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ARTICLE INFO ABSTRACT

Keywords: With the advent of Sentinel-2, it is now possible to generate large-scale chlorophyll content maps with un-
Sentinel-2A precedented spatial and temporal resolution, suitable for monitoring ecological processes such as vegetative
Red edge stress and/or decline. However methodological gaps exist for adapting this technology to heterogeneous natural
Hype“pe“‘ra] vegetation and for transferring it among vegetation species or plan functional types. In this study, we in-
E‘}’Szi:)s}el?ﬁne vestigated the use of Sentinel-2A imagery for estimating needle chlorophyll (C,. 1) in a sparse pine forest un-

dergoing significant needle loss and tree mortality. Sentinel-2A scenes were acquired under two extreme viewing
geometries (June vs. December 2016) coincident with the acquisition of high-spatial resolution hyperspectral
imagery, and field measurements of needle chlorophyll content and crown leaf area index. Using the high-
resolution hyperspectral scenes acquired over 61 validation sites we found the CI chlorophyll index R7s0/R710
and Macc index (which uses spectral bands centered at 680 nm, 710 nm and 780 nm) had the strongest re-
lationship with needle chlorophyll content from individual tree crowns (r* = 0.61 and r* = 0.59, respectively;
p < 0.001), while TCARI and TCARI/OSAVI, originally designed for uniform agricultural canopies, did not
perform as well (r* = 0.21 and r? = 0.01, respectively). Using lower-resolution Sentinel-2A data validated
against hyperspectral estimates and ground truth needle chlorophyll content, the red-edge index CI and the
Sentinel-specific chlorophyll indices CI-Gitelson, NDRE1 and NDRE2 had the highest accuracy (with r? va-
lues > 0.7 for June and > 0.4 for December; p < 0.001). The retrieval of needle chlorophyll content from the
entire Sentinel-2A bandset using the radiative transfer model INFORM yielded r* = 0.71 (RMSE = 8.1 ug/cm?)
for June, r* = 0.42 (RMSE = 12.2 ug/cm?) for December, and r* = 0.6 (RMSE = 10.5 ug/cm?) as overall per-
formance using the June and December datasets together. This study demonstrates the retrieval of leaf C, ;. , with
Sentinel-2A imagery by red-edge indices and by an inversion method based on a hybrid canopy reflectance
model that accounts for tree density, background and shadow components common in sparse forest canopies.

Radiative transfer

1. Introduction

Slow-acting disturbance processes, including droughts and pa-
thogen outbreaks, appear to be increasing in various forest ecosystems
(Hartmann et al., 2018). This trend may become clearer and stronger as
further climate change is likely to exacerbate droughts (Trenberth et al.,
2014), cause new biotic disturbance regimes, while it shifts the suitable
habitats of many tree species geographically (Allen et al., 2015;
Gauthier et al., 2015; Millar and Stephenson, 2015). Early detection of
decreasing vitality of dominant forest tree species, i.e. of forest decline,
may reveal such disturbances and is critical to assess or mitigate their
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impacts before more profound structural or compositional changes
occur (Kautz et al., 2017; Trumbore et al., 2015). Chlorophyll content
(Ca+1b) is an important indicator of plant photosynthetic status. As such,
reductions in chlorophyll content may be useful for detecting vegetative
decline (Allen et al., 2010; Hoshizaki et al., 1988). In fact, chlorosis is
one of the most widely used parameters to monitor decline processes in
forestry (Granke and Mues, 2010). Additionally, nitrogen is a key ele-
ment of chlorophyll, and suboptimal nitrogen and chlorophyll levels
affect photosynthesis (Evans, 1989). As a result, chlorophyll content has
been proposed as a proxy for nitrogen status in several studies due to its
critical role in agriculture and global carbon cycle (Baret et al., 2007;
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Fig. 1. Sentinel-2A scene with hyperspectral image overlay showing the study sites used for validation (a); a zoom over a smaller area (b) of the high-spatial
resolution hyperspectral image and the Sentinel-2A scene for June and December acquisition dates. The Sentinel-2A spectral signature of pixels representing healthy

and declining trees for both dates is shown in (c).

Oppelt, 2002; Oppelt and Mauser, 2004; Vos and Bom, 1993; Yoder and
Pettigrew-Crosby, 1995). Canopy chlorophyll a + b content is itself
related to productivity, which among other parameters such as leaf area
index (LAI), leaf fraction exposed to light, fractional cover, biomass and
absorbed photosynthetic active radiation, are critical to understand
plant functioning (Clevers and Gitelson, 2013) and to model the earth's
biogeochemical system.

Phenology responses in pigment content and leaf area index exhibit
distinct seasonal variations depending on the species (Gamon et al.,
2016; Gond et al., 1999) and level of decline (Ciesla et al., 1994;
Herndndez-Clemente et al., 2011). In evergreen conifers, chlorophyll
and carotenoid concentration significantly increase during the growing
season (Porcar-Castell et al., 2008), this increase being higher for
healthy trees than for declining trees (Zarco-Tejada et al., 2018). Hence,
the increase in the photosynthetic activity during the growing season
and the performance of trees with a different health condition may have
important implications for the estimation of chlorophyll content at
different times of the year.

The retrieval of chlorophyll content via non-destructive remote
sensing methods has been the focus of several previous studies which

have demonstrated its absorption effects in the red-edge and green
spectral regions (Carter, 1994; Gitelson and Merzlyak, 1996; Rock et al.,
1988; Vogelmann, 1993). In particular, it has been demonstrated that
the red-edge region is highly sensitive to C, ., while largely unaffected
by other plant structural properties (Horler et al., 1983). Due to the
complexity of the radiative transfer at the canopy level, the estimation
of chlorophyll content has typically been carried out by combining
narrow-band indices and spectral and derivative ratios (a full review of
indices can be found in Haboudane et al., 2004, 2002; Zarco-Tejada
et al.,, 2001, 2005). In the context of agriculture, normalizing indices
such as the Transformed Chlorophyll Absorption in Reflectance Index,
TCARI (Haboudane et al., 2002) or the Modified Chlorophyll Absorp-
tion in Reflectance Index, MCARI (Daughtry et al., 2000) with the
Optimized Soil-Adjusted Vegetation Index, OSAVI (Rondeaux et al.,
1996) (e.g. TCARI/OSAVI and MCARI/OSAVI), has been shown to
minimize effects of the soil background and scattering processes caused
by structural canopy properties. An alternative approach, combining
narrow-band hyperspectral indices with radiative transfer modelling
has been successful at predicting C, .+ for uniform crops (Haboudane
et al., 2002), as well as orchards planted in grids (Zarco-Tejada et al.,
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Fig. 2. Airborne hyperspectral image acquired with the VNIR hyperspectral sensor at 40 cm resolution over the entire area of study (a) showing the large shadow
effects due to sun-angle changes between December (b) and June (c) acquisition dates. The hyperspectral reflectance of a pure tree crown, and the corresponding
Sentinel-2A aggregated pixel, show larger shadow effects in the aggregated pixel than in the pure tree reflectance as a function of the acquisition date (d).

2004a), yielding errors below 10 pg/cm?.

Due to the spatial complexity of natural vegetation relative to uni-
form agricultural fields, estimation of C,}, via spectra in the red-edge
region is not straightforward. The red-edge region has been successfully
used to estimate C, . in closed forest canopies (Herndndez-Clemente
et al., 2017) and conifer forests (Zarco-Tejada et al., 2004b) due to the
resistance of the red-edge region to crown shadows (Curran et al., 1990;
Herndndez-Clemente et al., 2012; Moorthy et al., 2008; Zarco-Tejada
et al., 2001). In such closed forest canopies, the structure, shadows and
background have limited effects on reflectance, yielding reasonable
accuracies (< 15ug/cm?). In open canopies, direct understory effects
as well as between-crown shadows, make the red-edge region incapable
of predicting C, .1, accurately (Meggio et al., 2010).

For open crop canopies, C, .+ has been successfully estimated using
red-edge indices scaled up through radiative transfer canopy-level
models such as SAILH (Verhoef, 1984) and the Forest Light Interaction
Model (FLIM) (Rosema et al., 1992) and later integrated in the
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Invertible Forest Reflectance Model INFORM (Atzberger, 2000; Schlerf
and Atzberger, 2006). These models quantify stand reflectance con-
sidering the crown transparency effects on shadowed soil background.
More complex approximations accounting for forest structure using 3-D
canopy models have also been used (Gastellu-Etchegorry et al., 1996;
Goel and Thompson, 2000; Li et al., 1995; Myneni et al., 1991; North,
1996) by coupling a 3-D canopy model with the leaf radiative transfer
model PROSPECT and red-edge indices. Models such as DART
(Gastellu-Etchegorry et al., 1996), 4-Scale (Chen et al., 1997), GORT (Li
et al., 1995) and FLIGHT (North, 1996) have pioneered this approach.
However, the large number of parameters needed to adapt the 3-D
models can limit inversion procedures (Banskota et al., 2015;
Herndndez-Clemente et al., 2014; Malenovsky et al., 2013; Oliveira
et al., 2017; Yanez-Rausell et al., 2015).

The launch of Sentinel-2A in 2015 and Sentinel-2B in 2017 poten-
tially enables the estimation of chlorophyll content in vegetation
(Clevers and Gitelson, 2013) and other biophysical parameters
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Fig. 3. Image segmentation results separating crowns and understory from the
shadow and sunlit soil components, showing the original hyperspectral image
(a), the segmentation of the tree crowns and understory (b), and the selection of
pure tree crowns without the understory component (c).

(Delegido et al., 2011; Frampton et al., 2013) at an unprecedented
spatial (10 m/20 m) and temporal resolution (10 days at the equator
with one satellite, and 5days with satellites 2A and 2B). The Multi-
Spectral Imager (MSI) on board Sentinel-2 has two spectral bands in the
red-edge region which are theoretically sensitive to C, .1, allowing its
operational estimation. Previous satellite sensors with red-edge bands
include MERIS (Clevers et al., 2001) at 300 m spatial resolution, and
Hyperion and Chris-Proba at 30 m spatial resolution. In the case of
MERIS on board ENVISAT, the red-edge region was exploited to retrieve
biochemical and biophysical parameters for forest monitoring (Hu
et al., 2008), although at a much coarser spatial resolution than is
possible with Sentinel-2.

Previous studies have used Sentinel-2-simulated data from existing
airborne sensors (i.e. APEX used to simulate Sentinel-2) (Laurent et al.,
2014) to estimate C,, retrieval capabilities for grasses (Clevers and
Gitelson, 2013) and maize (Schlemmer et al., 2013) and from multi-site
campaigns (Frampton et al., 2013) using machine learning algorithms
(Verrelst et al., 2012), assessing the uncertainty on the retrievals
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(Verrelst et al., 2013). The inversion of radiative transfer models for LAI
estimation from Sentinel-simulated data (Atzberger and Richter, 2012),
and the assessment of the ill-posedness effects on the inversion methods
(Zurita-Milla et al., 2015) demonstrate the wide interest in the bio-
chemical and biophysical retrievals from the Sentinel-2 bandset using
physically-based approaches. However, most of these studies have been
theoretical, using simulated data for closed agricultural canopies. It is
unclear how these methods perform for sparse and open forest canopies
since these indices and model-inversion methods can be distorted by
shadows and understory in the 10-20 m Sentinel-2 pixels. Additionally,
to the best of our knowledge, no studies have validated the retrieval of
C,+p using real Sentinel-2 imagery and field validation data in het-
erogeneous coniferous stands.

In this study, we evaluated the estimation of needle C,.} for a
sparse pine forest undergoing decline using Sentinel-2A imagery from
two different phenological stages (summer and winter). Field mea-
surements of needle C, 1, and hyperspectral imagery collected at 40 cm
resolution concurrently with the Sentinel-2A overpasses were used to
validate two general estimation methods: i) Sentinel-2 indices related to
C,+p, and ii) an inversion method using the hybrid INFORM model.
Using high-spatial resolution hyperspectral imagery we quantified the
proportion of scene components (crown, understory, shade) at the
Sentinel-2A pixel resolution to assess the effects of shadows and back-
ground on the needle C,;, estimates.

2. Materials and methods
2.1. Study region & field data collection

Analyses were conducted for 61 pine-forest sites undergoing forest
decline within the Extremadura region of Spain (40°18’ N, 6°6” W, 370
to 1000 m.a.s.l.) (Fig. 1). The sites were dominated by Pinus pinaster,
with Pinus nigra mostly occurring at higher elevations. Recently, a
general decline has appeared in Pinus pinaster in this area (Arzac et al.,
2018; Vega et al., 2011). The gradient of mortality indicates damages
caused by biotic and abiotic factors. Namely, the decline is intensified
with predisposing factors such as water stress or forest health condition
affected by ophiostomatoid or other fungi such as Diplodia pinea
(Matusick et al., 2010; Prieto-Recio et al., 2015). Symptoms of decline
included canopy defoliation, discoloration (i.e. chlorosis) and die-off
resulting in exposed branches and shoots. Local authorities assessed
forest condition between 2014 and 2016, visiting a network of in-
dividual trees at each site and scoring them for levels of defoliation,
discoloration and canopy die-off. For this particular study, the selected
network of sites covered a wide gradient of chlorophyll content. Tree
selection was carried out by visual inspection of defoliation and dis-
coloration status of the tree crowns.

Leaf biochemical constituents measured from selected trees at each
of the 61 study sites were the chlorophyll (C, 1) and carotenoid (Cy 4 )
content. Leaf pigment content was measured by destructive methods on
915 needles from 5 samples of 3 needles per crown. We selected needles
from the top of the crown in four directions representing the fraction of
crown visible by the sensor following the methodology validated by
Hernandez-Clemente et al. (2014). Immediately after sampling, needles
were frozen in liquid nitrogen in the field and kept under —20 °C until
total chlorophyll (C,.p) and total carotenoid (Cy..) determinations
were conducted one week later. Pigment extracts were obtained from a
2 cm? mixture of ground needle material per sample as in Moorthy et al.
(2008). The needles were ground in a mortar on ice with liquid nitrogen
and diluted in acetone up to 5ml (in the presence of Na ascorbate).
Extracts were then filtered through a 0.45-um filter to separate the
pigment extracts from the Na ascorbate. Absorption at 470, 644.8 and
661.6 nm was measured with the spectrophotometer to derive chlor-
ophyll a and b, and total carotenoid concentrations (Abadia and Abadia,
1993). The extractions and measurements were undertaken con-
currently to avoid pigment degradation.
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Fig. 4. Classification conducted on the December (a, b) and June (c, d) hyperspectral images to generate the four scene components: i) pure tree crowns, ii)
understory vegetation, iii) sunlit soil, and iv) shadows.

In July 2016 the following measurements were recorded for each
tree: trunk diameter at 1.3 m, total tree height, crown diameter, crown
height and crown LAI. LAI was measured using the LAI-2000 Plant
Canopy Analyzer (LI-COR, Inc., Lincoln, NE), positioning the optical
sensor in eight different orientations under the canopy, at 1 m distance
from the ground. A cup which covered 90° of the field of view affected
by the trunk was used. Measurements required for LAI estimation in-
cluded a reference reading above the canopy and below-canopy read-
ings. All measurements were taken before sunrise, after sunset, or under
a uniformly overcast sky. Tree coordinates were logged using a GPS
device (GPSMAP 60CSx, Garmin International, Inc.) with a spatial ac-
curacy below 2m.

2.2. Sentinel-2A and airborne hyperspectral imagery

Scenes from the MultiSpectral Imager (MSI) on board Sentinel-2A
were used for this study. The MSI acquires imagery at ten-day intervals
at the equator under constant viewing conditions (Fig. 1a). The images
are acquired at 12 bits in 13 spectral bands at different spatial resolu-
tions: four bands at 10 m spatial resolution (central wavelengths at
496.6, 560.0, 664.5 and 835.1 nm with a bandwidth of 98, 45, 38 and
145 nm, respectively), six bands at 20 m (central wavelengths at 703.9,
740.2, 782.5, 864.8, 1613.7 and 2202.4 nm with a bandwidth of 19, 18,
28, 33, 143 and 242 nm, respectively) and three bands at 60 m (central
wavelengths at 443.9, 945.0 and 1373.5 nm with a bandwidth of 27, 26
and 75 nm, respectively). The images acquired over the study area were
obtained on November 29th 2015 and on June 19th 2016. They were
atmospherically corrected from Top-Of-Atmosphere (TOA) Level-1C to
generate Level-2A with Sen2Cor (version 2.3.1) on the Joint Earth

December 2, 2016
T4 ST A, | %
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Observation Data Processing Platform (JEODPP) (Soille et al., 2018)
within the Joint Research Centre (JRC) of the European Commission
(EC). The processing chain from Level-0 to Level-1C was carried out by
the Instrument Data Processing (IDP) functionality of the Payload Data
Ground Segment (PDGS).

For validation purposes, two airborne campaigns were conducted on
December 2nd 2015 and June 20th 2016 using a VNIR micro-hyper-
spectral imager A-series (Headwall Photonics, Fitchburg, MA, USA) on
board a Cessna aircraft operated by the Laboratory for Research
Methods in Quantitative Remote Sensing, QuantaLab, Consejo Superior
de Investigaciones Cientificas (IAS-CSIC, Spain) (Fig. 2). The images
were acquired flying with the heading on the solar plane at 400 m
above ground level at 12:00 GMT yielding a swath of 380 m at 40 cm
pixel resolution. The camera was set to 50 fps with an integration time
of 18 ms, using an 8 mm focal length lens to yield an instantaneous field
of view (IFOV) of 0.93 mrad and an angular field of view (FOV) of 50°.
The images were collected in the 400-885 nm region with 260 bands at
1.85 nm/pixel and 12-bit resolution, yielding a 6.4 nm full-width at
half-maximum (FWHM) with a 25-micron slit. The flight lines acquired
by the hyperspectral sensor were orthorectified and radiometrically
calibrated as in Zarco-Tejada et al. (2016) to convert the radiance va-
lues to reflectance using the Simple Model of Atmospheric Radiative
Transfer of Sunshine (SMARTS) model (Gueymard, 1995, 2005, 2001;
Gueymard et al., 2002) with aerosol optical depth measured in the field
at 550 nm with a Micro-Tops II sunphotometer (Solar LIGHT Co., Phi-
ladelphia, PA, USA). This model was successfully applied in previous
studies (Berni et al., 2009; Calderén et al., 2013; Calderén et al., 2015;
Zarco-Tejada et al., 2012).

The hyperspectral and the Sentinel-2A datasets acquired on each
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Fig. 5. Hyperspectral subsets showing two areas with low (a) and high (b) percentage tree cover. The corresponding Sentinel-2A pixels (c, d) are overlayed on the

pure tree crowns obtained through image segmentation.

Table 1
Nominal values and range of parameters used for the C, . retrieval of the
understory vegetation from the hyperspectral imagery.

Table 2
Sentinel-2 chlorophyll indices proposed by Clevers and Gitelson (2013) and
used in this study for C, ., estimation in a heterogeneous pine forest.

Canopy structural parameters Nominal values & range Index Formulation Reference
Leaf area (LAI) 1-4 Clred-edge ( Ryg3 ) 1 Gitelson et al.
Average leaf angle (ALA) 30-70° R705 (2003, 2006)
Hot spot size 0.01 Clgreen ( Ryg3 ) 1 Gitelson et al.
Rs60 (2003, 2006)
REP 705 + 35 ( (Re65 + R783)2 — R705) Guyot and
Background & viewing geometry Nominal values R740 — R705 Baret (1988)
MTCI R740 — R705 Dash and
Soil reflectance (ps) From image R705 = Reos Curran (2004)
Viewing geometry (6; 6, ¢) 6, = 26° (June)/73° (Dec.) 6, = 0°, ¢ = 0° MCARI/OSAVl55 750 [(R740 — R705) — 0.2(R740 — R560)1(R740 — R705) Wu et al.
(1+0.16)(R740 — R705) / (R740 + R705 + 0.16) (2008)
TCARI/OSAVI;os5, 750 3[(R740 = R705) — 0.2(R740 — R560)(R740 — R705)] Wu et al.
Leaf parameters Nominal values (1+0.16)(R740 — R705) / (R740 + R705 + 0.16) (2008)
NDRE1 R740 — R705 Gitelson and
Chlorophyll a + b (Ca11) 10-60 pg/cm? R740 + R705 Merzlyak
Carotenoid content (Cy ) 3-12ug/cm? (1994), Sims
Anthocyanin content (Cunen) 0.1-4.0 pg/cm? and Gamon
Dry matter (Cr,) 0.0022 mg/cm? (2002)
Equivalent water thickness (C,) 0.005 mg/cm? NDRE2 R783 — R705 Barnes et al.
Structural parameter (N) 1.5-2.2 R783 + R705 (2000)

date were co-registered to ensure the highest spatial agreement, and to
minimize geometric errors typically found in high-spatial resolution
hyperspectral mosaics due to the multiple flight lines. Additionally, the
hyperspectral mosaics were resampled to the Sentinel-2A spectral
bandset and spatial resolution, to be used later for the assessments
between datasets and for simulation using the radiative transfer models.
The pixel aggregate method was used to resize the spatial component,

which averages the pixel values gathered by the hyperspectral imager
contributing to the simulated Sentinel-2A output pixel; in addition,
spectral resampling was performed to match the corresponding FWHM
and centre wavelength (CWL) of each Sentinel-2A band. Both Sentinel-
2A and the hyperspectral datasets displayed the expected seasonal and
sun angle differences between December and June (Fig. 1b) which were
observable in the Sentinel-2A VNIR reflectance spectra extracted for a



P.J. Zarco-Tejada et al.

Table 3
Nominal values and range of parameters used for leaf and canopy modelling
simulations with INFORM.

Remote Sensing of Environment 223 (2019) 320-335

Table 4
Percentage cover of each scene component from the validation sites displayed
in Fig. 6.

Canopy structural parameters Nominal values & range Site # % crowns % veg. soil % bare soil % shadows
Tree density (Tq) 50-500 trees/ha 6 34.6 32.9 5.9 26.5
Crown diameter (Cq) 4-5m 8 3.72 73.4 16.7 6.1

Crown height (Cy) 7m 60 5.72 23.7 68.9 1.6

Crown leaf area (Cyap) 1-4 24 32.92 26.3 13.4 27.3
Average leaf angle (ALA) 60°

Background & viewing geometry Nominal values

Soil reflectance (ps)
Viewing geometry (6; 6, ¢)

From image
0, = 26° (June)/73° (Dec.) 6, = 0°, ¢ = 0°

Leaf parameters Nominal values

Chlorophyll a + b (Ca4p)
Carotenoid content (Cy 4 )

Dry matter (C,)

Equivalent water thickness (Cy)
Structural Parameter (N)

5-70 ug/cm?

10 ug/cm?
0.01-0.035 mg/cm?>
0-0.15 mg/cm?
1.5-2.5

healthy site and a site in decline (Fig. 1c).

The high-spatial resolution imagery acquired with the hyperspectral
sensor (ground sampling distance 40 cm) enabled the simulation of
pixel aggregation at the Sentinel-2A resolution, as well as the identifi-
cation of individual scene components (i.e., individual tree crowns,
crown shadows and understory) (Fig. 2b). Scene components extracted
from the hyperspectral imagery for each Sentinel-2A simulated pixel
were used later for radiative transfer modelling. The seasonal variation
in shadows between December (Fig. 2¢) and June (Fig. 2d) resulted in
different aggregation effects at the Sentinel-2A pixel-level, emphasizing
the need for this component level information for accurately estimating
Ca+b-

2.3. Image segmentation and classification of the hyperspectral imagery

Object-based segmentation methods were applied to the airborne
hyperspectral images using Niblack's thresholding (Niblack, 1986) and
Sauvola's binarization techniques (Sauvola and Pietikdinen, 2000) to
separate tree crowns from the soil. Overlapping crowns were separated
using binary watershed analysis and the Euclidian distance for each
object (Fig. 3). The object-based analysis successfully separated vege-
tated from non-vegetated objects (Fig. 3b) but was unable to distinguish

0.25
—Site #60 (June)
——Site #8 (June)
0.20 Site #6 (June)
Site #24 (December)
Y 0.15 g
= =
© ©
5] 9]
Q 9
& 0.10 &
0.05
a)
0.00
450 500 550 600 650 700 750 800

Wavelength (nm)

trees from understory. These elements were separated (Fig. 3c) by in-
tersecting the vegetation objects with a supervised classification con-
ducted on each hyperspectral dataset (Fig. 4). The maximum likelihood
supervised classification was carried out to identify pure tree crowns,
sunlit soil, understory and tree shadows, obtaining a pixel-based map of
each scene component for December (Fig. 4ab) and June dates
(Fig. 4cd). The intersection of the pixel-based classification for each
scene with the object-based segmentation produced a layer of the pure
tree crowns at the object level, discarding the understory and shadow
components.

Following this classification method, the percentage cover and the
spectral profile of each scene component were extracted. In particular,
the hyperspectral images acquired concurrently with the Sentinel-2A
scenes were used to extract the spectra of the individual tree crowns,
sunlit understory, shaded understory and sunlit soil that belonged to
each of the Sentinel-2 pixels located over each of the 61 study sites. This
method enabled the full characterization of all validation sites, as the
high-resolution hyperspectral imagery allowed not only the extraction
of each scene component spectrum but also the estimation of the per-
centage cover for each of them, showing a large range of variability
within each Sentinel-2A pixel (Fig. 5).

2.4. Index-based relationships, scaling up & model inversion for Cq+p
estimation

From the hyperspectral images, red-edge and NIR indices were
calculated from pure-tree crown reflectance. Indices included: i) the
red-edge chlorophyll index CI (Ry;50/R710) (Zarco-Tejada et al., 2001);
ii) the TCARI chlorophyll index alone (Haboudane et al., 2002), iii)
TCARI normalized by OSAVI (Rondeaux et al., 1996) to minimize
changes in LAI (Haboudane et al., 2002); and iv) the Macc index (Rygo-
Ry10)/(R780-Reso) designed to increase robustness to directional effects
(Maccioni et al., 2001). The chlorophyll CI index based on the 710 nm
band was proposed here due to its sensitivity to C, ., while being robust
to crown shadows in forest areas, as demonstrated in coniferous forest
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Fig. 6. Spatially resampled hyperspectral (a) and Sentinel-2A reflectance (b) from the June and December dates and four validation sites that represented a wide

range of variability (Table 4).

326



P.J. Zarco-Tejada et al.

0.80
O June
o December
S 0.60 -
o
=
e
qé) 0.40 - o8 o
=] ¥
= ®.
A o
0.20 - 9/
’,’ NDVI a)
0.00 +~ ' ; .
0.00 0.20 0.40 0.60 0.80

20m-resampled hypersp. NDVI

Remote Sensing of Environment 223 (2019) 320-335

2.50

+ June
2.25

® December

2.00

1.75

1.50

Sentinel-2 Cl index

1.25
Cl

1.00 T T T T T
1.00 125 150 1.75 2.00 2.25 2.50

b)

20m-resampled hypersp. Cl

Fig. 7. Comparisons carried out for NDVI (a) and CI (b) indices from spatially-resampled hyperspectral vs. Sentinel-2A data for all sites and dates used in this study.

70
a
65 2 "
° o o°
__ 60 AP
~ o , 00
£ 55 e’y o°
~— ‘ ,I ..
Q0 o o
= 50 .~‘ ,/... P
2 45 LI AR )
Uﬁ ,"" (]
40 ¢ .
35 o y = 23.787x + 4,1694
RZ=0.61
30
14 16 18 2 22 24 26
Red-edge CI
70 )
C
65 : °.
0'00
__60 ., .
o~ .’
§ 55 : o’
% 50 W B
= . ,f.'-"
&45 ’I,. ..’ )
40 o o
35 J=237.93x+35.351
R2=0.21
30
0.01 0.04 0.07 0.1 0.13
TCARI

70 b)
65 .°
° of
— 60 Py .‘1'
% ° o, %%
5 55 ...:f,:' .
(<13] 7 o o
20 .’“',o S o
£ 45 *% . @
Urv; /Qw o
40 e o
35 ® y = 84.905x + 17.419
R?=0.59
30
0.2 0.3 04 0.5 0.6
Macc
70
d
g5 B e, .
[ ] 00
N e0 .o )
~ [} °
£ 55 24
~ ~‘—-_ .r. e
20 nd “‘—-
250 Pt
&45 .a’t.. e o
40 o ®
35 y=-.39.922x+57.775
30 R==0.01
0.1 0.15 0.2 0.25
TCARI/OSAVI

Fig. 8. Relationships obtained between the red-edge indices CI (a), Macc (b), TCARI (c) and TCARI/OSAVI (d) calculated from the hyperspectral reflectance of pure

tree crowns and the field-measur

ed needle C, ., content.

stands (Zarco-Tejada et al., 2001), and validated later by various other

authors (Hernandez-Clemente

et al., 2014; Moorthy et al., 2008). Ad-

ditionally, the red edge CI ratio was also calculated by replacing the
750 nm by the 740 nm band available in the Sentinel-2A bandset.
Crown C, 4}, per site was determined by model inversion accounting

for background understory grasses (as in Darvishzadeh et al., 2008; Si
et al., 2012; Kattenborn et al., 2017). In this study, the PROSAIL model
that links the leaf reflectance model PROSPECT-D (Féret et al., 2017)
and the canopy radiative transfer model 4SAIL (Verhoef et al., 2007),
was used in forward mode to generate a look-up table (LUT) consisting
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Table 5

Remote Sensing of Environment 223 (2019) 320-335

Minimum, maximum and average values among the 61 validation sites for the percentage of crowns, understory, bare soil, shadows, crown C, .., understory C, .,
and the estimated canopy C,., content within each Sentinel-2A pixel for June and December datasets.

Scene Components (%) June December

Y%c Y%u %bs %sh cCatp uCysp pCa+b cCasb uCysp PCa+b
Min 0.9 5.7 1 0 41.8 16.1 2.4 45.1 16.1 14.2
Max 45.3 80.9 92.6 26.5 52.5 46.9 40.9 69.9 46.9 53.7
Mean 13.5 52.2 27.8 6.6 47.9 40.1 27.6 60.3 40.1 36.7

%c: percentage crowns; %u: percentage understory; %bs: percentage bare soil; %sh: percentage shadows; cC,p: crown chlorophyll a + b; uC,+p: understory

chlorophyll a + b; pC,1: Sentinel-2A pixel chlorophyll a + b.

of 100.000 simulations. The parametrization of the LUT was based on
the inputs described in Table 1. Understory C,., was estimated by
comparing the simulated spectra to the airborne spectra using RMSE as
a cost-function, whereas each C,,;, estimate was based on the average
of the 1000 closest matching LUT entries which were weighted by the
RMSE. This hybrid approach enabled the quantification of pixel-level
C,+p via a combination of direct validation in the field of the prominent
Pinus class, and the quantification of the percentage cover for each
scene component within each Sentinel pixel (Pinus trees, understory,
shadow and illuminated soil).

C, +p retrieval from Sentinel-2A imagery for each of the study sites
was carried out via two approaches: i) using vegetation indices (VIs)
proposed in the literature specifically for C,,1 estimation using the
Sentinel-2A bandset (Clevers and Gitelson, 2013) (Table 2); and ii) via a
model-inversion scheme of the Invertible Forest Reflectance Model
(INFORM) (Atzberger, 2000; Schlerf and Atzberger, 2012, 2006) based
on the Forest Light Interaction Model (FLIM) (Rosema et al., 1992).

INFORM was used in forward mode to evaluate the effects of canopy
structural parameters on the red-edge bands proposed for C,.1, esti-
mation at the Sentinel-2A pixel-scale, in particular, tree density (Tq),
crown diameter (Cq4), and soil reflectance (p;). For each study site, ca-
nopy reflectance was simulated as a function of the percentage cover of
each scene component and the mean spectral reflectance for each
component extracted from the hyperspectral imagery. Simulated values
for canopy reflectance, percentage crown cover and percentage shadow
were evaluated against values derived from the high-resolution hy-
perspectral imagery. Simulated structural NDVI and chlorophyll CI in-
dices were then compared with values derived from the Sentinel-2A and
hyperspectral-resampled images to evaluate the performance of the
simulation model.

Using 1 million simulations, a LUT was generated using the inputs in
Table 3. Leaf parameters dry matter (C,,), equivalent water thickness
(Cw), and the structural parameter N were estimated using the entire
Sentinel-2A bandset, including the SWIR bands at 1610 and 2190 nm.
In a second step, with Cy,, C,, and N fixed to the retrieved parameters, a
second LUT was then generated using the eight VNIR bands. This LUT
was used to estimate C, .1, based on the set of parameters that mini-
mized the root mean square error (RMSE) for each study site. The es-
timation of C, . was carried out for both June and December, using
hyperspectral and Sentinel-2A images to evaluate the performance of
the model inversion scheme as a function of the sun angle and per-
centage shadow components for each case.

3. Results and discussion
3.1. Comparison of hyperspectral and Sentinel-2A datasets

Spectral assessment of the hyperspectral mosaics and the Sentinel-
2A datasets showed reasonable agreement across the 61 validation sites
used in this study (Fig. 6; Table 4). Landscape composition varied
widely across the study area, with percentage crown cover ranging
between 3% and 34%, understory vegetation cover between 23% and
73%, bare soil cover between 6% and 69%, and shadow cover between
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1% and 27%.

The red and NIR bands (required to calculate NDVI), and the red
edge (CI) for both June and December datasets showed good agreement
between the 20 m-resampled hyperspectral and the Sentinel-2A data
(Fig. 7), with a slight overestimation of NDVI from Sentinel-2A com-
pared to the hyperspectral mosaic (Fig. 7a). Discrepancies between the
datasets are potentially related to sensor noise, inaccurate spatial co-
registration, or radiometric/atmospheric correction deviations.

3.2. Generation of the C, . dataset from hyperspectral imagery and field
measurements as validation for Sentinel-2A

Of the indices examined (red-edge CI, Macc, TCARI and TCARI/
OSAVI), the CI (r> = 0.6; p < 0.001) and Macc (r> = 0.59;p < 0.001)
showed the strongest correlation to field-collected tree-level C, . es-
timates, based on pure-crown hyperspectral reflectance (Fig. 8). It is not
surprising that the red-edge region outperformed the TCARI and
TCARI/OSAVI formulations in this heterogeneous tree crown context,
as TCARI was developed for uniform agricultural canopies and the red
edge is less sensitive to within-crown shadows (Zarco-Tejada et al.,
2001). The results obtained with the red edge CI index using the
standard Ryso band (r* = 0.61) were very similar to the ones obtained
with the Ry49 band available in Sentinel-2A (r* = 0.57).

Although reflectance was extracted from pure tree-crown pixels,
which effectively removed within-crown shadows (as in Zarco-Tejada
et al., 2001), the model inversion conducted by PROSAIL did not yield a
statistically significant relationship with field-measured C, .. This was
probably due to the improper reflectance simulation of the structural
characteristics of pine trees under decline, including dead branches,
extensive defoliation and chlorosis. However, the -characteristic
clumping effects common to coniferous trees may have also accounted
for this weak relationship. For this reason, the tree-level empirical re-
lationship between the CI index and field-measured C, . (Fig. 8a) was
used to estimate the C, 1, for the Pinus trees falling within each Sent-
inal-2A pixel at each validation site.

C,+p from each Sentinel-2A pixel was calculated by combining the
tree-crown C,.} estimated from the empirical CI index-based re-
lationship (Fig. 8a), with the understory C,.p calculated from the
PROSAIL model inversion of the hyperspectral understory component.
Table 5 shows the range of C, ., estimates and component percentages
from the June and December datasets calculated from the hyperspectral
imagery. These hyperspectral-derived C,. values were used to vali-
date i) Sentinel-2A chlorophyll indices, and ii) the estimation of needle
Ca+p by INFORM inversion using the radiative transfer modelling
method described above.

3.3. Evaluation of chlorophyll indices from Sentinel-2A imagery

Of the chlorophyll indices proposed for Sentinel-2A (Clevers and
Gitelson, 2013) (Table 2), the CI, CI-Gitelson, NDRE1 and NDRE2 in-
dices were the most accurate predictors of C,.p (r? > 0.7 for June;
r? > 0.44 for December; p < 0.001; Fig. 9). Interestingly, the high
performance of CI is in agreement with previous studies in
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Mediterranean pines (Moorthy et al., 2008) and boreal forests
(Hernandez-Clemente et al., 2012) using hyperspectral and satellite
sensors. Most indices had non-linear relationships to C,.p, with only
the green CI index displaying a more linear trend (r* = 0.34 for June;
r? = 0.61 for December; p < 0.001). Indices REP, MTCI and TCARI/
OSAVI performed poorly for both dates, and except for the green CI, the
relationships obtained were displaced as a function of the season.

The displacement observed in the C, .1, vs. VI relationships for CI,
CI-Gitelson, NDRE1 and NDRE2 indices between June and December
(Fig. 9) could be due to different reasons. On the one hand, the phe-
nological changes experienced between summer and winter seasons
along with the structural differences may have played an important role
in the trends obtained between VIs and C,.. This is particularly re-
levant due to the large seasonal dynamics of the understory abundance
and shadow components in sparse canopies; on the other hand, the
seasonal changes in the viewing geometry are known to affect the re-
lationships between VIs and plant traits due to the bi-directional effects
of the vegetation canopies, which are increased in the case of sparse
canopies. Our results also showed seasonal differences in the needle
C.+p concentration measured at the tree crown level (Table 5): in June,
the trees displayed lower C,.p content than in December. These
changes are potentially associated with seasonal discoloration of Med-
iterranean species strongly influenced by water stress in summer, in
agreement with earlier findings (Camarero et al., 2012; Garcia-Plazaola
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et al., 1997; Garcia-Plazaola and Becerril, 2001). These reasons justify
that the relationships obtained between VIs and plant traits are nor-
mally considered to be time-dependent, as they are highly affected by
structural, background and viewing geometry effects that are seasonally
dependent. Some of these factors may be contributing to the displace-
ments observed in Fig. 9, and in the differences obtained in the good-
ness of fit between the regression lines obtained in December vs. June.
These seasonal changes are normally minimized via radiative transfer
models that account for such factors via inversion methods (Thenkabail,
2015).

3.4. Structural and background effects on the Sentinel-2A red-edge CI
chlorophyll index. Model inversion results for needle C,..; estimation

Simulations based on the radiative transfer model INFORM showed
that the variation of canopy structural variables, i.e. tree density (Ty),
crown diameter (Cqy) and tree height (C;,) characteristic of open-canopy
forest stands have a strong effect on the red-edge chlorophyll index
(Fig. 10ab). Soil reflectance was also an important factor, evident in the
distinct index-C, 1, relationships (Fig. 10d) generated by using three
different soil background spectra (Fig. 10c). These results are in
agreement with previous studies that used red edge vegetation indices
in forest canopies (Hernandez-Clemente et al., 2016; Moorthy et al.,
2008; Zarco-Tejada et al., 2001). The large effects of background
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reflectance and tree density are therefore essential for estimating C, 1,
in an open canopy.

Simulations of canopy reflectance from the simple geometrical FLIM
model component of INFORM with inputs extracted from the hyper-
spectral images and their corresponding image-based derived scene
components (Fig. 11a) yielded a reasonable agreement (Fig. 11b). Si-
mulations of crown cover (Fig. 11¢) and shadow (Fig. 11d) for all va-
lidation sites yielded estimations with RMSE = 2.4% (crown cover),
with larger errors on the quantification of shadows (9.9%). The errors
found in the modelled crown percentage cover (Fig. 11c) were minor as
compared to the errors obtained for the shadow component (Fig. 11d).
The errors increased when simulating pixels with the crown cover
component exceeding 30%, while the model generally overestimated
the shadow component even for small proportions. We found out that
the quantification of the percentage tree crown component from the
hyperspectral imagery was generally easier and more straightforward
than the assessment of shadows, particularly under the low sun angles
typical of the winter season. For this reason, we cannot point out the
model as the only source of error when comparing the simulated scene
components vs. the validation dataset. Nevertheless, the RMSE values
obtained between the simulations carried out for each study site and the
hyperspectral image-based quantification of the scene components were
within a reasonable range (2.4% RMSE for the crown component; 9.9%
RMSE for the shadow component).

NDVI estimates modelled with INFORM in forward mode, using the
scene components extracted from the hyperspectral imagery (Fig. 12),
were highly correlated (r> > 0.9) with NDVI from resampled hyper-
spectral data and Sentinel-2A imagery. As expected, the correlation
with the resampled hyperspectral images was higher than with the
Sentinel-2A imagery. Although the December dataset was more chal-
lenging to simulate due to the larger shadow effects (Fig. 12cd), model
performance against Sentinel-2A data on the 61 validation sites was
reasonable for NDVI (r? > 0.7) and CI (r> > 0.9).

The needle C,,}, retrieval by model inversion using the LUT gen-
erated by INFORM independently for June (Fig. 13a) and December
(Fig. 13b) yielded r*=0.7 (RMSE = 8.1ug/cm® and r*>= 0.4
(RMSE = 12.1 pg/cm?), respectively. The overall performance of the
model inversion method for the joint dataset (June and December to-
gether) yielded r* = 0.6 and RMSE = 10.5 ug/cm?. The errors obtained
from the Sentinel-2A data for both June and December dates were
within the expected RMSE for heterogeneous canopies (i.e. < 15ug/
cm?). Nevertheless, the higher errors for December compared to June
were possibly related with the lower performance of INFORM in si-
mulating the shadow component for scenes with low sun angles, but
also to the difficulties in its accurate quantification from the hyper-
spectral imagery in December.

These results confirm the importance of seasonal phenological ac-
tivity in the retrieval of chlorophyll content, particularly in sparse
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canopies. The reduced influence of the understory grasses during spring
and summer seem to contribute positively to the performance of the
models for the estimation of chlorophyll content. When the same
quantification is carried out with data collected during winter, results
showed a significant, albeit weaker, model performance. These results
could be related to the higher signal-to-noise ratios detected at lower
light intensities of mid-latitude winters, the reduced shadow effects and
the weaker role played by the understory in summer. The implication of
these results arises that spring and summer are the most suitable sea-
sons for quantifying chlorophyll content in conifers in similar condi-
tions and locations.

Although the coefficients of determination for needle C, 1, estima-
tion via Sentinel-2A red-edge indices and model inversion methods
were similar (r? ~ 0.7), the inversion results had linear relationships
with C, 4}, while the indices had visibly non-linear relationships (Fig. 9).
Although index-based methods are useful in that they can be directly
applied to the Sentinel-2A images, the complexity of heterogeneous and
open-canopy forests require the use of physical models to properly
account for canopy structural effects. The Sentinel-2A bandset, which
includes red-edge bands, enabled the estimation of needle C, .} only
after accounting for the large variations in tree density, and the effects
of understory, bare soil and shadows. Our findings have relevance for a
considerable portion of the world's forests; our study was based on an
open, needle-leaved forest stand with average tree crown cover of 45%
(ranging ca 1% and 45%). Globally, 4 million km?, or 3% of the Earth's
land surface, are covered with coniferous forests within this crown
cover range, according to the MOD12Q1 land cover classification fol-
lowing a plant functional type scheme (Friedl et al., 2010; NASA LP
DAAC, 2005) and the MOD44B vegetation coniferous fields product
(Dimiceli et al., 2015), both produced from MODIS data. In Europe, this
comprises 16% of all forests, including Mediterranean forests, as well as
boreal forests with a similar architecture. Moreover, Asia and North
America, are covered for 4.6 and 5.9%, respectively, by needle-leaved
forests with a crown cover between 1 and 45%.

These results highlight the potential of Sentinel-2 for chlorophyll
monitoring, especially considering the high spatial and temporal re-
solution of Sentinel 2A + 2B. Both sensors together will undoubtedly
prove useful for ecological and agricultural studies such as disease
monitoring, phenology, and primary productivity, theoretically al-
lowing for weekly chlorophyll maps. Although the chlorophyll esti-
mation accuracy was reduced for winter as compared to the summer
season, our results showed statistically significant results in both cases.
Further work based on complex radiative transfer models yielding su-
perior performance (particularly for the simulation of the viewing
geometries typical of winter together with improved modelling of
crown shadows in sparse canopies) will potentially improve the pre-
diction performance across seasons.

4. Conclusions

We investigated the retrieval of needle chlorophyll content in an
open coniferous canopy undergoing decline using Sentinel-2A imagery
at two timepoints (June and December) of large sun angle variation. We
evaluated the accuracy of needle C, 1, estimates from (a) spectral-based
Sentinel-2 chlorophyll indices and (b) a radiative transfer model in-
version approach. High-spatial resolution hyperspectral imagery ac-
quired concurrently with the Sentinel-2A overpasses enabled the
quantification of the Sentinel-2A sub-pixel scene components used for
the validation of the radiative transfer methods. The red-edge CI, CI-
Gitelson, NDRE1 and NDRE2 indices (r> > 0.7 for June; r> > 0.4 for
December; p < 0.001) showed the greatest correspondence to ground-
based C,+p. The INFORM model inversion scheme yielded 2 =0.71
(RMSE = 8.1 ug/cm?) for June, and r* = 0.42 (RMSE = 12.2 ug/cm?)
for December using the entire Sentinel-2A bandset, yielding r* = 0.6
and RMSE = 10.5 ug/cm? for the overall June and December dataset.

Although the coefficients of determination obtained for needle C, .,
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estimation via red-edge indices and by model inversion were similar
(r? ~ 0.7), the model inversion method displayed a linear relationship
with C, 1, while the relationships for the indices were nonlinear. In
these complex forest canopies, accounting for the structure and the
variability of each scene component is critical for accurate estimations
of C,+p. This work demonstrates that C, .}, estimation is feasible using
Sentinel-2A data across sparse forest canopies, provided this informa-
tion is available. The present study highlights the potential of Sentinel-
2A and 2B for high spatial and temporal resolution chlorophyll mon-
itoring. Both sensors together will evolve as useful tools for vegetation
monitoring, producing weekly chlorophyll maps that will improve our
understanding of photosynthetic status, physiological condition, and
detection of decline processes.
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