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Grape quality assessment in vineyards affected by iron deficiency chlorosis using
narrow-band physiological remote sensing indices
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The present study investigated the use of physiological indices calculated from hyperspectral remote sensing
imagery as potential indicators of wine grape quality assessment in vineyards affected by iron deficiency
chlorosis. Different cv. Tempranillo/110 Richter vineyards located in northern Spain, affected and non-
affected by iron chlorosis, were identified for field and airborne data collection. Airborne campaigns imaged a
total of 14 study areas in both 2004 and 2005 using the AHS hyperspectral sensor, which acquired 20 spectral
bands in the VIS-NIR region. Field measurements were conducted in each study site to obtain leaf and grape
physiological parameters potentially linked to wine quality. Simulations carried out with the rowMCRM
radiative transfer model demonstrated the feasibility of estimating leaf chlorophyll a+b (Cab) content using
TCARI/OSAVI from AHS spectral bands. In addition to traditional structural vegetation indices (NDVI) and
successful canopy-level chlorophyll indices (TCARI/OSAVI), other innovative physiological indices sensitive
to changes in carotenoid (Car) and anthocyanin (Anth) content in leaves were assessed from the imagery.
The rowMCRM model simulations were used to evaluate canopy structural effects on these physiological
indices as a function of the typical row-structured canopy variables in vineyards (LAI, crown width, row
distances, Cab content and soil background effects). Modeling results concluded that Car (Gitelson-Car2) and
Anth (Gitelson-Anth) indices were highly affected by canopy structure (Cw, Vs) and soil background (ρs).
Field measurements of grape composition and quality were used to assess potential relationships with
physiological indices sensitive to foliar pigment content (Cab, Car and Anth). NDVI and TCARI/OSAVI indices
yielded lower relationships for CIRG and IMAD must quality parameters than Car and Anth physiological
indices. These results suggest that the increase in carotenes and anthocyanins due to drought, thermal
damage or micronutrient deficiencies is a better indicator to detect phenolic ripening difficulties for vines
affected by iron chlorosis than chlorosis detection. Therefore, the potential use of physiological remote
sensing indices related to carotene and anthocyanin pigments demonstrates their importance as grape
quality indicators in vineyards affected by iron chlorosis.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Iron deficiency is an important constraint in grape growing in
Mediterranean climate areas. Iron deficiency decreases chlorophyll
and carotenoid concentration per area in leaves (chlorosis), damaging
the structure and function of the photosynthetic apparatus (Terry &
Abadia, 1986). The low photosynthesis rate occurring in chlorotic
plants considerably depresses the yield and vigor of vineyards (Chen
& Barak, 1982; Tagliavini & Rombolà, 2001). Iron chlorosis also leads

to poor wine grape quality, reducing sugar and anthocyanin contents
(Castino et al., 1987; Veliksar et al., 2005).

Grape composition plays a critical role in wine quality. In must, a
large portion of the soluble solids is sugars, which determine the wine
alcoholic degree. After sugars, organic acids are the most abundant
solids present in grape juice. They are responsible for the tart taste and
markedly influence a wine's stability and color. The aroma is created
by various volatile compounds accumulated in the fruit during the
ripening process and is highly dependent on environmental condi-
tions. Phenolic compounds (anthocyanins and tannins) are present
especially in skins and seeds, and determine the color and astringency
of red wines. Anthocyanins are specific to red grapes and primarily
responsible for wine color intensity and stability. Tannins contribute
significantly to mouth-feel and color stability in red wines. Cultivar,
fruit maturity, environmental conditions such as climate and soil,
vineyard management practices, and the interactions among these
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factors result in the composition and final potential quality of grapes
(Johnson et al., 2001; Lamb et al., 2004).

The synthesis and accumulation of sugars, acids and phenolic
compounds in grapes through ripening is greatly influenced by the
photosynthetic capacity of the vines (Pirie & Mullins, 1980; Smart &
Robinson, 1991). This capacity depends directly on vine-leaf biomass
(canopy size, density and vigor) and leaf chlorophyll content (Hall
et al., 2002). Research efforts in precision viticulture demonstrate the
feasibility of remote sensing as a consistent method to estimate these
parameters in vineyards, as potential indicators of yield (Lamb et al.,

2001) and fruit and wine composition (Johnson et al., 2001; Lamb
et al., 2004; Martín et al., 2007). Precision viticulture techniques aim
at pointing out homogeneous zones based on remotely sensed
biophysical variable estimates, enabling inter- and within-field
variability detection in vineyards and the generation of maps with a
gradient of management zones potentially linked to wine quality.
Previous studies showed that vineyard vigor could be successfully
mapped using high spatial IKONOS satellite imagery (Johnson et al.,
2003), enabling vine growth monitoring for irrigation support and
canopy management through temporal relationships between the

Fig. 1. Examples of images of three study sites acquired in the 2004–2005 campaigns with the Airborne Hyperspectral Scanner (AHS). The images were collected at 2.5 m spatial
resolution.

Table 1
Hyperspectral vegetation and physiological indices used in this study.

Index Index-ID Equation References

Leaf area index
Normalized difference vegetation index NDVI NDVI=(RNIR−Rred)/(RNIR+Rred) Rouse et al. (1974)

Chlorophyll estimation
Transformed Cab absorption in reflectance index TCARI TCARI=3⁎ [(R700−R670)−0.2⁎(R700−R550)⁎(R700/R670)] Haboudane et al. (2002)
Optimized soil-adjusted vegetation index OSAVI OSAVI=(1+0.16)⁎(R800−R670)/(R800+R670+0.16) Rondeaux et al. (1996)

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002)
Gitelson-Chl1 [R(540–560)−1−R(760–800)−1]⁎R(760–800) Gitelson et al. (2003, 2006)
Gitelson-Chl2 [R(690–720)−1−R(760–800)−1]⁎R(760–800) Gitelson et al. (2003, 2006)

Carotenoid estimation
Simple ratio Chappelle-Car R760/R500 Chappelle et al. (1992)
Simple ratio Blackburn-Car1 R800/R470 Blackburn (1998)

Blackburn-Car2 (R800−R470)/(R800+R470) Blackburn (1998)
Structure-Intensive Pigment Index (SIPI) SIPI SIPI=(R800−R445)/(R800+R680) Peñuelas et al. (1995)

Gitelson-Car1 [R(510–520)−1−R(540–560)−1]⁎R(760–800) Gitelson et al. (2003, 2006)
Gitelson-Car2 [R(510–520)−1−R(690–710)−1]⁎R(760–800) Gitelson et al. (2003, 2006)

Anthocyanin estimation
Gamon-Anth R600–700/R500–600 Gamon and Surfus (1999)
Gitelson-Anth [R(540–560)−1−R(690–710)−1]⁎R(760–800) Gitelson et al. (2003, 2006)

1969F. Meggio et al. / Remote Sensing of Environment 114 (2010) 1968–1986



Author's personal copy

Normalized Difference Vegetation Index (NDVI) and the Leaf Area
Index (LAI). This vegetation index and other ratios derived from field
data and multispectral aerial photography were tested in recent
studies to estimate canopy cover and dormant pruning weight,
obtaining consistency across growing seasons (Dobrowski et al., 2002,
2003; Hall et al., 2008). These and other studies suggested broad-band
multispectral remotely sensed imagery of high spatial resolution as a
potential method for vineyard canopy structure characterization,
enabling a successful estimation of vine canopy size, shape and row
identification (Hall et al., 2003), vine mortality detection (Lagacherie
et al., 2001), vineyard classification methods (Lanjeri et al., 2001) and
vine canopy cover estimation for irrigation management support
(Montero et al., 1999). In this context, further research efforts were
performed exploring high spatial resolution hyperspectral remote
sensing imagery and physical methods to estimate biochemical
constituents and biophysical variables as a means to assess within-
field vine status and function (Zarco-Tejada et al., 2003, 2005; Martín
et al., 2007).

A deeper understanding of leaf and canopy reflectance has favored
the development of remote sensing applications for agriculture
(Hatfield et al., 2008). Leaf biochemistry, such as the concentration

Table 2
Hyperspectral vegetation and physiological indices calculated using AHS imagery.

Index-ID AHS imagery adapted indices

Leaf area index
NDVI NDVI=(R804−R659)/(R804+R659)

Chlorophyll
TCARI TCARI=3⁎ [(R718−R689)−0.2⁎(R718−R571)⁎(R718/R689)]
OSAVI OSAVI=(1+0.16)⁎(R804−R689)/(R804+R689+0.16)
TCARI/OSAVI TCARI/OSAVI
Gitelson-Chl1 [R571−1−R746

−1]⁎R746
Gitelson-Chl2 [R689−1−R746

−1]⁎R746

Carotenoid
Chappelle-Car R746/R513
Blackburn-Car1 R804/R484
Blackburn-Car2 (R804−R484)/(R804+R484)
SIPI SIPI=(R804−R455)/(R804+R689)
Gitelson-Car1 [R484−1−R571

−1]⁎R746
Gitelson-Car2 [R484−1−R689

−1]⁎R746

Anthocyanin
Gamon-Anth R659/R571
Gitelson-Anth [R571−1−R689

−1]⁎R804

Fig. 2.Modeling simulations performed with rowMCRM to achieve effects of LAI on TCARI, OSAVI and TCARI/OSAVI sensitivity to chlorophyll variations using bands 571 nm instead
of 542 nm in the TCARI index calculation.
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of chlorophyll a+b (Cab), water (Cw) and dry matter (Cm), is a
physiological indicator of plant growth and stress status which can be
estimated by empirical methods (indices) and analytical techniques
(physical methods) from remote sensing data in the 400–2500 nm
spectral region. Recent studies indicate that the estimation of leaf
biochemical characteristics may be used as an indicator of vegetation
chlorosis due to plant stress from nutritional deficiencies (Fernández-
Escobar et al., 1999; Jolley & Brown, 1994; Marschner et al., 1986;
Tagliavini & Rombolà, 2001; Wallace, 1991). One of the most
important biochemical constituents for understanding plant physio-
logical status is Cab, which is involved in solar light energy absorption
and provides the mechanism for photosynthetic reactions. Thus, Cab is
directly linked to photosynthetic potential and primary production,
and its content in leaves is closely related to plant stress and
senescence processes. Leaf Cab concentration can be detected by
photosynthetic pigment responses in leaf reflectance in the green
peak and along the red-edge spectral region (Rock et al., 1988;
Vogelmann et al., 1993; Carter, 1994; Gitelson et al., 1996).

In particular, Cab estimation for chlorosis detection in vegetation
has been assessed in several studies based on spectroscopy and leaf
optical properties using reflectance indices, spectral and derivative
indices, derivative ratios in the red-edge region (Carter & Spiering,
2002; Gitelson et al., 2003; Jacquemoud et al., 1996; le Maire et al.,
2004; Sims & Gamon, 2002; Richardson et al., 2002) and new optical
indices derived from high resolution hyperspectral imagery (Carter,
1994; Gitelson & Merzlyak, 1996; Vogelmann et al., 1993; Zarco-
Tejada et al., 2001, 2004, 2005). In later studies, the combination of
indices based on the Transformed Chlorophyll Absorption in Reflec-
tance Index (TCARI) (Haboudane et al., 2002), the Modified

Chlorophyll Absorption in Reflectance Index (MCARI) (Daughtry et
al., 2000), and the Optimized Soil-Adjusted Vegetation Index (OSAVI)
(Rondeaux et al., 1996), such as TCARI/OSAVI and MCARI/OSAVI, has
been demonstrated robust to soil background and leaf area index
(LAI) variation in crops. These narrow-band indices, linked to
radiative transfer simulations, provided useful predictive relation-
ships for precision agriculture applications with hyperspectral
imagery in continuous crop canopies (Haboudane et al., 2002) and
have been adapted to open-tree canopy orchards (Zarco-Tejada et al.,
2004; Meggio et al., 2008). Estimation of leaf biochemical constituents
in row-structured crop canopies requires, in fact, appropriate
modeling methods to account for row orientation and sun geometry,
which affect the proportions of shadows, sunlit and shaded soil, and
pure vegetation scene components (Zarco-Tejada et al., 2005).
Differences in row-crop structural parameters, such as row height,
row width, row LAI, varying soil backgrounds, and visible soil
proportion, were assessed using hyperspectral imagery (Zarco-Tejada
et al., 2005) to demonstrate their important effects on canopy
reflectance and therefore estimation of Cab. In addition, different sun
viewing geometries (i.e., sun azimuth and zenith angles) have a
greater influence on the optical vegetation index and the estimated
leaf biochemical constituents in row-structured canopies (Meggio
et al., 2008).

While most predictive relationships between leaf reflectance and
pigment content have been developed for Cab content estimation,
providing quite robust predictions, only few models support carot-
enoid (Car) and anthocyanin (Anth) content estimation (Chappelle
et al., 1992; Peñuelas et al., 1995; Blackburn, 1998; Gamon & Surfus,
1999; Fuentes et al., 2001; Sims & Gamon, 2002; Gitelson et al., 2001,

Fig. 3.Modeling simulations performedwith rowMCRM to achieve the effect of soil background, LAI, vine width and visible soil strip on Gitelson-Car2 index sensitivity to chlorophyll
content variation (Cab).
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2002, 2006). Car and Cab are the main pigments of green leaves for
light harvesting, also playing a photo-protective role to prevent
damage to the photosynthetic systems (Dawson et al., 1998; Gitelson
et al., 2002; Merzlyak et al., 2003). Anth, the red pigments, protect
leaves from excess light (Merzlyak & Chivkunova, 2000; Gitelson et
al., 2002, 2006) and are often observed under environmental stresses
such as high temperature, drought and mineral deficiencies (Chalker-
Scott, 1999; Harbone, 1976). Recent studies developed physiological
indices obtaining consistent relationships with Car (Peñuelas et al.,
1995; Fuentes et al., 2001; Sims & Gamon, 2002; Gitelson et al., 2003,
2006) and Anth leaf pigments (Gamon & Surfus, 1999; Gitelson et al.,
2006). As Car and Anth pigment concentrations are linked to
photosynthetic efficiency, which affects fruit composition, physiolog-
ical indices sensitive to pigment content could be used to detect
spatial differences in fruit quality. In calcareous soils, iron availability
can be one of the major factors modifying canopy size and foliar
pigment content in leaves, which have considerable spatial variation
in vineyards affected by chlorosis (Zarco-Tejada et al., 2005). Work
conducted by Zarco-Tejada et al. (2005) and Martín et al. (2007)
demonstrated that estimation of Cab concentration at canopy level
using remote sensing methods can be useful to map grape quality in
vineyards affected by iron chlorosis. However, physiological indices
linked to Car and Anth may yield in these areas superior results
compared to other indices linked to vegetative vigor (NDVI) and Cab
content (TCARI/OSAVI). Therefore, research is needed on physiolog-
ical condition detection using narrow-band hyperspectral remote
sensing imagery. In fact, such physiological indices linked to Car and
Anth have not yet been tested in vineyards for stress detection and
grape quality assessment.

The objective of this investigation was to evaluate the use of
physiological indices calculated from hyperspectral remote sensing
imagery as potential indicators of wine grape quality assessment in
vineyards affected by iron deficiency chlorosis.

2. Material and methods

2.1. Study site description

Data acquisition campaigns were conducted in July 2004 and 2005
in thewestern area of Ribera del Duero Appellation d'Origine (northern
Spain). A total of seven full production vineyards, affected and non-
affected by iron deficiency chlorosis, were selected for ground
measurements during both years. Field data collection involved a
total of 5 sub-areas of 10 m×10 m located in each of the 7 vineyards.
The study sites used for ground and airborne data collection were
based on a plot network currentlymonitored by the local government,
with specific sites selected to assure that an appropriate variability in
leaf biochemistry and vine physiological conditions was found across
the sites. The soils are calcareous, poor in organic matter (about
7.6 g·kg−1), with a medium-weighed texture and an average pH of
8.7. Concentrations of active carbonate (up to 17.6%) and DPTA
extractable Fe (1.2 to 7.6 mg·kg−1) are highly heterogeneous within
the area. Rainfall recorded in the study area was 358 mm in 2004 and
306 mm in 2005. All vineyards corresponded to cv. Tempranillo
grafted on 110-Richter rootstock, with ages ranging between 7 and
16 years. Vine density ranged between 2200 and 4000 vines per
hectare, and plants were trained to a simple or double Cordon Royat
system (as described in detail in Martín et al., 2007). The vineyards

Fig. 4.Modeling simulations performedwith rowMCRM to achieve the effect of soil background, LAI, vine width and visible soil strip on Gitelson-Anth index sensitivity to chlorophyll
content variation (Cab).
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differed in canopy structure and soil background, and planting row
orientation ranged from 0° to 180 °N, with the row direction angle
measured clockwise from north.

2.2. Physiological measurements

Field sampling campaigns were conducted in these areas concur-
rent with airborne overflights, comprising canopy structural para-
meters (grid size, number of vines within each 10 m×10 mplot, trunk
height, plant height and width, and row orientation), soil chemical
and structural analysis and leaf Cab content determinations (Zarco-
Tejada et al., 2005; Martín et al., 2007; Meggio et al., 2008). The leaf
area index (LAI) and sunlit canopy cover in each study area were
measured as described in Pérez (2002) and Carbonneau (1995),
respectively. Forty leaf samples were collected at veraison in the study
zones (OIV, 1996) to determine macro- andmicronutrient contents in
petioles. Yield and vigor (pruning weight) of the vines were also
determined.

One week before harvest, when the mean value of total soluble
solid content of must in all study plots reached 228 g·L−1, a total of
100 berries from each study area were collected and the must used to
determine the total soluble solids content (°Brix, total acidity (TA),
tartaric and malic acid content, total polyphenols index (TPI), pH,
color density and hue, in accordance with the European official
methods of analysis (European Commission, 1990). In addition, a total
of 100 berries collected in 2005 were sampled and their skins
removed from pulp and seeds. The solid fraction was subjected to a
process of extraction of polyphenolic compounds to determine the
total polyphenols (Singleton & Rossi, 1965), anthocyanins (García-

Barceló, 1990), tannins (Bate-Smith, 1954), and catechin content
(Swain & Hillis, 1959), while also obtaining the polymerization degree
of condensed tannins (DMACH index) (Vivas et al., 1994). The
extraction of polyphenolic compounds was conducted with 7.5 ml of
distilled water, adding to the skins of 100 berries a total of 10 ml of
acid hydroalcoholic solution (10% ethanol, 5 g L−1 tartaric acid). The
pH was adjusted with sodium hydroxide to a value of 3.6, and 32.5 ml
of distilled water were added, keeping the mixture at 35 °C with
slugging for 4 hours. The sample was cooled, centrifuged at 2000 g for
5 min and filtered through glass wool.

The color of musts and skin extracts was evaluatedwith a JASCO V-
530 UV/VIS spectrophotometer. The coordinates L*a*b* were recorded
using the D65 Illuminant as a reference (CIE, 1986). The Chromatic
Index for Red Grapes (CIRG=(180−H*)/(L*+C*)), described by
Carreño et al. (1995), was calculated.

2.3. Airborne campaigns and remote sensing physiological indices

Two years of imagery were acquired over experimental vineyards
in collaborationwith the Spanish Aerospace Institute (INTA) using the
Airborne Hyperspectral Scanner (AHS), developed by Sensytech Inc.
(currently Argon ST Inc., USA). Airborne campaignswere conducted in
two consecutive years, 21 July 2004 and 21 July 2005, to acquire
hyperspectral images over each vineyard. Images from both years
were obtained at similar sun angles to minimize differences due to bi-
directional reflectance (BRDF) effects between the years (2004,
07:45–8.22 GMT; 2005, 09:03–09:33 GMT). Fig. 1 shows a selection
of 3 vineyard fields used in this study and imaged by the AHS airborne
sensor. The hyperspectral imagery was acquired over the vineyard

Fig. 5. Modeling simulations performed with rowMCRM to achieve the effect of soil background, LAI, vine width and visible soil strip on Gitelson-Car2 and Gitelson-Anth indices
sensitivity to chlorophyll content variation (Cab).
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fields at a flight altitude of 1000 m above ground level, obtaining
images with a 90° field of view (FOV) and a 2.5 mrad instantaneous
FOV (IFOV) lens, resulting in a spatial resolution of 2.5 m. The AHS
sensor comprises 80 spectral bands in the 0.43–12.5 µm spectral
range distributed in 4 ports (VIS/NIR, SWIR, MWIR and TIR). In this
study, the VIS/NIR port was used, obtaining imagery with 20 bands
over the 0.43–1.65 µm spectral range with a full-width at half-
maximum (FWHM) of 30 nm.

The airborne flights were kept in the solar plane to minimize
shadows, designing each overpass to image the study sites at nadir
view. Images were processed by applying geometric, radiometric and
atmospheric corrections. Imagery atmospheric correction was con-
ducted using the Simple Model of Atmospheric Radiative Transfer of
Sunshine (SMARTS) (Gueymard, 1995). Water vapor atmospheric
content was obtained by scaling to the flight altitude the measured
values at the ‘Valladolid’ and ‘Palencia’ sites as part of the AERONET
network (http://aeronet.gsfe.nasa.gov). A full description of the
calibration of the AHS bands and the radiometric and atmospheric
corrections was provided in Sobrino et al. (2006). For the VIS/NIR
region, soil reflectance spectra measured for each site at ground level
were used to perform a flat-field correction (Ben-Dor & Levin, 2000)

after atmospheric correction, which compensated for residual effects
on derived surface reflectance images estimations in the atmospheric
water and oxygen absorption spectral region.

Vegetation indices were calculated from each study site to assess
changes in canopy structure and foliar pigment concentration as a
function of vine status and grape quality parameters. The Normalized
Difference Vegetation Index (NDVI) (Rouse et al., 1974) was calculated
to track changes in canopy structure given its relationship with leaf
area index. The Transformed Chlorophyll Absorption in Reflectance Index
(TCARI) (Haboudane et al., 2002), based on the Modified Chlorophyll
Absorption in Reflectance Index (MCARI) (Daughtry et al., 2000) and
normalized by the Optimized Soil-Adjusted Vegetation Index (OSAVI)
(Rondeaux et al., 1996) to obtain TCARI/OSAVI, was used in this study,
as it has been demonstrated to successfully minimize soil background
and leaf area index variations in crops, providing predictive relation-
ships for chlorophyll concentration estimation with hyperspectral
imagery in closed crops (Haboudane et al., 2002) and open tree
canopy orchards (Zarco-Tejada et al., 2004; Meggio et al., 2008).

In addition to these traditional vegetation indices, other indices
more closely related to physiology were calculated through the
combination of reflectance bands in the visible spectral region

Fig. 6.Modeling simulations performed with rowMCRM to achieve the effect of the actual inter- and within-field variation of soil background (ρs), vine width (Cw) and chlorophyll
content (Cab) on Gitelson-Car2 and Gitelson-Anth indices sensitivity to visible soil strip variations (Vs).
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(Gitelson et al., 2003, 2006; Chappelle et al., 1992; Blackburn, 1998;
Peñuelas et al., 1995; Gamon & Surfus, 1999). These physiological
indices have been proposed to track changes due to pigment content

such as chlorophyll (Cab), carotenoid (Car) and anthocyanin (Anth). In
this study, different types of indices were used as a function of
sensitivity to different parameters: leaf area index (NDVI), Cab content
(TCARI, OSAVI, TCARI/OSAVI, Gitelson-Chl1, Gitelson-Chl2), Car
content (Chappelle-Car, Blackburn-Car1, Blackburn-Car2, SIPI, Gitel-
son-Car1, Gitelson-Car2) and Anth content (Gamon-Anth, Gitelson-
Anth) (Table 1). The indices were adapted to enable calculation with
AHS imagery (Table 2).

2.4. Modeling vineyard structural effects on physiological indices at the
image level

Previous work demonstrates that Cab content can be estimated
using airborne CASI imagery through a modeling methodology to
account for vineyard structure (Zarco-Tejada et al., 2003; Meggio et
al., 2008). In this study, a different airborne sensor was flown over the
vineyard fields, thereby requiring a simulation and validation study to
assess the feasibility of the AHS bands for Cab and other pigment
estimation in vineyards. Previous studies, conducted with the AHS
airborne sensor on PRI index changes associated with the de-
epoxidation of the xanthophyll pigment cycle (Gamon et al., 1992),
demonstrated the feasibility of the AHS bandset for TCARI/OSAVI, PRI
and NDVI calculation (Zarco-Tejada et al., 2000; Suárez et al., 2008). In
particular, the use of the 542 nm and 571 nm bands from the AHS
airborne sensor for TCARI calculation was assessed, as the AHS
bandset required a slight modification of the bands used for indices
such as TCARI/OSAVI.

TheMCRMmodel (Kuusk, 1995a,b), with additions to simulate the
row vineyard structure (rowMCRM) (described in detail in Zarco-
Tejada et al., 2005), was used to simulate TCARI and consequently
TCARI/OSAVI sensitivity to Cab with both AHS 571 nm and 542 nm
bands (Fig. 2). Simulated spectra were calculated for 5 LAI values
(0.5–2.5 in 0.5 steps), 15 leaf Cab content levels (5–80 µg·cm−2 in
5 µg·cm−2 steps) using other rowMCRM inputs retrieved from
specific data from Zarco-Tejada et al. (2003) and Meggio et al.
(2008). TCARI and TCARI/OSAVI indices were calculated for each
simulated spectrum using band 571 nm and 542 nm separately. The
effects of plant growth (LAI) and leaf Cab content on TCARI and OSAVI
are illustrated in Fig. 2a, b.

As observed in Haboudane et al. (2002), LAI exerts a strong
influence on the relationships between both TCARI and OSAVI and
foliar pigment contents. The effects of different AHS bands used for
TCARI calculation are remarkable, especially at low foliage cover
(LAIb1) (Fig. 2c, d). In particular, Fig. 2c shows the chlorophyll index
that TCARI plotted against OSAVI for various pigment content and LAI
levels, as shown in Haboudane et al. (2002), to uncouple the effects of
LAI and leaf pigments separately. Both indices appear, as expected,
positively correlated with LAI (low TCARI and OSAVI values
correspond to low LAI values and vice versa). The different band
used (542 nm, 571 nm) for TCARI calculation shows critical effects
only at low LAI values (LAIb1), which is important in the case of
vineyard canopies. The TCARI/OSAVI index simulated with both AHS
bands was then calculated, showing the trend for Cab variability as a
function of LAI (Fig. 2d). The simulation study enabled the selection of
the AHS band 571 nm for TCARI calculation in the scaling-up
relationship methodology proposed in Meggio et al. (2008) for Cab
content estimation.

The rowMCRM model was used for simulating Car and Anth
physiological indices in order to assess canopy structural effects on
the indices as a function of the typical row-structured canopy in
vineyards. Two hyperspectral indices, Gitelson-Car2 and Gitelson-
Anth, sensitive to Car and Anth content, respectively, were assessed as
a function of vineyard structure (LAI, crown width, row distance),
physiology (Cab content) and soil background effects. The inputs
required for canopy simulation using the rowMCRM model were the
nominal ranges for leaf optical properties, canopy layer and structure,

Fig. 7. Estimation of Cab content at canopy level using TCARI/OSAVI through the
rowMCRMmodel utilizing the predictive relationship proposed inMeggio et al. (2008).
Differences between AHS band 571 and 542 nm for TCARI/OSAVI calculation for Cab
estimation.
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and soil reflectance proposed in Zarco-Tejada et al. (2005), with the
addition of row orientation effect on viewing-geometry parameters
(Meggio et al., 2008).

Simulations conducted with the rowMCRM canopy reflectance
model aimed at enhancing both the inter- and within-field structural
and physiological variability to understand the behavior of such
physiological indices in row-structured canopy conditions. In partic-
ular, different ranges of the most critical rowMCRM input parameters
affecting field variability were assessed, such as row-LAI, crownwidth
(Cw), visible soil strip (Vs), leaf chlorophyll content (Cab) and soil
background (ρs) on the Gitelson-Car2 and Gitelson-Anth indices.
Mean vine dimensions in terms of Cw (0.6, 1.3 m) and Vs (1.7, 2.3 m)
were used for all simulations.

The effects on Car (Gitelson-Car2, Fig. 3) and Anth (Gitelson-Anth,
Fig. 4) indices as a function of different leaf Cab content showed the
effects in vine row LAI (1–5) and Vs length (1.7, 2.3 m), different
ranges of Cw (0.6, 1.3 m) and ρs conditions (bright, dark). In particular,
in both figures it can be successfully discriminated the main drivers of
the inter- and within-variability affecting Car and Anth indices
sensitivity to Cab content variations: LAI, Vs, Cw and ρs. While vine
row LAI and Vs variations have been reported in each single plot (a, b,
c, d) presented in Figs. 3 and 4, Cw (a→b) and ρs (a→c) effects have
been divided in order to determine the main drivers of variation. The
Gitelson-Car2 index appeared highly affected by ρs changes (from

bright to dark ρs) in all the different conditions tested, while row LAI
was demonstrated to affect only at LAIN2 (Fig. 3). Crown structural
parameters Cw and Vs showed a lower effect, with ρs as a main driver
of variation (a→d). The Gitelson-Car2 index appeared sensitive to Cab
variations only in high row LAI conditions (LAIN2), where plant
structural variations also appeared to be important. The Gitelson-Anth
index showed a similar response to the same simulations conducted
for the Car index, confirming the higher sensitivity of Cab content as a
function of ρs (Fig. 4). In addition, the Gitelson-Anth index appeared
more affected by Cab content than the Car index and less affected by
LAI and ρs at low Cab content, increasing with a further change in Cab.

Therefore, the effects of soil background on the physiological
indices were assessed, showing the large effects due to ρs on the Car
(Gitelson-Car2) and Anth (Gitelson-Anth) indices as a function of
different Cab levels (Fig. 5). A range of 3 different ρs spectra from
bright to dark collected in the field over the same area were tested in
simulations for different row LAI (1–5) in 2 opposite structural
conditions in terms of Vs and Cw. These simulations assessed the high
effect of ρs on both physiological indices as a function of Cab content,
with a greater effect represented by a higher vine crown dimension
(Cw=1.3 m) and therefore a lower visible soil strip (Vs=1.7 m)
conditions.

The wide range simulation results presented in Figs. 3–5 under-
lined that Car (Gitelson-Car2) and Anth (Gitelson-Anth) indices are

Fig. 8.Maps of spatial variation of Cab content in classes of concentration (μg·cm−2) using the up-scaling algorithm through the TCARI/OSAVI index for the AHS 2004 (left) and 2005
(right) datasets.
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affected by structure (Cw, Vs) and soil background (ρs). New
simulations were conducted with rowMCRM to assess the expected
real field variability, considering the actual range for Cab (20–
40 µg·cm−2), Cw (0.6–1.4 m in 0.2 m steps), Vs (1.6–2.4 m in 0.2 m
steps) and ρs (bright, dark). The effect on Car and Anth indices as a
function of Vs dimensions was studied for different Cw, ρs and Cab
conditions to assess the expected real field variability (Fig. 6).
Simulations conducted revealed the sensitivity of Gitelson-Car2
(Fig. 6a,b) and Gitelson-Anth (Fig. 6c,d) as a function of Vs to ρs in
both low (20 µg·cm−2) to medium (40 µg·cm−2) Cab content. Fig. 6c,
d underlines that the higher sensitivity of the Anth index to Cab
variations is due mainly to ρs. The modeling study demonstrated the
influence of structure on physiological indices used for Car and Anth
assessment. Scaling-up relationships for Cab estimation and results on

the assessment of the physiological indices used for grape quality
estimation are described in the following section.

3. Results

3.1. Chlorosis detection using rowMCRM modeling with the AHS
airborne imager

Previous field campaigns conducted in 2003 over the same study
sites using the rowMCRM simulation methodology demonstrated the
capability of the CASI hyperspectral airborne sensor for Cab estimation
in row-structured canopies (Zarco-Tejada et al., 2005; Meggio et al.,
2008). Results obtained following the same methodology on the AHS
sensor bandset are presented. The predictive relationship developed

Table 3
Coefficients of determination (r2) found for linear relationships between hyperspectral indices and grapevine structural parameters in 2004 and 2005 (pb0.05).

Index-ID Reference Grapevine structural and management parameters

ESA LAI Yield Pruning weight

04 05 04 05 04 05 04 05

Leaf area index
NDVI Rouse et al. (1974) 0.62+ 0.44+

Chlorophyll
TCARI/OSAVI Haboudane et al. (2002) 0.70+
Gitelson-Chl1 Gitelson et al. (2003, 2006) 0.60+
Gitelson-Chl2 Gitelson et al. (2003, 2006) 0.51+

Carotenoid
Chappelle-Car Chappelle et al. (1992) 0.47−
Blackburn-Car1 Blackburn (1998) 0.46−
Blackburn-Car2 Blackburn (1998) 0.41+ 0.48−
SIPI Peñuelas et al. (1995) 0.41−
Gitelson-Car1 Gitelson et al. (2003, 2006) 0.55−
Gitelson-Car2 Gitelson et al. (2003, 2006) 0.58−

Anthocyanin
Gamon-Anth Gamon and Surfus (1999) 0.65−
Gitelson-Anth Gitelson et al. (2003, 2006) 0.44− 0.55+

ESA=Exposed Canopy Surface Area; LAI=Leaf Area Index.

Table 4
Coefficients of determination (r2) found for linear relationships between hyperspectral indices and must composition parameters in 2004 and 2005 (pb0.05).

Index-ID Reference Must composition parameters

W100 °BRIX TA pH TPI Tartaric Malic

04 05 04 05 04 05 04 05 04 05 04 05 04 05

Leaf area index
NDVI Rouse et al. (1974) 0.50+ 0.62+

Chlorophyll
TCARI/OSAVI Haboudane et al. (2002) 0.50− 0.53−
Gitelson-Chl1 Gitelson et al. (2003, 2006) 0.65+ 0.52+ 0.62+
Gitelson-Chl2 Gitelson et al. (2003, 2006) 0.53+ 0.60+

Carotenoid
Chappelle-Car Chappelle et al. (1992) 0.49+ 0.49+ 0.47− 0.59+ 0.47−
Blackburn-Car1 Blackburn (1998) 0.49+ 0.50+ 0.48+ 0.57+ 0.44−
Blackburn-Car2 Blackburn (1998) 0.52+ 0.48+ 0.43+ 0.44+ 0.57+ 0.47−
SIPI Peñuelas et al. (1995) 0.63+ 0.50+ 0.62+
Gitelson-Car1 Gitelson et al. (2003, 2006) 0.51+ 0.63− 0.45+ 0.81−
Gitelson-Car2 Gitelson et al. (2003, 2006) 0.65− 0.78−

Anthocyanin
Gamon-Anth Gamon and Surfus (1999) 0.48− 0.70− 0.53− 0.67−
Gitelson-Anth Gitelson et al. (2003, 2006) 0.46− 0.66− 0.78−

W100: 100 berries weight; TA: Total Acidity; TPI: Total Polyphenol Index; Tartaric Tartaric acid content; Malic Malic acid content.
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by Meggio et al. (2008) with the rowMCRM model between Cab and
TCARI/OSAVI were adapted for the AHS bandset.

Simulations conducted through the rowMCRMmodel assessed the
effect of using AHS bands 571 nm and 542 nm for TCARI calculation.
Leaf Cab content was estimated using the predictive scaling relation-
ship through AHS TCARI/OSAVI calculated with both bands separately,
assessing the bandset effects on the root mean square error (RMSE)
for Cab estimation (Fig. 7). TCARI/OSAVI calculated with band 542 nm
obtained an RMSE of 7.1 and 10.3 µg·cm−2 for the AHS 2004 and 2005
datasets confirming, in any case, the reliability of the scaling
relationship (Fig. 7a). Cab estimation through AHS band 571 nm for
TCARI/OSAVI calculation yielded better results from both the 2004
and 2005 datasets, with an RMSE of 3.7 and 4.1 µg·cm−2, respectively
(Fig. 7b). Results obtained suggested, therefore, the use of AHS band

571 nm for TCARI/OSAVI calculation for Cab estimation, yielding an
overall RMSE of 3.8 µg·cm−2 considering the two study years
together, instead of band 542 nm, which yielded an overall RMSE of
8.6 µg·cm−2 (Fig. 7c).

These results demonstrate the feasibility of estimating Cab with the
AHS airborne sensor, an instrument with 30 nm FWHM bands,
through the modeling methodology presented. The scaling algorithm
for TCARI/OSAVI to estimate Cab content proposed in Meggio et al.
(2008), considering both before and after noon viewing geometries
and differences in vine row orientation, was applied to the AHS
images to obtain maps of leaf Cab content for five levels, ranging from
5 to 80 μg·cm−2 (Fig. 8). These Cab maps show the within- and inter-
field variability in vineyards affected by iron deficiency chlorosis,
displaying different chlorosis levels for both years.

Table 6
Coefficients of determination (r2) found for linear relationships between hyperspectral indices and must quality indices (pb0.05).

Index-ID Reference Must quality indices

QI-1 QI-2 IMAD CIRG

04 05 04 05 04 05 04 05

Leaf area index
NDVI Rouse et al. (1974) 0.63−

Chlorophyll
TCARI/OSAVI Haboudane et al. (2002)
Gitelson-Chl1 Gitelson et al. (2003, 2006) 0.57− 0.67+
Gitelson-Chl2 Gitelson et al. (2003, 2006) 0.62+

Carotenoid
Chappelle-Car Chappelle et al. (1992) 0.53− 0.68+ 0.44− 0.50−
Blackburn-Car1 Blackburn (1998) 0.54− 0.70+ 0.44− 0.48−
Blackburn-Car2 Blackburn (1998) 0.55− 0.68+ 0.48− 0.51−
SIPI Peñuelas et al. (1995) 0.58− 0.65+
Gitelson-Car1 Gitelson et al. (2003, 2006) 0.48− 0.59− 0.42− 0.45− 0.92−
Gitelson-Car2 Gitelson et al. (2003, 2006) 0.71− 0.42− 0.68− 0.93−

Anthocyanin
Gamon-Anth Gamon and Surfus (1999) 0.54− 0.43− 0.64−
Gitelson-Anth Gitelson et al. (2003, 2006) 0.48− 0.56− 0.94−

%vol: probable alcoholic degree.
QI-1: %vol/100 berries weight; QI-2: (TPI/40)2×(%vol−10); CIRG: (180−H*)/(L*+C*); IMAD: °Brix/TA.

Table 5
Coefficients of determination (r2) found for linear relationships between hyperspectral indices and color intensity (CI), hue and CIELAB coordinates for must (pb0.05).

Index-ID Reference Must color parameters (2004)

L a* b* c* H CI Hue

Leaf area index
NDVI Rouse et al. (1974) 0.69− 0.68+ 0.72+ 0.73−

Chlorophyll
TCARI/OSAVI Haboudane et al. (2002) 0.68−
Gitelson-Chl1 Gitelson et al. (2003, 2006) 0.74− 0.74+ 0.81+ 0.70−
Gitelson-Chl2 Gitelson et al. (2003, 2006) 0.71− 0.71+ 0.75+ 0.74−

Carotenoid
Chappelle-Car Chappelle et al. (1992) 0.68− 0.7+ 0.80+ 0.57− 0.82+ 0.74−
Blackburn-Car1 Blackburn (1998) 0.64− 0.69+ 0.80+ 0.55− 0.72+ 0.72−
Blackburn-Car2 Blackburn (1998) 0.72− 0.64+ 0.74+ 0.50− 0.67+ 0.68−
SIPI Peñuelas et al. (1995) 0.71+ 0.78+ 0.69− 0.68−
Gitelson-Car1 Gitelson et al. (2003, 2006)
Gitelson-Car2 Gitelson et al. (2003, 2006)

Anthocyanin
Gamon-Anth Gamon and Surfus (1999) 0.58+ 0.58− 0.45+ 0.59− 0.76+
Gitelson-Anth Gitelson et al. (2003, 2006) 0.64+ 0.70− 0.55+
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3.2. Relationships between hyperspectral indices and physiological data
for grape quality assessment

Physiological measurements conducted for two years on grapes
sampled one week before harvest were used to assess the relationship
with hyperspectral indices sensitive to pigment content (Cab, Car, and
Anth). Coefficients of determination (r2) found for linear regression
relationships between hyperspectral indices calculated from AHS
imagery and grape and must quality parameters were obtained for
four types of indices: leaf area index and structural indices (i), Cab (ii),
Car (iii) and Anth content (iv). Coefficients of determination values

resulting from linear regression are presented in Tables 3–7, along
with the direct/inverse relationship (+ or −). The relationships with
r2b0.4 and pN0.05 are not included in the tables (relationships with
r2N0.6 are underlined in bold).

Plant structural and management parameters (LAI, exposed
canopy surface area (ESA), yield and pruning weight) were related
to vegetation indices (Table 3). Linear relationships were obtained
between hyperspectral indices generally considered sensitive to
vegetative vigor and grapevine structural parameters. In particular,
TCARI/OSAVI and NDVI vegetation indices yielded coefficients of
determination with pruning weight (r2=0.7) and exposed canopy
surface (r2=0.62), respectively. Mean mineral concentrations in
petioles were similar or higher than reference values for Ribera del
Duero Appellation d'Origine (González and Martín, 2006). However,
there were wide ranges of variation within samples for Mn, Cu and Zn
(data not shown), including some study subzones with deficiencies in
these micronutrients. Significant correlations between Zn foliar
content and yield and vigor of vineyards in the same study area
have been reported previously (Martín et al., 2008).

Relationships with must composition parameters (°BRIX, pH, total
acidity (TA), tartaric and malic acid content) are shown in Table 4,
displaying those obtainedwith the hyperspectral indices tested in this
study. While the traditional NDVI index yielded relationships with
°BRIX (r2=0.5) and the Total Polyphenol Index — TPI (r2=0.62),
other physiological indices, Gamon-Anth and Gitelson-Car1, yielded
significant linear relationships with pH (r2=0.7) and malic acid
content (r2=0.81), respectively. Coefficients of determination
obtained for chromatic characteristics of must (Table 5) show that
physiological indices appeared more suitable for color intensity (CI)
and hue estimation than traditional vegetation indices. Linear
relationships performed resulted in high coefficients of determination
with CI (r2=0.82, 0.72, 0.70) and hue (r2=0.74, 0.72, 0.55) for the
Chappelle-Car, Blackburn-Car1 and Gitelson-Anth physiological indi-
ces, respectively. Different must quality indices, such as IMAD (°Brix/
TA) and the Chromatic Index for Red Grapes (CIRG) (Table 6), show
consistent results obtained for both seasons, 2004 and 2005. In
particular, unlike the results achieved with traditional (NDVI) and
more innovative (TCARI/OSAVI) indices sensitive to vegetative vigor
and Cab content, physiological indices sensitive to Car and Anth
content appeared more suitable for grape quality assessment in the
vineyards studied. Specifically, the inverse linear relationships

Table 7
Coefficients of determination (r2) found for linear relationships between hyperspectral indices and berry skins composition (pb0.05).

Index-ID Reference Skin extracts components and quality parameters (2005)

W100 Skins DMACH Index Tannins Catechins AT PT CIRG

Leaf area index
NDVI Rouse et al. (1974) 0.72−

Chlorophyll
TCARI/OSAVI Haboudane et al. (2002)
Gitelson-Chl1 Gitelson et al. (2003, 2006) 0.53+ 0.50− 0.51− 0.47−
Gitelson-Chl2 Gitelson et al. (2003, 2006) 0.67−

Carotenoid
Chappelle-Car Chappelle et al. (1992) 0.50+ 0.57− 0.66− 0.63− 0.70−
Blackburn-Car1 Blackburn (1998) 0.52+ 0.58− 0.61− 0.62− 0.70−
Blackburn-Car2 Blackburn (1998) 0.48+ 0.55− 0.67− 0.62− 0.66−
SIPI Peñuelas et al. (1995) 0.51+ 0.60− 0.50− 0.58−
Gitelson-Car1 Gitelson et al. (2003, 2006) 0.44− 0.75− 0.48− 0.68−
Gitelson-Car2 Gitelson et al. (2003, 2006) 0.48− 0.75− 0.47− 0.68−

Anthocyanin
Gamon-Anth Gamon and Surfus (1999) 0.59− 0.44− 0.45−
Gitelson-Anth Gitelson et al. (2003, 2006) 0.52− 0.71− 0.48− 0.68−

W100 skins: 100 skins weight; Tannins: Total Tannins content; AT: Total Anths content; PT: Total Polyphenols content.

Table 8
Hyperspectral indices with the highest coefficients of determination for each grapevine
quality parameter.

Must composition Must quality

W100 Gitelson-Chl1 SIPI QI-1 SIPI Gitelson-Chl1
°BRIX Gitelson-Chl1-2 QI-2 Blackburn-Car1-2

Chappelle-Car
pH Gamon-Anth IMAD Gitelson-Car1-2

Gitelson-Anth
TPI Gitelson-Chl1 SIPI CIRG Gitelson-Anth

Gitelson-Car1-2
Malic Gitelson-Car1-2

Gitelson-Anth

Must color Skin extracts components and quality

L Gitelson-Chl1 W100 skins Gitelson-Chl1
Blackburn-Car2 Blackburn-Car1

a* Gitelson-Chl1-2 SIPI DMACH index Gitelson-Chl2
c* Gitelson-Chl1 Tannins Gamon-Anth

Chappelle-Car
Blackburn-Car1

H Gamon-Anth Catechins Chappelle-Car
Gitelson-Chl2 Blackburn-Car1

CI Chappelle-Car AT Gitelson-Car1-2
Blackburn-Car1 Gitelson-Anth

Hue Chappelle-Car PT Chappelle-Car
Blackburn-Car1 Blackburn-Car1-2

CIRG Chappelle-Car
Blackburn-Car1
Gitelson-Car1-2
Gitelson-Anth
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obtained between CIRG and the physiological indices yielded
consistent coefficients of determination, r2=0.68 (2004) and
r2=0.93 (2005) for Gitelson-Car2, and r2=0.56 (2004) and
r2=0.94 (2005) for the Gitelson-Anth index. The IMAD quality
index yielded interesting linear relationships with the Gitelson-Car2
physiological index, obtaining r2=0.71 and r2=0.42 for the 2004 and
2005 season datasets, respectively. The Gitelson-Car2 and Gitelson-
Anth indices were inversely correlated with B foliar levels in 2004
(Pearson's r=−0.89, pb0.01) and with K, Cu, Zn and B foliar levels in
2005 (r values from −0.61 to −0.88, pb0.05).

Finally, results obtained for berry skin composition parameters in
the 2005 field campaign (100 skins weight, DMACH index, total
tannin index, total Anth (AT), total polyphenols (PT) and CIRG)
(Table 7) show that, while the traditional NDVI vegetation index
appeared well correlated (r2=0.72) only with the DMACH index,
hyperspectral indices sensitive to physiological properties were
shown to be more suitable for berry skin composition estimation. In
particular, indices sensitive to Car and Anth content appeared well
correlated (negatively) with AT, PT and CIRG physiological para-
meters. Consistent relationships have been obtained between Gitel-
son indices and berry skin AT content: r2=0.75 (Gitelson-Car) and
r2=0.71 (Gitelson-Anth). The berry skin PT appeared well correlated
with the Chappelle-Car and Blackburn-Car indices, yielding coeffi-
cients of determination of r2=0.63 and 0.62, respectively. The skin

CIRG index for skin extracts was inversely well correlated with the
Chappelle-Car (r2=0.7) and Gitelson-Anth (r2=0.68) physiological
indices.

Positive Pearson`s coefficients between total anthocyanin concen-
trations in skin extracts and K (r=0.54, pb0.05), Cu (r=0.69,
pb0.01), Zn (r=0.76, pb0,001) and B (r=0.52, pb0,05) content in
petioles were observed. Total polyphenols also were correlated with
Cu and B levels (r=0.75 and r=0.72, respectively, pb0.01). The best
relationships were obtained for Zn-Gamon-Anth (r=−0.91) and B-
Blackburn-Car2 (r=−0.86).

In summary, these results suggest that traditional vegetation
indices sensitive to leaf area index (NDVI) and newer indices related
to Cab content (TCARI/OSAVI) yielded lower relationships than
physiological indices sensitive to carotenoid Car and anthocyanin
Anth content. In particular, the comparison between physiological
indices potentially useful for estimating grape quality showed
relationships for the two years between must and skin composition
parameters and Car and Anth indices (Gitelson-Car1,-Car2 and
Gitelson-Anth indices, Chappelle-Car, Blackburn-Car1,-Car2)
(Table 8). The best relationships were obtained for wine grape quality
parameters, as presented in Figs. 9 to 13. The relationships between
the chromatic index (CIRG) and Car, Anth indices, TCARI/OSAVI and
NDVI (Fig. 9) demonstrate the capability of physiological indices for
grape quality assessment. While the Gitelson-Car2 and Gitelson-Anth

Fig. 9. Relationships between the must Chromatic Index for Red Grapes (CIRG) and physiological indices sensitive to Car and Anth pigment content (a,b) and traditional indices
sensitive to Cab content (c,d).
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indices yielded coefficients of determination ranging between r2

∼0.5–0.6 and r2 ∼0.9 with CIRG for the 2004 and 2005 seasons,
respectively, NDVI and TCARI/OSAVI showed lower relationships
(r2b0.25).

The relationships between the IMAD index and Gitelson-Car
indices (Fig. 10) yielded coefficients of determination ranging
between r2 ∼0.6–0.7 and r2 ∼0.4 for the 2004 and 2005 seasons,
respectively. Must color intensity (CI) obtained consistent relation-
ships with the Gitelson-Anth index for both the 2004 (r2=0.7) and
2005 (r2=0.53) growing seasons (Fig. 11). Consistent relationships
were obtained between berry skin total polyphenols (PT) collected in
the 2005 season and physiological indices sensitive to Car content,
with a coefficient of determination of r2 ∼0.6 for the Chappelle-Car,
Blackburn-Car1-2 and SIPI indices (Fig. 12). The berry skin Chromatic
Index for Red Grapes (CIRG) resulted in consistent relationships with
both Car and Anth indices, yielding a coefficient of determination of
around r2=0.68–0.7 (Fig. 13).

The quantitative results obtained in Figs. 9 and 10 enabled the
calculation of spatial maps of grape quality for CIRG (Fig. 14) and
IMAD (Fig. 15) indices. The maps were obtained through Gitelson-
Car2 index linear relationships with CIRG(2004) [y=−8.252(x)+
14.685], CIRG(2005) [y=−5.4395(x)+10.344], IMAD(2004) [y=−
0.4898(x)+2.6772] and IMAD(2005) [y=−0.2788(x)+2.3851]
quality indices for three vineyard study sites, showing both the
inter- and within-field variability between the different vineyards for
two consecutive years.

4. Discussion

Simulations conducted with the rowMCRM model demonstrated
the feasibility of estimating Cab content using TCARI/OSAVI from AHS
30 nm FWHM spectral bands. Results underlined the strong effect of
within- and between-field variability on the TCARI/OSAVI hyperspec-
tral index when calculated with band 571 nm instead of band 541 nm
for the TCARI index. Leaf Cab content estimated from AHS TCARI/
OSAVI calculated with band 571 nm through the scaling algorithm
proposed by Meggio et al. (2008) provided the best results, yielding
an RMSE of 3.7 and 4.1 µg·cm−2 for the 2004 and 2005 datasets,
respectively, and resulting in an overall RMSE of 3.8 µg·cm−2

(RMSE=8.6 µg·cm−2 if using band 542 nm). Such consistent results
enabled the calculation of Cab content distribution maps in 5 levels of
chlorophyll concentration (5–80 µg·cm−2).

The rowMCRM model simulations were used to assess canopy
structural effects on physiological indices sensitive to Car and Anth
content as a function of the typical row-structured canopy variables in
vineyards (LAI, crown width, row distance, Cab content and soil
background effects) and then consider the expected real field
variability and actual range parameters collected in the field sites.
Modeling results concluded that Car (Gitelson-Car2) and Anth
(Gitelson-Anth) indices were highly affected by canopy structure
(Cw, Vs) and soil background (ρs).

Coefficients of determination resulting from the linear regression
between field parameters and physiological indices (in both years of

Fig. 11. Relationships between must color intensity (CI) and physiological indices
sensitive to Car and Anth pigment content.

Fig. 10. Relationships between the IMAD (°vol/total acidity) Index and physiological
indices sensitive to Car and Anth pigment content.
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the study) revealed the ability of physiological hyperspectral remote
sensing indices to assess grape quality in vineyards affected by iron
deficiency chlorosis, showing superior results compared to traditional
vegetation indices. In particular, and despite their extensive use in
remote sensing studies, NDVI and TCARI/OSAVI, utilized for vegetative
vigor and leaf chlorophyll content retrieval, respectively, showed low
coefficients of determination for physiological parameters linked to
grape quality. In addition, results obtained from physiological indices
sensitive to Car and Anth content underlined their potential for grape
quality assessment, particularly phenolic composition and chromatic
features of grapes (Table 8). Consistent results were obtained for the
CIRG index, yielding coefficients of determination of r2=0.68
(Gitelson Car2 index) and r2=0.56 (Gitelson-Anth index) for the
2004 dataset, and r2=0.93 (Gitelson-Car2 index) and r2=0.94
(Gitelson-Anth index) for the 2005 dataset. Further results showed
the Gitelson-Car2 index capability for IMAD quality index estimation
with coefficients of determination of r2=0.72 and 0.42 for the 2004
and 2005 datasets, respectively. In addition, berry skin quality
parameters such as total polyphenol content (PT) and the CIRG
index were well estimated through physiological indices, obtaining
consistent relationships: r2=0.63 (Chappelle-Car index) and r2=0.7
(Blackburn-Car1 index) for PT and CIRG, respectively.

Phenolic compounds, anthocyanins and tannins are responsible
for the color and astringency of red wines (Ribéreau-Gayon &
Glories, 1987). Berry skin phenolic composition and color play a key
role in quality determination for grapes such as Tempranillo. In

addition, the phenolic potential of grapes is of great importance in
the Ribera del Duero Apellation d'Origine area, where other
technologic quality parameters (sugar content, acidity, etc.) are
not considered limiting factors for winemaking. In vineyards
affected by iron chlorosis, the lack of photosynthetic pigments in
leaves is a major factor limiting grape ripening. Previous work over
the same area monitored in this study (Martín et al., 2007) reported
that differences in grape quality parameters can be predicted by
differences in leaf chlorophyll content of vines. The most obvious
characteristic of the leaves from iron deficient plants is chlorosis,
due to low concentration per area of chlorophylls and carotenoids.
However, not all photosynthetic pigments are decreased to the
same extent by iron deficiency, xanthophylls being less affected
than chlorophylls and β-carotene (Abadia et al., 1999; Bertamini
et al., 2001; Morales et al., 1994). On the other hand, an increase in
leaf anthocyanin contents may reflect different biotic and abiotic
stresses in plants, including mineral deficiencies (Chalker-Scott,
1999; Harbone, 1976).

The strong negative relationships reported between physiological
indices based on Anth and Car with phenolic potential parameters,
where relationships with indices based on chlorophyll content were
not significant (Tables 6 and 7), suggest that an increase in the red
component of color (derived from carotene and anthocyanin) in
leaves in summer could be a better indicator than chlorosis to detect
difficulties in phenolic ripening for vines affected by iron deficiency
chlorosis.

Fig. 12. Relationships between berry skin total polyphenols content and physiological
indices sensitive to Car and Anth pigment content.

Fig. 13. Relationships between berry skin CIRG and physiological indices sensitive to
Car and Anth pigment content.
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Physicochemical conditions in calcareous soils, such as high pH,
decrease the assimilation of micronutrients such as Cu and Zn, as well
as iron (Martín et al., 2008). Our study showed significant relation-
ships between K, Cu, Zn and B petiole levels with polyphenol contents
in grapes and with Car and Anth physiological remote sensing indices.
Therefore, these physiological spectral indices could be useful to
detect nutritional effects related to iron deficiency affecting grape
phenolic ripening.

5. Conclusions

This study suggests the potential of physiological remote sensing
indices related to carotene and anthocyanin pigments content in
leaves as grape quality indicators in vineyards affected by iron
chlorosis, using high-resolution hyperspectral imagery. These indices
could be used, as an alternative to others based on Cab foliar content,

to monitor iron and other concurrent micronutrient deficiencies in
vines before veraison, predicting the potential grape quality at
harvest. The generation of quality maps from hyperspectral remote
sensing would help assess within- and inter-field ripening variability
by proposing spatially segmented harvesting zones for optimum
winemaking.
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