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A B S T R A C T   

Wheat (Triticum spp.) is crucial to food security. Grain protein content (GPC) is key to its nutritional and eco
nomic value and is controlled by genetic and agronomic factors, soil properties and weather. GPC prediction 
from remote sensing could reduce nitrogen (N) losses, help management decisions, and improve profit. However, 
GPC prediction is complex because multiple plant traits influence GPC and their effects change through the 
growing season. Traits with known physiological links to GPC, which can be retrieved from imaging spectros
copy, include leaf area index (LAI), chlorophyll (Ca+b), and stress indicators. Further inspection of these and 
other traits retrieved from satellite data can advance research relevant to precision agriculture. Sentinel-2 (S2) 
timeseries (TS) were acquired for 6,355 ha of commercial dryland bread (T. aestivum) and durum (T. durum) 
wheat fields in south-east Australia through two consecutive years with dissimilar rainfall. Wheat growers 
provided ~ 92,000 GPC data points from harvester-mounted protein monitors. For each, Ca+b, leaf dry matter, 
leaf water content (Cw) and LAI were retrieved from the S2 images by radiative transfer model inversion. A 
gradient boosted machine learning algorithm was applied to analyse these traits’ importance to GPC and to 
predict GPC in 30% of samples unseen by the algorithm in training. The strongest relationships between pre
dicted and observed GPC (R2 = 0.86, RMSE = 0.56 %), in a model built from five S2 images across a season, were 
better than those from single-date hyperspectral (HS). In severe water stress, LAI was the main predictor of GPC 
early in the season, but this switched to Cw later. Trait importance was more evenly distributed in milder 
conditions. S2 TS had a clear accuracy advantage over single-date S2 and HS, especially in benign conditions, 
emphasising the potential of S2 TS for large-scale GPC monitoring.   

1. Introduction 

Wheat (Triticum spp.) supplies around 20% of humans’ carbohydrate 
(CHO) and protein intake (FAO, 2022). Grain protein content (GPC; %) 
dictates the price paid to growers and is influenced by the amount of 
nitrogen (N) in the canopy at anthesis (Zadoks stage Z65; Giuliani et al., 
2011; Masoni et al., 2007; Zadoks et al., 1974), and the N accessible for 
uptake during grain filling (Gooding et al., 2007). However, total 
photosynthesis after Z65 controls protein dilution by new assimilates, a 
long-recognised inverse yield ~ GPC relationship (McNeal et al., 1978). 
Fertiliser N is a major cost and risky investment for grain growers 
(Monjardino et al., 2015), and entails a heavy environmental footprint 
(Galloway et al., 2017). The global urea price increased by > 400 % in 

two years to April 2022, (Baffes and Koh, 2022); relief is unlikely as 
fossil fuels are deeply embedded in fertiliser supply. Timely GPC esti
mates could improve farmer access to price premiums (Apan et al., 2006; 
Skerritt et al., 2002), guide N applications aimed at increasing protein 
and improve farm environmental and economic sustainability. 

Leaf area index (LAI) and chlorophyll (Ca+b) content strongly influ
ence assimilation (Wolanin et al., 2019), hence protein dilution, while 
above-ground N correlates with both Ca+b (Evans, 1989) and GPC (Feng 
et al., 2014; Xue et al., 2007; Zhao et al., 2005). Ca+b/N concentration 
and LAI affect both the total protein available for translocation 
(Masclaux-Daubresse et al., 2010) and, via photosynthetic capacity, the 
CHO source size. Despite these relationships, Ca+b/N may be only 
moderately correlated with GPC (Longmire et al., 2022; Zhao et al., 
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2005) because other factors, especially water, nutrient and temperature 
stress, also affect N/CHO sources and sinks, the rate and duration of 
post-anthesis photosynthesis and the fate of assimilates during grain 
filling (Asseng et al., 2002; Masclaux-Daubresse et al., 2010). These 
dynamics complicate GPC estimation relative to that of its contributory 
variables and yield, as seen in lower estimation accuracies (e.g. Rodri
gues et al., 2018; Wright et al., 2004; Zhao et al., 2005). 

Radiative transfer models (RTM) elucidate mechanistic relationships 
between leaf and canopy traits and light interactions (Jacquemoud et al., 
1995; Jacquemoud and Baret, 1990). Because they are robust to non- 
linearity in these relationships and account for factors including leaf 
optical properties, soil reflectance and sun position, RTMs are transfer
able across crop types, phenology and agronomic situations (Clevers and 
Kooistra, 2012; Dorigo et al., 2007; Jacquemoud et al., 1995). Through 
inversion, they allow accurate estimation of plant traits relevant to GPC 
(Bacour et al., 2002; Féret et al., 2008; Jacquemoud et al., 2009, 1995; Li 
et al., 2015), where structural and physiological traits can be retrieved 
concurrently (Poblete et al., 2020; Zarco-Tejada et al., 2018). Recent 
studies have retrieved leaf Ca+b, canopy Ca+b content (CCC; Clevers 
et al., 2017; Houlès et al., 2007) and LAI from Sentinel-2 (S2) data by 
RTM inversion (Delloye et al., 2018; Pan et al., 2019; Upreti et al., 2019; 
Wolanin et al., 2020), but the work of Longmire et al. (2022) appears to 
remain unique in using RTM inversions to estimate GPC. 

The multispectral instruments (MSI) aboard the S2 satellites offer 
cost-free images optimised for observing vegetation, with 13 bands at a 
ground resolution of 10–20 m in the visible, red edge (RE) and near- 
infrared domains (Drusch et al., 2012). The strong RE focus of the 
MSI, where it records three bands, is optimised for Ca+b, N content and 
LAI estimation (Frampton et al., 2013; Herrmann et al., 2011). A five- 
day revisit time facilitates timeseries (TS) observations. Hunt et al. 
(2019) obtained a substantial improvement in wheat yield estimation on 

adding a second S2 TS image, diminishing returns for further images but 
better performance closer to harvest, as Wolanin and colleagues (2020) 
saw. Similarly, Wang et al. (2014) reported poor correlation between 
early-season broadband vegetation indices (VI) and wheat GPC; re
lationships improved as the season progressed and stacked TS images 
were best. Cumulative VIs have also improved yield but not GPC esti
mates (Xue et al., 2007). 

Longmire et al. (2022) demonstrated that stress-sensitive hyper
spectral (HS) plant traits anthocyanins (Anth), Ca+b, and carotenoids 
(Cx+c), the Photochemical Reflectance Indices PRI (Gamon et al. 1992), 
PRIm3 and PRIm4 (Hernández-Clemente et al., 2011) and solar-induced 
fluorescence (SIF) are associated with GPC. In water-stressed crops, 
the thermal crop water stress index (CWSI; Idso, 1982) also showed a 
strong, positive association with GPC. While the use of S2 data precludes 
retrieval of stress-related HS and thermal traits, it offers potentially 
major advantages for GPC estimation at yet larger scales and through TS. 

The use of machine- and deep-learning algorithms with RS data is 
widespread in agriculture, including for disease detection and moni
toring (e.g. Adam et al., 2017; Poblete et al., 2020; Zarco-Tejada et al., 
2018), weed recognition (Gao et al., 2018), crop- and land use classifi
cation (Abdi, 2020; Ji et al., 2018), primary productivity and yield (e.g. 
Cheng et al., 2022; Gómez et al., 2021; Hunt et al., 2019; Wolanin et al., 
2020, 2019), and GPC estimation (Longmire et al., 2022; Tan et al., 
2020; Zhou et al., 2021). Zhou et al. (2021) obtained their best GPC 
predictions with a random forest (RF) and found machine learning (ML) 
superior to traditional statistical methods. Gradient boosting machines 
(GBM) are a supervised ML algorithm based on the work of Friedman 
(2002, 2001) and developed by Chen and Guestrin (2016). The GBM has 
seen relatively little use in agriculture (van Klompenburg et al., 2020), 
but performed as well as other algorithms in estimating LAI and CCC in 
wheat (Upreti et al., 2019). The tree-based GBM algorithm is able to 

Fig. 1. Zone 1 (Kaniva; a) and zone 2 (Manangatang; b) commercial wheat fields considered in this study. Subfigure a: Sentinel-2, 2020–09–10 (R = band 8, G =
band 4, B = band 3); b; 2019–09–11 (R = band 4, G = band 3, B = band 2). 
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assess the relative contribution, termed importance or gain, of input 
features to target variable estimation (Abdi, 2020; Hunt et al., 2019). 
This greatly improves the algorithms’ interpretability, which is crucial 
to current research into the dynamic and interacting plant traits influ
encing GPC. 

Some studies estimating wheat GPC from satellites have had mod
erate success. Wright et al. (2004) found the green NDVI (Gitelson and 
Merzlyak, 1998) best for GPC (airborne R2 = 0.53, satellite R2 = 0.48). 
Liu et al. (2005) combined synthetic aperture radar with the structure 
insensitive pigment index (SIPI; Peñuelas et al., 1995), from Landsat 
data, with R2 = 0.56. Also from Landsat, Zhao et al. (2005) reported 
relationships between VIgreen (Gitelson et al., 2002) and GPC (R2 =

0.46), while Feng et al. (2014) estimated GPC at field level in com
mercial wheat, combining MODIS satellite NDVI from two growth stages 
and obtaining R2 = 0.567–0.632 and rRMSE = 0.141–0.144. From S2 
data, Zhao et al. (2019) retrieved several plant N indicators with good 
fidelity, but these predicted GPC with lower skill (R2 = 0.428–0.467); 
like others (Wang et al., 2014; Zhao et al., 2005, 2019), this study re
ported that growth stages ≥ Z65 offered the best estimations. 

A large majority of studies estimating GPC from spectroscopy have 
used plot experiments (e.g. Raya-Sereno et al., 2021; Walsh et al., 2023; 
Wang et al., 2004; Zhao et al., 2005, 2019), and to date these appear 
largely to have used VIs, with no reference to RTM inversions. This 
research gap demands attention, particularly given the lack of consis
tency among VIs (Raya-Sereno et al., 2021). Moreover, few studies look 
at GPC variability within commercial fields; while Rodrigues et al. 
(2018) and Stoy et al. (2022) do so, considering natural soil variability, 
only Longmire et al. (2022) sample multiple fields. Finally, the additive 
combination of information from TS images is rare in the canon, has had 
limited success and, due to reliance on VIs, is likely poorly transferable 
between agronomic situations (Feng et al., 2014; Rodrigues et al., 2018; 
Xue et al., 2007). 

To advance precision agriculture, there is a need to improve GPC 
prediction within fields but across large extents. The current research 
addresses the gaps identified above by combining satellite TS and RTM 
inversion to predict GPC within many commercial wheat fields, across 
regions with very different climatic and soil characteristics, diverse 
seasons and both bread- and durum cultivars. Leveraging the GBM’s 
flexibility, interpretability and predictive skill, plant trait importances to 
GPC estimation and model performance are compared between S2 and 
airborne HS/thermal RS. The effects of bandset reduction and the 
facultative inclusion of airborne CWSI and/or SIF to S2 traits are tested. 
In the temporal dimension, trait importance dynamics and skill are 
comprehensively assessed through seasons, first with TS elements as 
separate models, then additively stacking them within site-years to form 
single predictive models. 

2. Materials and methods 

2.1. Study sites 

This study considers 6355 Ha of rainfed commercial hard white 
bread (cv. Scepter, Vixen, Catapult) and durum (cv. Aurora, Bitalli) 
wheat crops grown in two areas of the southern Australian wheat belt. 
Both varieties were sown in late May and mid-June in 2019 and 2020 
around Kaniva (zone 1; Fig. 1a), while bread wheat only was sown in 

similar periods around Manangatang (zone 2; Fig. 1b). Hereafter, the 
cropping zones are designated cz1 and cz2, with the year appended, e.g., 
cz1-19. Commercial cropping soils and fields in cz1 are described in 
Longmire et al. (2022); cz2 soils, Calcarosols in the Australian Soil 
Classification (Isbell, 2002), vary greatly across tens to hundreds of 
metres in clay fraction, subsoil constraints including B and Al, calcrete, 
and hardpans. These influence plant-available water (PAW) and N 
availability, root growth and harvest outcomes (Nuttall et al., 2003; 
Sadras et al., 2002). Climate, including Köppen-Geiger classification 
(Peel et al., 2007), and location details are provided in Table 1. Fertiliser 
was applied 1–3 times each season in each field, according to grower 
assessment of conditions, usually as urea, but data relating to these 
applications were not consistently available. 

2.2. Data collection 

Harvester-mounted NIR spectrometers (CropScan 3000/3300H, 
Next Instruments, Sydney, Australia) collected GPC during harvesting, 
with geolocation (±0.01 m) by real-time kinetic GPS. These devices use 
near infrared (NIR) spectroscopy (720–1100 nm) to estimate GPC for ~ 
400 ml grain samples temporarily removed from the combine’s clean 
grain elevator. These devices assess GPC with accuracy sufficient to meet 
legal requirements for weights and measures in the United States and 
Australia (Clancy and Heiken, n.d.). Readings are taken every 8–10 s, 
representing GSD ≈ 10–25 m parallel to harvester travel and, perpen
dicularly, equivalent to the swath width (12 m). Over cz1 only, HS and 
thermal data were collected by sensors on a light aircraft at ~ 2000 m 
above ground level (AGL) on 2019–10-22 and 2020–10-28. This gave 
pixels of 1.0 m (HS) and 1.7 m (thermal) ground sampling distance 
(GSD). HS data were collected with a VNIR E-Series model (Headwall 
Photonics, Fitchburg, MA, USA), capturing 371 bands from 400 to 1000 
nm at 8 nm per pixel, yielding 5.8 nm FWHM with a 25 µm slit. At 12-bit 
radiometric resolution, the storage rate was 50 frames per second with 
an exposure time of 18 ms and an 8 mm focal length. The hyperspectral 
imager was calibrated using an integrating sphere (Labsphere 
XTH2000C, Labsphere Inc., North Sutton, NH, USA), deriving co
efficients at four illumination levels. Thermal images were collected 
from 7.5 to 14 µm with an A655c camera (Teledyne FLIR LLC, Wilson
ville, OR, USA), a scientific-grade instrument radiometrically calibrated 
by the manufacturer. A further indirect calibration was carried out 
during flights using ground observations from a handheld infrared 
thermometer (LaserSight from Optris GmbH, Berlin, Germany), after 
Calderón et al. (2015). Atmospheric correction of radiance was applied 
with the Simple Model of Atmospheric Radiative Transfer of Sunshine 
(SMARTS) model (Gueymard, 1995) using aerosol optical depth (AOD) 
observed at the time of flight (Micro-Tops II sunphotometer, Solar 
LIGHT Co., Philadelphia, PA, USA), as done before (Calderón et al., 
2015; Poblete et al., 2020; Zarco-Tejada et al., 2018). Orthorectification 
was performed using Parametric Geocoding and Orthorectification for 
Airborne Optical Scanner Data (PARGE; ReSe applications GmbH, Wil, 
Switzerland) using an inertial measurement unit and GPS data from a 
VN-300 (VectorNav Technologies LLC, Dallas, TX, USA). As for S2 data, 
Level 1C orthorectified top-of-atmosphere reflectance (Richter et al., 
2011) rasters for tiles 54HWE (cz1), 54HXG and 54HYG (cz2) were 
downloaded from the Copernicus Open Access Hub and atmospherically 
corrected to surface reflectance with Sen2Cor v. 2.3.1. Bands of GSD =

Table 1 
Location, rainfall, climate and crop areas for Kaniva (Zone 1) and Manangatang (Zone 2) in 2019–20. AAR/GSR = long term average annual / growing season 
(Apr–Oct) rainfall; rain = annual total (mm).  

Zone Lat. Lon. Alt. (m) AAR Clim. zone Year Rain GSR Area (Ha) 

1 − 36.37◦ 141.24◦ 142 449 Cfb 2019 288 238 662 
2020 444 291 858 

2 − 35.05◦ 142.88◦ 55 316 Bsk 2019 194 135 2341 
2020 342 277 2494  
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20 m were resampled to 10 m prior to stacking as a multiband raster. All 
images between 1 July and 31 October in each season were assessed; 23, 
in which all subject fields were cloud free (Table 2), were retained. 

2.3. Data extraction and processing 

Potentially erroneous GPC points were discarded: those with unre
alistic GPC values, within 20 m of trees, dams, fences and headlands, or 

Table 2 
Cloud-free Sentinel-2 images available in zones 1 and 2 in 2019 and 2020 with associated growing degree days after sowing (GDDAS; ◦C day) and Zadoks (Z) stage/ 
name. Entries in bold are those compared against airborne hyperspectral analyses.   

Image Bread Durum 

Zone Year Date GDDAS Z stage Z name GDDAS Z stage Z name 

1 2019 18-Jul 481 15 seedling 684 16 seedling 
23-Jul 537 15 739 17 
17-Aug 770 17 972 31 stem elong. 
11-Sep 1008 32 stem elong. 1211 37 
1-Oct 1237 43 booting 1439 52 ear emerg. 
21-Oct 1508 69 anthesis 1710 74 grain fill 

2020 17-Jul 452 14 seedling 560 15 seedling 
1-Aug 581 15 689 17 
26-Aug 803 31 stem elong. 910 31 stem elong. 
10-Sep 979 32 1087 33 
10-Oct 1375 51 ear emerg. 1483 67 anthesis 

2 2019 17-Jul 904 17 seedling    
28-Jul 1028 31 stem elong.    
12-Aug 1169 31    
17-Aug 1220 32    
27-Aug 1325 32    
1-Oct 1778 54 ear emerg.    

2020 17-Jul 719 17 seedling    
27-Jul 803 17    
26-Aug 1099 32 stem elong.    
31-Aug 1161 32    
10-Sep 1307 34    
15-Sep 1385 42 booting     

Fig. 2. Schematic summary of data handling and machine learning processes.  
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in harvester turn/slow travel zones. A Wilcoxon test (Bauer, 1972) was 
applied across a) sites within year/wheat type combinations and b) 
wheat types within site/year combinations to test for differences in 
median GPC. S2 spectra were extracted to the GPC points, then 
compatible vegetation indices (VIs; Supplementary Table 1) were 
calculated – and inverted parameters retrieved (see Section 2.4) – for 
each point. Airborne narrow-band HS indices and inverted parameters, 
against which multispectral satellite results are compared, are detailed 
in Longmire et al. (2022); for these, CWSI and SIF (Supplementary 
Table 1), mean pixel values were calculated per 100 m2 regions of in
terest (ROI). Each ROI had as its centroid a GPC point record, giving 
geolocation and GSD equivalent to the GPC data and quasi-equivalent to 
S2 data. SIF was calculated by the Fraunhofer line depth (FLD2) method 
(Plascyk and Gabriel, 1975). Data-handling processes are summarised in 
Fig. 2. 

2.4. Radiative transfer model inversion 

Leaf properties Ca+b, Cm and Cw were retrieved with PROSPECT-D 

(Féret et al., 2017), while LAI was modelled with 4SAILH (Verhoef 
et al., 2007), coupled as PRO4SAIL. Simulated spectra were generated 
by randomly sampling the full range of model parameters, from uniform 
distributions in appropriate ranges for wheat (Table 3; Camino et al., 
2018; Li et al., 2015). The hybrid PRO4SAIL inversions, after Xu et al. 
(2019), used look-up tables (LUT) of 200,000 simulations, shown suf
ficient previously (Longmire et al., 2022; Poblete et al., 2021; Xu et al., 
2019; Zarco-Tejada et al., 2018). The LUTs were interrogated with 
support vector machine (SVM) ML algorithms to retrieve each trait 
independently, using as input the simulated reflectance spectra, 
convolved to the S2 spectral specifications and the target traits as out
puts; such hybrid methods effectively address the ill-posed problem 
(Verrelst et al., 2015). The SVM models were built in MATLAB (MAT
LAB; Statistics and Machine Learning toolbox and Deep Learning 
toolbox; Mathworks Inc., Natick, MA, USA) and trained using a radial 
basis function and SVM hyperparameters optimised during training for 
each variable. With these trained SVM models, plant traits were inverted 
from observed reflectance at each GPC point or ROI in each site/image 
combination, varying solar zenith angle for the changing dates. 

2.5. Variance inflation factor analysis 

Multicollinearity between potential model input features crop traits 
was inspected by variance inflation factor analysis (VIF; R package fsmb; 
(Nakazawa, 2022)). Like other recent work, this study used VIF 
thresholds (t) of 5–10 (Akinwande et al., 2015; Magney et al., 2016; 
Poblete et al., 2021; Zarco-Tejada et al., 2018). VIF was repeated, with 
forced inclusion of inverted parameters, for each permutation of site, 
year and product. None of the 38 VIs calculated was kept at t = 5; those 
kept at t = 10 were added stepwise to ML models, to assess their con
tributions to skill. VIs that survived the VIF analysis were: Global 
Environment Monitoring Index (GEMI; Pinty and Verstraete, 1992), 
Maccioni Index (Macc; Maccioni et al., 2001), MERIS Terrestrial Chlo
rophyll Index (MTCI; Dash and Curran, 2004), Transformed Chlorophyll 
Absorption in Reflectance Index / Optimized Soil Adjusted VI (TCARI/ 

Table 3 
Values and ranges of leaf and canopy traits used for PRO4SAIL (PROSPECT-D +
4SAIL) radiative transfer model inversion and look-up table generation.  

Parameter Abbreviation Unit Value/range 

Anthocyanins Anth μg/cm2 1–10 
Carotenoids Cx+c 1–20 
Chlorophyll a + b Ca+b 3–70 
Dry matter Cm g/cm2 0.001–0.035 
Hot spot parameter h – 0.01 
Leaf area index LAI m2/ m2 1–5 
Leaf Inclination Dist. Func. LIDFa 

◦ 0–90 
Mesophyll struct. Coef. N – 0.5–3.0 
Observer angle tto 

◦ 0 
Relative azimuth angle ψ 0 
Solar zenith angle tts varied with date 
Water content Cw g/cm2 0.001–0.035  

Fig. 3. Spatial variability in grain protein content (GPC; %) in wheat fields in zones 1 (a) and 2 (b) on Sentinel-2 images (R = band 4, G = band 3, B = band 2).  
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OSAVI; Haboudane et al., 2002) and TCARI1610 (Herrmann et al., 2010). 
Each of these improved GPC estimation by R2 ≤ 0.03 over inverted traits 
only, so all were discarded. Airborne SIF was linearly independent so it 
was included where available. Features were also VIF tested along TS 
and between features within dates. Minor collinearity between inverted 
traits from close image dates (e.g. < 14 days apart) was disregarded in 
order to assess feature importance evolution. 

2.6. Application of machine learning algorithm to estimate GPC 

The study used a GBM to estimate relationships of inverted leaf and 
canopy traits – input features – with the target variable GPC, focusing on 
the features’ relative importance. Feature importance is a unitless 
quantity in the range 0–1, expressing the relative gain contributed by 
each model input feature to estimation of the target variable. In each 
GBM run, data were randomly split 70%:30% into training and test sets 
(Hunt et al., 2019; Wu et al., 2021). Stochastic gradient descent (SGD) 
reduces the likelihood of overfitting by training models on random 
subsets of observations, introducing randomness (Friedman, 2002); 
here, models were trained on either 65% or 85% of rows, but all columns 
were included in every run. Randomised K-fold cross-validation (K = 5) 
provided further protection against overfitting. In addition to SGD, 
learning rate, tree depth and minimum node size were varied, with full 
factorial hyperparameter searching. The GBM was tuned at each run by 
finding the hyperparameter combination that minimised root mean 
square error (RMSE) of prediction (GPC %). These procedures mirror 
previous work (Longmire et al., 2022). 

The ML algorithm was first run for each site/year/product combi
nation, using as inputs the plant traits from the S2 image closest to the 

HS flight date, the last in the TS. To these features, airborne SIF was 
facultatively added. Each date was analysed in turn, whereby the input 
feature set contained only the four traits retrieved from the relevant 
image. Finally, TS were combined such that each permutation of 
inverted parameter and image date was taken as an individual input 
feature, disregarding minor collinearity between inverted parameters in 
the temporal dimension. To facilitate comparison across years, sites and 
crop types, growing degree days after sowing (GDDAS) were calculated 
after Asseng et al. (2010), based on daily temperatures and precipitation 
specific to each location, drawn from the SILO dataset (Jeffrey et al., 
2001). Given the large potential for differences in phenological advance 
between locations and cultivars, and the need to compare these directly, 
APSIM Next Generation (Holzworth et al., 2018) was used to model 
phenology in Zadoks stages. For APSIM, met data were from SILO, 
sowing date was the mean of fields in each year/location, and cultivars 
were those most planted (cz1 bread, cv. Scepter; cz1 durum, cv. Aurora; 
cz2-19, cv. Scepter; cz2-20, cv. Kord). 

3. Results 

3.1. Fields, GPC, retrieved parameters 

Growing conditions differed strongly between years at both loca
tions: both total and growing season rainfall were extremely low in 2019 
while 2020 was above average (Table 1). A Wilcoxon test (Bauer, 1972) 
showed significant differences in GPC between all zone/year/product 
combinations; effect sizes were small to moderate (not shown). Large 
GPC differences were seen within and between paddocks, often over 
short distances (Fig. 3). 

Fig. 4. Spatial variability in Ca+b (μg/cm2; a), Cm (g/cm2; b), Cw (g/cm2; c) and LAI (m2/m2; d) retrieved by radiative transfer model inversion from S2 images of a 
bread wheat field, 2019. Plots arranged by Zadoks growth stage; n = 4897. 
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Plant traits for GPC points showed spatial heterogeneity and 
phenological progression for all site/year/product combinations. 
Example fields (cz1-19) are plotted to map traits over time for bread 
(Fig. 4) and to show progression with phenological advance, relation
ships between traits and density distributions within trait and stage 
combinations in durum (Fig. 5). 

3.2. Feature importance and model performance 

3.2.1. End-of-season Sentinel-2 images against hyperspectral images 
The following considers first ML models built with traits inverted 

from S2 images captured as temporally close as possible to airborne HS 
missions detailed in Longmire et al. (2022). In cz1 bread, Cw was 
dominant in the very dry conditions of 2019, while in 2020 importance 
was spread evenly in a tight range (0.26–0.27) between Ca+b, Cw and Cm. 
In each year, LAI was the least important (Fig. 6a). cz1-19 durum had 
even importance across feature types, with Cw most important and Ca+b 
marginally higher than Cm, and in 2020 durum, feature importance was 
shared very evenly (Fig. 6b). Airborne SIF was added to S2 inverted 
features in each wheat type and year. SIF had low importance in cz1-19 
bread and did not disturb the feature order relative to the base model, 
while in cz1-20 importance remained evenly distributed among Cm, Cw 
and Ca+b despite the inclusion of SIF (Fig. 6c). For cz1-19 durum, SIF was 
marginally more important than Cw but again feature order was other
wise unchanged compared to without SIF, while in cz1-20 durum SIF 
was most important and other features were approximately equal 
(Fig. 6d). In cz2–19 (bread wheat only), Ca+b was most important, with 
Cm and Cw intermediate and LAI lowest (not shown). In cz2-20, Cw took 
> 40% of importance over Ca+b, while Cm and Cw were the lowest. 

Relative feature importance was similar between S2 and HS. Across 
conditions and wheat types, the relative importance of S2 traits was 
parallel with that of HS features grouped by their type: Ca+b (S2) with HS 

pigment indicators Ca+b, Cx+c and PRI; Cm with the HS structural 
reflectance index EVI; Cw with CWSI and LAI (S2) with HS LAI and LIDFa 
(Fig. 6). 

Predictive skill for S2 ± SIF was highest in cz1-19 bread, as it was for 
HS ± CWSI previously (Longmire et al., 2022). Overall, S2 models were 
better predictors than HS models only in cz1-19 bread (Fig. 7a). Adding 
SIF to S2 traits made only a minor difference in that context but 
improved GPC estimation relatively more from a lower base in each 
other site/year/product combination (Fig. 7). 

3.2.2. Assessment with individual images in timeseries 
Analysis of individual S2 TS components showed that for cz1-19 

bread, feature importance was concentrated in LAI until around 
anthesis (Z60—Z69), when Cw became predominant; neither Cm nor 
Ca+b took importance at any time (Fig. 8). In the more benign 2020, in 
zone 1 durum wheat in both years and in zone 2 (not shown), feature 
importance was spread evenly at each stage, changing relatively little 
and without a discernible pattern through the season. 

Model predictive skill in cz1-19 bread wheat was high during Z15 but 
diminished from Z17 until after anthesis when the final image was 
captured (Fig. 9). All site/year/product combinations showed better 
predictive performance in early development than in the mid-season, 
usually with an increase late in the season. 

3.2.3. Stacked timeseries images 
Use of all retrieved parameters from all crop stages together revealed 

patterns consistent with analysis of individual images: high LAI impor
tance early in the cz1-19 bread wheat season, switching to Cw around 
anthesis, and a relatively even distribution of importance across traits 
and stages in other crops (Fig. 10). 

Predictive skill was compared between single image models and 
those incorporating all available trait/date combinations; the latter 
brought large improvements in all site/year/product combinations 
except cz1-19 bread (Table 4). 

4. Discussion 

4.1. Growing conditions and protein variability 

GPC is a complex variable under genetic, environmental and man
agement control (Zhao et al., 2019). While rainfall can be presumed 
invariant across fields within a region, and genetics within a field, soil 
properties vary widely within fields and have large effects on GPC in
dependent of GSR. PAW differences influence GPC via lowered CHO 
assimilation, hence dilution, especially during grain filling. However, 
grain count is influenced by earlier conditions, especially around 
anthesis, is a primary determinant of sink size for both proteins and 
photosynthate and hence is a strong driver of GPC. Further, excessive 
early vigour in rainfed crops can dry soil so much that later photosyn
thesis is restricted, a phenomenon known as ‘haying off’ in which grain 
ends with high protein because it fails to fill with CHO (van Herwaarden 
et al., 1998). 

Besides extreme dryness, cz1 saw other weather extremes during 
critical periods of 2019. From mid-September into early October, frosts 
(≈-4 ◦C) occurred at crucial stages (Z42—69; booting, ear emergence 
and anthesis) for the durum crop, while bread wheat fields were less 
affected due to their location higher in the landscape and less susceptible 
growth stages (Z33—51). Frost around anthesis severely reduces grain 
count, and durum is more susceptible to both frost and heat damage than 
bread wheat (Beres et al., 2020; McCallum et al., 2019). Immediately 
after these frosts, four days had maxima of 35–38 ◦C, imposing high 
respiratory loads (Heskel et al., 2016) and with potential to cause per
manent damage, reduce total N uptake (van Ittersum et al., 2003) and/ 
or simply exceed the optimum for photosynthesis (Asseng et al., 2011; 
Lobell and Gourdji, 2012). Heat stress can also severely alter phenology: 
At T > 34 ◦C, senescence is accelerated by a factor of three, and sixfold at 

Fig. 5. Plant traits Ca+b, Cm, Cw and LAI inverted from S2 images of a durum 
wheat field, 2019. Violin plots show distribution within Zadoks (Z) growth 
stage; white circle = mean, red cross = median; n = 782. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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T ≥ 36 ◦C, foreshortening grain filling (Asseng et al., 2011; Porter and 
Gawith, 1999). Moreover, droughted plants accumulate more heat. 
These effects reduce yield, especially if cumulative, and should therefore 
increase GPC (Asseng et al., 2011). Heat stress may therefore increase 
mean GPC but reduce its variability through a generalised reduction of 
assimilation. Lower assimilation during grain fill (cz1-19), associated 
with senescence, would also reduce variability in Ca+b, Cm, and SIF, 
diminishing these as GPC estimators, while likely enhancing the 
importance of moisture sufficiency measures, as we observed in both 
CWSI and Cw. These conditions likely affected both GPC and the diffi
culty of its prediction, differentially between bread and durum wheat. 

In cz2, where rainfall is lower and crops are grown on former 
dunefields, phenomena influencing PAW and N, including both osmotic 
and physical impediments to root growth, arise from the dune-swale 
morphology and can be severe (Nuttall et al., 2003; Sadras et al., 
2002). Though high-resolution soil data were unavailable, the influence 
of the cz2 dune-swale systems is seen in GPC (Fig. 3b); the dune effect on 
biomass can also be seen in the S2 RGB areas of this figure. In these 
areas, height within the dunes can be strongly discernible at harvest, 
including complete reversal of yield response between dune and swale 
between wet and dry years; mid-slope areas, which are relatively un
affected by soil variability, can occupy a high proportion of fields 

Fig. 6. Importance (proportion) of inverted traits to GPC (%) estimation in bread (a, c) and durum wheat (b, d) grown in zone 1, 2019–20. Brown background: S2 
inverted traits: Ca+b, Cm, Cw and LAI, ± SIF. Blue background: EVI, PRI, Anth, Ca+b, Cx+c, LAI and LIDFa inverted from airborne hyperspectral images. CWSI and SIF 
were also from airborne data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Armstrong et al., 2009; Hoffmann et al., 2016). The severe soil vari
ability, known yield response differences, and the proportion of fields 
affected, appear also to be reflected both in less definitive feature 
importance dynamics, and lower GPC estimation skill, as seen in cz2. 
This is supported by Rab et al. (2009): a large majority of the ~ 80 Ha 
they studied across four years in the same region showed great yield 
variability. 

4.2. Plant trait contributions to protein estimation 

To be important for GPC determination, a plant trait needs to vary 
across the crop in some physiological relationship with GPC. This bio
physical reality is seen in traits’ relative importance to GPC prediction 
across and between years. For single-image analyses of cz1 bread and 
durum wheat, and regarding both relative trait importance and pre
dictive skill, our results mirrored those from airborne HS data (Fig. 6, 
Fig. 7). As no VI was both linearly independent and a strong contributor 
to model skill, it is concluded that S2 data, with retrieval as shown, 
provide information adequate to estimate GPC. This accords with the 
findings of Wolanin and colleagues (2019) in estimating complex traits 
via RTM inversion and ML. While it contrasts with work based on HS 
imaging (Longmire et al. 2022), where several narrow-band indices 
complemented inverted parameters, it is as expected for data of lower 
spectral and spatial resolution. In lieu of CWSI, excluded as collinear, Cw 
assumed high importance in the very dry conditions of cz1-19 (Fig. 5a, 
c), suggesting that PROSAIL Cw retrieval can replace thermal observa
tions. Under dry conditions, Cw apparently retains more variability and 

predictive power than other traits, especially Ca+b and Cm, whose low 
importance can be understood as complementarity but also highlights 
their low variability in such conditions. Physiologically, this is reason
able because they were established earlier in the season when water and 
nutrients were not limiting. Ca+b, Cm, and LAI contribute to the pools of 
both N and CHO available for translocation, a process impeded by water 
stress. Hence low water stress should increase these factors’ influence on 
GPC, while conversely under high stress it is less than that of the ongoing 
photosynthetic rate. Ca+b and Cm importances are low throughout cz1- 
19 and vary least through all crops and seasons. 

In contrast to VIs and CWSI, and despite its close links to Ca+b and Cw, 
SIF was linearly independent of all inverted parameters and where 
available was included in models. This independence, and the substan
tial extra skill it conferred to our predictions, are important findings in 
themselves. SIF proxies instantaneous photosynthesis, improving esti
mates of other complex physiological quantities (Camino et al., 2019); it 
follows that, as a measure of assimilation and hence protein dilution, it 
improves GPC estimation. Substantial improvements seen with SIF in
clusion, especially where base model accuracy was low (Fig. 7), suggest 
that TS SIF could substantially improve GPC prediction, though perhaps 
with a strong role limited to grain filling and to benign moisture con
ditions. Indeed, like those of Ca+b and Cm, SIF contribution was minor in 
very dry conditions, as found by others (Cai et al., 2019; Sloat et al., 
2021). Further, the relatively minor skill improvement on adding SIF in 
2019 durum may relate to weather damage not picked up in the SIF 
signal but crucial to GPC. In mild conditions, the combined relationships 
of Ca+b, Cm and SIF with GPC were insufficient to offset the strong Cw ~ 

Fig. 7. Mean skill in GPC prediction of models comprising S2 traits Ca+b, Cm, Cw and LAI, ± airborne SIF and models comprising airborne EVI, PRI, Anth, Ca+b, Cx+c, 
LAI, LIDFa and SIF, ± CWSI from commercial bread and durum wheat fields in zone 1, 2019–20. 
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stomatal conductance ~ photosynthesis ~ GPC dynamic in drought. LAI 
had low importance in single-image S2 analyses, as it and other struc
tural components did in our HS models. 

Structure played a far greater role in TS analyses because it encom
passes the early part of seasons. For example, when TS images were 
considered separately for cz1-19 bread, LAI took 60–80% of total 
importance at each stage up to Z65, whereafter the emphasis switched to 
Cw (Fig. 8a). When all dates were pooled, Z15 LAI took > 40% of 
importance, and Cw at anthesis took > 30% (Fig. 10a). This sudden 

change was seen only under drought, but a gradual switch from LAI to 
Cw was seen in cz1-19 durum also, despite a likely reduced crop water 
demand after frosting and noise from weather damage. In other situa
tions, the distribution of importance between dates and traits was quite 
seen whether image dates were separate or pooled, but always included 
substantial contributions from LAI. This, and the decline of LAI from a 
mid-season peak when all date/feature combinations were pooled, 
shows the high sensitivity of GPC to above-ground biomass, as a source 
of both proteins and CHO. However, PAW variability is lower early in 

Fig. 8. Relative importance (proportion; sum = 1 within each year/stage) of Ca+b, Cm, Cw and LAI inverted from timeseries S2 images and used as separate feature 
sets for GPC estimation in commercial bread (a) and durum wheat (b) in zone 1 in 2019 and 2020. Image capture dates by Zadoks stage from top down. 

Fig. 9. Performance metrics (R2 and RMSE) for GPC estimation from plant traits inverted from single S2 images of bread and durum wheat fields in cz1, 2019–2020. 
Metrics are shown as a function of growing degree days after sowing (GDDAS) at image capture. 
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the season partly because crops have had less time – and biomass – to 
withdraw water. The growth of Cw importance through seasons likely 
reflects increasingly variable soil moisture as plants differentially 
accumulate biomass, hence capacity to dry the soil, and soil properties 
exert more influence due to drying. 

4.3. Model predictive skill 

GPC predictions from single S2 images late in seasons were sub
stantially less accurate than those from HS data (Longmire et al., 2022), 
except in very dry conditions (Fig. 7). The lower S2 spectral resolution 
explains this: indicators linked to GPC through their detection of mild 
stress, inverted Anth and Cx+c, and the PRI, cannot be calculated from S2 
data so are absent from those analyses, but made substantial contribu
tions to HS predictions. Here the advantages of S2 TS become clear, 
whereby TS prediction metrics were as good, and sometimes better than 
those from HS (Fig. 7). The improvement over single-date S2 estimates 
was also large, especially in cz2, where they came off a low base 
(Table 4). These gains also come from the incorporation of early-season 
structural information and demonstrate that S2 TS can be used to predict 
GPC even in very difficult conditions. In all situations, predictive per
formance was better during early development than in the mid-season, 

confirming both that emergence and early vigour are important to 
GPC outcomes and that our ML approach is sensitive to the same bio
logical reality. 

Cai et al. (2019) assert that the optimal timing for Australian wheat 
yield prediction accuracy is before October; this may hold for GPC 
prediction also, given that the two quantities co-vary in opposition. 
Others contend that Z65 is effective (Tan et al., 2020; Zhao et al., 2019) 
and that the addition of extra S2 TS data after June gave little 
improvement (yield; England; Hunt et al., 2019). This study shows that 
despite the many factors that can intervene between potential and re
ality, observations of specific inverted parameters as early as Z15 can 
contribute to GPC prediction. It also confirms that later images bring 
higher accuracy, and that TS stacking further improves performance. A 
lack of late-season images leaves an unfortunate gap, notably in the 
milder, wetter 2020 when no image was available after Z50/1400 
GDDAS in either zone but also in cz2-19. Performance may improve 
further with later cloud-free images, but the likelihood of finding these 
would not be substantially higher in any similarly mild season. Esti
mation of GPC is considerably more complex than estimation of inter
mediate quantities (Zhao et al., 2019). Nevertheless our accuracies 
(Table 4) are comparable to and often improve on other recent results 
from satellite RS: Zhao et al. (2019) recorded 0.428 ≤ R2 ≤ 0.467 for 
wheat GPC from S2, while Tan et al. (2020) achieved best metrics of R2 

= 0.81 and RMSE = 0.54 % from Landsat. 

5. Conclusions 

Plant and canopy traits, retrieved by radiative transfer modelling 
from Sentinel-2 image timeseries, were assessed for their contribution 
to, and ability to predict, wheat grain protein content in commercial 
fields and under diverse soil and weather. Using equivalent modelling 
methods from single images, GPC estimation accuracy was generally 
lower when based on S2 than on airborne HS traits. However, in very dry 
conditions, our best model using a single S2 image and made with 
PRO4SAIL-inverted Ca+b, Cm, Cw and LAI, outperformed that built with 
HS inputs and CWSI. Adding timeseries S2 inverted traits substantially 
improved all models over single-image versions; improvement was very 

Fig. 10. Relative importance (proportion; sum = 1 within each year) of Ca+b, Cm, Cw and LAI inverted from timeseries S2 images and used together as a single 
training feature set for GPC estimation in commercial bread (a) and durum wheat (b) in zone 1, 2019–2020. Features are arranged by Zadoks growth stage at image 
capture from top down, within plant trait category. 

Table 4 
Model performance (R2 and RMSE) for GPC estimation from single, late-season 
S2 images (base) and TS models from 5 to 6 S2 images across the same season, 
captured over commercial bread and durum wheat fields in cropping zones 1 
and 2.     

base model timeseries model 

zone year wheat type R2 RMSE R2 RMSE 

CZ1 2019 bread 0.82 0.65 0.86 0.56  
durum 0.38 0.93 0.55 0.81 

2020 bread 0.33 0.80 0.52 0.67  
durum 0.16 0.85 0.43 0.70 

CZ2 2019 bread 0.37 1.97 0.55 1.68  
2020 bread 0.14 0.98 0.31 0.90  
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strong in benign conditions and compensated for the accuracy reduction 
caused by switching from HS to S2. The best predictive performance was 
achieved by stacking retrieved parameters from all dates as inputs to a 
single model (R2 = 0.86, RMSE = 0.56 %). The order and relative 
importance of S2 plant traits were similar to airborne HS: S2 importance 
was dominated by Cw in drought but evenly spread between structural 
and physiological features in benign conditions. The results obtained 
suggest potential applications in precision agriculture. Nevertheless, 
many refinements are possible: GPC and RS data from a wider range of 
seasonal and agronomic conditions, spaceborne SIF and ground-based 
sources such as soil moisture assessments should be tested for their 
impact on model skill. 
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