Assessing the contribution of understory sun-induced chlorophyll fluorescence through 3-D radiative transfer modelling and field data

A. Hornero a,c,*, P.R.J. North a, P.J. Zarco-Tejada b,c, U. Rascher d, M.P. Martin e, M. Migliavacca f, R. Hernandez-Clemente a

a Department of Geography, Swansea University, SA2 8PP Swansea, United Kingdom
b School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences (FVAS), Department of Infrastructure Engineering, Melbourne School of Engineering (MSE), University of Melbourne, Melbourne, Victoria, Australia
c Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain
d Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Str, 52425 Jülich, Germany
e Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), Spanish National Research Council (CSIC), Albasanz 26-28, 28037 Madrid, Spain
f Max Planck Institute for Biogeochemistry, Hans-Knöl-Straße 10, D-07745 Jena, Germany

A R T I C L E I N F O

Keywords:
Chlorophyll fluorescence
Heterogeneous canopies
Hyperspectral
HyPlant
Radiative transfer modelling
SIF
Understory

A B S T R A C T

A major international effort has been made to monitor sun-induced chlorophyll fluorescence (SIF) from space as a proxy for the photosynthetic activity of terrestrial vegetation. However, the effect of spatial heterogeneity on the SIF retrievals from canopy radiance derived from images with medium and low spatial resolution remains uncharacterised. In images from forest and agricultural landscapes, the background comprises a mixture of soil and understory and can generate confounding effects that limit the interpretation of the SIF at the canopy level. This paper aims to improve the understanding of SIF from coarse spatial resolutions in heterogeneous canopies by considering the separated contribution of tree crowns, understory and background components, using a modified version of the FluorFLIGHT radiative transfer model (RTM). The new model is compared with others through the RAMI model intercomparison framework and is validated with airborne data. The airborne campaign includes high-resolution data collected over a tree-grass ecosystem with the HyPlant imaging spectrometer within the Fluorescence EXplorer (FLEX) preparatory missions. Field data measurements were collected from plots with a varying fraction of tree and understory vegetation cover. The relationship between airborne SIF calculated from pure tree crowns and aggregated pixels shows the effect of the understory at different resolutions. For a pixel size smaller than the mean crown size, the impact of the background was low ($R^2 > 0.99$, NRMSE < 0.01). By contrast, for a pixel size larger than the crown size, the goodness of fit decreased ($R^2 < 0.6$, NRMSE > 0.2). This study demonstrates that using a 3D RTM model improves the calculation of SIF significantly ($R^2 = 0.83$, RMSE = 0.03 mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$) when the specific contribution of the soil and understory layers are accounted for, in comparison with the SIF calculated from mixed pixels that considers only one layer as background ($R^2 = 0.4$, RMSE = 0.28 mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$). These results demonstrate the need to account for the contribution of SIF emitted by the understory in the quantification of SIF within tree crowns and within the canopy from aggregated pixels in heterogeneous forest canopies.

1. Introduction

International efforts have been carried out to monitor fluorescence from space in global studies using different sensors (Köhler et al., 2018; Mohammed et al., 2019) and modelling approaches (Verrelst et al., 2015). One of the main challenges of the global low-resolution (over 60 m/pixel) sun-induced fluorescence (SIF) maps resides in the impact of the background components when quantifying SIF from large pixels aggregating different scene components. The first SIF global maps (Frankenberg et al., 2011; Joiner et al., 2011) were derived from the thermal and near-infrared sensor for observation (TANSO) onboard the greenhouse gases observing satellite (GOSAT) (Guanter et al., 2012). A recent study has focused on downsampling SIF using the Global Ozone Monitoring Instrument 2 (GOME-2) and producing a daily corrected SIF.
global dataset with a spatial resolution of 0.05° (Duveiller et al., 2020). The most recent SIF products based on the Orbiting Observatory 2 (OCO-2) launched in 2014 and the TROPospheric Monitoring Instrument (TROPOMI) in 2018 provide a footprint of 1.3 × 2.25 km and 3.5 × 7 km at nadir respectively. OCO-2 and TROPOMI SIF products have the potential to provide GPP estimations for homogeneous vegetation type covers (Köhler et al., 2018; Li et al., 2018). Although these global maps were important achievements, questions were raised regarding the interpretation of the SIF quantified from mixed pixels that aggregate vegetation, soil and shadow components (Lu et al., 2018a). In the coming years, new possibilities of improving the spatial resolution of SIF global maps open up with the upcoming launch of the ESA Fluorescence Explorer (FLEX) satellite in 2022, designed to measure the instantaneous chlorophyll fluorescence signal with a very high spectral-resolution (0.1 nm) imaging spectrometer and a spatial resolution of 300 m. This will provide a completely new opportunity to assess the dynamics of actual photosynthesis through SIF, which offers a major advance over current capabilities that can only detect potential photosynthesis as derived through passive reflectance monitored by conventional Earth-observation satellites. The spatial resolution of FLEX is not, however, sufficient to understand the confounding effects of background components that affect the quantification of vegetation SIF at the pixel level. Recent initiatives, such as the FlexSense campaign (Siegmann et al., 2019) for collecting airborne measurements at very fine resolution during the FLEX-Sentinel Tandem experiment, will contribute to the understanding and interpretation of SIF from aggregated pixels. Previous studies have attempted to interpret the SIF signal quantified at different scales, which is an important issue due to the effects of fractional vegetation cover and structure, and background (Zarco-Tejada et al., 2013).

In heterogeneous forest and agricultural canopies, high-resolution images are required to enable the crowns and understory to be delineated from the background (Wagner et al., 2018). The quantification of the contribution of each pixel helps to understand and to improve the models used to quantify biophysical parameters from mixed pixels (Yu et al., 2018). The estimation of some of these parameters, such as the fraction of green vegetation cover (FG), leaf area index (LAI), or the fraction of absorbed photosynthetically active radiation (FAPAR), have critical implications in the estimation of Gross Primary Productivity (GPP) at the regional or global scale (Lin et al., 2018; Tagliabue et al., 2019). In fact, the impact of the understory on canopy reflectance is particularly challenging for studying complex canopies comprising different plant architectures and physiology (Eriksson et al., 2006). Recent studies have demonstrated that SIF-GPP relationships not only are significantly affected by vegetation type (Li et al., 2018; Sun et al., 2018) but even vary within the same kind of vegetation (Migliavacca et al., 2017). These studies concluded that finer resolution SIF observations were required to improve the accuracy of the models. However, it remains unclear how the covariation between SIF and GPP is affected by mixed vegetation from landscape to global scales (Sun et al., 2017), although it has been shown that the canopy structure plays a dominant role in the SIF-GPP relationship (Dechant et al., 2020; Duveiller et al., 2020). Therefore, it is critical to quantify the contribution of each sub-pixel scene component in mixed canopies that are characterised by a heterogeneous distribution of trees and understory when working with satellite images at medium and low spatial resolutions.

Furthermore, temporal changes in the physiological condition and composition of the understory also affect the relationships between satellite data and vegetation property of mixed pixel. This is especially the case at medium and low spatial resolutions, which alter temporal relationships, as demonstrated by Hornero et al. (2020). In that study, Sentinel-2 data was used to show an inverse relationship between vegetation indices and the increase in the disease incidence quantified from trees affected by Xyella fastidiosa (Xf) infection due to understory effects. The results demonstrated that the decrease in tree density, caused by the disease, produced an increase in the understory fraction, resulting in a controversial increase in the Normalized Difference Vegetation Index (NDVI) in the affected fields.

In this context, models are essential to relate observed optical properties to leaf biophysical and biochemical attributes and to analyse the effect of heterogeneous canopy structures at different spatial resolutions (Wu and Li, 2009). Several methods have been proposed to calculate biochemical traits from hyperspectral reflectance, including scaling-up and model inversion methods that couple leaf and canopy transfer models (Verreist et al., 2018). For instance, recent studies (Melendo-Vega et al., 2018) have used a coupled model strategy (1D PROSAIL + 3D FLIGHT) including the contribution of the grass background to improve the simulation of the spectral properties for multi-layered tree-grass ecosystems. Other strategies include the use of linear spectral unmixing techniques tested to separate the spectral properties of forest floor and overstory components (Markiet and Mottus, 2020). Despite the progress achieved, this modelling approach does not yet include the contribution of fluorescence and the impact of the multiple scattering produced between tree and understory components and the background layer.

In recent modelling studies, the chlorophyll fluorescence emission has been included at the leaf (Kalero, 2020; Pedros et al., 2010; Vilfan et al., 2018; Vilfan et al., 2016) and canopy level in homogeneous (Atherton et al., 2019; Romero et al., 2020; Yang and van der Tol, 2018; Zeng et al., 2019) and heterogeneous forest canopies (Hernández-Clemente et al., 2017; Liu et al., 2019; Zhao et al., 2016). Furthermore, previous studies have attempted to account for spatial heterogeneity using the first available model-based approximations (Zarco-Tejada et al., 2013). A more complex three-dimensional canopy radiative transfer model (RTM) – FluorFLIGHT (Hernández-Clemente et al., 2017) – was developed to parameterise the canopy structure to estimate SIF from heterogeneous forest canopies. The model is based on the combination of FLUSPECT (Vilfan et al., 2016) with the 3D ray-tracing model FLIGHT (North, 1996) to simulate multiple scattering within the canopy including the contribution of the gap and shadows between the trees crowns. Modelling results with FluorFLIGHT showed that the variability in the percentage of sunlit and shaded vegetation and soil affects the absolute values of total SIF from aggregated pixels and therefore, the interpretation of SIF from coarse resolution images.

Despite the extensive work conducted with FLIGHT (Bye et al., 2017; Hernández-Clemente et al., 2017; Montesano et al., 2015; Zarco-Tejada et al., 2019; Zarco-Tejada et al., 2018), strategies that simulate SIF in heterogeneous canopies and consider the effects of different background components, such as soil type or understory fraction, have been limited by difficulties in simulating complex canopy structures and vertical heterogeneity. To simulate SIF of complex multi-scale plant architectures, another 3D ray-tracing approach, the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 1996), has been proposed. This model has been recently used with data collected from a hand-held spectroradiometer to demonstrate that SIF is greatly influenced by canopy structure and understory vegetation (Liu et al., 2019). However, further research is still necessary to understand the impact of structural components on the retrieval of SIF from medium (10–60 m/pixel) to high (0.3–10 m/pixel) spatial resolution satellite images. Airborne sensors such as HyPlant, the first fluorescence sensor designed to support the FLEX mission and dedicated to validating the retrieval of SIF for a large canopy and different vegetation types (Rascher et al., 2015), can provide valuable information with which to model and understand better the effect of SIF signals among mixed pixels.

The impact of background components on SIF might particularly affect seasonal analyses, where the temporal variation of the understory fraction is high. Forest canopies, in particular, exhibit a complex canopy structure and the distribution of the understory cover fraction mainly depends on topography, sunfleck positions, soil composition and illumination conditions (Tagliabue et al., 2019). Consequently, assuming an invariant and homogeneous effect of the soil as background might increase the uncertainty of biophysical parameters retrieved from high-
and medium-resolution imagery (Hornero et al., 2020; Meng et al., 2018). These previous studies have demonstrated the need to develop new modelling approaches that consider the multiple scattering, mutual shading of the crowns, variation in the soil, and shading of the background in SIF retrieval.

In this study, we propose a modification of the 3D RTM FluorFLIGHT model to simulate canopy reflectance and SIF in heterogeneous canopies, including the effects of different background components, such as the soil and the understory cover fraction. In particular, we aim to i) analyse the contribution of SIF emitted by the understory in aggregated pixels using high spectral and spatial resolution imagery collected from the airborne hyperspectral HyPlant system, ii) study the impact of the variation in the understory cover fraction on the total SIF calculated at different scales. We compare this modified model with others from the Radiation Transfer Model Intercomparison (RAMI-3) exercise under the RAMI On-line Model Checker framework (ROMC) (Widlowski et al., 2008; Widlowski et al., 2007) and validate it with field and airborne data.

2. Material and methods

2.1. Study site and ground data collection

The study was carried out in a Mediterranean tree-grass ecosystem (locally known as dehesa) located in Majadas de Tiétar (western Spain, 39° 56′ 20″ N, 5° 46′ 28″ W) (Fig. 1). The dehesa is a unique and practically endemic agrosilvopastoral system of the Iberian Peninsula, formed mainly by holm and cork oaks, with a lower stratum of grasses and shrubs, and generally shows extensive livestock use. These two strata, trees and understory, mainly define the vegetation structure in the study area. The tree layer covers approximately 20% of the surface and is predominantly composed of holm oak (Quercus ilex L. subsp. ballota) (Bogdanovich et al., 2020). The understory grass layer is highly dynamic and is dominated by species of the three main functional plant forms of grasses, forbs and legumes (Migliavacca et al., 2017).

Field measurements were taken on 24 June 2018 simultaneously with the airborne campaign described in Section 2.2 to perform the image processing and model parametrisation. In particular, total incoming radiance was required for the SIF and the reflectance calculation for both empirical and simulated data. Solar irradiance data were measured at the time of image acquisition with a SIF-enabled high-resolution spectroradiometer instrument (FloX, JB Hyperspectral Devices, Düsseldorf, Germany) mounted and levelled on a 9-metre tower above the tree canopy. Two FloX boxes were installed over two trees (Fig. 1) during the flight, and another one was also used to collect spectral data from the understory in 15 plots (transects) between these trees. Each FloX equipment consists of two sealed and isolated spectroradiometers, FULL and FLUO (Table 1). Total incoming radiation was also simulated by the SMARTS model (National Renewable Energy Laboratory, United States Department of Energy) (Gueymard, 1995, 2001), using aerosol optical depth measured at 550 nm from the AERONET (Holben et al., 1998).

2.2. Imaging campaign

The airborne observations were acquired along a transect from 19.44° to 20.64° E and 40.73° to 41.12° N in order to cover the entire study area (Fig. 1). A total of 863 spectral images were acquired with a nadir spectral resolution of 2 nm and full spatial resolution of 1 m. The hyperspectral data were georectified using precise flight parameters and a pre-registered digital surface model (DSM) to obtain the SIF image with 1 m spatial resolution. The SIF image was produced by means of a modified empirical SIF retrieval algorithm that considers the contributions of the canopy vegetation and the soil (Hornero et al., 2020). The SIF image was used as input to the FluorFLIGHT model for the simulations. The model was run for a 5-day time period with a spatial resolution of 1 m and a spectral resolution of 1 nm for comparison with the field and airborne data.

2.3. SIF model

The FluorFLIGHT model was modified to simulate both canopy reflectance and SIF in heterogeneous canopies, including the effects of different background components, such as the soil and the understory cover fraction. The model was run for a 5-day time period with a spatial resolution of 1 m and a spectral resolution of 1 nm for comparison with the field and airborne data.
concentrations in the homogenised grass sample were spectrophoto-
sampled. In each pigment quadrant, the green fraction of the standing
where biophysical and structural variables previously described were
grass sample (pigment quadrant) was taken adjacent to the quadrant
is based (with minor modifications) on the ISODATA method described
Geomatica (PCI Geomatics, Richmond Hill, Ontario, Canada). ISOCLUS
samples were then placed in an oven for 48 h at a constant temperature
metrically analysed in four replicates per sample using 80% (v/v)
V30 colour scanner (Epson American Inc., Long Beach, CA, USA). The
leaf area was calculated automatically from the scanned images using
with an integrating sphere on SPECIM facilities by calculating co-
ficients derived from a calibrated light source and, prior to applying
these coefficients, the dark frame correction was conducted. We cal-
culated the top-of-canopy (TOC) spectral reflectance – Cluster II output
as described in Siegmann et al. (2019) – from the DUAL imager in the VNIR
SWIR regions with ATCOR4 (ReSe Applications Schläpfer, Wil,
Switzerland) using available sunphotometer measurements of Aerosol
Optical Depth (AOD) as input parameters. We used at-sensor-radiance
from the FLUO imager (Cluster III output), extended by the applica-
tion of the point-spread function deconvolution (Siegmann et al., 2019).
DUAL and FLUO sensors were boresight corrected and orhorectified
with CaliGeoPRO SPECIM Spectral Imaging Ltd., Oulu, Finland) using
inputs from an inertial navigation system Oxford 3052 GPS/INS (Oxford
Technical Solutions Ltd., Oxford, UK) installed on-board and
synchronised with HyPlant.

LiDAR data were acquired using a Riegl LMS-Q780 system (RIEGL
Laser Measurement Systems GmbH, Horn, Austria). A normalised
digital surface model (nDSM), also known as canopy height model and
generated from the LiDAR point cloud, was used to measure canopy features:
height, diameter and fractional cover (FC). The nDSM product also
imated from the LiDAR point cloud, was used to measure canopy features:
height, diameter and fractional cover (FC). The nDSM product also

2.2. Airborne hyperspectral and LiDAR data

Airborne data collection (Fig. 2) was conducted on 24 June 2018
using the high-resolution triple-coupled hyperspectral solution HyPlant
v3, developed by the Jülich Research Centre (Kreis Düren, Germany) in
cooperation with SPECIM Spectral Imaging Ltd. (Oulu, Finland) (Sieg-
mann et al., 2019) and a long-range laser scanner onboard a Cessna
aircraft. The HyPlant system consists of two hyperspectral modules as a
combination of three pushbroom imaging line scanners. The DUAL
imager (available commercially as AisaFENIX) comprises two integrated
sensors in a single housing sharing the same optics, which provides
continuous spectral information covering the visible/near-infrared
(VNIR) and short-wave infrared (SWIR) regions of the spectrum
(380–2500 nm), and yielding 3.5 and 12 nm full-width at half-maximum
(FWHM) spectral resolution, respectively. The FLUO module (commer-
cially known as AisaBIS) is an imager that acquires data between 670
and 780 nm at higher spectral resolution (Celesti et al., 2019; Siegmann
et al., 2019). The hyperspectral sensors were radiometrically calibrated
with an integrating sphere on SPECIM’s facilities by calculating co-
efficients derived from a calibrated light source and, prior to applying
these coefficients, the dark frame correction was conducted. We cal-
culated the top-of-canopy (TOC) spectral reflectance – Cluster II output
as described in Siegmann et al. (2019) – from the DUAL imager in the VNIR
SWIR regions with ATCOR4 (ReSe Applications Schläpfer, Wil,
Switzerland) using available sunphotometer measurements of Aerosol
Optical Depth (AOD) as input parameters. We used at-sensor-radiance
from the FLUO imager (Cluster III output), extended by the applica-
tion of the point-spread function deconvolution (Siegmann et al., 2019).
DUAL and FLUO sensors were boresight corrected and orhorectified
with CaliGeoPRO SPECIM Spectral Imaging Ltd., Oulu, Finland) using
inputs from an inertial navigation system Oxford 3052 GPS/INS (Oxford
Technical Solutions Ltd., Oxford, UK) installed on-board and
synchronised with HyPlant.

The hyperspectral images had a ground resolution of 1.5 m per pixel
and allowed individual tree crowns to be distinguished from the back-
ground consisting of soil and understory vegetation. We used the images to
calculate the spectral information of each scene component (Fig. 3), to
calculate the NDVI (Rouse Jr. et al., 1974) and to quantify the fluores-
cence signal. For this, we used the O2 A-band in-filling method through
the Fraunhofer Line Depth (FLD) principle (Plasck, 1975), based on
a total of three spectral bands (3FLD) (Maier et al., 2003);

\[
3FLD = \frac{E_{out} - E_{out}}{E_{out} - E_{in}} \frac{L_{780} - L_{761}}{L_{780} - L_{761}} \frac{L_{780}}{L_{761}}
\]

where radiance I corresponds to \(I_{761} \) (at 761 nm), \(I_{780} \) (mean value of \(I_{747} \)
and \(I_{780} \) spectral bands), and irradiance \(E \) to \(E_{761} \) (at 761 nm), and \(E_{out} \)
(mean value of \(E_{747} \) and \(E_{780} \) spectral bands). The decision of using 3FLD
is based on the successful performance of this index in previous studies
(Cendrero-Mateo et al., 2016; Damm et al., 2015; Liu et al., 2015; Liu
and Liu, 2014). 3FLD was calculated by using the at-sensor-radiance
from the FLUO imager previously described, which does not take into
account the atmospheric absorption and scattering effects. For this
study, we assumed relatively low impact of these effects considering that
we are assessing the relative contribution of SIF emitted by the under-
story to the full canopy with data collected from a single flight and ac-
quired within 27 min in clear sky conditions. In addition, a comparison
was made between FloX measurements and the hyperspectral images.
Using all the measured data (trancets and tree-crown measurements)
the relationship was reasonably strong \(\left(R^2 = 0.67, \text{RMSE} = 0.12 \text{ mW m}^{-2} \text{ sr}^{-1} \text{ nm}^{-1}\right) \), improving when the assessment was carried out using the two FloX instruments permanently installed over two tree crowns (RMSE = 0.04 mW m\(^{-2}\) sr\(^{-1}\) nm\(^{-1}\)).

The objective of using NDVI in this study is to show the behaviour of a standard and widely used vegetation index related to fractional cover, comparing the effects observed in both NDVI and SIF. The high-spatial resolution of the airborne hyperspectral images allowed the extraction of different scene components used as ground truth used for the model inversion following the methodology proposed by Zarco-Tejada et al. (2019). A Mahalanobis Distance classification (Richards, 1999) using ENVI/IDL (Exelis Visual Information Solutions, Boulder, Colorado) was also derived from the hyperspectral DUAL-sensor imagery to classify vegetation cover, soil, roads and water ponds throughout the study area.

In this way, we constructed the scene grid and filtered scenes that contained roads, water or buildings. The scene grid enabled the spectral reflectance of each component to be calculated, which was then used to evaluate the behaviour of the model with different types of soil, understory variability and FC (Fig. 2).

We used the tree-crown segmentation calculated from the nDSM LiDAR product to establish an external buffer of two metres, which was excluded from the analysis to avoid tree shadows, mixtures of tree branches and understory at the crown edges, and potential effects of misalignment between sensors (Fig. 3).

Taking into account the difference in NDVI and 3FLD values obtained from tree-crown and aggregated pixels (Fig. 4), we performed an empirical analysis over a selection of 300 scenes (Fig. 2a) that covered all the natural range found within the study area (NDVI: 0.25–1.00,
To assess the contribution of SIF emitted by the understory, we compared the values obtained from tree crowns and aggregated pixels at different spatial scales (Fig. 5a). We selected the spatial resolutions of 5, 15, 25, 50 and 100 m (Fig. 5b), which were either smaller than the tree crowns or much larger and even grouped several trees within the same sampling. Fig. 5c and d show that NDVI and 3FLD values of the scene decrease as pixel aggregation increases. The spatial resolution selected is highlighted in different colours covering different aggregation levels covering the entire range. Those resolutions were used to further analyse the contribution of the SIF emitted by the understory and tree crowns using empirical data and RTM as described below.

2.3. Modified FluorFLIGHT model to account for the understory

In this study, we extended the 3D RTM FLIGHT (North, 1996) to account for the understory layer, including the SIF contribution of the crowns from the FluorFLIGHT modification (Hernández-Clemente et al., 2017). The main reason for using this model is that it has been previously validated in several applications for the quantification of biophysical parameters (Bye et al., 2017; Guillem-Clement et al., 2012) and plant health condition (Hernandez-Clemente et al., 2017; Hornero et al., 2020; Zarco-Tejada et al., 2018). Furthermore, the computational speed of FLIGHT is relatively fast if compared to other more complex 3D models (DART, Raytran or Librat) because sunlit and shaded canopy fractions are based on simple geometrical-optical properties as reviewed in Malenovský et al. (2019). The model is available for download on https://flight-rtm.github.io.

The modification, named FLIGHT8, is based on the existing theory of RTM and couples an additional layer into the 3D ray-tracing model FLIGHT to account for the understory, including changes related to SIF and the interaction between the existing and new components (Fig. 6). We considered the contribution of SIF within the understory, as well as the multiple scattering events between components. Similar to FluorFLIGHT, this approach is also coupled with the leaf fluorescence model FLUSPECT (Villan et al., 2016), which is a physical model based on Kubelka-Munk theory that includes the fluorescence quantum efficiency parameterisation according to its core-original model PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 1990).

The Monte Carlo ray-tracing model FLIGHT was designed to rapidly simulate light interaction with 3D vegetation canopies at high-spectral resolution, to produce reflectance spectra and lidar returns for both forward simulation and use in inversion (North, 1996; North et al., 2010), and recently extended to model solar-induced fluorescence (Hernández-Clemente et al., 2017). Foliage is represented by structural properties of leaf area, leaf angle distribution, crown dimensions and fractional cover, and the optical properties of leaves, branch, shoot and ground components. The model explicitly represents multiple scattering
and absorption of light within the canopy and with the ground surface and used as a benchmark by the Radiative Transfer Model Intercomparison (RAMI) (Widlowski et al., 2007). Scattering within crown and understory components is evaluated by the Monte Carlo method of radiative transfer modelling approximation, where a photon can be stochastically either absorbed or scattered into a new direction. Outside these components, the photon trajectory simulation proceeds by a deterministic ray-tracing approach.

The new model includes an additional parameterisation that defines the understory layer. The understory extends from the soil layer (Fig. 6d) to a user-defined height. More input values were added to also define the understory leaf size and its distribution (leaf angle distribution), as well as the mean one-sided total foliage area index (LAI). At leaf level, both the existing model and the understory addition use the same Eqs. (3) to (6) described below to calculate radiance, with appropriate values for optical and structural properties, and here detailed for understory.

Within the homogeneous understory layer, the illumination of a leaf is calculated as the sum of direct and diffuse incoming light. For a leaf \(L_{\text{US}} \), viewed from direction vector \(\Omega \) and illuminated from vector \(\Omega_0 \), the contribution of the radiation leaving the surface to the detector without taking into account the fluorescence is defined as follows:

\[
I_{L_{\text{US}}} (\lambda) = I_0 (\lambda) \gamma_{L_{\text{US}}} (\lambda, \Omega_0 \rightarrow \Omega) P_0 + \frac{1}{m} \sum_{n=1}^{m} I_n (\lambda, \Omega_n) \gamma_{F_{\text{US}}} (\lambda, \Omega_n \rightarrow \Omega)
\]

(3)

where \(I_0 \) corresponds to the illumination radiance of the direct solar beam at the wavelength \(\lambda \), \(I_n \) represents the sample of the incoming diffuse field from the \(\Omega_n \) direction, and \(\gamma_{L_{\text{US}}} \) denotes the bidirectional reflectance/transmittance factor for each leaf from the understory. If there is a direct path to the light source, \(P_0 \) has a value 1, and 0 if not. The incoming diffuse light field is sampled using \(m \) directions over a sphere. Each sample traces a ray from the leaf to the next interaction in that direction, or sky, and which may leave the understory canopy and so be a contribution from non-understory components; radiance from this is calculated recursively using (3). The non-fluorescent scattering phase function within the understory component at wavelength \(\lambda \) and leaf normal vector \(\Omega_L \), has been approximated using a bi-Lambertian reflectance model:

\[
\gamma_{L_{\text{US}}} (\lambda, \Omega_L, \Omega' \rightarrow \Omega) = \frac{\pi}{1} \rho_n (\lambda) \left| \Omega \cdot \Omega_L \right|, \quad (\Omega \cdot \Omega_L) (\Omega' \cdot \Omega_L) < 0
\]

\[
\gamma_{L_{\text{US}}} (\lambda, \Omega_L, \Omega' \rightarrow \Omega) = \frac{\pi}{1} \tau_n (\lambda) \left| \Omega \cdot \Omega_L \right|, \quad (\Omega \cdot \Omega_L) (\Omega' \cdot \Omega_L) > 0
\]

(4)

Following similar equations, the fluorescence contribution for an individual leaf within this layer \(F_{L_{\text{US}}} \) is calculated using full fluorescent scattering matrices, through sampling direct and diffuse incident illumination within the excitation range from 400 to 750 nm:

\[
F_{L_{\text{US}}} (\lambda) = \sum_{k=1}^{760} I_0 (k) \gamma_{F_{\text{US}}} (k, \lambda, \Omega_0 \rightarrow \Omega) P_0 + \frac{1}{m} \sum_{n=1}^{m} I_n (k, \Omega_n) \gamma_{F_{\text{US}}} (k, \lambda, \Omega_n \rightarrow \Omega)
\]

(5)

where \(I_0 \) is the illumination radiance of the direct solar beam at the wavelength \(\lambda \), \(I_n \) represents the sample of the incoming diffuse field from the \(\Omega_n \) direction, and \(\gamma_{F_{\text{US}}} \) denotes the bidirectional reflectance/transmittance factor for each leaf from the understory.
where M_b and M_f represent the backward- and forward-scattering fluorescence matrices for both photosystems PS-I and PS-II, respectively. Similar to FluorFLIGHT at tree-crown level, total measured radiance in the understory component is calculated as the sum of the reflected light (I_{US}) and fluorescent emission contribution (F_{US}).

The other components within the scene (Fig. 6d), the fluorescence contribution within a tree crown, and the consideration of the incident diffuse field remain as described in North (1996), North et al. (2010) and Hernández-Clemente et al. (2017). The Monte Carlo formulation allows the leaf-level fluorescence contribution to be readily scaled by an estimate of local fluorescence quantum efficiency if available. While single constant values are used separately for understory and canopy here, other recent studies have explored separation of values for sunlit and shaded leaves, or parameterisation by leaf-level PAR (Gastellu-Etchegorry et al., 2017; Zeng et al., 2020; Zhao et al., 2016).

To evaluate the included features in FLIGHT8, we compared the new understory layer as a single 1D simulation with homogeneous cases from the RAMI-3 experiments (Widlowski et al., 2007), which is the most recent and updated RAMI phase built for this purpose. No crowns were considered in this comparison because there is no existing model intercomparison that accounts for a two-layer homogeneous (HOM) and heterogeneous (HET) approach; for fluorescence there is no agreed intercomparison to date. A more recent experiment, RAMI-IV, featured a completely new set of experiments for abstract canopies (Widlowski et al., 2013), but this exercise neither included any case with the HOM-HET combination nor purely homogeneous scenes.

One of the difficulties in evaluating an RT model by comparison with other models is the absence of an absolute reference standard; therefore, to compare the output of the model with a reference value, an alternative truth should be identified. This truth was generated as the mean of a series of models that were identified during the third phase of the RAMI-3 exercise. The radiative transfer models DART (Gastellu-Etchegorry et al., 1996), Drat (Lewis, 1999), FLIGHT (North, 1996), Rayspread (Widlowski et al., 2006), Raytran (Govaerts and Verstraete, 1998) and Sprint (Thompson and Goel, 1998) participated in the generation of the reference data (RAMIREF).

To cover the entire range of the different inputs (Table B1, Appendix B), we summarised the intercomparison in 12 cases for the Bi-directional Reflectance Factor (BRF) in the principal planes and orthogonal planes by varying the solar viewing angles. Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were then calculated between the simulated signal and the RAMIREF.

![Example tree-canopy simulations](image_url)

Fig. 6. Example tree-canopy simulations a) without and b) with understory, c) including their spectra; d) graphical abstract representation of FLIGHT8.
establish ranges of biophysical parameters and biochemical variables (Table 2). The parameters required by the models that could not be measured in the field (leaf mesophyll structure, leaf angle distribution, senescence material and fluorescence quantum efficiency) were established through previous studies using the values evaluated by Hernandez-Clemente et al. (2017) for oak trees and by Melendo-Vega et al. (2018) for the understory.

The inversion scheme was a multi-step LUT-based approach using NDVI, 3FLD and 650–800 nm as described in Hernandez-Clemente et al. (2017). In the first stage of the analysis, we built a lookup-table (LUT) of +400k simulations by coupling FLUSPECT-B with FLIGHT8 in 1D mode. The LUT is used to estimate leaf parameters and LAI from the tree canopy and understory independently. The inversion was carried out in different steps by minimising the merit function consecutively for LAI and leaf biochemical parameters. In the next stage, the parameterisation retrieved for each of the scenes and components was used in a second set of simulations by coupling FLUSPECT-B with FLIGHT8 in 3D mode. The topography in the simulations was simplified as flat terrain. The forward simulations were used to calculate the aggregated value of NDVI and 3FLD for the 300 scenes of 25 m selected as described in Section 2.2. This last step was applied using FLIGHT8 in two different modes, accounting for the specific contribution of SIF emitted by the understory layer (full mode) and disabling the SIF emitted by the understory (single mode).

Model simulations in single-mode use only one layer for the background (assumed Lambertian) and, for this analysis, we used the mean spectral reflectance extracted from the image which includes the average proportion of soil and understory found in the study area. Finally, the model-simulated aggregated pixel, from both the full- and single-mode approaches, was compared to that extracted from the hyperspectral image. The modelling approach performed is depicted in Fig. 7. The comparison between single-mode and full-mode approach was intended to understand the theoretical contribution of the understory integrated into FLIGHT8.

3. Results

Results from empirical approaches are presented to show the effect of the understory on NDVI and 3FLD derived from different pixel aggregation scales. Based on the need to correct these effects, we present results showing the performance of FLIGHT8 to account for the understory variations that affect the reflectance calculated from aggregated pixels. FLIGHT8 was additionally compared with other models and widely accepted reference data.

3.1. Effects of the understory on airborne data calculated from aggregated pixels

The comparison between the aggregated pixel and the tree-crown segmented value extracted from the airborne imagery showed the impact of the background at different scales for NDVI and 3FLD indices (Fig. 8a and b, respectively). In the case that the aggregated pixel includes more than one tree (Fig. 5), these are taken into account when computing the average value of the tree-crown and understory components. At a resolution of 5 m, where aggregated areas were centred on crowns (green points in Fig. 8a, b), the pixel size was smaller than the mean crown size (μ0 = 11.98 m), and the impact of the background was relatively low for both NDVI and 3FLD, with a high correlation between aggregated and pure crown values (R² > 0.99; NRMSE <0.01). The goodness of fit between tree-crown and aggregated pixels decreased with a pixel size slightly higher than the crown size (15 m), and the errors doubled with a crown size of 25 m (orange points) for NDVI (R² = 0.47; NRMSE = 0.33) and 3FLD (R² = 0.58; NRMSE = 0.2). To elucidate the contribution of each component at this scale, we plotted the relationship between the canopy and the understory FC (Fig. S2, supplementary material). The dispersion of points increased and diverged from a linear fitting as the soil FC increased. The contribution of each component at the same resolution (25 m, Fig. 8c and d) showed that the slope of the linear relationship between the NDVI from aggregated pixels and understory was closer to the identity line than that of the tree crowns, confirming that the contribution of the understory is significant.

3.2. The FLIGHT8 model approach to account for background effects

As a previous step to the modelling approach, the performance of FLIGHT8 was analysed using controlled conditions. A comparison against other RTM models is included in supplementary material. Fig. A3 shows that the simulations obtained (dark-green line) through the range of input variables agreed in RAMi showed a similar performance to that of the models used to generate the reference data RAMiRef (dashed light-green line). The shaded yellow area displays the absolute coverage range of these models, and in all cases, the simulations with FLIGHT8 were contained within this zone. More comparison results are presented in supplementary material (Fig. A4), including the results from the RAMi On-line Model Checker (ROMC). In all cases, the observed degree of relationship between the reference value and the simulations from the modified model was very high, showing a coefficient of determination (R²) that exceeded 0.98, with a mean value of 0.99. The differences between these data sets were also minimal, and the greatest error was 0.007 for both RMSE and MAE metrics. The first set of results showed the sensitivity of aggregated pixel 3FLD to variation in the understory and tree-crown Fc and the understory LAI (Fig. 9). The total scene SIF increases with LAI and the Fc of both the understory and crowns (Fig. 9a). Understory LAI is shown to have the greatest impact on aggregate pixel SIF for the ranges shown. Within each subgroup of LAI (0.5 size step), there was a gradual increase in the variation in the aggregated pixel, which followed a similar pattern, except when the understory LAI was zero, where the scene SIF only varied depending on the tree parameterisation. For values of LAI in the understory above zero, a similar increase in SIF of the scene was observed with increasing values of understory and tree-crown Fc. Furthermore, there was a linear relationship between the SIF extracted from sunlit (Fig. 9b left) and full-crown pixels (Fig. 9b right) with respect to the aggregated pixels as a function of the variation in the Fc (0–0.05) of the understory and the tree crowns. The SIF signal quantified from sunlit and full-crown pixels was higher than that from 25 m aggregated pixels. The differences were greater for sunlit crown pixels, where the impact of the background was lower. For lower values of crown Fc, the relative contribution of the background for sunlit and full tree crowns increased, and the differences between SIF quantified from crown and aggregated pixels decreased. The Fc of the understory also affected the relationship, with fewer differences observed between SIF quantified from tree crowns and aggregated pixels for the understory with a higher Fc. Fig. 9c and d show that if we try to calculate the SIF from the crown component based on the relationship between full-tree crowns and aggregated pixels, the increasing of the understory LAI reduces the correlation between them. The highest increase in NRMSE is observed with understory LAI values.

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Acronym</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a + b content</td>
<td>μg cm⁻²</td>
<td>Cab</td>
<td>0–64</td>
</tr>
<tr>
<td>Carotenoid content</td>
<td>μg cm⁻²</td>
<td>Cca</td>
<td>0–30</td>
</tr>
<tr>
<td>Water content</td>
<td>cm</td>
<td>Cw</td>
<td>0–0.03</td>
</tr>
<tr>
<td>Dry matter content</td>
<td>g cm⁻²</td>
<td>Cdm</td>
<td>0.003–0.018</td>
</tr>
<tr>
<td>Senescence material</td>
<td>Fraction</td>
<td>Cs</td>
<td>0–0.3</td>
</tr>
<tr>
<td>Mesophyll structure</td>
<td>–</td>
<td>N</td>
<td>1–3</td>
</tr>
<tr>
<td>Fluorescence quantum efficiency</td>
<td>–</td>
<td>Fᵢ</td>
<td>0–0.2</td>
</tr>
<tr>
<td>Leaf Area Index</td>
<td>m² m⁻²</td>
<td>LAI</td>
<td>0–3</td>
</tr>
<tr>
<td>Leaf Size</td>
<td>m</td>
<td>LFS</td>
<td>0.01–0.05</td>
</tr>
<tr>
<td>Leaf angle distribution</td>
<td>–</td>
<td>LAD</td>
<td>Spherical</td>
</tr>
<tr>
<td>Soil reflectance</td>
<td>%</td>
<td>Soil</td>
<td>4 samples</td>
</tr>
<tr>
<td>Solar Zenith</td>
<td>deg</td>
<td>SZA</td>
<td>25.84</td>
</tr>
<tr>
<td>Solar Azimuth</td>
<td>deg</td>
<td>SAA</td>
<td>122.89</td>
</tr>
</tbody>
</table>
between 0 and 1. These results show the contribution of the SIF emitted by the understory not only in the whole scene, but also at the tree-crown level, and illustrate the difficulties in interpreting SIF from coarse-resolution images.

Based on the proposed modelling approach (Fig. 7), FLIGHT8 was then used to calculate NDVI and 3FLD from aggregated pixels that either did or did not account for the specific contribution of the soil and the understory layer (full or single mode, respectively; Fig. 10). The model simulations and the hyperspectral data were significantly related for NDVI ($R^2 = 0.95$, RMSE = 0.04, Fig. 10a) and 3FLD ($R^2 = 0.83$, RMSE = 0.03 mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$, Fig. 10b) when the model accounted for the contribution of the understory. Similar results were obtained for NDVI using the single-mode model approach, where the specific understory contribution was not considered ($R^2 = 0.96$, RMSE = 0.04, Fig. 10c). However, based on the same assumption, 3FLD was underestimated by the model and the retrieval accuracy was significantly affected ($R^2 = 0.4$, RMSE = 0.28 mW m$^{-2}$ sr$^{-1}$ nm$^{-1}$, Fig. 10d). These results show the need to consider the contribution of the understory layer in assessing SIF from the aggregated pixels and confirm the ability to use RTM for modelling these effects.

4. Discussion

The availability of SIF observations from space raises the need to develop and validate new approaches for modelling SIF scattering and re-absorption at the canopy level. The quantification of the fluorescence contribution to top-of-canopy radiance is challenging due to the reduced availability of studies and models with which to interpret the scattering processes within the canopy (Qiu et al., 2019; Romero et al., 2018; Yang and van der Tol, 2018; Zeng et al., 2019). Seeking to fill this gap, the results of this study show the contribution of the SIF emitted by the understory and tree crown components of the total forest canopy. A critical issue found was the selection of a model from among the available ones that can represent the main components of the forest canopy, but that avoids laborious parameterisation that hinders the retrieval of the biophysical properties of the vegetation from images (Hernández-Clemente et al., 2014). Early attempts at using a 3D-RTM to simulate SIF from heterogeneous canopies (Hernández-Clemente et al., 2017) reported the impact of soil background on the estimation of SIF at the canopy level. Our study introduces a new factor, considering the combined effect of soil and understory vegetation that contributes to the

Fig. 7. Model simulation approach diagram.
spectral reflectance of the background of an oak grassland at the end of the spring. We used data collected with HyPlant to demonstrate empirically that the understory affects the aggregated pixel values. The higher the aggregation, the more significant were the differences between the pure tree-crown value and the aggregated pixel, and these differences became less relevant at values close to or below the mean crown size. The empirical degradation of the NDVI and SIF by increasing the pixel size (Fig. 5) reinforces the results shown in Fig. 8. The aggregated pixels larger than the mean crown diameter deviate significantly from the crown values. Therefore, it follows that to accurately interpret signals arising from spatially heterogeneous canopies using a larger pixel size, further development is required. The 3FLD and NDVI quantification were similarly affected by the difference in scale size. Hence, this study demonstrates that the spectral contribution of the understory in heterogeneous canopies might introduce large inaccuracies into measurements calculated from satellite imagery with medium and low spatial resolutions when the quantification of SIF is needed from separated components (tree crowns and understory). This aggregation increases the uncertainties in modelling SIF and other vegetation indices on a global scale when the spatial distribution and composition of the understory varies over the seasons. In a relatively constant dominant layer (e.g. evergreen canopies), phenological changes of the understory through the season translate into changes in the canopy structure that alter the relationship between GPP and SIF (due to the SIF scattered by the canopy and the re-absorption pattern) (Ahl et al., 2006; Lu et al., 2018b). Even if seasonality remains unchanged, several ecosystems are characterised by a heterogeneous distribution of understory vegetation, which affects the spectral reflectance observed at coarse satellite resolutions. Although this study is carried out with constant values of solar and viewing angles, future work could consider the variation of these parameters. This is possible because FLIGHT8 allows to simulate BRF using different illumination and viewing geometries as it is shown in
Fig. A3. Upcoming studies focused on the analysis of the impact of the illumination condition on the quantification of SIF will be very interesting for assessing temporal trends of SIF from different sensors. Another important parameter to consider in that case will be the adjustment of F_i for sunlit and shaded canopies which may vary depending on the short and long term light adaptation of the leaves. The quantification of SIF emitted by the tree crowns and the understory separately may not always be necessary, in particular for modelling global GPP (Joiner et al., 2014). However, for other studies such as the temporal evolution of photosynthesis related with decay, stress or disease, the physiological state of each component independently should be accurately understood (Stoy et al., 2019). This approach could also be useful for partitioning fluxes of canopy components, which is very challenging from eddy covariance techniques. It is therefore critical that we are able to separate components to take into account the evolution that each of them has over time. The relevance of assessing the contribution of SIF of the understory is consistent with the model simulation reconstruction from terrestrial laser scanning shown by Liu et al. (2019). Future studies should consider the impact of spatial and temporal variations driving global plant dynamics. For these cases, it would be interesting to analyse the sensitivity of these factors on different SIF proxies such as iFLD (Alonso et al., 2008), pFLD (Liu and Liu, 2015), SFM (Mazzoni et al., 2012; Meroni et al., 2010) or NIRv (Badgley et al., 2017; Dechant et al., 2020). The latter, which without explicitly including the telluric oxygen absorption bands, is strongly related to sun-induced chlorophyll fluorescence (Fig. A5) and to global and site-level estimates of GPP (Badgley et al., 2017). Similarly, Wu et al. (2020) demonstrate the great potential of NIRv for estimating daily or sub-day GPP from remote sensing data from high-resolution satellites. In physical terms, NIRv represents the proportion of the pixel reflectance attributable to the vegetation in the pixel, so it seems reasonable that the following advances were aimed at using hybrid models that allow us to separate the scene components and use indicators such as NIRv that, by isolating the signal from the vegetation, could reduce the effect of mixed pixels.

The empirical results of the contribution of SIF emitted by the understory and tree crowns on the quantification of SIF from Hyplant images were in agreement with model simulations. The simulation analysis was performed with a new RTM that includes the option to analyse the contribution of the SIF emitted by the understory and the tree crowns. Although in this work it has not been possible to validate SIF through the RAMI experimental exercises because they are not yet available, RAMI-3 has allowed us to validate the model’s ability to represent a new layer. Using a straightforward set of simulations, we show that the higher the LAI of the understory, the smaller the effect of the soil, and therefore, the SIF of the canopy is more similar to the SIF of the scene (Fig. 9), reducing the impact of pixel size variation and scene heterogeneity. However separation of crown and understory is also complicated, and beyond approximately an understory LAI of 0.5 the understory SIF contribution dominates the aggregated pixel. These
results are consistent with the significant contribution of the SIF understory to the TOC SIF reported by Liu et al. (2019) using an ASD handheld spectrometer in an open-canopy boreal forest. Based on the need to understand the contribution of the understory at the landscape level, this study shows the accuracy of full tree-crowns SIF calculated from 25 m aggregated pixels with the highest increase in NRMSE observed with understory LAI from 0 to 1. These results strengthen the interpretation of the aggregated pixel covered by previous studies in which only the soil effect was taken into account (Hernández-Clemente et al., 2017; Zarco-Tejada et al., 2018). The evaluation of a larger set of simulations against the airborne imagery (Fig. 10) revealed the capabilities of FLIGHT8 to model different ecosystem components. The comparison between airborne and model-simulated retrievals showed different effects on NDVI and 3FLD under the two proposed approaches: model simulations that included only one layer as background (single-mode) or those that accounted for the specific contribution of soil and understory layers (full-mode). The relationship between model-simulated and airborne NDVI was similar ($R^2 = 0.95$, RMSE = 0.04) in both cases (Fig. 10 a, c). This result was predictable as the presence of soil and vegetation cover is included in both approaches. In full-mode simulations, we account for the contribution of two different layers, understory and soil (Fig. 10 a). In single-mode simulations, the layer of the soil is the spectral response of the background extracted from an image with a pixel size of 1.5 m in which both components (soil and vegetation) are mixed (Fig. 10 c). The main difference was observed in the quantification of SIF, as model simulations in single mode do not take into account the fluorescence emission of the understory. In this case, the relationship between airborne and model-simulated 3FLD significantly improved using FLIGHT8 in full mode ($R^2 = 0.83$, RMSE = 0.03 mW m$^{-2}$sr$^{-1}$nm$^{-1}$) in comparison with simulations performed in single mode ($R^2 = 0.4$, RMSE = 0.28 mW m$^{-2}$sr$^{-1}$nm$^{-1}$) (Fig. 10 b, d), because the canopy model does not include the understory contribution of the fluorescence emission in single mode. The results demonstrated that understory SIF could substantially contribute to the total canopy SIF quantified from aggregated pixels in open-canopy forests. Moreover, FLIGHT8 can be used to resolve the problem of interpreting information on a large scale when the effect of the understory plays a fundamental role, such as in tree-grass ecosystems or open forests.

The heterogeneous spatial distribution of trees and understory layers in the landscape is one of the main factors that inherently introduces uncertainty into the retrieval of biophysical parameters of vegetation through models (Eriksson et al., 2006; Yu et al., 2018). The estimation of these parameters simultaneously contains many implications for the recovery of GPP (Li et al., 2018) and even the interpretation of GPP.

Fig. 10. Relationship between hyperspectral data from 25 m aggregated pixels and model-simulated NDVI and 3FLD (mW m$^{-2}$sr$^{-1}$nm$^{-1}$) indices accounting for the contribution of SIF on the understory (full mode, a and b, green points with orange dashed line as 1:1 relationship). The same relationships obtained from model simulations without accounting for the contribution of SIF on the understory and using the empirical reflectance of the background as soil layer (single mode, c and d, light-blue points with a green dashed line as the identity line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
using SIF as a proxy varies greatly depending on the type of cover (Tagliabue et al., 2019). This study highlights the need for a solution that allows the contribution of the understory in aggregated pixels and its impact on the fluorescence estimation of the total canopy to be modelled. Future studies should also take into account the vertical variability of the maximum rate of carboxylation (Vcmax), which has been proven to be a key parameter for estimation CO2 assimilation in crops (Camino et al., 2019) and the xanthophyll cycle included in the extended version of Fluspect (Vilfan et al., 2018).

The results of this study contribute to understanding how the quantification of SIF from aggregated pixels can be improved for mixed tree, grass and woodland ecosystems, which cover a large part of the globe (up to 33% according to Hanan and Hill (2012)). The understory of Mediterranean oak woodlands is mainly covered by grasslands, where light availability and nutrient-induced changes alter plant functional traits and canopy structure and control the relationship between GPP and SIF (Migliavacca et al., 2017). However, in other types of ecosystems with higher density, the contribution of the understory may be different. Hence, future efforts should focus on assessing the contribution of the SIF emitted by the understory in the quantification of total canopy SIF in other types of ecosystems and forest complexities. These studies will be decisive for the ability to measure and interpret SIF at the global scale.

5. Conclusions

The results presented here demonstrate that the fluorescence signal calculated from medium spatial resolution is significantly affected by variations in the understory. The contribution of understory SIF increased rapidly with understory LAI values, dominating the total scene SIF for LAI greater than 0.5. Beyond this range, the correlation strength of crown SIF with aggregated pixel SIF reduces, requiring modelling of the system if separation of crown and understory SIF is necessary, for example in assessing forest health or seasonality. Thus, the use of medium- to low-resolution imaging for assessing the physiological condition of forest and agricultural canopies requires taking into account the contribution of the SIF emitted by the understory when working with heterogeneous ecosystems.

This study demonstrates the need to include the contribution of SIF emitted by the understory in the interpretation of SIF emitted by forest canopies with RTM approaches. The use of FLIGHT8, which integrates the effect of fluorescence (FluorFLIGHT), has allowed a new model to be developed that takes into account the effect of the understory on model SIF signals and discriminate this information in each of its components. The model has been tested by intercomparison with other models and validated empirically using high spatial and spectral resolution imagery. Due to its spatial variability throughout, our study area enabled comprehensive evaluation. Multitemporal analysis of the impact of phenological changes of the understory over the vegetation canopy is beyond the scope of this study but will be the central topic of a follow-up contribution.

The results suggest that this model could be used to improve the interpretation of SIF at the tree canopy level when we need to separate between different aggregated components and account for the background effects. The ability to quantify SIF from coarse resolution images is a further advantage for quantification of the model at a global scale. Future studies should be focused on the potential use of 3D-RTM to provide information at a high-spectral resolution and frequency from current and future satellite missions as OCO-2, TROPOMI or FLEX-Sentinel.

Credit author statement

AH, PN and RHC conceived the idea. PN and AH developed the model. PM and MM collected field data and provided background information. UR designed the airborne hyperspectral campaigns and developed the sensor calibration and pre-processing chain. AH, PZT and RHC designed the methodology and analysed the data. AH wrote the manuscript, and all authors contributed to the process of reviewing and updating the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Data collection was partially supported by SynerTGE CGL2015-G09095-R (MINECO/FEDER, UE) and the ESA-FLEX Sense 2018 Project (ESA Contract No. ESA RFP/3-15477/18/NL/NA). A. Hornero was supported by research fellowship DTC GEO 29 “Detection of global photosynthesis and forest health from space” from the Science Doctoral Training Centre (Swansea University, United Kingdom). P. North was supported by the NERC National Centre for Earth Observation (United Kingdom). The authors would also like to thank Bastian Siegmann and Patrick Rademske from the Institute of Bio- and Geosciences (Forschungszentrum Jülich GmbH, Germany) for laboratory assistance and the support provided during the airborne campaigns. We thank Sergio Cogliati (Università degli Studi di Milano-Bicocca, Italy) and Alexander Damm (University of Zurich, Switzerland) for scientific discussions. We also thank Javier Pacheco-Labrador, David Martini and Tarek El-Madany (Max Planck Institute for Biogeochemistry, Germany), Arnaud Carrara (Fundación CEAM, Spain), Karolina Sakowska (National Research Council, Italy) as well as SpecLab personnel (Spanish National Research Council, Spain) for their support during the field campaigns at the Majadas de Tietar research station. All the figures included in this manuscript have been designed to include colour schemes suitable for people with visual disabilities and in view of printing considerations (Harrower and Brewer, 2003).

Appendix A. Appendix Figures
Fig. A1. Comparison between different sources of solar irradiance information.

Fig. A2. Example of the contribution of scene components for a 25 m window based on the relationship between canopy and understory fractional cover (FC) and soil FC shown as different intensity orange points.
Fig. A3. Comparison of FLIGHT8 with other RTMs using the set of scenarios proposed by the RAMI intercomparison exercise. The results of RAMIREF are shown by the dashed light-green line and those from other models within the shaded area.
Fig. A4. Global bi-directional reflectance factor 1-to-1 comparison (top) and histogram differences (bottom) for principal (left) and orthogonal planes (right) within the ROMC-generated results.
Fig. A5. Relationship between NIRv and 3FLD from hyperspectral data from 25 × 25 m aggregated pixels in the 300 scenes used in this study.

Appendix B. Appendix Table

Table B1
Input range for FLIGHT8 according to the model intercomparison.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Solar Zenith Angle (deg)</th>
<th>Scattered Radius (m)</th>
<th>Leaf Area Index (m² m⁻²)</th>
<th>Canopy Height (m)</th>
<th>Leaf Angle Distribution</th>
<th>Leaf ρ/τ (%)</th>
<th>Soil ρ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOM01,TUR,ERE, NR1.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Erectophile</td>
<td>0.5/0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>HOM03,DIS,ERE, RED,50</td>
<td>50</td>
<td>0.05</td>
<td>3</td>
<td>2</td>
<td>Erectophile</td>
<td>0.0546/0.0149</td>
<td>0.127</td>
</tr>
<tr>
<td>HOM05,TUR,ERE, NR1.60</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>Erectophile</td>
<td>0.5/0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>HOM12,DIS,ERE, NR1.30</td>
<td>30</td>
<td>0.05</td>
<td>2</td>
<td>1</td>
<td>Erectophile</td>
<td>0.5/0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>HOM13,DIS,PLA, RED,20</td>
<td>20</td>
<td>0.1</td>
<td>3</td>
<td>2</td>
<td>Planophile</td>
<td>0.0546/0.0149</td>
<td>0.127</td>
</tr>
<tr>
<td>HOM03,TUR,UNI, NIR,20</td>
<td>20</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>Uniform</td>
<td>0.4957/0.4409</td>
<td>0.159</td>
</tr>
</tbody>
</table>

* HOM (Homogeneous); TUR (Turbid), DIS (Discrete); ERE (Erectophile), PLA (Planophile), UNI (Uniform); NR1 (Purist corner), RED (Red, solar domain), NIR (Near-infrared, solar domain)

References

