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A B S T R A C T   

The development of methods to spatially describe long-term water stress in plantations is going to become 
increasingly important as drought events increase in frequency under climate change. Despite this we are un-
aware of any research that has used hyperspectral imagery to describe long-term water stress for the most widely 
established exotic pine species, Pinus radiata D. Don (radiata pine). Hyperspectral imagery and foliage water 
content were repeatedly sampled over a five month period in one-year old radiata pine that were allocated to 
well-watered and drought treatments. These data were used to (i) determine how rapidly equivalent water 
thickness (EWT) and leaf fresh weight (LWCF) change in response to drought and (ii) identify the key hyper-
spectral indicators associated with changes in EWT and LWCF. 

Both EWT and LWCF exhibited little treatment variation until 91 days after treatment (DAT) but diverged 
strongly after this time. By 108 DAT, mean values in the control exceeded the droughted treatment by 41.3% for 
EWT (0.0175 vs. 0.0124 g cm− 2, P < 0.001) and 17.2% for LWCF (67.7 vs. 57.8%, P < 0.001). Using hyper-
spectral data captured 108 DAT, highly significant treatment differences (P < 0.001) in reflectance were found in 
the SWIR region with the most significant differences occurring between 1139 and 2497 nm. 

There were strong correlations between a wide range of water indices and both measures of water stress using 
data captured 108 DAT. The indices that were most strongly correlated with EWT were found to be GVMI, 
NDWI1640 and SIWSI with R2 values ranging from 0.86 to 0.87. Indices that had the strongest correlations with 
LWCF were SRWI1, GVMI and MSI with R2 values ranging from 0.89 to 0.90. Water indices were more strongly 
related to both measures of water stress than the physiological index PRI which was moderately correlated to 
both EWT (R2 = 0.47) and LWCF (R2 = 0.62). A wide range of structural and chlorophyll indices were less well 
correlated with both measures of water content and long-term water stress than either PRI or the water indices.   

1. Introduction 

Water is a fundamental component of trees and is a key determinant 
of carbon gain and transpiration. Physiological processes and phylo-
genic traits that are strongly affected by water include photosynthetic 
efficiency, transpiration rates and leaf vigour, structure and shape 
(Kramer and Boyer, 1995). Over the short-term water stress results in 
stomatal closure and lower assimilation rate with needle water potential 
declining over the short-medium term (Mitchell et al., 2013; Mitchell 

et al., 2014). The impacts of water stress over the long-term are reduced 
leaf water content, with either carbon starvation or hydraulic failure, 
often leading to tree mortality (Kramer and Boyer, 1995; Stone et al., 
2012; Mitchell et al., 2014). 

The characterisation of water content and long-term water stress 
effects in trees is important for understanding their general physiolog-
ical status and the extent of drought stress (Hill et al., 2019). The 
quantification of water and dry matter content components also enables 
better characterization of canopy fuel moisture, which is a critical input 
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for fire risk analysis (Chuvieco et al., 2020). The retrieval of leaf water 
content using remotely sensed data would provide a useful means of 
identifying trees and forests that are experiencing long-term water stress 
effects. 

Within the remote sensing and ecological literature water stress is 
often described by equivalent water thickness (EWT) and gravimetric 
water content (GWT). EWT is quantified as the mass of leaf water per 
unit leaf area (i.e. g cm− 2 or cm3 cm− 2 which decomposes to cm) and is 
physically related to radiation adsorption processes as it measures the 
optical path and depth of the water layer (Baret and Fourty, 1997). GWT 
expresses the mass of leaf water as either the percentage of the leaf dry 
weight (LWCD, %) or leaf fresh weight (LWCF, %). The LWCD has been 
widely used in fire risk research where it is also known as the fuel 
moisture content (Chuvieco et al., 2020) while LWCF is a commonly 
used leaf trait in ecological studies (Garnier and Laurent, 1994). 

Hyperspectral imagery has been widely used to predict foliage water 
content. Leaf water absorbs radiant energy in the near infra-red (NIR) 
and short wave infra-red (SWIR) parts of the spectrum. Previous 
research has found liquid water absorption peaks of increasing size at 
970, 1200, 1450, 1950, and 2500 nm (Knipling, 1970; Thomas et al., 
1971; Tucker, 1980; Fourty and Baret, 1997; Datt, 1999; Danson and 
Bowyer, 2004). 

Numerous studies have exploited these absorption features to 
develop strong negative correlations between reflectance in individual 
wavelengths and leaf water content (Hunt et al., 1987; Jacquemoud and 
Baret, 1990; Carter, 1991; Danson et al., 1992; Aldakheel and Danson, 

1997). Generally wavelengths between 1300 and 2500 nm have been 
found to have strong correlations with leaf water concentration (Carter, 
1991) but the weaker absorption bands between 900 and 1300 nm are 
also effective predictors as they penetrate further into canopies than the 
rapidly absorbed higher wavelengths (Sims and Gamon, 2003). Many 
studies have also used spectral vegetation indices that combine two 
different wavelengths to precisely predict water content and a large 
number of useful indices have been developed (Hunt and Rock, 1989; 
Gao, 1996; Penuelas et al., 1997; Datt, 1999; Ceccato et al., 2001; 
Danson and Bowyer, 2004; Buddenbaum et al., 2012; Buddenbaum 
et al., 2015). These indices often use a SWIR or NIR band to detect water 
content and a NIR band to normalise the effect of leaf structural vari-
ability on reflectance (Danson and Bowyer, 2004; Colombo et al., 2008). 
In addition, radiative transfer simulations have been proposed to esti-
mate leaf equivalent water and dry matter content using model inver-
sion techniques, linking leaf and canopy physical models (Riano et al., 
2005). These methods have been successfully applied at airborne scales 
using hyperspectral imagers (Cheng et al., 2006). Scaling up has also 
been undertaken at the satellite level, using index-based indicators such 
as the Normalized Difference Water Index (NDWI) (Gao, 1996) to map 
fuel moisture content in shrubs using MODIS time series imagery (Zarco- 
Tejada et al., 2003). 

Radiata pine (Pinus radiata D. Don) is the most widely planted exotic 
pine species in the world and large areas have been established in Spain, 
New Zealand, Australia, Chile, and South Africa (Lewis and Ferguson, 
1993; Lavery and Mead, 1998). A significant proportion of these 

Fig. 1. Set-up for reflectance measurement using the ASD FieldSpec Spectroradiometer showing (a) the instrument and computer set up (b) spectra obtained from 
two sample trees and (c) trees used in the experiment from the control (left of centre space) and droughted treatments (right of centre space). The photo shown in 
panel (c) was taken on the 12th April 2021 (73 days after treatment). 
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plantations are located in areas that are subject to drought. Under 
climate change, the combined influence of lower rainfall and higher air 
temperatures are expected to increase the severity and duration of 
drought in many countries where radiata pine is grown (Clark et al., 
2012; Head et al., 2014; Pachauri et al., 2014). Although radiata pine is 
a fast growing species, water stress significantly reduces carbon assim-
ilation and growth rate (Mitchell et al., 2013; Mitchell et al., 2014) 
primarily through reducing stomatal conductance (Watt et al., 2003; De 
Diego et al., 2012; Mitchell et al., 2013). As drought conditions worsen, 
radiata pine becomes predisposed to attack from pests and diseases 
(McDowell et al., 2008; Verbesselt et al., 2009) and prolonged water 
stress commonly results in tree mortality (Stone et al., 2012). Although 
several spectral-based indices have been proposed to assess the leaf 
biochemistry in broad leaf species, the specific needle structure of 
coniferous species together with the canopy structural effects mean that 
not all hyperspectral indicators are suitable for monitoring long-term 
processes of decline (Zarco-Tejada et al., 2018). The identification of 
hyperspectral indices to quantify drought stress would provide a means 
of phenotyping radiata pine for this trait, potentially allowing drought 
resistant clones to be deployed to areas at risk of current or future 
drought. 

Despite the potential of remotely sensed data for identifying long- 
term drought stress in radiata pine, we are unaware of any research 
for this species that has characterised relationships between indicators 
derived from hyperspectral imagery and the two measures EWT and 
GWT, specifically LWCF. Using data collected from a pot trial of young 
radiata pine, the objectives of this study were to (i) determine how 
rapidly EWT and LWCF change in response to drought and (ii) identify 
the key hyperspectral bands and indices associated with changes in EWT 
and LWCF. 

2. Material and methods 

2.1. Experimental set-up and measurement dates 

The experiment was undertaken in the Scion nursery in Rotorua, 
New Zealand. Eighty radiata pine seedlings that were approximately 
one-year old were transplanted on the 5th of August 2020 into 20 L pots 
filled with potting mix. These trees were placed inside a glasshouse with 
a fluctuating ambient day temperature that was maintained above 10 ◦C 
and reached a maximum temperature of 30.4 ◦C during summer. The 
potted trees were well watered prior to the imposition of treatments in 

Table 1 
Indices that were included in the analysis.  

Index Index name Equation Reference 

Chlorophyll and other photosynthetic pigment indices  
CI Chlorophyll index ρ750/ρ710  Zarco-Tejada et al. (2001) 
GM1 Gitelson and Merzlyak Index 1 ρ750/ρ550  Gitelson and Merzlyak (1997) 
GM2 Gitelson and Merzlyak Index 2 ρ750/ρ700  Gitelson and Merzlyak (1997) 
MCARI Mod. Chl. Absorp. Rfl. Index [(ρ700 − ρ670) − 0.2(ρ700 − ρ550)](ρ700/ρ670) Daughtry et al. (2000) 
PSSRb Pig. Spec. Simpl. Ratio Chl. b ρ800/ρ635  Blackburn (1998) 
TCARI Transf. Chl. Absorp. Rfl. Index 3[(ρ700 − ρ670) − 0.2(ρ700 − ρ550)(ρ700/ρ670)] Haboudane et al. (2002) 
TCA/OSA TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 
VOG Vogelmann Index ρ740/ρ720  Vogelmann et al. (1993) 
Structural Indices   
NDVI Normalised Difference Vegetation Index (ρ800 − ρ670)/(ρ800 + ρ670) Rouse et al. (1974) 
OSAVI Opt. Soil-Adjusted Veg. Index (1+0.16)(ρ800 − ρ670)/(ρ800 + ρ670 + 0.16) Rondeaux et al. (1996) 
RDVI Renormalized Diff. Veg. Index (ρ800 − ρ670)/(ρ800 + ρ670)

0.5  Roujean and Breon (1995) 

Physiological / Photochemical index   
PRI Photochemical Reflectance Index (ρ531 − ρ570)/(ρ531 + ρ570) Gamon et al. (1992) 
Water indices   
Datt1 Datt1 (ρ850 − ρ2218)/(ρ850 − ρ1928) Datt (1999) 
Datt2 Datt2 (ρ850 − ρ1788)/(ρ850 − ρ1928) Datt (1999) 
DDI Double Difference Index 2ρ1530 − ρ1005 − ρ2005  Le Maire et al. (2004), Wang and Li (2012) 
fWBI Floating position Water Band index ρ900/minρ930− ρ980  Strachan et al. (2002) 
GVMI Global vegetation moisture index ((ρ820 + 0.1) − (ρ1600 + 0.02))

((ρ820 + 0.1) + (ρ1600 + 0.02))
Ceccato et al. (2002) 

LWI Leaf Water Index ρ1300/ρ1450  Seelig et al. (2008) 
MSI Moisture Stress Index ρ1600/ρ820  Hunt and Rock, 1989 
MSI1 Moisture Stress Index 1 ρ1650/ρ1230  Rock et al. (1986) 
MSI2 Moisture Stress Index 2 ρ1650/ρ830  Rock et al. (1986) 
NDII Normalised Difference Infrared Index (ρ820 − ρ1600)/(ρ820 + ρ1600) Hardisky et al. (1983) 
NDWI1 Normalised Difference Water Index 1 (ρ860 − ρ1240)/(ρ860 + ρ1240) Gao (1996) 
NDWI2 Normalised Difference Water Index 2 (ρ870 − ρ1260)/(ρ870 + ρ1260) Rodríguez-Pérez et al. (2007) 
NDWI1640 Norm. Diff. Water Index 1640 nm (ρ860 − ρ1640)/(ρ860 + ρ1640) Chen et al. (2005) 
NDWI2130 Norm. Diff. Water Index 2130 nm (ρ858 − ρ2130)/(ρ858 + ρ2130) Chen et al. (2005) 
Ratio975 Ratio975 2mean(ρ960− 990)

(mean(ρ920− 940) + mean(ρ1090− 1110))

Gao et al. (1993), Mutanga and Ismail (2010), Pu et al. (2003) 

Ratio1200 Ratio1200 2mean(ρ1180− 1220)

(mean(ρ1090− 1110) + mean(ρ1265− 1285))

Gao et al. (1993), Mutanga and Ismail (2010), Pu et al. (2003) 

SIWSI Shortwave Infrared Water Stress Index (ρ1640 − ρ858)/(ρ1640 + ρ858) Fensholt and Sandholt (2003) 
SRWI Simple Ratio Water Index ρ860/ρ1240  Zarco-Tejada and Ustin (2002) 
SRWI1 Simple Ratio Water Index 1 ρ1350/ρ870  Rodríguez-Pérez et al. (2007) 
SRWI2 Simple Ratio Water Index 2 ρ880/ρ1265  Rodríguez-Pérez et al. (2007) 
TM57 Ratio of Thematic Mapper B5 to B7 ρ1650/ρ2220  Elvidge and Lyon (1985) 
WBI Water Band Index ρ970/ρ900  Peñuelas et al. (1993) 
WI Water Index ρ900/ρ970  Penuelas et al. (1997)  
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January 2021. 
In January 2021, the 80 trees were randomly and equally allocated 

to droughted and control treatments. The droughted trees did not 
receive any water from the 29th January 2021 until the conclusion of 
the experiment on the 17th May 2021. Over this period the control trees 
were watered to excess twice per week. The full set of measurements, 
described below, were undertaken on 50 trees (25 per treatment) while 
additional measurements of only EWT and LWCF were made on 20 trees 
(10 per treatment). 

The remaining ten trees (five per treatment) were set aside to 
continuously monitor root-zone volumetric water content (θ) 
throughout the duration of the experiment. Measurements were made 
using a pre-calibrated CS655 multiparameter smart sensor (Campbell 
Scientific Inc., Logan, Utah, US) that was installed in each pot to a depth 
of 12 cm and measured θ across a soil volume of 3.6L. All sensors were 
connected to a CR1000X data logger and observations were recorded on 
an hourly basis. 

The full set of measurements, made on the 50 trees, were taken 
during five campaigns that spanned five months. A set of pre-treatment 
measurements were undertaken on January 26th while four post- 
treatment measurements were undertaken on February 2nd, 7th, 19th, 
and May 17th 2021. These dates were selected to cover the range in θ 
experienced by droughted trees with θ averaging, respectively, 0.30, 
0.15, 0.08, 0.03, and 0 m3 m− 3. Additional measurements of EWT and 
LWCF were taken prior to treatments being imposed on the 22nd 
January and following treatment on the 15th, 22nd, 29th March, 10th, 
30th April and 11th May. 

2.2. Hyperspectral reflectance measurements 

Needle-level reflectance at wavelengths from 400 to 2500 nm was 
measured from needle mats using an ASD FieldSpec Spectroradiometer 
and a customised dark container setup. The fibre optic cable of the 
spectroradiometer with the 8◦ field-of-view (FOV) lens was fixed on a 
stand to point in a nadir direction at the needle mat sample (Fig. 1). A 
100 W halogen lamp was used as the light source and placed at a 30◦

angle to the sensor and sample. This setup was fully enclosed during 
each data collection to minimise the effects of stray light. 

For each tree, 4–5 fully extended fascicles were destructively taken 
from the upper third of the canopy. The fascicles were then laid out as 

needle mats against a non-reflective dark foam paper and held together 
using black tape. The mats were arranged such that gaps or overlaps 
between the needles were minimised and steps were taken to ensure that 
the mats covered the whole FOV of the sensor which was approximately 
0.9–1.0 cm. For each tree, the spectroradiometer was first calibrated 
against a white reference and three reflectance spectra were recorded. 
Each reflectance spectrum was an average of 30 readings. The white 
reference reflectance spectra were also recorded before and after 
collection of the three sets of reflectance spectra. The data collection was 
undertaken using the ASD RS3 TM Spectral Acquisition software. 

The resulting ASD files were loaded to ViewSpec ProTM and the 
reflectance datasets were exported as text files. The three reflectance 
spectra for each tree were averaged and divided by the average of the 
two white reference spectra to obtain corrected mean reflectance values. 
The indices summarised in Table 1 were derived from reflectance and 
grouped into four categories. Chlorophyll and other photosynthetic 
pigment-based indices were included in the first group. The second 
group was composed of structural indices while the third group included 
PRI which was classified as a physiological and photochemical index. 
The fourth category comprised water indices (Table 1). 

2.3. Measurements of photosynthesis and stomatal conductance 

Physiological measurements were made on the same days as the five 
hyperspectral dataset collections on all 50 plants (n = 25 per treatment). 
Net photosynthetic rates (A) and stomatal conductance (gs) were 
measured after a two-minute pre-illumination period, at 400 ppm CO2 
concentration. These measurements were taken by a GFS-3000 coupled 
with an Imaging-PAM chlorophyll fluorometer (M− series, Walz, Effel-
trich, Germany) that was equipped with a CO2 cartridge (to maintain 
CO2 at a constant level). 

2.4. Measurements of leaf area, leaf weight, EWT and LWCF 

Measurements of leaf weight and area were made on the same day as 
each hyperspectral capture and samples were placed on ice until these 
measurements were undertaken. Additional measurements of leaf area 
and weight were also taken on the dates listed in Section 2.1. Following 
Bown et al. (2009), needle area per fascicle was determined from [nld(1 
+ π/n)]/2, where d is fascicle diameter, l is fascicle length and n is the 
number of needles per fascicle. Total needle area (A) per sample was 
calculated as the sum of the individual areas for all 4–5 fascicles. The 
fresh weight (FW) was recorded and samples were then dried in a 70 ◦C 
oven until constant weight and the dry weight (DW) was measured. 

Using these measurements EWT (g cm− 2) and LWCF (%) were 
determined from the following equations for all samples. 

EWT =
FW − DW

A
(1)  

LWCF =
FW − DW

FW
(2)  

2.5. Tree dimensions 

Tree height and diameter were measured four times over the dura-
tion of the experiment. Electronic calipers were used to measure root- 
collar diameter and height was measured using a tape. 

2.6. Data analysis 

The data merging, post-processing calculations, statistical analysis, 
and visualisations were undertaken in Python 3.7.10 using pandas 1.1.5, 
numpy 1.19.5, scipy 1.4.1, matplotlib 3.2.2, and sklearn packages. 
Volumetric water content data was averaged to the daily level and 
plotted over time for both treatments. Temporal variation in water stress 
(EWT, LWCF), tree dimensions and physiological measurements were 

Fig. 2. Daily volumetric water content measured by the soil moisture sensors 
over the duration of the experiment. Shown are mean values (lines) and 95% 
confidence intervals (shading) for the control (green) and drought treatments 
(red). The dashed vertical lines denote the timing of the five full sets of mea-
surements (n = 50). Shown at the top are the measurement set and days after 
the start of the treatment (DAT) on the 29th January 2021. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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plotted and treatment differences were detected using a t-test. 
Treatment variation in hyperspectral reflectance was plotted for all 

five captures and a t-test was used to detect significant differences in 
reflectance. The correlation coefficient between band reflectance and 
both measures of water stress was determined and plotted, for all five 
captures, to identify spectral regions that were most strongly related to 
EWT and LWCF. Bivariate relationships were constructed between both 
measures of water stress and all indices listed in Table 1. Comparisons of 
predictive precision for these relationships were made between the four 
index groupings (chlorophyll, structural, photochemical and water 
indices) and within each grouping the strongest relationships were 
plotted. 

3. Results 

3.1. Variation in root-zone volumetric and foliar water content through 
time 

Volumetric water content within the control treatment remained 

high over the duration of the experiment. Values of mean daily θ in the 
control fluctuated between 0.27–0.38 m3 m− 3 and averaged 0.33 m3 

m− 3 across the study period (Fig. 2). In contrast, values of θ in the 
droughted treatment declined exponentially from 0.30 m3 m− 3 for the 
pre-treatment measurements to 0.15, 0.08, 0.03, and 0 m3 m− 3 (Fig. 2) 
on measurement dates that respectively occurred 4, 9, 21 and 108 days 
after treatment (DAT). 

Compared to changes in θ, reductions in foliage EWT took longer to 
be expressed in the drought treatment (Fig. 3a). The EWT of both 
treatments fluctuated similarly through time and control values of EWT 
were not significantly higher than those of the drought treatment until 
59 DAT (0.0199 vs. 0.0178 g cm− 2; P = 0.034). These treatment dif-
ferences converged over the next measurement and values in the control 
only exceeded those in the drought treatment by 3.09% at 91 DAT 
(0.0163 vs 0.0158 g cm− 2; P = 0.524). Treatments did start diverging 
strongly and significantly after this point (Fig. 3a) and values of EWT in 
the control treatment exceeded those in the drought treatment by 41.3% 
at 108 DAT (0.0175 vs. 0.0124 g cm− 2, P < 0.001). 

Temporal and treatment related changes in LWCF were similar to 

Fig. 3. Variation in (a) EWT and (b) LWCF over the duration of the experiment for the control (green bars) and drought (red bars) treatments. Shown are the mean 
(centre dots) and the 95% confidence interval (bars) for all measurements. The number of days after the start of the drought treatment (DAT) on the 29th January 
2021 is shown at the top for all measurements. The dates that included a full set of measurements (n = 50) are denoted by dashed lines with all other displayed 
measurements were made on a smaller number (n = 20) of trees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 4. Variation in reflectance showing the average (line) and standard deviation (shading) by treatment for the five sets of measurements (a–e) where the mean 
values for the control and drought treatments are shown as solid green and dashed red lines, respectively. Also shown is variation in treatment significance, as 
indicated by the P-value, for the five captures (f). The grey region shown at the top of panel (f) outlines the area of insignificance where P > 0.05 while the dashed 
line is drawn at P = 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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EWT (Fig. 3b). Values of LWCF were very similar between treatments up 
to 21 DAT. For all measurements after this time LWCF in the control 
treatment significantly exceeded LWCF in the droughted treatment 
(Fig. 2b). However, these significant differences, from 45 to 91 DAT 
were relatively small (mean = 4.88%) and even at 91 DAT differed by 
only 4.08% (Fig. 3b). Strong treatment divergence occurred during the 
last two measurements when control values of LWCF were, respectively, 
11.4 and 17.2% higher than those of the droughted treatment at 102 and 
108 DAT (Fig. 3b). 

3.2. Changes in tree physiology and dimensions 

Although there were some fluctuations values of stomatal conduc-
tance (gs) and assimilation rate (A) in the control treatment remained 
relatively constant over the course of the experiment (Fig. A1). How-
ever, the imposition of drought had a strong and immediate effect on 
both gs and A. Values of gs in the drought treatment were reduced to 76, 
56, 28 and 3% of the control values, respectively, at 4, 9, 21 and 108 
DAT (Fig. A1). Similarly, A in the droughted treatment was reduced to, 
respectively, 87, 73, 52 and 0.5% of control values at 4, 9, 21 and 108 
DAT (Fig. A1). These treatment differences in both gs and A were sig-
nificant (P < 0.05) by 4 DAT, and highly significant (P < 0.001) for 
measurements made 9, 21 and 108 DAT. 

Mean tree dimensions in the control treatment rapidly increased over 
the duration of the experiment, from 62.1 to 77.4 cm for height and 9.4 
to 11.9 mm for root-collar diameter (Fig. A2). These two tree dimensions 
for the droughted treatment did not significantly vary from the control 
treatment from the start of the experiment until 28 DAT in late February. 
However, by the end of the experiment (116 DAT) there was significant 
(P < 0.001) treatment divergence in these two dimensions which was 
attributable to the very small change in tree height and diameter within 
the droughted treatment from 28 to 116 DAT (Fig. A2). 

3.3. Variation in needle-level reflectance through time 

Treatment variation in mean needle-level reflectance spectra was 
consistent with the measures of foliar water content. The first four sets of 
spectra, captured from − 3 to 21 DAT, did not show any visible differ-
ences between the two treatments (Fig. 4a–d). Within the 1st and 4th 
captures significant treatment differences (P < 0.05) were found in 
green to red (507–649 nm), red to red-edge (689–726 nm), and SWIR 
(1385–1469, 1831–1887, 2040–2496 nm) regions, but these differences 
were not strongly significant (Fig. 4f). 

The last set of spectra, captured at 108 DAT showed a clear delin-
eation between the control and drought means (Fig. 4e) that was 
particularly marked for wavelengths higher than 1000 nm. Highly sig-
nificant treatment differences (P < 0.001) in reflectance values were 
found in the NIR and SWIR regions. With the exception of the 

1912–1939 nm range, these differences were highly significant between 
1139 and 2497 nm (Fig. 4f). In contrast, within the visible range there 
was little separation in mean reflectance between treatments and these 
differences were almost all insignificant (Fig. 4f). 

Moderate to strong correlations between needle-level reflectance 
and foliar measures of water stress (i.e. R2 ≥ 0.6) were found within the 
NIR/SWIR region of the spectra, but only for the last set of measure-
ments captured 108 DAT (Fig. 5). For this capture significant correla-
tions between reflectance and EWT were found within the SWIR 
wavelengths, and were most marked between the 1314–2474 nm range. 
The strongest correlation was found at 1537 nm (R2 = 0.83) while the 
strongest correlation in the visible region was at 690 nm (R2 = 0.36) 
(Fig. 5a). For this last capture LWCF exhibited moderate to strong cor-
relations with reflectance between 1317 and 2479 nm, which peaked at 
1510 nm (R2 = 0.86) and at 690 nm (R2 = 0.37) within the visible region 
(Fig. 5b). There were weak correlations between reflectance and both 
measures of water stress during the first four measurements (Fig. 5a, b). 
However, with the exception of the second capture, most of these cor-
relations were insignificant at P = 0.05 (Fig. 5a, b). 

3.4. Prediction of EWT and LWCF using the indices 

All correlations between the indices and both measures of water 
stress were weak for the first four captures (Table 2). Of the four cate-
gories considered, the highest correlations were found using the water 
indices for all of the first four captures. Using the water indices, the 
correlations were highest for the first capture and predictions of EWT 
were stronger than predictions of LWCF across all four captures 
(Table 2). When averaged over the first four captures, the strongest 
predictor of EWT was Datt1 (mean R = 0.54) while the strongest pre-
dictor of LWCF was SRWI1 (mean R = -0.31). 

The strength of correlations between water stress and structural, 
physiological and water indices markedly increased during the fifth 
capture at 108 DAT (Table 2). Correlations for these relationships were 
strongest using water indices, followed by PRI, then structural indices 
with chlorophyll indices showing the weakest correlations with EWT 
and LWCF (Table 2). Almost all water indices had R values that exceeded 
|0.8| (Table 2) with maxima absolute values of 0.93 for EWT and − 0.95 
for LWCF. The most strongly correlated indices (R ≥ |0.9|) were usually 
composed of a NIR and a SWIR band (GVMI, MSI, MSI1, MSI2, NDII, 
NDWI1640, and SIWSI), a NIR and two SWIR bands (Datt1 and DDI), or 
two NIR bands (fWBI, SRWI1, WBI, and WI) (Table 2). 

The indices that were most strongly correlated with EWT were found 
to be GVMI, NDWI1640 and SIWSI (Fig. 6a – c) which were all band ratios 
consisting of a combination of NIR and SWIR (1600–1650 nm) bands. 
The relationships between these indices and EWT were best described by 
second order polynomial equations with R2 values ranging from 0.86 to 
0.87. Indices that had the strongest correlations with LWCF were SRWI1, 

Fig. 5. Variation in the coefficient of determination (R2) between reflectance and (a) EWT and (b) LWCF within the 400–2500 nm range for the five full sets of 
measurements (n = 50). Horizontal dashed lines have been drawn to denote the relationship significance at P = 0.01 and 0.05. 
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GVMI and MSI which were based on NIR and SWIR bands and these 
linear relationships had R2 values ranging from 0.89 to 0.90 (Fig. 7a – c). 

Amongst the other categories PRI was the next strongest predictor of 
both EWT (R2 = 0.47) and LWCF (R2 = 0.62) using data from the fifth 
capture (Fig. 6d, 7d). Within the structural indices NDVI was the 
strongest predictor of both water stress indices (Fig. 6e, 7e). Among the 
chlorophyll indices VOG, CI and GM2 were the strongest predictors of 
both EWT (Fig. 6g – i) and LWCF (Fig. 7g – i). Although correlations were 
weaker overall for structural and chlorophyll indices the data does show 

a reasonable correlation between these indices and both measures of 
water stress for the droughted treatment (Figs. 6, 7). 

4. Discussion 

The conservative growth and water use strategy of radiata pine ac-
counts for the low initial rate of foliage water loss observed in this study. 
The response to drought by different species is determined by the extent 
to which plant water stress is hydraulically regulated (Mitchell et al., 

Table 2 
Correlation between the indices and EWT and LWCF for the five sets of measurements. The correlation is denoted by the correlation coefficient (R) which are coloured 
according to the strength of the linear relationships. Blue and red colours represent positive and negative correlations, respectively, with the darkness of the shade 
denoting the relationship strength (see key below). The asterisks * denote the six strongest correlations for each variable.  
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2013). Many species such as Eucalypt have high growth and water use 
during drought which results in a rapid depletion of soil water and ex-
pedites complete loss of hydraulic function (Mitchell et al., 2014). In 
contrast, radiata pine reduces water loss early under drought conditions 
through stomatal closure which results in a lower assimilation rate, but 
prolongs leaf turgor (Watt et al., 2003; McDowell et al., 2008; Stone 
et al., 2012). However, as drought conditions intensify needle water 
potential reduces over the short-medium term (1–3 months) and over 
the long-term foliage water content declines in radiata pine (Mitchell 
et al., 2013; Mitchell et al., 2014). Consistent with our findings turgor 
loss in radiata pine is reached 93 days after the imposition of drought 
which greatly exceeds, for example, the 44 days required to reach this 
point for Eucalyptus globulus (Mitchell et al., 2013). 

Consistent with these slow changes in needle water loss, reflectance 
showed little treatment variation for the first three months following 
treatment. However, during the last set of measurements, reflectance of 
the drought treatment was significantly elevated over the control across 
the entire NIR and SWIR range. The strength of the correlations between 
needle water content and reflectance were highest for wavelengths that 
showed the largest treatment differences and the strongest correlations 
were found at wavelengths of, respectively, 1510 and 1537 nm for EWT 
and LWCF. These changes in reflectance in response to leaf desiccation 

are consistent with previously reported observations for other conifers 
including Picea pungens (Hunt and Rock, 1989), Pinus patula (Mutanga 
and Ismail, 2010) and Pinus edulis (Stimson et al., 2005). There was little 
treatment variation in reflectance within the visible range during the 
experiment which was consistent with visual observations that showed, 
with a few exceptions, little overall treatment difference in foliage 
colour (Fig. 1c). 

Indices that accounted for variation in water content in the SWIR 
region were most strongly related to EWT and LWCF. Consistent with 
correlations using individual wavelengths, described above, the six 
strongest predictors of EWT used indices that included reflectance from 
wavelengths at either 1600 nm (GVMI, MSI, NDII) or 1640 and 1650 nm 
(NDWI1640, SIWSI, MSI2). The strongest predictors of LWCF used indices 
within this wavelength region (GVMI, MSI) but additionally included 
three indices with wavelengths from elsewhere in the SWIR/NIR region 
(Datt1, DDI, SRWI1). Floating band water index (fWBI) which uses 
reflectance from the NIR range (930–980 nm) was also a strong pre-
dictor of LWCF. These results are generally consistent with previous 
research that has shown foliage water content to be more strongly 
correlated to reflectance from wavelengths located in the SWIR than the 
NIR region (Tucker, 1980; Ceccato et al., 2002; Mutanga and Ismail, 
2010). These results also agree with Danson and Bowyer (2004) who 

Fig. 6. Correlation between EWT and the strongest predictors from the four categories of indices for data extracted from the 5th measurement set (n = 50) taken 108 
days after treatment. Shown are the strongest predictors from (a – c) water indices, (d) the photochemical index PRI, (e – f) structural indices and (g – i) chlorophyll 
indices. The observations are categorised by control (solid green circles) and drought (solid red circles) treatments. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

M.S. Watt et al.                                                                                                                                                                                                                                 



Forest Ecology and Management 502 (2021) 119707

9

found SWIR indices to be the best predictors of EWT while Water Index 
was a more precise predictor of the weight based index LWCD which is 
closely related to LWCF. Compared to SWIR based indices, Water Index is 
more sensitive to leaf dry weight (Danson and Bowyer, 2004) which may 
account for the slightly stronger relationships between fWBI and the 
weight-based metric LWCF. 

Photochemical Reflectance Index, which is a widely used index of 
plant photosynthetic activity, was moderately correlated to foliage 
water content during the last capture. Research has widely demon-
strated the utility of PRI for predicting light use efficiency (Garbulsky 
et al., 2011; Peñuelas et al., 2011) and key photosynthetic parameters 
under a range of stresses including limiting nutrition (Watt et al., 
2020a), cold winter temperatures (Wong and Gamon, 2015a,b; Gamon 
et al., 2016) and herbicide damage (Scholten et al., 2019). The rela-
tionship between PRI and photosynthetic capacity has a strong theo-
retical basis as PRI can track plant photosynthetic activity through its 
intimate link with the dissipation of excess energy by nonphotochemical 
quenching (NPQ) via the xanthophyll cycle (Gamon et al., 1997). As 
water availability is a key regulator of photosynthesis, moderate to 
strong negative correlations have been found between PRI and mid-day 
needle water potential for a range of forest species (Ripullone et al., 
2011). Our results are consistent with these findings and show that PRI is 

a useful determinant of long-term changes in foliage water content in 
radiata pine. Nevertheless, large effects due to photosynthetic pigments 
and leaf and vegetation structure on PRI require modelling methods to 
understand the direct links between stress and the photochemical index 
(Hernández-Clemente et al., 2019). 

Predictors that were proxies for chlorophyll or structure were less 
strongly related to both measurements of water stress than PRI or water 
stress indices based on NIR and SWIR bands. Variations in chlorophyll 
may be attributable to water stress but are also more broadly affected by 
nutrition, phenology, disease and radiation stress (Larcher, 2003). As a 
consequence, there is no direct link between foliage water content and 
chlorophyll (Ceccato et al., 2001). This has been corroborated by case 
studies describing seasonal changes in leaf water content and chloro-
phyll that show little correlation between the two variables for five 
different forest species, including Pinus sylvestris (Gond et al., 1999). 
Similarly, although the structural index NDVI was moderately corre-
lated with the two water stress indices, this index is an indirect proxy for 
water stress, typical of long-term sustained stress conditions. NDVI can 
be used to effectively discriminate between healthy and stressed foliage 
but the increases in reflectance within the red band that are character-
istic of stress and needle dieback, are mainly attributable to reductions 
in chlorophyll (Asner, 1998; Rullan-Silva et al., 2013). 

Fig. 7. Correlation between LWCF and the strongest predictors from the four categories of indices for data extracted from the 5th measurement set (n = 50) taken 
108 days after treatment. Shown are the strongest predictors from (a – c) water indices, (d) the photochemical index PRI, (e – f) structural indices and (g – i) 
chlorophyll indices. The observations are categorised by control (solid green circles) and drought (solid red circles) treatments. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

M.S. Watt et al.                                                                                                                                                                                                                                 



Forest Ecology and Management 502 (2021) 119707

10

Predictions of leaf water content made using the indices described 
here could be scaled up using hyperspectral imagery from unmanned 
aerial vehicles (UAV) and fixed wing aircraft if the effects of the canopy 
structure are accounted for using radiative transfer modelling methods. 
The recent development of many lightweight and affordable hyper-
spectral imagers that can be fitted to UAVs will facilitate data acquisition 
over smaller areas (Watt et al., 2019). Other studies have shown the use 
of compact multispectral images on board drones for forestry applica-
tions, including the detection of stress using photosynthetic pigments 
such as reductions in chlorophyll and carotenoids (Hernández-Clemente 
et al., 2012). Water stress across larger areas has been identified using 
hyperspectral cameras on board fixed wing aircraft (Colombo et al., 
2008; Hernandez-Clemente et al., 2014; Dotzler et al., 2015) and most of 
these systems can acquire data at sub-metre spatial resolutions when 
flown at 1,000 m above ground level (Watt et al., 2019). 

The use of satellite multispectral or hyperspectral imagery may also 
provide a useful means of scaling up predictions at a lower spatial res-
olution across broader spatial ranges. There are a number of operational 
and planned sensors on board satellites that can obtain imagery at 
spatial resolutions of ca. 30 m (Watt et al., 2019) with hyperspectral 
capabilities such as the PRISMA (Cogliati et al., 2021) and EnMAP 
(Guanter et al., 2015) satellite sensors. Water stress within forests has 
been robustly predicted at the landscape level using data derived from 
MODIS (Byer and Jin, 2017; Xulu et al., 2018) and Hyperion (White 
et al., 2007; Zhang et al., 2011). 

The processes associated with long-term forest decline are charac-
terised by reductions in photosynthetic and non-photosynthetic pig-
ments along with structural changes which in combination affect the 
indicators derived from multispectral and hyperspectral images (Zarco- 
Tejada et al., 2018). Previous modelling work, has used Sentinel-2 data 
to accurately estimate chlorophyll content and physical models to ac-
count for the forest architecture (Hernández-Clemente et al., 2019; 
Zarco-Tejada et al., 2019). Similarly, the successful retrieval of water 
content using sensitive spectral indices will require appropriate 
modelling methods that can account for such coupled physiological and 
structural changes induced by stress. 

One of the more promising indices identified in this study was Nor-
malised Difference Infrared Index (NDII), which was a strong predictor 
of foliage water content, and can be extracted from the multispectral 
imager on board Sentinel 2 (S2) at a spatial resolution of 20 m. The high 
revisit frequency of S2 makes it a useful platform for detecting water 
stress. Severe drought within Italian forests has been successfully iden-
tified using S2 indices derived from the 10 m VNIR bands (Puletti et al., 
2019). However, with this exception, multispectral imagery has been 
less widely used to detect water stress than other general stress condi-
tions in forests (Coops et al., 2006; Meiforth et al., 2020) or water stress 
within orchard crops (Coops et al., 2006; Zarco-Tejada et al., 2009; 
Suárez et al., 2010; Stagakis et al., 2012; Meiforth et al., 2020). As 
multispectral imagery is relatively inexpensive to acquire and process 
greater use of this imagery to detect water stress should be further 
explored. 

Further research should focus on detection of short-term water stress 
in radiata pine. In response to water stress, stomata partially or wholly 
close and this occurs relatively rapidly in radiata pine (Mitchell et al., 
2013; Mitchell et al., 2014). As a result of this stomatal closure, assim-
ilation rates are reduced (Mitchell et al., 2014) and the reduction in 
transpiration generates an increase in foliage temperature during the 
day due to reduced evaporative cooling (Raschke, 1960). Previous 
research has used thermal imagery to characterise drought induced in-
creases in leaf temperature in a range of tree species (Scherrer et al., 
2011; Zarco-Tejada et al., 2012) including Pinus sylvestris (Seidel et al., 

2016). Solar-induced chlorophyll fluorescence and PRI are two plant 
based traits that have often been used to robustly predict changes in 
photosynthetic activity resulting from a range of stresses, including 
drought stress (Ripullone et al., 2011; Zarco-Tejada et al., 2012; Watt 
et al., 2020b). However, changes in foliage temperature have been 
shown to be the most sensitive indicator of short to moderate term water 
stress (Zarco-Tejada et al., 2012) which highlights the potential of 
thermal imagery for detection of short term drought effects. 

5. Conclusion 

Under the conditions of this experiment, this study shows that water 
loss from droughted radiata pine progresses relatively slowly over the 
first three months but progresses more rapidly after this point. These 
long-term changes in EWT and LWCF were found to be strongly corre-
lated to a number of SWIR and NIR based indices. In contrast, routinely 
used indicators of photosynthetic activity, chlorophyll, foliage density 
and structure were less well correlated to the two water stress metrics. 
Further research should investigate the potential of hyperspectral and 
thermal imagery to detect short-term water stress indicators such as 
assimilation rate, stomatal conductance and needle temperature in 
radiata pine. 
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treatments. Shown are the mean (centre dots) and the 95% confidence interval (bars) for all measurements. The number of days after the start of the drought 
treatment (DAT) on the 29th January 2021 is shown at the top for all measurements. (For interpretation of the references to colour in this figure legend, the reader is 
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Fig. A1. Variation in (a) stomatal conductance and (b) assimilation rate over the duration of the experiment for the control (green bars) and drought (red bars) 
treatments. Shown are the mean (centre dots) and the 95% confidence interval (bars) for all measurements. The number of days after the start of the drought 
treatment (DAT) on the 29th January 2021 is shown at the top for all measurements. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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