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A B S T R A C T

High spatial resolution maps of land surface energy, water and CO2 fluxes, e.g. evapotranspiration (ET) and gross
primary productivity (GPP), are important for agricultural monitoring, ecosystem and water resources man-
agement. However, it is not clear which is the optimal (e.g. coarsest possible) spatial resolution to capture those
fluxes accurately. Unmanned Aerial Systems (UAS) can address this by collecting very high spatial resolution
(< 1m, VHR) imagery. The objective of this study is to model ET and GPP dynamics using VHR optical and
thermal imagery and quantify the influence of the spatial heterogeneity in the flux simulations and validations.
The study was conducted at a deciduous willow bioenergy eddy covariance (EC) flux site in Denmark. Flight
campaigns were conducted during the growing seasons of 2016 and 2017 with a hexacopter equipped with RGB,
multispectral and thermal infrared cameras. A ‘top-down’ modeling approach consisting of the Priestley–Taylor
Jet Propulsion Laboratory model and a light use efficiency model sharing the same canopy biophysical con-
straints was used to estimate ET and GPP. Model outputs were benchmarked by EC flux observations with the
source weighted footprint. Our results indicate that our model can well estimate the instantaneous net radiation,
ET, GPP, evaporative fraction, light use efficiency and water use efficiency with root-mean-square deviations
(RMSD) of 31.6W·m−2, 41.2W·m−2, 3.12 μmol·C·m−2·s−1, 0.08, 0.16 g·C·MJ−1 and 0.35 g·C·kg−1, respectively.
Further, it is found that using a footprint model to sample different areas of VHR imagery can be a tool to provide
better diurnal estimates to benchmark with EC data. Moreover, these VHR maps (0.3m) allowed us to quantify
metrics of spatial heterogeneity by using semivariogram analysis and by aggregating model inputs into different
spatial resolutions. For instance, we find that in this site, the aggregation of simulated GPP using the source
weighted mean of the EC footprint was about 30% lower in RMSD than using the arithmetic mean of the
footprint. This demonstrates the accuracy of the modeled VHR spatial patterns. Nevertheless, we also find that
imagery resolution consistent with the canopy size (around 1.5 m in our study) is sufficient to capture the spatial
heterogeneity of the fluxes as transpiration and canopy assimilation of CO2 are processes regulated at the tree
crown level. Our results highlight the importance of considering the land surface heterogeneity for flux modeling
and the source contribution within the EC footprint for model benchmarking at appropriate spatial resolutions.

1. Introduction

The amount of carbon assimilated by terrestrial ecosystems or gross
primary productivity (GPP) is closely connected to the water loss as
evapotranspiration (ET), as both processes are regulated by a variety of
linked biotic and abiotic controls (Damm et al., 2018; Foley et al., 1996;

Guan et al., 2015). This tradeoff between GPP and ET requires strate-
gies and policies for management and monitoring of water, crops and
natural ecosystems (Liu et al., 2015; Mo et al., 2018). Quantification of
the temporal and spatial variations of ET and GPP can provide valuable
information for understanding the water and carbon exchanges be-
tween land surfaces and the atmosphere in a changing climate (Beer
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et al., 2010; Ito and Inatomi, 2012). Very high spatial resolution
(VHR,< 1m) maps are particularly important for optimizing food or
bioenergy crop production. For example, targeted irrigation or fertili-
zation in precision agriculture will benefit from VHR water use effi-
ciency (WUE) maps, reflecting the amount of carbon fixed per unit of
water transpired, but such information is not yet routinely available
(Gago et al., 2015). Further, VHR maps offer great opportunities to
understand ecohydrological processes and to reduce the large un-
certainty in the estimation of land surface fluxes due to unresolved
scaling issues (Anderson and Gaston, 2013; Vivoni et al., 2014).

Numerous methods such as the eddy covariance (EC) technique,
satellite and airborne remote sensing, and land surface models have
been developed to estimate land surface energy, water and CO2 fluxes
across leaf, canopy, regional and global scales (Amthor et al., 2001;
Reichstein et al., 2005; Sitch et al., 2003). Among them, the EC tech-
nique is acknowledged as one of the reliable methods to estimate the
exchange of tracer gases (e.g. CO2 and water vapor) between the land
surface and the atmosphere at the ecosystem level (Baldocchi, 2003). It
is often used to benchmark models. However, the EC technique can only
be applied in flat and homogeneous sites and the footprint of the
measurements usually covers areas around 100–1000m2. To estimate
the spatial variation of regional ET and GPP, models using satellite
optical and thermal remote sensing data are a cost-effective tool.
However, the coarse spatial resolutions of satellite optical and thermal
imagery cannot represent the spatial heterogeneity in topography, soils,
and vegetation accurately enough (McCabe et al., 2017). Further, the
coarse pixel resolution of satellite ET and GPP products, e.g. MODIS
(250m-1 km), Sentinel 2 missions (10m–60m) or the Sentinel 3 mis-
sions (500m-1 km), may not be appropriate for small-scale applica-
tions, e.g. irrigation management in vineyards. Additionally, during
cloudy and overcast weather conditions, satellites are not able to pro-
vide optical or thermal observations of the land surface. This is an
important issue especially for high latitude regions, where cloudy and
overcast days are common (Wang et al., 2018b) or in climates where
the growing season coincides with the rainy season such as monsoonal
regimes (García et al., 2013).

With significant advances in navigation, flight control, miniaturized
platforms and sensors, Unmanned Aerial Systems (UAS) can provide
VHR imagery, presenting unprecedented potential for monitoring eco-
hydrological processes at fine scales (Vivoni et al., 2014). VHR remote
sensing data can facilitate our understanding of the heterogeneity and
scaling uncertainties in the ecohydrological processes (Li et al., 2013).
Besides, UAS flight campaigns can be conducted at flexible times, lo-
cations and turnaround times. The flexibility to combine various sen-
sors and to design different flight paths is another advantage of UAS.
Further, UAS can collect data under both sunny and cloudy weather
conditions. Additionally, the operating costs of UAS campaigns are
much lower than manned airborne surveys.

Recent studies have demonstrated that UAS remote sensing is able
to produce good estimates of ET with the root-mean-square-deviation
(RMSD) around 10–30% of the measured fluxes over irrigated crops
(Hoffmann et al., 2016; Kustas et al., 2018; Ortega-Farías et al., 2016)
and grasslands (Brenner et al., 2017). Most of them focused on using
thermal approaches based on models of the Two Source Energy Balance
(TSEB) family to calculate sensible heat flux and estimated ET as the
residual component of the surface energy balance (Kustas and Norman,
1999). However, sensible heat estimates are very dependent on the
accuracy of radiometric temperature, which is quite low in the case of
the typically miniaturized uncooled thermal cameras on board of UAS
(Wang et al., 2018a). An alternative of ET estimation is vegetation-
driven approaches, e.g. Priestley–Taylor Jet Propulsion Laboratory
model (PT-JPL, Fisher et al., 2008), which are less sensitive to the
quality of radiometric temperature (García et al., 2013).

Compared to ET, reports on GPP and WUE estimates from UAS
imagery are even scarcer. Studies usually do not estimate GPP and WUE
directly but proxies such as stomatal conductance, pigments or leaf area

index (LAI). For instance, Zarco-Tejada et al. (2013b) demonstrated
chlorophyll fluorescence, physiological indices (e.g. photochemical re-
flectance index, PRI), and structural indices (e.g. normalized difference
vegetation index, NDVI) and enhanced vegetation index derived from
UAS observations correlate well with EC CO2 fluxes. Furthermore, to
calculate ecosystem WUE and compare estimates of water and CO2

fluxes with other approaches (e.g. EC techniques), it is necessary to give
quantitative estimates of GPP and ET.

Models of ET and GPP for routine UAS monitoring should be op-
erational and parsimonious with limited parameterization and data
inputs (ideally all data inputs from UAS). Remote sensing satellite
models for joint ET and GPP estimation can be classified into ‘top-down’
and ‘bottom-up’ approaches (Houborg et al., 2009; Wang et al., 2018b).
‘Top-down’ methods, e.g. CASA light use efficiency (LUE) model (Potter
et al., 1993), the MODIS GPP and ET algorithms (Mu et al., 2007;
Running et al., 2004) or PT-JPL (Fisher et al., 2008), are simpler and
can be directly driven with remote sensing imagery. The ‘top-down’
models treat ecological behavior of the canopy as a whole and estimate
the actual status of ecosystem functioning by reduction from the po-
tential status with various environmental constraints. One example is
the joint PT-JPL model and LUE model, which unified the two often
used ‘top-down’ ET and GPP models with the same environmental
constraints and has been demonstrated to successfully simulate ET and
GPP dynamics in a temperate deciduous forest (Wang et al., 2018b).

The temporal upscaling of land surface fluxes from the in-
stantaneous to the diurnal and model benchmarking with EC mea-
surements are important issues (Chen et al., 1999; Gentine et al., 2007;
Kim et al., 2006; Morillas et al., 2014). Due to the particle dispersion
process, areas within the footprint contribute differently to EC mea-
surements depending on various factors, e.g. the distance between
source areas and sensors, sensor height, canopy height, surface rough-
ness, wind speed and variance (Metzger, 2018). Traditionally, the
coarse resolution satellite imagery cannot assess the importance of
considering the variations of the EC footprint in the model bench-
marking with EC measurements. The VHR imagery provides explicit
information on surface conditions matching the variability of EC foot-
print during the course of the day. Regarding ET, most of the studies
deal with the diurnal simulation by assuming the self-preservation of EF
(the constant daily EF) in the diurnal evolution of the surface energy
budget (Brutsaert and Sugita, 1992; P. D. Colaizzi et al., 2006). Another
approach is to consider the spatial heterogeneity and variations of the
EC footprints and average all instantaneous estimates during the course
of the day. A key part for proper model validation is to sample different
regions from the UAS imagery that change during the course of a day to
address the variations of EC footprints. This kind of analysis can also
improve our understanding of diurnal upscaling processes.

Despite the virtually unlimited potential of UAS to provide cen-
timeter-level VHR data, the necessity for spatial detail depends on the
purpose of the study and site conditions. For example, detecting plant
diseases would require a higher spatial resolution than mapping the
spatial variability of transpiration across canopies. Further, there is a
tradeoff between image spatial resolution and coverage. Flying UAS at a
low altitude can obtain VHR images but small coverage and vice versa.
Low flying height requires more images or flights to cover the target
area and leads to lower efficiency of UAS campaigns. Thus, optimizing
spatial resolution and flying height for UAS campaigns is important. To
achieve that, a first step to design the spatial resolution for observing
missions is to characterize the landscape spatial heterogeneity
(Garrigues et al., 2006). The semivariogram, which measures spatial
interdependence between observations as a function of their distance,
has been often adopted to quantify the heterogeneity of the land surface
(Curran, 1988; Kim et al., 2006).

Understanding the influence of landscape heterogeneity on the
scaling behavior of surface fluxes with different spatial resolutions is
critical (McCabe and Wood, 2006; Sharma et al., 2016). Spatial scaling
experiments that resample model inputs to compare simulated land
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surface fluxes with EC observations is an efficient approach to quantify
the influence of spatial resolutions on the modeling performance
(Ershadi et al., 2013). Besides the heterogeneity of landscapes, VHR
maps of land surface fluxes also enable to consider the heterogeneity of
source contribution within the EC footprint. Additionally, few studies
have resources to spatially validate the fluxes with numerous in-situ
sensors (Kustas et al., 2018). For spatial validation, some studies
compare UAS based stress indicator with in-situ measurements, e.g.
stomatal conductance and leaf water potential, but there is a potential
mismatch between image at canopy scale and measurements at leaf
scale (Gago et al., 2015; Zarco-Tejada et al., 2013b). We hypothesize
that if the spatial patterns of simulated surface fluxes from UAS imagery
are not accurate, model performance will not change with the different
aggregation methods (arithmetic or weighted means of the source
contribution) within the EC footprint. This comparison with different
aggregation methods can provide evidence of the accuracy of the spa-
tial patterns mapped from UAS to some extent.

The overall objective of this study is to develop and validate an
operational methodology for mapping land surface energy, ET, GPP and
WUE at an optimal spatial resolution. Specific objectives include: 1) to
propose an operational methodology using UAS optical and thermal
imagery with minimum ground observations to map land surface fluxes,
2) to quantify the accuracy of the simulated instantaneous and diurnal
land surface variables with EC observations and assess the importance
of considering variations of the EC footprint in the temporal upscaling
from the instantaneous to the diurnal, and 3) to evaluate the influence
of heterogeneity and spatial resolution on the flux simulations and
identify the optimum spatial resolution to benchmark models with EC
tower observations.

2. Study site and in-situ data

This study was conducted in an 11 ha short rotation coppice (SRC)
willow bioenergy plantation EC site. This site is located at Risoe,
Denmark (DK-RCW) with latitude 55°41′31.95″N, longitude
12°6′14.69″E and altitude 15m above mean sea level. This site is
temperate maritime climate with a mean annual temperature of 8.5 °C
and precipitation around 600mm. The soil texture is loam. The willow
species in the field are Salix viminalis, Salix schwerinii and Salix triandra.
In February of 2016, all willow trees were harvested and the site was
covered by bare soil before May 2016. Then willow grew to the height
of approximate 4m during growing seasons of 2016 and 2017.
Rapeseed (Brassica napus) was grown in the nearby field (East of the
SRC). A grass covered access path separates the willow plantation from
the rapeseed field.

The EC observation system has employed continuously from 2012
until now. A 12m tall mast enables EC flux measurements in the at-
mospheric boundary layer above the willow plantation as Fig. 1. The EC
system consisted of an enclosed path CO2 and H2O sensor LI-7200
(mode 177, LI-COR, Lincoln, NE, USA) and a three-dimensional ultra-
sonic anemometer and thermometer HS-50 (Gill Instruments, Ly-
mington, UK). Turbulent flux data were recorded at 10 Hz (CR-3000
logger, Campbell, City, USA). The raw data post-processing followed
the same scheme as in Pilegaard et al. (2011), Ibrom et al. (2007) and
Fratini et al. (2012), i.e. the standard processing now adopted by ICOS.
For EC data processing, the flux partitioning to separate GPP and re-
spiration was done by the look-up table approach (Reichstein et al.,
2005) based on the R-package REddyProc (Wutzler et al., 2018) with
the half-hourly net ecosystem exchange, Ta and incoming shortwave
radiation (SWin) as inputs. The processed EC data, ET and GPP, were
used in this study for model validation.

In-situ micrometeorological observations used for this study in-
cluded radiation components, the fraction of intercepted
Photosynthetically Active Radiation (fIPAR), air temperature (Ta), air
pressure (Pa), relative humidity (RH), soil moisture (SM), wind speed
(WS) and direction (WD). A CNR4 net radiometer (Kipp & Zonen, Delft,

the Netherlands) installed at 10m height of the EC tower continuously
measured components of the surface energy balance, which include
SWin, outgoing shortwave radiation (SWout), incoming longwave ra-
diation (LWin) and outgoing longwave radiation (LWout).
Photosynthetically Active Radiation (PAR) measurements were ob-
tained from ten PAR sensors (Apogee SQ-200, Apogee Instruments Inc.,
Logan, USA) including one sensor to measure the incident PAR above
the canopy (PARabove), one sensor to measure canopy-reflected PAR
(PARreflected) and eight sensors to measure understory PAR (PARbelow).
For in-situ SM measurements, field campaigns with a portable TDR
probe (Field Scout TDR 300 portable moisture meter, Spectrum
Technologies Inc., Plainfield, IL, USA), were conducted to measure the
spatial variability of SM on 18th June 2017 as shown in Fig. 1. Fixed
probes (5TM ECH2O, Decagon Inc., Pullman, WA, USA) were installed
in the willow plantation to measure the temporal variability of SM.

3. Methods and data

3.1. Unmanned Aerial System and campaigns

This UAS consisted of a vehicle and a payload, as shown in Fig. 2.
For the vehicle, we used an off-the-shelf DJI hexacopter Spreading
Wings S900 equipped with a DJI A2 flight controller. It can carry a
payload with an approximate maximum weight of 2 kg. The payload
included an imaging system (multispectral, thermal infrared and Red-
Green-Blue RGB cameras), a Global Navigation Satellite System (GNSS)
and a Single-Board Computer (SBC) Beaglebone Black for sensor com-
munication and data storage. Details on the GNSS onboard, refer to
Bandini et al. (2018). Additionally, we used a real-time kinematic
(RTK) GNSS (Trimble GNSS R8s, Trimble Inc., CA, USA) to measure
ground control points (GCPs) to improve the geometric accuracy of the
image mosaicking process. The imaging system included three sensors:
a multispectral camera, a thermal infrared camera and an RGB camera.
The multispectral camera (MCA, Multispectral Camera Array, Tet-
racam, Chatsworth, CA, USA) consists of an array of six individual
channels for the visible and near-infrared bands, namely 470, 530, 570,
670, 710 and 800 nm with the full width at half maximum for each
channel is 10 nm. The thermal infrared camera (FLIR Tau2 324, Wil-
sonville, OR, USA) has an uncooled VOx microbolometer. It records
longwave radiation in the wavelength range from 7.5 to 13.5 μm and is
able to measure temperature ranging from −25 °C to 100 °C in high
gain mode. The RGB camera (Sony DSC-RX100) was used to produce
the Digital Surface Model (DSM). Detailed information on sensors is
shown in Table 1.

A total of eight UAS flight campaigns were conducted at the willow
site during different growing stages of willow and weather conditions in
2016 and 2017 as shown in Table 2. It should be noted that during the
first two flights, the EC system did not work and these two flights were
only used to simulate land surface energy balance and SM, which were
further compared with in-situ measurements. The flight paths (Fig. 1)
were designed using the DJI autopilot software. Before each flight
campaign, the FLIR thermal camera was turned on half an hour for
stabilization.

3.2. Image processing and validation

Before image processing, thorough laboratory geometric and
radiometric calibrations of imaging sensors were conducted. Geometric
calibration of the RGB and multispectral cameras was conducted with
standard checkerboard calibration patterns to estimate intrinsic camera
geometric parameters. Radiometric calibration for each channel of MCA
was conducted with an integrating sphere (ISP2000, Instrument
Systems, München, Germany) and the in-lab calibration showed that
the bias of the measured radiance was within±4.8%. For details, refer
to Wang et al. (2017). FLIR was calibrated using a Landcal P80P black
body radiation source (Land Instruments, Leicester, United Kingdom)
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with ten different target temperatures ranging from 0 to 45 °C and three
ambient temperatures ranging from 0 °C to 30 °C. This calibration re-
sulted in in-lab accuracy RMSD of 0.50 °C with the same ambient and
target temperatures and RMSD of 0.95 °C with different ambient and
target temperatures (Wang et al., 2018a).

Images obtained from UAS flight campaigns were georeferenced
using UAS GNSS data. Then these georeferenced images along with pre-
calibrated intrinsic camera geometric parameter values were imported
into Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia), which was
based on the structure from motion (SfM) algorithm (Westoby et al.,
2012), to generate orthophotos and DSM. After that, high accuracy
GCPs were added to the aligned images and optimize the estimated
camera positions and angles. The DSM generated from RGB images was
imported into multispectral and thermal projects in Agisoft to aid the
orthorectification of multispectral and thermal images to remove relief
displacement. Finally, the generated multispectral and thermal ortho-
photos were converted to six band reflectance and surface brightness
temperature (Tb), respectively.

The six band reflectance was calculated based on the radiance
method. The incoming solar spectral radiance (Lin, λ) measured by a
handheld spectroradiometer (ASD, FieldSpec HandHeld 2™, Analytical
Spectral Devices, Inc., Boulder, USA) with a Spectralon panel (a

nominal reflectance of 99.99%) on the ground before and after each
flight campaign. The averaged measurements from ASD were used as
Lin, λ. The at-sensor radiance (LMCA, λ) collected by MCA during the
flight campaigns was used to represent the reflected radiance. Due to
the low flight altitude and the limited influence of atmospheric at-
tenuation, the difference between the reflected radiance at the sensor
and at the surface was neglected. With the Eq. (1), the reflectance for
each band was calculated. The near-infrared (800 nm) and the red band
(670 nm) reflectance were used to calculate NDVI ((ρ800− ρ670)/
(ρ800+ ρ670)) to infer the vegetation growth.

=ρ
L
Lλ
MCA,λ

in,λ (1)

where ρλ is the reflectance from MCA. λ is the wavelength (nm). LMCA, λ
is the reflected spectral radiance measured by MCA
(W·m−2·sr−1·nm−1). Lin, λ is the incoming spectral radiance measured
by ASD with a Spectralon panel on the ground (W·m−2·sr−1·nm−1).

To validate the accuracy of acquired UAS data, reflectance of tar-
paulins with four different colors (green, blue, black and silver) was
measured with the ASD for each flight. Tarpaulins are acknowledged to
have low anisotropic effects (Korpela et al., 2011). The measured re-
flectance by ASD on the ground was used to validate reflectance

Fig. 1. Overview of Risoe EC flux site and flight paths of campaigns. The flux tower is in the middle of the willow plantation. The red dashed line shows the flying
path of UAS flight campaigns. Red stars indicate the location of the understory PAR sensors. Yellow dots show the location of SM samples conducted on 18th June
2017. The blue circle indicates the field of view (FOV) of CNR4, when willow height is 0m. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. (a) DJI S900 vehicle platform and (b) the payload including an RGB camera, a thermal infrared camera and a multispectral camera.

S. Wang, et al. Remote Sensing of Environment 229 (2019) 14–31

17



obtained from MCA. The validation was shown for 670 and 800 nm, as
only these bands were used to calculate NDVI as model inputs.

For thermal infrared images, the generated Tb orthophotos were
compared with the brightness temperature Tb_CNR4 converted from the
outgoing longwave radiation (LWout_CNR4) from CNR4 on the tower (Eq.
(2)). It should be noted that there may be uncertainties for this com-
parison, since FLIR and CNR4 have different thermal wavelength re-
sponses and sensor field of views (FOVs). FLIR measures longwave ra-
diation ranging from 7.5 to 13.5 μm, while CNR4 has a broader
response range and measures longwave emission from 4.5 to 45 μm.
The FOV of FLIR is 35°× 27° (Table 1), while the downward FOV of
CNR4 is 150°. However, this comparison was necessary and can provide
insights into the quality of the thermal data to some extent. Ad-
ditionally, this comparison was equivalent to the comparison between
LWout_CNR4 and the longwave radiation (LWout_FLIR) estimated from FLIR
Tb. This was important to understand uncertainties in calculating land
surface energy balance components with UAS imagery. Thus LWout_CNR4

was converted to brightness temperature Tb_CNR4 by applying Stefan
Boltzmann's law as Eq. (2) to compare with Tb from FLIR.

= ⎛
⎝

⎞
⎠

T _
LW _

σb CNR4
out CNR4

1/4

(2)

where σ is the Stefan-Boltzmann constant (5.67× 10−8W·m−2·K−4).
Tb_CNR4 is the brightness temperature (K). LWout_CNR4 is the longwave
radiation from CNR4 (W·m−2).

To obtain the corresponding pixels in the field of view (FOV) of
CNR4, the flux tower position, FOV and sensor height of CNR4, and
vegetation height (Table 2) were used to calculate the radius of the FOV
areas on the ground according to Eq. (3), as one example shown in
Fig. 1.

= − ⎛
⎝

⎞
⎠

r (H h) tan FOV
2 (3)

where r is the radius in m. H is the sensor height (10m). h is the height
of the willow ranging from 0 to 4.95m during the study period
(Table 2). FOV is the downward FOV of CNR4, namely 150°.

3.3. Model description

The joint ‘top-down’ PT-JPL ET and LUE GPP model (Wang et al.,
2018b) was used to simulate the land surface fluxes from UAS imagery.
Such a ‘top-down’ approach is based on simple scaling rules using re-
mote sensing estimates of the fraction of absorbed radiation by canopies
and requires limited model inputs and parameters. Comparisons have
shown that PT-JPL routinely outperforms more sophisticated modeling
schemes using both satellite data (Ershadi et al., 2014; McCabe et al.,
2017) and proximal in-situ sensors (Morillas et al., 2013), but to our
knowledge, the PT-JPL model has not yet been tested using UAS data.
LUE models were widely applied to estimate GPP dynamics across
various ecosystems at global and regional scales (Running et al., 2004).
Considering model performance, complexity and operational cap-
abilities, this joint model (Wang et al., 2018b) was selected for this
study.

The ET part of this joint model comes from the PT-JPL model (Fisher
et al., 2008), which is based on the Priestley and Taylor (1972) equa-
tion for potential ET and incorporates eco-physiological variables to
down-regulate the potential value to the actual one. PT-JPL is a three-
source evapotranspiration model including wet surface evaporation
(Ei), transpiration (Ec) and soil evaporation (Es), as described in Eqs.
(4)–(7).

= + +λET λEi λEc λEs (4)

= ∆ ∆ +f αλEi · /( γ)·Rncwet (5)
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= ∆ ∆ + −fλEs ·α /( γ) (Rns G)SM (7)

where λET is the latent heat flux for total evapotranspiration (W·m−2).
λEi is the evaporation from the intercepted water (W·m−2). λEc is the
transpiration (W·m−2). λEs is the evaporation from soil (W·m−2). fg is
the green canopy fraction reflecting the proportion of active canopy. fM
is the plant moisture constraint. fTa is the air temperature constraint
indicating the limitation of temperature on photosynthesis. fSM is the
SM constraint. fwet is the relative surface wetness to partition evapo-
transpiration from the intercepted water and transpiration (Fisher et al.,
2008). These constraints vary from 0 to 1 to account for the relative
reduction of potential λET under limiting environmental conditions.
Rnc and Rns are Rn for canopy and soil, respectively. The partitioning
of PAR and Rn between canopy and soil is calculated following the
Beer-Lambert law (Supplemental Table S1). G is the ground heat flux
and is calculated based on a ratio to the soil net radiation (Kustas and
Daughtry, 1990). Δ is the slope of saturation-to-vapor pressure curve. γ
is the psychrometric constant. α is an empirical ratio of potential eva-
potranspiration to equilibrium potential evapotranspiration (PT coef-
ficient) replacing the atmospheric demand and surface resistance effects
in Penman-Monteith ET equation. The suggested value for the PT-JPL
model is 1.26 (Fisher et al., 2008). The supplemental Table S1 shows
detailed information on the model constraints and parameters for this
joint LUE GPP and PT-JPL ET model.

The GPP model shares similar features with other widely used LUE
models, e.g. the MODIS algorithm (Running et al., 2004), but it also has
inputs to account for the photosynthetic and transpiring proportion of
the canopy (green vegetation fraction) and the plant moisture con-
straint based on Fisher et al. (2008).

= f f f ·fGPP ε ·PARc· · ·g M Ta VPDmax (8)

where GPP is the gross primary productivity (μmol·C·m−2·s−1). εmax is
the maximum LUE (μmol·C·m−2·MJ−1). PARc is PAR intercepted by the
canopy (MJ·m−2·s−1) based on the extinction of PAR within the canopy
using the Beer-Lambert law (Supplemental Table S1). fg, fM and fTa are

biophysical constraints and have the same meaning as in Eq. (11). fVPD
is the constraint indicating the stomatal response to water vapor pres-
sure deficit (VPD). The absorbed PAR (APAR) is equal to PARc · fg. All
constraints range from 0 and 1 and represent the reduction of maximum
GPP under limiting environmental conditions. For more details, see
Supplemental Table S1 and Wang et al. (2018b).

This joint model has two parameters, maximum LUE (εmax) and
optimal temperature (Topt), which need to be calibrated or extracted
from look-up tables based on plant functional types. A study on long-
term ET and GPP simulation based on this joint model has been applied
in the nearby temperate deciduous beech forest Soroe (Wang et al.,
2018b). Thus, this study used the optimized values from Soroe with
εmax equal to 2.97 g·C·m−2·MJ−1 and Topt equal to 16.51 °C as para-
meter values for this study.

Besides ET and GPP, this model can also estimate ecosystem LUE
(g·C·MJ−1), evaporative fraction (EF, no unit) and WUE (g·C·kg−1) as
shown in Eqs. (9)–(11). These variables provide valuable information
for precision agriculture and irrigation management.

=
−

EF ET
R Gn (9)

=LUE GPP
APAR (10)

=WUE GPP
ET (11)

3.4. Model application: Instantaneous and diurnal

The detailed workflow of the model application is shown in Fig. 3.
We performed two types of simulations using UAS imagery: in-
stantaneous (at the time of flight) and diurnal (every half an hour
during the daytime of the flight campaign day). The main difference
between both is that in the first case the net radiation (Rn) was esti-
mated using UAS images, while in the diurnal simulations in-situ

Table 2
Information on UAS flight campaigns (RH: relative humidity; Ta: air temperature; WS: wind speed at 10m; Pa: air pressure; h is the tree height).

Date Acquisition Time Flying height (m) Weather RH (%) Ta (°C) WS (m s−1) Pa (kPa) h (m) Growth stage

2-May-2016 14:40–14:55 12 Cloudy 51.60 15.17 6.60 101.88 0.0 Early growth
12-May-2016 10:44–10:55 12 Sunny 45.85 17.31 5.11 100.62 0.0 Early growth
25-May-2016 10:11–10:23 12 Sunny 62.67 21.05 3.30 100.89 0.0 Early growth
7-Oct-2016 11:41–11:55 90 Sunny 69.87 9.94 5.62 102.05 4.05 Dense vegetation
19-May-2017 12:07–12:19 90 Sunny 79.25 19.27 2.13 100.41 4.24 Dense vegetation
22-May-2017 10:15–10:28 90 Cloudy 70.82 14.72 2.91 101.66 4.34 Dense vegetation
26-May-2017 11:13–11:26 90 Sunny 72.56 16.72 4.47 101.54 4.45 Dense vegetation
18-Jun-2017 12:39–12:51 90 Cloudy 71.79 21.81 4.42 101.62 4.95 Dense vegetation

Fig. 3. The workflow of the instantaneous simulation. Green
boxes represent inputs from UAS imagery. Blue boxes are in-
situ measurements from the EC tower. Yellow boxes belong to
the simulated intermediated variables. Orange boxes are the
simulated final variables. Variables in green, yellow and or-
anges boxes were validated by in-situ measurements. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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measurements of Rn were used. For the instantaneous simulation, in-
puts from UAS imagery are shown in the green boxes of Fig. 3. Me-
teorological inputs for modeling included SWin, Ta, RH, WS and Pa,
shown in the blue boxes of Fig. 3. With these inputs, this modeling
framework simulated intermediate variables such as the SM proxy, fIPAR
and fAPAR and final variables, e.g. Rn, ET, GPP.

The first step for the instantaneous simulation was to estimate Rn,
which is determined by SWin, albedo (α), LWin and LWout, as shown in
Eq. (12). SWin in this study was obtained from the EC tower. α was
calculated based on the simple ratio vegetation index (SR) as Eqs.
(13)–(14), which shows that albedo decreases as vegetation greenness
increases (GAO, 1995). This method has been demonstrated to be an
effective approach for various types of ecosystems (Mo et al., 2014).

= − + +Rn (1 α)SW LW LWin in out (12)

= − −α 0.28 0.14e( 6.08/SR )2 (13)

= + −SR (1 NDVI)/(1 NDVI) (14)

LWout was estimated from UAS FLIR Tb by applying Stefan
Boltzmann's law. LWin for the instantaneous simulation was calculated
by Stefan Boltzmann's law with atmospheric emissivity εa as Eqs.
(15)–(18) (Patra, 1996).

= εLW σTa ain
4 (15)

= − + − +ε 1 (1 δ)ea
(1.2 3δ) (16)

=δ 46.5
T

e
a

0 (17)

=
⎡
⎣

⎛
⎝

− ⎞
⎠

⎤
⎦e RH·6.11e0

L
R

1
273.15

1
Ta

v
v (18)

where e0 is the actual water vapor and was calculated based on the
Clausius-Clapeyron equation. Lv= 2.5×106 (J kg−1) is the latent heat
of vaporization and Rv=461 (J kg−1K−1) is the gas constant for water
vapor. Ta is the air temperature (K).

The second step for the modeling framework (Fig. 3) was to estimate
various environmental constraints from UAS NDVI and meteorological
variables for the joint PT-JPL and LUE model, as shown in the Sup-
plemental Table S1. Among them, the SM constraint was obtained from
UAS thermal and optical observations. The SM proxy was calculated
based on the temperature-vegetation triangle approach with theoretical
dry and wet edges calculated from meteorological variables (Moran
et al., 1994; Zhu et al., 2017). With this approach, the SM proxy could
be used to indicate both spatial and temporal variations of SM. The
details on using the temperature-vegetation triangle approach to esti-
mate SM conditions can be found in Supplemental Section S2.

To obtain the actual land surface temperature (Ts) from FLIR Tb, it is
necessary to conduct the atmospheric correction to remove the long-
wave radiation reflected by the land surface and the upwelling long-
wave radiation to the sensor from the atmosphere. As shown in Eq.
(19), σTb

4 indicates the at-sensor thermal radiation recorded by FLIR.
ε σTs s

4 is the thermal radiation emitted from the surface. LWin is the
downwelling thermal radiation from the atmosphere to the land sur-
face. The surface emissivity (εs) can be calculated based on the relation
with NDVI as Eq. (20) (Van de Griend and M. Owe, 1993). LWatm is the
upwelling longwave radiation from the atmosphere to the sensor. Due
to the low flight altitude and simplicity, this study neglected the in-
fluence of LWatm as other UAS studies (e.g. Hoffmann et al., 2016;
Ortega-Farías et al., 2016; Brenner et al., 2017).

= + − +σT ε σT (1 ε )LW LWb
4

s s
4

s in atm (19)

=
⎧

⎨
⎩

>
+ < <

<
ε

0.986 (NDVI 0.608)
1.0094 0.047 ln(NDVI) (0.131 NDVI 0.608)

0.914 (NDVI 0.131)
s

(20)

where σ is the Stefan-Boltzmann constant (5.67×10−8W·m−2·K−4). Ts

is the corrected land surface temperature (K). Tb is the brightness
temperature from FLIR (K). LWin is incoming longwave radiation
(W·m−2). LWatm is the upwelling longwave radiation (W·m−2) from the
atmosphere to the sensor and is neglected in this study due to the low
flight altitude.

Finally, with the simulated Rn and environmental constraints, the
instantaneous simulation used the joint LUE and PT-JPL model to si-
mulate ET, GPP, EF, LUE and WUE as shown in Fig. 3.

Based on the instantaneous simulation, this study also conducted
the diurnal simulation to simulate the land surface fluxes for every half
an hour during the flight campaign day to be complementary to the
instantaneous simulation. With the observed Rn and meteorological
variables from the EC tower, the diurnal simulation used spatially re-
solved information of vegetation and SM from UAS to simulate each
half an hour during the course of the day. As the simulated VHR maps
of fluxes can consider the variations of the EC footprints during the
course of the day, the diurnal simulation can provide a precise way in
validation of the temporal upscaling process from the instantaneous to
the diurnal. Further, the EC footprints change positions with atmo-
spheric conditions during the day. This offers opportunities for the EC
technique to sample different areas around the tower to validate the
obtained spatial patterns from UAS imagery. However, there are two
assumptions for the diurnal simulation of this study. Vegetation and SM
conditions are constant during the course of the day. Pixels in the si-
mulated area have the same Rn as the observations from CNR4. For Rn,
with a relatively homogeneous underlying surface on the EC flux site,
all pixels are almost the same.

In the diurnal simulation, we further evaluated two schemes to scale
up the instantaneous estimates of LE to the daytime averaged values.
One scheme is to use EF obtained from the instantaneous simulation
and assume EF remains constant during the daytime to calculate the
averaged LE of daytime. Another scheme is by averaging all the in-
stantaneous estimates of LE along the entire daytime period by con-
sidering the variations of the EC footprint with the aid of VHR imagery.
Finally, the EC observations were used to compare the averaged day-
time LE from these two schemes.

3.5. Model validation

This study validated intermediate and final variables (Fig. 3) in the
modeling methodology. The observed fraction of intercepted PAR
(fIPAR_obs) as Eq. (21) was used to validate the simulated fIPAR (equation
in the supplemental Table S1). As shown in Eq. (2), fIPAR_obs was cal-
culated based on measurements of the incident PAR above the canopy
(PARabove), canopy-reflected PAR (PARreflected) and the average of PAR
below the canopy (PARbelow) from eight understory sensors in Fig. 1.

= − −f _
PAR PAR PAR

PARIPAR obs
above reflected below

above (21)

The simulated radiation components, e.g. SWnet, LWin, LWout

(equivalent to Tb validation), and Rn were validated with measured
radiation components within the FOV of CNR4 (Fig. 1). SM measure-
ments from the campaign on 18th June 2017 were used to validate SM
proxies estimated from the temperature-vegetation triangle approach.
Details refer to Supplemental Section S2.

To validate the simulated final variables (e.g. LE, GPP, EF, LUE and
WUE), the measured land surface fluxes from the EC tower were used.
To compare with the simulated spatial land surface fluxes from UAS
imagery, a footprint model, Flux Footprint Prediction (FFP), based on a
scaling approach for the crosswind distribution of the flux footprint
(Kljun et al., 2015) was used. At given EC site conditions and mea-
surement height, the source area for a flux measurement varies with
wind direction and atmospheric stability. This offers the opportunity to
measure fluxes from different parts of the surface and to validate the
spatial flux heterogeneity. The spatial source density distribution
function can be described with 2D flux footprint functions that are
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derived from atmospheric flow models (Metzger, 2018). In the flux si-
mulation validation, the estimated source area density distribution was
used together with a VHR resolution map of simulated fluxes to match
the spatial resolutions between the UAS simulations and the EC fluxes
and, hence, made them comparable. A threshold of 75% cumulated
source contribution around the maximum of the footprint function was
chosen to represent the source of EC measurements. Due to the long
tails of the distribution function, the EC source area size increases
dramatically beyond 75% of cumulated source area contribution (Kljun
et al., 2015) whilst the source area density becomes very small.

For the EC system, due to the energy balance closure issue, the sum
of measured sensible heat (H) and latent heat (LE) is often not equal to
the available energy (net radiation minus ground heat flux, Rn−G). To
reduce the influence of the non-closure of energy balance, Energy
balance Closure Ratio (ECR), as shown in Eq. (22), for each day was
calculated and only measurements with EBR>80% were used for va-
lidation.

=
∑ +
∑ −

ECR
(H LE)
(R G)n (22)

Further, we also compared the simulated results with three different
energy balance closure correction methods, which attributed the re-
sidual of the energy balance closure based on residual correction
method (only to H or LE) and Bowen Ratio energy balance correction
(Knauer et al., 2018).

1. Attribute all closure errors to H and keep LE as the uncorrected raw
data (Larsen et al., 2016). LE_EC1 was used to indicate the corrected
LE from this method.

2. Attribute all closure errors to LE and keep H as the uncorrected raw
data. LE_EC2 was used to represent the corrected LE from this
method.

3. Assuming that the ratio of sensible heat to LE (Bowen ratio) is
correct, the residual of the energy balance is attributed to sensible
and latent heat flux according to the Bowen ratio (Twine et al.,
2000). LE_EC_BR was the corrected LE by this method.

=LE_EC1 LE_EC_raw (23)

= − −LE_EC2 R G H_EC_rawn (24)

= −
+

LE_EC_BR R G
H_EC_raw LE_EC_raw

LE_EC_rawn

(25)

where LE_EC_raw is raw measurements of the latent heat flux (W·m−2).
H_EC_raw is raw measurements of the sensible heat flux (W·m−2). Rn is
the net radiation (W·m−2). G is the ground heat flux (W·m−2).

To validate the simulated land surface fluxes, statistics including
root mean square deviation (RMSD), correlation coefficient (R) and
relative errors (RE) were used.

∑= −
=

RMSD (sim obs ) /N
i 1

N

i i
2

(26)

=
∑ − −

∑ − ∑ −
=

= =

R
(sim sim)(obs obs)

(sim sim) (obs obs)
i 1
N

i i

i 1
N

i
2

i 1
N

i
2

(27)

= −RE (sim obs)/obs (28)

where sim is the simulation. obs is the observation. i refers to the ith
simulation or observation. N is the total number. sim is the average of
the simulation. obs is the average of the observation.

3.6. Model error propagation analysis

To investigate the potential error propagation from the UAS ima-
gery to the simulated land surface fluxes, e.g. Rn, SM, ET and GPP, an
error propagation analysis was conducted. This analysis includes two

cases, the early growth stage with the atmospheric forcing on 25th May
2016, and a dense vegetation growth stage with the atmospheric for-
cing on 7th October 2016. For the early growth stage, the pixel was
assumed to be NDVI equal to 0.35 with potential errors of± 0.1 and Tb

equal to 27 °C with potential errors of± 2 °C. For the dense vegetation
stage, the pixel was assumed to have NDVI equal to 0.82 with potential
errors of± 0.1 and Tb equal to 10 °C with potential errors of± 2 °C.
Simulations were run with varying levels of NDVI and Tb to simulate
Rn, SM, ET and GPP. Then, the simulated Rn, SM, ET and GPP were
compared with the simulated fluxes at the reference condition
(NDVI=0.35, Tb= 27 °C and NDVI=0.82, Tb= 10 °C) to estimate
RE. This can help us to analyze the error propagation within the
modeling methodology, further it can provide insights on the un-
certainty of the simulated land surface fluxes respect to the un-
certainties in UAS imagery.

3.7. Spatial heterogeneity analysis

One of the major benefits of UAS imagery is that VHR data can be
used to detect spatial differences in the field, for instance, to further
support spatial management in precision agriculture. Further, these
VHR data can also help to identify the optimal spatial resolution (or the
optimal UAS flying height) to capture significant differences in the
landscape (Garrigues et al., 2006) and model benchmarking with EC
(Kim et al., 2006). Semivariogram is an effective approach to assess the
spatial structure of the heterogeneity (Curran, 1988). Therefore, this
study used this approach to analyze the spatial structure of different
variables including NDVI, Ts, and surface fluxes. The optimum resolu-
tion was identified to be half of the range of the semivariogram to
capture differences between components in the landscape (Rahman
et al., 2003). To avoid information from other landscapes (e.g. the
nearby farm), the semivariogram analysis was only conducted for the
willow plantation area, which is the source area for the EC measure-
ments. The semivariograms of NDVI, Tb, Rn, GPP, LE, EF, LUE and WUE
for 25th May 2016 (early growth stage) and 07th Oct 2016 (dense
vegetation stage) were analyzed to quantify the change of the spatial
structure of the land surface fluxes.

A scaling experiment was conducted to assess the effects of ag-
gregating UAS imagery pixels on the performance of the model
benchmarking with EC observations. The purpose of this experiment
was to establish the optimum spatial resolution for model validation
and to have a confirmation of the validity of the spatial patterns of
surface fluxes. Model inputs, NDVI and Ts, were aggregated to coarser
spatial resolution and then these different spatial resolution data were
used to simulated GPP and LE. Since this EC flux site is homogeneous,
we selected the most heterogeneous UAS imagery collected on 25th
May 2016 during the early growth period of vegetation for this ex-
periment. The initial NDVI and Ts with a spatial resolution of 0.03m
were aggregated into 0.3, 1.5, 3, 6, 12, 24m. These aggregated spatial
resolution data were used as inputs of flux modeling and the simulated
land surface fluxes were compared to EC observations.

To evaluate the influence of considering the heterogeneity of flux
source contribution, we compared differences in model validation when
using the arithmetic mean or the source weighted mean for pixels
within the EC footprint. Calculating the arithmetic mean is equivalent
to assuming that all pixels in the footprint contribute equally to fluxes
measured by the EC tower, while the source weighted mean reflects
that different parts of the footprint contribute differently to EC fluxes.
Due to the particle dispersion process, the contribution from each pixel
within the footprint is not spatially equal. This comparison provides
insights into the importance of considering the source weighted EC
footprint. Further, as we hypothesized in the introduction, if the si-
mulated pattern is right, there should be an improvement for taking the
source weighted contribution into consideration. Thus, this validation
also provided the accuracy of the simulated spatial patterns to some
extent.
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4. Results and discussion

4.1. Image validation

The produced orthophotos of NDVI and Tb from UAS images were
shown in Fig. 4. The UAS flight campaigns of this study were conducted
at a low altitude (12m in the first three flights and 90m in last five
flights as shown in Table 1). UAS studies at such low flight altitude
normally neglect the atmospheric correction, e.g. Hoffmann et al.
(2016), Ortega-Farías et al. (2016) and Brenner et al. (2017). Our study
only corrected the thermal data with the surface emissivity and the
incoming longwave radiation, neglecting the effect of the atmospheric
transmission from the surface to the sensor. To check the quality of
these orthophotos for ET and GPP modeling, reflectance and Tb were
validated with in-situ measurements as shown in Fig. 5.

Fig. 5 (a) indicates that there was a good accuracy for the re-
flectance at 670 and 800 nm with R2> 0.98 and low RMSD about 3%.
The reflectance from MCA is slightly lower than the reflectance from
ASD on the ground (−1.11% and −1.48% for 800 nm and 670 nm,
respectively). The radiance at the sensor tends lower than the reflected
radiance at the surface could be due to the uncorrected atmospheric
effects e.g. Rayleigh scattering, errors in the sensor radiometric cali-
bration, or different FOVs of the validation sensor (ASD) and the MCA
camera. However, this study used vegetation indices, which can further
reduce the limited uncertainties in reflectance induced by the un-
corrected atmospheric effects. For instance, Yu et al. (2016) assessed

the influence of atmospheric correction on UAS based NDVI at various
flight altitudes (10, 30, 50, 100m) and results indicate that the un-
certainty in NDVI is only around 0.01. Therefore, this study did not
conduct the atmospheric correction for the reflectance.

Fig. 5 (b) shows the comparison between UAS Tb and CNR4 Tb.
Results show that these two brightness temperatures were very close
with R2 equal to 0.97 and RMSD about 0.93 °C. Errors of thermal data
without the atmospheric correction may be significant for UAS, manned
airborne and satellite platforms above 150m (Berni et al., 2009; Hulley
et al., 2012; Sabol et al., 2009). As shown in Eq. (19), the atmospheric
correction of thermal data includes the correction of the reflected
downwelling thermal radiation by accounting for the surface emis-
sivity, and the correction of the atmospheric attenuation to exclude the
upwelling thermal radiation from the atmosphere to the sensor. In this
study, we conducted the correction of the downwelling thermal radia-
tion by utilizing NDVI to calculate the surface emissivity. This correc-
tion approximately contributes to the improvement of the surface
temperature about 1–2 °C. The MODTRAN (Berk et al., 1998) based
typical atmospheric correction showed that the total errors for not
correcting the atmospheric effects are around 2 °C at the 90m flight
altitude (Berni et al., 2009). It can be expected in this study without the
correction of the atmospheric attenuation, the errors in the surface
temperature can be around 1 °C and this also agrees with the compar-
ison results between FLIR and CNR4. This 1 °C error can contribute to
uncertainties in the longwave radiation budget to 10–15W/m2 based
on the Stefan–Boltzmann law as Eq. (2). This accuracy fitted

Fig. 4. Orthophotos of (a–f) NDVI and (g–l) Tb. (a, g) are on 25th May 2016. (b, h) are on 7th October 2016. (c, i) are on 19th May 2017. (d, j) are on 22nd May 2017.
(e, k) are on 26th May 2017. (f, l) are on 18th June 2017. The NDVI for two flights on 2nd May 2016 and 12nd May 2016 are shown in Supplemental Fig. S5.

Fig. 5. Validation of UAS images. (a) Reflectance at 670 and 800 nm, (b) the comparison between FLIR Tb and CNR4 Tb. The red line is the 1:1 line (Wang et al.,
2018a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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requirements for ET monitoring with an accuracy of 10% in ecosystem
and crop management (Fisher et al., 2017).

Besides the atmospheric correction, this study did not consider the
normalization of reflectance and thermal data between the flight tra-
jectory due to the short flight duration time (approximately 10min,
Table 1). Additionally, the anisotropy effects of thermal and optical
data may also contribute to uncertainties. In general, these issues can
contribute to the uncertainties of UAS data and further to the simulated
fluxes. However, the validation of our study (Fig. 5) shows UAS imagery
has acceptable accuracy.

4.2. Instantaneous simulation

The spatial patterns of simulated final variables Rn, GPP, LE and
WUE are shown in Fig. 6. Compared to the NDVI pattern, it can be seen
that in the dense vegetation area (high NDVI), Rn was higher than the
areas with less dense vegetation. GPP followed the spatial pattern of
NDVI. With higher NDVI, there was a higher GPP. For LE, during the
early growth stage (25th May 2016), it followed the pattern of the SM
proxy, while during the dense vegetation periods (other flights), it had
the similar pattern as Rn. For WUE, the pattern was a combination of
GPP and LE but more similar to GPP.

Fig. 7 (a–c) shows validation of the simulated SWnet, LWin and Rn
with considering the FOV of CNR4 (Fig. 6 a–f). This modeling metho-
dology can well simulate SWnet, LWin and Rn with RMSDs of 34.46,
8.65 and 31.64W·m−2, respectively. R2 between the observed and the
simulated SWnet, LWin and Rn were 0.93, 0.94 and 0.95, respectively.
The relative errors (RE) for SWnet, LWin and Rn were 0.88%, −1.88%

and 0.66%, respectively. As shown in Fig. 7 (d), the model could si-
mulate fIPAR with RMSD equal to 0.12. The simulated spatial patterns
and validation results on the estimated SM proxy were shown in Sup-
plemental Figs. S2 and S3. R2 between in-situ and the estimates SM for
temporal variations and spatial variations reached to 0.77 and 0.50,
respectively.

Considering the source weighted EC footprint (the shaded area in
Fig. 6), the model simulated the dynamic of LE, GPP, and WUE with
RMSDs of 41.19W·m−2, 3.12 μmol·C·m−2·s−1, and 0.35 g·C·kg−1, re-
spectively, as shown in Fig. 7 (e–g). R2 for these simulations are 0.84,
0.97, and 0.86, respectively. RE for the simulated LE, GPP, and WUE are
9.31%, 9.21%, and− 3.89%, respectively. Compared to other studies
using UAS data to simulate LE, this study has a similar or even better
performance (Brenner et al., 2017; Hoffmann et al., 2016; Ortega-Farías
et al., 2016). This could be partially due to that this site is the radiation
controlled system (Wang et al., 2018b) and this methodology can give a
good estimation of Rn as Fig. 7 (c).

To normalize the estimated ET and GPP with Rn and APAR, we
calculated EF and LUE respectively, as Fig. 7 (h and i). Results show
that this model achieved a moderate simulation performance with the
RMSDs of EF and LUE equal to 0.08 and 0.16 g·C·MJ−1, respectively. R2

for these simulations are 0.44 and 0.52, respectively. RE for the simu-
lated EF and LUE are −5.79% and −8.51%, respectively. The possible
approach for future improvement of this modeling methodology is to
introduce more spectral indices to better characterize the vegetation
physiological status to constrain LUE and EF. For instance, the photo-
chemical reflectance index (PRI) (Gamon et al., 1992) can be utilized to
indicate the light use efficiency to constrain the estimation of GPP and

Fig. 6. Instantaneous simulation of (a–f) Rn, (g–l) GPP, (m–r) LE, and (s–x) WUE. The circles in (a–f) are the FOV of CNR4 with considering the change of vegetation
height in Table 2. The shaded area in (g–x) indicates the source contribution of the EC footprint. Note the differences in the spatial resolutions and the dimensions of
the displayed plots.
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transpiration. However, it should be noted that in the short time scales,
PRI reflects the xanthophyll de-epoxidation and can indicate the change
of LUE (Zarco-Tejada et al., 2013a). In the seasonal scales, the change
of PRI is more complex. The changes are related to the size of con-
stitutive pigment pools (Zhang et al., 2016) as well as affected by
structural changes (Zhang et al., 2017) over the seasons. Additionally,
the green or the red edge based vegetation indices can also be utilized
to improve the estimation of the green vegetation fraction (Gitelson
et al., 2003; Viña et al., 2011). In current methodology, only the soil
adjusted vegetation index (SAVI) (Huete, 1988) with the empirical
formula from the PT-JPL model (Fisher et al., 2008) was utilized to
estimate the green vegetation fraction.

4.3. Diurnal simulation

The simulated spatial patterns of the diurnal LE simulation for the
half an hour of flight campaigns are shown as the base map in Fig. 8.
Compared to the simulated instantaneous LE at the same time in Fig. 6
(k–o), the simulated spatial patterns were similar and the estimated
values were close. Fig. 9 shows ECR and the comparison between the
simulated LE and GPP with EC observations for each day. Generally, the
diurnal simulation captured the observed diurnal variations of LE and
GPP. In most cases, the simulated LE was within the LE with residual
closure, as shown in Fig. 9 (a–e). The model was also able to estimate

GPP, as shown in Fig. 9 (f–j). But during the noon period, the simulation
slightly overestimated GPP, while during other hours the simulation
underestimated GPP. The reason may be that the GPP model of this
study did not consider the influence of the PAR intensity to LUE. During
the mid-day, the high PAR intensity can induce the saturation of the
canopy photosynthesis and reduce canopy LUE (Ibrom et al., 2008;
Propastin et al., 2012).

Table 3 presents the statistics on the model validation and the si-
mulated LE was compared with different energy balance closure cor-
rection methods. Fig. 10 (a) and (b) shows the scatterplots between the
simulated and the observed GPP and LE fluxes in the diurnal simula-
tion. Because ECR on 7th October 2016 was lower than 80%, the si-
mulation of LE on this day was excluded in the analysis. Compared to
other energy balance closure correction methods (LE_EC_1 and
LE_EC_2), LE_EC_BR shows the best match with the simulated LE. R2 and
RE for the simulated LE were 39.33W·m−2, 0.87 and 0.52%, respec-
tively. The diurnal simulation could well capture GPP dynamics with
RMSD of 5.04 μmol·C·m−2·s−1, R2 of 0.83 and RE of −7.58%. As the
variations of EC footprints sample different source areas around the
tower during the course of the day, the good performance of the diurnal
simulation gives confidence for the simulated spatial patterns from UAS
imagery. It should be also noted that the diurnal simulation of this
study has assumptions that NDVI and SM are constant during the course
of the day. For NDVI, it is a reasonable assumption. Regarding SM, the

Fig. 7. Comparison of simulated land surface fluxes from UAS instantaneous simulations with in-situ measurements. (a) SWnet, (b) LWin, (c) Rn, (d) fIPAR, (e) GPP, (f)
LE, (g) WUE, (h) EF, (i) LUE. The error bars in (d) indicate the standard deviations of the observed and estimated fIPAR in the EC footprint. It should be noticed that
energy relative balance closure of the measurements on 7th October 2016 was lower than 80% and this date was excluded in LE, WUE and EF analysis. The red line is
the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in-situ measurements in our site show that it is almost constant within
one day as the Supplemental Fig. S4. However, in dry regions, the
variations of the soil moisture during the course of a day may need to
take into account. Further studies as (Malbéteau et al., 2018) to conduct
several flights during the course of the day to explore the diurnal var-
iations of the land surface energy components and fluxes are needed.

Fig. 10 (c) shows the comparison of these two temporal upscaling
schemes, averaging from the instantaneous simulations considering the
variations of the EC footprint and assuming a constant daily EF during
the course of the day. It can be seen that compared to EC observations,
the averaged daytime LE from all instantaneous simulations by con-
sidering the variations of the EC footprint has R2 of 0.92, while the
averaged LE by using a constant daily EF has R2 of 0.89. Similarly, the
scheme with averaged LE from all instantaneous simulations has a
lower RMSD than the scheme using a constant daily EF. To normalize
the averaged daytime LE with Rn, we found more difference between
these two schemes. Compared to EC observations, the EF from the
scheme of averaged LE from instantaneous simulations has R2 of 0.64,
while the EF for the scheme with a constant daily EF is equal to 0.57.
These findings agree with Morillas et al. (2014) that averaging the in-
stantaneous estimates performs better than assuming the self-pre-
servation of EF for the temporal upscaling from the instantaneous to the
diurnal. Moreover, this indicates the importance to consider the var-
iations of the EC footprint during the course of a day in model bench-
marking.

4.4. Model error propagation

Fig. 11 shows the results of error propagation from UAS imagery to
the simulated Rn, SM, ET and GPP. The NDVI and Tb determine the
surface albedo and LWout, respectively. Their uncertainties influence

the estimated Rn of the land surface. Thus, it can be seen that with±
0.1 errors in NDVI and±2 °C errors in Tb, the simulated Rn changed
approximately± 6% in both the early growth and dense vegetation
stages. For SM which was estimated from the temperature-vegetation
triangle approach, the possible errors of NDVI and Tb can alter the re-
lative position of the pixel respected to the dry and wet edges within the
triangle and change the estimated SM. As shown in Fig. 11, the esti-
mated SM has different responses to the errors in NDVI and Tb in the
early growth stage and dense vegetation stage. In the early growth
stage, these errors of UAS imagery only contributed to changes of SM
within 5%. However, in the dense vegetation growth stage, the errors
lead to the SM changes up to 60%. This is due to that in the dense
vegetation conditions (high vegetation fraction), the dry and wet edges
of the triangle approach have a closer distance than in the low vege-
tation fraction (Garcia et al., 2014). Further for the estimation of ET,
with± 6% errors from Rn and ± 5% errors from SM, the error pro-
pagation led to±12% uncertainties in LE for the early growth stage.
However, for the dense vegetation growth stage, with the± 6% errors
from Rn and ± 60% errors from SM, the simulated LE has lower un-
certainties within 30%. This is due to that for the dense vegetation
conditions, the methodology of this study is more similar to the vege-
tation driven approach, which is the Priestley-Taylor approach to esti-
mate ET and less relies on the accuracy of surface temperature and SM
(McCabe et al., 2017). Thus, it can reduce the uncertainties from the
estimated SM. For the bare soil conditions, more radiation is partitioned
to the soil surface and this methodology is more close to the Tem-
perature-Vegetation triangle approach for the estimation of LE. There-
fore, in this way this methodology can achieve a good accuracy to es-
timate ET for both early growth and dense vegetation conditions. In the
error propagation of GPP, for the low vegetation conditions, GPP is
more sensitive to the variation of NDVI and±0.1 errors in NDVI can

Fig. 8. Simulated spatial patterns of the diurnal LE simulation at half an hour when UAS campaigns were conducted. The EC footprints show the coverage of the
footprint for each half an hour during the daytime of the UAS flight campaign day. In the validation, the source weighted footprints were used.
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contribute to 40% changes of GPP. However, in the dense vegetation
conditions, NDVI gets saturation and the simulated GPP does not
change so much.

4.5. Spatial heterogeneity

Fig. 12 shows the comparison of the semivariograms on different
growth stages. It can be seen that the sill values (semivariance when the
semivariogram flattens out, the y-axis value) of all variables except SM
during the early growth stage (25th May 2016) were larger than that
during the dense vegetation period (07th Oct 2016). Furthermore, from
the range (the lag distance when the sill is reached, the x-axis value), it
can also be found that the range on 25th May 2016 is much smaller
than 07th Oct 2016. These findings indicate the landscape was more
heterogeneous on the early growth stage than the dense vegetation
stage. During the early growth stage, the values of the range were
around 1.5–2m. This range is approximately equal to the canopy crown

Fig. 9. Simulated diurnal variation of (a–f) LE and (g–l) GPP. LE_EC1 was attributing all closure errors to the sensible heat flux. LE_EC2 was attributing all closure
errors to the latent heat flux. LE_EC_BR was attributing closure errors to both latent heat flux and sensible heat flux with keeping the fixed Bowen ratio. The ECR of
each day is shown in each plot. Note that ECR on 7th October 2016 was< 0.80.

Table 3
Statistics for validation of the diurnal simulation (LE was compared with dif-
ferent energy balance closure correction methods).

RMSD R2 RE (%)

LE_EC1 (W·m−2) 48.65 0.84 17.89
LE_EC2 (W·m−2) 44.58 0.86 −8.35
LE_EC_BR (W·m−2) 39.37 0.85 0.80
GPP (μmol·C·m−2·s−1) 5.04 0.83 −7.58
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size and the open-canopy structure at the early stage contributes the
spatial covariance within this range. For this early growth stage, to
capture the variability, an optimum pixel size would be half of the
range (Rahman et al., 2003) around 1m. However, when the willow
plantation grew to the closed canopy structure, the range values for the
semivariograms were much larger. By comparing the nugget (the
semivariance value when the lag is equal to 0m) and range values, it
can be found that the spatial structure of GPP, LUE and WUE resembled
that of NDVI, while the spatial structure of the Rn, SM, LE and EF were
similar to those of Tb. These findings agree with previous findings that
in the radiation controlled Danish ecosystem, vegetation greenness
controls the carbon assimilation, while the net radiation controls LE and
WUE is mainly determined by GPP (Wang et al., 2018b).

For the scaling experiment, the relationship between the accuracy of
simulation outputs and degradation of the spatial resolution of inputs is
shown in Fig. 13. We found that the model performance did not change
significantly when the spatial resolution was degraded from 0.03 to
1.5 m. There is slightly performance degradation from 1.5 to 12m, but
there was a clear loss in model accuracy when the spatial resolution was
degraded from 12 to 24m. The better result of using finer spatial re-
solution data agrees with other scaling experiments with satellite data
(Ershadi et al., 2013). It also indicates the accurate simulation patterns
that our UAS based methodology captured. However, this study also
found no significant improvements with using super high spatial

resolution data (between 0.03 and 1.5 m) at this site. This indicates that
comparing to the observations at the EC flux tower, too high spatial
resolution remote sensing data may not be necessary.

As the comparison between the solid and dashed lines in Fig. 13, the
model validation using a source weighted footprint, which considered
the heterogeneity of EC source contribution within the footprint,
showed a significantly better performance than using arithmetic mean.
In the case of GPP, R2 was around 10% higher and RMSD 30% lower
when using the source weighted footprint until reaching a resolution of
12m. It was noticed also a slight decrease in R2 at the 1.5 m pixel size,
which corresponded with the range of the semivariogram for GPP and
LE. These results indicate the importance to consider the heterogeneity
of the EC source contribution, especially during the early growth stage
of vegetation. Furthermore, these results also provide confidence in the
spatial pattern of fluxes, as we hypothesized that if the spatial patterns
were not accurate, we would not see an improvement in model per-
formance using the weight contribution to the total flux. These results
also suggest that in our conditions and for model validation purposes, it
is enough to have a spatial resolution of around 12m (flight height of
4 km) and for detecting spatial differences a spatial resolution of 1m
(half of the semivariogram range) (flight height of 400m) should be
enough at this site. This demonstrates an approach relying on the
analysis of spatial heterogeneity of high spatial resolution UAS data to
determine the optimum flying height (spatial resolution). The optimal

Fig. 10. Scatter plots between the simulated and the observed (a) GPP and (b) LE. Source weighted EC footprints were used in the validation. (c) is the comparison
between two temporal upscaling schemes from the instantaneous to the daytime average. The blue circle uses the averaged LE from all instantaneous simulations
with considering the variations of EC footprint (FP) to sample different areas around the EC tower. The red star represents using a constant evaporative fraction from
the instantaneous to the daytime average. ECR on 7th October 2016 was<0.80 and LE of this day was excluded in the analysis. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Error propagation analysis from uncertainties of UAS imagery to the simulated fluxes. The first panel (a–d) is for the early growth stage with NDVI of 0.35
and Tb of 27 °C and the atmospheric forcing on 25th May 2016. The second panel (e–h) is for the dense vegetation growth stage with NDVI of 0.82 and Tb of 10 °C and
the atmospheric forcing on 7th Oct 2016. Simulations were conducted with adding errors of NDVI equal to± 0.1 and errors of Tb equal to± 2 °C. (a) and (e) are the
errors of simulated Rn. (b) and (f) are the errors for the simulated SM. (c) and (g) are the errors for the simulated LE. (d) and (h) are the errors for the simulated GPP.
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resolution is the one that captures sufficient spatially resolved in-
formation while maximizing the ground coverage and will change de-
pending on each specific site conditions. A targeted spatial scale ana-
lysis using the semivariogram and aggregation experiments as this
study can be applied in other sites to identify such optimal spatial re-
solution and optimal flight height for UAS.

5. Conclusions

This study designed and evaluated an operational monitoring
methodology of mapping land surface energy, water and CO2 fluxes
specifically for unmanned aerial systems (UAS). It integrates optical
and thermal imagery to map the land surface fluxes at an optimal
spatial resolution to maximize the ground coverage of the area while
having sufficient spatial details to capture fluxes accurately. This

methodology is based on a joint parsimonious evapotranspiration (ET)
and gross primary productivity (GPP) model with limited data inputs
and parameterization and could even be applied in data-scarce regions.
We showed that it can provide very high resolution (< 1m) maps of
land surface fluxes such as net radiation (Rn), ET, GPP, evaporative
fraction (EF), light use efficiency (LUE) and ecosystem water use effi-
ciency (WUE).

The study was carried out at a flux site deciduous willow plantation
where EC data are available for model validation. Our model validation
results for the instantaneous Rn, ET, GPP, EF, LUE and WUE showed
root-mean-square deviations equal to 31.6W·m−2, 41.2W·m−2,
3.12 μmol·C·m−2·s−1, 0.08, 0.16 g·C·MJ−1 and 0.35 g·C·kg−1, respec-
tively. Further, in the temporal upscaling from the instantaneous to the
diurnal, it was found that averaging the instantaneous simulations
performs better than the classic approach of assuming a constant

Fig. 12. Semivariograms of (a) NDVI, (b) Tb, (c) SM, (d) Rn, (e) GPP, (f) ET, (g) WUE, (h) EF and (i) LUE on 25th May 2016 (the early growth stage, blue circles) and
07th Oct 2017 (the dense vegetation stage, orange dots). The y-axis γ is the semivariance. The left y-axis is 25th May 2016 and the right y-axis is 07th Oct 2016. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Comparison of model simulation performance (a: GPP, b: LE) with the EC observations across aggregated spatial resolutions from 0.03 to 24m and the
performance using the source weighted mean (curves with circles) and arithmetic mean (curves with cross signs) of EC footprints.
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evaporative fraction. Using a footprint model to sample different areas
of high spatial resolution UAS imagery can be a tool to upscale to
diurnal estimates to benchmark with EC data.

Moreover, we showed how spatial metrics derived from high-re-
solution maps can be used to identify the optimum spatial resolution to
capture the ET and GPP fluxes accurately. We found that a resolution
consistent with the canopy size (around 1.5 m in our study) is sufficient
to capture the spatial heterogeneity of the fluxes. Compared to the EC
observations, in this willow site, the aggregation of simulated GPP
using source weighted mean of the footprint was about 10% higher in
R2 and the RMSD was 30% lower than using the arithmetic mean,
during an early growth stage. This improvement highlights the need for
considering the heterogeneity of the land surface and flux source con-
tribution within the eddy covariance footprint, especially during the
early growth stage. Further, the improvement also indicates the accu-
racy of the obtained spatial patterns, since if the spatial patterns would
be incorrect, such an improvement would not be expected.

This methodology has a large potential to provide spatially resolved
information on ecohydrological processes valuable for agricultural and
natural ecosystems applications. The unprecedentedly high spatial re-
solution obtained is useful to examine scaling issues, benchmark models
with eddy covariance fluxes and quantify spatial heterogeneity within
biomes.
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