Comparison of two fAPAR remote sensing methods for estimating Gross Primary Production

P.J. Gómez-Giráldez1, H. Nieto2, A. Andreu3, E. Carpentiero1, M.P. González-Dugo1, P.J. Zarco-Tejada4
1 IFAPA. Consejería de Agricultura, Pesca y Desarrollo Rural. Apdo. 3092 Córdoba, Spain
2 IRTA. Parc de Gardinera, Edifici Fruitcentre, 25003 Lleida, Spain
3 UNL-IFAPA. Institute for Integrated Management of Material Fluxes and of Resources Ammonstrasse 7041067 Dresden, Germany
4 European Commission, Joint Research Centre, Via E.Fermi 2749 Ispra, Italy

INTRODUCTION

Holm oak savannah (dehesas) cover 3x106 ha in the Iberian Peninsula and the management of these multifunctional ecosystems have a strong impact in rural economy. Thus, decision-makers need the support of quality and accurate information at large scale of dehesa productivity and its externalities. However, measuring Gross Primary Production (GPP) and carbon exchange is time consuming, the measurements are sparse in space, and still prone to uncertainty. In addition, upscaling in situ GPP is challenging for regional and global studies when significant spatial variability of plant functional types or vegetation stress is present. Remote sensing techniques on the other hand have potential to provide cost-effective spatially distributed fields of GPP. In this study we evaluated the estimation of GPP through Monteith’s model based on the relation between plant growth and absorbed solar radiation. The fraction of Absorbed Photosynthetically Active Radiation (fAPAR) was estimated using two remote sensing methods.

RESULTS

Three hyperspectral airborne acquisitions were used: 29th of April (maximum of vegetation vigor), 20th of May (annual vegetation is decreasing vigor) and 27th of August (only perennial vegetation).

Gross primary production was obtained using an adaptation of Monteith model (1977)*:

\[
GPP = \text{fAPAR} \times \text{PAR} \times \text{Epst}
\]

it is modified according to daily minimum temperature and vapor pressure deficit.

fAPAR (dimensionless): is estimated from two different ways:

1) fAPAR relating NDVI and in situ data. fAPAR estimated was estimated as an average of 45 trees of the area with LP-80 canopy FT for pasture fAPAR, an empirical linear equation NDVI-fAPAR using LP-80 canopy FT and ASD-FieldSpec FR radiometer was applied. fAPAR at Landsat scale was estimated based on the fraction of tree cover within the pixel.

2) fAPAR using hyperspectral data by inverting, ProspectsSAIL using an Artificial Neural Network. 100 000 forward simulations were done and split into a training dataset (70000 cases) and a testing dataset (30000 cases) for an ANN with 1 hidden layer with 50 nodes and linear activation functions.

GPP estimates using both approaches were compared with in situ daily GPP measured with an Eddy Covariance system applying 13 estimates of the daily EC footprint.

Monteith model underestimated the GPP in both cases.

Underestimation decreasing as annual vegetation is dried.

The model gives better results at seasonal scale where the extreme days are smoothed.

GPP estimated using LANDSAT provided better results when vegetation vigor is the maximum.

GPP estimated using hyperspectral data is slightly (5%) better in dry season.

In this case it can be concluded that the use of hyperspectral reflectance imagery acquired with airborne platforms is not necessary and multispectral satellite imagery might be enough.

CONCLUSIONS