Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection

P.J. Zarco-Tejada a,⁎, J.A.J. Berni a, L. Suárez a, G. Sepulcre-Cantó a, F. Morales b, J.R. Miller c

a Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
b Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei (EEAD), Consejo Superior de Investigaciones Científicas (CSIC), Apdo, 13034, 50080 Zaragoza, Spain
c Dept. of Earth and Space Science and Engineering, York University, Toronto, Canada

A R T I C L E I N F O

Article history:
Received 15 May 2008
Received in revised form 12 February 2009
Accepted 14 February 2009

Keywords:
Fluorescence
Airborne
Fluormod
In-filling
Hyperspectral

A B S T R A C T

Progress in assessing the feasibility for imaging fluorescence using the O2-A band with 1 nm full-width half-maximum (FWHM) bands centered at 757.5 and 760.5 nm is reported in this paper. Multispectral airborne data was acquired at 150 m above ground level in the thermal, visible and near infrared regions yielding imagery at 15 cm spatial resolution. Simultaneous field experiments conducted in olive, peach, and orange orchards (water stress trials), and an olive orchard (variety trial) enabled the detected variability in fluorescence emission to be examined as function of stress status. In a parallel modelling activity the coupled leaf–canopy reflectance–fluorescence model, FluorMOD, was used to assess fluorescence retrieval capability by the in-filling method, as well as by fluorescence indices from the published literature. Fluorescence retrievals using the in-filling method, the derivative index D702/D680 and reflectance indices R960/R630, R761–R757, and R761/R757 yielded the best results in the simulation study, while demonstrating insensitivity to leaf area index (LAI) variation. The fluorescence in-filling method, derivative index D702/D680, and R761–R757 were the indices least affected by chlorophyll a + b (Cab) variation. On the other hand, other published indices for fluorescence detection at leaf and canopy levels exhibited high sensitivity to variations in Cab and LAI, and therefore were considered less suitable for in-field fluorescence detection. The fluorescence signal extraction from airborne imagery using the in-filling method was validated through comparisons with field-measured steady-state fluorescence (Fs) using the PAM-2100 and GFS-3000 instruments, confirming simulation predictions. The water stress experiments conducted on olive and peach orchards demonstrated the feasibility of chlorophyll fluorescence (F) extraction at the tree level from the airborne imagery, yielding determination coefficients $r^2 = 0.57$ (olive), and $r^2 = 0.54$ (peach). Consistent results were obtained between airborne F and ground truth assimilation (A) measured in the olive variety field experiment under no water stress levels, yielding $r^2 = 0.71$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The early detection of water stress has been long identified as critical to avoid yield losses in crops, which can be affected even by short-term water stress deficits (Hsiao et al., 1976). Water stress is developed in crops when the evaporative demand exceeds the supply of water from the soil (Slatyer, 1967). A remote sensing indicator for water stress detection was successfully demonstrated in the seventies with near-field thermal infrared radiation (Idso et al., 1978, 1981; Jackson et al., 1977, 1981; Jackson & Pinter, 1981) and more recently with high-resolution airborne thermal imagers flown over orchard crops (Sepulcre-Cantó et al., 2006, 2007). The successful detection of water stress using the thermal region is in response to the canopy transpiration changes, where canopy temperature increases with reductions in evaporative cooling.

In addition to canopy temperature, other physiological and structural indicators have been proposed for remote sensing detection of water stress, such as wilting (Bradford & Hsiao, 1982), loss of leaf area (Bradford & Hsiao, 1982; Wolfe et al., 1983) and chlorophyll content (Björkman & Powles, 1984). Leaf water content is proposed as the amount of water per unit leaf area, and remote sensing indices such as a water band index (WBI) (Peñuelas et al., 1993, 1997), a moisture stress index (MSI) (Rock et al., 1986) or the normalized difference water index (NDWI) (Gao, 1996) have been shown to track water content at the canopy level. Nevertheless, changes in leaf water content only occur at advanced stages of dehydration in many (but not all) species, therefore representing a parameter of limited interest for predicting crop water status. A more valuable goal is to develop pre-visual indicators of stress, i.e. before the onset of severe stress. Suggested pre-visual indicators of stress are the physiological reflectance index (PRI) which is sensitive to...
xanthophyll pigment detection under water stress conditions (Peguero-
Pina et al., 2008; Suarez et al., 2008; Suárez et al., 2009; Thenot et al.,
2002), and solar-induced chlorophyll fluorescence emission (Flexas
et al., 1999, 2000, 2002; Moya et al., 2004) due to the strong correlation
demonstrated between steady-state chlorophyll fluorescence Fs and
stomatal conductance. In addition, several studies have assessed the
fl

fl

ophyll
increasing scienti-
fl

& Bilger, 1987; Schreiber et al., 1994).
1988; Lichtenthaler, 1992; Larcher, 1994; Papageorgiou, 1975; Schreiber
physiological status (Krause & Weis, 1984; Lichtenthaler & Rinderle,
1992; Larcher, 1994; Papageorgiou, 1975; Schreiber
& Bilger, 1987; Schreiber et al., 1994). Fv/Fm, ΨPSI (Yield), qp, φPSII, and
NPQ (or nQ) are the chlorophyll fluorescence parameters most frequently
used to characterize the functioning of the photosynthetic apparatus
under non-stress and stress conditions (see Morales et al.,
1991, 1998, 2000; and Abadía et al., 1999 and Morales et al., 2006 for
reviews). Although comparatively steady-state chlorophyll fluorescence
Fs has received much less attention, its potential importance for
chlorophyll fluorescence detection using remote sensing methods has
been recently emphasized (Soukopová et al., 2008), along with
increasing scientific interest during the past five years.

Several publications have described reflectance indices potentially
related to incremental effects of fluorescence emission as an addition
to leaf and canopy reflected signal. In particular, indices related to
fluorescence emission bands at 685 and 740 nm have been proposed to
assess the relationship between apparent reflectance and chloro-
phyll fluorescence at both leaf and canopy levels (Zarco-Tejada et al.,
2000a,b), while attempting to minimize structural effects and chlorophyll content sensitivity to thereby derive robust fluorescence indices.

At the laboratory level, results in diurnal studies have shown that optical indices R680/R630, R685/R630, R687/R630 and R690/R630 were sensitive to Fv/Fm measured in leaves. Such indices are
sensitive to changes in the curvature in the red reflectance region as a
response to the effects of both PSI and PSII fluorescence emission on
leaf reflectance also showed a correlation with diurnal changes in Fv/
Fm (Zarco-Tejada et al., 2000a,b). At the canopy level in the laboratory
and under natural light conditions, red edge indices were assessed for
detection of chlorophyll fluorescence, including red edge spectral
derivative indices D730/D706, DP21 (Dp/D703), where λp is the
inflection point of the reflectance spectrum in the red edge spectral
region, and the curvature index R683 2/(D675–R691), which are both
also related with chlorophyll a+b (Cab) content. In subsequent
studies Zarco-Tejada et al. (2000b, 2003) suggested that a double-peak
feature in the 690–710 nm spectral region seen in the derivative
reflectance was possibly due to the combined effects of fluorescence
emission and low Cab content on stressed vegetation, implying
potentially important applications in vegetation stress detection using
passive hyperspectral remote sensing methods. Reflectance difference
measures and derivative indices D705/D722, DP22 (Dp/D720), and
DPR1 (Dp/Dp + 12), were associated with water and heat stress
conditions, observed during the recovery after the diurnal experiment
(Zarco-Tejada et al., 2003). DPR1, calculated as (D688–D710)/(D697–
and the area of the double-peak feature, Adp, were shown to track steady-
state fluorescence Fs variation during both short and long-term stress
induction stages in these canopy-level laboratory experiments.

Recent studies have demonstrated the fluorescence in-filling of the
O2-A atmospheric oxygen absorption band at 760 nm, as a detectable
radiance signal at the near-canopy levels (Evin et al., 2004; Liu et al.,
2005; Moya et al., 2004; Pérez-Priego et al., 2005). At the airborne
and far-field scales, Maier et al. (2002) and Zarco-Tejada et al. (2004)
reported the potential detection of the solar-induced fluorescence
signal on apparent reflectance obtained from airborne sensors Re-
flective Optics System Imaging Spectrometer (ROSIS) and Compact
Airborne Spectrographic Imager (CASI) based on the in-filling of
fluorescence in the 760 nm atmospheric oxygen absorption band.
However, no field validations were available in these studies to fully
support the hypothesis presented.

On the modeling side, chlorophyll fluorescence effects on apparent
reflectance at the leaf level were simulated with the Fluorescence-
Reflectance–Transmittance (FRT) model (Zarco-Tejada et al., 2000a)
and with the Stochastic model for Leaf Optical Properties (Maier et al.,
1999; Maier, 2000). However, it was recognized that for simulation of
chlorophyll fluorescence effects on apparent reflectance at the canopy
level one needed to account for canopy scattering, within-canopy light
level changes and viewing geometry effects. In response to this need,
an integrated leaf-canopy model, the Vegetation Fluorescence Canopy
Model (FluorMOD), was developed through a project funded by the
European Space Agency (ESA) ([http://www.ias.csic.es/fluormod]
). The FluorMOD project (Miller et al., 2004) coordinated the develop-
ment of a leaf model FluorMODleaf (Pedrós et al., 2004, 2008) to
simulate leaf fluorescence and a linked leaf-canopy model FluorSAIL
(Verhoef, 2005) to simulate canopy fluorescence and scattered
radiance, which were linked through an integrated interface Fluor-
MODgui (Zarco-Tejada et al., 2006). This linked leaf-canopy FluorMOD
model can be used to simulate diurnal effects of natural fluorescence
on apparent canopy reflectance under varying viewing geometries,
atmospheric characteristics and illumination dependence. Although
the model requires further validation and refinement, currently
FluorMOD can be used as a tool for understanding trends in leaf and
canopy effects on fluorescence emission as function of viewing
geometry and leaf and canopy inputs.

To make progress on the current status of our understanding of the
potential for detection of solar-induced fluorescence signals in the
presence of vegetation reflectance signatures, new research efforts
requiring high spatial resolution imagery acquired at high spectral
resolution are needed to validate fluorescence-sensitive red edge
indices and in-filling signals for canopy chlorophyll fluorescence
detection. The most definitive assessment of the viability of methods
to retrieve the weak fluorescence signal can be made with high-
resolution imagery targeting pure vegetation crowns without canopy
architecture/closure effects, which it turns out are consistent with the
assumptions made in developing the FluorMOD model. In addition, if
frequent imagery acquisition is available to capture diurnal changes in
water stress through short-term studies, as suggested in Berni et al.
(2009) who used unmanned aerial vehicle (UAV) platforms for
operational remote sensing in agricultural applications, then experi-
mental research can examine above-canopy fluorescence detection
methods as a function of changing stress status. This manuscript
describes the results of such research aimed at making such progress
through both simulation studies and airborne measurements. The
FluorMOD reflectance–fluorescence model was used to provide an
assessment of the suitability and sensitivity of fluorescence reflect-
ance indices, as well as the in-filling method. This was complimented
by data from airborne and field research to provide an assessment of the
feasibility of detecting and imaging fluorescence using 1 nm
FWHM bands at 757.5 and 760.5 nm with 15 cm spatial resolution,
with a comparison to temperature changes detected with a thermal
imager of 40 cm resolution onboard an UAV platform.

2. Materials and methods

2.1. Assessing the sensitivity of fluorescence indices and the in-filling
method using the FluorMOD simulation model

2.1.1. Chlorophyll fluorescence detection with the in-filling method

The method to detect fluorescence emission based on the in-filling
method was reported by McFarlane et al. (1980) in measurements of
solar-induced natural fluorescence in vegetation canopies using the
Fraunhofer H-α line at 656 nm, and Carter et al. (1990, 1996a, 2004)
using H-α and the O2-B atmospheric bands in leaf measurements.
They also investigated the relationship between fluorescence and
vegetation temperature at the image level as an indicator of plant
stress (Carter et al., 1996b). More recent studies provided evidence
for fluorescence *in-filling* of the O$_2$-A atmospheric oxygen absorption band at 760 nm, as a detectable feature in the radiance spectra at the near-canopy levels (Evain et al., 2004; Liu et al., 2005; Moya et al., 2004; Pérez-Priego et al., 2005). The *in-filling* method uses the canopy radiance from fluorescing (vegetation) and non-fluorescing (soil) targets in and out of the oxygen line at 760.5 nm, defined as L_i^n, L_i^n, L_i^n, L_i^n respectively, to calculate reflectance R and fluorescence F [Eqs. (1) and (2)].

$$R = \frac{L_i^n - L_i^n}{L_i^n - L_i^n}$$

(1)

$$F = L_i^n - R \cdot L_i^n$$

(2)

This method was successfully used by Meroni et al. (2008a) at the leaf level, and at a canopy level by Moya et al. (2004) and Meroni et al. (2008b), showing that fluorescence emission can be detected using the O$_2$-A band at the leaf level and on a corn canopy under diuron herbicide penetration. Also, experiments conducted with narrow-band spectrometers (0.065 nm FWHM) (Pérez-Priego et al., 2005) showed that the observed canopy-level fluorescence *in-filling* with the O$_2$-A band at 760.5 nm was able to track the water stress status in orchard trees, demonstrating a link between steady-state chlorophyll fluorescence (F_s, R) and *in-filling* of the 760 nm apparent reflectance of individual trees.

At the airborne scale, Maier et al. (2002) proposed an approach based on the *in-filling* method for the detection of the solar-induced fluorescence signal on apparent reflectance obtained from the airborne sensor Reflective Optics System Imaging Spectrometer (ROSIS) to estimate the *in-filling* of the 760 nm atmospheric oxygen absorption band by fluorescence emission. The method for far-field fluorescence detection through *in-filling* at the 690 and 762 nm oxygen bands requires the variables for the radiation flow (Maier et al., 2002; Zarco-Tejada et al., 2004). This method includes the influence of atmospheric transmittance between the target and the sensor along the view direction (T_v), the path radiance (L_{path}), and the global irradiance (E_g) at the scene target. The radiance in and outside the 762 oxygen absorption feature for non-fluorescing targets (L_{i}^n, L_{i}^n) are defined as,

$$L_{i}^n = \frac{R_i E_c}{\pi} T_v + L_{\text{path}}$$

(3)

$$L_{i}^n = \frac{R_i E_c}{\pi} T_v + L_{i}^n$$

(4)

with the relationship between L_{i}^n and L_{i}^n as,

$$L_{i}^n = k_1 \cdot L_{i}^n + k_2$$

(5)

where,

$$k_1 = \frac{T_v E_c}{T_v E_c}; k_2 = L_{\text{path}} - k_1 \cdot L_{\text{path}}$$

(6)

In the case of fluorescing targets, such as vegetation, the radiance in and outside the oxygen absorption band are,

$$L_{i}^n = \frac{R_i E_c}{\pi} I_f \cdot T_v + L_{\text{path}}$$

(7)

$$L_{i}^n = \frac{R_i E_c}{\pi} I_f \cdot T_v + L_{\text{path}}$$

(8)

Table 1: FluorMOD model inputs used in this study to assess the sensitivity of reflectance indices using atmospheric, leaf and canopy inputs.

<table>
<thead>
<tr>
<th>Atmospheric parameters</th>
<th>FluorMOD J0V23.MEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance</td>
<td>PAR dependence parameters: PARb = 0.0035; PARre = 0.005</td>
</tr>
<tr>
<td>Visibility</td>
<td>23 km</td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td>30°</td>
</tr>
<tr>
<td>Viewing zenith angle</td>
<td>0°</td>
</tr>
<tr>
<td>Relative azimuth angle</td>
<td>0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leaf inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Cab</td>
</tr>
<tr>
<td>Cw</td>
</tr>
<tr>
<td>Cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canopy inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf area index</td>
</tr>
<tr>
<td>LIDF parameter a</td>
</tr>
<tr>
<td>LIDF parameter b</td>
</tr>
<tr>
<td>Hot spot parameter</td>
</tr>
<tr>
<td>Soil spectrum</td>
</tr>
</tbody>
</table>

Fig. 1. FluorMOD model simulation of irradiance (E) and canopy radiance (L) at 1 nm resolution in the 400–800 nm range (a) and 740–800 nm (b), reproducing the fluorescence *in-filling* at O$_2$-A and O$_2$-B bands using atmospheric, leaf and canopy inputs from Table 1.
with the relationship between L_i^v and L_o^v as,

$$L_i^v - k_3 \cdot L_f = k_1 \cdot L_V^o + k_2$$

where k_1 and k_2 are as in Eq. (6) and

$$k_3 = T_{vi} - k_1 \cdot T_{vo}$$

Therefore, coefficients k_1 and k_2 can be calculated from Eq. (5) using a set of non-fluorescing targets, enabling the calculation of fluorescence L_f from Eq. (9) for fluorescing targets, such as vegetation.

2.1.2. Fluorescence retrieval assessment using FluorMOD simulation

Through the FluorMOD project (Miller et al., 2004) a linked leaf-canopy model was developed that simulates chlorophyll fluorescence emission. The leaf model, FluorMODleaf (Pedrós et al., 2004) is linked to a canopy model, FluorSAIL (Verhoef, 2005), incorporating an excitation–fluorescence matrix, computed externally by means of the

![Fig. 2](image1.png)

Fig. 2. (a) FluorMOD leaf fluorescence, both reflected (RFL) and transmitted (TNS), for a simulated leaf with $F_i=0.049$ and $C_{ab}=43 \mu g/cm^2$; (b) leaf reflectance with added simulated fluorescence (thin line) and without fluorescence (thick line), showing the reflectance difference.

![Fig. 3](image2.png)

Fig. 3. Simulated canopy reflectance in the 400–800 nm range (a) and 740–800 nm (b) with (with F) and without (no F) fluorescence effects (inputs from Table 1). Fluorescence radiance (W·m$^{-2}$·micron$^{-1}$·sr$^{-1}$) (c) added to the canopy reflectance is extracted by reflectance difference calculation (d).
leaf-level fluorescence model, to simulate the fluorescence effects on the canopy signature (detailed information on the linked leaf-canopy models can be found in Zarco-Tejada et al. (2006)).

The inputs to the leaf model are the number of layers in PROSPECT (N); chlorophyll $a+b$ content in µg/cm² (C_{ab}); dry matter content in µg (C_m); fluorescence quantum efficiency (F_i); leaf temperature in degrees Celsius (T); species temperature dependence (S) (after Agati, 1998); and stoichiometry of PSI to PSI reaction centers (Sto), which depends on species and light conditions during plant growth. The canopy model requires the viewing zenith angle in degrees (Vza), relative azimuth angle in degrees (Raz), the canopy leaf area index (LAI), the hot spot parameter (h), and the leaf inclination distribution function (LIDF) parameters, LIDF_a and LIDF_b. In addition, the canopy model requires a soil spectrum, and four outputs from the leaf model: leaf reflectance without fluorescence (RN), leaf transmittance without fluorescence (TN), and the upward (FuN) and downward (FdN) fluorescence matrices.

The FluorMOD model was used in this study to assess the sensitivity of reflectance indices described earlier, as a function of fluorescence emission, leaf chlorophyll concentration, and canopy leaf area index. The model simulates irradiance (E) and canopy radiance (L) at 1 nm resolution (Fig. 1), reproducing the fluorescence in-filling at O₂-A and O₂-B bands using atmospheric, leaf and canopy inputs (Table 1). The simulated leaf fluorescence, both reflected and transmitted (Fig. 2a), provides the expected effects at leaf level in the 650–850 nm spectral region (Zarco-Tejada et al., 2000a, 2003) as extracted by the reflectance difference method (Fig. 2b). The simulated irradiance and canopy radiance with and without fluorescence effects (inputs from Table 1) enables the assessment of the fluorescence peak experimentally observed in canopy reflectance (Fig. 3a and b). Canopy-level fluorescence effects are observed along the red edge region and particularly as an in-filling peak centered at 760.5 nm (Fig. 3b) when compared with the canopy reflectance without fluorescence effects. The fluorescence radiance (Fig. 3c) superimposed on the apparent canopy reflectance can be extracted by a reflectance difference calculation (Fig. 3d), showing larger effects due to fluorescence emission at the 760 nm oxygen band (ca. 3% in this simulation example) as compared with the fluorescence emission for the rest of the spectral region (ca. 1.8% at the 735 nm band).

The effects of chlorophyll fluorescence on derivative reflectance could also be assessed using FluorMOD for comparison with previous results obtained experimentally in the laboratory or under natural light conditions. The fluorescence radiance corresponding to $F_i=0.049$, $C_{ab}=43$ µg/cm² and LAI = 3.6 (other inputs from Table 1) (Fig. 4a) was used to simulate the derivative canopy reflectance with and without fluorescence effects (Fig. 4b). Results indicate that the double-peak feature previously observed experimentally (Zarco-Tejada et al., 2003) is reproduced in these simulations of the canopy derivative reflectance when fluorescence effects are included. For a more detailed simulation study, the FluorMOD model was used to assess the expected...
fluorescence effects and fluorescence retrieval capability as function of input parameters F_i, C_ab and LAI on: i) the fluorescence in-filling method; ii) reflectance indices; and iii) derivative indices; results are reported in Section 3.1.

2.2. Field experiments and airborne campaigns

An airborne multispectral camera with two 1 nm FWHM filters in the 757.5 and 760.5 nm bands, and four 10 nm FWHM bands in the 400–800 nm spectral region was flown over 4 study sites, at 15 cm spatial resolution. Three orchards (peach, orange and olive groves) were used for deficit irrigation experiments to produce a gradient in water stress levels. In addition, a variety trial olive orchard was selected to provide a gradient in chlorophyll concentration and photosynthesis as function of genetic variety conditions.

2.2.1. Field data collection

Study sites were located in southern Spain, consisting of Olea europaea L cv. ‘Arbequina’ (olive), Prunus persica L. Batsch cv. ‘Baby Gold 8’ (peach) and Citrus sinensis L. cv. ‘Lanelate’ (orange) groves planted in regular patterns under drip irrigation. One of the O. europaea L study sites consisted of a rain-fed variety test field, representing a very heterogeneous grove because of the large number of varieties planted in comparison to a typical commercial olive orchard. The climate of the area is Mediterranean with an average annual rainfall of 650 mm, concentrated from autumn to spring, and a reference evapotranspiration (ET) of 1390 mm.

The olive, peach and orange orchards belong to a network of study sites irrigated under regulated deficit irrigation (RDI) (Fereres & Soriano, 2007). The olive orchard was irrigated with three drip treatments randomly applied within an area of 6 rows of 18 olive trees (2646 m²): i) irrigated at 3.2 mm/day (well irrigated treatment, C); ii) 0.8 mm/day (deficit treatment, S1); and iii) an intermittent treatment, with 1.3 mm/day from 7 May to 15 July and from 24 September to 7 October, stopping irrigation from 15 July to 24 September (deficit treatment, S2). The peach orchard had part of the field under regulated deficit irrigation while the other part had an ample water supply. The RDI part of the orchard received no irrigation until the period of rapid expansion of fruit growth (Phase III), irrigation over full ET for one week and then with constant doses at full ET until harvest. The orange orchard was divided into plots under RDI and full ET irrigation, where the RDI plot received 65% of the water relative to the full ET part of the field.

A Scholander pressure bomb (PWSC Model 3000, Soilmoisture equipment Corp., California, USA) was used to measure leaf water potential weekly on selected trees in each orchard at noon. Stomatal conductance was measured weekly with a leaf steady-state porometer (model PMR-4, PP Systems, Hitchin Herts, Great Britain). Leaf chlorophyll fluorescence measurements were conducted under field conditions using the Pulse-Amplitude-Modulated Fluorometer PAM-2100 (Heinz Walz GMBH, Effeltrich, Germany), measuring at the time of flight acquisitions steady-state F_s fluorescence on 30 leaves per tree on 8 trees (olive orchard), 10 trees (peach orchard), 8 trees (orange orchard), and 13 trees (olive variety field), respectively. Leaf

![Diurnal measurements of the white spectralon reference panel radiance conducted at the time of flight acquisitions](image-url)
photosynthesis, stomatal conductance and fluorescence were measured using the Portable Gas Exchange Fluorescence System GFS-3000 (Heinz Walz GMBH, Effeltrich, Germany) on 2 leaves per tree on 10 trees of the olive variety trial orchard at the time of airborne image acquisition.

2.2.2. Airborne campaigns

An unmanned aerial vehicle (UAV) platform was developed to carry a payload with thermal and multispectral imaging sensors for remote sensing operations (Berni et al., 2009). The multispectral sensor used in this study was a 6-band multispectral camera (MCA-6, Tetracam, Inc., California, USA). The camera consists of 6 independent image sensors and optics with user-configurable spectral filters. The image resolution is 1280 × 1024 pixels with 10-bit radiometric resolution and 75 \(\mu \)m dynamic range. Multispectral images acquired over each study site enabled tree identification for field validation purposes on the olive, peach, orange, and olive variety trial fields. Different band sets were selected depending on the objectives adopted for the remote sensing study, including 25 mm diameter bandpass filters of 10 nm FWHM (Andover Corporation, NH, USA), with center wavelengths at 490 nm, 530 nm, 550 nm, 570 nm, 670 nm, 700 nm, 750 nm, and 800 nm, and two 1 nm FWHM filters centered at 760.5 and 757.5 nm bands for fluorescence in-filling measurements. Filter transmission measurements were conducted with a Li-Cor 1800-12 Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA), coupled by a 200 \(\mu \)m diameter single mode fiber to an Ocean Optics model HR2000 spectrometer (Ocean Optics Inc., Dunedin, FL, USA), with a 2048 element detector array, 0.05 nm sampling interval, and 0.065 nm spectral resolution in the 678.76–774.05 nm range. Measurements of the 1 nm filters yielded transmissions of 49.2% and 46.8%, and bandpasses FWHM = 1.57 nm (center wavelength 760.47 nm), and FWHM = 1.6 nm (center wavelength 757.42 nm), respectively. For the 10 nm filters measurements yielded ca. 60% transmission and 10.4 nm FWHM.

Study sites were also imaged with the airborne platform using a thermal camera to derive surface temperature of each tree under study. The thermal imager used was the Thermovision A40M (FLIR, USA) with a dynamic range of 233 K, 60 dB signal-to-noise ratio, with <0.03% fixed pattern noise, 28 mV/s dark current, and 60 dB dynamic range. Multispectral images acquired over each study site enabled tree identification for field validation purposes on the olive, peach, orange and olive variety trial fields. Different band sets were selected depending on the objectives adopted for the remote sensing study, including 25 mm diameter bandpass filters of 10 nm FWHM (Andover Corporation, NH, USA), with center wavelengths at 490 nm, 530 nm, 550 nm, 570 nm, 670 nm, 700 nm, 750 nm, and 800 nm, and two 1 nm FWHM filters centered at 760.5 and 757.5 nm bands for fluorescence in-filling measurements. Filter transmission measurements were conducted with a Li-Cor 1800-12 Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA), coupled by a 200 \(\mu \)m diameter single mode fiber to an Ocean Optics model HR2000 spectrometer (Ocean Optics Inc., Dunedin, FL, USA), with a 2048 element detector array, 0.05 nm sampling interval, and 0.065 nm spectral resolution in the 678.76–774.05 nm range. Measurements of the 1 nm filters yielded transmissions of 49.2% and 46.8%, and bandpasses FWHM = 1.57 nm (center wavelength 760.47 nm), and FWHM = 1.6 nm (center wavelength 757.42 nm), respectively. For the 10 nm filters measurements yielded ca. 60% transmission and 10.4 nm FWHM.

Study sites were also imaged with the airborne platform using a thermal camera to derive surface temperature of each tree under study. The thermal imager used was the Thermovision A40M (FLIR, USA) equipped with a 40° FOV lens and connected to computer via IEEE-1394 protocol. The image sensor is a Focal Plane Array (FPA) based on uncooled microbolometers with a resolution of 320 × 240 pixels and an angular FOV of 42.8° × 34.7° and 15 cm pixel spatial resolution at 150 m flight altitude. The detector used is a CMOS sensor with pixel size 5.2 μm × 5.2 μm, image area 6.66 mm × 5.32 mm, operated in a progressive scan mode, at 54 dB signal-to-noise ratio, with <0.03% fixed pattern noise, 28 mV/s dark current, and 60 dB dynamic range. Multispectral images acquired over each study site enabled tree identification for field validation purposes on the olive, peach, orange and olive variety trial fields. Different band sets were selected depending on the objectives adopted for the remote sensing study, including 25 mm diameter bandpass filters of 10 nm FWHM (Andover Corporation, NH, USA), with center wavelengths at 490 nm, 530 nm, 550 nm, 570 nm, 670 nm, 700 nm, 750 nm, and 800 nm, and two 1 nm FWHM filters centered at 760.5 and 757.5 nm bands for fluorescence in-filling measurements. Filter transmission measurements were conducted with a Li-Cor 1800-12 Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA), coupled by a 200 \(\mu \)m diameter single mode fiber to an Ocean Optics model HR2000 spectrometer (Ocean Optics Inc., Dunedin, FL, USA), with a 2048 element detector array, 0.05 nm sampling interval, and 0.065 nm spectral resolution in the 678.76–774.05 nm range. Measurements of the 1 nm filters yielded transmissions of 49.2% and 46.8%, and bandpasses FWHM = 1.57 nm (center wavelength 760.47 nm), and FWHM = 1.6 nm (center wavelength 757.42 nm), respectively. For the 10 nm filters measurements yielded ca. 60% transmission and 10.4 nm FWHM.

The 1 nm FWHM multispectral camera bands centered at 760.5 and 757.5 nm later used for the fluorescence in-filling retrieval method were calibrated using the Ocean Optics model HR2000 spectrometer.
The HR2000 instrument was calibrated to irradiance (E_g) in the laboratory with a cosine corrector-diffuser illuminated by the LS-1-CAL calibrated tungsten halogen NIST-traceable light source (Ocean Optics, Dunedin, FL, USA), and calibrated to radiance (L) with the Spectralon panel (Labsphere, North Sutton, USA). Diurnal measurements of the Spectralon (SRT-99-180, Labsphere, NH, USA) white panel radiance were conducted in the field at the time of flight acquisitions (Fig. 6a) at 0.065 nm spectral resolution in the 678.76–774.05 nm spectral range, yielding white and dark target radiance used for airborne image calibration at 760.5 and 757.5 nm bands (Fig. 6b). Calibrated images at 10 nm FWHM (Fig. 7a), and 1 nm bandwidth at 757.5 nm (Fig. 7b) and 760.5 nm (Fig. 7c) were used to extract radiances from tree crown (fluorescing) and soil (non-fluorescing) targets used to estimate crown chlorophyll fluorescence using the in-filling method.

Fig. 8. Synthetic leaf spectra generated with FluorMOD using random input parameters F_i (0.03–0.06), C_a (30–80 µg/cm²), and LAI (2–4). Leaf fluorescence emission [W·m⁻²·micron⁻¹·sr⁻¹] (a) and leaf reflectance (b) show a wide range of both fluorescence and chlorophyll content variation.

Fig. 9. Simulations conducted with FluorMOD model for parameters F_i (0.03–0.06), C_a (30–80 µg/cm²), and LAI (2–4) for canopy radiance (a) and canopy reflectance (b). Simulated canopy derivative reflectance without fluorescence (c) and with fluorescence (d) show a peak at 721 nm due to fluorescence effects, a double-peak feature previously observed experimentally in Zarco-Tejada et al. (2003).
Surface temperature was obtained applying atmospheric correction methods to thermal imager data based on MODTRAN radiative transfer model. Local atmospheric conditions were determined by air temperature, relative humidity and barometric pressure measurements at the time of flight using a portable weather station (Model WXT510, Vaisala, Finland) and were used as input into the MODTRAN model. A single...

Table 2

| Relationship (determination coefficients calculated as the square of the Pearson product-moment correlation coefficient) obtained between FluorMOD inputs and fluorescence estimates using the in-filling method (F), reflectance and derivative reflectance indices sensitive to chlorophyll fluorescence. |

<table>
<thead>
<tr>
<th>Reflectance indices</th>
<th>F</th>
<th>Cab</th>
<th>LAI</th>
<th>F·Cab·LAI</th>
<th>F·LAI</th>
<th>F·Cab</th>
<th>Cab·LAI</th>
<th>L(F)761</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-filling method</td>
<td>F</td>
<td>Cab</td>
<td>LAI</td>
<td>F·Cab·LAI</td>
<td>F·LAI</td>
<td>F·Cab</td>
<td>Cab·LAI</td>
<td>L(F)761</td>
</tr>
<tr>
<td>D702/D680</td>
<td>0.78</td>
<td>0.27</td>
<td>0.039</td>
<td>0.46</td>
<td>0.24</td>
<td>0.79</td>
<td>0.07</td>
<td>0.78</td>
</tr>
<tr>
<td>D705/D722</td>
<td>0</td>
<td>0.85</td>
<td>0.049</td>
<td>0.41</td>
<td>0</td>
<td>0.38</td>
<td>0.74</td>
<td>0</td>
</tr>
<tr>
<td>D730/D706</td>
<td>0</td>
<td>0.92</td>
<td>0.05</td>
<td>0.56</td>
<td>0.04</td>
<td>0.54</td>
<td>0.8</td>
<td>0.04</td>
</tr>
<tr>
<td>D735/D680</td>
<td>0.24</td>
<td>0.44</td>
<td>0.12</td>
<td>0.11</td>
<td>0.01</td>
<td>0.03</td>
<td>0.59</td>
<td>0.13</td>
</tr>
<tr>
<td>D761/D757</td>
<td>0.58</td>
<td>0.19</td>
<td>0.09</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>DPI (D680-D710)/D697</td>
<td>0.19</td>
<td>0.73</td>
<td>0</td>
<td>0.59</td>
<td>0.08</td>
<td>0.86</td>
<td>0.41</td>
<td>0.26</td>
</tr>
</tbody>
</table>

The synthetic random spectra were generated varying fluorescence efficiency (F), leaf chlorophyll concentration (Cab) and canopy leaf area index (LAI). In bold are shown indices with high relationship with L(F)761 (r²=0.7), and low relationships with both Cab and LAI (r²<0.4).

Surface temperature was obtained applying atmospheric correction methods to thermal imager data based on MODTRAN radiative transfer model. Local atmospheric conditions were determined by air temperature, relative humidity and barometric pressure measurements at the time of flight using a portable weather station (Model WXT510, Vaisala, Finland) and were used as input into the MODTRAN model. A single-
layer atmosphere with uniform conditions was considered for the simulations since the variation for the typical UAV flight altitude (150–200 m) could be neglected. Atmospheric correction methods conducted showed the successful estimation of surface temperature images of 40 cm spatial resolution, yielding RMSE < 1 K (Berni et al., 2009).

3. Results

3.1. Simulation results

The FluorMOD model was used to generate spectra using random input parameters Fi (0.03–0.06), Cab (30–80 µg/cm²), and LAI (2–4). Leaf fluorescence emission (Fig. 8a) and leaf reflectance (Fig. 8b) show a wide range of responses to both fluorescence and chlorophyll content variation in the generated set of synthetic spectra. Fluorescence, chlorophyll and leaf area index effects could be observed on the synthetic canopy radiance generated (Fig. 9a) and on the simulated canopy reflectance (Fig. 9b). Canopy derivative reflectance calculations from the synthetic spectra simulated by FluorMOD for the spectra without (Fig. 9c) and with (Fig. 9d) fluorescence effects demonstrated the red edge peak shift toward longer wavelengths due to the variation of the chlorophyll content (Fig. 9c) and the double-peak feature observed on the derivative spectra when fluorescence effects are included (Fig. 9d).

This set of random synthetic spectra simulated by FluorMOD as function of fluorescence efficiency (Fi), leaf chlorophyll concentration (Cab) and canopy leaf area index (LAI) for canopy radiance (Fig. 9a), canopy reflectance (Fig. 9b) and canopy derivative reflectance (Fig. 9d) were used to retrieve fluorescence (F) using the in-filling method, and to calculate reflectance and derivative reflectance indices sensitive to chlorophyll fluorescence (Table 2). The retrieved fluorescence using the in-filling method (F), and the reflectance and derivative reflectance indices were compared with the canopy radiance fluorescence (L(F)fl) simulated by FluorMOD. In addition, the fluorescence retrieval (F) and fluorescence-sensitive indices were compared with input parameters Fi, Cab and LAI in order to assess the sensitivity of the retrieved fluorescence (F) and the calculated indices with leaf chlorophyll content and leaf area index (Table 2).

The fluorescence retrievals using the in-filling method (F) (r² = 0.82) (Fig. 10a), derivative index D702/D680 (r² = 0.78) (Fig. 10b) and reflectance indices R690/R630 (r² = 0.71) (Fig. 10c), R761–R757 (r² = 0.86) (Fig. 10d), and R761/R757 (r² = 0.78) yielded the best results in the simulation study. These indices were found to be insensitive to LAI variation (r² with LAI ranged from 0.03 to 0.08), with low Cab sensitivity for the fluorescence in-filling method (r² = 0.33 for Cab vs. F), D702/D680 (r² = 0.27 for Cab vs. the index), R761–R757 (r² = 0.26 for Cab vs. the index).

On the other hand, through this simulation study, other indices generally accepted for fluorescence detection at leaf and canopy levels were found to show high sensitivity to LAI and Cab variations; in particular, R740/R685, R740/R850, R685/R850, R740/R630 were highly affected by LAI (r² ranging between 0.89 and 0.97) with little sensitivity to fluorescence. Indices D705/D722, D730/D706, DPI, R735/R850, R680/R630, R685/R630, and the curvature index R683⁺/(R675·R691) were highly affected by Cab (r² ranging between 0.67 and 0.92).

This simulation study demonstrates the retrieval capability of the in-filling method even when other common effects such as variations in chlorophyll content and leaf area index are considered. Moreover, it shows that some fluorescence-sensitive indices published in the literature are highly affected by chlorophyll and structural effects.

3.2. Experimental results

Fluorescence extracted per tree from the airborne imagery using the in-filling method with the 1 nm FWHM 757.5 and 760.5 nm bands was compared with field-measured chlorophyll fluorescence data on the four orchards. The water stress experiments conducted on olive and peach orchards demonstrated the feasibility of chlorophyll fluorescence extraction at the tree level from the airborne imagery, yielding determination coefficients r² = 0.57 (Fig. 11a, olive), and r² = 0.52 (Fig. 12, peach). In both cases fluorescence extracted from airborne imagery using the in-filling method was compared with...
field-measured steady-state fluorescence (F_s) using the PAM-2100 instrument. In order to address potential structural effects on fluorescence retrievals from the airborne imagery, such as the influence of tree LAI, crown NDVI was extracted and shown to exhibit no relationship with crown fluorescence extracted from the imagery ($r^2 = 0.05$; Fig. 11b; olive), demonstrating the sensitivity of $R_{757.5}$ and $R_{760.5}$ nm bands to fluorescence and the absence of crown LAI influences. The consistency of airborne fluorescence retrievals from trees under water stress condition (higher F values on full irrigated than deficit-watered trees) was compared with the mean crown temperature estimated from the airborne imagery. The full irrigated peach trees yielded $F = 3.8 \text{ W} \cdot \text{m}^{-2} \cdot \mu\text{m}^{-1} \cdot \text{sr}^{-1}$ and crown temperature $T = 309.2$ K, while deficit irrigation trees yielded $F = 2.2 \text{ W} \cdot \text{m}^{-2} \cdot \mu\text{m}^{-1} \cdot \text{sr}^{-1}$ and crown temperature $T = 310.49$ K. Therefore, full-irrigated trees yielded higher F and lower T than deficit-irrigation trees, as expected under water stress conditions (Pérez-Priego et al., 2005; Sepulcre-Cantó et al., 2006). Negative values found in some of the fluorescence in-filling estimates when F is close to 0 (low fluorescence signals) were due to noise levels being similar to the low signals measured, as well as potential image registration displacements between the 757.5 and 760.5 nm bands.

The multispectral airborne images collected at 7.40, 11.00 and 12.50 GMT over the orange orchard showed a consistent trend for both airborne fluorescence F and field-measured fluorescence using the PAM-2100 instrument (Fig. 13). In all cases airborne-estimated F and PAM-2100 F_s from trees under stress (labelled as 1, 3, 5 in Fig. 13) yielded lower values than well-irrigated trees (labelled as 2, 4, 6) when collected at the same time. In addition, a decrease in chlorophyll fluorescence over the diurnal interval was consistent with the diurnal change experimentally observed in photosynthesis in the trees under stress, yielding $r^2 = 0.6$ (data not shown) between airborne F and assimilation (A) measured in the field with the GFS-3000 instrument. Similar results were obtained between airborne F and ground truth assimilation measured in the olive variety field experiment under no water stress levels, yielding $r^2 = 0.71$ (Fig. 14a), and $r^2 = 0.54$ between airborne F and Yield (Fig. 14b). Quenching parameters, q_P and q_N measured with PAM-2100 were related with...
located at 757.5 and 760.5 nm, at 15 cm pixel resolution while the method is feasible. The multispectral camera used 1 nm FWHM bands multispectral image (Fig. 15a) using the hypothesis that could clarify this consistent, except for the direct relationship found between $r^2 =0.53$ (Fig. 14c) and $r^2 =0.49$ (Fig. 14d), respectively. These results demonstrate the physiological link between airborne estimated F and T, and it suggests a successful retrieval of fluorescence at the crown level using the fluorescence in-filling method. Results shown in Fig. 14 are all consistent, except for the direct relationship found between F and T. The hypothesis that could clarify this F vs. T relationship may be explained by the confounding effects caused on both F and T by the different varieties in the trial, which showed variability in Cab and LAI. An image of the fluorescence in-filling acquired at 15 cm pixel resolution from the multispectral image (Fig. 15a) using the in-filling method at the crown level was produced, showing the spatial variability of the vegetation fluorescence in-filling within the orchard (Fig. 15b).

4. Conclusions

The work reported in this manuscript demonstrates that imaging solar-induced chlorophyll fluorescence emission using the in-filling method is feasible. The multispectral camera used 1 nm FWHM bands located at 757.5 and 760.5 nm, at 15 cm pixel resolution while flown at 150 m above the crop canopies. Field experiments conducted in olive, peach, orange (water stress trials), and olive orchard (variety trial) generated fluorescence emission variability as function of the stress status. Chlorophyll fluorescence detection was conducted from the 1 nm FWHM radiance imagery at the crown level, targeting pure vegetation pixels to avoid background and shadow effects. Both spatial variability of fluorescence emission within the orchard as function irrigation supplies, as well as diurnal experiments demonstrated successful fluorescence retrieval capability and consistent estimates of fluorescence using the in-filling method applied to the airborne imagery.

Simulations with the FluorMOD model were used to assess fluorescence retrieval capability of both the in-filling method and published fluorescence–reflectance indices using a random set of synthetic spectra and variation of inputs including fluorescence efficiency, leaf chlorophyll content and canopy leaf area index. Canopy radiance, reflectance and derivative reflectance were used to assess the retrieval capability of fluorescence. The results of the simulation study proposed that fluorescence retrievals are best done using the in-filling method, the derivative index D702/D680 and reflectance indices R690/R630, R761–R757, and R761/R757. The above-mentioned indices were insensitive to LAI variation (r^2 with LAI ranging from 0.03 to 0.08), with low Cab sensitivity for the fluorescence in-filling method, D702/D680, and R761–R757. On the other hand, other published indices generally accepted for fluorescence detection at leaf and canopy levels were demonstrated in this simulation study to exhibit high sensitivity with Cab and LAI. In particular, R740/R685, R740/R850, R685/R850, R740/R630 were highly affected by LAI (r^2 ranging between 0.89 and 0.97) with little sensitivity to fluorescence. Indices D705/D722, D730/D706, DPI, R735/R850, R680/R630, R685/R630, and the curvature index R6852/(R675·R691) were highly affected by Cab. The simulation study demonstrated the retrieval capability of the in-filling method even when other common effects such as chlorophyll content and leaf area index effects are considered. Moreover, other fluorescence-sensitive indices published in the literature are highly affected by chlorophyll and structural effects, and care must be taken when using indices in field conditions that are potentially affected by such undesired leaf and canopy effects.

The FluorMOD fluorescence model enabled the simulation of the fluorescence effects on canopy derivative reflectance, assessing previous results obtained experimentally in the laboratory or under natural light conditions. Canopy derivative reflectance calculated from the synthetic spectra simulated without and with fluorescence effects demonstrated the red edge peak shift toward longer wavelengths due to the variation of the chlorophyll content and the double-peak feature observed on the derivative spectra when fluorescence effects are included. This result confirms laboratory experiments conducted in Zarco-Tejada et al. (2003) and later discussed in Le Maire et al. (2004).

This manuscript validated fluorescence extraction from airborne imagery using the in-filling method with comparisons to field-measured steady-state fluorescence (F_s) using the PAM-2100 instrument. In addition, to address potential structural effects on fluorescence retrievals from the airborne imagery, such as the influence of tree LAI, extracted crown NDVI was shown to have no relationship with crown fluorescence extracted from the imagery ($r^2 = 0.05$), demonstrating the sensitivity of R757.5 and R760.5 nm bands to fluorescence and an absence of crown LAI influences. The consistency of airborne fluorescence retrievals from trees under water stress condition using the methods reported in the manuscript (higher F values on fully-irrigated compared to deficit watered trees) was assessed against crown temperature, another physiological indicator of water stress linked with fluorescence emission. Retrievals from the airborne imagery showed an inverse relationship between crown fluorescence and temperature, as expected in water stressed trees (lower F and higher T in water stressed trees). Fluorescence emission retrievals were also related with assimilation measures conducted in the field at the time of the airborne acquisitions.
The manuscript demonstrates that fluorescence retrievals from vegetation canopies can be conducted operationally using multispectral cameras of 1 mm FWHM bands centered at 757.5 and 760.5 nm, supported by inferences from a simulation study with FLU proposal model. The validated methods enable the generation of fluorescence images at 15 cm resolution acquired at 150 m above the ground for vegetation stress detection. The simulation demonstrates the operational feasibility of fluorescence retrievals with a suitable imaging spectrometer using the specific reflectance indices identified in the simulation study with FLU MOD as reported here remains to be done in future research.

Acknowledgements

Financial support from the Spanish Ministry of Science and Education (MEC) for the projects ALG2005-04049, EXPLORA-INGENIO AGL2006-26038-E/AGR, and CONSOIDER CAS2006-67, is gratefully acknowledged, as well as the Junta de Andalucía—Excellencia AGR-595, Gobierno de Aragón (A03 research group) and PETRI PET2005-0616. Technical support from the UAV Navigation and the Tetracam Inc. for the accommodation of airborne requirements are also acknowledged. V. González-Dugo, M. Morales, C. Ruz, D. Notario, M. Guillén, C. Trapero, A. Vera and M. Ruiz Bernier are acknowledged for scientific and technical support in field and airborne campaigns.

References

