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A B S T R A C T

Outbreaks of Xylella fastidiosa (Xf) in Europe generate considerable economic and environmental damage, and
this plant pest continues to spread. Detecting and monitoring the spatio-temporal dynamics of the disease
symptoms caused by Xf at a large scale is key to curtailing its expansion and mitigating its impacts. Here, we
combined 3-D radiative transfer modelling (3D-RTM), which accounts for the seasonal background variations,
with passive optical satellite data to assess the spatio-temporal dynamics of Xf infections in olive orchards. We
developed a 3D-RTM approach to predict Xf infection incidence in olive orchards, integrating airborne hyper-
spectral imagery and freely available Sentinel-2 satellite data with radiative transfer modelling and field ob-
servations. Sentinel-2A time series data collected over a two-year period were used to assess the temporal trends
in Xf-infected olive orchards in the Apulia region of southern Italy. Hyperspectral images spanning the same two-
year period were used for validation, along with field surveys; their high resolution also enabled the extraction of
soil spectrum variations required by the 3D-RTM to account for canopy background effect. Temporal changes
were validated with more than 3000 trees from 16 orchards covering a range of disease severity (DS) and disease
incidence (DI) levels. Among the wide range of structural and physiological vegetation indices evaluated from
Sentinel-2 imagery, the temporal variation of the Atmospherically Resistant Vegetation Index (ARVI) and
Optimized Soil-Adjusted Vegetation Index (OSAVI) showed superior performance for DS and DI estimation
(r2VALUES> 0.7, p < 0.001). When seasonal understory changes were accounted for using modelling methods,
the error of DI prediction was reduced 3-fold. Thus, we conclude that the retrieval of DI through model inversion
and Sentinel-2 imagery can form the basis for operational vegetation damage monitoring worldwide. Our study
highlight the value of interpreting temporal variations in model retrievals to detect anomalies in vegetation
health.

1. Introduction

Xylella fastidiosa (Xf), a plant pathogenic bacterium that can live in
the xylem of more than 300 plant species, causes severe damage to
multiple crops around the world, including olive trees and stone fruits
(Almeida and Nunney, 2015). The first outbreak of Xf in Europe was
detected in olive orchards in Apulia (southern Italy) in 2013 (Saponari
et al., 2017), and the pathogen has now been officially identified in

France and Spain (EFSA, 2018) and very recently (2019) in Israel
(EPPO, 2019). According to Saponari et al. (2017), olive stands can be
infected for more than five months without visible symptoms. During
this period, the bacterium can spread within the xylem tissue and,
theoretically, cause water-related stress that may lead to, among other
things, lower transpiration and photosynthetic rates. Symptoms then
start to become visible, with a progressive increase in discolouration
and defoliation of the tree crowns within a few months, leading to tree

https://doi.org/10.1016/j.rse.2019.111480
Received 14 March 2019; Received in revised form 21 September 2019; Accepted 16 October 2019

∗ Corresponding author.
E-mail address: alberto.hornero@swansea.ac.uk (A. Hornero).

Remote Sensing of Environment 236 (2020) 111480

0034-4257/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2019.111480
https://doi.org/10.1016/j.rse.2019.111480
mailto:alberto.hornero@swansea.ac.uk
https://doi.org/10.1016/j.rse.2019.111480
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2019.111480&domain=pdf


death within a few years.
Accurate detection and diagnosis of Xf symptoms is critical for the

operational monitoring of Xf spread and for the reduction of losses in
crop yield (Sisterson et al., 2010). Recent work showed that early
symptoms of Xf infection in olive trees are detectable through very
high-resolution hyperspectral and thermal remote sensing images ac-
quired from airborne platforms: these symptoms manifest as alterations
in photoprotective mechanisms, reduction in photosynthetic activity
due to photosynthetic pigment reduction and degradation processes,
and decreased chlorophyll fluorescence emission and plant transpira-
tion rates (Zarco-Tejada et al., 2018a). Unfortunately, while airborne
imaging spectroscopy permits the detection of early and even non-
visible symptoms of Xf infection, such tree-level alterations cannot be
detected directly by current satellite sensors due to their limited spec-
tral and spatial resolutions. However, we hypothesise that symptoms at
intermediate to advanced stages of Xf disease, which are visible as leaf
browning, wilting, chlorosis, and desiccation of leaves, should be ob-
servable in Sentinel-2 satellite data due in large part to the spectral
bands located in the red-edge region, which is sensitive to photo-
synthetic pigment absorption. Satellite-based monitoring of such
symptoms could support the monitoring of Xf spread over large areas,
providing the spatial distribution related to the epidemiology of Xf and
contributing to the assessment of vegetation health by environmental
managers and other end-users. Furthermore, the short revisit interval
(up to every 2–3 days) of this satellite at moderate latitudes provides
key temporal information about short-term variation in vegetation
status over large areas.

Sentinel-2 images from 2015 on are freely available and combine
moderate-to-high spatial resolution (10 to 60m) in 13 spectral bands,
with a revisit time of five days. Given their combination of spatial,
spectral, and temporal resolution, Sentinel-2 data could, in theory, be
used to help monitor the spread of Xf over entire regions with a fre-
quency not achievable by other means. Pre-launch studies using simu-
lated Sentinel-2 data products demonstrated the potential of the sensor
to measure biophysical variables such as chlorophyll content (William
James Frampton et al., 2013) and leaf area index (Herrmann et al.,
2011). The added value of the Sentinel-2's red-edge bands consists of
increased accuracies for the estimation of chlorophyll content (Zarco-
Tejada et al., 2019), the fractional cover (FC) of forest canopies, the
quantification of leaf area index (LAI) (Korhonen et al., 2011), and
land-cover mapping (Forkuor et al., 2018). Sentinel-2 data thus widen
the possibility of using passive optical satellite data for vegetation
monitoring, particularly in non-homogeneous and complex canopies
(Lange et al., 2017). The temporal resolution of Sentinel-2 can report
trends in vegetation characteristics affected by infective agents with
higher accuracy than other satellites such as Landsat (Rahimzadeh-
Bajgiran et al., 2018) or MODIS (Mura et al., 2018). Recent studies have
investigated the actual capabilities of the sensor for monitoring tem-
poral changes in vegetation activity in canopy types such as wetlands
(Araya-López et al., 2018; Whyte et al., 2018), grasslands (Hill, 2013)
and forests (Castillo et al., 2017; Zarco-Tejada et al., 2018b). To the
extent of our knowledge, no prior studies have explored the applic-
ability of Sentinel-2 to evaluation of the spectral variations produced by
Xf-induced disease.

Despite the widespread interest in Sentinel-2, its spatial resolution
causes mixed-pixel effects that make it challenging when attempting to
separate the contribution of the different canopy-scene components
such as soil, shadows, and understory, particularly in open vegetation
canopies. This aspect is critical in the case of olive orchards, where
planting densities are typically in the range of 200 to 2000 trees/ha and
the canopy is rarely closed (Sibbett and Ferguson, 2005). The mixture
of canopy-scene components hampers the scaling up of plant functional
traits from views of pure tree crowns to broader spatial scales. Fur-
thermore, the understory and soil in these landscapes vary spatially and
seasonally as a result of vegetation phenology, agricultural practices,
and soil–vegetation understory dynamics, impacting the multi-temporal

spectral datasets.
Common approaches to assessing vegetation traits from passive

optical satellite observations include the use of vegetation indices (VIs)
and radiative transfer models (RTMs). The Normalized Difference
Vegetation Index (NDVI) has been widely applied for vegetation trend
analysis (Beck et al., 2011; Fang et al., 2018; Gillespie et al., 2018) and
to monitor vegetation productivity in olive groves (Brilli et al., 2013;
Noori and Panda, 2016). In addition to its strengths, the limitations of
NDVI for vegetation monitoring have received much attention in the
literature (Montandon, 2009; Myneni et al., 1991); these limitations
stem from its sensitivity to soil and atmospheric features, and its ten-
dency to saturate in high-biomass environments. Potential alternatives
include the Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988), Ad-
justed Transformed Soil-Adjusted Vegetation Index (ATSAVI) (Baret
and Guyot, 1991), atmospherically resistant vegetation index (ARVI)
(Huete et al., 1994) and Global Environment Monitoring Index (GEMI)
(Pinty and Verstraete, 1992). For instance, ARVI has a similar dynamic
range to NDVI, but on average it has been demonstrated to be four
times less sensitive to atmospheric effects compared to NDVI (Kaufman
and Tanre, 1992a). However, the spectral mixture obtained with
medium-resolution satellite observations inherently limits the extent to
which VIs can scale up field observations of plant functional traits to
entire landscapes (Atzberger and Richter, 2012; Zurita-Milla et al.,
2015). In addition, the large contributions to the spectral reflectance of
the canopy produced by variation in the understory could have im-
portant implications for the applicability of VIs to temporal change
analysis. The literature lacks studies focused on the sensitivity of VIs to
variations in both vegetation health and temporal change, including the
contribution of changes in the understory that heavily affect the re-
flectance acquired by Sentinel-2 images.

RTMs can overcome some of these typical limitations of purely
empirical approaches, minimising the dependence on field measure-
ments and modelling the reflectance mixture produced by the con-
tribution of different components at medium resolutions. These two
factors are essential to improving the retrieval of biophysical vegetation
parameters over time. For uniform canopies, 1-D RTMs such as SAIL
(Verhoef, 1984) have been successfully used to monitor grass and crop
stress (Bayat et al., 2016; Martín et al., 2007). However, modelling
heterogeneous and discontinuous vegetation canopies requires complex
3-D RTM models that account for tree canopy structure and background
effects. Previous studies have used FLIGHT to provide a 3-D re-
presentation of tree canopies and perform the spatial and spectral
scaling of different biophysical variables (Bye et al., 2017; Hernández-
Clemente et al., 2017). Still, none of these models includes the effects
produced by the understory on the spectral reflectance in open ca-
nopies. The variations in understory are especially important in natural
environments, with high impacts on time-series data analysis over
heterogeneous and sparse canopies (Assal et al., 2016; Yang et al.,
2014). Other RTMs such as DART (Gastellu-Etchegorry et al., 1996)
have overcome these limitations and could particularly benefit the si-
mulation of the canopy. By contrast, the large number of parameters
needed in complex 3-D models limits the inversion procedures
(Hernández-Clemente et al., 2014; Yáñez-Rausell et al., 2015).

Here, we investigate the suitability of Sentinel-2 satellite images for
monitoring disease symptoms in Xf-infected olive orchards. Using field
observations and multi-temporal remote sensing data, we assessed (i)
the capability of physiological and structural VIs calculated from
Sentinel-2 imagery to accurately evaluate DI and DS in olive orchards
infected by Xf in southern Italy, and (ii) whether the application of a 3-
D radiative transfer model to account for temporal changes in the soil
and understory improves the prediction of Xf-disease incidence from
Sentinel-2 time-series data.
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2. Materials and methods

2.1. Study site and field data collection

The study was conducted in an olive-growing area (Olea europaea L.)
in Apulia (southern Italy, 40°30′50″N, 18°01′50″E) where Xf was offi-
cially detected for the first time in October 2013 (Fig. 1). The phyto-
sanitary measures implemented have been unsuccessful in preventing
the spread of Xf throughout southern Apulia. The area is characterised
by a temperate climate with mild winters and a landscape dominated by
olive orchards that favour the natural spread of Xf (Saponari et al.,
2017; Strona et al., 2017). By 2015, the pathogen had spread to ca.
275,000 ha in the region, and it currently affects an area greater than
600,000 ha (labelled as ‘Infected zone’ in Fig. 1A).

Field surveys were carried out in 16 olive orchards located in the Xf-
infected zone in which qPCR analysis had confirmed its presence
(Zarco-Tejada et al., 2018a). During the surveys, disease severity (DS)
and disease incidence (DI) were assessed for 3300 olive trees. Seem
(1984) defines DS as the quantity of disease that is affecting entities
within a sampling unit; DI is a quantal measure, defined as the pro-
portion or percentage of diseased entities within a sampling unit. DS
thus accounts for disease severity, while DI only considers whether a
tree is affected or not. DI is, therefore, quicker and easier to measure,

and generally more accurate and reproducible than other quantitative
measures, making it the commonly preferred measurement method for
the detection and enumeration of disease propagation patterns (Horsfall
and Cowling, 1978). Based on visual inspection, we assigned individual
trees to one of the five DS categories available (Fig. 2) depending on the
proportion of the crown affected by typical Xf symptoms including
desiccation and discolouration of leaves and branches. DS ranged from
0, indicating the absence of symptoms, to 4, when most of the branches
in the crown were dead (Table 1). DI was either 0 or 1, indicating non-
symptomatic trees and symptomatic trees, respectively, where non-
symptomatic trees corresponded to a DS of 0 and symptomatic trees to
any other severity (DS > 0; Fig. 2. From these assessments for each
tree, we calculated the average DS and DI of all trees for each orchard
(DSo and DIo, respectively).

The first field survey was conducted in June 2016 and observed
48.5% of the trees to be asymptomatic; when the survey was repeated
in July 2017, this value was 15.2%. Symptomatic trees were identified
in all sampled orchards in both years, with a minimum DIo of 25.0%
and 63.9% in 2016 and 2017, respectively. These values reflect the fact
that all of the olive orchards across a very large region, extending more
than 50 km from our study sites, are infected to some degree (Fig. 1).
Given the ubiquity of Xf in such area and the challenge of locating an
area free of Xf, a direct comparison between Xf-infected and Xf-free

Fig. 1. Sentinel 2A scene of southern Italy (large inset, A) with an overlay (green box, B) in which airborne hyperspectral mosaics are shown. The three hyperspectral
images were acquired from aircraft on 28 June 2016 with a micro-hyperspectral imager (red box, C) yielding 40-cm spatial resolution. The infected zone highlighted
in the main map (A) outlines the area where Xylella fastidiosa has been observed as of March 2018 (Commission Implementing Decision (EU) 2018/927, 2018). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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orchards experiencing similar environmental conditions was not pos-
sible. The relative increase of Xf infection in the surveyed orchards,
expressed as ΔDS and ΔDI, was measured based on the DSo and DIo
observed between the 2016 and 2017 field surveys as:

= −+ΔDS (DSo DSo )/DSoyear n 1 year n year n (1)

= −+ΔDI (DIo DIo )/DIoyear n 1 year n year n (2)

where values above zero for ΔDS and ΔDI imply an aggravation of the
visual symptoms, zero values correspond to orchards with no significant
changes, and values below zero indicate a lessening of visual symptoms
in an orchard.

2.2. Sentinel-2a imagery

A temporal dataset of Sentinel-2 images was used to analyse the
feasibility of detecting the ΔDS and ΔDI of Xf infection using VI trends.
The Multispectral Instrument (MSI), on board Sentinel-2A, acquires
imagery at a 10-day interval under constant viewing conditions, which

results in 4- to 6-day revisit times at mid-latitudes due to the swath
overlap between neighbouring orbits. The MSI measures reflected ra-
diance in 13 spectral bands from visible and near-infrared (VNIR) to
short-wave infrared (SWIR), with images at 12 bits per channel and a
spatial resolution of 10m (Central Wavelength [CWL] at 496.6, 560.0,
664.5 and 835.1 nm with a bandwidth of 98, 45, 38 and 145 nm, re-
spectively), 20m (CWL at 703.9, 740.2, 782.5, 864.8, 1613.7 and
2202.4 nm with a bandwidth of 19, 18, 28, 33, 143 and 242 nm, re-
spectively) and 60m (CWL at 443.9, 945.0 and 1373.5 nm with a
bandwidth of 27, 26 and 75 nm, respectively).

We used the multi-temporal Sentinel-2A data available for the first
two complete years after its launch in 2015 to build a multi-temporal
spectral dataset from the 86 cloud-free Sentinel-2A images (Level-1C,
ortho-rectified imagery expressed in top-of-atmosphere reflectance)
(Richter et al., 2011) available from July 2015 to August 2017. From
Level-1C, the images were atmospherically corrected to generate Level-
2A (bottom-of-atmosphere – surface reflectance – provided with a pixel
classification mask) with Sen2Cor (version 2.3.1). Using the scene

Fig. 2. Examples of the five disease severity (DS) classes that olive trees (n= 3300) were assigned to during a field survey in 2016 that was repeated in 2017. The
classes related to the extent of severity of typical visual symptoms of Xylella fastidiosa ranging from apparently healthy trees (DS= 0) to trees showing canopies with
a prevalence of dead branches (DS= 4).

Table 1
Xylella fastidiosa evaluation criteria: crown-level severity and incidence assignment.

DS Level Severity Description Desiccation Incidence

0 Healthy
Symptomless

0% No incidence

1 Initial severity Few desiccated branches affecting a limited part of the canopy > 0≤ 25% Incidence
2 Medium severity Desiccation affecting a large part of the canopy > 25≤ 50% Incidence
3 High severity Canopy with desiccated branches uniformly distributed > 50≤ 75% Incidence
4 Very high severity

Severe tree decline
> 75% Incidence
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classification from Level-2A, we then filtered the data that were af-
fected by clouds or cirrus before calculating a suite of VIs.

We selected spectral VIs that are primarily sensitive to canopy
structure or pigment concentration and compatible with the spectral
bandset of Sentinel-2. The equations and references for each VI are
shown in Table 2. More precisely, we calculated (i) conventional and
corrected ratio and normalized indices derived from the near-infrared
and red bands such as the Normalized Difference Vegetation Index
(NDVI), Modified Simple Ratio (MSR), Green Normalized Difference
Vegetation Index (GNDVI) and Renormalized Difference Vegetation
Index (RDVI); (ii) conventional soil-adjusted indices such as the Ad-
justed Transformed Soil-Adjusted VI (ATSAVI), Optimized Soil-Ad-
justed Vegetation Index (OSAVI) and Modified Soil-Adjusted Vegetation
Index (MSAVI), and corrected versions using SWIR bands such as
OSAVI1510; (iii) conventional and corrected chlorophyll VIs such as the
Chlorophyll Index (CI), Normalized Difference Index (NDI), Medium
Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll
Index (MTCI), Pigment Specific Simple Ratio A (PSSRa), Sentinel-2 Red-

Edge Position (S2REP), and Inverted Red-Edge Chlorophyll Index
(IRECI); and (iv) chlorophyll indices formulated to minimise their
sensitivity to structural effects based on the Chlorophyll Absorption in
Reflectance Index (CARI) and its transformations into Transformed
Chlorophyll Absorption Ratio Index (TCARI) and Modified Chlorophyll
Absorption Ratio Index (MCARI) normalized by OSAVI in the form
TCARI/OSAVI and MCARI1510 using SWIR bands, as formulated in Table 2.
Finally, a smoothing algorithm based on Local Polynomial Regression
Fitting (Cleveland et al., 1992) was used to reduce atmospheric varia-
bility and fill gaps to produce daily time series of the indices.

For each of the 16 orchards, we used the daily dataset of VIs to
calculate the values for June 2016 and July 2017, taking the means
over 2-week intervals centred on the dates of the ground measurement
collection to reduce random fluctuations in time-series data. We ad-
ditionally calculated the temporal rate of change for each VI in the form
VIyear=n+1/VI year=n in order to understand the temporal trajectory of
VIs as a function of Xf infection. Finally, Pearson correlation analysis
and p-values, adjusted with a Bonferroni correction to control false

Table 2
Vegetation indices derived from Sentinel-2 data included in this study and their formulations.

Vegetation index Equation Reference

Normalized Difference Vegetation Index = − +NDVI R R R R( )/( )800 670 800 670 Rouse et al. (1974)
Chlorophyll Index =CI R

R
750
710

Zarco-Tejada et al. (2001)

Normalized Difference Index = − +NDI R R R R( )/( )706 664 704 664 Delegido et al. (2011)
MERIS Terrestrial Chlorophyll Index = − −MTCI R R R R( )/( )754 709 709 681 Dash and Curran (2007)
Modified Chlorophyll Absorption Ratio Index = −MCARI R R(( )700 670 Haboudane et al. (2004)

⎟− − ⎞
⎠
( )R R0.2( ) R

R700 550
700
670

Green Normalized Difference Vegetation Index = − +GNDVI R R R R( )/( )800 550 800 550 Gitelson et al. (1996)
Pigment Specific Simple Ratio A =PSSRa R

R
800
680

Blackburn (1998)

Sentinel-2 Red-Edge Position
= +

+ −

−
S REP2 705 35

R R R

R R

783 665
2 705

740 705

W. J. Frampton et al. (2013)

Inverted Red-Edge Chlorophyll Index = − +IRECI R R R R( )/( )783 665 705 740 W. J. Frampton et al. (2013)
Renormalized Difference Vegetation Index = − +RDVI R R R R( )/ ( )800 670 800 670 Roujean and Breon (1995)

Modified Simple Ratio = −
+

MSR R R
R R

800 / 670 1
( 800 / 670)0.5 1

Chen (1996)

Transformed Chlorophyll Absorption Ratio
=

⎛

⎝
⎜

− −

− −
⎞

⎠
⎟TCARI

R R

R R3
( )

0.2 ( ) R
R

700 670

700 550
700
670

Haboudane et al. (2002)

Optimized Soil-Adjusted Vegetation Index = + −
+ +

OSAVI (1 0.16) R R
R R

800 670
800 670 0.16

Rondeaux et al. (1996)

Modified Soil-Adjusted Vegetation Index = + −
+ +

MSAVI L(1 ) R R
R R L

800 670
800 670

Qi et al. (1994)

TCARI/OSAVI =TCARI OSAVI/ TCARI
OSAVI

Haboudane et al. (2002)

Modified Chlorophyll Absorption Ratio Index 1510 = −MCARI R R1510 (( )700 1510 Herrmann et al. (2010)

⎟− − ⎞
⎠
( )R R0.2( ) R

R700 550
700

1510

Transformed Chlorophyll Absorption Ratio 1510
=

⎛

⎝
⎜

− −

− −
⎞

⎠
⎟TCARI

R R

R R1510 3
( )

0.2 ( ) R
R

700 1510

700 550
700

1510

Herrmann et al. (2010)

Optimized Soil-Adjusted Vegetation Index 1510 = + −
+ +

OSAVI1510 (1 0.16) R R
R R

800 1510
800 1510 0.16

Herrmann et al. (2010)

Red Green Ratio Index = −IRG R R670 550 Gamon and Surfus (1999)
Perpendicular Vegetation Index = − −

+
PVI R a R b

a
800 · 670

2 1
Richardson and Wiegand (1977)

Ratio Vegetation Index - Simple Ratio 800/670 =RVI R
R

800
670

Pearson and Miller (1972)

Adjusted Transformed Soil-Adjusted VI = − −
+ − + +

ATSAVI a· R a R b
a R R ab x a

800 · 670
· 800 670 (1 2)

Baret and Guyot (1991)

Atmospherically Resistant Vegetation Index = − − −
+ − −

ARVI R R y R R
R R y R R

800 670 ( 670 450)
800 670 ( 670 450)

Bannari et al. (1995)

Global Environment Monitoring Index = − −
−

GEMI n n(1 0.25 ) R
R

670 0.125
1 670

Pinty and Verstraete (1992)

=n − + +
+ +

R R R R
R R

2( 8002 6702) 1.5· 800 0.5· 670
800 670 0.5

Difference Vegetation Index = −DVI g R R· 800 670 Richardson and Wiegand (1977)
Aerosol Free Vegetation Index 1600 =AFRI1510 −

+
R 0.66 R

R R800
1600

800 0.66· 1600
Karnieli et al. (2001)

Aerosol Free Vegetation Index 2100 =AFRI2100 −
+

R 0.5 R
R R800

2100
800 0.56· 2100

Karnieli et al. (2001)
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positives (Haynes, 2013), were used to determine the strength and
statistical significance of the relationship between the in-situ mea-
surements of Xf impact, i.e. ΔDI and ΔDS, and the rate of change of VIs
derived from Sentinel-2 data.

2.3. Airborne hyperspectral images

For validation purposes, we collected very high-resolution images

(Fig. 3) on 28th June 2016 and 3rd July 2017 using a micro-hyper-
spectral imager—Micro-Hyperspec VNIR model (Headwall Photonics
Inc., Fitchburg, MA, USA)—on board a Cessna aircraft. Visible and
near-infrared spectral regions (400–885 nm) were covered by operating
the sensor with 260 bands and a radiometric resolution of 12 bits at a
1.865 nm CWL interval, yielding 6.4 nm full-width at half-maximum
(FWHM) spectral resolution with a 25-μm slit. The acquisition frame-
rate on board the aircraft was 50 frames per second with an integration

Fig. 3. Example of olive orchards with medium (left panels) and high (right panels) incidence of Xf-related disease, viewed by an airborne high-resolution narrow-
band hyperspectral camera (VHR HS, top row), by Sentinel-2A (S2A, middle row, RGB-composite of bands B3, B2 and B4) and through their spectral signatures
captured by the VHR HS and S2A (bottom row).

A. Hornero, et al. Remote Sensing of Environment 236 (2020) 111480

6



time of 18ms; with a focal length of 8mm, an angular field of view
(FOV) of 49.82° was produced (corresponding to an instantaneous FOV
[IFOV] of 0.93mrad). More platform and sensor configuration details
can be found in Zarco-Tejada et al. (2013). The hyperspectral sensor
was radiometrically calibrated in the laboratory with an integrating
sphere (CSTM-USS-2000C Uniform Source System from Labsphere,
North Sutton, NH, USA) by calculating coefficients derived from the
calibrated light source at four illumination levels. The atmospheric
correction was carried out using the total incoming irradiance simu-
lated with the SMARTS model (Gueymard, 1995, 2001), which allowed
the conversion of radiance values to reflectance. The model was fed
with data from a weather station (WX510 from Vaisala, Vantaa, Fin-
land) and a Microtops II Sunphotometer (Solar Light Co., Philadelphia,
PA, USA). Hyperspectral imagery was ortho-rectified with PARGE
(ReSe Applications Schläpfer, Wil, Switzerland) using inputs from an
inertial measurement unit (MTiG from Xsens, Enschede, Netherlands)
installed on board and synchronized with the imager; image correction
and data pre-processing are described in detail in Hernández-Clemente
et al. (2012) and Zarco-Tejada et al. (2016).

The hyperspectral images had a ground resolution of 40 cm, al-
lowing us to distinguish individual olive tree crowns from the back-
ground made up of soil and understory vegetation. We used the hy-
perspectral images to evaluate the contribution of the background to
the relationship between ΔDI and the rate of change of VIs derived from
the Sentinel-2 data. To do this, we calculated for each orchard the
hyperspectral VIs separately for the background areas surrounding the
trees – by defining each tree crown as the area within a 5-m radius from
the centroid and then masking the crowns by image segmentation – and
for the tree crowns only.

We also used the very high-resolution images as ground-truth for
model parametrisation, detailed in the next section, following the
methodology proposed by Zarco-Tejada et al. (2019) using scene
components extracted from airborne hyperspectral images. Fig. 4 shows
a strong correlation between VIs derived from Sentinel-2 and hyper-
spectral images over the 16 olive orchards in both 2016 (r2= 0.86,
p < 0.001 for NDVI and r2= 0.78, p < 0.001 for OSAVI) and 2017
(r2= 0.68, p < 0.001 for NDVI and r2= 0.66, p < 0.001 for OSAVI).
The consistency between the two datasets enabled the use of the high-
resolution imagery as ground-truth for model parametrisation (Fig. 4).

2.4. Model simulations

We used a coupled leaf-canopy radiative transfer model to analyse
the sensitivity of different VIs to orchard-level changes in Xf-induced
disease incidence through time and to evaluate the effects of the
background and soil on symptom detection. The leaf optical properties
were simulated with the PROSPECT-D model (Feret et al., 2017), which
requires seven variables: the leaf structure coefficient (N), chlorophyll
content (Ca+b), carotenoid content (Cx+c), anthocyanin content (Anth),
brown pigment content (Cbrown), water equivalent thickness (Cw) and
dry matter content (Cm). The PROSPECT leaf model was coupled to the
3-dimensional FLIGHT model (Hernández-Clemente et al., 2017; North,
1996) to simulate the optical effects stemming from heterogeneous
architecture of the olive tree crowns and orchards. FLIGHT uses Monte
Carlo Ray Tracing (MCRT) techniques to simulate the radiative transfer
within and between tree crowns and other canopy components. FLIGHT
calculates directional reflectance of the canopy by accumulating photon
energy in the observation direction as a function of different compo-
nents defining the canopy structure (crown shape and size, tree height,
position, density and distribution) (Table 3).

Using the described PROSPECT + FLIGHT modelling approach, we
generated a lookup table (LUT) to investigate the temporal dynamics of
Xf-induced disease incidence using VIs calculated from simulated
spectra. We built a LUT with 7056 simulations using the input para-
meters described in Table 3. The nominal values used to generate the
simulations were defined based on field measurements and

hyperspectral imagery (Table 3) to mimic the orchards' architecture and
the level of disease impact across the study area. The 40-cm spatial
resolution hyperspectral images (Fig. 3 top) were used to distinguish
the scene components (Fig. 5), facilitating the parametrisation of the
FLIGHT model simulations. In particular, we quantified the fractional
cover of each orchard (FCo) using NDVI calculated from the high-re-
solution hyperspectral image. A threshold of NDVI> 0.3 was applied to
distinguish tree crowns from background pixels during image segmen-
tation according to Niblack's thresholding method (Niblack, 1986) and
Sauvola's binarization techniques (Sauvola and Pietikäinen, 2000).
Next, we applied a binary watershed analysis using the Euclidean dis-
tance map for each object to automatically separate trees with over-
lapping crowns, which enables one to rebuild the scene with the same
features. The FCo values retrieved from the airborne sensor were re-
lated to the field observations (DSo and DIo), with a linear regression
model (r2= 0.67, p < 0.05) used as a proxy for DSo and DIo in the
model simulation. The relationship between FCo and DSo was used to
mimic the natural range of variation in FCo values for each DSo and
used as input in the LUT. The initial LUT was then classified to set an
approximate range of FCo per DSo and DIo (Table 4). For each class
(DSo Level 0 to 4), we assumed a range of crown diameters and LAI per
orchard to comply with the FCo defined for each level. We also assumed
a decrease in the chlorophyll content values corresponding to the

Fig. 4. Comparison between Sentinel-2A and high-spatial-resolution aircraft
(Hyperspec VNIR) imagery using the vegetation indices NDVI (a) and OSAVI (b)
of 16 olive orchards surveyed in June 2016 and July 2017.
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increase in DSo to mimic the typical discolouration observed in Xf-in-
fected olive trees.

To define the synthetic dataset associated with the change, we es-
tablished a pool of combinations of change describing the positive in-
crease rate of severity ( = ∑ =c kk 1

5 ) between orchards classified at dif-
ferent levels for the years n and n+1 (year nL4→ year n+1L4, year nL3→
year n+1L3, year nL3→ year n+1L4, …, year nL0→ year n+1L4). The rate
of change between simulations for years n and n+1 was used for the
final retrieval of ΔDI and ΔDS.

Three different approaches were evaluated to account for the ca-
nopy background in the simulations: (i) a more complex solution that
included the background spectral reflectance variation recorded by the
hyperspectral images between 2016 and 2017 for each plot, named

here as the “temporal background per plot” (TBP); (ii) a simpler ap-
proach considering a “persistent spectral reflectance for the back-
ground” (PB) using a bare-soil spectrum extracted from the hyper-
spectral imagery collected in 2016; and (iii) a compromise alternative
that computed the average of the background's spectral reflectance
recorded for all plots during 2016 and 2017, named here as the “mean
temporal background scheme” (MTB). The performance of the model
under each strategy was evaluated based on the Root Mean Square
Error (RMSE) between the DI increase estimated from the retrieved
Sentinel-2 data and the field-observed DI scored for each of the 16
orchards evaluated.

3. Results

In this section we present results from empirical approaches to de-
tect variations in DI of Xf-infected olive orchards using physiological
and structural VIs calculated from Sentinel-2 imagery. Then, we report
results using a 3-D radiative transfer model to predict temporal changes
of Xf-induced disease incidence that accounts for the soil and unders-
tory variations affecting the temporal trends.

3.1. Temporal trends of DS and DI and vegetation indices

Both DI and DS caused by Xf increased between 2016 and 2017 in
all of the surveyed olive orchards (Fig. 6). DS and DI were significantly
correlated with each other (r2= 0.84, p < 0.05), as were the temporal
change rates ΔDS and ΔDI (r2= 0.79, p < 0.05). Orchards where in-
cidence had already reached 100% in 2016 continued to see an increase
in symptom severity (e.g. Fig. 6, orchards A5 and A4), and orchards
with a low initial incidence and severity (e.g. C20 to B3), showed a
strong increase in both one year later, as reflected by high ΔDI and ΔDS,
respectively.

The rate of change in 17 out of the 26 Sentinel-2 VIs correlated

Table 3
Nominal values used in PROSPECT + FLIGHT simulation analysis.

Variable Variable code Nominal values

PROSPECT
Structure coefficient N 1.2
Chlorophyll a+b content Ca+b (μg/cm2) 10–80
Carotenoid content Cx+c (μg/cm2) 10
Anthocyanin content Anth (μg/cm2) 1.0
Brown pigment content Cbrown (arb. unit) 0.0
Water content Cw (cm) 0.015
Dry matter Cm (g/cm2) 0.009
FLIGHT
Mode of operation MODE r (reverse)
Dimension of model FLAG 3 (3D Representation)
Solar zenith, view zenith

(°)
θs, θv 39.27, 0.0

Solar azimuth, view
azimuth (°)

Φs, Φv 103.87, 0.0

Number of wavebands NO_WVBANDS 401
Image size IM_SIZE 200 x 200
Number of photons

traced
– 40000 (reverse mode, from image

size)
Total LAI (LAI crown) TOTAL_LAI 0.25–3.5
Leaf angle distribution LAD [1–9] 0.015, 0.045, 0.074, 0.1,0.123,

0.143, 0.158, 0.168, 0.174
Fractional cover (%) FRAC_COV 5–55

Fig. 5. Overview of an olive grove acquired with a 40-cm hyperspectral sensor
enabling the identification of single trees (left panel) and a 3-D scene generated
with FLIGHT Monte Carlo simulation mimicking crown distribution (right
panel).

Table 4
Classification criteria in the model inversion, including disease severity (DSo)
and fractional cover (FCo) at orchard level, leaf area index at both crown
(LAICROWN) and scene level (LAISCENE), and chlorophyll content (Ca+b).

DSo Level Description FCo (%) LAICROWN Ca+b LAISCENE

0 Healthy 45–55 2–3.5 65–80 0.9–1.925
1 Initial severity 25–45 1.5–2 50–65 0.375–0.9
2 Medium severity 20–25 0.75–1.5 35–50 0.15–0.375
3 High severity 10–20 0.5–0.75 20–35 0.05–0.15
4 Very high severity 5–10 0.25–0.5 10–20 0.0125–0.05

Fig. 6. Temporal evolution of DIo and DSo between 2016 and 2017. (Top) DS
and DI in 2016; (bottom) ΔDI and ΔDS between 2016 and 2017. X-axis labels
refer to the 16 olive orchards surveyed.
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significantly (p < 0.001) with both ΔDS and ΔDI, and six of them
showed a coefficient of determination (r2) exceeding 0.57 (Fig. 7). The
indices ARVI and OSAVI produced the highest coefficients of determi-
nation with ΔDI (r2= 0.75 and r2= 0.76, respectively; p < 0.001)
(Fig. 8). Other VIs such as ATSAVI and NDVI yielded similar results
(r2= 0.72 and r2= 0.71, respectively), outperforming RDVI
(r2= 0.65) and MSR (r2= 0.61). The relationships between these VIs
and ΔDS yielded similar results (r2ARVI= 0.74, r2OSAVI= 0.71,
r2ATSAVI= 0.72, r2NDVI= 0.71, r2RDVI= 0.57, r2MSR= 0.6; p < 0.001 in
all cases). Surprisingly, however, greater ΔDI values were associated
with smaller reductions in the VIs (Fig. 8), whether considering entire
orchards (Fig. 8), the background cover only (Fig. 9a), or tree crowns
only (Fig. 9b). Furthermore, VIs calculated from the background area
around each tree, made up of soil and understory vegetation and ex-
cluding tree crowns, displayed a similar pattern in which orchards with
greater ΔDI showed smaller VI reductions (Fig. 9).

The analysis of the temporal changes observed by Sentinel-2A ARVI
and OSAVI revealed distinct patterns in orchards with medium and high
DI over the last two years (Fig. 10). Orchards with high DI had a lower

ARVI and OSAVI than those with medium DI. The differences between
medium and high DI were more substantial during the summer, when
the VIs tended to be lower than in winter, and much less variable than
in spring, when infection symptoms develop more rapidly and poten-
tially depend on local-scale environmental conditions as well as on the
physiological status of individual trees.

3.2. Modelling changes in vegetation trends with Sentinel-2

The results of the radiative transfer modelling approach, which was
proposed to evaluate the sensitivity of VIs to track the temporal evo-
lution of Xf disease, are displayed in Fig. 11. The FLIGHT model si-
mulations obtained using a synthetic multi-temporal dataset, built with
inputs within the typical range of variation observed in olive groves
affected by Xf in two consecutive years for OSAVI (Fig. 11a) and ARVI
(Fig. 11b), showed a direct relationship between ΔDI and the rate of
change between two consecutive years. The simulated VIs generated
using the MTB approach were significantly related to ΔDI for OSAVI,
ARVI and NDVI, and yielded similar accuracy to the empirical re-
lationship with OSAVI (r2= 0.74) but somewhat lower accuracy with
ARVI (r2= 0.49) and higher with NDVI (r2= 0.68) (data not shown).
In any case, the linear responses of the simulated VIs matched the
empirical relationships very closely.

ΔDI estimated through model inversion using two different VIs
(ARVI and OSAVI) corresponded well with the field observations of the
ΔDI temporal change (Fig. 12). The complexity in accounting for the
background in the models had an effect on the goodness-of-fit, in-
troducing a bias in the DI change estimates (Fig. 12); when the year-to-
year evolution of the background was considered independently for

Fig. 7. Relationship between increases in severity (ΔDS) and incidence (ΔDI)
and temporal rate of change in Sentinel-2 vegetation indices selected for this
study. Correlation coefficients range from −1 to 1. Cross (X) symbols indicate
non-significant relationships (p-value≥ 0.001).

Fig. 8. Relationship between Xf incidence increase (ΔDI) and the rate of change
of the vegetation indices ARVI (a) and OSAVI (b). Rate of change was calculated
from Sentinel-2 images taken in 2016 and 2017.

Fig. 9. Relationship between Xf incidence increase (ΔDI) and the rate of change
of the vegetation index OSAVI with the background around a tree, determined
by assuming a radius of 5m around the centroid of each tree and masking the
tree crowns by segmentation (a); and taking only tree crowns (b). Rate of
change was calculated from hyperspectral imagery in 2016 and 2017 due to its
resolution sufficient to discriminate between background and trees.
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each of the orchards (TBP approach), the model simulations were en-
tirely corrected for background effects and, therefore, the accuracy of
ΔDI retrievals using OSAVI and ARVI was significantly higher (RMSE-
OSAVI= 43% and RMSEARVI= 44%; NRMSEOSAVI= 0.19 and NRMSE-
ARVI= 0.20) (Fig. 12a, b). Model performance decreased when instead
the mean background reflectance time series from all orchards (MTB
approach) was used as a model input (RMSEOSAVI= 50% and RMSEA-
RVI= 84%; NRMSEOSAVI= 0.22 and NRMSEARVI= 0.36) (Fig. 12c, d).
Finally, when model simulations did not account for the temporal
changes in background reflectance at all (PB approach), the fitted
models degraded significantly, leading to even larger errors
(RMSE≥140%; NRMSE>0.6) (Fig. 12e, f).

Applying model-inversion methodology with OSAVI and the MTB
model (Figs. 11a and 12c) to entire Sentinel-2A scenes generated a map
of the predicted yearly increase in Xf-induced disease incidence be-
tween June 2016 and 2017 (Fig. 13). Looking in detail at four of the
surveyed olive orchards (bottom panels in Fig. 13), representing a range
of predicted ΔDI values, we can confirm that predictions of low to high
percentages (0 to 180%) of Xf-disease incidence increase corresponded
with the field observation records, which reported ΔDI from 0 to 194%
for those fields. Furthermore, predicted maps generated with the model
show enough spatial resolution to provide operational monitoring at
the orchard level.

4. Discussion

The first research aim of this study was to determine whether sa-
tellite data could be used to monitor temporal changes of Xf-induced DI
and DS, and to provide insights into the epidemiology of Xf spread over
large areas. Non-visual symptoms of Xf infection can be detected using
very high-resolution hyperspectral images and radiative transfer
models (Zarco-Tejada et al., 2018a), providing an innovative tool for
the early detection of infected olive trees on a local scale. However,

since Xf has spread rapidly in southern Italy over the last few years,
affecting entire olive orchards, tracking more conspicuous damage
(such as DI and DS) across large areas could help measure, forecast, and
mitigate the impact of Xf on the landscape and on socio-economic
sectors depending on it (Luvisi et al., 2017; White et al., 2017). The fast
spread of Xf was reflected in our field observations: DI and DS increased
considerably between 2016 and 2017, and ΔDI and ΔDS were linearly
related. Indeed, the widespread increase of Xf infections in the last
three years in southern Apulia (Girelli et al., 2017) has posed a risk to
the olive trees and to this economic sector in the region.

Under natural conditions, biotic and abiotic factors jointly affect the
development of vegetation diseases over different spatial and temporal
scales. The interaction may cause a progressive loss in chlorophyll and
biomass, producing irreversible changes in the vegetation. Both al-
terations are detectable and quantifiable through VIs calculated from
Sentinel-2 data (Zarco-Tejada et al., 2019). However, the relationships
between VIs (OSAVI or NDVI) and DS or DI were poor when considering
data from 2016 and 2017 together (r2 < 0.22, p < 0.05) (Fig. S1,
supplementary material), indicating that the VIs reflect orchard char-
acteristics other than Xf symptoms and that such characteristics vary
considerably between years. Hence, a precise disease assessment re-
quires a quantitative estimation of the temporal evolution of the disease
(ΔDI and ΔDS) rather than a mere quantification of DI and DS at one
specific time (Nutter et al., 2006). Indeed, the availability of frequent
multispectral data from Sentinel-2 offers the opportunity to assess both
spatial and temporal variation in VIs to monitor Xf infections in olive
orchards over time.

When working with multi-temporal data acquired over non-closed
canopies, one of the main challenges is to decouple the spectral re-
flectance changes produced by alterations in the vegetation condition

Fig. 10. Daily mean OSAVI (top) and ARVI (bottom) two-year time series of
orchards with medium and high Xf incidence as evaluated in the field on 28
June 2016 (dots indicate the timing of the field survey). Lines represent the
mean of medium-incidence (DIo2016< 50%; n= 10) and high-incidence
(DIo2016> 50%; n=6) orchards, and bands extend two standard deviations
around them.

Fig. 11. Simulations of the disease incidence increase (ΔDI) with OSAVI (a) and
ARVI (b), generated by PROSPECT + FLIGHT and using the average spectral
reflectance measured in parts of the orchards not covered by olive tree crowns
to represent the background in the model (MTB approach). Bands surrounding
the points show the variability in results for the same ΔDI, and the points
themselves are the average values within those simulations.
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Fig. 12. Estimated versus measured Xf incidence increase (ΔDI) using OSAVI (left) and ARVI (right) vegetation indices. Graphs show PROSPECT + FLIGHT in-
versions calculated using TBP (a, b), MTB (c, d) and PB (e, f); see text for details.
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Fig. 13. Xf-disease incidence increase (ΔDI) map generated from Sentinel-2A data of 29th June 2016 and 24th June 2017 using a lookup table (LUT) generated by
inverting a PROSPECT + FLIGHT model that considered the temporal changes in background reflectance across all orchards (MTB approach; see text for details).
Dots in the map indicate the individual olive orchards that were surveyed in the field. Bottom panels show incidence increases over different areas (green dots) where
olive orchards were surveyed, representing a range of predicted ΔDI values. The observed incidence increase for each selected orchard is also indicated. The map has
been masked with a layer of olive groves for Puglia extracted from the Puglia Land Cover 2011 (InnovaPuglia Spa - Servizio Territorio e Ambiente, 2013). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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from those produced by atmospheric and background factors. Here, the
seasonal variation of VIs showed the highest variability in winter and
early spring. In these periods, cloudy days are more frequent, increasing
the residual noise in the data and the need for temporal interpolation.
The sensitivity of different VIs to soil background and atmospheric ef-
fects were previously analysed in efforts to improve the accuracy of the
retrieval of LAI and absorbed photosynthetically active radiation
(APAR) (Baret and Guyot, 1991; Haboudane et al., 2004; Huete et al.,
1985) and chlorophyll (Haboudane et al., 2008; Zhang et al., 2008).
The variation in FC of a forest under decline also affects the perfor-
mance of some VIs with higher sensitivity to canopy structure changes
(Hernández-Clemente et al., 2011). The best-performing VIs in our
study, OSAVI and ARVI, tend to be relatively robust to background and
atmospheric effects (Kaufman and Tanre, 1992b; Rondeaux et al.,
1996). Empirical and modelling results agreed regarding the accuracy
of OSAVI as the best-performing index to track ΔDI. By contrast, the
performance of ARVI with regard to the field observations was not
entirely confirmed by model simulations. This may be related to the fact
that ARVI is a vegetation index that minimises the atmospheric effects
on the reflectance, conditions that were not included in the modelling,
which assumed stable conditions for both years.

The overall robustness shown by modified VIs such as OSAVI or
ARVI is in disagreement with some other studies, in which traditional
indices yielded better performance. For instance, Frampton et al.
(2013) reported that LAI and chlorophyll could be extracted from
Sentinel-2 NDVI images for crops as well as from novel indices such as
S2REP and MTCI. Differences in the homogeneity of crop versus olive
orchard canopies might explain this apparent contradiction: in the
latter case, the confounding effects produced by the structural hetero-
geneity of the orchards invalidated VIs with high sensitivity to soil ef-
fects and atmospheric conditions.

The contribution of the background seems to affect not only the
spectral reflectance of the canopy measured by Sentinel-2 but also the
spectral reflectance retrieved from the diseased crowns using hyper-
spectral images. Both sensors, with different spatial and spectral re-
solutions, showed a significant and similar relationship, with greater
ΔDI leading to smaller VI reductions. This counterintuitive result is
unlikely to be driven by weather patterns in the two years, as the
sampled orchards experienced very similar meteorological conditions.
Instead, it might reflect the impact of the background on the crown
spectral response because olive tree crowns generally display low
crown transmittance and LAI (Gσmez Calero et al., 2011), and defo-
liation increases with DS. As a result, the background has a particularly
large contribution to temporal VI trends once the Xf disease symptoms
increase, even when using self-corrected (Kaufman and Tanre, 1992b)
and soil-adjusted (Rondeaux et al., 1996) VIs and considering only tree
crowns. Simultaneously, the increase in Xf infection was associated
with a decrease in FC of the trees and an increase in the FC of the
background, further increasing the dominance of the understory in the
signal at orchard-level resolution. This inverse effect, i.e. an increase in
the greenness of the background when the health of Xf-infected trees
decreases, could be due to orchard management if diseased orchards
are abandoned and no longer mowed or ploughed, leaving low-stature
vegetation to reoccupy the soil. It may also be partly ecologically driven
if diseased trees leave more nutrients and water available to the un-
derstory (Peltzer and Köchy, 2001).

This pattern further emphasises the relevance of incorporating 3-D
RTMs when analysing VIs to explicitly incorporate background effects if
the impact of Xf on spectral characteristics of olive groves is to be
modelled with considerable precision (Meggio et al., 2008; Richardson
and Wiegand, 1977). This conclusion links to our second research
question, which focused on the feasibility of modelling changes in DI
from multi-temporal Sentinel-2 image data using VIs and radiative
transfer models. In fact, the background effect has a significant impact
on the model estimation against in-situ measurements: there was an
improvement in the retrieval of ΔDI of 33.5% when accounting for the

background effects, and a further 9.5% improvement when its hetero-
geneity was also considered. These results have critical implications in
the use of VIs to assess the temporal evolution of the disease due to the
non-homogeneous background effects across orchards affected by Xf,
which alter the spectral signature of the canopy obtained with Sentinel-
2 image data. The simulation approach demonstrated the benefit of
using a 3-D radiative transfer model accounting for such effects, which
is critical when monitoring the future spread of Xf infections and un-
derstanding its epidemiology (Fuente et al., 2018). Therefore, this study
takes one step further via modelling methods to properly account for
the changes observed in canopy monitoring studies, enabling the re-
trieval of vegetation trends associated with Xf infections and improving
the understanding of the dynamics of the understory.

The proposed methodology based on the use of RTM and Sentinel-2
imagery offers the advantage of using free satellite data over any other
remote sensing product limited by the availability of hyperspectral
images. However, the applicability of these methods within a sys-
tematic detection system may be limited by the computational time
required for model inversion, notwithstanding this limitation can be
overcome in combination with data-driven machine learning algo-
rithms based on multi-output methods emulating the functioning of
RTM (Rivera et al., 2015). The result of mapping disease-incidence
dynamics using radiative transfer modelling illustrates the potential of
the Sentinel-2 sensor to assess olive groves’ health dynamics. The
challenge of mapping disease infections has been thus far mainly ad-
dressed using environmental data and probabilistic models (Hay et al.,
2006) and rarely approached in quantitative terms. Remote sensing that
combines physical methods and VIs makes it possible to map the DI
dynamics of Xf based on the main biophysical changes it causes at the
landscape scale. The dense time series provided by Sentinel-2 satellites
make continuous mapping feasible and bring new opportunities for
monitoring diseases incidence worldwide. Future work should consider
methods to disentangle direct plant-level effects of Xf infection from
those that manifest themselves in other components of the landscape
because of changes in either vegetation composition or management.

5. Conclusions

This study demonstrates that Sentinel-2 data enables the detection
of changes associated with temporal variations of Xf-induced symptoms
at the orchard level. The use of satellite imagery to monitoring large-
scale dynamics is key to combat Xf infections. Our work took advantage
of a two-year dataset collected in the Xf-infected area in southern Italy,
integrating Sentinel-2 satellite images and high-resolution hyperspec-
tral imagery, field observations and radiative transfer modelling. The
temporal rate of change of disease incidence (DI) and disease severity
(DS) was evaluated using different VIs and showed that the monitoring
of Xf-infected orchards required the use of self-corrected and soil-ad-
justed VIs. Among the Sentinel-2 VI assessments, the best performance
was observed for those that minimised the atmospheric and background
effects such as ARVI, OSAVI and ATSAVI. These VIs performed better
than traditional VIs such as NDVI, RDVI and MSR. However, the con-
founding effects of the understory had a considerable impact on the VIs
obtained from Sentinel-2 over Xf-infected olive orchards due to the
discontinuous canopy that characterises this crop. This study demon-
strated that 3-D RTM and field observations properly explained the
temporal variations experienced by both the tree canopy and the
background, a critical aspect to accurately predicting ΔDI and ΔDS.
Applying a temporal trend analysis supported by the 3-D RTM de-
monstrated that ARVI and OSAVI can be used to monitor orchard-level
changes in DI and DS, yielding Normalized Root Mean Square Error
(NRMSE) values below 0.22 and 0.36, respectively, for the two years of
analysis. Overall, these results suggest that Sentinel-2 time-series ima-
gery can provide useful spatio-temporal indicators to monitor the da-
mage caused by Xf infections across large areas.
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