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A B S T R A C T

Xylella fastidiosa (Xf) is a harmful plant pathogenic bacterium, able to infect over 500 plant species worldwide.
Successful eradication and containment strategies for harmful pathogens require large-scale monitoring tech-
niques for the detection of infected hosts, even when they do not display visual symptoms. Although a previous
study using airborne hyperspectral and thermal imagery has shown promising results for the early detection of
Xf-infected olive (Olea europaea) trees, further work is needed when adopting these techniques for large scale
monitoring using multispectral cameras on board airborne platforms and satellites. We used hyperspectral and
thermal imagery collected during a two-year airborne campaign in a Xf-infected area in southern Italy to assess
the performance of spectrally constrained machine-learning algorithms for this task. The algorithms were used to
assess multispectral bandsets, selected from the original hyperspectral imagery, that were compatible with large-
scale monitoring from unmanned platforms and manned aircraft. In addition, the contribution of solar–induced
chlorophyll fluorescence (SIF) and the temperature-based Crop Water Stress Index (CWSI) retrieved from hy-
perspectral and thermal imaging, respectively, were evaluated to quantify their relative importance in the al-
gorithms used to detect Xf infection. The detection performance using support vector machine algorithms de-
creased from ∼80% (kappa, κ = 0.42) when using the original full hyperspectral dataset including SIF and CWSI
to ∼74% (κ = 0.36) when the optimal set of six spectral bands most sensitive to Xf infection were used in
addition to the CWSI thermal indicator. When neither SIF nor CWSI were used, the detection yielded less than
70% accuracy (decreasing κ to very low performance, 0.29), revealing that tree temperature was more important
than chlorophyll fluorescence for the Xf detection. This work demonstrates that large-scale Xf monitoring can be
supported using airborne platforms carrying multispectral and thermal cameras with a limited number of
spectral bands (e.g., six to 12 bands with 10 nm bandwidths) as long as they are carefully selected by their
sensitivity to the Xf symptoms. More precisely, the blue (bands between 400 and 450 nm to derive the NPQI
index) and thermal (to derive CWSI from tree temperature) were the most critical spectral regions for their
sensitivity to Xf symptoms in olive.

1. Introduction

Almost 500 plant species are susceptible to the bacterial pathogen
Xylella fastidiosa (Xf), which causes major plant diseases and severe
damage (EFSA, 2018). Originally from the Americas (Purcell, 1997), Xf

is now a global threat given its discovery in Iran, Taiwan, and Europe in
2013 (Saponari et al., 2016), and very recently in Israel in 2019 (EPPO,
2019). In Italy, Xf subsp. pauca is the causal agent of olive quick decline
syndrome (OQDS), which has devastated ancient olive (Olea europaea)
trees as well as large commercial orchards, leading to severe economic
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and societal damage (Almeida, 2016). Outbreaks associated with dif-
ferent Xf strains have been detected in northern Italy, France, the Ba-
learic Islands, mainland Spain, and Portugal (EFSA, 2018; EPPO, 2019).
The current eradication and containment strategies for Xf require large-
scale monitoring tools for the early detection of infected plants
(Almeida, 2016), a task traditionally accomplished by visual field sur-
veys followed by laboratory analyses. To make this monitoring more
effective, efforts towards detecting the pre-visual stages of infection
using remote sensing are critical (Zarco-Tejada et al., 2018), as they
could be used to prevent infected but asymptomatic trees from con-
tributing to Xf epidemics (Saponari et al., 2016).

Recent work in the context of the Italian Xf outbreak utilized two
years of high-resolution hyperspectral and thermal imagery to evaluate
more than 7000 olive trees in the field, revealing that the pre-visual
detection of Xf-infected trees was feasible using radiative transfer
modeling and spectral plant-trait retrievals from imaging spectroscopy
and thermal data (Zarco-Tejada et al., 2018). This study showed that
the changes in specific plant functional traits detected using hyper-
spectral and thermal imagery revealed an Xf infection months before
symptoms were visible to the naked eye. In particular, (i) the NPQI
index (Barnes et al., 1992), calculated in the blue region (400–450 nm)
and hypothesized to be sensitive to the chlorophyll degradation into
phaeophytine (Peñuelas et al., 1995), (ii) the Crop Water Stress Index
(CWSI) calculated from top of the canopy tree crown temperature,
anthocyanins and carotenoid pigment content, and the (iii) solar in-
duced fluorescence, were the spectral plant trait indicators that con-
tributed the most in the detection of the Xf-induced infection symp-
toms. Moreover, the importance of the spectral indicators varied as a
function of the disease severity, showing that NPQI and CWSI were
critical in the separation between asymptomatic and symptomatic trees,
but their relative importance decreased once the disease reached more
advanced stages. Once the trees were symptomatic, fluorescence be-
came the most sensitive indicator to detect the severity of Xf symptoms.

In that study, the accuracy of detecting symptomatic trees exceeded
80% (kappa coefficient, κ = 0.61), as confirmed using field validation
data comprising visual evaluations and qPCR laboratory assessments.
Important inputs for the detection of Xf included spectral ratios in the
blue wavelengths, plant traits such as tree temperature, anthocyanin
and carotenoid pigment content estimated using a model inversion, and
estimates of solar-induced chlorophyll fluorescence. Given the difficulty
of visually tracking such early manifestations of infection, remote
sensing to detect early Xf infection was more accurate than a visual
inspection by plant pathologists. Advanced remote sensing methods
therefore proved useful for tackling the major challenges in plant dis-
ease detection based on the early identification of non-visual symptoms.
This early detection is expected to be critical for the eradication or
containment of devastating plant diseases, such as Xf worldwide.

Although hyperspectral cameras are becoming increasingly minia-
turized, with several reports of successful monitoring of physiological
traits achieved using micro- and nano-hyperspectral imaging tech-
nology onboard drones (Zarco-Tejada et al., 2012; Aasen et al., 2018),
the limitations of platform endurance and regulatory restrictions that
require line-of-sight flying prevent their operational use in large-scale
contexts. Most commercially available unmanned aerial systems (UAS)
can cover less than 100 ha when carrying hyperspectral imagers due to
the payload capacity and the requirements for carrying linear-array
imaging spectrometers on a solar plane, which in most cases reduces the
efficiency of the flights. Nevertheless, drones would allow the frequent
monitoring of smaller areas in a cost-efficient manner, which is essen-
tial when monitoring disease outbreaks.

In the particular case of hyperspectral imagery collected from in-
dividual orchard trees, a pixel size of 40–50 cm is required, further
reducing the flight efficiency (Aasen et al., 2018; Zarco-Tejada et al.,
2012). In the case of Xf, one of the areas under intense monitoring is in
Apulia, Italy, which currently extends 715,000 ha (Saponari et al.,
2018). Over such a large scale, monitoring projects with a clear

requirement for ensuring high spatial resolution acquisitions from both
hyperspectral and thermal imaging systems have the additional lim-
itation of producing a vast amount of data, generally requiring a long
processing time. For the case of both UAS and manned aircraft plat-
forms, existing multispectral cameras are more cost efficient and easier
to operate than most hyperspectral sensors, providing higher spatial
resolutions and a much faster processing turn-around. However, they
offer only a limited number of narrow spectral bands (typically between
five and 12 bands when two or more cameras are coupled in tandem).
Reducing the spectral information limits our ability to accurately de-
termine the canopy properties, as the vegetation spectrum is a complex
product shaped by plant traits including both crown features and leaf
components, which affect partly overlapping wavelength regions
(Ollinger, 2011, Kattenborn et al., 2018). Accordingly, the success of
both empirical approaches (e.g., machine learning) and process-based
approaches (e.g., the inversion of radiative transfer models) often
greatly depends on the spectral information available (Blackburn, 2006,
Homolova et al., 2013, Houborg et al., 2015). Plant traits describing
canopy structure and leaf biochemistry have been successfully retrieved
from hyperspectral data through the inversion of radiative transfer
models. This has been achieved using well-established models, such as
the PROSPECT leaf model (Jacquemoud and Baret, 1990) or the newer
version PROSPECT-D (Feret et al., 2017), coupled with homogeneous
approximations of canopies, such as SAIL (Verhoef, 1984) or, for more
complex canopy representations, 3-D simulations such as FLIGHT
(North, 1996) and DART (Gastellu-Etchegorry et al., 1996, 2004),
among others. Due to the complexity of the radiative transfer in plant
canopies and the corresponding complexity of physical models, the
actual retrieval of leaf and canopy parameters requires modeling stra-
tegies to avoid the ‘ill-posed’ problem, i.e., the risk that multiple para-
meter combinations lead to the same model outputs (Combal et al.,
2003; Darvishzadeh et al., 2008; Jacquemoud et al., 2009; Li and Wang,
2011). In all cases, the use of a high number of spectral bands is a
prerequisite for reducing the ill-posed problem and accurately char-
acterizing the leaf and canopy optical properties to determine the leaf
biochemistry and canopy structural traits.

When a limited number of spectral bands are available, as in
common five- or six-band commercial cameras, typical approaches for
vegetation characterization are based on spectral indices (as shown in
Berni et al., 2009; and Suárez et al., 2009). Given that the bands are set
to specific wavelengths, such indices enable the estimation of structural
vegetation traits, such as leaf area index (LAI) (e.g., through the cal-
culation of the normalized difference vegetation index, NDVI, and other
indices related to canopy structure), or leaf constituents, such as the
chlorophyll content (through the chlorophyll absorption reflectance
index, CARI, and the transformed chlorophyll absorption reflectance
index, TCARI family of indices and the red edge ratios). Although these
bandsets are very limited in terms of their spectral capacity for esti-
mating different photosynthetic pigments, several groups have de-
monstrated the successful assessment of stress in different crops using
unmanned systems (Berni et al., 2009; Suárez et al., 2009) and manned
aircraft (Sepulcre-Cantó et al., 2006). In fact, lower-cost cameras are
capable of detecting subtle spectral changes resulting from xanthophyll
pigment dynamics and chlorophyll content reductions, and were suc-
cessfully used in the first attempt to retrieve fluorescence emission data
from vegetation with 1-nm full-width half-maximum (FWHM) filters as
a proxy for stress (Zarco-Tejada et al., 2009). Due to the demonstrated
capabilities of these multispectral cameras for the retrieval of plant
traits, their use for the large-scale monitoring of harmful organisms is
plausible and opens several avenues for the operational assessment of
large areas using manned aircraft. Nevertheless, the expected reduction
in performance caused by the limited spectral information used and the
impact on the retrieval of plant-trait data required for the pre-visual
detection of harmful pathogens should be quantified before their use in
large-scale disease-monitoring applications.

Here, we assessed the potential of using multispectral bandsets in
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the context of unmanned and manned remote sensing for large-scale
monitoring of Xf infection. We used a two-year hyperspectral dataset
acquired from a Xf-infected area in southern Italy in 2016 and 2017 as a
benchmark. Field measurements of physiological traits and leaf re-
flectance were evaluated to assess the consistency of the spectral
changes observed across leaf and canopy scales as a function of the
different levels of the disease severity (DS) induced by Xf. The specific
bands, spectral indices, and contributions of the thermal and solar-in-
duced chlorophyll fluorescence traits were also evaluated in the ma-
chine-learning models.

2. Material and methods

2.1. Study area and field data collection

The study area was located within the Xylella fastidiosa (Xf)-infected
zone in Apulia, southern Italy (Fig. 1a). Field and airborne data were
collected as part of an international research collaboration funded by
the POnTE and XF-ACTORS projects (details of the datasets used can be
found in Zarco-Tejada et al., 2018). A total of 15 olive (Olea europaea)
orchards in the Xf-infected area were selected, and the DS of 3324 trees
was evaluated in June 2016, with a further 3972 trees evaluated in July
2017. The evaluations consisted of a visual inspection of every tree by a
team of plant pathologists, who scored their DS levels on a 0–4 scale
based on the percentage of the crown showing disease symptoms; 0 was
assigned to asymptomatic trees, and 4 to trees with a high number of
dead branches. The olive orchards studied contained old trees
(> 50 years) most of them of local cultivars such as Cellina di Nardò
and Ogliarola Salentina. In 2016, 1,438 asymptomatic trees (DS = 0)
were identified, and 1886 symptomatic trees were also included in the
study (762, DS = 1; 802, DS = 2; 250, DS = 3; and 72, DS = 4). In
2017, a total of 2607 asymptomatic (DS = 0) and 1365 symptomatic
trees (686, DS = 1; 542, DS = 2; 122, DS = 3; and 15, DS = 4) were
evaluated.

Leaf physiological indicators were measured in trees with a range of
DS levels, using both asymptomatic (non-symptomatic; NS) and symp-
tomatic (S) leaves on each sampled tree. This approach was aimed at
capturing the large heterogeneity in visual symptoms observed within
each symptomatic tree. The chlorophyll content, anthocyanin content
index, and epidermal flavonol content of each leaf were measured using
a leaf clip Dualex Scientific + handheld instrument (Force-A, Orsay,
France). The physiological measurements were carried out on 1001 NS

leaves from trees for each DS level (NSDS=0 = 36, NSDS=1 = 211,
NSDS=2 = 251, NSDS=3 = 426, and NSDS=4 = 77) and 987 S leaves
(SDS=1 = 187, SDS=2 = 287, SDS=3 = 447, SDS=4 = 66). Leaf chlor-
ophyll fluorescence (Ft) was measured in the field using a FluorPen
FP1000 (Photon Systems Instruments, Brno, Czech Republic) using
2677 leaves (1369 NS and 1308 S leaves) comprising 76, 281, 352, 577,
and 83 samples of NSDS=0, NSDS=1, NSDS=2, NSDS=3, and NSDS=4, re-
spectively, and 274, 402, 554, and 78 leaves from S1, S2, S3, and S4
symptomatic trees, respectively.

Leaf reflectance spectra in the visible and near-infrared regions were
measured using a PolyPen RP400 handheld spectrometer (Photon
Systems Instruments) to derive spectral indices related to the leaf
photosynthetic pigments. A total of 1543 leaf-level measurements were
carried out, comprising 782 measurements for asymptomatic NS and
761 for symptomatic S leaves. Among the NS leaves, a total of 65, 82,
200, 383, and 52 measurements were carried out for trees rated as DS 0,
1, 2, 3, and 4, respectively. For the symptomatic S leaves of trees rated
as DS 1, 2, 3, and 4, a total of 80, 252, 356, and 73 leaf spectral
measurements were made, respectively. The main rationale for carrying
out leaf spectral measurements was to evaluate the consistency of the
spectral effects detected across the leaf and canopy levels, in particular
to assess whether the spectral changes observed in the hyperspectral
images were driven by leaf processes.

2.2. Airborne campaigns using hyperspectral and thermal cameras

A VNIR linear-array hyperspectral imager (Headwall Photonics,
Fitchburg, MA, USA) and a thermal camera (SC655c; FLIR Systems,
Wilsonville, OR, USA) were mounted on a manned aircraft to overfly
three areas totaling 1200 ha in the Xf-infected zone in Apulia, southern
Italy (Fig. 1b) on June 28, 2016, and July 5, 2017.

The sensors were flown on a solar plane at 500 m above ground
level, yielding a 40-cm and 60-cm pixel resolution for the hyperspectral
(Fig. 2a) and thermal (Fig. 2b) images, respectively. The hyperspectral
scanner acquired images using an 8-mm focal-length lens and an in-
stantaneous field of view (IFOV) of 0.93 mrad, yielding an angular FOV
of 50°. The sensor was operated at 50 frames per second (fps) with an
18-ms integration time, collecting data in the 400–885-nm spectral
region, with 260 bands at 1.85 nm/pixel and 12 bits. Using a 25-μm slit,
the sensor delivered imagery with a bandwidth of 6.4 nm FWHM. The
hyperspectral data were radiometrically calibrated in an optics la-
boratory using a CSTM-USS-2000C integrating sphere (LabSphere,

Fig. 1. The Xylella fastidiosa-infected zone in Apulia, southern Italy.
Source: 2018 SANTE GIS, updated 04 June 2018 (a), and the three study areas overflown with hyperspectral and thermal cameras as part of this study (b).
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North Sutton, NH, USA), which allowed the digital values to be con-
verted into radiance levels for use later in the atmospheric correction of
the imagery. Atmospheric correction was carried out using the Simple
Model of Atmospheric Radiative Transfer of Sunshine (SMARTS) model
(Gueymard, 1995, 2001), using an aerosol optical depth (AOD) mea-
sured with a Micro-Tops II sunphotometer (Solar LIGHT Co., Philadel-
phia, PA, USA). This approach has been used before with multispectral
(Berni et al., 2009) and hyperspectral data (Calderón et al., 2013; 2015;
Zarco-Tejada et al., 2012) to obtain the surface reflectance for the
quantitative assessment of vegetation stress (Zarco-Tejada et al., 2018).
Image orthorectification was carried out using Parametric Geocoding &
Orthorectification for Airborne Optical Scanner Data (PARGE; ReSe
Applications Schläpfer, Wil, Switzerland) with inputs from an inertial
measuring unit (IG500 model; SBG Systems, Carrières-sur-Seine,
France) attached to and synchronized with the hyperspectral sensor.

The FLIR SC655c thermal camera flown over the study sites covered
a 7.5–14.0-μm spectral range and was operated using a 24.6-mm f/1.0
lens. Soil temperature from different locations were measured for vi-
carious calibrations (as described by Calderón et al., 2013). Image
segmentation methods were applied to the hyperspectral and thermal
images to identify individual tree crowns using an automatic object-
based image analysis (as described by Zarco-Tejada et al., 2018). Ni-
black’s thresholding method (Niblack, 1986) and Sauvola’s binarization
techniques (Sauvola and Pietikäinen, 2000) were used to separate the
tree crowns from the background, removing soil effects at the border of
the tree crowns and within-crown shadows. These algorithms were used
to extract the mean tree-crown temperature (Fig. 3) from the thermal
imagery and the mean radiance and reflectance spectra (Fig. 4) from
the hyperspectral imagery. This method ensures that the spectra are
extracted from pure vegetation pixels, reducing the effects due to
background and areas not covered by vegetation. The high spatial re-
solution imagery used was critical to avoid pixels of mixed scene
components for this particular case of heterogeneous orchards with
direct soil and background exposure.

The average tree-crown temperature was used to calculate the CWSI
(Jackson et al., 1981), since Xf infection reduces transpiration (Zarco-
Tejada et al., 2018). The average tree-crown radiance and reflectance
spectra, described in 260 spectral bands at 6.5 nm FWHM, were used to
invert the radiative transfer models and calculate the narrow-band
hyperspectral indices (NBHIs) related to leaf biochemistry and canopy
structure. Every tree evaluated in the field was thereby identified and
automatically delineated in the images (Fig. 4abc), and their radiances
and reflectance spectra were extracted (Fig. 4d). The irradiance

measured in the field at the time of the flights enabled the calculation of
the solar-induced chlorophyll fluorescence using the Fraunhofer line-
depth (FLD) method (Plascyk and Gabriel, 1975). Hyperspectral in-
dices, CWSI, and SIF were calculated from each mean spectrum and tree
temperature extracted for the individual tree crowns evaluated in the
field.

2.3. Modeling methods

To assess the remote detection of Xf symptoms from spectrally re-
duced datasets, seven sources of data (SoD) were considered: the ori-
ginal hyperspectral data used to estimate plant traits using model in-
version (SoD 1), the calculated narrow-band hyperspectral indices,
NBHIs (SoD 2), and the SIF calculated using the FLD method (SoD 3).
Additionally, convoluted data from the original hyperspectral data were
used to simulate multispectral bandsets of 10 nm FWHM (SoD 4) and to
calculate the multispectral indices (MI) (SoD 5) and broadband indices
typically acquired from color-infrared (CIR) and red-greenblue (RGB)
cameras (SoD 6). Finally, thermal images were used to calculate CWSI
(SoD 7).

The SoD 1 bandset was built from the mean narrow-band hyper-
spectral reflectance spectrum extracted from each individual tree crown
to estimate the leaf biochemical constituents and canopy structural
parameters, including the chlorophyll content, carotenoid content, an-
thocyanin content, mesophyll structure, LAI, and the average leaf angle
using a model inversion (Zarco-Tejada et al., 2018; used here as
benchmark dataset). The inversion method was based on the linked
PROSPECT-D (Feret et al., 2017) and 4SAIL (Verhoef et al., 2007)
models (see Supplementary Table 2 from Zarco-Tejada et al., 2018 for
the set of fixed and varied parameters, and their range of variation).
The SoD 2 bandset comprised the calculated NBHIs selected from the
literature based on plant-trait functional groups related to chlorophyll,
carotene, and xanthophyll pigments for their potential link with phy-
siological effects caused by the Xf infection of the olive trees, as dis-
cussed by Zarco-Tejada et al. (2018). The SoD 3 bandset comprised the
SIF values calculated from the original radiance spectra using the FLD
method. The SoD 4 bandset involved convolution of the original hy-
perspectral data extracted from the images for each individual tree to
simulate 10-nm FWHM bandsets at the spectral resolution normally
used in remote sensing cameras on board unmanned and manned air-
craft systems (Jhan et al., 2016). SoD 5 was built using the convoluted
data from SoD 4 to calculate the entire set of multispectral indices. The
SoD 6 bandset used the original hyperspectral bands to simulate the CIR

Fig. 2. Example hyperspectral mosaic acquired over a study site affected by Xylella fastidiosa using 260 spectral bands in the 400–885-nm wavelength bands, yielding
a 40-cm pixel resolution (a). Thermal mosaic acquired in the 7.5–14-μm spectral region at a 60-cm resolution (b).
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and RGB broadband bandsets typically acquired from airborne plat-
forms. The blue, green, red, and near-infrared bands were convoluted at
wavelengths 450, 550, 670, and 800 nm with FWHMs of 50, 100, 100,
and 50 nm, respectively (Deng et al., 2018). Finally, SoD 7 consisted of
the CWSI calculated by normalizing the average tree-crown tempera-
ture with the air temperature and vapor pressure deficit registered at
the flight time, according to the methodology proposed by Idso et al.
(1981).

Based on previous datasets, a pool of four sets of inputs (SoI) was
derived to be used by the machine-learning modeling: SoI 1, used here
as a benchmark, included pigment-, structural-, fluorescence-, and tree
temperature-based plant functional traits (PSFTs). These parameters
were obtained from the plant traits estimated using a radiative transfer
model inversion from the main dataset (SoD 1), NBHI (SoD 2), CWSI
(SoD 3), and SIF (SoD 7). This pool of traits and indices was the most
accurate for detecting Xf-infected trees (Zarco-Tejada et al., 2018), and
therefore all other models tested in this study were compared against
this as a benchmark. Secondly, SoI 2 used information from the SoD 4
dataset, and assessed the contribution of each spectral band and spec-
tral region in the detection of Xf-induced symptoms. SoI 3 used multi-
spectral indices from dataset SoD 5, which allowed the assessment of
the indices most sensitive for the detection of Xf-induced symptoms that
could be potentially measured using compact multispectral cameras.
Finally, SoI 4 used broad bands, such as blue, green, red, and near-
infrared, from the SoD 6 dataset.

As a first step, several machine-learning models were built to assess

the performance of classifying asymptomatic vs. symptomatic trees
using the benchmark set of inputs (SoD 1). Based on the result of this
classification, the model and configuration with the best performance
were selected and implemented in the next modeling steps. For the
pooled sets of inputs (SoI 2 and SoI 3), the input variables were sorted
using a variance inflation factor (VIF) analysis, in which the VIF
threshold was varied until the resulting dataset contained the least
number of variables. The models using the pools of inputs (SoI 2, SoI 3,
and SoI 4) were then built, and the improvement in the model perfor-
mance in the detection of the affected trees achieved by adding SIF and
CWSI data was also evaluated. Finally, an analysis of the receiving
operating characteristics was performed for each model to analyze the
contribution of the parameters to each model.

A total of six groups of machine-learning algorithms were built
(MATLAB; Statistics and Machine Learning toolbox and Deep Learning
toolbox; Mathworks Inc., Matick, MA, USA), which classified asymp-
tomatic vs. symptomatic trees using the benchmark set of inputs. The
groups of machine-learning algorithms were: discriminant analysis
(McLachlan, 2004), decision trees (Breslow and Aha, 1997), K-nearest
neighbors (KNN) (Peterson, 2009), ensemble classifiers (Galar et al.,
2011), artificial neural networks (ANN) (Dreiseitl and Ohno-Machado,
2002), and support vector machines (SVM) (Hsu et al., 2003).

For all the models, 300 iterations were executed, splitting the da-
taset into 80% of values for use in training and 20% for use in testing.
For the training process, the training data were balanced with the aim
of achieving 50% asymptomatic and 50% symptomatic cases. K-fold

Fig. 3. Example of a 60-cm-resolution thermal image (a) and the corresponding automated tree segmentation using object-based crown detection algorithms (b).
Details of the VHR thermal imagery and crown identification are shown in (c) and (d), respectively.
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(10-fold) cross-validation was used in the training process to avoid
overfitting, and the root mean square error was used to assess the
performance of each iteration. For the discriminant analysis models,
both linear and quadratic fitting functions were used to estimate the
parameters for a Gaussian distribution that better described each class
(symptomatic vs. asymptomatic).

Decision-tree algorithms were trained considering a maximum of
four, 20, and 100 splits, and in all cases Gini’s diversity index, towing
rule, and cross-entropy were used as split criteria. Several KNN models
were built combining different distance estimators (Euclidean, cosine,
and cubic Monkowski) and different numbers of neighbors to be found
(one, 10, and 100), while adding various weight functions to the va-
luing process. In the case of the ensemble classifiers, different machine-
learning algorithms were integrated. First, decision trees using a max-
imum of 20 splits were enhanced using the Adaboost and RUSBoost
boosting functions (using 30 cycles for each algorithm). Second, boot-
strap aggregating trees, based on random forest trees (Breiman, 2001),
were ‘bagged’ into different decision trees and combined into an in-
tegrated classifier. Finally, subspace discriminant and subspace KNN
models were used, in which the data were randomly divided into sub-
spaces, after which each subspace was modeled using a 10-nearest
neighbor analysis or a quadratic discriminant analysis, respectively.

The ANN models were built using a double-layer feedforward arti-
ficial neural network. The input layer included the hyperspectral and
thermal inputs connected using a hidden layer of five and 10 sigmoid-
based function neurons, with the asymptomatic and symptomatic
classes as outputs. To train the artificial neural network models, 13
different training algorithms were assessed by dividing the training
dataset into 80% of values for modeling and 20% for validation. For the
most accurate ANN obtained, the remaining 20% of the dataset was
used for testing. Finally, several SVM algorithms were also built using

linear, quadratic, cubic, and Gaussian (radial basis function) kernels for
modeling. A heuristic procedure was used to select the best kernel scale
(number of subsamples) to divide all the predictor parameters.

3. Results and discussion

The leaf fluorescence measurements consistently showed higher Ft
values for asymptomatic NS leaves than for symptomatic S leaves, re-
gardless of the disease severity DS level of the tree as a whole (Fig. 5).
NS leaves from symptomatic trees (DS > 0) showed Ft values ap-
proximately twice those observed in the S leaves (p-value < 0.001),
confirming that chlorophyll fluorescence measured at the leaf level was
sufficient for separating disease levels even at early infection stages
(such as DS = 1).

The leaf reflectance spectra of Xf-infected trees with different DS
levels (Fig. 6a) differed consistently in the blue region, particularly in
the 400- and 450-nm wavelengths, with the reflectance of the NS leaves
increasing with the DS level (Fig. 6b). Leaf reflectance did not vary
consistently as a function of the DS level for the green, red, and near-
infrared regions, however. Reflectance in the green region was the
lowest for asymptomatic (NS) leaves, as expected, but did not show
consistent variation at the intermediate DS levels (Fig. 6c).

As a result, the indices calculated from the leaf spectra from both
the S and NS leaves for each DS level (Fig. 7) showed generally con-
sistent trends for green indices such as the photochemical reflectance
index (PRI) (Gamon, Penuelas and Field, 1992), and red edge indices
such as VOG2 (Vogelmann et al, 1993), chlorophyll index, CI (Zarco-
Tejada et al., 2001), and TCARI (Haboudane et al., 2002). The analysis
revealed that indices such as PRI, VOG2, and CI displayed different
trends for NS and S leaves. With the exception of trees with a DS score
of 4, the trends for the NS leaves were consistent, showing a uniform

Fig. 4. Example of the 40-cm-resolution hyperspectral imagery acquired using 260 spectral bands (a). Very-high-resolution hyperspectral images (b) were used for
the automated tree-crown segmentation using an object-based crown detection algorithm (c) to extract the pure crown reflectance from each individual tree (d).
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decrease (PRI and VOG2) or increase (CI) as the DS level increased.
Indices calculated from the leaf reflectance data correlated reason-

ably well with the chlorophyll a+ b (Cab) and anthocyanins (Anth)
measurements from the same trees (Fig. 8), with r2 = 0.53 (p < 0.001)
for VOG2 vs. Cab (Fig. 8a) and r2 = 0.39 (p < 0.001) for CTR1 vs. Anth
(Fig. 8b).

The crown-level reflectance of the Xf-affected trees (Fig. 9) followed
the DS levels. This was particularly true for the blue spectral region
(Fig. 9a), in which the asymptomatic trees showed a lower reflectance
than the trees with early or advanced disease symptoms. This result was
consistent with the reflectance spectra measured at the leaf level
(Fig. 6b). In the remaining spectral range (above 500 nm), the sig-
natures in the green (Fig. 9b) and red regions (Fig. 9c) showed more
mixed patterns. The tree crowns with greater DS levels reflected more
near-infrared light (Fig. 9d).

The PRIn (Fig. 10a), PRI × CI (Fig. 10b), normalized phaeophyti-
nization index (NPQI) (Fig. 10c), and the fluorescence curvature index
(CUR) (Fig. 10d) indices calculated from the hyperspectral images
showed trends that enabled the separation of asymptomatic and
symptomatic Xf-infected trees (a selection of indices are shown in
Fig. 10). Of particular relevance were the differences observed between
the asymptomatic trees (DS = 0) and those at the early stages of in-
fection (DS = 1), for which these indices showed statistically significant
differences (P < 0.001).

Using PROSAIL, model inversions of the pure vegetation pixels ex-
tracted from the hyperspectral images were found to fit the different DS
levels (Fig. 11). These inversions were used to retrieve the leaf para-
meters Cab, carotenoids (Car), and Anth; the structural parameters LAI
and the leaf inclinations distribution function (LIDF); and to quantify
the fluorescence using a 3D model FluorFLIGHT (Hernández-Clemente
et al., 2017; see Zarco-Tejada et al., 2018 for the full description of the
inversion methods used). These estimated plant traits, along with the
spectral indices, CWSI, SIF, and the single spectral reflectance bands,
enabled the assessment of the machine-learning methods using a re-
duced number of bands and spectral indices. This approach allowed us
to assess the impact of the thermal indicators (CWSI) and fluorescence
(SIF) for the large-scale remote sensing monitoring of Xf infection.

Support vector machines using a fine Gaussian (radial basis) func-
tion were able to most accurately distinguish between asymptomatic
and Xf-symptomatic trees, and had the smallest standard deviation
among all iterations (s.d. = 0.1). In the case of the decision trees, the

most accurate algorithm (73%; κ = 0.23) was the tree with the lowest
number of splits. Subdividing the datasets randomly did not have a
relevant impact on the decision trees. In addition, when RUSBoost trees
were used, the accuracy only increased by 0.5%. As boosting functions
tend to improve the classification when unbalanced data are used

Fig. 5. Fluorescence (Ft) of asymptomatic (NS) and symptomatic (S) leaves
sampled from trees with different disease severity levels (0–4). Error bars re-
present the standard error. NS and S values were statistically significantly dif-
ferent at all severities (p < 0.001).

Fig. 6. Leaf reflectance measurements obtained from asymptomatic (DS = 0)
and from Xf-symptomatic trees (DS > 0) showing the visible and near-infrared
(400–800 nm) (a), blue (b), and green spectral regions (c). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. Reflectance indices calculated from asymptomatic (NS) and symptomatic (S) leaves sampled from trees with various levels of disease severity (DS 0–4). (a)
PRI. (b) VOG2. (c) CI. (d) TCARI. The error bars represent the standard error. NS and S values were statistically significantly different (p < 0.001) for all severities
except at DS = 4 for (b), (c) and (d).

Fig. 8. Relationship between the VOG2 and CTR1 indices calculated from the leaf reflectance in the Xf-symptomatic leaves and the chlorophyll (a) and anthocyanin
(b) contents.
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(Galar et al., 2011), the limited improvement observed in this study
could be explained by the fact that the training data contained equal
numbers of asymptomatic and symptomatic cases. When comparing the
accuracy of the ANN models, the variation differed by only 0.2% on
average between the training algorithms using five or 10 nodes in-
tegrating the hidden layer, with the training algorithm with five hidden
nodes presenting the highest accuracy. The SVM using the finest
Gaussian function (with a kernel scale of 0.56) was the most accurate
algorithm (with an overall accuracy (OA) of ∼80% and κ = 0.42), and
was therefore selected to model the asymptomatic vs. Xf-symptomatic
classes using the convoluted bandsets and the pool of indices as inputs.

The SVM models with 300 iterations using information from the CIR
and RGB bandsets had accuracies ranging from 63.0% to 66.7%, with κ
values of 0.17 and 0.25, respectively. The highest accuracy was reached
when RGB values were combined with CWSI and SIF in the model
(Table 1). The RGB bandset reached higher levels of accuracy in all
combinations when compared with the NGR bandset. In both cases, the
inclusion of either CWSI or SIF improved the accuracy of the prediction
by around 2–3%. The effect of including both SIF and CWSI was higher
than adding them independently, yielding increments of 5% OA. These
results indicate that, when acquiring imagery with RGB or CIR cameras,
the overall accuracy for detecting Xf-infected trees decreased from 80%
and κ = 0.42 when using all plant traits, NBHIs, CWSI, and SIF (Zarco-
Tejada et al., 2018) to 63% and a very poor κ = 0.17 when using CIR
alone and 67% and κ = 0.25 when using the RGB data alone. The
combination of both thermal (CWSI) and fluorescence (SIF) traits

increased the accuracy to over 70% and κ = 0.3 when an RGB camera
was used.

The 35 spectral bands generated by convoluting the spectra were
sorted based on their collinearity using a VIF analysis, then included
one by one in the models. The VIF analysis organized the bands from
the least collinear ones (containing the most unique information) to
those with the highest collinearity (most redundant). The order of the
accuracy achieved using the function of the included bands resulting
from the VIF analysis is shown in Fig. 12. The results obtained as a
benchmark (PSFT) and those obtained using the CIR camera are shown
as a reference.

When CWSI and SIF were not included in the model, at least 10
bands had to be included to reach an OA of 70%. A model built using
only the first two significant bands resulting from the VIF analysis
showed the lowest accuracy (OA = 62% and κ = 0.16), even lower
than the model using only the CIR bandset as an input (OA = 63% and
κ = 0.17). For the first six bands, the addition of individual bands into
the model resulted in a proportional increase in accuracy; however, this
increase was not observed when the seventh spectral band was added.
The addition of SIF and CWSI together increased the accuracy of any
otherwise pure band model. Moreover, the combination of bands and
CWSI was found to be critical: the greatest effect was reached when
CWSI was included as an input, yielding the highest accuracy
(OA ∼ 74% and κ = 0.36) when included either alone or in combina-
tion with SIF. The same approach used for the NBHIs as inputs in the
SVM algorithms was taken with 11 indices selected based on the VIF

Fig. 9. Mean canopy reflectance of asymptomatic and Xf-infected trees extracted from the airborne hyperspectral images, showing the spectral differences in the blue
(a), green (b), red (c), and near-infrared (d) regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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analysis, after which CWSI and SIF were again included to assess the
performance of the models. The most representative indices (least col-
linear) emerging from the VIF analysis were VOG2, TCARI/OSAVI,
NPQI, DCabCxc, CRI700M, modified PRI (PRIM1), PRIM4, PRIn, PRI × CI,
blue-fluorescence index (BF1), and CUR.

Models that used only spectral indices showed a lower accuracy
compared with the models that also included SIF and CWSI information
(Fig. 13). The SVM using only the first two indices had an accuracy of
55%, which was the lowest accuracy in this study obtained using SVM
modeling. Contrary to the results obtained in the analysis using the

bands as inputs, the ‘plateau’ in accuracy was reached in the model
built using the first nine VIF-selected indices. After that, the accuracy
increase obtained by including the CWSI and SIF information was only
1%. This result suggests that, when including the ninth least collinear
index, extra information such as CWSI and SIF did not impact the
asymptomatic vs. Xf-symptomatic classification.

Using a receiving operating characteristics (ROC) analysis, the re-
lative contribution of each input to the detection of Xf infection was
quantified for each set of inputs as follows: (i) spectral bands, con-
sidering the 10 most representative bands (Fig. 14a); (ii) multispectral

Fig. 10. Mean values for the canopy-level indices PRIn (a), PRI × CI (b), NPQI (c), and CUR (d) extracted from the airborne imagery from trees evaluated as having
disease severity levels ranging from 0 to 4. The error bars represent the standard error.

Fig. 11. Reflectance spectra of individual tree crowns extracted from the hyperspectral imagery for different Xf disease severity levels (asymptomatic, moderate,
advanced) and the corresponding fitted spectra derived from the inversion of PROSAIL.
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indices, considering the 10 most representative indices (Fig. 14b); (iii)
plant traits estimated using the model inversion (Fig. 14c); and (iv) the
PSFT model used as a benchmark (Fig. 14d). These inputs were eval-
uated and ranked based on their importance in each model. The most
relevant spectral bands that could be used to distinguish the asympto-
matic and Xf-symptomatic trees were the 400-nm and 423-nm bands
(blue region), representing over 0.65 of the importance. This result is
consistent with the index NPQI being one of the most sensitive indices
for the detection of Xf infection shown in Zarco-Tejada et al. (2018). By
contrast, the lowest level of importance was obtained for bands beyond
735 nm (near-infrared region) that were included in the model, with an
importance below 0.5. Regarding the indices (Fig. 14b), the ones with
high impacts on the accuracy of the SVM models were NPQI, PRI × CI,
and PRIn. Finally, CWSI had a higher impact than SIF on all models
tested, which was consistent with the results shown previously

(Fig. 12).
These results demonstrate that large-scale monitoring of infected

areas using cost-efficient multispectral cameras built with user-select-
able bands on board manned and unmanned aerial platforms is feasible.
Nevertheless, careful selection of the spectral bands is critical, and it
should be based on the sensitivity of specific spectral regions to the Xf-
induced symptoms (as shown in Fig. 14). Standard RGB and CIR cam-
eras would yield very low performance, as demonstrated in this study
by very low kappa coefficients (Table 1). The best camera configuration
for the Xf detection, defined by six to 12 narrow spectral bands in ad-
dition to the thermal region, makes difficult to scale up these methods
to current satellite sensors. The three main reasons rely on (i) the spatial
resolution required to target pure tree crowns in heterogeneous orch-
ards (i.e. usually requiring submeter resolution, ideally under 60 cm
pixel size); (ii) the need for spectral bands located in specific regions as

Table 1
Overall accuracy (OA; %) and kappa coefficient (κ) obtained when classifying symptomatic vs. asymptomatic trees using the near-infrared (NIR), green (G), and red
(R) bands (CIR bandset), and the red (R), green (G), and blue (B) bands (RGB bandset) when combined with the Crop Water Stress Index (CWSI) and solar-induced
fluorescence (SIF) traits. The SVM algorithm was used to classify the asymptomatic and Xf-symptomatic trees.

Inputs Inputs (OA %) Inputs + CWSI (OA %) Inputs + SIF (OA %) Inputs + CWSI + SIF (OA %)

CIR 63.0 ± 1 (κ = 0.17) 65.0 ± 1 (κ = 0.23) 66.0 ± 1 (κ = 0.23) 68.4 ± 1.1 (κ = 0.3)
RGB 66.7 ± 1.3 (κ = 0.25) 68.7 ± 1.1 (κ = 0.25) 68.0 ± 0.9 (κ = 0.28) 71.2 ± 0.9 (κ = 0.3)

R = 670 nm (full-width half-maximum, FWHM = 100 nm); G = 550 nm (FWHM = 100 nm); B = 450 nm (FWHM = 50 nm); NIR = 800 nm (FWHM = 50 nm).

Fig. 12. Overall accuracy (OA; %) reached when
classifying asymptomatic vs. Xf-symptomatic trees
using 35 narrow spectral bands sorted based on a
variance inflation factor (VIF) analysis as inputs,
either alone or combined with solar-induced fluor-
escence (SIF) and crop water stress indicator (CWSI)
scores. The representative VIF-based bands selection
was: 400, 669, 760, 714, 423, 535, 479, 736, 602,
769, 445, 412, 691, 434, 781, 512, 725, 457, 557,
747, 702, 468, 501, 624, 490, 524, 568, 546, 646,
579, 680, 591, 658, 613, and 635 nm.

Fig. 13. Overall accuracy obtained when classifying
symptomatic vs. asymptomatic trees using 11
narrow-band hyperspectral indices as inputs, sorted
based on a variance inflation factor (VIF) analysis,
and combined with SIF and CWSI. The re-
presentative VIF-based index selection sorting was
as follows: VOG2, TCARI/OSAVI, NPQI, DCabCxc,
CRI700M, PRIM1, PRIM4, PRIn, PRI × CI, BF1, and
CUR.
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shown in this study, particularly the blue region; and (iii) the need for
high-resolution thermal images to derive tree temperature and thermal
indicators such as CWSI from pure vegetation pixels. These three as-
pects are critical when attempting to detect early symptoms of the
disease, the most important stage to successfully eradicate and to pre-
vent the spread of Xf to other areas (Almeida, 2016).

When the objective is to detect the damage caused by the disease
over large areas, structural symptoms such as tree crown defoliation
and identification of dead trees become more straight forward through
standard remote sensing indices such NDVI. In such case, scalability of
these methods has been proved successful using Sentinel-2 imagery
(Hornero et al., 2020), demonstrating that the temporal variation of the
Atmospherically Resistant Vegetation Index (ARVI) and the Optimized

Soil-Adjusted Vegetation Index (OSAVI) tracked the temporal increase
in disease severity and incidence. Nevertheless, due to the lower spatial
resolution (10, 20 and 60 m for the case of Sentinel-2) the use of phy-
sical models was required to understand the large effects caused by the
seasonal variation of the understory in this type of orchards. Although
the temporal domain is critical to understand the spread of the disease,
monitoring Xf over permanent crops does not impose heavy require-
ments regarding the revisit times needed. In fact, it has been reported
that plants infected with Xf take 10–12 months to develop visible
symptoms (Almeida, 2016; Saponari et al., 2016). Thus, in such context
of permanent crops, the spectral and spatial characteristics become
more critical than the temporal domain when aiming at its early de-
tection.

The work presented here relied on a multi-year database collected
over one Xf infected region in Southern Italy. Although results were
robust due to the large number of trees evaluated over two years
(Zarco-Tejada et al., 2018), additional data are needed to assess the
applicability of these results to other olive regions affected by Xf, but
more importantly to evaluate the validity of the algorithms to other
species affected by Xf. From the physiological point of view, it is ex-
pected that the spectral plant traits sensitive to the Xf in olive will differ
in other species. Future work will evaluate the relative importance of
the spectral plant traits identified in olive for the case of almond trees
and other species already infected in Europe. In addition, methods to
successfully differentiate biotic from abiotic stress will be needed for
the operational detection of Xf and other harmful diseases worldwide.

4. Conclusions

The use of leaf measurements and canopy-level spectra has con-
sistently demonstrated that blue reflectance is highly affected by Xf-
induced stress, particularly between the wavelengths of 400 and
450 nm. At the leaf level, spectra measured from symptomatic and
asymptomatic leaves sampled from Xf-infected trees showed trends in
their blue reflectance consistent with the DS level of the tree itself.
These results demonstrated the importance of assessing the within-
crown heterogeneity in trees infected by Xf, as the leaves sampled from
infected trees showed a large spectral gradient as a function of severity.
In such contexts, very high spatial resolution is crucial for the pre-visual
detection of Xf-induced plant diseases.

The best results obtained for the detection of Xf infection using
hyperspectral imagery and plant-trait retrievals through the physical
model inversion (PSFT) decreased from ∼80% (when using the full
hyperspectral dataset, used here as benchmark) to ∼67% and ∼63%
overall accuracies (and kappa, κ below 0.25) when only the RGB and
CIR spectral bands, respectively, were simulated as inputs in a machine
learning SVM Gaussian model. When 10-nm FWHM spectral bandsets
simulating commercial multispectral cameras were used in the ana-
lyses, the use of six bands without thermal data resulted in an accuracy
lower than 70%, whereas when information from the six bands was
coupled with the thermal data, the model was predicted to yield up to a
∼74% OA (κ = 0.36). If thermal information was already included, the
increase in performance was marginal when adding SIF. This high-
lighted the importance of coupling the thermal region with the multi-
spectral information for the most accurate detection of Xf infection.
Among the spectral indices assessed, those related to pigment de-
gradation in the blue region (NPQI, bands 415 and 435 nm), the car-
otenoid and xanthophyll pigment indices DCabCxc (bands 672, 550 and
708 nm), CRI700M (bands 515 and 700 nm), PRIM1 (bands 512 and
531 nm), PRIM4 (bands 531, 570 and 670 nm), PRIn (bands 531, 570,
670, 700 and 800 nm), PRI × CI (bands 531, 570, 700 and 760 nm),
and chlorophyll indices VOG2 (bands 715, 726, 734 and 747 nm),
TCARI/OSAVI (bands 550, 670, 700 and 800 nm) coupled with thermal
(CWSI) resulted in the highest accuracy (∼73%), which was not in-
creased when more indices were added. Results showed in this study
demonstrate that multispectral and thermal cameras can be used for

Fig. 14. ROC analysis (training dataset, TR 80% 2016 + 2017; testing dataset,
TS 20% 2016 + 2017) from the pool of spectral bands (a), multispectral indices
(MI) (b), RT-inverted plant traits (c), and pigment-, structural-, fluorescence-,
and tree temperature-based plant functional traits (PSFTs) (d) for the identifi-
cation of asymptomatic vs. Xf-symptomatic trees using airborne hyperspectral
imagery.
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large-scale monitoring of Xylella fastidiosa infected areas as long as the
bandsets are carefully selected based on the sensitivity of the spectral
bands to the physiological changes occurring to infected vegetation.
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