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A B S T R A C T   

Accurate, spatially extensive, and frequent assessments of plant nitrogen (N) enabled by remote sensing allow 
growers to optimize fertilizer applications and reduce environmental impacts. Standard remote sensing methods 
for N assessment typically involve the use of chlorophyll-sensitive vegetation indices calculated from multi-
spectral or hyperspectral reflectance data. However, the chlorophyll a + b derived from spectral indices is 
indirectly related to leaf N and saturates at high leaf N levels, dramatically reducing the sensitivity with leaf N 
under these conditions. Furthermore, these relationships are heavily influenced by canopy structure, variability 
in leaf area density, proportion of sunlit-shaded tree-crown components, soil background, and understory. Recent 
studies in uniform crops have demonstrated that estimation of plant N can be improved by considering leaf 
biochemical constituents derived from radiative transfer model (RTM) and solar-induced fluorescence (SIF). 
However, it is unclear whether these methods are transferable to tree crops due to their intrinsic physiological 
differences, structural complexity, and within-tree crown heterogeneity. We investigated how various hyper-
spectrally derived proxies for leaf N, including RTM-based traits and SIF, could be combined to assess N status on 
a 1200-ha almond orchard across two growing seasons. RTM-based chlorophyll a + b content (Cab) and SIF were 
found to be the most important and consistent predictors for leaf N compared to other leaf biochemical and 
biophysical traits. Cab alone was a modest predictor of leaf N variability (r2 = 0.49, RMSE = 0.16%, p-value 
<0.001), but when the non-collinear SIF and Cab traits were coupled together, predictions improved dramatically 
(r2 = 0.95, RMSE = 0.05%, p-value <0.001). Leaf area index (LAI) was poorly associated with leaf N, suggesting 
that leaf physiological traits may be more important than structural traits in quantifying leaf N in well-managed 
orchards characterized by high N levels. Consistent results across the 2 years suggests the importance of airborne 
SIF coupled with Cab for precision agriculture and leaf N status assessment in almond orchards.   

1. Introduction 

Nitrogen (N) is an essential nutrient for plant growth, productivity, 
and quality and is often the major limiting factor for photosynthesis 
(Evans, 1989). However, more N fertilizer than needed is often applied 
to maximize yield and quality (Conant et al., 2013). In addition to the 
economic costs of N over-fertilization, excess N has detrimental effects 
on the environment, leading to pollution of the atmosphere and water 
systems (Shcherbak et al., 2014; Stevenson and Cole, 1999; Zebarth 
et al., 2009). Monitoring crop N status is essential for optimizing N 
applications and maintaining productivity while minimizing 

environmental impacts for sustainable agriculture (Manna et al., 2005; 
Matson et al., 1998; Panhwar et al., 2019; Snyder et al., 2009). 

The concentration of leaf nitrogen can be determined through 
various approaches. The chemical analysis of leaf tissue via destructive 
sampling, such as the traditional Kjeldahl-digestion method (Kjeldahl, 
1883) or the simpler and faster Dumas combustion method to avoid 
using toxic chemicals (Dumas, 1831), has been the standard method for 
the assessment of leaf N. Although this approach is very accurate, it is 
not cost- or time-effective for the continuous monitoring of N status over 
large areas. In recent decades, imaging spectroscopy has been used as an 
alternative to lab-based assays from the leaf, enabling rapid N 
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monitoring at a range of spatio-temporal scales (Chapman and Barreto, 
1997; Dong et al., 2020; Nageswara Rao et al., 2001; Romina et al., 
2019; Schepers et al., 1992) to canopy level (Clevers and Gitelson, 2013; 
Clevers and Kooistra, 2011; Gnyp et al., 2014; Haboudane et al., 2002; 
Inoue et al., 2012; Nigon et al., 2020; Pinter Jr et al., 2003). 

Most remote sensing (RS) studies of leaf N depend on an assumed 
strong correlation between leaf chlorophyll a + b (Cab) and N (Evans, 
1989). Thus, Cab has been proposed as a common RS-based indicator for 
N assessment (Clevers and Gitelson, 2013; Schlemmer et al., 2013; Wood 
et al., 1992; Yoder and Pettigrew-Crosby, 1995). The conventional 
approach in these studies has been to determine an empirical relation-
ship between destructively sampled tissue N and non-destructive proxy 
measurements, including hand-held spectral readings at visible, red- 
edge, and near-infrared spectral bands (Bullock and Anderson, 1998; 
Cerovic et al., 2015; Cerovic et al., 2012; Chang and Robison, 2003; 
Jongschaap and Booij, 2004; Padilla et al., 2018; Wood et al., 1992) or 
chlorophyll-sensitive vegetation indices derived from multispectral or 
hyperspectral reflectance at leaf and canopy levels (Clevers and Gitel-
son, 2013; Cummings et al., 2021; Filella et al., 1995; Fitzgerald et al., 
2010; Gnyp et al., 2014; Inoue et al., 2012; Nigon et al., 2020). Although 
leaf chlorophyll meters are valuable tools for quick on-farm determi-
nation of leaf N status, the relationship between chlorophyll meter 
readings and N content differs across plant genotypes and environ-
mental contexts (Xiong et al., 2015). Furthermore, these chlorophyll 
indicators from chlorophyll meters or vegetation indices are not the 
actual chlorophyll content, but rather the proxy for leaf greenness. 
Although they are generally related to leaf N, these proxies saturate at 
high N levels, resulting in reduced sensitivity to increased N values (Li 
et al., 2020; Padilla et al., 2018; Romina et al., 2019; Schlemmer et al., 
2013). In addition to these leaf greenness indicators, vegetation indices 
widely used in RS such as the Normalized Difference Vegetation Index 
(NDVI) (Rouse et al., 1974), are also indirectly related to N (Yoder and 
Pettigrew-Crosby, 1995). They have been demonstrated to lack sensi-
tivity and to saturate at high plant densities and under overfertilization 
levels (Flowers et al., 2003; Matsushita et al., 2007; Nguy-Robertson 
et al., 2012). To prevent these effects, proxies directly linked to leaf N 
through pathways other than via the quantification of chlorophyll 
content are required. 

Moreover, spectral indices that incorporate red-edge spectra are 
thought to be improved ways to derive N status due to the higher 
sensitivity of this spectral region to moderate and high chlorophyll 
content levels (Gitelson et al., 2003; Gitelson et al., 1996). Fitzgerald 
et al. (2006) found that the Normalized Difference Red-Edge (NDRE) 
index, which is calculated by replacing the red band of NDVI with the 
red-edge band, was a reliable indicator of chlorophyll and N status. 
Another index termed the Canopy Chlorophyll Content Index (CCCI) is 
based on a two-dimensional planar extension of NDVI and NDRE and has 
been proposed as a method for improved estimation of N in annual crops 
(e.g., wheat (Triticum aestivum)) (Fitzgerald et al., 2010; Li et al., 2014; 
Perry et al., 2012). Another approach combining the information in the 
red-edge with a structural index is the use of the Transformed Chloro-
phyll Absorption in Reflectance Index (TCARI) with the Optimized Soil- 
Adjusted Vegetation Index (TCARI/OSAVI) (Haboudane et al., 2002). 
These indices tend to be sensitive to chlorophyll a + b induced by N 
variability while also accounting for background effects (Gabriel et al., 
2017; Wu et al., 2008). Nevertheless, empirical relationships are 
required to estimate N from these vegetation indices. 

As leaf N content is associated with many other physiological traits 
besides Cab content, the use of radiative transfer model (RTM)-based 
retrievals of plant physiological traits is a promising alternative to 
spectral indices for assessing leaf N. Due to the fact that leaf N is not an 
input in the RTM, nutrient variability was described through a wide 
range of model-simulated plant traits, including leaf constituents (e.g., 
Cab, dry matter (Cdm), water content (Cw)), and canopy structural pa-
rameters (Baret et al., 2007; Camino et al., 2018a; Thorp et al., 2012; 
Wang et al., 2021; Wang et al., 2018). Traits derived from RTMs are 

considered more accurate and transferrable than index-based empirical 
algorithms (Kimes et al., 2000), although this has only been tested for 
uniform crops. For orchards, this method is more complex due to the tree 
crown heterogeneity and clumping effects with mixed crown-shadow- 
soil backgrounds. Radiative transfer model inversion also allows 
inverting for other non-photosynthetic plant pigments, such as carot-
enoids (Ccar) and xanthophylls (Cx), which are involved in photosyn-
thetic light-harvesting (Jacquemoud et al., 2009; Niyogi et al., 1997; 
Vilfan et al., 2016; Vilfan et al., 2018). Plants prevent photodamage by 
deoxidizing the xanthophyll violaxanthin (V) into antheraxanthin (A) 
and zeaxanthin (Z) in response to excess excitation energy (Demmig 
et al., 1987; Gilmore, 1997). Therefore, xanthophyll composition is 
linked to photosynthetic efficiency and may thus relate to leaf N status, 
particularly under abiotic stress conditions (Cheng, 2003; Ramalho 
et al., 2000; Tóth et al., 2002; Verhoeven et al., 1999). Thus, based on 
their links with photosynthesis under stress conditions, the complete set 
of photosynthetic and non-photosynthetic pigments, along with struc-
tural traits, can lead to a more informed assessment of N. 

In the last few decades, solar-induced fluorescence (SIF) has been 
proposed as a trait for monitoring plant physiology, vegetation func-
tioning, and plant biotic and abiotic stress detection due to the dynamic 
changes in photochemical and non-photochemical quenching in the 
photosynthetic process (see review paper by Mohammed et al. (2019) 
and studies from Maxwell and Johnson (2000); Mohammed et al. 
(1995); Murchie and Lawson (2013); Porcar-Castell et al. (2014); Sayed 
(2003); Zarco-Tejada et al. (2018)). It is well known that abiotic-induced 
stress conditions such as light intensity, water status, and temperature 
extremes modulate the photosynthetic performance (Ashraf and Harris, 
2013; Biswal et al., 2011; Saibo et al., 2009). Most importantly, SIF is 
considered a direct proxy for electron transport rate and thus a direct 
measure of photosynthesis (Genty et al., 1989; Krause and Weis, 1991; 
Middleton et al., 2016; Walker et al., 2014). N modulates the 
fluorescence-photosynthesis link, thus several studies propose SIF as a 
potential proxy for the assessment of leaf N status at both the leaf 
(Huang et al., 2004; Lu and Zhang, 2000) and the canopy levels (Cen-
drero-Mateo et al., 2016; Corp et al., 2003; Middleton et al., 2016; 
Mohammed et al., 2019; Wang et al., 2021). For example, Camino et al. 
(2018a) showed that SIF improved predictions of N content in wheat. 
However, in tree orchards, SIF is affected by canopy structure and the 
mixing of within-crown sunlit and shaded components. This adds 
complexity to the accurate SIF quantification in tree orchards (Camino 
et al., 2018b). The combined use of RTM-based leaf biochemistry esti-
mates with SIF for N assessment is poorly studied in structurally complex 
tree orchards. Such a methodology may have important uses in precision 
agriculture when using commercial hyperspectral sensors with 5- to 6- 
nm spectral resolution, which have been shown to be sensitive to SIF 
emission and thus are useful for quantifying abiotic sources of stress 
(Belwalkar et al., 2022; Belwalkar et al., 2021; Raya-Sereno et al., 2021; 
Zarco-Tejada et al., 2016; Zarco-Tejada et al., 2012; Zarco-Tejada et al., 
2013). 

In this study, we explored the contribution of various hyperspectrally 
derived proxies for leaf N status assessment in almond orchards across 
two consecutive growing seasons, including airborne-quantified plant 
physiological traits estimated by RTM inversion and canopy SIF. We 
evaluated the accuracy and robustness of the retrieved plant physio-
logical traits and the collinearity among plant pigments, SIF, and 
structural traits when assessing leaf N variability across the field. Rather 
than a data driven approach, our study advances the mechanistic un-
derstanding of the responses of RS-derived plant traits to leaf N content 
changes. 

2. Material and methods 

2.1. Study area and field data collection 

This study was conducted in a commercial almond orchard in 
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northwest Victoria, Australia, at the pre-harvest stage of the growing 
season in 2019/2020 and 2020/2021 when the leaves are mature and 
have reached their maximum N uptake capacity. The region has a 
Mediterranean climate with hot, dry summers and mild, wet winters. 
Average annual precipitation is 300 mm. The summer of 2020/2021 was 
milder than that of 2019/2020, with an average maximum air temper-
ature of 29.5 ◦C in December 2020, compared to 34.3 ◦C in December 
2019. The almond orchard (Fig. 1) covers approximately 1240 ha with 
trees planted between 2006 (Northern blocks facing N-S) and 2007 
(Southern blocks mixed in N-S and E-W orientations) on sandy loam 
soils. Generally, trees planted in the eastern blocks tend to have larger 
tree crowns than those in the west. Three almond varieties were planted 
in alternating blocks of six rows to facilitate cross-pollination (Asai et al., 
1996; Hill et al., 1985). Varieties included Nonpareil (50%), Carmel 
(33%), and Price (17%). A drip fertigation system was used to supply the 
same amount of water and nutrients to the tree root zones for each va-
riety at the same time and was established at 1-h intervals between 
varieties across the entire orchard. Fertigation was supplied as needed 
based on weather and plant responses over the growing season. In 
summer of 2020/2021, irrigation volume was 10% higher (12,795 m3/ 
ha) than in 2019/2020 (11,465 m3/ha), but total N fertilizer applica-
tions (330 kg/ha in 2020/2021 and 326 kg/ha in 2019/2020) were 
similar. In summer of 2020/2021, Nonpareil was treated with 10% less 
fertigation than Carmel and Price varieties across the orchard based on 
the difference observed along the 2019/2020 season. 

Fifteen homogeneous plots consisting of six rows of seven to eight 

trees were monitored throughout the experiment in 2019/2020 and 
2020/2021 (Fig. 2). In each plot, four adjacent trees from Nonpareil and 
Carmel varieties (two each; yellow dashed rectangle in Fig. 2a) were 
sampled in situ prior to harvest in both years. Leaf Cab, anthocyanins 
(Anth), flavonoid (Flav) content, and the nitrogen balance index (NBI) 
were measured from 20 representative sunlit mature leaves per tree 
using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France). Leaf 
steady-state chlorophyll fluorescence (Ft) and leaf reflectance spectra 
within the visible (VIS) and near-infrared (NIR) regions were measured 
with FluorPen FP 110 and PolyPen RP 410 instruments (PSI, Brno, Czech 
Republic) on the same leaves with the Dualex sensor. A series of vege-
tation pigment indices (see Table 1 for the complete list of indices used 
in this study) were calculated based on the leaf reflectance spectra 
measured from the PolyPen handheld instrument. An additional set of 
20 leaves per plot were collected for biochemical laboratory analyses 
using Dumas Combustion (Buckee, 1994; Dumas, 1831; Etheridge et al., 
1998) with a LECO TruMac CNS Macro Analyzer (LECO Corporation, 
MI, USA) and an inductively coupled plasma optical emission spec-
trometer (ICP-OES Optima 8300, Perkin Elmer, USA). Thirteen macro 
and micronutrients (e.g., nitrogen, carbon, phosphorus, and potassium) 
were measured. The ranges of variation of field data collected over 2 
years were compared against Ft-measured quartiles. The correlations 
between leaf measurement and laboratory N concentration were 
calculated for both years. 

Fig. 1. Colour-infrared (CIR) overview of the hyperspectral mosaic acquired with the VNIR hyperspectral sensor over the 1200-ha study site collected on January 31, 
2021. Spectral bands at 860 (R), 650 (G), and 550 (B) nm are shown with a spatial resolution of 40 cm per pixel. 
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Fig. 2. (a) Study plot consisting of six rows by eight trees within the blue solid line. Leaves from four trees within the yellow dashed rectangle were measured in the 
field. (b) The reflectance spectra of different scene components extracted from the airborne hyperspectral imager, including sunlit (green solid line) and shaded (grey 
dashed line) tree crown, and sunlit (orange dashed line) and shaded soil (brown dashed line) pixels. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Spectral vegetation index equations used in this study.  

Index Equation Reference 

Structural indices 

NDVI (R800 − R670)/(R800 + R670) Rouse et al. (1974) 
EVI 2.5 • (R800 − R670)/(R800 + 6 • R670 − 7.5 • R500 + 1) Liu and Huete (1995) 
MCARI2 1.5 • (2.5 • (R800 − R670) − 1.3 • (R800 − R550) )

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 • R800 + 1)2 − (6 • R800 − 5 • R670) − 0.5
√

Haboudane et al. (2004) 

RDVI (R800 − R670)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R800 + R670

√

Roujean and Breon 
(1995) 

OSAVI (1 + 0.16) • (R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. (1996)  

Chlorophyll a + b indices 

MCARI ((R700 − R670) − 0.2 • (R700 − R550)) • (R700/R670) Daughtry et al. (2000) 
TCARI/ 

OSAVI 
3 • ((R700 − R670) − 0.2 • (R700 − R550) • (R700/R670) )/(1 + 0.16) • (R800 − R670)/(R800 + R670 + 0.16) Haboudane et al. (2002) 

NPQI (R415 − R435)/(R415 + R435) Barnes et al. (1992) 
PSSRa R800/R675 Blackburn (1998) 
PSSRb R800/R650 Blackburn (1998) 
PSSRc R800/R500 Blackburn (1998) 
SIPI (R800 − R445)/(R800 − R680) Penuelas et al. (1995) 
CTRI1 R695/R420 Carter (1994)  

Indices based on the green region 

PRI (R570 − R531)/(R570 + R531) Gamon et al. (1992) 
PRI515 (R515 − R531)/(R515 + R531) Hernández-Clemente 

et al. (2011) 
PRI•CI ((R570 − R531)/(R570 + R531)) • ((R760/R700) − 1) Garrity et al. (2011)  

Fluorescence quantification 

SIF Eout ⋅Lin − Ein⋅Lout/Eout − Ein 
Where E and L represent the incoming irradiance and canopy radiance, ‘in’ band refers to 762 nm, and ‘out’ band refers to the average 
value in 750 and 778 nm 

Plascyk and Gabriel 
(1975)  

Canopy temperature 

CWSI (Tc − Ta) − (Tc − Ta)LL
/

(Tc − Ta)UL − (Tc − Ta)LL 
Where LL and UL represent the upper limit and lower limit of canopy (Tc) and air (Ta) temperatures 

Jackson et al. (1981)  

Y. Wang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 279 (2022) 113141

5

2.2. Airborne hyperspectral and thermal imagery 

Airborne campaigns were conducted concurrently with the field 
measurements on February 17, 2020, and January 31, 2021. Both 
campaigns occurred at solar noon under clear skies. Field sampling and 
auxiliary data collection required for the calibration and atmospheric 
correction of the images were conducted simultaneously with airborne 
campaigns. A hyperspectral line-scanning sensor (Micro-Hyperspec 
VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) and a 
thermal infrared camera (A655sc model, FLIR Systems, Wilsonville, OR, 
USA) were flown in tandem on a manned aircraft operated by the 
HyperSens Remote Sensing Laboratory, the Airborne Remote Sensing 
Facility of The University of Melbourne. The hyperspectral imager 
covers 371 spectral bands in the visible and near-infrared regions 
(400–1000 nm) with a full-width at half-maximum (FWHM) of 5.8 nm 
and a spectral sampling interval of 1.626 nm. Hyperspectral and thermal 
images with an angular field of view (FOV) of 66◦ and 45◦ (8- and 13.1- 
mm focal length), respectively, were collected by the aircraft at 550 m 
above ground level (AGL), yielding spatial resolutions of 40 and 60 cm, 
respectively, enabling the differentiation of sunlit and shaded compo-
nents of tree crowns and soil areas. SMARTS (Gueymard, 1995, 2001; 
Gueymard et al., 2002) irradiance simulations were used to correct for 
atmospheric effects of the hyperspectral imagery based on aerosol op-
tical measurements at 500 nm taken with a Microtops II sunphotometer 
(Solar Light, PA, USA) connected to a GPS − 12 navigator (Garmin, 

Olathe, KS, USA) at the time of each flight. Air temperatures and relative 
humidity were calculated based on the average of three nearby weather 
stations (Robinvale, Lake Powell and Wemen) less than 15 km from the 
study site. Hyperspectral line-scanned image orthorectification was 
performed using PARGE software (ReSe Applications Schläpfe, Wil, 
Switzerland) with readings from the onboard inertial measuring unit 
(IMU) (VectorNav VN-300 dual-antenna GNSS/INS, Dallas, TX, USA). 
Empirical line calibration was conducted by measuring the reflectance 
spectra and temperature of bare soil and green and dry vegetation. 
Spectra were measured with an ASD Handheld-2 field spectrometer 
(FieldSpec Handheld Pro, ASD Inc., CO, USA), and temperature was 
measured with a thermal gun (LaserSight, Optris, Germany). Hyper-
spectral and thermal imagery were mosaicked (Figs. 1 and 3) using ENVI 
(Boulder, Colorado) and Pix4D (Lausanne, Switzerland) photogram-
metry software, respectively. 

Automatic segmentation of the hyperspectral reflectance imagery 
was conducted using Fiji (Abràmoff et al., 2004) combining Niblack's 
(Niblack, 1985) thresholding method on the NIR band, and Phansalkar's 
thresholding method (Phansalkar et al., 2011) on a structural index 
(NDVI >0.72). This method enabled the discrimination of sunlit pure 
tree crowns from the soil background, as well as the separation of 
within-crown shadows (see reflectance spectra in Fig. 2b). Considering 
the sensitivity of SIF to the illumination levels, a more selective seg-
mentation (10% restricted) was applied to the hyperspectral radiance 
data when segmenting the sunlit crown component. The thermal 

Fig. 3. Thermal mosaic collected over the entire study area captured on January 31, 2021 at a spatial resolution of 60 cm. Cooler colors (purple and blue) indicate 
plant canopies, and yellow/brown colors indicate soil. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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segmentation of the tree canopy was performed with Niblack's thresh-
olding method (Niblack, 1985) to eliminate the soil and background 
effects. The resulting pure vegetation pixels obtained in the previous 
step were clustered into tree-crown features using a watershed seg-
mentation approach based on Euclidean distance (as in Zarco-Tejada 
et al. (2018)). In Fig. 4, an example of the segmentation conducted on 
the hyperspectral and the thermal mosaics is presented. 

The mean radiance and reflectance spectra, and temperature were 
extracted from tree crown pixels by hyperspectral and thermal imagery 
for each study plot. The crop water stress index (CWSI) (Idso et al., 
1981) was calculated based on the canopy-air temperature difference 
and the water vapor pressure deficit (VPD) at the time of image acqui-
sition for assessing the tree-crown water stress levels. A non-water- 
stressed baseline (NWSB) for almond trees suggested by Bellvert et al. 
(2018) was used. 

SIF was quantified using the Fraunhofer line depth (FLD) principle 
(Plascyk and Gabriel, 1975) based on three spectral bands (3FLD) (Maier 
et al., 2004) located inside and outside the O2-A absorption features. 

Specifically, we compared canopy radiance values Lin at 762 nm and Lout 
at 750 and 778 nm extracted from the hyperspectral imagery to the 
corresponding incoming irradiance Ein (E762) and Eout (E750, E778) 
derived from the field measurements during the flight and resampled to 
match the spectral specifications of the airborne hyperspectral sensor. 
To account for the effects of negative values from atmospheric and 
calibration factors, SIF was scaled using the offset from non-fluorescence 
targets (e.g., soil) extracted from the imagery. Fig. 5 shows the irradi-
ance and the mean radiance spectra from two study plots (in Fig. 5a and 
b) at the oxygen-A absorption region around 760 nm. Average tree- 
crown reflectance (R) spectra extracted from pure vegetation pixels 
were used to estimate plant traits through RTM inversion and to 
calculate narrow-band hyperspectral indices (Table 1) for comparison. 
The set of indices used comprised structural indices (e.g., NDVI), 
pigment indices (e.g., Modified Chlorophyll Absorption in Reflectance 
Index (MCARI), TCARI/OSAVI, and Carter Index 1 (CTRI1)), and indices 
in the visible region (e.g., Photochemical Reflectance Index (PRI)) that 
track the dynamics of photoprotective mechanisms. Indices calculated 

Fig. 4. Overview of the tree-crown segmentation applied to the hyperspectral mosaic (a, upper image in colour-infrared, crown in green outline) and the thermal 
mosaic (c, bottom image displaying cooler canopy in blue and hot soil in red colour, crown in yellow outline). Right column contains zoomed-in views (b and d) of the 
scenes within the white rectangle on the left. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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from airborne imagery were also compared against leaf N, Cab, NBI, and 
Ft measured in the field. 

2.3. Modeling methods for plant trait retrieval and N assessment 

The coupled leaf-level Fluspect-Cx model (Vilfan et al., 2018) and 
4SAIL (Verhoef, 1984) canopy radiative transfer model, referred to here 
as FluSAIL, were employed to derive plant biophysical and biochemical 
parameters by inverting the average canopy reflectance extracted from 
pure vegetation pixels. The de-epoxidation state of the xanthophyll cycle 
(Cx) as well as Cab, Ccar, and Anth pigment content were retrieved by the 
inversion of the Fluspect-Cx model. A look-up table (LUT) was generated 
by running 50,000 simulations using randomly generated input pa-
rameters drawn from uniform distributions (Table 2). Parameter ranges 
were adjusted for the viewing geometries due to the slightly different 
solar zenith angles (SZAs) for each airborne dataset. Biochemical con-
stituents and biophysical parameters were estimated simultaneously for 
all study plots using a 10-hidden layer artificial neural network (ANN) 
model (Combal et al., 2003; Hassoun, 1995). The model was trained 
using 70% of the LUT spectra and tested using the remaining 30% with 
the mean squared error (MSE) as a performance measure. The model 
was fit in MATLAB (MATLAB; Statistics and Machine Learning Toolbox 
and Deep Learning Toolbox; Natick, Massachusetts, USA). Retrieved 
parameters were used to simulate reflectance spectra with the FluSAIL 
model using the retrieved parameters and compared with the observed 
reflectance spectra obtained from the imagery in the 400–900-nm range 
based upon the root-mean-square deviation (RMSE) assessment. Addi-
tionally, the correlations of field leaf-level measurements against esti-
mated plant traits derived from the inversion of the FluSAIL model were 
compared with those obtained from hyperspectral indices. 

To predict leaf N concentration, a pool of representative plant traits 
and parameters was considered as inputs in the N model, including (1) 
leaf biochemical and canopy biophysical traits retrieved from pure 
reflectance spectra with FluSAIL model inversion, (2) airborne- 
quantified SIF from sunlit-crown radiance spectra, and (3) the water 
stress indicator CWSI calculated from the thermal imagery. Random 
Forest (Breiman, 2001) and Gaussian process regression (Williams and 
Rasmussen, 1996, 2006) algorithms were built with fine-tunning of 
hyperparameter optimization with 1000 iterations incorporated in the 
leave-one-out-cross-validation (LOOCV, 15-fold) training and testing 
steps for each year's dataset. Previously, input collinearity was evaluated 
using the variance inflation factor (VIF) analysis (O'brien, 2007) 
following the approach in Zarco-Tejada et al. (2018) conducted using 
the ‘fmsb’ package (Gareth et al., 2013) in R. Out-of-bag (OOB) 

predictor importance was implemented to rank the input relative 
contribution to the models (as in Zarco-Tejada et al. (2021)). Input pa-
rameters with a high degree of collinearity (VIF > 5) (Akinwande et al., 
2015) and therefore less informative contribution were filtered out to 
avoid redundancy. Both Random Forest and Gaussian process regression 
models were evaluated using the final selection of input parameters. The 
model performance was evaluated based on the coefficient of determi-
nation (r2) and RMSE. In addition, models with different combination of 
any two non-collinear parameters were evaluated. In particular, models 
using leaf biochemical constituents and biophysical parameters with 
and without SIF were compared to assess the contribution of SIF to N 

Fig. 5. Segmentation of the sunlit crown area for SIF quantification on two study plots (a) higher nutrient level and (b) lower nutrient level. The irradiance spectrum 
(orange colour) was used along with the radiance spectra (example shown in (c) for two study plots (green and grey lines) to calculate SIF. Crosses denote the spectral 
position of the sensor bands (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Ranges of input parameters for the LUT of FluSAIL model.  

Parameter Symbol Unit Range/ 
Value 

Leaf thickness and constituents 

Chlorophyll a + b content Cab μg/ 
cm2 

20–70 

Carotenoid content Ccar μg/ 
cm2 

3–20 

Anthocyanin content Anth μg/ 
cm2 

0–10 

Leaf water content Cw g/ 
cm2 

0.001–0.05 

Leaf dry matter content Cdm g/ 
cm2 

0.001–0.05 

Brown pigment content Cs μg/ 
cm2 

0 

Leaf mesophyll structural parameter N- 
struct 

– 1.3–2.5  

Leaf dynamic biochemistry 
De-epoxidation state of the xanthophyll cycle 

(photochemical reflectance parameter) 
Cx – 0–3 

Fraction of photons partitioned to PSI fqeI – 0.002 
Fraction of photons partitioned to PSII fqeII – 0.02  

Canopy structural parameters 

Leaf area index LAI m2/ 
m2 

1–7 

Hot spot parameter q – 0.03 
Leaf inclination distribution function parameter 

a 
LIDFa – − 1–1 

Leaf inclination distribution function parameter 
b 

LIDFb – − 1–1  
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assessments. 
A final evaluation was conducted with the LOOCV (30-fold) method 

using the non-collinear airborne-quantified Cab and SIF for N assessment 
from both datasets. Model performance was determined using r2 and 
RMSE against the validation data from the 2 years. The best Gaussian 
process regression model was applied at the tree-crown level to obtain 
the spatial variability of the tree-based N concentration for the entire 
1200-ha almond orchard using the airborne-quantified SIF and Cab 
content from FluSAIL RTM inversion. The continuous map of N con-
centration for each management unit were generated using the Kernel 
interpolation with barriers (KIB) algorithm (Worton, 1989) in ESRI 
ArcGIS Desktop (Redlands, CA, USA) to visualize the variability across 
the entire orchard. 

3. Results 

3.1. Field and laboratory data analyses 

Leaf nutrient and pigment content varied widely within the study site 
and across the two growing seasons. Mean leaf N concentration was 
2.07% in 2020 and 2.36% in 2021. The Dualex measured Cab and Flav 

were more variable in 2021 than in 2020. Mean Cab was 32.53 units in 
2020 and 30.71 units in 2021. Mean Flav was 2.04 units in 2020 and 
1.84 units in 2021. Anth range was higher in 2021 than in 2020, with a 
mean value of 0.24 units compared to 0.19 in 2020. NBI was 16.46 in 
2020 and 17.18 in 2021. Ft was highly variable throughout the orchard 
and was higher in 2021 than in 2020, ranging from 1648 to 2751 units in 
2020 and from 2574 to 3970 units in 2021. 

The relationships between leaf steady-state chlorophyll fluorescence 
quartiles and derived spectral and physiological metrics varied across 
seasons (Fig. 6). Similar linear relationships were observed across sea-
sons for leaf N concentration (Fig. 6a), Flav (Fig. 6c), NBI (Fig. 6d), and 
leaf spectral indices (Fig. 6f-i). By contrast, Anth (Fig. 6e) exhibited 
opposite trends with Ft quartiles between 2020 (negative) and 2021 
(positive). Unexpectedly, leaf Cab (Fig. 6b) did not exhibit consistent 
trends relative to leaf Ft quartiles, with generally positive and negative 
trends for 2020 and 2021 (n.s.), respectively. 

In general, leaf measurements were correlated with each other across 
years (Fig. 7). Chlorophyll content and leaf N were strongly correlated in 
2020 (r2 = 0.60, p-value <0.005, Fig. 7a). However, this correlation was 
not statistically significant in 2021 (r2 = 0.04, n.s.). Leaf N was more 
consistently correlated with Dualex-measured NBI (Fig. 7b) for both 

Fig. 6. Ranges of variation based on leaf steady-state chlorophyll fluorescence (Ft) quartiles for leaf phenotypes measured at the pre-harvest stage in 2020 (green) 
and 2021 (orange): a) nitrogen concentration, b) chlorophyll a + b (Cab), c) flavonoid (Flav), d) Nitrogen Balance Index (NBI), e) anthocyanins (Anth), f) CTRI1, g) 
PRI, h) PRI•CI, and i) NPQI. The line through the box and marker ‘x’ refer to the median and mean value, respectively. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Y. Wang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 279 (2022) 113141

9

years (r2 = 0.68 for 2020 and r2 = 0.64 for 2021; p-values <0.005), since 
the index calculation incorporates both chlorophyll and flavonoids. Leaf 
PRI (related to xanthophyll composition changes) was also correlated 
with leaf N across seasons (r2 = 0.49 in 2020 and r2 = 0.58 in 2021; p- 
values <0.005, Fig. 7c) as was Ft (r2 = 0.54 in 2020 and r2 = 0.52 in 
2021; p-values <0.005, Fig. 7d). Leaf fluorescence (Fig. 7d) was strongly 
correlated with N when using combined 2-year data (r2 = 0.74, p-value 
<0.005), outperforming the rest of the leaf traits (e.g., r2 = 0.50 for PRI 
and NBI; p-values <0.005). 

3.2. Narrow-band indices calculated from airborne hyperspectral imagery 

Relationships between narrow-band reflectance indices, airborne 
SIF, and field-based leaf measurements are summarized in Table 3. The 
results present a wide range of correlation and significance levels be-
tween leaf physiological measurements and indicators of canopy struc-
ture, pigments, airborne-quantified fluorescence, and CWSI 
temperature-based stress indicator. Airborne-quantified SIF (Fig. 8a) 
was significantly correlated with Ft in both 2020 (r2 = 0.73, p-value 
<0.005) and 2021 (r2 = 0.30, p-value <0.05). The relationship was 
stronger when combining datasets across 2 years (r2 = 0.77, p-value 
<0.005; shown by the grey dashed line in Fig. 8). SIF was also signifi-
cantly correlated with leaf N (r2 = 0.60 in 2020 and 0.55 in 2021, p- 
values <0.005), and the relationships remained strong when combining 

data from both years (r2 = 0.74, p-value <0 0.005, Fig. 8b). Strong 
correlations were also evident between SIF and leaf NBI (r2 = 0.46 and 
0.67, p-values <0.01) in 2020 and 2021, respectively. Fluorescence, as a 
proxy of photosynthesis, both at the leaf (Fig. 7d) and canopy levels 
(Fig. 8b), achieved steady and strong relationships with leaf N (r2 =

0.74, p-value <0.005). 
Hyperspectral indices related to vegetation structure (e.g., NDVI) 

and pigment concentration (e.g., MCARI) were generally correlated with 
leaf chlorophyll measured by Dualex in 2020, but not in 2021 (Table 3). 
This pattern was reversed for leaf NBI, where canopy structure (e.g., 
EVI) and pigment indices (e.g., MCARI) were more correlated in 2021 
than in 2020. Leaf N was more strongly related to pigment indices (i.e., 
MCARI and CTRI1, Fig. 9b and c) than structural indices (i.e., NDVI and 
EVI) in both years. These strong relationships were not always consistent 
over 2 years, as illustrated in Table 3. For example, the chlorophyll index 
TCARI/OSAVI was unable to capture the existing N variability in 2021 
(r2 = 0, n.s.) as it did in 2020 (r2 = 0.57, p-value <0.01). 

Some pigment indices in Table 3 stand out in terms of their high 
correlations with N for both years. For example, MCARI had an r2 of 0.61 
and 0.48 (p-values <0.005, Fig. 9b) in 2020 and 2021, respectively. 
PRI515 (PRI index using reference band at 515 nm to minimize structural 
effects) (Hernández-Clemente et al., 2011; Stagakis et al., 2012; Zarco- 
Tejada et al., 2012) was superior to PRI (at 570 nm) in both 2020 and 
2021(Fig. 9d). 

Fig. 7. Relationships between leaf N concentration (%) and a) leaf chlorophyll content, b) Nitrogen Balance Index (NBI), c) photochemical reflectance index (PRI), 
and d) steady-state chlorophyll fluorescence (Ft). Green and orange represent data in 2020 and 2021, respectively. Grey is used to represent correlation when 
combining data of 2 years. *p-value <0.05; **p-value <0.01; ***p-value <0.005; n.s. = not significant. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Many structural and pigment indices showed inconsistent trends 
across seasons, as shown in Fig. 9 and Table 3. When looking at data 
from the 2 years combined, no variables from Fig. 9 were significantly 
correlated with leaf N. NDVI had relatively weak associations with leaf N 
in each year throughout this heterogeneous orchard. By contrast, 
airborne SIF calculated from the illuminated crown pixels was consis-
tently related to leaf N across years (Fig. 8). CWSI was not consistently 

correlated with leaf N or pigment content in either year (Table 3). 

3.3. Plant trait retrieval from the FluSAIL radiative transfer model 

Modelled reflectance spectra from FluSAIL showed close agreement 
with observed spectra extracted from pure tree crown vegetation pixels 
in airborne hyperspectral imagery, yielding average RMSE values of 

Table 3 
Coefficients of determination (r2) for the intercorrelations among standard indices at canopy level from the same 15 study plots in two consecutive years and leaf N 
concentration (%), Dualex-derived leaf chlorophyll content (Cab), nitrogen balance index (NBI), and steady-state chlorophyll fluorescence (Ft) measured with 
FluorPen.   

N (%) Cab NBI Ft 

2020 2021 2020 2021 2020 2021 2020 2021 

Structural indices 

NDVI 0.25* 0.13 0.49*** 0.10 0.07 0.12 0.04 0.05 
EVI 0.37** 0.29** 0.56*** 0.01 0.14 0.43*** 0.07 0.17 
MCARI2 0.40** 0.28** 0.58*** 0.03 0.16 0.36** 0.09 0.15 
RDVI 0.36** 0.25* 0.58*** 0.01 0.15 0.36** 0.07 0.13 
OSAVI 0.34** 0.22* 0.57*** 0.03 0.13 0.29** 0.06 0.10  

Chlorophyll a + b indices 

MCARI 0.61*** 0.48*** 0.54*** 0.00 0.55*** 0.39** 0.44*** 0.31** 
TCARI/OSAVI 0.57*** 0.00 0.15 0.04 0.46*** 0.00 0.48*** 0.01 
NPQI 0.38** 0.00 0.37** 0.12 0.39** 0.00 0.36** 0.05 
PSSRa 0.24* 0.15 0.49*** 0.08 0.08 0.16 0.04 0.06 
PSSRb 0.14 0.12 0.43*** 0.06 0.03 0.14 0.01 0.05 
PSSRc 0.23* 0.16 0.58*** 0.02 0.12 0.21* 0.02 0.05 
SIPI 0.17 0.05 0.37** 0.16 0.02 0.03 0.02 0.02 
CTRI1 0.61*** 0.52*** 0.35** 0.03 0.76*** 0.51*** 0.45*** 0.18  

Indices calculated in the green region 

PRI 0.10 0.27** 0.01 0.13 0.24* 0.36** 0.10 0.08 
PRI515 0.69*** 0.47*** 0.61*** 0.11 0.43*** 0.38** 0.33** 0.25* 
PRI•CI 0.13 0.18 0.49*** 0.15 0.03 0.21* 0.00 0.05  

Fluorescence quantification 

SIF 0.60*** 0.55*** 0.28** 0.00 0.46*** 0.67*** 0.73*** 0.30**  

Canopy temperature 

CWSI 0.05 0.03 0.00 0.23* 0.31** 0.01 0.10 0.03 

*p-value <0.1; **p-value <0.05; ***p-value <0.01. 
Cab: Chlorophyll a + b content; NBI: Nitrogen Balance Index; Ft: steady-state chlorophyll fluorescence. 

Fig. 8. Relationships between canopy SIF and a) leaf steady-state chlorophyll fluorescence (Ft) and b) leaf N concentration (%) in 2020 (green), 2021 (orange), and 
the combined years (grey). *p-value <0.5; **p-value <0.05; ***p-value <0.005. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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0.008 and 0.007 for 2020 and 2021, respectively. Fig. 10 illustrates a 
simulated and observed spectra as well as a range of simulated spectra 
from the FluSAIL LUT. 

In 2020, leaf Cab from model inversion was strongly correlated to 
both the Dualex chlorophyll measurement (r2 = 0.66, p-value <0.001) 
and leaf N (r2 = 0.73, p-value <0.001). As with the hyperspectral 
indices, no model-derived measures were significantly correlated with 
Dualex chlorophyll in 2021 (Table 4). In addition to Cab, other pigments 
(i.e., Ccar and Cx) also presented significant relationships with leaf N. 

Cx, which is sensitive to the de-epoxidation state of the xanthophyll 
cycle, was significantly correlated with canopy PRI515 (r2 = 0.68 and 
0.60 in 2020 and 2021, p-values <0.001) and with leaf N (r2 = 0.61 and 
0.62 in 2020 and 2021, p-values <0.001). Cab was also closely related to 
canopy PRI515 (r2 = 0.80, p-value <0.001) and SIF (r2 = 0.51, p-value 
<0.005). No significant relationship was detected between the retrieved 
LAI and leaf N throughout the orchard across years. These results sug-
gest that pigment content and N were highly correlated with biochem-
ical constituents and SIF but showed little effects on the crown structure. 

3.4. Leaf N status assessment from the airborne-estimated plant traits and 
SIF 

The final model for leaf N using traits derived from hyperspectral 
imagery was strongly correlated to field-measured N across years (r2 =

0.96, p-value <0.001). FluSAIL-inverted Cab and airborne-derived SIF 

Fig. 9. Leaf N against a) NDVI, b) MCARI, c) CTRI1, and d) PRI515 calculated from hyperspectral imagery acquired in 2020 (green) and 2021 (orange). *p-value 
<0.05; **p-value <0.01; ***p-value <0.005; n.s. = not significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 10. Comparison of the average hyperspectral image spectrum (orange 
dashed line) and the corresponding spectrum obtained from the FluSAIL model 
inversion (blue solid line) for one monitored plot. The simulated FluSAIL 
spectral range is shown in the shaded grey area. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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had the greatest OOB predictor scores, followed by other biochemical 
constituents (e.g., Ccar and Cx), as illustrated in Fig. 11a. While the 
structural trait LAI (p-value >0.1) and the thermal-based water stress 
indicator CWSI (p-value >0.05) were not statistically significant pre-
dictors of N. VIF analysis revealed that Cab and SIF were not collinear, 
but other biochemical constituents (Ccar, Cx, and Cdm) were discarded 
from further analysis with a VIF > 5 (empty bars in Fig. 11a). Fig. 11b 
shows that Cab and SIF were the most important predictors of N for both 
years, yielding r2 and RMSE of 0.95 and 0.05%, respectively. 

When using combined data from both years, the Gaussian regression 

model using chlorophyll exclusively as a predictor explained 49% (p- 
value <0.001) of the variability in N (Fig. 12a) across the almond or-
chard. A Gaussian process regression model including Cab and SIF 
considerably increased the performance (r2 = 0.95, p-value <0.001, 
RMSE = 0.05%, Fig. 12b). This model with Cab and SIF outperformed 
any other combination of traits quantified from the hyperspectral im-
agery for predicting leaf N. As an example, the addition of a structural 
parameter (LAI) to the model only resulted in a slight increase of 0.02 in 
r2 and a 0.01% reduction in RMSE (Fig. 12c) but yielded reasonable 
results when coupled to SIF (r2 = 0.81, p-value <0.001, RMSE = 0.1%, 

Table 4 
Coefficients of determination (r2) for correlations among model-derived estimates from the same 15 study plots in two consecutive years, including leaf chlorophyll a 
+ b (Cab), carotenoids (Ccar), anthocyanin (Anth), dry matter content (Cdm), photochemical reflectance parameter (Cx), leaf area index (LAI), measured leaf N con-
centration (%), Dualex-measured chlorophyll content, canopy SIF, and canopy photochemical reflectance index (PRI515).  

Estimated traits N (%) Leaf Cab Canopy SIF Canopy PRI515 

2020 2021 2020 2021 2020 2021 2020 2021 

Cab (μg/cm2) 0.73*** 0.66*** 0.66*** 0.10 0.51** 0.52** 0.80*** 0.82*** 
Ccar (μg/cm2) 0.75*** 0.56** 0.65*** 0.15 0.56** 0.43* 0.72*** 0.50** 
Anth (μg/cm2) 0.58*** 0.09 0.63*** 0.00 0.45* 0.04 0.85*** 0.00 
Cx 0.61*** 0.62*** 0.50** 0.01 0.54** 0.57** 0.68*** 0.60*** 
Cdm (g/cm2) 0.36* 0.20 0.58** 0.04 0.20 0.31* 0.59*** 0.79*** 
LAI 0.02 0.05 0.02 0.16 0.07 0.06 0.02 0.49** 

*p-value <0.05; **p-value <0.005; ***p-value <0.001. 

Fig. 11. The relative contribution from OOB importance scores of each variable to the predicted N concentration from a) all plant traits estimated from hyperspectral 
and thermal imagery and b) a non-collinear subset of variables (VIF < 5). 
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Fig. 12d). The consistency in the results obtained from the two growing 
seasons suggests the importance of combining Cab and SIF to assess leaf 
N status as opposed to standard methods based on individual traits or 
single vegetation indices, which are generally affected by management 
practices and the changing growing conditions naturally varying across 
seasons. 

The N prediction map based on a model using Cab and SIF as pre-
dictors revealed that tree N was spatially variable across the orchard in 
2021 (Fig. 13). As expected, the pattern of N predictions integrates 
trends in chlorophyll a + b content and SIF. 

4. Discussion 

Previous studies using RS spectroscopy to estimate leaf N have often 
focused on developing multispectral indices or proxies from leaf or 
canopy spectra. These methods usually require the development of 
empirical models relating leaf N to chlorophyll-sensitive vegetation 
indices (Clevers and Kooistra, 2011; Fitzgerald et al., 2010; Gabriel 
et al., 2017; Inoue et al., 2012; Pancorbo et al., 2021; Schlemmer et al., 
2013) or combinations of bands and indices (Fitzgerald et al., 2010; 
Haboudane et al., 2002). However, these methods fail to explain leaf N 
variability in woody crops that are characterized by structurally com-
plex canopies that are managed to increase productivity. In these highly 
managed orchard canopies, the relationship between structure and 
nutrient levels is uncoupled; therefore, structural index-based models 

are not appropriate (Table 4). In these orchard canopies, the main 
drivers for the observed structural changes are the planting density and 
the fractional cover, which add additional complexity to the use of 
structural RS vegetation indices as indicators of nutrient levels. In these 
structurally complex orchards, the spectral indices are heavily affected 
by the canopy architecture and by structural parameters, such as leaf 
density, which in turn interact with the illumination and observation 
geometry within the canopy (Broge and Leblanc, 2001; Haboudane 
et al., 2002; Wang et al., 2018). Therefore, the variability observed with 
standard vegetation indices such as NDVI and other structurally sensi-
tive indicators may not necessarily represent the nutrient variability, but 
instead the heterogeneity due to different tree ages, crown densities, and 
planting grids that usually coexist in large well-managed orchards such 
as the one used in this study. 

The assessment of the physiological status, independent from the 
structure and canopy architecture using plant traits through RTM model 
inversion, is particularly beneficial in the case of structurally complex 
canopies (Malenovský et al., 2013) when trying to capture the within- 
field spatial variability of the leaf nutrient status independent from the 
structural variability. In this study, we found that plant physiological 
estimates derived from RTM inversion using VNIR hyperspectral imag-
ery were generally stronger and more consistent predictors of leaf N 
status than the empirical models built with vegetation indices. In 
particular, RTM-retrieved pigment Cab was the strongest predictor 
(Fig. 11), consistent with the results of Camino et al. (2018a) for wheat. 

Fig. 12. Correlations between leaf N concentration (%) and predicted N using models based on a) chlorophyll a + b content alone, b) chlorophyll a + b content with 
canopy SIF, c) chlorophyll a + b content with leaf area index (LAI), and d) LAI with canopy SIF. The grey diagonal line is the 1:1 line. All p-values <0.001. 
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RTM-based carotenoid content and the xanthophyll cycle (Cx) parameter 
were also more strongly related to leaf N than vegetation indices in our 
study, as both are involved in light-harvesting regulation that is asso-
ciated with photosynthetic efficiency (Ruban et al., 1999). For instance, 
RTM-based chlorophyll a + b content was strongly correlated with leaf N 
for both years of study (r2 = 0.73 in 2020 and 0.66 in 2021, p-values 
<0.001), whereas the chlorophyll-sensitive index TCARI/OSAVI was not 
correlated with N in 2021 (r2 = 0, n.s.), suggesting those indices are not 
reliable indicators for N assessment across seasons. Spectral indices are 
greatly affected by management practices and background changes 

across orchards and years, leading to inconsistencies that may make 
them inappropriate for operational purposes. 

The fact that both model-inverted LAI and structural hyperspectral 
indices were poorly related to leaf N supports the idea that canopy 
structure is not driven by nutrient availability in well-managed intensive 
orchards. As a consequence, it is not surprising that the widely used 
structural index NDVI was inadequate for predicting leaf N in this 
context. Ground-based leaf chlorophyll measurements were poorly 
related to leaf N when leaf N was high in 2021. This is consistent with 
the results of Jifon et al. (2005), who found the relationship between 

Fig. 13. Interpolated map of a) chlorophyll a + b content, c) solar-induced fluorescence, and e) predicted N concentration derived from Cab and SIF in 2021. Right 
column contains zoomed-in views (b, d and f) of the scenes on the left in the northeast blocks. Block numbers are displayed in the centers. 
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chlorophyll meter readings and leaf N was stronger at low chlorophyll 
concentrations than at higher chlorophyll concentrations. At high N 
concentrations, there is a possibility that some N may be allocated to 
soluble protein rather than pigment-protein complexes (Evans, 1989). 
And the soluble protein and pigment complexes in leaves can be 
imbalanced depending on leaf physical characteristics, plant age, envi-
ronmental factors, and management practices (Bondada and Syvertsen, 
2003; Evans and Poorter, 2001; Syvertsen et al., 1995; Syvertsen, 1984). 
In our study, leaf nitrogen balance index was more strongly correlated 
with leaf N and canopy indices as it incorporated the ratio of a second 
pigment flavonoid into the calculation. This phenomenon was also 
observed at the canopy level for both chlorophyll-sensitive vegetation 
indices and RTM-based pigment concentrations. Cab at the canopy level 
was more strongly related to leaf N than Cab at the leaf level, which may 
be attributed to the fact that the field-collected leaf measurements came 
from lower layers of the tree crown, whereas the imagery captured the 
upper layers. Our results provide evidence that RTM-based leaf physi-
ological traits provide additional benefits over standard structural 
indices for assessing leaf N in orchards, particularly when multiple va-
rieties, ages, and management practices coexist within the orchard. 

Several studies have shown that SIF derived from sub-meter narrow- 
band imagery, in which the depth of the oxygen absorption feature can 
be quantified, is an effective tool for detecting plant stress in precision 
agriculture (Calderón et al., 2013; Camino et al., 2018a; Camino et al., 
2018b; Quemada et al., 2014; Raya-Sereno et al., 2021; Zarco-Tejada 
et al., 2012). In this study, we also found a strong association between 
fluorescence and leaf N, consistent with the literature (Cendrero-Mateo 
et al., 2016; Corp et al., 2003; Schächtl et al., 2005), yielding r2 = 0.74 
(p-value <0.005) over the course of 2 years at both leaf and canopy 
levels. Airborne-quantified SIF was the second most important predictor 
of leaf N after Cab and outperformed any other vegetation index or 
structural and temperature-based plant traits in terms of correlation and 
consistency across years. When combined with RTM-based traits, SIF 
significantly improved model performance for predicting leaf N. The 
model that included Cab and SIF explained 95% of the leaf N variability 
(p-value <0.001), improving upon results obtained with Cab alone (r2 =

0.49, p-value <0.001) accounting for different plant varieties, ages, 
planting patterns, water status levels, and fertilizer management prac-
tices across 2 years. 

CWSI, a thermal canopy water status index, was poorly associated 
with leaf N and relatively inconsistent across years. Overall, we found no 
evidence of a relationship between CWSI and leaf N, suggesting that leaf 
N variability was not driven by water status in this well-managed 
intensive almond orchard. 

5. Conclusions 

This study demonstrates that leaf N estimation conducted in an 
almond orchard across 2 years was significantly improved when SIF was 
included alongside RTM-based leaf chlorophyll a + b content. Among all 
spectral plant traits evaluated from hyperspectral imagery, including all 
RTM-derived leaf biochemical constituents, SIF, and structural and 
water stress traits, the retrieved leaf chlorophyll a + b and SIF were the 
two most important predictors to explain leaf N variability. The model 
that incorporated both chlorophyll a + b content and SIF traits explained 
95% of the variability in leaf N (p-value <0.001) consistently across 2 
years of airborne hyperspectral data collection. Together, these results 
provide important insights into the quantification of leaf N content in 
well-managed structurally complex canopies, such as discontinuous tree 
orchards, demonstrating that traditional vegetation indices and indi-
vidual plant traits do not sufficiently track leaf N content over well- 
managed intensive crops typically reaching high N levels. 

Credit author statement 

Y.W., L.S. and P.J.Z.-T. designed the objectives of this study and 

designed research; L.S. and P.J.Z.-T supervised the work; Y.W., L.S., and 
T.P. carried out field work and airborne data collections; Y.W. analysed 
data and performed research; Y.W. wrote the paper, and L.S., T.P., V.G.- 
D., D.R. and P.J.Z.-T. contributed and provided comments. All authors 
read and approved the final submission. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

The authors gratefully acknowledge McPherson Family and Inver-
gowrie Foundation for the financial support and the assistant from the 
Mallee Regional Innovation Centre (MRIC). Special thanks to Xiaojin 
Qian from HyperSens Remote Sensing Laboratory for her support in the 
field, also extend to Rafael Romero, David Notario and Alberto Hornero 
from QuantaLab IAS-CSIC (Spain) for their contributions in the labora-
tory. And Brian Slater for allowing this research to be carried out in the 
Aroona Farms. 

References 
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Camino, C., González-Dugo, V., Hernández, P., Sillero, J., Zarco-Tejada, P.J., 2018a. 
Improved nitrogen retrievals with airborne-derived fluorescence and plant traits 
quantified from VNIR-SWIR hyperspectral imagery in the context of precision 
agriculture. Int. J. Appl. Earth Obs. Geoinf. 70, 105–117. 

Y. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0005
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0005
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0010
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0010
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0010
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0015
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0015
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0015
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0020
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0020
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0025
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0025
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0025
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0030
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0030
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0030
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0035
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0035
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0035
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0040
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0040
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0040
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0040
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0045
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0045
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0045
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0045
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0050
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0050
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0050
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0055
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0055
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0055
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0060
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0060
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0060
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0065
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0070
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0070
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0070
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0075
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0075
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0075
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0080
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0080
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0085
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0085
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0085
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0085
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0090
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0090
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0090
http://refhub.elsevier.com/S0034-4257(22)00255-3/rf0090


Remote Sensing of Environment 279 (2022) 113141

16

Camino, C., Zarco-Tejada, P.J., Gonzalez-Dugo, V., 2018b. Effects of heterogeneity 
within tree crowns on airborne-quantified SIF and the CWSI as indicators of water 
stress in the context of precision agriculture. Remote Sens. 10 (4), 604. 

Carter, G.A., 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant 
stress. Int. J. Remote Sens. 15 (3), 697–703. 

Cendrero-Mateo, M.P., Moran, M.S., Papuga, S.A., Thorp, K., Alonso, L., Moreno, J., 
Wang, G., 2016. Plant chlorophyll fluorescence: active and passive measurements at 
canopy and leaf scales with different nitrogen treatments. J. Exp. Bot. 67 (1), 
275–286. 

Cerovic, Z.G., Masdoumier, G., Ghozlen, N.B., Latouche, G., 2012. A new optical leaf-clip 
meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal 
flavonoids. Physiol. Plant. 146 (3), 251–260. 

Cerovic, Z.G., Ghozlen, N.B., Milhade, C., Obert, M., Debuisson, S.B., Moigne, M.L., 2015. 
Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) 
based on dualex leaf-clip measurements in the field. J. Agric. Food Chem. 63 (14), 
3669–3680. 

Chang, S.X., Robison, D.J., 2003. Nondestructive and rapid estimation of hardwood 
foliar nitrogen status using the SPAD-502 chlorophyll meter. For. Ecol. Manag. 181 
(3), 331–338. 

Chapman, S.C., Barreto, H.J., 1997. Using a chlorophyll meter to estimate specific leaf 
nitrogen of tropical maize during vegetative growth. Agron. J. 89 (4), 557–562. 

Cheng, L., 2003. Xanthophyll cycle pool size and composition in relation to the nitrogen 
content of apple leaves. J. Exp. Bot. 54 (381), 385–393. 

Clevers, J.G., Gitelson, A.A., 2013. Remote estimation of crop and grass chlorophyll and 
nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. 
Geoinf. 23, 344–351. 

Clevers, J.G., Kooistra, L., 2011. Using hyperspectral remote sensing data for retrieving 
canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 5 (2), 574–583. 

Combal, B., Baret, F., Weiss, M., Trubuil, A., Mace, D., Pragnere, A., Wang, L., 2003. 
Retrieval of canopy biophysical variables from bidirectional reflectance: using prior 
information to solve the ill-posed inverse problem. Remote Sens. Environ. 84 (1), 
1–15. 

Conant, R.T., Berdanier, A.B., Grace, P.R., 2013. Patterns and trends in nitrogen use and 
nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 27 (2), 
558–566. 

Corp, L.A., McMurtrey, J.E., Middleton, E.M., Mulchi, C.L., Chappelle, E.W., Daughtry, C. 
S., 2003. Fluorescence sensing systems: in vivo detection of biophysical variations in 
field corn due to nitrogen supply. Remote Sens. Environ. 86 (4), 470–479. 

Cummings, C., Miao, Y., Paiao, G.D., Kang, S., Fernández, F.G., 2021. Corn nitrogen 
status diagnosis with an innovative multi-parameter crop circle phenom sensing 
system. Remote Sens. 13 (3), 401. 

Daughtry, C.S., Walthall, C., Kim, M., De Colstoun, E.B., McMurtrey Iii, J., 2000. 
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. 
Remote Sens. Environ. 74 (2), 229–239. 

Demmig, B., Winter, K., Krüger, A., Czygan, F.-C., 1987. Photoinhibition and zeaxanthin 
formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation 
of excess light energy. Plant Physiol. 84 (2), 218–224. 

Dong, R., Miao, Y., Wang, X., Chen, Z., Yuan, F., Zhang, W., Li, H., 2020. Estimating plant 
nitrogen concentration of maize using a leaf fluorescence sensor across growth 
stages. Remote Sens. 12 (7), 1139. 

Dumas, J.B.A., 1831. Procedes de l’analyse organic. Ann. Chim. Phys. 247, 198–213. 
Etheridge, R., Pesti, G., Foster, E., 1998. A comparison of nitrogen values obtained 

utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 
2000) on samples typical of an animal nutrition analytical laboratory. Anim. Feed 
Sci. Technol. 73 (1–2), 21–28. 

Evans, J., 1989. Photosynthesis and nitrogen relationships in leaves of C 3 plants. 
Oecologia 78 (1), 9–19. 

Evans, J., Poorter, H., 2001. Photosynthetic acclimation of plants to growth irradiance: 
the relative importance of specific leaf area and nitrogen partitioning in maximizing 
carbon gain. Plant Cell Environ. 24 (8), 755–767. 

Filella, I., Serrano, L., Serra, J., Penuelas, J., 1995. Evaluating wheat nitrogen status with 
canopy reflectance indices and discriminant analysis. Crop Sci. 35 (5), 1400–1405. 

Fitzgerald, G., Rodriguez, D., Christensen, L., Belford, R., Sadras, V., Clarke, T., 2006. 
Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated 
wheat environments. Precis. Agric. 7 (4), 233–248. 

Fitzgerald, G., Rodriguez, D., O’Leary, G., 2010. Measuring and predicting canopy 
nitrogen nutrition in wheat using a spectral index—the canopy chlorophyll content 
index (CCCI). Field Crop Res. 116 (3), 318–324. 

Flowers, M., Weisz, R., Heiniger, R., 2003. Quantitative approaches for using color 
infrared photography for assessing in-season nitrogen status in winter wheat. Agron. 
J. 95 (5), 1189–1200. 
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Schächtl, J., Huber, G., Maidl, F.-X., Sticksel, E., Schulz, J., Haschberger, P., 2005. Laser- 
induced chlorophyll fluorescence measurements for detecting the nitrogen status of 
wheat (Triticum aestivum L.) canopies. Precis. Agric. 6 (2), 143–156. 

Schepers, J., Francis, D., Vigil, M., Below, F., 1992. Comparison of corn leaf nitrogen 
concentration and chlorophyll meter readings. Commun. Soil Sci. Plant Anal. 23 
(17–20), 2173–2187. 

Schlemmer, M., Gitelson, A., Schepers, J., Ferguson, R., Peng, Y., Shanahan, J., 
Rundquist, D., 2013. Remote estimation of nitrogen and chlorophyll contents in 
maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 25, 47–54. 

Shcherbak, I., Millar, N., Robertson, G.P., 2014. Global metaanalysis of the nonlinear 
response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. 
Sci. 111 (25), 9199–9204. 

Snyder, C.S., Bruulsema, T.W., Jensen, T.L., Fixen, P.E., 2009. Review of greenhouse gas 
emissions from crop production systems and fertilizer management effects. Agric. 
Ecosyst. Environ. 133 (3–4), 247–266. 
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