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Thermal and Narrowband Multispectral Remote
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an Unmanned Aerial Vehicle
Jose A. J. Berni, Student Member, IEEE, Pablo J. Zarco-Tejada, Lola SuÆrez, and Elias Fereres

Abstract�Two critical limitations for using current satellite
sensors in real-time crop management are the lack of imagery with
optimum spatial and spectral resolutions and an unfavorable re-
visit time for most crop stress-detection applications. Alternatives
based on manned airborne platforms are lacking due to their high
operational costs. A fundamental requirement for providing useful
remote sensing products in agriculture is the capacity to com-
bine high spatial resolution and quick turnaround times. Remote
sensing sensors placed on unmanned aerial vehicles (UAVs) could
�ll this gap, providing low-cost approaches to meet the critical
requirements of spatial, spectral, and temporal resolutions. This
paper demonstrates the ability to generate quantitative remote
sensing products by means of a helicopter-based UAV equipped
with inexpensive thermal and narrowband multispectral imaging
sensors. During summer of 2007, the platform was �own over
agricultural �elds, obtaining thermal imagery in the 7.5�13-µm
region (40-cm resolution) and narrowband multispectral imagery
in the 400�800-nm spectral region (20-cm resolution). Surface
re�ectance and temperature imagery were obtained, after at-
mospheric corrections with MODTRAN. Biophysical parameters
were estimated using vegetation indices, namely, normalized dif-
ference vegetation index, transformed chlorophyll absorption in
re�ectance index/optimized soil-adjusted vegetation index, and
photochemical re�ectance index (PRI), coupled with SAILH and
FLIGHT models. As a result, the image products of leaf area
index, chlorophyll content (Cab), and water stress detection from
PRI index and canopy temperature were produced and success-
fully validated. This paper demonstrates that results obtained
with a low-cost UAV system for agricultural applications yielded
comparable estimations, if not better, than those obtained by
traditional manned airborne sensors.

Index Terms�Multispectral, narrowband, radiative transfer
modeling, remote sensing, stress detection, thermal, unmanned
aerial system (UAS), unmanned aerial vehicles (UAVs).
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I. INTRODUCTION

R EMOTE sensing for agricultural and crop-management
applications aims at providing spatially and spectrally

derived surface parameters for crop classi�cation and mapping
[1]�[3], crop forecasting and yield predictions [4]�[7], crop
status and condition [8]�[11], weed detection [12]�[14], disease
detection and nutrient de�ciency [15]�[17], and photosynthetic
pigment content [18]�[20]. Critical issues such as the optimum
spatial and spectral resolutions, the turnaround time, and repeat
cycle are main factors limiting the usefulness of remote sensing
products for precision crop management [21]; in addition, data
acquisition costs must be weighed against anticipated bene�ts.
Current satellite-based products have limited application in
crop management due to the low spatial and spectral resolutions
provided and the large revisit periods. Spatial resolution has
been improved in some new satellite sensors such as Ikonos
or Quickbird, however lacking the narrow spectral bands re-
quired for quantitave parameter retrievals on which most of
the applications mentioned before are based. Moreover, thermal
imaging is currently limited to medium-resolution sensors such
as TERRA-ASTER [22], providing 90-m pixel size images
which are impractical for site-speci�c agricultural applications.

Alternatives based on airborne sensors can deliver higher
spatial and spectral resolutions and are more �exible in terms of
revisit time. Airborne remote sensing has demonstrated capabil-
ities for vegetation condition monitoring due to high spatial and
spectral resolutions used, ranging between 0.5- and 2-m pixel
sizes with 2�20-nm bandwidths in the 400�2500-nm spectral
range. The works conducted for crop management and stress-
detection applications, such as the estimation of chlorophyll
content with the Compact Airborne Spectrographic Imager
[23]�[26], leaf water content from the Airborne Visible Infrared
Imaging Spectrometer [27]�[31], carotenoid estimation [19],
[32], dry matter content [33]�[35], and structural parameters
like ground cover and leaf area index (LAI) minimizing back-
ground effects on traditional indices such as normalized dif-
ference vegetation index (NDVI) [36], are examples of the use
of airborne sensors. In addition, high-spatial-resolution thermal
imagery has demonstrated high potential for water stress detec-
tion in crops because of the increased temperature of stressed
vegetation [37], [38], enabling the detection of water-stressed
trees in orchards for site-speci�c �eld management [39]�[41].
However, the high operating costs, long turnaround times due
to high volume of data processing acquired in large airborne
campaigns, and the lack of private corporations providing
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cost-effective products have limited the use of airborne so far
to research activities.

Back in 1977, Jackson et al. [37] envisioned a �eet of
airborne thermal scanners collecting remote sensing imagery
over irrigated �elds to generate maps for irrigation scheduling
based on an automated decision support system. However, after
30 years, this vision still seems futuristic due to the mentioned
limitations mostly based on the costs required and the oper-
ational complexity involved. Another potential application of
canopy temperature measurements is its capability for genotype
screening in breeding programs for drought resistance [42],
[43]. A new era of remote sensing is emerging with the arrival
of unmanned aerial vehicles (UAVs) for civil applications.
Scienti�c interest in this type of platforms is growing, and a
number of experiences have already been reported. Large �xed-
wing UAVs, most of them NASA-funded, have been tested for
agricultural applications, such is the case of the solar-powered
Pathfinder Plus over coffee orchards in Hawaii [44], [45], the
smaller RCATS/APV-3 tested over California vineyards [46],
or the future European Pegasus UAV [47]. Miniaturization and
cost reduction of inertial sensors, GPS devices, and embedded
computers have enabled the use of a new generation of au-
topilots for inexpensive model aircrafts [48], [49]. At present
time, commercial off-the-shelf (COTS) autopilots are readily
available for an easy integration with small model aircrafts.
Rotary-wing UAVs are also available, but complexity of the
�ight control system, smaller endurance, and the lack of autopi-
lots supporting helicopter platforms have prevented a wide use
of this platform. However, some successful applications have
also been developed [50]�[52].

Along with the development of low-cost autopilot systems,
also imaging sensors have suffered a critical size, weight, and
price reduction, evolving from large sensors, rack-mounted dat-
aloggers, and control computers to palm size imagers that can
be easily installed into these microaircrafts [44], [48]. An exam-
ple is the development of uncooled thermal instruments which
avoid the use of heavy and expensive cooled sensors yet obtain-
ing similar results at better spatial resolutions. The main prob-
lem concerning this type of microsensors is that they require
spectral and geometric characterization to retrieve physical
values such as ground re�ectance or surface temperature. This
is the reason why most of the applications mentioned before fo-
cused only on digital values or visual qualitative interpretation.

This paper describes the integration of COTS optical and
thermal sensors placed on an unmanned aerial platform, fo-
cusing into radiometric quality of the acquired imagery. The
main objective of this paper was to demonstrate that it is
possible to combine successfully an unmanned rotary-wing
platform and digital multispectral and thermal sensors, along
with the appropriate calibrating methodologies, for agricultural
applications. The assessment is conducted on narrowband vege-
tation indices in the 400�1000-nm and thermal spectral regions
for quantitative parameter retrievals. Narrowband vegetation
indices and thermal retrieval from crop canopies were then used
to generate maps that could assist managers in water stress de-
tection and many other site-speci�c applications in agriculture.
In particular, this paper deals with the estimation of biophys-
ical parameters such as LAI, chlorophyll content, a previsual

indicator of stress based on the Photochemical Reflectance
Index (PRI) [53], and water stress detection using thermal im-
agery. Calibration and atmospheric effects are also considered
and assessed for the correct retrieval of parameters from the
UAV system.

II. METHODS

The UAV helicopter platform was developed to carry a pay-
load with thermal and multispectral imaging sensors for remote
sensing operation. A total of 288 �ights were conducted in
spring and summer of 2007 for both �ight testing and imagery
acquisitions over crop �elds for parameter validation and stress
detection using narrow spectral bands and thermal imagery. A
description of the payload, sensor calibration, physical models
used for parameter retrievals from multispectral imagery, and
thermal corrections to account for atmospheric transmission are
given hereinafter.

A. UAV and Payload Description

The UAV airframe used in this paper was based on a model
helicopter (Benzin Acrobatic, Vario, Germany), modi�ed to
carry the camera system, autopilot, and sensors. Modi�cations
consist mainly in a larger engine (29 cc), oversized landing
skids, and a container for camera installation. The UAV was
controlled by an autopilot system (model AP04H, UAV Navi-
gation, Madrid, Spain) which provided autonomous navigation
based on waypoints programmed during the mission planning.
The air segment [Fig. 1(a)] consists on a dual CPU logic
which controls an integrated Attitude Heading Reference Sys-
tem (AHRS) based on an L1 GPS board, three-axis accelerom-
eters, yaw rate gyros, and a three-axis magnetometer. The
CPUs continuously monitored internal sensors for battery sta-
tus, internal temperature, and barometric pressure, including an
external revolutions per minute (RPM) sensor. The guidance is
based on standard servos controlled by pulsewidth modulation
outputs from the autopilot. A radio link communicates with
the ground segment sending telemetry of position, attitude,
and status at 20-Hz frequency. The ground segment [Fig. 1(b)]
consists on a control box which contains a CPU that is in
charge of processing the safety manual control and sends the
telemetry to a laptop PC where the user application is running.
This application monitors the status and position of the UAV
and allows the user to upload and modify the �ight plan. There
is an additional GPS antenna on the ground control station used
for pointing the telemetry antenna toward the UAV platform.

The �ight plans are performed starting with the autonomous
takeoff, continuing with an autonomous �ight over a number of
way points at a given altitude, and �nally landing (Fig. 2). Flight
altitude was selected depending on the study area to cover,
camera �eld of view (FOV), and the desired spatial resolution
for remote sensing imagery acquisition. The nominal speed in
autonomous mode was �xed at 30 km/h.

1) Multispectral Camera: The multispectral sensor used
in this paper was a six-band multispectral camera (MCA-6,
Tetracam, Inc., CA, U.S.). The camera consists of six indepen-
dent image sensors and optics with user con�gurable �lters. The
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Fig. 1. Block diagram showing the components for the (a) autopilot and (b) ground control station.

Fig. 2. Sample �ight plan undertaken over four study sites, showing the path followed by the platform. Each numbered triangle symbols represent a waypoint
programmed on the autopilot�s �ight plan. Four consecutive �ights are overlapped, showing the precise paths followed by the UAV.
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TABLE I
MULTISPECTRAL MCA-6 IMAGE SENSOR SPECIFICATIONS

TABLE II
THERMAL FLIR IMAGE SENSOR SPECIFICATIONS

image resolution is 1280 × 1024 pixels with 10-bit radiometric
resolution and optics focal length of 8.5 mm, yielding an
angular FOV of 42.8� × 34.7�. Table I shows a summary of the
multispectral camera sensor speci�cations. Different bandsets
were used depending on the objectives sought for the remote
sensing study, including 25-mm-diameter bandpass �lters of
10-nm full-width at half-maximum (FWHM) (Andover Corpo-
ration, NH, U.S.), with center wavelengths at 490, 550, 670,
700, 750, and 800 nm. The raw images were compressed on a
proprietary format and stored on individual compact �ash cards
installed in the camera. Image triggering was activated from the
ground control station when the helicopter reached the desired
study site.

2) Thermal Camera: The thermal imager used in this paper
was the Thermovision A40M (FLIR, U.S.) equipped with a 40�

FOV lens and connected via IEEE-1394 protocol. The image
sensor is a focal plane array based on uncooled microbolome-
ters with a resolution of 320 × 240 pixels and spectral response
in the range of 7.5�13 µm (Table II). The camera delivers
digital raw images at 16 bits of at-sensor calibrated radiance
with a dynamic range of 233 K�393 K. The sensor implements
an internal calibration for nonuniformity correction and inter-
nal temperature calibration. The camera was controlled by a
PC104 embedded computer (Cool Little Runner 2, LiPPERT,
Germany), storing one raw image on a compact �ash card every
2 s over the entire �ight. A laboratory calibration was conducted
using a calibration blackbody source (RAYBB400, Raytek, CA,
U.S.). During the calibration, a need for stabilization after
switch on was noticed. Temperature changes over the course
of 30 min show the convergence to the black body temperature
(Fig. 3). Absolute temperature shifts observed were caused by
the internal camera calibration which is automatically activated
when the internal temperature changes above a con�gured
value. A 1-h camera stabilization procedure was conducted
before each remote sensing campaign.

Fig. 3. Changes of the radiometric temperature measured by the camera after
power-on over the course of 2 h.

TABLE III
FLIR AND MCA CAMERAS INTRINSIC PARAMETERS

3) Camera Geometric Calibration: Several methodologies
are available to conduct an accurate geometric calibration over
nonmetric commercial cameras [54], [55]. The objective of
this calibration is to recover the intrinsic camera parameters
(focal distance, principal point coordinates, and lens radial
distortion). In this case, Bouguet�s calibration toolbox [56] was
used, consisting of placing a calibration checkerboard pattern
on a �xed location and acquiring several images from different
locations and orientations. The grid corner coordinates were
extracted semiautomatically from the images, and the intrinsic
parameters and exterior orientation (EO) were calculated. In
the case of the thermal camera, a calibration pattern was built
using resistive wires to obtain a bright pattern when electricity
circulated through the wires, thus increasing their temperature.
Bouguet�s model uses a different lens distortion model than
the one implemented by the software employed for the aero-
triangulation which is based on the study of Wolf [57]. In the
former, radial and tangential distortion can be estimated. In this
case, tangential distortion was neglected and only the radial
component was taken into account. The equation for Bouguet�s
model is shown in (1), whereas Wolf�s model is described in
(2). A least squares adjustment was conducted to �t (2) to (1)

dr = k1r2 + k2r4 + k5r6 (1)

dr = k0r + k1r3 + k2r5. (2)

Table III shows the intrinsic parameters estimated for the
thermal and multispectral cameras used in this paper. For the
multispectral camera, in a second stage, one of the cameras
was used as reference and the relative position of the rest of
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Fig. 4. (a) Multispectral imagery collected by the MCA-6 camera at 0.15-m spatial resolution and six spectral bands with 10-nm FWHM. (b) Spectra extracted
from different image targets in the 400�800-nm spectral region.

the cameras was estimated by solving the system as different
stereo rigs for each reference�camera pair.

B. Multispectral Sensor Calibration and Vegetation Indices
Used for Parameter Estimation

Multispectral image calibration was conducted using the
empirical line method [58] by placing two 2- × 2-m leveled
dark and white targets in a central location within the �ight
path of the UAV platform. Field spectral measurements were
taken on the calibration targets with an ASD �eld spectrom-
eter (FieldSpec Handheld Pro, ASD Inc., CO, U.S.) in the
350�1050-nm spectral range at the time of image acquisition.
The ASD �eld spectrometer was �rst calibrated using a Spec-
tralon (SRT-99-180, LabSphere, NH, U.S.) white panel, there-
fore enabling the calculation of white and dark panel re�ectance
spectra to be used later for the empirical line calibration
method.

The empirical line calibration method derived the coef�-
cients needed to �t uncalibrated airborne MCA-6 multispectral

Fig. 5. Validation of the surface re�ectance acquired by the MCA-6 multi-
spectral camera as compared with the ASD �eld spectrometer. The plot shows
90 points from 3 �ights over 5 targets (3 corn crop sites, 1 soil target, and
1 cotton site) for 6 spectral bands.

Authorized licensed use limited to: Jose Jimenez-Berni. Downloaded on March 13, 2009 at 18:50 from IEEE Xplore.  Restrictions apply.



BERNI et al.: THERMAL AND NARROWBAND MULTISPECTRAL REMOTE SENSING FOR VEGETATION MONITORING 727

TABLE IV
NOMINAL VALUES AND PARAMETERS USED FOR LEAF AND CANOPY MODELING WITH PROSPECT AND FLIGHT FOR THE PEACH STUDY SITE

Fig. 6. (a) Algorithm to estimate chlorophyll a + b from TCARI/OSAVI index developed with the FLIGHT radiative transfer model. Input parameters for
simulating the peach orchard canopy re�ectance ranged between 0.5 and 7 (LAI) and 15 and 90 µg/cm2(Cab). (b) Sample 3-D scene simulated with FLIGHT
model for developing the scaling-up algorithm to estimate chlorophyll concentration (cLAI = 2, Cab = 45 µg/cm2).

imagery to �eld-measured re�ectance spectra. Fig. 4 shows
sample imagery and re�ectance spectra for different �eld tar-
gets acquired with the MCA-6 multispectral camera onboard
the UAV platform over one of the study sites, which included a
�eld planted with garlic, bright soil, dark soil, bare soil between
wheat rows, and a wheat �eld. Spectra from the different
targets clearly show the photosynthetic pigment absorption in
the visible spectral region (400�700 nm) in green vegetation,
with an increased re�ectance due to canopy scattering in the
near-infrared region beyond 700 nm. A �eld validation as-
sessment was conducted to evaluate the calibration method
used to calculate surface re�ectance by measuring re�ectance
spectra with the ASD �eld spectrometer over different targets
found on imagery acquired at different times of day. Fig. 5
shows the validation of the calibration method using cotton and
corn �elds. UAV airborne �ights were conducted three times
over the course of one day in June 2007, acquiring �eld ASD
spectra over cotton, corn with different canopy densities, and
bare soil. The UAV MCA-6 spectral imagery and �eld spectra

were compared and generally agreed, yielding an RMSE =
1.17%(n = 90) after empirical line methods were applied at
each �ight time.

Three vegetation indices were calculated from the airborne
spectra using the six 10-nm FWHM bands of the multispectral
camera. The NDVI [59] was calculated to assess the estimation
of canopy LAI. The transformed chlorophyll absorption in
reflectance index (TCARI) [60] based on the modified chloro-
phyll absorption in reflectance (MCARI) [61], normalized by
the optimized soil-adjusted vegetation index (OSAVI) [62] to
obtain TCARI/OSAVI, is demonstrated to successfully mini-
mize soil background and LAI variation in crops, providing
predictive relationships for chlorophyll concentration estima-
tion with narrowband imagery in closed crops [60] and in
open tree canopy orchards [25]. Finally, the PRI, originally
developed for xanthophyll cycle pigment change detection [53],
a potential indicator for carotenoid/chlorophyll ratio moni-
toring [32], [63], [64], was calculated to assess its potential
capability for water stress detection from the UAV platform.
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Fig. 7. (a) Simulated atmospheric transmittance and thermal radiation as a function of platform altitude. (b) Effects of �ight altitude and atmospheric conditions
Ta(�C)/%RH on the surface temperature estimation for a back body at 300 K. (c) Distribution of the atmospheric correction effects as a function of the off-nadir
view for a uniform black body at 300 K, atmospheric conditions 20 �C/60% RH, �ight altitude of 150 m, pitch = 10�, and roll = 6�.

The PRI index was calculated with the MCA-6 camera using
additional 10-nm FWHM �lters centered at 530- and 570-nm
wavelengths. The three indices are described in the following
equations:

NDV I =
R800 � R670

R800 + R670
(3)

TCARI/OSAV I

=
3 • [(R700 � R670) � 0.2 • (R700 � R550) • (R700/R670)]

(1 + 0.16) • (R800 � R670)/(R800 + R670 + 0.16)

(4)

PRI =
R570 � R531

R570 + R531
. (5)
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Field measurements of crown LAI (cLAI) were conducted with
a plant canopy analyzer (LAI-2000; Li-Cor, NE, U.S.) on an
olive orchard using the method reported in [65]. A total of
six trees were measured and identi�ed on the high-spatial-
resolution imagery acquired with the UAV platform. Field
measurements of canopy LAI were also conducted on a variety
trial corn �eld, and seven plots planted with different varieties
were assessed. The mean spectral re�ectance was calculated for
each tree crown and variety plot, and indices were calculated.
Relationships between �eld-measured crown and canopy LAI
and the NDVI index were also developed.

Leaf-level radiative transfer model PROSPECT [66] was
linked with the canopy-level Forest LIGHT Interaction Model
(FLIGHT) [67] to obtain predicting algorithms for chlorophyll
concentration (Cab) from the airborne TCARI/OSAVI index.
The modeling method consisted on ranging input chlorophyll
a + b from 15 to 90 µg/cm2 and cLAI from 0.5 to 7. The rest of
the input parameters were �xed for typical and �eld-measured
structural parameters presented in Table IV. A total of 36 dif-
ferent input combinations were simulated, and TCARI/OSAVI
was calculated from the modeled spectra [Fig. 6(a) and (b)].
Ground truth chlorophyll content was estimated for a total of
41 olive tree and peach crowns using the SPAD meter (SPAD-
502DL, Minolta, Japan). A total of 50 leaves were sampled
from each crown, and mean SPAD measurements were used to
estimate the total chlorophyll content through SPAD�Cab re-
lationships developed for each crop using destructive sampling
methods based on spectrophotometer readings in the laboratory.

To assess the capability of PRI for stress detection from the
UAV platform, the PRI was calculated from the MCA-6 camera.
A variety trial corn �eld was �own at different times during the
course of the day, and variety plots that differed in water status
were identi�ed on the imagery. Assessment of PRI for stress
detection was conducted by studying the relationships between
PRI and plot temperature obtained from the UAV thermal and
multispectral cameras. To remove the effects of canopy or soil
temperature variations on the vegetation index, comparisons
were made among corn plots with the same NDVI range.

C. Methods for Surface Temperature Estimation

Different methods have been proposed recently to retrieve
surface temperature from thermal sensors. A review of methods
can be found in [68]�[70]. The thermal sensor used in this
paper provided a single band in the range of 7.5�13 µm;
therefore, only techniques developed for single-channel
atmospheric correction were used. Methods based on the ra-
diative transfer equation use (6) to estimate surface tempera-
ture. Needed parameters are atmospheric transmittance (��),
emissivity (��), downwelling (L�

atm,�), and upwelling thermal
radiation (L�

atm,�), which are driven mainly by water vapor
content, air temperature, and distance to object

Lsensor,� =
�
��B�(TS) + (1 � ��)L�

atm,�

�
• �� + L�

atm,�.
(6)

The MODTRAN radiative transfer code [71] was used to
model �� and L�

atm,�, while L�
atm,� was measured in the �eld

Fig. 8. Comparison between ground truth surface temperature (IRT measured)
and that obtained from the thermal camera at 150-m �ight altitude before (×)
and after (�) applying the atmospheric correction.

Fig. 9. Footprints for the images acquired during a �ight plan conducted
over an orange orchard. Red rectangles correspond to single image frames.
The yellow rectangle represents the overlapping of two consecutive images
(stereo-pair).

with a thermal sensor (LaserSight, Optris, Germany) pointing
toward the zenith upward with an FOV of 15� and a spectral
response of 8�14 µm. Since only vegetation temperature was
retrieved as part of this paper, a surface emissivity of 0.98 was
considered as an accepted value for natural vegetation [72].
Local atmospheric conditions such as air temperature, relative
humidity, and barometric pressure were measured at the time
of �ight with a portable weather station (Model WXT510,
Vaisala, Finland) and used as input into MODTRAN model.
A single-layer atmosphere with uniform conditions was con-
sidered for the simulations since the variation for the typical
UAV �ight altitude (150�200 m) could be neglected. Both path
transmittance and thermal radiance were simulated at different
sensor altitudes and integrated for the spectral response range of
the thermal camera. Two fourth-grade polynomial relationships
were �tted for transmittance and thermal radiation as a function
of path length. The results for different atmospheric conditions
are shown in Fig. 7(a), demonstrating that �ight altitude can
in�uence surface temperatures, if not corrected for atmospheric
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