and rainfed conditions at Santaella
field site during 2016 airborne campaign.
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a significant relationship with assimilation rate at the Ecija site in 2018
under non severe water stress conditions (r2= 0.68; p-value ≤0.005).
These results are in accordance with results obtained by Zhang et al.
(2014, 2018) in soybean and corn crops. The relationships observed
between Vcmax and the net photosynthesis (Fig. 11) supports the hy-
pothesis that airborne-quantified Vcmax is a feasible indicator of crop
functioning under contrasting water regimes. Moreover, we showed
(Fig. 12) that in the absence of water stress, Vcmax was a stronger
predictor of photosynthetic capacity than standard indicators such as
Cab, and NDVI and PSSRb. These indicators likely performed poorly due
to scaling problems related to the high canopy densities in irrigated
plots. As a result, non-significant relationships were also found between
net assimilation and these indices (all p-value≥0.15). In dense biomass
canopies, the NIR reflectance increases greatly, reducing the sensitivity
of the normalized ratios such as NDVI or PSSRb to plant biochemical
content (Thenkabail et al., 2000; Gitelson, 2004).

Under rainfed conditions, i.e. in the presence of water stress, Vcmax,
Cab and reflectance indices were related to CO2 assimilation rate, but
thermal CWSI was not. Under water stress, stomatal closure reduces the
CO2 concentration inside the chloroplast, decreasing the photochemical
activity and also photo-inhibition processes (Flexas and Medrano,
2002). Thus, leaf photochemistry decreases, resulting in a reduction of
the chlorophyll fluorescence and RuBisCo activity. The fact that re-
flectance-based indicators (Cab, PSSRb, and NDVI) became significantly
associated to A, under water stress, suggests that the saturation effects
from canopy biomass were not present in rainfed plots. In this study,
partial recovery of the water status (as happened in Carmona field in
2015) after sever water stress did not result in elevated assimilation
rates. This suggests that instantaneous assessment of water status might
not track photosynthetic performance if severe water stress has affected
the photosynthetic apparatus.

From an operational perspective, the remote estimation of Vcmax
from high-resolution hyperspectral imagery through SCOPE model in-
version methods provides a powerful tool to accurately assess crop
assimilation rates in large plant breeding programs and in precision
agriculture studies. Moreover, its robustness across both irrigated and
water-stressed plots was demonstrated when compared against stan-
dard reflectance-based remote sensing indicators widely used for crop
screening and high-throughput phenotyping.

5. Conclusions

The work presented in this manuscript demonstrates the estimation
of maximum rate of carboxylation (Vcmax) using SCOPE model inver-
sion with airborne-quantified SIF from hyperspectral imagery.
Estimates suitably tracked photosynthetic rates and clearly dis-
tinguished physiological differences in irrigated and rainfed conditions.
Under water stress, all plant trait indicators performed similarly
(Vcmax, NDVI, Cab and PSSRb) and were well related to assimilation
rates. Nevertheless, estimated Vcmax outperformed standard remote
sensing indices for the quantification of crop photosynthesis under ir-
rigated conditions (i.e. in the absence of water stress). The methodology
demonstrated in this study is directly relevant for high-throughput
plant phenotyping and for precision agriculture applications.
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