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for both olive and peach trees. On the contrary, all FI trees show PRI
values around or below the simulated PRI value for non-stress
conditions. Consistently, RDI trees showed higher PRI values than the
simulated non-stress PRI values derived from model inversion. This
method enables an operational detection of stressed trees using the
modelling approach to account for LAI and chlorophyll content effects
on modelled PRI index values. A map was generated representing the
distance PRI−sPRI as an indicator of water stress for the olive orchard
(Fig. 10a). The map shows the spatial distribution of water stress as a
function of irrigation levels (Fig. 10b). Positive values of PRI−sPRI (red
color) indicate water stress, while negative values (green color)
indicate non-stress conditions. The PRI−sPRI map clearly shows that
water-stress is detected in trees of the RDI1 and RDI2 treatments
(Fig. 10a), while the FI treatments are well identified as control. The
spatial variability of canopy leaf area index through the normalized
difference vegetation index (NDVI) (Fig. 10c) was assessed. The NDVI
map, on the contrary, did not detect water stress levels as well as the
PRI−sPRI indicator did. These results demonstrate that a physiological
index such as PRI, when modelled to account for leaf and canopy
inputs N, Cab and LAI, was superior to NDVI to detect within-field
water stress variability.

In the maize study site, the mean field pure-vegetation spectrum
was inverted using the coupled PROSPECT-SAILHmodel. The inversion
method was conducted on each of the four images acquired in this
study, consisting on pre- and post-irrigation dates at 10.00–11.00 GMT
(morning) and 13.00–14.00 GMT (midday). Two images were acquired
under water deficit conditions in the morning and at midday of June
6th. Another two images were acquired after irrigationwas applied on

July 2nd in the morning and at midday. After conducting the model
inversion for the four conditions, simulated non-stress PRI (sPRI) was
calculated and compared to each block PRI value extracted from the
imagery. Block PRI values are shown against the simulated non-stress
PRI baseline (sPRI) for the maize field (Fig. 11a to d). Before irrigation,
on the 6th of June (Fig. 11a and c) block PRI values were located below
or around the theoretical non-stress sPRI baseline in the morning
(10:10 GMT). At midday (14:20 GMT), on the contrary, airborne PRI
values were located over the theoretical sPRI baseline, suggesting that
the blocks are under stress conditions (Fig.11c). After irrigation, on the
2nd of July, airborne PRI values were around or below the theoretical
non-stress sPRI obtained by PROSPECT-SAILH inversion, both in the
morning (11:03 GMT; Fig. 11b) and also at midday (13:11 GMT;
Fig. 11d). These results suggest that this methodology is capable of
detecting water stress in continuous crop canopies such as maize,
being able to assess the response to irrigationwith the PRI indexwhen
modelled for N, Cab and LAI effects.

A second modelling approach was undertaken to deal with crop
canopy structural effects for each maize block extracted from the
reflectance imagery. Each block reflectance extracted from the
airborne imagery was used as input for model inversion, obtaining
the non-stress PRI value for each maize block (sPRI). For each of the
72 blocks extracted from the image, the difference PRI−sPRI was
calculated. Block PRI− sPRI along with block canopy temperature
minus air temperature (Tc−Ta) are shown in Fig. 12 for pre- and
post-irrigation in the morning and midday. On the 6th of June,
before irrigation, values for PRI−sPRI and Tc−Ta at 10:10 GMT and at
14:20 GMT are shown in Fig. 12a and c. The mean Tc−Ta values

Fig. 11. Corn PRI values compared with the simulated PRI values (sPRI), calculated before irrigation for the morning (a), at midday (b), and after irrigation, in the morning (c) and at
midday (d).
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obtained in the morning prior to irrigation was −0.02 K, rising up to
3.87 K at midday, with higher stress conditions. Airborne Tc−Ta values
were consistent with the PRI−sPRI values, PRI−sPRI and Tc−Ta values
showed a wide range of variability. Such high variability suggests the
different cultivars responded differently to water deprivation, as Tc−Ta
differences were up to 8 K. The same variability is obtained in PRI−sPRI
values as compared with Tc−Ta variability, concluding that this
methodology could be useful for screening different cultivars in their
response to water deficits. Results on the data acquired after irrigation
(on the 2nd of July) are shown in Fig. 12b and d. Again, Tc−Ta values are
lower (yielding an average value of −3.13 K in the morning and −1.13 K
at midday), being consistent with PRI−sPRI values around zero,
showing that airborne PRI values are close to the simulated non-stress
PRI values as the crop is recovered from water stress. Fig. 13a to d
shows PRI−sPRI maps, observing that maize fields under stress
conditions before irrigation do not present stress symptoms in the
morning (Fig. 13a), while high PRI−sPRI values showed significant
stress at midday. After irrigation, maize blocks did not show stress in
the morning (Fig. 13c), while slightly higher PRI− sPRI differences
were found at midday (Fig. 13d), as higher evaporative demand
exists. Consistently, Fig. 13 demonstrates that the highest stress

conditions were detected at midday by the PRI− sPRI indicator
before irrigation.

4. Conclusions

This study presents a methodology for water stress detection in
annual and perennial irrigated crops using remotely sensed PRI index
and radiative transfer modelling. The method accounts for leaf and
canopy inputs N, Cab and LAI to simulate the PRI values to identify
crop crowns/blocks under stress. The methodology presented was
successfully tested on two tree orchards (olive and peach trees) and a
closed canopy of an annual crop (maize). The PRI index tracked water
stress levels in crops under deficit irrigation, and yielded robust
relationships against canopy temperatures (r2=0.65 for olive trees,
r2=0.8 for peach trees, and r2=0.72 for maize). Moreover, within-field
structural effects on PRI were assessed, demonstrating that PRI was
successfully related with canopy temperature (r2=0.72) for crop
blocks under same NDVI values, thus showing that PRI is sensitive to
water stress conditions independently of canopy structural effects. In
addition, the lack of relationship between crown temperature and
TCARI/OSAVI for peach trees (r2=0.0017) demonstrates PRI is not

Fig.12. Corn block PRI−sPRI (diamonds) and block surface temperatureminus air temperature (Tc−Ta; dashes) in themorning andmidday before irrigation (a and b respectively) and
after irrigation (c and d).
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driven by differences in chlorophyll content. The ability of PRI
to detect water stress before vegetation structure is affected is critical
as a pre-visual indicator of stress. However, PRI was highly affected by
both background and canopy structure, requiring correct modelling
methods for successful mapping of water stress and its spatial
variability. Modelling inversion methods enabled accounting for
background and crop/orchard characteristics independently for
each crop field and imagery acquired with the airborne multi-
spectral sensor. Two different canopy radiative transfer models
were used depending on the crop structure, SAILH for maize crop
and FLIGHT model for tree orchards (olive and peach trees), while
simulations at leaf scale were conducted successfully with the
PROSPECT leaf model.

Results demonstrated that airborne canopy PRI values higher than
the theoretical non-stress PRI, when accounting for N, Cab and LAI via

radiative transfermodels, correspond to vegetation pixels under water
stress. Consistency was found in three crops where this methodology
was applied. Airborne PRI values compared with the theoretical non-
stress PRI, calculated as PRI−sPRI, agreed in amplitude with the
irrigation levels applied, and the stress level before and after
irrigation. The results obtained in this study demonstrate that PRI is
a pre-visual indicator of water stress, i.e., when no effects could be
detected visually, and it can be modelled for estimating non-stress
thresholds to be used for stress-detection. Finally, this methodology
based on a narrow-band index derived from the visible part of the
spectrum may be potentially used as an alternative to thermal
imagery for assessing water stress. High-resolution thermal imagers
are generally more expensive and their availability more limited than
CCD/CMOS instruments onboard airborne and potential satellite
platforms.

Fig. 13. Corn PRI minus block simulated PRI (PRI−sPRI) for the four image acquisitions before irrigation ((a) in the morning and (b) at midday), and after irrigation in the morning (c) and
midday (d).
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