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A B S T R A C T

Unlike satellite earth observation, multispectral images acquired by Unmanned Aerial Systems (UAS) provide
great opportunities to monitor land surface conditions also in cloudy or overcast weather conditions. This is
especially relevant for high latitudes where overcast and cloudy days are common. However, multispectral
imagery acquired by miniaturized UAS sensors under such conditions tend to present low brightness and dy-
namic ranges, and high noise levels. Additionally, cloud shadows over space (within one image) and time (across
images) are frequent in UAS imagery collected under variable irradiance and result in sensor radiance changes
unrelated to the biophysical dynamics at the surface. To exploit the potential of UAS for vegetation mapping, this
study proposes methods to obtain robust and repeatable reflectance time series under variable and low irra-
diance conditions. To improve sensor sensitivity to low irradiance, a radiometric pixel-wise calibration was
conducted with a six-channel multispectral camera (mini-MCA6, Tetracam) using an integrating sphere simu-
lating the varying low illumination typical of outdoor conditions at 55oN latitude. The sensor sensitivity was
increased by using individual settings for independent channels, obtaining higher signal-to-noise ratios com-
pared to the uniform setting for all image channels. To remove cloud shadows, a multivariate statistical pro-
cedure, Tucker tensor decomposition, was applied to reconstruct images using a four-way factorization scheme
that takes advantage of spatial, spectral and temporal information simultaneously. The comparison between
reconstructed (with Tucker) and original images showed an improvement in cloud shadow removal. Outdoor
vicarious reflectance validation showed that with these methods, the multispectral imagery can provide reliable
reflectance at sunny conditions with root mean square deviations of around 3%. The proposed methods could be
useful for operational multispectral mapping with UAS under low and variable irradiance weather conditions as
those prevalent in northern latitudes.

1. Introduction

Unmanned Aerial Systems (UAS) have evolved into an important
tool in near-Earth observation (Berni et al., 2009; Colomina and Molina,
2014; Manfreda et al., 2018; McCabe et al., 2017; Zarco-Tejada et al.,
2012). UAS multispectral mapping brings numerous benefits for en-
vironmental monitoring compared to satellites. UAS flying below
clouds can provide land surface information under cloudy conditions.
This is relevant for high latitude regions where cloudy and overcast

conditions are prevalent (Honkavaara et al., 2012; Wang et al., 2018).
Further, UAS multispectral mapping is beneficial for hyper-resolution
land surface characterizations to bridge the scale discrepancy between
coarse-resolution satellite imagery and field measurements (Fytsilis
et al., 2016). This could facilitate to understand the environmental
processes and scaling issues at high spatial resolution (Anderson and
Gaston, 2013; Wang et al., 2019). Another advantage is that UAS
mapping surveys can be conducted with favorable revisit times, flying
patterns and low cost. For instance, UAS can serve as a goniometer to
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study anisotropic effects of the land surface (Von Bueren et al., 2015).
UAS multispectral mapping for scientific research in quantitative

remote sensing aims to obtain high spatial and radiometric resolution,
high geometric and radiometric accuracy, high dynamic range and low
noise level image, high efficiency for data processing and repetitive
data acquisition (Honkavaara et al., 2009). Nonetheless, there are
challenges in utilizing UAS multispectral mapping for quantitative re-
mote sensing research (Aasen et al., 2018). For instance, UAS platforms
are less stable than satellites or manned aerial missions, and imagery
from low-cost, consumer-grade multispectral sensors usually has low
radiometric resolution and signal-to-noise ratios (SNRs). UAS imagery
tends to be more blurry, under or over-exposed and of lower accuracy
and repeatability (Von Bueren et al., 2015). Additionally, the low flying
height (< 200m) of UAS results in small coverage of images. To cover
the desired survey area, UAS flight campaigns usually acquire hundreds
of images during the course of a flight and data processing requires a
complex workflow for geometric and radiometric corrections, sub-
sequent orthorectification and mosaicking to generate orthophotos. To
solve these issues, studies have designed and improved the workflow on
radiometric and geometric processing of UAS multispectral imagery
(Aasen et al., 2018; Berni et al., 2009; Del Pozo et al., 2014; Kelcey and
Lucieer, 2012; Laliberte et al., 2011). These studies also demonstrated
that UAS equipped with low-cost, narrow-band multispectral imaging
sensors are able to generate quantitative remote sensing products under
sunny and high irradiance conditions, e.g. in the Mediterranean region
(Berni et al., 2009; Zarco-Tejada et al., 2012). However, in high latitude
regions where the low and variable irradiance conditions are frequent,
there are additional challenges to obtain high-quality UAS imagery,
including camera sensitivity and cloud shadows in UAS imagery
(Honkavaara et al., 2012). Thus, our study aims to improve UAS mul-
tispectral mapping under low and variable irradiance conditions.
In high latitude regions such as Denmark, the irradiance is usually

low, due to the high frequency of overcast and cloudy days, and low
solar height. According to in-situ observations at Soroe eddy covariance
site (55°29′N, 11°38′E) of Denmark from 2003 to 2013, only 26.46% of
all days at this site are clear (the fraction of diffuse radiation<50%) as
shown in Fig. 1(a). This percentage is lower than the global average (ca.
50%, Kanniah et al., 2012) and the solar irradiance levels on cloudy and
overcast days are much lower than that on the sunny days as shown in
Fig. 1(b). UAS multispectral imagery obtained in such weather condi-
tions tends to present low brightness and dynamic ranges, and high
noise levels. To solve this issue, the multispectral camera should be
calibrated with low illumination conditions. This requires cameras to be
thoroughly radiometric calibrated and the illumination outputs from
the calibration set-up are designed for specific outdoor conditions.
Furthermore, to improve the sensitivity, the camera integration time
needs to be increased to capture more light. However, at the same time,
the too high integration time can induce image saturation. Thus, sensor

settings should fully utilize the radiometric potential of the sensor to
avoid over- and under-exposure. Additionally, channels of the multi-
spectral camera may need individual settings of integration times. For
instance, vegetation has higher reflectance in the near infrared than in
the visible wavelength range. Over vegetated areas, even with low ir-
radiance, saturation can be reached in the near infrared, while visible
channels have low brightness. White targets, e.g. snow, can have high
reflectance in both visible and near infrared parts. The protocol to
identify the optimal sensor setting for individual channels and irra-
diance conditions needs to be explored to improve sensor sensitivity
while preventing saturation (Honkavaara et al., 2012).
Another issue related to the UAS multispectral mapping in high

latitude regions is the variable solar irradiance induced by cloud
movement during the flight campaign. Even though flight campaigns
usually take only 10–20min, the irradiances of images taken at slightly
different times vary due to shading by clouds. This can induce radio-
metric inconsistence (cloud shadows) across and within images.
Numerous studies highlighted the importance of removing cloud sha-
dows for airborne multispectral/hyperspectral data collected on cloudy
days (Aasen et al., 2018; Honkavaara et al., 2013; X. Li et al., 2019a; Z.
Li et al., 2019b; Zhai et al., 2018). Adeline et al. (2013) categorized
cloud shadow detection algorithms into geometric and image based
methods including histogram thresholding, invariant color models,
object segmentation, geometrical methods, physics-based methods,
unsupervised and supervised machine learning methods. Geometric
methods based on simulating the radiative transfer processes can po-
tentially achieve a good accuracy. For instance, Brell et al. (2017) used
ray tracing methods in combination with return signals of an airborne
LiDAR to remove cloud shadows in passive hyperspectral data. How-
ever, the geometric method requires accurate geometric information on
the 3D objects casting the shadows (clouds in this case), solar elevation
and direction, and UAS sensor positions. Due to uncertainties on the
geometric information, the accuracy of geometric methods for UAS
imagery is relatively low (Aasen et al., 2018; Schläpfer et al., 2012).
Using image based methods, Hakala et al. (2013) removed cloud sha-
dows by performing radiance normalization between overlapping areas
across images or by collecting the incoming irradiance continuously
throughout the entire flight campaign. However, these methods are
suitable to remove the radiometric inconsistence across images not
within images. Multivariate statistical Tensor decomposition methods
have shown to be a useful tool for anomaly detection and removal
(Zhang et al., 2016), feature extraction (Zhang et al., 2013) and de-
noising (Renard et al., 2006) in hyperspectral images. Tensor decom-
position is comparable to Principal Component Analysis (PCA), how-
ever, differently from PCA, tensor decomposition can deal with the
high-dimensional data sets. The Tucker tensor decomposition also has
advantages to consider the spatial-temporal patterns simultaneously.
The collected overlapping multispectral images or orthophotos across
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Fig. 1. (a) Observed daily diffuse solar radiation fraction in Soroe of Denmark from 2004 to 2011. (b) Typical solar radiance at 12:00 local time in Risoe, Denmark
from July to September 2017.
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time from UAS can be treated as a four-way tensor, which has space,
spectrum and time dimensions. Using the tensor decomposition, the
four-way tensor can be converted into loadings and scores. The ob-
tained loadings can subsequently be used to reconstruct the image with
different levels of details in the original image. Depending on how
much information is used in the reconstruction, the reconstructed
image can contain only the most significant information and exclude
noise signals. As the cloud shadow changes with time, the cloud shadow
signals can be removed as anomalies from the time domain.
This study is based on the common and established workflow of UAS

multispectral image processing (Aasen et al., 2018; Berni et al., 2009;
Laliberte et al., 2011). The objectives of this study were: (1) to improve
the sensor sensitivity by thoroughly radiometric and geometric cali-
bration of sensors for low irradiance conditions, and (2) to remove the
areas of variable irradiance (cloud shadow) on UAS images by tensor
decomposition. Finally, the measured reflectance in the field was used
to validate the UAS multispectral imagery.

2. Materials

2.1. Multispectral sensor

We use the Tetra mini-MCA camera (MCA, Multispectral Camera
Array, Tetracam, Chatsworth, CA, USA), which is one of the most
popular multispectral 2D frame imaging sensors for UAS surveys
(Bendig et al., 2015; Berni et al., 2009; Laliberte et al., 2011; Turner
et al., 2014; Von Bueren et al., 2015; Zarco-Tejada et al., 2012). It has a
weight of 700 g, suitable for a lightweight UAS platform. It consists of
six independent channels including the visible and near infrared wa-
velengths. Each channel has a lens in front, a narrow band filter, and a
Complementary Metal-Oxide-Semiconductor (CMOS) sensor. Each
channel has a field of view of 38.3°× 31° and the focal length is
9.6 mm. The image size is 1280×1024 pixels. The peak wavelengths of
the six channels are 470, 530, 570, 670, 710 and 800 nm. The narrow
band filters are three-cavity filters, which are characterized by a square
peak and steep sideband slopes. The full width at half maximum
(FWHM) is around 10 nm. Detailed sensor information is shown in
Table 1.

2.2. Laboratory calibration set-up

In order to obtain high-quality UAS imagery, a thorough geometric
and radiometric calibration of the MCA was carried out in the labora-
tory. A standard calibration poster with a checkerboard pattern was
used to conduct the geometric calibration and to retrieve the geometric
distortion of images. The laboratory radiometric calibration was used to
determine the conversion of image digital number (DN) into radiance.
The calibration set-up for the radiometric calibration included three
parts: a 2m diameter integrating sphere (ISP2000, Instrument
Systems), light sources combining multicolor LEDs (various levels in the
visible range) and 3 tungsten halogen lamps (various levels in the near
infrared range), and a spectroradiometer (ASD HandHeld 2, Analytical
Spectral Devices, Inc., Boulder, Colorado, USA) to record the radiance.

The integrating sphere is an optical instrument consisting of a
hollow spherical cavity with its interior covered with a highly reflective
layer of Barium sulfate (BaSO4). The 2m diameter integrating sphere
ensures multiple diffuse reflections inside the sphere. Thus, uniform
and homogeneous illumination is present in the radiance port of the
sphere. By changing the electric current going through six multicolor
LEDs and three tungsten halogen lamps, this set-up can provide ra-
diance ranging from 0.005 to 0.2W⋅m−2⋅nm−1⋅sr−1 as shown in
Fig. 2(c). This range covers common conditions of reflected radiance in
the outside environment. The integrating sphere was set to output 11
illumination levels for sensor calibration based on irradiance levels
found in Denmark (Fig. 1). The ASD radiance detector can measure the
spectral range from 325 nm to 1075 nm, an accuracy of± 1 nm and a
resolution of< 3 nm at 700 nm. Detailed information on the experi-
mental setup and output spectral radiance are shown in Fig. 2.

2.3. Unmanned Aerial System (UAS)

UAS flight campaigns with an off-the-shelf DJI Hexa-copter
Spreading Wings S900 multi-copter platform (DJI S900, DJI Inc.,
Shenzhen, China) were conducted to deploy the payload to collect
imagery at the test site. Besides the MCA multispectral camera, the
payload includes an RGB (Red-Green-Blue) camera (Sony DSC-RX100,
Corporation, Tokyo, Japan), a GNSS (Global Navigation Satellite
System), and a microprocessor Beaglebone Black for sensor commu-
nication and data storage. The RGB camera has a focal length of
10.7 mm with a field of view (FOV) of 64.8°×45.9°. A GNSS system
(NovAtel flexpak6 and GPS-703-GGG, NovAtel Inc., Canada) (Bandini
et al., 2018) was attached with the payload to measure the position
information.

3. Methods

A precise geometric and radiometric calibration of the MCA sensor
was conducted in the laboratory. After that, the sensitivities of in-
dividual channels to radiance were analyzed. An outdoor experiment
was conducted over homogeneous targets to test the sensitivities of the
individual multispectral channels. Further, the UAS flight campaigns
with the MCA camera were conducted under both sunny and cloudy
conditions. The digital surface models (DSMs) generated from the MCA
images and RGB images were evaluated and compared to assess their
geometric accuracy. For the radiometric performance, MCA imagery
collected on a variable irradiance (cloudy) day was used to test the
cloud shadow removal algorithm. Finally, a vicarious validation of re-
flectance collected from the UAS orthophotos was performed using
reference targets.

3.1. Sensor calibration

The laboratory sensor calibration includes geometric calibration to
retrieve lens distortion parameter values, image noise and vignetting
correction, and radiometric calibration to link image DN to spectral
radiance. The geometric calibration estimated the intrinsic sensor
parameters, i.e. the focal length (F), principal point offsets (Cx and Cy),
radial distortion coefficients (k1, k2, and k3) and tangential distortion
coefficients (p1 and p2) (Kelcey and Lucieer, 2012). The calibration was
conducted using the Brown-Conrady distortion model (Eqs. (1)–(3))
with images taken with a standard checkerboard pattern poster. Radial
distortion represents the curving effect generated by the subtle radial
shift in magnification towards the center of the lens. Tangential dis-
tortion arises from the non-alignment of the lens with the sensor, re-
sulting in a planar shift in the perspective of an image. These pre-ca-
librated parameter values were used in UAS image processing to correct
distortions by warping images with reverse distortions.

= +r (x C ) (y C )x y
2 2 (1)

Table 1
Information on the six channels of the MCA camera.

Channel Color Central wavelength
(nm)

Peak transmission
(%)

FWHM (nm)

Slave 1 Blue 470 63.09 467–477
Slave 2 Light green 530 59.72 527–539
Slave 3 Dark green 570 62.99 568–578
Slave 4 Red 670 70.17 666–677
Slave 5 Red edge 710 57.98 706–717
Master Near

infrared
800 59.61 796–806
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where x′ and y′ are distorted image point on the projected image plane.
r is the distortion displacement distance from the principal point. x and
y are the coordinates in the undistorted image projection. Cx and Cy are
principal point offset. k1, k2 and k3 are radial distortion coefficients. p1
and p2 are tangential distortion coefficients.
The radiometric calibration of the MCA included three steps: noise

removal, vignetting correction and converting the image DN to ra-
diance. The dark current noise, which represents the image DN in the
absence of light and has consistent values and patterns, is a major
source of sensor noise (Del Pozo et al., 2014). The dark current noise
can be evaluated in the laboratory without light.
Vignetting effects refer to higher DN values in the center of images

than towards the edges under homogeneous illumination. This is due to
the higher light incidence angle in the center of images than that in the
edges. Additionally, the optical lens can distort the light paths and more
light reaches the center. The vignetting effects could be removed by
using the camera to take images of a Lambertian plate (Spectralon or
Teflon panels) under homogeneous illumination conditions (e.g. Kelcey
and Lucieer, 2012). This method is quite easy to be implemented, but in
practice, due to the wide-angle lenses, it can be hard to have the sensor
FOV completely within the reference target while getting homogeneous
illumination (Yu, 2004). Another practical method is using non-perfect
targets but averaging thousands of images to reduce noise (e.g. Von
Bueren et al., 2015). For instance, Hakala et al. (2010) averaged images
with a snow background to remove vignetting. Single image based
vignetting removal algorithms (e.g. Zheng et al., 2013), which are
based on the symmetry of the vignetting noise, are another possible
approach (Schirrmann et al., 2016). An integrating sphere can provide
homogeneous illumination and images with the integrating sphere can
also be used to quantify the vignetting effects (Yu, 2004).
The final step of radiometric calibration is converting the image DN

to the physically meaningful unit, radiance. Images with the integrating
sphere at different illumination levels and integration times were used.
A linear model as Eq. (4) (Ferrero et al., 2006) was adopted in this study
to link DN with spectral radiance. Different from previous studies
(Kelcey and Lucieer, 2012) to conduct radiometric calibration with
several consecutive steps, we performed a pixel-wise calibration to re-
move dark noise and vignetting effects, and transfer DN to spectral

radiance simultaneously. By combing Eq. (4) and (5), we can obtain Eq.
(6) for the pixel-wise calibration. The image pixel-wise values of three
parameters (a, b and DNdark) were obtained by fitting dark current
images and images taken with the integrating sphere with different
radiance levels and integration times.

= +L c ·DN c1 0 (4)

= a tc · b
1 (5)

=L a·t ·(DN DN )b
dark (6)

where L denotes the spectral radiance (W⋅m−2⋅sr−1⋅nm−1). c1 is the
spectral gain, which normally has a power law relationship with in-
tegration time t (W⋅m−2⋅sr−1⋅nm−1). c0 is an offset
(W⋅m−2⋅sr−1⋅nm−1), which represents an offset to correct the dark
current (DNdark). DN denotes Digital number of the image pixels (no
unit). L stands for the spectral radiance of the illumination from the
integrating sphere, which is measured by ASD. The fitting parameters a
(W⋅m−2⋅sr−1⋅nm−1⋅ms−1) and b (no unit) are empirical coefficients
and need to be estimated.
For simplicity, this study used the pixel-wise calibration to integrate

these three steps, the noise removal, vignetting correction and con-
verting the image DN to radiance, into one step using Eq. (6). The
images taken with the integrating sphere of a 2-m diameter were used
to determine dark noise, vignetting and linking DN to spectral radiance.
For each integration time setting and each illumination level, 30 images
were taken with the integrating sphere and then the averaged values
were used for calibration. The integration times were set to from 1 to
8ms with 1ms increment and the illumination intensities were set to 11
levels to cover the most prevalent conditions of reflected radiance in the
outside environment. The integration times from 5 to 8ms were de-
signed for low illumination in high-latitudes, while typically in mid-
latitudes, integration times up to 4ms were sufficient (Berni et al.,
2009).

3.2. Sensitivity of individual sensor channels

As the spectral gain c1 in Eq. (4) represents the linkage between DN
and radiance, c1 with a large value indicates that the sensor channel can
have a high sensitivity to the light intensity. Whereas, a relatively small
value of c1 shows that the sensor channel has a low sensitivity to the
light intensity. Thus, we analyzed the relationship between the aver-
aged spectral gains of the entire image with various integration times.
The comparison of the spectral gains can show the sensitivity of in-
dividual channels to the light intensity. Furthermore, it provides in-
sights into the optimal setting of the integration time to maximize the
image SNR, which is the ratio between the averaged image signal

Fig. 2. Laboratory set-up for the radiometric calibration of the 2D frame multispectral sensor. (a) Front view of the set-up including an integrating sphere, an MCA
camera, an ASD spectroradiometer and LED light sources. (b) The top cross section view of the set-up. The bottom of the integrating sphere is halogen light sources.
The numbers indicate the field of view of MCA (38.3°× 31°) and ASD (25°× 25°). (c) Spectral radiance at the port of the integrating sphere measured by the ASD.
The curves with different colors represent different illumination intensities. These spectral intensities of light sources approximately cover the most reflected radiance
conditions in the outdoor environment (The typical solar spectral radiance is shown in Fig. 1).
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(DN DN )dark and the averaged image dark noise (DNdark). That means
under a certain level of light intensity, the camera setting of the in-
tegration times should keep image SNR highest while preventing image
DN saturation.
To test the sensitivity of individual channels with various targets in

the field condition, an outdoor experiment was conducted with
homogenous experimental plots, i.e. Teflon, grass and bare soil plots.
Teflon has a high reflectance in both the visible and near infrared, and
it is similar to snow. Grass has a relatively high reflectance in the near
infrared and a low reflectance in the visible part, while soil has a re-
latively high reflectance in the visible and low reflectance in the near
infrared. Images were taken on 6th January 2017, which was an
overcast and low irradiance day (around 0.1W·m−2·sr−1·nm−1). The
sensor integration time was set to five levels (1, 4, 8, 12 and 16ms). The
SNRs were calculated for the MCA images with different integration
times to identify the relationship between the SNRs and the integration
time settings. In order to avoid BRDF effects, MCA was kept as ortho-
gonal to the targets as possible. For each experimental plot, 30 images
have been taken with each integration time setting. To reduce un-
certainties, these 30 images were averaged to evaluate the responses of
SNRs to the integration times.

3.3. Flight campaigns

UAS flight campaigns were conducted at an eddy covariance flux
site (DK-RCW) in Risoe, Roskilde, Denmark. This site is an 11-ha willow
bioenergy plantation (55°41′31.95″N, 12°6′14.69″E). The eddy covar-
iance tower in the field recorded the meteorological conditions during
the flight campaigns. Flight paths (Fig. 3) were designed using the DJI
autopilot software. The imagery was acquired by UAS with a horizontal
speed of 3m·s−1 resulting in 60% forward and 40% side overlapping.
The flight campaigns were conducted on four different days. The first
campaign was to validate the accuracy of DSMs generated from MCA
and RGB images. The other three campaigns (two cloud-free days and
one cloudy day) were mainly used to validate the reflectance obtained
from UAS. Details on these flights are shown in Table 2. Two flights
were conducted during partially cloudy weather conditions to deal with
the inconsistency of reflectance across multispectral images and test the
cloud shadow removal algorithm.

To improve the geometric accuracy of image processing, the
Trimble RTK GNSS R8s (Trimble Inc., Sunnyvale, CA, USA) with an
accuracy of 8mm (horizontal) and 15mm (vertical) was used to mea-
sure ground control points (GCPs) after the UAS flight campaign. An
ASD spectroradiometer was used to measure the reflected radiance and
reflectance over the Spectralon panel and portable tarpaulins. The
Spectralon panel reflects 99% of incoming solar irradiance, thus we
used ASD to measure the reflected radiance from Spectralon to calcu-
late reflectance for MCA. Each target was measured by ASD 20 times
before and after the flights and the averaged values from these 40
measurements were used as the incoming solar radiance.

3.4. Digital surface model and orthomosaic generation

The raw MCA images were firstly converted to tiff format and the 6
bands were aligned using the Pixelwrench2 software (Tetracam,
California, USA). Then, the pixel-wise radiometric correction was ap-
plied to remove dark current and vignetting, and to convert DN to ra-
diance. After that, images were imported into Agisoft Photoscan
(Agisoft LLC, St. Petersburg, Russia) to conduct the Brown-Conrady
geometric correction with pre-calibrated parameter values. Agisoft is an
image mosaicking software based on the structure-from-motion method
(SfM), which solves the camera position and orientation by the bundle
adjustment based on feature matching between image overlapping
(Westoby et al., 2012). It is an inexpensive, effective and flexible ap-
proach to process UAS images (Aasen et al., 2018). Detailed workflow
on aerial triangulation, digital surface model and orthomosaic genera-
tion in Agisoft is shown in Fig. 4.
Aerial triangulation determines the orientation of each stereo model

in an image block. The exterior position parameters of each image from
the GNSS were firstly used to aid the image alignment process. Then,
the pre-calibrated geometric parameter values of MCA (i.e. focal length,
principal point, and distortion coefficients) were imported to Agisoft.
Further, the image process was performed by bundle adjustment in
Agisoft, which allowed the absolute orientation of an entire image
block using limited GCPs (Abe et al., 2010). To compute the aerial
triangulation, tie points were automatically detected in pairs of single
overlapping images by the Scale Invariant Feature Transform (SIFT)
algorithm (Lowe, 2004). Compared to MCA images, RGB images have

Fig. 3. Overview of the Risoe study site and the flight path of UAS campaigns. The flux tower is in the middle of the willow plantation. The dashed line indicates the
flight pattern. Four color reference tarpaulins are inside the dotted circles.
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larger FOV and higher radiometric resolution. Feature points in RGB
images can be more easily identified and linked to MCA images. Thus,
the sparse point clouds from RGB images were added to the MCA
project to improve the image alignment. After that, the GCPs from the
Trimble GNSS were manually identified and added to the target survey
area to improve the triangulation process.
The DSM can be produced by rasterizing the dense point cloud

generated from the aerial triangulation. However, compared to the RGB
camera, the MCA camera cannot generate DSMs with high accuracy due
to a narrow FOV, small image size, and low geometric camera perfor-
mance. Additionally, the MCA camera is a rolling shutter sensor and
pixels in images are not all exposed simultaneously, although Agisoft

takes the rolling shutter effect into account (Mesas-Carrascosa et al.,
2017). To validate DSMs generated by MCA and RGB images, the
Trimble GNSS was used to randomly measure surface elevation in the
study site on 25th May 2016. The two DSMs from MCA and RGB images
were generated with the same GNSS data onboard, GCPs and processing
procedures. This comparison can provide insights into the suitable
camera for DSM generation to further orthorectify MCA images.
In the final stage, each image was orthorectified according to the

external orientation (position and orientation) and the DSM. Then in-
dividual orthorectified images were combined into a seamless six-band
multispectral orthomosaicked orthophoto for the entire area. Finally,
the six band reflectance was generated from the multispectral

Table 2
Information on the flight campaigns (RH: relative humidity; WS: wind speed at 10m; Pa: air pressure; Solar Irrad.: solar irradiance; Std: standard deviation over time
of flight; GSD: ground sampling distance). *Two flights (one flight in a sunny moment and one flight in a cloudy moment).

Date Acquisition time Weather RH (%) Ta (°C) WS (m·s−1) Pa (kPa) Solar Irrad. (W·m−2) Std of solar Irrad. (W·m−2) Flying height (m) GSD (m)

25-May-2016 10:11–10:23 Sunny 62.67 21.05 3.30 100.89 744.26 3.22 12 0.01
19-May-2017 12:07–12:19 Sunny 79.25 19.27 2.13 101.41 792.03 2.16 90 0.05
26-May-2017 11:13–11:26 Sunny 72.56 16.72 4.47 101.54 823.17 2.16 90 0.05
18-Jun-2017* 12:25–12:51 Cloudy 71.79 21.81 4.42 101.62 848.77 18.18 90 0.05

Fig. 4. Flowchart for UAS image processing. The basic workflow is to process MCA images collected under sunny conditions, while in the cloudy conditions with
variable irradiance, additional processes in the orange box need to be conducted. GCP: ground control points. Opt. Image Alignment: optimizing image alignment.
DSM: digital surface model. Orthos: orthophotos. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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orthophotos based on the radiance method, which is more accurate
than the empirical line method (Biggar et al., 1994; Del Pozo et al.,
2014). In the radiance-based method, the reflected spectral radiance for
each band (LMCA, ) was measured by the MCA, while a spectral radio-
meter ASD was used to collect the incoming solar spectral radiance over
a Spectralon panel (nominal reflectance of 99.99%) before and after
each UAS flight campaign. Due to the short duration of the flight
(around 12min), the averaged ASD measurements before and after each
flight was used to represent the incoming radiance for each flight. Due
to different spectral resolutions of MCA and ASD, the solar spectral
radiance from ASD was convoluted to Lin, using the MCA filter trans-
missivity. Further, six-band reflectance was calculated as Eq. (7). To
deal with the cloud shadow issue, the tensor decomposition method
was further applied to remove cloud shadows in the orthophotos of
reflectance, as shown in the flowchart in Fig. 4.

=
L

LMCA,
MCA,

in, (7)

where is the wavelength (nm). MCA, is the reflectance for the wa-
velength . LMCA, is the reflected spectral radiance measured by MCA
(W⋅m−2⋅sr−1⋅nm−1). Lin, is the incoming spectral radiance measured
by ASD (W⋅m−2⋅sr−1⋅nm−1).

3.5. Cloud shadow correction using tensor decomposition

Tensor decomposition methods are typically employed when data
are measured in more than two dimensions, hence its data structure can
be represented as organized in “boxes” rather than matrices (Mørup,
2011). These boxes are referred to as tensors and its dimensions are
called modes. In this study, each orthophoto has J pixel rows and K
pixel columns. These I orthophotos of the same area can be stacked to
form a three-way tensor as shown in Fig. 5. In this tensor, each pixel can
be identified using the indices i, j and k, which correspond to the ac-
quisition time point, pixel row and column, respectively. An illustration
for a Tucker decomposition of stacked orthophotos (the spectral di-
mension is not considered) is illustrated in Fig. 5. The decomposition
yields loading matrices A, B and C and a core tensor G. A and B

represent loading matrices for the pixel row and column mode, re-
spectively, and C represents the loading for the temporal mode. The
dimensionality of G and the loading matrices A, B and C depend on the
chosen number of components in each mode. While P and Q indicate
the number of components for the pixel row and column modes, R in-
dicates the number of components for the temporal mode. To remove
cloud shadows, R is chosen to be small, e.g. 1. On the other hand, P and
Q are chosen to be large, e.g. 100, to allow for sufficient image re-
solution of the desired reconstruction. The reason for choosing R to be
small, e.g. 1, is due to the assumption of low rank in the temporal mode,
meaning that one can expect all pixels to co-change over time in a si-
milar manner. After the tensor decomposition, the orthophotos can be
reconstructed using the loadings and core tensor. The residuals E con-
tain an unexplained variation of the model, which is ideally due to the
cloud shadows and noise.
To show the potential of the tensor decomposition for cloud shadow

removal, this study used three multispectral images acquired from UAS
at slightly different time on 18th June 2017 to stack into a four-way
tensor (two dimensions in space, one dimension in time and one di-
mension in wavelength). Because it is difficult to illustrate such four-
way data, we chose to illustrate the decomposition using a three-way
tensor with the spectral dimension (Fig. 5). However, the four-way
Tucker decomposition can be formalized elementwise as shown in Eq.
(8). Matrix and tensor elements are represented with the lower-case
letters of the corresponding tensor X, loadings A, B and C and a core
tensor G in Fig. 5. Hence, xi,j,k,l represents a pixel value at a given time
point i, row number j, column number k and wavelength l. Elements of
the spectral mode loading D are denoted as dl,s, where l and s represent
wavelength and spectral mode component indices.

= +
= = = =

x g a b c d e· · · ·i j k l p

P

q

Q

r

R

s

S
p q r s i p j q k r l s i j k l, , , 1 1 1 1 , , , , , , , , , , (8)

3.6. Vicarious reflectance validation

To validate the accuracy of the reflectance, the averaged reflectance
of 20 measurements from tarpaulins (green, blue, black and silver) was
used to validate the estimated reflectance from the MCA in sunny

Table 3
Calibrated geometric parameter values of the MCA and RGB cameras. The first column is the parameters, e.g. focal length (F), principal point offsets (Cx and Cy),
radial distortion coefficients (k1, k2, and k3) and tangential distortion coefficients (p1 and p2). The second to seventh columns are the calibrated parameter values for
MCA and the last column shows the calibrated parameter values for the RGB camera.

Parameter (mm) 800 nm 470 nm 530 nm 570 nm 670 nm 710 nm RGB

F 9.89E+00 9.89E+00 9.81E+00 9.89E+00 9.75E+00 9.82E+00 2.83E+01
Cx −1.74E−01 −2.61E−01 6.38E−01 5.92E−03 7.64E−01 2.81E−01 2.20E−02
Cy 1.17E−01 −6.69E−01 −5.12E−01 −4.06E−01 −1.01E+00 −6.66E−01 −7.40E−02
k1 −1.75E−03 −1.83E−03 −8.15E−04 −1.22E−03 6.09E−05 −7.72E−04 1.41E−05
k2 1.30E−02 1.25E−02 4.90E−03 5.08E−03 −3.44E−03 3.64E−03 −1.83E−07
k3 −4.48E−02 −4.01E−02 −1.34E−02 −1.29E−02 5.94E−03 −1.22E−02 −2.21E−10
p1 2.76E−05 8.54E−06 3.52E−05 2.72E−05 3.58E−05 2.54E−05 1.00E−12
p2 1.41E−05 −3.71E−05 −3.20E−05 −5.22E−05 −3.72E−05 −4.54E−05 1.00E−15

Fig. 5. A three-way tensor, with two spatial
modes with J× K pixels and one temporal mode
with I orthophotos, can be decomposed into
loadings A, B and C and a core tensor G using the
Tucker tensor decomposition method, where E
represents the residuals or error matrix ideally.
Depending on the chosen number of components
for each mode (P, Q and R), the original data can
be reconstructed to produce orthophotos without
artifacts (such as cloud shadows) and noise.
Ideally, artifacts and noise represent the major
variance in the residuals E and all systematic
spatial-temporal information is re-constructed
from A, B, C and G.
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conditions. Tarpaulins are acknowledged to have low anisotropy effects
(Korpela et al., 2011). The reflectance measured with ASD was used as
ground truth to validate reflectance from MCA. Statistics such as root
mean square deviation (RMSD), bias and correlation coefficient (R)
were used to evaluate the quality of the estimated reflectance from
MCA imagery. We assume that atmospheric effects on the radiance are
negligible (< 1%) due to the low flight altitude (90m) (Yu et al., 2016).

4. Results and discussion

4.1. Sensor calibration

The calibrated geometric parameter values of MCA and RGB cam-
eras are shown in Table 3. These calibration results are similar to other
studies on the geometric calibration of MCA (Kelcey and Lucieer, 2012).
The comparison between geometric calibration parameter values of
MCA and those of RGB cameras, e.g. principal point offsets, confirms
the more precise geometric configuration of the RGB camera. This
supports to use the RGB images to generate the accurate DSM to further
orthorectify MCA images.
The parameter values of the pixel-wise radiometric calibration, a, b

and DNdark (Eq. (4)) are shown in Fig. 6(a–c). Here only results for the
calibration of the master channel (800 nm) are shown in Fig. 6. It can be
seen that the matrix of parameter a (Fig. 6a) shows lower values in the
middle, while the higher values are on the edge which allows correcting
for the vignetting effects. The spatial pattern of parameter b, which
links the integration times with radiance, is more uniform. DNdark is
about 1% of the radiometric resolution of MCA (10 bit, 1024). The
calibration performance, R2 and RMSD, is also shown in Fig. 6(d–e).
The high values of R2 and the low values of RMSD show that this ca-
libration model (Eq. (4)) could well represent the radiometric response
of this sensor and the pixel-wise calibration method is valid for sensor
radiometric calibration. Calibration results for other channels are si-
milar to the results of 800 nm. Details can be found in supplemental Fig.
S1.

4.2. Sensitivity of individual sensor channels

The sensitivity of individual channels to the radiance is shown in
Fig. 7. It can be seen that with the same levels of integration times, the
470 and 800 nm channels have the highest gains (parameter c1), while
the 670 nm channel has the lowest gain. This suggests that 670 nm is
the most sensitive channel to radiation changes, while the 470 nm and
800 nm channels are least sensitive to the radiation change. The sen-
sitivity of each channel is determined by the peak transmission of filters
(Table 1) and the spectral sensitivity of the CMOS sensor. The 670 nm
channel has both the highest filter peak transmission and CMOS sen-
sitivity, while the CMOS sensor has the lowest sensitivity to the 470 nm
and 800 nm channels (Del Pozo et al., 2014). The analysis of spectral
gains implies that as different MCA channels have different sensitivities,
these channels may need individual settings of integration times in
order to obtain images with the best quality.
Fig. 8 shows the experimentally determined SNRs for different set-

tings of integration times and three surface types (Teflon, grass and
soil). As shown in Fig. 8(a), the image SNRs increased with larger

Fig. 6. (a–c) Values of the calibrated parameter a (W⋅m−2⋅sr−1⋅nm−1⋅ms−1), b (no unit), DNdark (no unit). (d-e) R2 and RMSD [W⋅m−2⋅sr−1⋅nm−1] for the pixel-wise
calibration approach. Only results of the master channel (800 nm) are shown and results of other channels are shown in supplemental Fig. S1.

Fig. 7. Gains (parameter c1) for each channel with integration time from 0.5 to
8ms.
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integration times. However, after a certain level (approximately
SNR=60 for 470 and 670 nm, SNR=110 for 530 and 570 nm,
SNR=80 for 710 and 800 nm), the image SNRs do not change due to
the saturation of image DNs. The maximum SNR levels for different
channels relate to the dark noise level of each channel. In practical
applications, the optimal integration time settings should maximize the
image SNRs while avoiding image saturation. This means that in this
case of very low irradiance conditions (0.1W⋅m−2⋅sr−1⋅nm−1) and low
reflectivity land covers such as grass or soil, the optimum integration
time will coincide with the maximum integration time. However, for
the high reflectivity target, Teflon, even with low irradiance values
saturation is reached after 8ms, so the optimum integration time, in
this case, will be 4ms for bands 530 to 710 nm and 8ms for 470 and
800 nm. The larger integration times for 470 and 800 nm channels
agree with Fig. 6, which indicates the low sensitivity of 470 and 800 nm
channels.
By comparing different targets (land cover types) in Fig. 8, it can be

seen that different settings of integration times are needed for in-
dividual channels. For the case of Teflon (similar to snow), the optimum
integration time will be 4ms for bands 530–710 nm and 8ms for 470
and 800 nm. Therefore, if a uniform integration time (4ms) is used for
all channels, the SNRs for the 470 and 800 nm would be 30 and 32,
respectively. However, if we use the integration time of 8ms, the SNRs
would be about 60 and 62, respectively. In this way, we can see the
benefits of using different settings rather than the uniform setting for all
channels. For grass, with the same levels of integration times, the near
infrared and red edge (800 and 710 nm) have a higher SNR. For soil,
with the same levels of integration times, the 530 and 670 nm have a
higher SNR. These findings indicate that the setting of the integration
time should be set with individual channels and different land surface
conditions. For instance, to monitor vegetation, the integration time
settings of the near infrared and red edge should smaller than those of
the visible bands. Similarly, the integration time of the near infrared for
soil may be larger than that of some visible bands.

To further optimize the sensitivity of each channel under different
illumination and land surface conditions, several approaches can be
used. The first approach could be to use the prior knowledge of the
reflected radiance to determine the optimal integration time for each
channel. As thoroughly laboratory radiometric calibration has been
conducted, the relationship between image DN and radiance is known.
Thus, with the prior knowledge on how much radiance is reflected from
the surface, the radiometric calibration model of the camera (Eq. (6))
could be inverted to get the optimal integration time. To obtain the
reflected radiance from the surface, one can possibly use a spectro-
radiometer to measure the reflected radiation before the flights. An
example is the willow plantation is the mapping target in this study. We
can use a field spectroradiometer (e.g. ASD) to measure the reflected
radiance of an accessible vegetation target before the flight. Then this
information can be used to determine the optimal integration time for
the MCA camera. One challenge of this approach is in the case of highly
variable solar irradiance and conditions when collecting spectro-
radiometer measurements could be different from the conditions when
conducting flight campaigns. To account for that, another approach
would be to install a spectroradiometer with a cosine receptor on the
UAS (Hakala et al., 2013). By collecting solar radiance continuously
and with the prior knowledge on the reflectance of mapping targets, the
camera can automatically adjust the optimal setting of integration time
for different MCA channels. Additionally, another approach for opti-
mizing the image SNRs would be to determine the image integration
time setting based on the quality in terms of saturation and dynamic
ranges of the previous image. For instance, based on the histogram of
the previously collected image, one could adjust the integration time
settings for the next frame.

4.3. Digital surface model and orthomosaic

Fig. 9 shows the DSM generated by RGB and MCA images on 25th
May 2016 and their validation results. It can be seen the DSM from RGB

Fig. 8. Signal-to-noise ratio (SNR) for different integration time settings and targets (a: Teflon, b: Grass, c: Soil) under constant illumination for low conditions (The
irradiance is around 0.1W⋅m−2⋅sr−1⋅nm−1). The x-axis is the different channels and the y-axis is the image SNR.

(c) DSM validation

Fig. 9. Comparison of the DSM generated from the RGB and MCA cameras. Ground control points (GCP) were used as inputs of the Agisoft image processing. The
validation points were independent measurements to check the accuracy of the DSMs generated from RGB and MCA camera. (a) is the DSM from RGB images. (b) is
the DSM from the MCA images. (c) is the validation of the DSM generated from RGB and MCA images.
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and MCA images have similar spatial patterns, lower elevation in the
upper left corner and higher elevation in the right bottom corner.
Fig. 9(c) shows using the independent Trimble RTK GNSS measure-
ments to validate the generated DSM. It can be found that the DSM from
RGB images has a higher accuracy with RMSD of 0.07m and R2 of 0.99,
while the DSM from MCA images has a lower accuracy with RMSD of
0.22m and R2 of 0.92. This supports the results of Table 3 and indicates
RGB images are more suitable for DSM generation than MCA images.
Fig. 10 shows the pseudo-color multispectral orthophotos during

cloudy weather conditions (18th June 2017). Fig. 10(a) is the ortho-
photo generated from images collected during sunny conditions, while
(b) is the orthophoto generated from images collected under the vari-
able irradiance conditions. In Fig. 10(b), the darker areas in the left
upper corner and right bottom corner are not related to the vegetation
growth but to cloud shadows. Fig. 10(c) is the generated DSM from RGB
images. To test the cloud shadow correction, the orthorectified images
from Fig. 10(b) were used as shown in Fig. 10(d). These three pairs of
images collected at slightly different times and show the movement of
the cloud shadow from the right bottom corner to the left bottom
corner. These images were used as a four-way tensor to test the cloud
shadow correction method.

4.4. Cloud shadow correction

Fig. 11 shows the results on the Tensor decomposition to correct the
cloud shadow in reflectance from the example of Fig. 10. It can be seen
that in the original images, the shadow was in the left bottom corner of
the image at the time point 1. At the time point 2, the shadow was at the

middle bottom of the image, while at the time point 3, the shadow was
at the left bottom corner of the images. With the tensor decomposition,
the cloud shadow was successfully removed as shown in the re-
constructed image of Fig. 11. In the residual (the reconstructed image
minus the original image), we can find the higher values in the left
bottom corner, which corresponds to the location of the cloud shadow.
More reconstructed and residual images can be found in supplemental
Fig. S2. The comparison of the pseudo-color images is shown in Fig.
supplemental S3.
In this study, the signal changes in the time domain were used to

remove the cloud shadow. This means that P, Q and S in Eq. (8) were
chosen to be large to allow for sufficient image spatial and spectral
resolution of the desired reconstruction. Fig. S4 in the supplementary
shows an example to test the performance using different spectral ranks
to reconstruct the images. The higher spectral ranks can keep more
spectral information in the reconstructed images. However, R for the
time domain was set to be small, as the cloud shadows were in different
positions of the images at different time points. Using the small R can
remove the shadow signals from the time domain.
The advantage of using the tensor decomposition is that this method

can remove the cloud shadow within or across images. The prerequisite
of this method is that images should have significant overlap and the
cloud shadow should change with locations inside the image. Compared
to other methods using additional sensors e.g. radiometer or LiDAR, this
method only requires high overlapping of UAS images so that there is a
common area to perform the tensor decomposition. This can be done
with repeated flights with UAS. Tucker tensor decomposition can take
care of artifacts and image noise simultaneously. For instance, in

Fig. 10. Pseudo-color multispectral orthophotos generated from UAS multispectral images. The red, green and blue channels correspond to 800, 670 and 530 nm. (a)
is the orthophoto without cloud shadow. (b) is the orthophoto with cloud shadow and the red circles indicate the cloud shadow. (c) is the digital surface model (DSM)
generated from RGB images and is used for the orthorectification of multispectral images. (d) is to illustrate using the orthorectified UAS images to test the cloud
shadow removal algorithms. The data cubic for the tensor decomposition is a four-way tensor (two dimensions in space, one dimension in the spectral domain and
one dimension in the temporal domain). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11, it can be seen that besides the cloud shadow, there are also
residuals for other parts of images. The noise residual may correspond
to the image noise. Another advantage of using Tucker for cloud
shadow removal is that orthophotos are reconstructed for each time
point. This is of particular advantage when time-resolved spatial-tem-
poral patterns are to be investigated. However, with reducing noise on
the cloud shadow, this tensor decomposition tends to smooth the
imagery and the residuals may contain useful information from the
original imagery.
In this study, we also compared the cloud shadow corrected re-

construction of the tensor decomposition and a simple reference
method, where a reconstruction could be obtained as the average pixel
values over all time points. We found that the simple mean method can
achieve a similar but slightly worse result than the tensor decomposi-
tion. However, the advantage of using Tucker for cloud shadow

removal compared to a simple temporal mean per pixel is that ortho-
photos can be reconstructed for each time point and pixel. This is of
particular advantage when using remote sensing images acquired across
different moments in time where the land surface conditions do vary.
Although a simple temporal mean method would remove spatial pat-
terns of images that change over time to some extent, the tensor de-
composition could be used to remove artifacts and noise simultaneously
(Renard et al., 2006; Zhang et al., 2016).

4.5. Vicarious reflectance validation

Fig. 12 shows the validation of the reflectance obtained from three
UAS campaigns. The results indicate that there is a good accuracy for
the reflectance with RMSD around 3% compared to handheld radio-
meter (ASD) reflectance. It should be noticed that the validation is only
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Fig. 11. Cloud shadow removal by the tensor decomposition. Images are reflectance collected from the UAS campaigns at the willow plantation. The areas corre-
spond to the same area shown in Fig. 7. Each panel corresponds to each channel of MCA (800, 470, 530, 570, 670 and 710 nm). The columns represent the image at
the time point 1, the time point 2 and the time point 3. The fourth column is the reconstructed image for the time point 2 and the fifth column is the residual (the
reconstructed image minus the original image) for the time point 2. To highlight anomalies in the fifth column residual image, the range for the legend of the residual
images are half of the range for other column images. The reconstructed images and residuals for the other time points can be found in the supplemental Fig. S2. The
circles indicate the location cloud shadow, which is changing with time. We only put circles in the first panel as the location of the cloud shadow is similar in the
other panels.
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for the images collected at sunny moments (not processed by the tensor
decomposition). Due to the Rayleigh scattering, the radiance at the
sensor is lower than the reflected radiance at the surface. The re-
flectance from MCA tends to be lower than the reflectance obtained
from ASD on the ground. The reflectance can be further improved with
the atmospheric correction using the atmospheric radiative transfer
modeling approach as Berni et al. (2009) or the empirical line approach
(Smith and Milton, 1999) with the reflectance measurements of tar-
paulins. Table 4 summarizes the reflectance obtained from other UAS
studies. Compare to these studies, this study achieved a comparable
accuracy with RMSD of reflectance around 2–3% for high latitude
conditions.

5. Conclusion

Quantitative UAS based multispectral remote sensing has great
potential in environmental monitoring applications with the advantage
over satellites that the imagery can be acquired under overcast condi-
tions. However, most of the optical UAS remote sensing methods have
been designed for clear sky conditions or at least uniform irradiance.
Unfortunately, such atmospheric conditions are rare in many climate

regions. Particularly, high latitude regions have a high frequency of
intermittent clouds together with low illumination conditions. To in-
crease the operational use of UAS multispectral image acquisition under
such conditions, we have developed a workflow that improves the
sensor sensitivity, accounts for low irradiance and cloud shadows pro-
ducing orthorectified and radiometrically calibrated multispectral mo-
saics.
We first proposed a pixel-wise radiometric and geometric calibra-

tion that extends the sensor calibration to low illumination conditions
(< 0.3Wm−2 sr−1 nm−1) and at the same time corrects vignetting
effects. To increase the sensor sensitivity, we used individual settings
for each channel, instead of uniform settings, to allow for higher signal-
to-noise ratios. We showed that a multivariate method, Tucker tensor
decomposition, corrected the reflectance of cloud shadows in multi-
spectral imagery collected on variable irradiance conditions. Finally, a
vicarious reflectance validation indicates that the multispectral imagery
from UAS campaigns can provide reliable reflectance with root mean
square deviations around 2.2–3%.
The issue of frequent and variable cloudy conditions is not only

relevant for high latitude regions, e.g. northern Europe, but also for
tropical regions, such as Amazonia, central Africa and Southeast Asia

Table 4
Summary of the accuracy of UAS based reflectance.

Sensor Survey location Reflectance accuracy Method Flight height above
the ground (m)

Note Source

MCA 4.78°W 37.88°N RMSD 1.17% Radiance based method 150 Atmospheric
correction

Berni et al. (2009)

MCA 116°E 39.3°N RMSD 2–5% nonlinear empirical line method 50 Deng et al. (2018a)
MCA 105.96°W 32.89°N RMSD 1.7–2.2% Empirical line method 210 Laliberte et al. (2011)
MCA 147.43°E 42.8°S RMSD 0.025–0.064% Empirical line method 45 Iqbal et al. (2018)
SONY NEX-7 28.6°E 22.7°S RMSD 6.3% Empirical line method 160 Mafanya et al. (2018)
Cubert UHD 185 6.98°E 50.5°N Errors less than 1% Empirical line method 30 Hyperspectral Aasen et al. (2015)
Cubert UHD 185 116°E 39.3°N Errors less than 3–5% Empirical line method 50 Hyperspectral Yang et al. (2017)
Cubert UHD 185 115.83°E 39.45°N RMSD 3.3–6% Empirical line method 30–120m Hyperspectral Deng et al. (2018b)
Fabry-Pérot Interferometer

(FPI) based camera
35.54E 67.01N Errors less than 5% Empirical line method 100 Hyperspectral Honkavaara and

Khoramshahi (2018)

Fig. 12. Validation of reflectance of four color tarpaulins (blue, green, black and silver) collected from MCA at sunny moments with ground ASD measurements
during UAS flight campaigns on 19th May, 26th May and 18th June 2017. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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(Asner, 2001). Tucker tensor decomposition methods for cloud shadow
removal could be used to efficiently improve current multispectral and
hyperspectral image correction techniques for both satellites and UAS.
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