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This paper presents the results of estimation of leaf chlorophyll concentration

through model inversion, from hyperspectral imagery of artificially treated

orchard crops. The objectives were to examine model inversion robustness under

changing viewing conditions, and the potential of multi-angle hyperspectral data

to improve accuracy of chlorophyll estimation. The results were compared with

leaf chlorophyll measurements from laboratory analysis and field spectroscopy.

Two state-of-the-art canopy models were compared. The first is a turbid medium

canopy reflectance model (MCRM) and the second is a 3D model (FLIGHT).

Both were linked to the PROSPECT leaf model. A linear regression using a single

band was also performed as a reference. The different techniques were able to

detect nutrient deficiencies that caused stress from the hyperspectral data

obtained from the airborne AHS sensor. However, quantitative chlorophyll

retrieval was found largely dependent on viewing conditions for regression and

the turbid medium model inversion. In contrast, the 3D model was successful for

all observations. It offers a robust technique to extract chlorophyll quantitatively

from airborne hyperspectral data. When multi-angular data were combined, the

results for both the turbid medium and 3D model increased. Final RMSE values

of 5.8 mg cm22 (MCRM) and 4.7 mg cm22 (FLIGHT) were obtained for

chlorophyll retrieval on canopy level.

1. Introduction

Hyperspectral remote sensing has the potential to estimate leaf biochemical

constituents such as chlorophyll concentration (Cab) from airborne image

acquisition. By quantifying photosynthetic pigments in agricultural crops their

physiological state can be assessed. Several studies have introduced narrow-band
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spectral indices to this end (Carter 1994, Peñuelas et al. 1994, 1995a,b, Gamon

1992). More specifically, (Daughtry et al. 2000, Zarco-Tejada et al. 2001,

Lichtenthaler et al. 1996, Gitelson and Merzlyak 1996, Haboudane et al. 2002)

derived indices for chlorophyll content estimation allow us to detect chlorosis in an

early stage. Independent estimation of chlorophyll has also been shown to have the

potential to improve ecological models of net primary productivity (NPP) driven by

satellite data (Dawson et al. 2003).

One of the difficulties with these indices is that they are responsive to other

vegetation and environmental parameters such as LAI, and underlying soil

reflectance (Daughtry et al. 2000, Kim et al. 1994, Zarco-Tejada et al. 2004).

Relationships obtained at leaf level cannot be transferred to the canopy level.

Derivative indices are proposed, especially related to the red edge (Miller et al.

1990), to estimate chlorophyll at both leaf and canopy levels. However, structure

and canopy architecture is critical and can cause the empirical relationships to fail

on other canopies. Moreover, the relationships at canopy level must be tuned for

spectral and spatial sensor characteristics and viewing conditions (Myneni et al.

1995, Verstraete et al. 1996). Due to the sensitivity of indices to these extraneous

factors, the accurate estimation of biochemical constituents on a routine basis

remains problematic.

Jacquemoud et al. (2000), Kuusk (1998) and Weiss et al. (2000) inverted coupled

leaf-canopy radiative transfer models to estimate leaf biochemistry. The canopy

model should compensate for canopy structure and viewing geometry. However, for

open crop canopies, where soil background and shadows dominate the bidirectional

reflectance signature, this is far from evident. Zarco-Tejada et al. (2004) found

PROSPECT-SAILH results derived for pure crowns to be inaccurate when applied

to pixels with aggregated soil background and shadow scene components. On the

other hand, more realistic and more accurate models become available, along with

cheaper computing power to run them.

The objective of this paper is to demonstrate (and quantify) the dependence of the

accuracy of chlorophyll retrieval on viewing conditions on canopy level in a peach

orchard. This is important if remote sensing is to be applied as an operational tool

for precision agriculture. For satellite sensors with large swaths, the prerequisite of

nadir viewing is seldom met. But high spatial resolution sensors suffer from

suboptimal viewing conditions as well. They must be pointed to off-nadir positions

to obtain an acceptable revisit time.

We compared two canopy models in our study. They were linked to the

PROSPECT leaf model (Jacquemoud et al. 1996). The first, MCRM (Kuusk 1995),

assumes the canopy layer as a turbid medium. It does not take into account tree

crown closure, tree density, height, shape and dimension of crowns. The second is

the 3D geometric-optical model, FLIGHT (North 1996). It is a more realistic model

based on ray tracing, accounting for influences of canopy architecture on

reflectance. Bidirectional reflectance effects are calculated as a function of the

illumination and viewing geometry and scene components such as shadow and soil

effects. This is an advantage over the first type of models with respect to the

robustness of viewing geometry, as will be shown.

We then investigated how multi-angular remote sensing data can increase the

accuracy of the chlorophyll estimation. Multi-angular viewing data are now

available. For example, the MISR (Multi-angle Imaging SpectroRadiometer, Diner.

et al. 1998) instrument onboard NASA’s Terra satellite has nine sensors with
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different viewing angles and the CHRIS (Compact High Resolution Imaging

Spectrometer, Barnsley et al. 2004) instrument is pointable off-nadir in both the

along-track and across-track direction, by tilting the PROBA platform. For this

study, the peach orchard was imaged in four tracks with the AHS airborne

hyperspectral sensor with different viewing geometries. We tested different

techniques to combine the multi-angular that improved the accuracy of chlorophyll

retrieval. Still, the 3D model outperformed the turbid medium mode (5.8 mg cm22

for MCRM and 4.7 mg cm22 for FLIGHT).

2. Methodology

Biochemical parameters of crops can be estimated more accurately, with the

introduction of hyperspectral sensors. The large number of narrow bands allow us

to measure absorption features more precisely. For chlorophyll, absorptions are

located in the visible region of the spectrum (Curran 1989). Several methodologies

exist to estimate the concentration of chlorophyll from remote sensing data.

2.1 Data analysis

The chlorophyll value measured in situ can be used as the response value in a

regression analysis. The explanatory variable is the reflectance value in one (simple

linear regression) or more bands (multiple regression). Wessman et al. (1988),

Curran et al. (1992) and Martin and Aber (1997) derived a predictive algorithm for

chlorophyll from a training data set, by estimating the statistical relationship

between the chlorophyll concentration and the specific bands of leaf or canopy

reflectance.

Camps-Valls et al. (2006) suggested a robust regression, based on support vector

machines that is particularly useful in the case of limited in situ measurements.

Regression can be performed both on leaf level and on canopy level.

We performed a simple linear regression. No improvements were found using

multiple linear regression. The optimal band was selected from an optimization

scheme, minimizing the residual sum of squared errors between the estimated and

measured chlorophyll concentrations in the training set (feature selection).

Grossman et al. (1996) demonstrated that the predictive algorithm obtained from

regression, trained on a specific site and crop, is not reliable for other conditions.

The selected bands depend on the data set at hand, influenced by species,

canopy structure and viewing conditions. Several techniques have been introduced

to increase the robustness of biochemical parameter estimation, including

continuum-removal (Kokaly and Clark 1999), band ratios (Chappelle et al. 1992,

Blackmer et al. 1996) and normalized differences (Kim et al. 1994, Daughtry et al.

2000).

2.2 Model inversion

Another technique to retrieve chlorophyll from reflectance data is through inversion

of leaf and canopy reflectance models. Inversion is usually performed numerically

with an iterative optimization method. The forward model can be applied directly at

each iteration, though lookup tables might be a better option if performance is

critical (Knyazikhin et al. 1998, Pragnère et al. 1999). Neural networks have also

been shown to be efficient to invert canopy models (Smith 1993, Abuelgasim et al.

1998, Kimes et al. 1998, Schlerf and Atzberger 2006).

Recent Advances in Quantitative Remote Sensing II 5095
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Foliar chlorophyll can be retrieved from leaf reflectance by inverting a leaf

radiative transfer model. We selected PROSPECT version 2.01 (10 April 1995), with

five input parameters: Chlorophyll a + b (Cab in mg cm22), leaf structure (N), leaf

water equivalent thickness (Cw in cm), leaf protein content (Cp in g cm22), and leaf

cellulose + lignin content (Cc in g cm22).

To estimate biochemical parameters from canopy reflectance, the leaf model must

be coupled with a canopy model. For this goal, we used two different canopy

models.

MCRM (Kuusk 1995), a Markov chain model of canopy reflectance, calculates

the radiative transfer within vegetation canopies. It is based on the homogeneous

multispectral model MSRM (Kuusk 1994) and the SAIL (Verhoef 1984) model,

which models the diffuse radiative transfer. The MCRM model accounts for non-

Lambertian soil reflectance, specular reflection of direct Sun rays on leaves, the hot

spot effect, a two-parameter leaf angle distribution (LAD) and the spectral effect of

cultivation rows.

The second is the 3D geometric-optical model, FLIGHT (North 1996). It has

been developed to efficiently simulate the spectral reflectance for a specific Sun-

sensor geometry, and to estimate canopy photosynthesis (Barton and North 2001,

North 2002, Alton et al. 2005). A recent intercomparison with a set of six Monte

Carlo models shows agreement with <1% dispersion in reflectance (Pinty et al.

2004).

The numerical inversion minimizes a merit or cost function. This is typically the

sum of squared differences between the measured and modelled canopy spectral

reflectance in each spectral band (i51, …, d) (1):

D2~
1

d

Xd

i~1

Ri{R̂i Pð Þ
� �2

: ð1Þ

The modelled reflectance R̂ depends on the model parameters P. The optimization

thus consists of finding the optimal model parameters P that minimize the merit

function. Although some typical canopy parameters such as leaf area index (LAI)

and Sun and viewing angles remain the same, others are model specific. The

number of parameters is also different for the two models. A well known problem

of model inversion is that it is ill posed. Different parameters interfere and

multiple parameter sets may lead to the same solution. It is therefore important to

constrain most of the parameters or fix them to their known (measured) values.

Reducing the number of parameters to be optimized is also required for

performance reasons.

Modifications of the merit function (1) exist, for example by weighting the

contributions of the individual wavelengths. Zarco-Tejada et al. (2001) used merit

function based on an optical index R750/R710 focusing on a single band ratio, rather

than the entire spectrum. The authors showed superior results, especially if

reflectance signals included shadowed pixels. We used the unweighted merit

function (1), but we focused on the green peak for inverting FLIGHT (d57, from

455 nm to 601 nm). Moreover, the signal-to-noise ratio in the SWIR region of the

AHS sensor proved to be very low.

If multi-angular data are available, the extra information can be used to

increase the accuracy of the parameter estimation. This can be done in different

ways. For n observations, we can extend the definition of the merit function
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(Weiss et al. 2000):

Xn

j~1

D2
j ~

1

n

1

d

Xn

j~1

Xd

i~1

Ri, j{R̂i, j Pj

� �� �2
, ð2Þ

where subscript j indicates the observation. We will refer to this as the direct mode,

because multi-angular data are used directly within the optimization process. In

contrast, we can use the obtained results for each observation in a posterior mode,

by just averaging the individual results. The direct mode will better constraint the

optimization process and is probably preferred if more parameters must be

estimated simultaneously. Likewise, if the model is not robust to different

observation conditions, the individual results are not reliable and must not be

combined. However, in case of a robust model, averaging the individual results

might be a good alternative, as will be shown in § 4.

The modelled reflectance R̂ was filtered to obtain a simulated reflectance signature

that is consistent with the reflectance measured by the airborne hyperspectral sensor.

Specifically for the AHS sensor with a varying bandwidth, it is important to match

the modelled spectrum to the sensor specifications. Figure 1 shows the modelled

spectrum before and after filtering.

Biochemical leaf parameters (other than chlorophyll) were not measured so all

five PROSPECT parameters were estimated simultaneously. For the optimization

we selected ASA, an adapted simulating annealing (Ingber undated), which is robust

to local minima. We chose only to optimize for chlorophyll for the MCRM model,

fixing all remaining parameters. For the FLIGHT model, we estimated fraction

cover in addition to chlorophyll, motivated by the uncertainty on the tree extraction

in the image, due to the coarse resolution with respect to the crown size. The fraction

cover was estimated between 0.6 and 0.9, relating to the understorey between the

tree rows in the orchard. Understorey spectra were extracted from the image data

and averaged as input for the model.

Figure 1. The modelled canopy spectrum before (solid) and after (dots) filtering according
to the specifications of the AHS sensor.
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3. Experiments

3.1 Experimental setup

A peach orchard near Zaragoza, Spain (Lat: 41u289 N, Long: 1u229 W) was chosen

as a test case to experiment with the chlorophyll retrieval techniques. It was treated

with iron chelates to recover from iron chlorosis conditions. The orchard,

represented as a matrix, consists of 35 rows and six columns. The total number of

trees is only 205 instead of 210, because five trees are missing. Iron chlorosis is

induced in 48 trees, located in the two rightmost columns of the orchard,

schematically presented in figure 2. Trees are represented, and treated, in blocks of

three. As an exception, the blocks at the upper end of the plot only contain two

trees. The treatment consisted of an iron chelate with four different concentrations

(figure 2): 0 g tree21, 60 g tree21, 90 g tree21 and 120 g tree21.

The objective was to create a dynamic range of chlorophyll concentration.

Column 3 contained 12 trees (four blocks of three) that were grafted during the

previous year (2004).

3.2 Field data collection

Fresh leaves are sampled for each tree and measured with the ASD spectrometer

using a Leaf Clip. Leaf reflectance was obtained for 716 leaves. We used a SPAD-

502 Minolta Chlorophyll Meter for measuring foliar chlorophyll. The SPAD values

were calibrated by comparing the SPAD values to chlorophyll concentrations

derived from destructive chemical analysis in the laboratory for a subset of leaf

Figure 2. Schematic overview of the orchard. Trees are grouped per 3 (except for upper
row). In total, 48 trees in the two rightmost columns were treated with iron chelate with four
different concentrations (from light to dark). Column 3 contains 12 trees that were grafted
during the previous year.
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samples. The result is shown in figure 3. A correlation coefficient of 0.82 was

obtained with a RMSE of 6.0 mg cm22. The values are then averaged per tree to

compare with parameters obtained on canopy level. The plot average for

chlorophyll content is 36.9 mg cm22, with a variance of 53.4 (s57.3). Extreme

values range from 13.7 to 45.7 mg cm22, showing a large dynamic range as intended.

In addition to chlorophyll, leaf area index was estimated with an LAI2000

instrument for 10 trees. The calculations for LAI were performed according to

Villalobos et al. (1995), resulting in a mean value of 2.

3.3 Airborne hyperspectral data

The AHS sensor has 63 bands covering the visual and near infrared part of the

spectrum (450–2500 nm). It was mounted on a CASA C-212 airplane and operated by

INTA. The peach orchard was acquired on 12 July 2005 in cloud free conditions

(figure 4). Four tracks were flown with different headings (figure 5). The tracks were

headed with a 45u difference, with track 1 perpendicular to track 3 and track 2

perpendicular to track 4. The individual tracks fully covered the peach orchard, so that

each pixel was acquired with four different view angles. Optimal flight conditions are

for track 1, corresponding to a flight path in (and measurements perpendicular to) the

solar plane (heading away from the Sun). The small peach orchard is located in the

centre of each track, leading to near nadir observations. The pixels were thus selected

from a narrow range in the image, where relative azimuth angles correspond to a

continuous transition from the left/right part of each scene with respect to nadir. As an

example, selected pixels for track 1 were not observed with the expected relative

azimuth angles of 90u and 270u. This is illustrated by the scatterplot in figure 6, which

schematically shows the view zenith and relative azimuth angles for each pixel and for

the different tracks. View zenith is minimum for track 1 (between 4u and 5u), and

maximum for track 3 (near to 10u). Tracks 1 and 4 are acquired in backward scatter,

and tracks 2 and 3 in forward scatter.

Image data were processed to top of canopy level, using in-house developed

software (Biesemans and Everaerts 2006). Atmospheric correction is based on

MODTRAN. The integrated atmospheric correction is equivalent to the ATCOR4

theory (Richter 2004). Corrections are made column dependent in order to account

Figure 3. Calibration of the SPAD values using Cab concentrations derived from chemical
analysis in the laboratory.
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Figure 4. Grey scale image of the orchard acquired with the AHS airborne hyperspectral
sensor. The white (WT) and dark (DT) reference targets are visible on the right hand site of
the orchard.

Figure 5. Schematic view of the peach orchard with headings for the four tracks.
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for the different atmospheric paths across AHS images properly. If one single set of

atmospheric parameters were used instead, meaning that all the columns in the

image are processed assuming one single observation angle, angular variations

detected in the chlorophyll estimations could be due to atmospheric effects. We

improved the traditional ATCOR approach: instead of using a single LUT

(LookUp Table), we created a customized LUT for each image, which is adapted to

the specific spectral bands of the sensor and the relevant geometry space obtained

during geometric correction. The customized LUT was calculated using a single

platform elevation (983 m) and solar zenith angle (27.75u), three view zenith angles

and five relative azimuth angles. The atmospheric correction used in situ measured

parameters, e.g., sunphotometer measurements and ASD spectral measurements

over white and dark reference targets. The pixel positions were calculated using GPS

measurements and orientation parameters (by means the Inertial Measurement

Unit) onboard the airplane. The image was geocoded in a Universal Transverse

Mercator projection system (UTM, Zone 30 North, datum WGS84). A subpixel

accuracy was obtained after geometric correction with a digital elevation model of

the site. The ground resolution of 2.5 m was similar to the crown diameter, which

complicated tree identification in the image. The peach trees have been planted

according to the scheme in figure 2 every 4 metres (8
5

pixels). To facilitate the tree

extraction, the hyperspectral image is upsampled with a factor of 5 (with nearest

neighbour). Hence, a tree is covered in a region of interest (ROI) with an integer

number of (sub)pixels. Using nearest neighbours, the subpixels contain exactly the

same spectral information as the original pixels. To obtain the target canopy

reflectance, we then took the median reflectance of the subpixels in the ROI. An

alternative is to select the pixel in the ROI with maximum NDVI (Normalized

Difference Vegetation Index, Rouse et al. 1973) or maximum NIR value to minimize

the influence of shadows and understorey (canopy openings between rows) as in

Figure 6. Polar plot of relative azimuth and zenith viewing angle for each track. The
individual tracks fully covered the peach orchard, resulting in four different observations for
each pixel (represented as dots).
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Zarco-Tejada et al. (2001). However, in our case a ROI can contain subpixels of

neighbouring trees due to a combination of: imperfect tree positioning, linked up

ROIs and upsampling. To reduce the effect of geometrical inaccuracy and the

limited spatial resolution, we averaged the estimated values for a block of three
neighbouring trees. This choice was also motivated by the way in which the trees

were treated (§ 3.1). On canopy level, we estimated chlorophyll for these individual

blocks. This has a severe impact on the variance of the chlorophyll estimation

results. This should be taken into account when results are compared to similar

studies in the literature. In most cases, larger areas of plots are aggregated, reducing

noise and edge effects. With respect to the potential of the proposed techniques for

precision agriculture, we chose to assess the crop status with a considerable detail.

4. Results and discussion

We started from leaf level before scaling up to the canopy level. This step-wise

approach allowed us to assess the performance of the selected leaf radiative transfer

model without entering the complexity of the canopy level. Second, by inverting the

leaf model to extract foliar chlorophyll, other biochemical parameters were estimated

as well, which could then be constrained on canopy level. A simple linear regression
served as a reference, rather than a final goal. It demonstrates the capability to derive

chlorophyll with a good accuracy from leaf/canopy reflectance. Furthermore, it was

shown that a single band contained sufficient information for this purpose.

4.1 In situ data: leaf level

A predictive algorithm was first derived from a simple regression applied to the ASD

leaf spectra. As we were not interested in the results on leaf level as such, we
averaged the estimated chlorophyll for all leaves in a single tree. We thus obtained a

RMSE value of 1.78 mg cm22 on a tree level, obtained from the leaf spectra. In a

second step, we filtered the ASD spectra with the AHS spectral response function

(SRF) to check if the AHS sensor was sufficiently conceived for the task of

chlorophyll retrieval. In fact little degradation was observed due to the filtering

process as shown in figure 7 (RMSE value increased from 1.78 to 2.03 mg cm22).

An interesting aspect of the filtering process was that the optimal band for simple

linear regression shifted from the red edge (702 nm) toward the green peak (571 nm). As

expected, for narrow bands, the red edge provides valuable information on chlorophyll.

However, for broader bands, the green peak was better suited for this experiment.

We obtained good results with the inversion of PROSPECT, although the RMSE
was not as low as with regression (6.48 mg cm22 and R250.78, figure 8).

All five PROSPECT parameters were estimated simultaneously by the optimiza-

tion routine. Table 1 shows the mean values for all leaves measured. Apart from

chlorophyll, there was very little variation in biochemical parameters, so we fixed

them for further analysis on canopy level.

The next step was to estimate the chlorophyll on a tree level, obtained from the

airborne hyperspectral data.

4.2 Airborne hyperspectral data: canopy level

The canopy spectra for all 205 peach trees in the orchard were derived from the

AHS image as explained in § 3.3. A single spectrum is obtained for each tree, by

taking the median reflectance for the corresponding region of interest.

5102 P. Kempeneers et al.
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Similar to the chlorophyll retrieval from leaf reflectance, we performed a simple

linear regression. Independent from the leaf level, the same band was selected on

canopy level by the feature selection routine in § 2.1, confirming the importance of

this spectral region (571 nm). Other than just a reference result on canopy level, the

motivation for this was to perform a sensitivity analysis on the viewing conditions. It

is a generally known problem that the predictive algorithm is site and crop specific

and is not reliable for other conditions (Grossman et al. 1996). In this experiment,

crop and site (canopy architecture) was fixed. The time difference between the first

and last track was 40 minutes with clear sky conditions and thus, atmospheric

conditions and illumination geometry were nearly identical for the four tracks as

well (difference in atmospheric path length is negligible because of small viewing

zenith angles). By training the predictive algorithm on one track and testing on the

other, we were able to assess the effect of viewing conditions on the regression

Figure 7. Chlorophyll estimation through simple linear regression of the ASD leaf spectra
(solid dots are filtered with the AHS spectral response function).

Figure 8. Chlorophyll estimation through inversion of the PROSPECT leaf radiative
transfer model for ASD leaf spectra (filtered with the AHS spectral response function).
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technique. The results in table 2 show there is an important dependence, as expressed

by the variance in the last column for most tracks. The first column indicates the

tracks used for training, while those for test are shown in the next columns. As an

example, if track 4 was used for training (last row), the RMSE for estimating

chlorophyll using data from track 3 was 9.7 mg cm22. This is more than double the

error obtained when testing on the same track (using a leave-one-out cross-

validation, Lachenbruch 1967).

We then inverted the radiative transfer models PROSPECT and MCRM. We

derived Cab by first fixing the other four parameters for the PROSPECT leaf model

to the mean values from table 1. The canopy model parameters were fixed as well.

The Sun and view angles were logged for each pixel during the flight and thus could

be set to their actual values. The leaf area index (LAI) was fixed to 2, the mean value

of the measured subset (§ 3.2). The remaining parameters were fixed to the centre of

the model range. The chlorophyll was loosely constrained (0–60 mg cm22). An

overview of the fixed values or ranges for the MCRM canopy reflectance model is

shown in table 3.

The results in the first row of table 5 show the severe impact of the viewing on the

performance of the turbid medium model inversion. Best results are obtained for

track 1, with a small value for RMSE (5.2 mg cm22) and a high correlation

coefficient (R250.44). This track corresponds to the optimal flight conditions. In

contrast, track 3 with its suboptimal viewing conditions result in a high RMSE value

of 12.5 mg cm22 (R250.5). In general, chlorophyll is overestimated with forward

scatter acquisitions (tracks 2 and 3). Most surprising is that even for the narrow

range of view zenith angles (4–10u) chlorophyll estimations with the turbid medium

model are that sensitive to relative azimuth angles. Because no reference data were

available for pixels with larger zenith angles, we created synthetic data. Using the

same turbid medium model in forward mode would be of little relevance due to

circular reasoning. We therefore used the 3D FLIGHT model to create the synthetic

data and the turbid medium model for inversion. We simulated view zenith angles

Table 1. Estimated PROSPECT parameters (mean over all leaves).

Parameter Value Variance

Water equivalent thickness (cm) 0.0121 9.98 1027

Leaf protein content (g cm22) 0.0002 1.8 10220

Leaf cellulose and lignin content content (g cm22) 0.0031 1.02 1027

Elementary layers inside a leaf 1.8 0.0047
Chlorophyll concentration (mg cm22) 39 98

Table 2. Assessment of the effect of viewing conditions on simple linear regression. Training
was performed using a single track (column 1). RMSE (mg cm22) and R2 values of Cab are

calculated on the test tracks in row 1 respectively.

RMSE
(R2) Track 1 Track 2 Track 3 Track 4 Mean Variance

Track 1 4.5 (0.56) 5.6 (0.52) 6.5 (0.62) 5.3 (0.50) 5.5 (0.55) 0.7 (0.003)
Track 2 5.3 (0.56) 4.8 (0.52) 4.7 (0.62) 6.9 (0.50) 5.4 (0.55) 1.1 (0.003)
Track 3 7.7 (0.58) 5.1 (0.49) 4.4 (0.59) 9.9 (0.60) 6.8 (0.57) 6.4 (0.002)
Track 4 5.1 (0.58) 8.6 (0.49) 9.7 (0.59) 4.5 (0.60) 7.0 (0.57) 6.7 (0.002)
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from 5u to 10u and from 30u to 35u (the AHS sensor provides data with view zenith

angles up to 45u). For backward scatter (tracks 1 and 4), there was little impact of

larger view zenith angles on the accuracy of chlorophyll estimates. Values for R2

decreased from 0.98 to 0.86, but RMSE also decreased from 7.7 to 5.8 mg cm22. In

case of forward scattering though (corresponding to tracks 2 and 3), the estimates

were influenced for the worst: RMSE values increased from 13 to 17 mg cm22, with

less correlation between estimated and true chlorophyll content (R2 decreased from

0.84 to 0.6). Similar to our experimental data, there was an overestimation for the

chlorophyll content for the forward scattered simulated data.

Finally, we inverted the 3D FLIGHT model coupled with PROSPECT. For

performance reasons, a lookup table was used. A lookup table was created for

different values of chlorophyll (10–60 mg cm22), fraction cover (0.6–0.9) and view

Table 3. Parameters used for the MCRM canopy reflectance model.

Parameter Value

Solar zenith angle 25–30u
Solar azimuth angle 121–132u
View zenith angle 4.4–6.6u
Relative viewing azimuth 0–360u
Leaf area index 2
Leaf size 0.02
Mean leaf angle (elliptical LAD) 45
Eccentricity of LAD 0.91
Ångström turbidity factor 0.1
Clumping parameter 0.8
Ratio of refractive indices 1
Price weight 1 (soil) 0.2
Price weight 2 (soil) 0
Price weight 3 (soil) 0
Price weight 4 (soil) 0

Table 4. Parameters used for the 3D canopy reflectance model FLIGHT.

Parameter Value

Solar zenith angle 27.75u
Solar azimuth angle 126.25u
View zenith angle 5.35u
Relative viewing azimuth 0–360u
Total LAI 2
Leaf size 0.02
Leaf area distribution spherical
Mode reverse
Dimension 3
Fraction ground cover 0.6–0.9
Fraction of green cover 1
Number of photons 100 000
Soil roughness index 0.1
Aerosol optical thickness (555 nm) 0.1
Crown radius (m) 1.2
Crown centre to top distance (m) 1
Min height to first branch (m) 1
Max height to first branch (m) 1.5
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azimuth angle (0–360u in steps of 15u). The Sun angles and view zenith angle

(table 3) were approximated to their mean values and fixed in the model. The

relevant values (ranges) of the parameter settings for FLIGHT are listed in table 4.

Again, best results are obtained for track 1, with RMSE55.4 mg cm22 and R250.46.

Most importantly, results are much more robust to viewing conditions as shown in

row 2 of table 5. Compared to the turbid medium model, variance for RMSE drops

from 10.5 to 0.4, with extreme RMSE values between 5.4 and 6.9 mg cm22 (5.2 and

12.5 mg cm22 for MCRM). Correlation variates from 0.39 (track 4) to 0.58 (track 3),

and is always higher than results from MCRM inversion.

If multi-angular information is available, this information can be used to increase

the accuracy of the parameter retrieval. The merit function was adapted according

to (2). The obtained RMSE is 5.8 and 5.0 mg cm22, with a correlation R2 of 0.48 and

0.52 for MCRM and FLIGHT respectively. Although the 3D model still

outperforms the turbid medium model, the difference is small. It should be noted

that for this experiment only chlorophyll was estimated. If the optimization scheme

must deal with more parameters, the extra constraint of the multi-angular

information is expected to be more beneficial. However, for the more robust 3D

model, the individual results from the single observations are more reliable and

contribute to the best estimation (RMSE54.7 mg cm22 and R250.56). The

chlorophyll values, estimated using multi-angular information, are plotted against

the measured values in the scatterplot of figure 9. Linear regression, RMSE and R2

are indicated for both models.

5. Conclusions

The effect of viewing conditions on the retrieval of foliar chlorophyll from canopy

reflectance is presented. Three techniques were tested on airborne hyperspectral

data, acquired with the AHS sensor. The test plot covered a peach orchard, where

trees were treated with iron chelates to recover from iron chlorosis conditions.

Blocks of trees treated with iron chelates created a dynamic range of chlorophyll

concentration as measured in leaves. Multi-angular hyperspectral data were

Table 6. RMSE (mg cm22) and R2 values of Cab through model inversion. Multi-angular
information is either directly integrated in the model inversion using equation (2) (direct
mode) or post-processed by averaging the individual results for each observation (posterior

mode).

RMSE (R2) Direct mode Posterior mode

MCRM 5.8 (0.48) 6.1 (0.52)
FLIGHT 5.0 (0.52) 4.7 (0.56)

Table 5. RMSE (mg cm22) and R2 values of Cab through model inversion. The 3D model
FLIGHT is more robust to viewing conditions than turbid medium model MCRM. Mean and

variance values are calculated over RMSE values for tracks 1–4.

RMSE
(R2) Track 1 Track 2 Track 3 Track 4 Mean Variance

MCRM 5.2 (0.44) 9.9 (0.36) 12.5 (0.5) 6.7 (0.38) 8.6 (0.42) 10.5 (0.005)
FLIGHT 5.4 (0.46) 6.1 (0.42) 6.4 (0.58) 6.9 (0.39) 6.2 (0.46) 0.4 (0.007)
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obtained from the AHS sensor by flying four tracks over the orchard with different

viewing conditions.

A simple linear regression was found to be largely dependent on viewing

conditions. The main focus of this paper, however, was the effect of viewing

conditions on the inversion of two state-of-the-art canopy models, coupled with the

PROSPECT leaf radiative transfer model. A turbid medium model, MCRM, was

tested first. Then, a more realistic model, FLIGHT, was tested. This 3D geometric-

optical model is based on ray tracing and does account for influences of canopy

architecture on reflectance. Both canopy models were successful in estimating

chlorophyll concentration for optimal flight conditions, when data were measured

perpendicular to the solar plane. A RMSE value just above 5 mg cm22 was obtained

for both MCRM and FLIGHT. This result shows that chlorosis stress can be

detected from canopy level through model inversion. However, the turbid medium

model showed considerable differences between the results obtained for each

individual track. Conversely, the 3D model was shown to be very robust to viewing

geometry, with a persistent low RMSE value for each track (values between

5.4 mg cm22 and 6.9 mg cm22). A larger range of zenith angles would allow us to

better estimate the full implication of the sensitivity to observation angles. Some

indication is provided, but is based on synthetic data. A new flight campaign

covering this aspect is recommended and is the subject of future research.

Finally, two methodologies were tested to combine multi-angular data for

chlorophyll retrieval. For MCRM, the RMSE comes close to the single best

observation (5.2–5.8 mg cm22), while the value for R2 improved from 0.44 to 0.48.

Best results are obtained for the 3D model. The two methodologies improved both

RMSE and R2, with a minimum RMSE of 4.7 mg cm22 and a maximum R2 value of

0.56 mg cm22.

The inversion of coupled canopy-leaf reflectance models for chlorophyll retrieval

is a promising technique. However, special care must be taken when selecting the

canopy model. For open canopies, turbid medium models are not robust to

suboptimal viewing conditions. Though such conditions are often encountered in

Figure 9. Scatterplot with measured vs. estimated chlorophyll values using multi-angular
information and model inversion. Solid dots are used for 3D FLIGHT model.
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operational conditions with large swath low resolution or pointable high resolution

sensors. There are a lot of problems to resolve before precision agriculture becomes

truly operational. However, recent improvement of canopy models accounting for

canopy architecture, combined with cheaply available computing resources, are

steps in the right direction.
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