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A B S T R A C T   

Oak trees are declining at an unprecedented rate due to the interaction of many factors, such as pests, diseases, 
droughts, pollution and flooding. Such abiotic- and biotic-induced stress produces anomalies in plant physio
logical and functional traits (PTs) that may be spectrally detected, serving to quantify trees’ health status and 
condition. Previous studies have demonstrated that PTs’ dynamic response can be tracked with hyperspectral and 
thermal images acquired via aerial platforms. However, the ability to detect the decline at different stages of 
severity among distinct oak species by using high-resolution multispectral images acquired via miniaturised 
cameras located aboard unpiloted airborne platforms is still unknown. This cost-effective approach offers 
improved operability to perform missions with greater continuity and replicability, which is critical to assess the 
decline progression. In this work, we evaluated the use of airborne multispectral and thermal imagery coupled 
with a 3-D radiative transfer modelling and machine learning approach for detecting Phytophthora-infected holm 
oak and cork oak trees. The field study included 2299 trees classified into disease severity classes with a gradient 
in levels of disease incidence located in Portugal (Ourique and Avis) and Spain (Huelva and Alcuéscar). The 
classification model achieved an overall accuracy of 76 % (kappa = 0.51) in detecting decline for both species, 
successfully identifying up to 34 % of declining trees that were not initially detected by visual inspection and 
confirmed in a reevaluation six months later. When compared against airborne hyperspectral imagery, results 
yielded comparable accuracy, with a relative decrease of ca. 4 % in overall accuracy and an average Cohen’s 
kappa decrease of 7 %. The results further showed that classification using only hyperspectral imagery is slightly 
lower but equivalent to using combined multispectral and thermal data, and those derived from these sensors 
independently are not adequate to classify the different severity stages. The proposed model has enabled us to 
effectively discern various stages of decline in cork and holm oak forests across diverse geographical areas. Our 
study, therefore, demonstrates that the tandem use of multispectral and thermal sensors onboard a remotely 
piloted aircraft platform, together with a radiative transfer modelling and machine learning approach, helps us to 
predict the impact of this particularly damaging disease on oak trees. This capability facilitates the detection and 
swift mapping of disease progression, ensuring a proactive approach to forest management.   

1. Introduction 

Oak decline has been severely affecting the distribution of Quercus 
suber (cork oak) and Quercus ilex (holm oak) across the Mediterranean 
basin since 1980 (Camilo-Alves et al., 2013). It is challenging to identify 
the factors triggering oak decline produced by complex stressors 

interaction such as abiotic (water stress, loss of nutrients and soil 
compaction) and biotic stresses (pests, parasites and pathogens) 
(Camilo-Alves et al., 2017). The interactions are mainly attributed to the 
combination of water stress increasing the weakening of the trees and 
the attack of different pathogens, in particular, root rot caused by 
pathogens (Phytophthora cinnamomi and Pythium spiculum) (Colangelo 
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et al., 2018). In this scenario, the necessity for real-time or predictive 
precision mapping becomes evident, as it plays a pivotal role in effec
tively managing the spatial spread of the pest and expediting the 
restoration of the ecosystem. 

Nonetheless, the constrained availability of in-situ forest health 
datasets hinders the comprehensive analysis of large-scale forest decline 
processes. Yet, combined with remote sensing data, these datasets pre
sent a valuable opportunity to create mapping products for identifying 
and analysing these processes across diverse spatial scales (Pause et al., 
2016). Most studies were initiated by combining field data observations 
of visual defoliation with a spectral imaging transformation of two or 
more red and infrared bands (Castellaneta et al., 2022; Hernández- 
Lambraño et al., 2019). The main limitation of this approach in forest 
canopies is that, in most cases, once damage becomes visible, tree re
covery is often irreversible (Hernández-Clemente et al., 2019; Varner 
et al., 2021). 

In their efforts to address this challenge, Hernández-Clemente et al. 
(2017) evaluated hyperspectral and thermal data of oak decline through 
the analysis of different plant functional traits (PTs) showing physio
logical anomalies corresponding to the physiological decline. Soil- 
dwelling root pathogens like Phytophthora or Pythium can cause severe 
functional damage to oak trees, affecting transpiration and key plant 
characteristics (Contreras-Cornejo et al., 2023). These pathogens disrupt 
the tree’s vascular system, leading to reduced transpiration, impaired 
photosynthesis, and chlorosis. These effects often resemble symptoms of 
water stress, making it challenging to achieve accurate diagnosis unless 
we employ the quantification of alterations in plant traits. Similar ap
proaches have been successfully proposed and validated in species such 
as olive and almond trees, where the combined use of inverted PTs from 
hyperspectral and thermal images has been used to detect Xylella fas
tidiosa disease with overall accuracies exceeding 92 % (Zarco-Tejada 
et al., 2021). Furthermore, the inversion of PTs through radiative 
transfer models helps to understand the physiological alteration of 
affected trees, which is critical for assessing the health condition of the 
trees (Zarco-Tejada et al., 2018). In the case of holm oak trees, the 
inversion of PTs from hyperspectral images and thermal data has been 
successfully used to predict oak decline up to two years in advance 
(Hornero et al., 2021b). However, the replicability of these approaches 
is linked to the need for high-resolution hyperspectral and thermal data 
acquired with airborne platforms that offer sufficient stability to collect 
high-quality data. Unfortunately, the logistics and cost required for 
airborne campaigns constrain the continuous assessment of forest can
opies, which is essential for assessing the temporal and spatial changes 
of the holm oak decline processes (Liu et al., 2007). 

Alternatively, using remotely piloted aircraft systems (RPASs) could 
increase the spatial resolution, minimise the response time and reduce 
the time required for interpreting PTs. RPASs provide high-resolution 
imagery and real-time data with sensor customisation flexibility. The 
capability to deal with large areas with RPAS imagery is limited, but it 
can be used to complement satellite data in detail on areas of interest. 
Moreover, RPASs offer the versatility of acquiring imagery in poorly 
accessible areas, adapting and modifying sensors quickly, and enabling 
continuous data collection (Fraser and Congalton, 2021). This aspect is 
essential for analysing physiological changes, which serve as early in
dicators of health conditions in the case of declining holm oak 
(Hernández-Clemente et al., 2017). However, despite all the versatility 
offered by RPASs, they also have significant limitations that have con
strained their use in forest disease detection (Ecke et al., 2022), such as i) 
the stability of the aircraft, RPAS vibrations can affect the spectral 
quality of the images, which is a critical issue when narrow bands of 
hyperspectral sensors are used (Honkavaara et al., 2017; Oliveira et al., 
2019); ii) the weight of the payload can limit the number and size of 
sensors used, which is quite limiting when the study requires the use of 
hyperspectral and thermal cameras; iii) the flight extension due to the 
limited endurance of the platforms; iv) in the case of thermal sensors, 
uncooled thermal systems affect the temperature of the images under 

ambient flight conditions (Maes et al., 2017; Olbrycht and Więcek, 
2015), thus thermal drift must be corrected continuously; and v) typical 
multispectral cameras used with RPASs cannot measure essential traits 
such as the normalised phaeophytinization index (NPQI) and the nor
malised photochemical reflectance index (PRIn) xanthophyll proxy, 
result in poorer vascular disease detection (Poblete et al., 2023); their 
broad bandwidth fails to capture subtle physiological changes indicated 
by narrow-band features such as chlorophyll fluorescence and xantho
phyll variations. 

Despite these limitations, there is a diverse selection of affordable 
sensors capable of collecting data across the visible, infrared, and ther
mal spectrums. These sensors may serve as valuable tools for monitoring 
plant growth, structure, and functionality (Tian et al., 2017). Notably, in 
assessing functionality, research has shown that the temperature dif
ference between the tree crown and the surrounding air, as measured by 
airborne sensors, is one of the most effective early indicators of Phy
tophthora infection in oak trees (Hernández-Clemente et al., 2017; 
Hornero et al., 2021b). Thus, this variable could help to increase the 
detection capability of low-cost RPAS merely based on multispectral 
sensors. However, the assessment of the suitability of RPAS-based sen
sors in detecting oak decline is still unknown. Hence, this study aims to 
assess the effectiveness of an RPAS-based system equipped with an 
affordable image acquisition setup comprising multispectral and ther
mal sensors. It aims to employ machine learning (ML) techniques for the 
detection of forest decline processes in oak forests, comparing the results 
with high-resolution hyperspectral and thermal imagery, which serve as 
a benchmark. 

2. Materials and methods 

2.1. Study site and field survey 

The study was conducted in open oak forests (i.e., Mediterranean- 
like oak savannah known as Montado in Portugal and Dehesa in Spain) 
located in Puebla de Guzmán (Andalucía, Huelva; southwestern Spain, 
37◦36′30.89″N, Lon 7◦20′27.97″W), Alcuéscar (Extremadura; central 
Spain, 39◦9′39.42″N, O6◦13′27.95″W), Ourique (District of Beja; south
ern Portugal, 37◦37′12.2″N 8◦13′54.3″W) and Avis (District of Porta
legre; central Portugal, 39◦5′12″N, 7◦54′10″W). The vegetation in the 
study areas was mainly dominated by oak-dispersed trees (Quercus ilex 
and Quercus suber species). During the sampling, we use the disease 
severity (DS) and disease incidence (DI) classification defined by Seem 
(1984), describing DS as the quantity of disease-affecting entities within 
a sampling unit and DI as a quantitative measure, defined as the pro
portion of diseased entities within a sampling unit. Based on visual in
spection, we assigned individual trees to one of the four available DS 
categories (Fig. 1), determined by the percentage of crown defoliation 
and other Pc-related symptoms (Eichhorn et al., 2016), with each indi
vidual serving as a sampling unit. For a more accurate assessment of DS, 
we considered not only the defoliation of the crown but also other 
typical Pc-induced symptoms, such as the presence of stem cankers and 
the emergence of adventitious epicormic sprouts, following the guide
lines of Jung et al. (2000). Furthermore, to avoid ambiguities, we specify 
the part of the crown including all living branches and thin branches 
that are dead but still retain leaves. We excluded thick branches that 
have been dead for years and have already lost their natural buds, epi
cormic shoots below the crown, and gaps where branches have never 
existed. This methodological precision follows the classification of the 
Andalusian Forest Damage Monitoring Network (Consejería de Medio 
Ambiente y Ordenación del Territorio, 2018). 

Based on the visual inspection DS ranged from zero, indicating the 
absence of visual symptoms, to three, when most of the branches in the 
crown were dead (Fig. 1). DI was either affected or unaffected (one or 
zero on a binary scale), where non-symptomatic trees corresponded to a 
DS of zero and symptomatic trees to any other severity level (DS higher 
than zero). 
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In the field survey carried out in the summer of 2017, we assessed a 
total of N = 1146 trees in Puebla de Guzmán, including the DS and DI for 
individual holm oak trees (100 %). In the sampling conducted in the 
summer of 2021, we assessed 367 trees in Avis, 391 trees in Ourique and 
395 trees in Alcuéscar, including the DS and DI for individual holm 
(33.5 %) and cork oak trees (66.5 %) (N = 1153) (Table 1). The field 
surveys were repeated in the summer of 2022 to analyse the prediction 
capability of the models through false-positive observation rates. 

2.2. High-resolution imagery 

2.2.1. Piloted aircraft campaigns 
High-resolution hyperspectral images were collected onboard a 

Cessna 172 aircraft operated by the Laboratory for Research Methods in 
Quantitative Remote Sensing (QuantaLab) on the 19th of July 2017 in 
Puebla de Guzmán, Huelva. The imaging equipment included a visible 
near-infrared hyperspectral imager and a thermal camera (Fig. 2). The 
aircraft flew at 350 m above ground level, covering a ground surface 
area of 720 ha in a cloudless sky. The visible near-infrared (VIS-NIR) 
camera (Hyperspec VIS-NIR, Headwall Photonics Inc., MA, USA) 
collected 260 spectral bands and a ground resolution of 60 cm, allowing 
for the identification of individual oak tree crowns. Additional technical 
details can be found in Zarco-Tejada et al. (2013). The thermal sensor 
used in the study was the FLIR SC655 (Teledyne FLIR LLC, OR, USA) 
with a resolution of 640 × 480 pixels. It had a 24.5-mm lens with an 
angular field of view (FOV) of 45 × 33.7◦, resulting in a ground reso
lution of 60 cm/px. The sensor had an uncooled microbolometer focal 
plane array and operated within a spectral range of 7.5 to 14 μm. It 
included a thermoelectric cooling (TE) stabilisation system, providing a 
thermal sensitivity below 50 mK. 

The methodology employed in the study involved the radiometric 
calibration of the hyperspectral sensor using an integrating sphere 
(STM-USS-2000C, Labsphere Inc., NH, USA) at four characterised 

illumination levels. Atmospheric correction for the VIS-NIR sensor was 
achieved using a field spectroradiometer coupled with a cosine corrector 
(ASD HandHeld Pro, Malvern Panalytical Ltd., United Kingdom). Cross- 
track correction was applied to account for illumination and viewing 
angle effects. Thermal calibration was conducted in the laboratory using 
a black body calibration source (LANDCAL P80P, Land Instruments In
ternational Ltd., United Kingdom) and ground temperature measure
ments described by Calderón et al. (2015). Tc-Ta was determined by 
subtracting weather station air temperature from calibrated thermal 
imagery. Orthorectification of hyperspectral and thermal images was 
performed using PARGE (ReSe Applications GmbH, Switzerland) and 
Pix4DMapper (Pix4D SA, Switzerland) software, respectively, following 
established pre-processing and correction procedures outlined in pre
vious studies by Hernández-Clemente et al. (2012) and Zarco-Tejada 
et al. (2013). 

2.2.2. RPAS campaigns 
We collected very high-resolution images in the three locations be

tween the 20th and 22nd of September 2021 using a multi-lens multi
spectral camera (MicaSense RedEdge-M, AgEagle Sensor Systems Inc., 
KS, USA) and a thermal camera – FLIR Tau 2 640 (FLIR Systems, Wil
sonville, OR, USA) – installed in tandem onboard a Skymapper SKM2 
VTOL platform, a Foxtech Loong 2160′s customised version (Fig. 3, 
Table 2). The flights were conducted over three locations in Portugal 
(Avis and Ourique) and Spain (Alcuéscar) (Fig. 3) in clear sky condi
tions. The imagery was acquired at 120 m AGL with the RPAS flying on 
the solar plane and a surveyed area of 145 ha. The five sensors of the 
multispectral device covered the visible and near-infrared region 
(475–20, 560–20, 668–10, 717–10 and 840–40 nm) with a ground res
olution of 7.5 cm/px; surface reflectance was derived through atmo
spheric correction pointing to a calibrated reflectance panel before take- 
off and just after landing. In addition, the single-channel (7.5 – 13.5 µm) 
miniaturised infrared thermal sensor (13 mm lens) produced images at 

Fig. 1. Examples of the four forest disease severity (DS) levels assigned to Quercus suber and Quercus ilex during the field survey. DS ranged from 0, indicating 
symptomless, to 3, with very high to extreme severity. Initial severity, showing few desiccated branches affecting a limited part of the canopy; Medium-high severity, 
indicating desiccation of a large part of the canopy; Very high severity, describing a canopy with evenly distributed desiccated branches. 

Table 1 
Field surveys (FS) and aerial campaigns (AC) carried out to conduct the data collection.  

Location 2017 2021 2022 Aerial Campaign 

Huelva (ES) FS + AC   Aircraft with hyperspectral and thermal 
Alcuéscar (ES)  FS + AC FS RPAS with multispectral and thermal 
Ourique (PT)  FS + AC FS RPAS with multispectral and thermal 
Avis (PT)  FS + AC FS RPAS with multispectral and thermal  
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16 cm/px, and was calibrated using ground temperature measurements 
from two fabrics and bare soil with a handheld thermometer (LaserSight 
LS LT, Optris GmbH, Berlin, Germany). Multispectral and thermal mo
saics and zoomed-in overviews for each location are shown in Fig. 4. 

The process of generating the orthomosaic was carried out using 
Pix4D photogrammetry software. Image correction and data pre- 
processing are described in detail in Hernández-Clemente et al. 
(2012). The high-resolution imagery acquired from each camera 
allowed us to identify and delineate tree crowns independently. This 
image processing was achieved by using object-based segmentation 
methods through the Mahalanobis multivariate direction-sensitive dis
tance classifier (Richards and Jia, 1999), and a binary watershed anal
ysis using the Euclidean distance map to automate the separation of 
trees with overlapping crowns (Fig. 4), seeking to minimise the effect of 
background and shadowing. Vegetation indices (VIs) – 36 in total – were 
selected from Hornero et al., (2021b), choosing those centred or close to 
the band centres used in each index, regardless of their spectral width 
(Appendix A). 

2.3. Analytical framework 

The image data from both airborne and RPAS were used to quantify 
the PTs using RTM, as detailed in section 2.4, and to develop the pre
dictive forest health models following the methods outlined in section 

2.5. 
Before conducting the RPAS flights, an analysis was performed to 

assess the impact of bandset reduction on the detection of forest decline. 
To achieve this, a reanalysis was carried out on the airborne hyper
spectral and thermal data in conjunction with a field survey conducted 
during the summer of 2017 to assess oak decline in Huelva, Spain. This 
reanalysis involved the creation of a spectrally resampled multispectral 
image product derived from airborne hyperspectral imagery, hereafter 
referred to as the “HBR product” – which stands for RPAS-based 
hyperspectral band set reduction (HBR). This product mimicked the 
spectral bands offered by the Micasense RedEdge-M (Fig. 5). Subse
quently, the HBR product was employed to develop a classification 
model for the detection of oak decline, utilising the same field assess
ment dataset (N = 1146) as employed by Hornero et al., (2021b). The 
accuracy of the HBR product was then compared with the results ob
tained from the original aircraft-based sensors (hyperspectral and 
thermal). 

Following the evaluation of the RPAS-based HBR product, the same 
setting was applied to the image data collected during the RPAS 
campaign to analyse the contribution of PTs in detecting forest health 
and to create a forest health classification model for the study sites in 
Avis, Ourique, and Alcuescar, employing the same methodology. 

Fig. 2. Airborne remote sensing composite displaying high-resolution hyperspectral and thermal imagery over the study area in Huelva (Spain). On the left, the 
thermal imagery with the colour scale indicates variations in heat across the landscape, further detailed in the lower zoom-in panel. On the top right, the hyper
spectral sensor acquires detailed reflectance data across a broad spectrum of wavelengths, enabling precise identification and analysis of individual trees. The graph 
below shows spectral signatures of three distinct measurements of vegetation above the canopy. 
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2.4. Retrieval of plant functional traits from canopy reflectance and 
radiative transfer models 

The quantification of the biochemical components and structural 
parameters was performed through an inversion of a 3-D radiative 
transfer model (RTM) for the pixels extracted from the tree crowns 
(Fig. 6). Using prior information from the environment of possible pa
rameters, the ill-posed problem of the model inversion could be sub
stantially mitigated. First, the input variables to the model were 
established according to the existing literature, and nominal parameters 
(Hernández-Clemente et al., 2017; Hornero et al., 2021b), to ensure that 
the generated look-up table (LUT) covered the range of spectral vari
ability of the tree crowns (Appendix B). Then, we built a LUT of more 

than 1 M simulations using the PROSPECT-D leaf model (Feret et al., 
2017) coupled with the FLIGHT8 canopy model (Hornero et al., 2021a; 
North, 1996). In the first stage, we determined the leaf area index (LAI), 
the chlorophyll (Cab) and the carotenoid (Cca) content, setting to nom
inal values of anthocyanin (Anth), water and dry matter (Cdm) content, 
and the structural parameter N to a value previously determined 
(Hernández-Clemente et al., 2017). The LUT-based inversion scheme 
was a multi-step approach where the LAI values were initially retrieved, 
and then Cab and Cca, using the MSR, PSSRb and CRI700 VIs as proxies 
for each PT, respectively. In the subsequent phase, the parameterisation 
retrieved for each tree was used to specifically quantify Anth and Cdm, 
using mARI and spectral fitting, respectively. 

Fig. 3. RPAS-based data acquisition conducted over three areas in Portugal (Avis and Ourique) and Spain (Alcuéscar). The yellow lines represent the flight plan. On 
the middle right and bottom, pictures show the heterogeneity of the landscape within the areas of study. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Technical characteristics of the airborne and RPAS sensors and operational settings.   

Multispectral Camera Thermal Camera 

Sensor model Micasense RedEdge-M FLIR Tau 2 
Spectral range (nm) 475 ± 20; 560 ± 20; 668 ± 10; 717 ± 10; 840 ± 40 7500 – 13,500 
Resolution (px) 5 x 1280 x 960 640 x 480 
Focal length (mm) 6 13 
Storage SD card microSD card 
Communication WiFi AV output + buttons 
Capture mode Triggered (location-based from autopilot) Continuous 
Geopositioning Absolute position via GPS Time-synchronised  
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2.5. Predictive classification model assessment 

The workflow for assessing the predictive models involved two main 
steps: i) a feature selection analysis to evaluate the contribution and 
significance of each variable to generate the classification model, and ii) 
a subsequent evaluation of model performance, including assessing 
various classification methods and accuracy measures (Fig. 7). 

The feature selection uses as input data the field survey of affected 
and non-affected tree locations and the VIs and PTs retrieved from the 
images (Fig. 7a). The analysis was performed through a random decision 
forest classification (DFC) (Breiman, 2001) to identify the importance of 
the variables (PTs and VIs independently) using an adaptation of Kursa 
and Rudnicki, (2010). To determine the set of variables to be used in the 
classification model, an aggregation stage was established (with an 
order according to their importance). Then, the VIs were added based on 
their importance. Next, the variance inflation factor (VIF) was calcu
lated in each iteration to avoid multicollinearity among the predictor 
variables, setting the threshold value at 10. If the VIF exceeded this 

threshold in any variable, the last variable added was discarded. Finally, 
a Pearson correlation analysis was established to determine the corre
lations between pairs by setting a cut-off filter of 0.85 (Dormann et al., 
2013) to complete the selection of variables. As an additional step, the 
feature selection using the DFC process was used to assess the impor
tance of each selected variable contributing to the model’s predictive 
performance. 

The accuracy assessment of the reliability of models for the detection 
of oak decline (Fig. 7b) was performed using data from different sites 
and species. Two ML algorithms were employed: a supervised non-linear 
support vector machine (SVM) with a Gaussian radial base kernel 
function (Scholkopf et al., 1997) and a random forest (RF) algorithm 
(Breiman, 2001). These algorithms have been recognised as primary 
classifiers in airborne imaging (Gigović et al., 2019; Liu et al., 2017). We 
employed class weights in ML, following the method described in He and 
Cheng (2021), to ensure that our results were comparable to those ob
tained from the datasets collected in Alcuescar, Avis, and Ourique, 
where a significant between-class imbalance was observed (DS0: 24.8 %; 

Fig. 4. RPAS-based very high-resolution multispectral and thermal imagery acquired over the three surveyed areas located in Portugal (Avis and Ourique) and Spain 
(Alcuéscar). Depicted on each side is a zoomed-in overview. The outlined segmentation for each tree is shown over the multispectral overviews coloured in vibrant 
cyan. The graph below illustrates the spectral reflectance of various vegetation and soil samples, highlighting the percentage of light they reflect in a range of 
wavelengths within the multispectral configuration from the visible to the near-infrared spectrum. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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DS1: 36.4 %; DS2: 26.4 %: DS3: 12.4 %). 
To validate these models, we conducted 100 iterations, randomly 

splitting the dataset into 80 % training and 20 % test samples, utilising k- 
fold cross-validation with ten equal-sized subsamples repeated five 
times. Subsampling training data in each iteration ensured balanced 
class frequencies. We evaluated classification accuracy using overall 
accuracy (OA) and Cohen’s kappa coefficient (κ) to measure agreement 
beyond chance (Landis and Koch, 1977). 

Finally, we investigated whether the models could anticipate trees 
assessed as asymptomatic in the first assessment and otherwise in the 
subsequent evaluation. This analysis helped to calibrate the model’s 
ability to predict future estimates of forest decline based on image data 
and previous assessments. 

3. Results 

3.1. Impact of a hyperspectral bandset reduction on the detection model 
accuracy 

The contribution of plant traits derived from the hyperspectral data 
simulating the RPAS-based HBR product was analysed for the detection 
of oak decline (Fig. 8). As previously documented (Hornero et al., 
2021b; Poblete et al., 2023; Zarco-Tejada et al., 2021), it is worth noting 
that tree-crown (Tc) –normalised by ambient temperature (Ta) in the 
form Tc-Ta or via the Crop Water Stress Index (CWSI)– exerts a sub
stantial global impact on both incidence and severity, while other plant 
traits like LAI, Cdm, Cca, Cab, and Anth make comparatively smaller 
contributions. 

Increasing Tc-Ta values with rising severity levels are tied to a 
decrease in LAI (as seen in Fig. 9). The distribution of LAI values across 
different severity and incidence levels demonstrates a consistent pattern 
in both the original hyperspectral product and the RPAS-based HBR 
product. LAI decreases as severity and temperature increase, while it 
rises with damage levels. In both scenarios, there is a gradual reduction 
in LAI from levels 0 to 2 of severity, with the most significant drop 
occurring during the transition to level 3. This abrupt shift in LAI values 
from level 2 to level 3 corresponds to a similar sharp increase in Tc-Ta 
between these levels, as reduced vegetation structure amplifies the 
background effect. 

The detection of oak decline combining the full range of bands of the 
hyperspectral imager and the thermal dataset using the RF classification 

model showed the highest accuracy with an OA of 81.2 % and a κ value 
of 0.62 for detecting DI levels, and an OA of 65.1 % and a κ value of 0.53 
for detecting DS levels. These accuracies slightly decreased using the 
combined HBR and thermal dataset, showing an OA of 79.8 % and a κ 
value of 0.59 for detecting DI levels and an OA of 61.1 % and a κ value of 
0.47 for detecting DS levels. Similar accuracies were observed in both 
cases using the SVM algorithm (Fig. 10, Table 3). 

Comparatively, looking at the reliability of the individual sensors, 
the RF and SVM models computed using only the hyperspectral dataset 
yielded higher OAs than using HBR or the thermal dataset indepen
dently; the largest difference was found discriminating between inci
dence levels, with relative differences of 3 % and 7 % compared to the 
HBR and the thermal dataset, respectively (Table 3). It is noteworthy 
that the thermal sensor independently was not able to discriminate 
correctly between severity levels (κ below 0.4), showing a minimal level 
of agreement between predicted and observed values. The hyperspectral 
dataset results excel with better performance, at higher cost and 
complexity. The thermal sensor, with lower accuracy for severity clas
sification, offers unique physiological insights when used indepen
dently, while the HBR dataset provides a practical balance of reliability 
and physiological interpretation. 

Finally, it’s important to highlight that the accuracy achieved with 
solely the hyperspectral dataset is marginally lower, averaging 2.3 % 
less, than using the HBR with thermal data, and 5 % below the combined 
hyperspectral and thermal dataset. However, when utilising an RPAS for 
data collection, integrating HBR with thermal data becomes essential, 
ensuring reliability exceeds a kappa value (κ) of 0.47 for severity level 
discrimination and reaches κ = 0.59 for incidence level detection. 

3.2. Contribution of RPAS-based PTs for detecting progressive stages of 
decline 

Building upon the fair outcome obtained through the reduction of 
hyperspectral bands in the previous section, we delved deeper into 
assessing the contribution of PTs derived from multispectral RPAS im
agery across three sites with oak decline located in Avis, Ourique, and 
Alcuescar. In Fig. 11, we show each PT along with their respective 
importance scores in distinguishing the severity and incidence of oak 
decline. The overall significance of these PTs underscores the substantial 
influence of Tc-Ta and LAI. Specifically, Tc-Ta emerges as the foremost 
contributor in distinguishing different levels of decline incidence (DI), 

Fig. 5. Example of spectral data from symptomatic and asymptomatic oak trees from an RPAS-based band reduction product of a hyperspectral image and the full 
range of bands provided by the same sensor. 
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while LAI prevails as the most critical variable for discerning decline 
severity (DS). In both cases, these two PTs are closely followed by others, 
including Cca, Cdm, Cab, and Anth. 

The change in PTs as the severity of the condition increases shows a 
consistent pattern, as depicted in Fig. 12. We observe a steady rise in Tc- 
Ta values as the severity levels increase, indicative of declining oak vi
tality and photosynthetic efficiency. This is accompanied by a decrease 
in LAI, reflecting reduced leaf area and health, and a reduction in the 
content of pigments (such as Cca, Cdm, Cab, and Anth). As these variables 
decrease, we also observe an increase in the quantity of Cdm, which is 
linked to the loss of functionality or the accumulation of senescent 
material, a clear marker of advanced decline stages. This trend becomes 
more pronounced with higher severity levels. 

We enhanced the analysis of PTs by including a set of indices. We 
carefully selected these indices through a rigorous screening process, 
ensuring that they had a VIF below 10. As a result, we employed 
DNCabxc, PSRI, and PRI to distinguish between DI levels, and PRIn and 
RCRI550 for assessing DS. This selection process followed the method
ology outlined in Fig. 7a and was included as an input for computing the 
classification models to detect oak decline. 

3.3. RPAS-based detection models of holm- and cork-oak decline 

The accuracy of the models for DI and DS discrimination was 
computed through random forest and support vector machine as shown 
in Fig. 13. DI classification shows significantly better results than DS, a 
reasonable output considering the simplicity and straightforward 
discriminatory capacity of DI, which has an OA above 75 % and a κ 
above 0.5, considered fair to good estimates according to Fleiss et al. 
(2003). The accuracy retrieved by both models for the discrimination of 
DI and DS was higher in Q. ilex than in Q. suber, with maximum values of 
OA = 81.7 %, κ = 0.62 for Q. ilex, and OA = 74.9 %, κ = 0.49 for Q. suber 
in DI; and OA = 63.4 %, κ = 0.44 for Q. ilex, and OA = 53.3 %, κ = 0.31 
for Q. suber in DS. 

Further analysis revealed specific accuracy metrics for each DS 
category pair. The random forest model displayed stronger performance 
in distinguishing between the early stages of the disease in Q. ilex, with 
an OA of 70.0 % for DS 0–1. However, it was less effective for Q. suber, 
with an OA of 66.2 % for the same DS category. The support vector 
machine showed a similar pattern, but with a marginally lower accuracy 
for these early stages. This additional layer of results (Appendix C) un
derscores the need for improved early detection methods in our disease 

Fig. 6. Model simulation and analytical approach diagram.  
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monitoring models. 
The findings, when assessing the anticipatory capabilities of the 

model, indicated a prediction rate of 33 % for cases that were initially 
classified as asymptomatic but turned out to show any symptoms six 
months later. Both models showed similar performance under these 
conditions (RF: 32.2 %; SVM: 33.6 %). 

4. Discussion 

The current study highlights the intricate nature of detecting and 
analysing oak decline –commonly known as “la seca”– in Mediterranean 
ecosystems, a phenomenon adversely impacting Quercus suber and 
Quercus ilex populations (Rey et al., 2023; Touhami et al., 2020). The 

Fig. 7. Data analysis workflow: plant functional traits and vegetation indices selection to evaluate the performance of the classification model for the determination 
of the physiological state of the vegetation. Section a) illustrates the iterative selection of critical variables; section b) outlines the model evaluation using SVM and RF 
classifiers, with performance validated with field survey data. 

Fig. 8. Contribution of the most sensitive plant traits derived from the original hyperspectral data (left) and the bandset reduction product (right). The bars show the 
mean importance calculated for each variable, and the accompanying horizontal line represents the standard deviation. Note that bandset reduction does not include 
fluorescence quantum efficiency (fqe) since this feature cannot be derived from this multispectral setup by inversion. 
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urgency of developing advanced analytical methods, as presented in our 
study, is underscored by the increasing impact of oak decline on the 
stability and economic viability of dehesa/montado agroforestry sys
tems. These ecosystems, as detailed by Sá-Sousa (2014), are not only 
rich in biodiversity but also crucial for regional economies, especially in 
cork production and Iberian pig farming. Our findings address the crit
ical need for timely and accurate detection of forest decline, which is 

essential for planning and implementing effective restoration and 
reforestation strategies. 

In exploring the potential use of RPAS imagery for precision mapping 
and spatial management of oak decline, our study extends the work of 
Hornero et al., (2021b) in utilising airborne hyperspectral sensors for the 
prediction of decline. We highlight the practical limitations of airborne 
precision mapping, noted by Alderotti and Verdiani (2023), and propose 

Fig. 9. Main plant functional traits (PTs) shared among the different configurations with the original and the bandset reduction. PTs are displayed aggregated over 
boxplots and dot segregated as jittered points distributed on the x-axis to reduce overplotting. 

Fig. 10. Overall accuracy (OA; horizontal bars), Cohen’s kappa coefficient (κ; doughnuts) and respective standard deviations (horizontal lines) of the prediction 
capability of random forest (RF) and support vector machine models (SVM) for detecting disease incidence (DI) and disease severity (DS) using the full range of bands 
in the hyperspectral images data (left) and the hyperspectral bandset reduction product (right). 

Table 3 
Predictive performance of random forest and support vector machine models to determine disease incidence and severity using the 
thermal data, the full range of bands from the hyperspectral imager and the RPAS-based hyperspectral bandset reduction (HBR) 
dataset. The best and worst values for each case are highlighted in green and red, respectively; darker colours indicate the 
extremes.  
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RPAS imagery as a cost-efficient alternative. Despite the constraints 
associated with low-cost acquisition systems (Grznárová et al., 2019), 
our approach demonstrates that band reduction analysis from hyper
spectral and thermal imagery is a critical step in developing effective 
forest health monitoring tools. 

The results indicate that using hyperspectral data alone yields better 
results compared with relying solely on HBR data. This finding re
inforces the notion that the comprehensive spectrum captured by 
hyperspectral imaging provides nuanced information for oak decline 
detection, as shown by Hernández-Clemente et al. (2017). When flying 
over large areas, generating hyperspectral and thermal mosaics that are 
co-aligned can be challenging (Kim et al., 2022). Therefore, it may be 
more practical to fly only hyperspectral for large areas. However, there 
are methods available for generating UAV-based hyperspectral mosaics 
using push-broom sensors, which can help align hyperspectral swaths 
with RGB photogrammetric orthophoto mosaics (Jurado et al., 2021). 

The advantage of using hyperspectral data diminishes when 
compared to the combined use of HBR and thermal data, where the 
latter emerges as more effective. This synergy implies that while 
hyperspectral data is comprehensive, integrating thermal and multi
spectral data is necessary for robust oak decline detection. It also 
highlights the critical role of thermal imaging, particularly in enhancing 
the accuracy of decline detection, possibly due to its ability to capture 
water stress. These outcomes align with Zarco-Tejada et al.’s (2021) 
findings, which underscore the contribution of plant traits from hyper
spectral and thermal imagery to differentiate between biotic and abiotic 
stressors in olive trees impacted by Xylella fastidiosa. In oak forests 
affected by decline, symptoms of water stress can closely resemble those 
caused by phytophthora infections, leading to possible misidentification 
(Martín-Sánchez et al., 2022). Thus, this research underscores the 
combined use of HBR and thermal data, highlighting their critical role in 
forest management and ecological research. 

Fig. 11. Importance score for plant traits (PTs) computed via DFC algorithm in detecting oak decline is shown at the top. Bottom plots show the importance score 
while discriminating between severity stages. 

Fig. 12. Plant traits displayed aggregated over boxplots and levels of severity of asymptomatic and symptomatic trees.  
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The retrieval of PTs from radiative transfer models and ML tech
niques used in this study is essential to understanding forest decline 
processes and has allowed the cross-comparison of model performance 
between different band configurations. Previous studies have shown, 
using airborne image data, the importance of quantifying PTs to un
derstand vegetation responses to pest infestations such as Xylella fas
tidiosa in olive and almond trees (Zarco-Tejada et al., 2021), Dothistroma 
needle blight in radiata pine (Watt et al., 2023), or Phytophthora Cina
momi in oak trees (Hornero et al., 2021b). However, the retrieval of PTs 
is constrained by the available spectral resolution of the sensors, which 
is generally quite limited in low-cost systems. In this work, we have 
demonstrated that this limitation is reduced by the high contribution of 
thermal data as indicators to discriminate DI and DS in oak forests. The 
results are aligned with previous studies focused on the analysis of 
RPAS-based lightweight thermal imagery for the quantification of PTs, 
such as evapotranspiration or stomatal conductance (Hoffmann et al., 
2016) or for the detection of water stress in vineyards (Santesteban 
et al., 2017). 

A crucial factor in forest decline management is to be able to quantify 
both incidence and severity levels. This allows each type of damage and 
species to be characterised at a specific level of severity and to assess 
both gradual and total patterns of change. These parameters have been 
considered fundamental for the global characterisation of forest damage 
at the European level and are currently included in the harmonised 
database generated by the European Commission DEFID2 (Forzieri 
et al., 2023). In the context of disease severity, our research corroborates 
the negative correlation between increasing Tc-Ta values and LAI, as 
well as the associated pigment content levels, which is in line with 
previous research indicating that heightened stress levels result in a 
reduction of LAI, a key physiological trait (Zarco-Tejada et al., 2021). 

The ML models employed in this study have shown a fair to good 
capability in discriminating between different stages of decline, with 
Q. ilex yielding higher accuracies than Q. suber. This differential 
response highlights species-specific sensitivities to stress factors, which 
could be attributed to inherent physiological or structural differences 
between species. Despite the demonstrated utility of RPAS-based im
aging in this study, we must acknowledge the existing limitations. For 
instance, the stability of RPASs and the spectral quality of images can be 
compromised by vibrations and payload weight restrictions (Honka
vaara et al., 2017). Furthermore, the restricted flight endurance of RPAS 
platforms may pose challenges in conducting comprehensive assess
ments over large forested areas. These technical challenges necessitate 
ongoing technological advancements and methodological improve
ments to fully exploit RPASs’ potential for forest health monitoring. 

Given the simple nature of the binary grouping compared to the 
nuanced multilevel categorisation, DI classification yielded significantly 
better results than DS. This highlights the challenges posed by severity 

classification; the ML models show better performance in identifying 
more advanced stages of the disease, while it is more difficult to detect 
the early stages, which is critical to stop the spread of the disease. The 
difference in model performance between Q. ilex and Q. suber also raises 
questions about the broader applicability of RPAS-based sensors across 
species. The potential for species-specific calibration of sensors and al
gorithms should be explored in future research to enhance the sensitivity 
and accuracy of decline detection methods. In addition, the integration 
of RPAS-based data with satellite imagery could potentially address the 
limitations in spatial coverage and temporal frequency, offering a more 
comprehensive monitoring system. 

The findings demonstrate a modest prediction rate of approximately 
one-third for cases that transitioned from an asymptomatic to a symp
tomatic state within a six-month period. To overcome the subjective 
nature of field visual inspection, which is crucial for training and vali
dating our models, future studies could consider using ground-based 
photogrammetry as complementary to visual interpretation, an 
approach that could potentially increase the accuracy and objectivity in 
assessing tree decline. The anticipatory performance of the predictive 
models still needs to be assessed with longer time series data over a large 
dataset of true positive and negative values of severity, especially for 
detecting early damage stages without visual variations in LAI. The 
similar performance metrics between the random forest and support 
vector machine models, with RF at 32.2 % and SVM slightly higher at 
33.6 %, suggest that both algorithms possess comparable predictive 
strengths under the conditions tested. While not overwhelmingly high, 
this accuracy level still represents a significant advancement in our 
ability to forecast forest decline before the manifestation of visible 
symptoms. The models’ capacity to identify a subset of trees that would 
develop symptoms suggests a potential for these models to be refined 
further. Enhancing their predictive accuracy could substantially aid in 
proactive forest health management, allowing interventions to be more 
strategically targeted and potentially more effective. The convergence of 
performance also indicates that similar underlying patterns are being 
captured by both models, which could provide a basis for future model 
improvement and optimisation. 

This proposed method aligns with the urgent need for rapid forest 
monitoring and the detection of declining oak trees. While RPAS-based 
multispectral and thermal imagery presents a viable solution for 
detecting oak decline, the complexities associated with its imple
mentation must be carefully navigated for monitoring functional 
changes. Future research should aim to refine RPAS-based detection 
methods, extend their application across different tree species, improve 
early detection, and integrate them into a multi-scaled approach for 
forest health monitoring. To this end, our approach can be adapted for 
other tree species with similar stress responses and integrated into 
broader forest management strategies, enhancing early intervention 

Fig. 13. Holm-oak and Cork-oak decline overall accuracies and Cohen’s kappa scores for the classification model using RPAS-based models, using all locations for 
both species (top bars) and then segregated by species underneath. 
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capabilities. The scalability of this methodology for extensive forest 
health surveillance, coupled with advancements in machine learning 
and high-resolution remote sensing, will be pivotal in addressing the 
growing challenges posed by climate change and human activities. As 
the pressures of climate change and anthropogenic activities intensify, 
the development of precise, scalable, and cost-effective tools for envi
ronmental monitoring will become more critical. 

5. Conclusions 

This research advances precision forestry by demonstrating the 
effectiveness of miniaturised sensors on RPAS platforms, combined with 
3-D RTM and machine learning, in detecting forest decline. Despite 
spectral limitations, RPAS-based multispectral imagery has proven 
capable of monitoring critical PTs to differentiate stages of decline. And 
thermal data, especially the temperature differential between the tree 
canopy and surrounding air (Tc-Ta), significantly enhances disease in
dicator identification. Tc-Ta and PTs like LAI, derived from HBR, have 
notably improved model accuracy for detecting oak decline incidence 
and severity detection, indicating a modest reduction in OA for DI and a 
marginally greater reduction for DS compared to the model accuracy 
achieved using hyperspectral and thermal datasets. While using hyper
spectral data alone is slightly less accurate than when combined with 
thermal data, integrating multispectral with thermal is vital to ensure 
fair to good kappa for severity and incidence detection. These results 
underscore the need to use PTs and thermal data to assess physiological 
changes from oak decline with RPASs. 

The study confirms the feasibility of detecting oak decline across 
different severity levels, incidence, and oak species using accessible 
technology. It opens avenues for species-specific calibration of RPAS- 
based sensors, paving the way for more accurate detection techniques. 
The differential accuracies between Q. ilex and Q. suber suggest that 
tailored approaches might be required for different species, a consid
eration that could have significant implications for forest health in
terventions. The combined use of RTM and RPAS imagery emerges as a 

crucial approach in vegetation monitoring, enabling the generation of 
recurrent PT maps that enrich our understanding of plant physiological 
conditions and the detection of decline phenomena. 
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Appendix 

Appendix A. Vegetation indices derived from the multispectral imagery bandset  

Vegetation Index Equation 

Normalised Difference Vegetation Index NDVI = (R842 − R668)/(R842 +R668)

Near-Infrared Reflectance of Vegetation NIRV = R842(R842 − R668)/(R842 +R668)

Renormalised Difference Vegetation Index RDVI = (R842 − R668)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(R842 + R668)

√

Modified Simple Ratio 

MSR =

R842

R668
− 1

(R842

R668

)0.5
+ 1 

Optimized Soil-Adjusted Vegetation Index OSAVI = (1+0.16)
R842 − R668

R842 + R668 + 0.16 
Modified Triangular Vegetation Index 1 MTVI1 = 1.2(1.2(R842 − R560) − 2.5(R668 − R560) )

Modified Chlorophyll Absorption Ratio Index 
MCARI = ((R717 − R668) − 0.2(R717 − R560) )

(R717

R668

)

Modified Chlorophyll Absorption Ratio Index 1 MCARI1 = 1.2(2.5(R842 − R668) − 1.3(R842 − R560) )

Modified Chlorophyll Absorption Ratio Index 2 
MCARI2 = 1.5

2.5(R842 − R560) − 1.3(R668 − R560)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R842 + 1)2
−
(
6R842 − 5

̅̅̅̅̅̅̅̅̅̅
R668

√ )
− 0.5

√

Enhanced Vegetation Index EVI = 2.5(R842 − R668)/(R842 +6R668 − 7.5R475 +1)
Gitelson and Merzlyak 1 GM1 = R717/R560 

Transformed Chlorophyll Absorption Ratio TCARI = 3
(
(R717 − R668) − 0.2(R717 − R560)

R717

R668

)

TCARI/OSAVI TCARI/OSAVI =
TCARI
OSAVI 

Triangular Vegetation Index TVI = 0.5(120(R717 − R560) − 200(R668 − R560) )

Simple Ratio Pigment Index SRPI = R475/R668 

Normalized Pigment Chlorophyll Index NPCI = (R668 − R475)/(R668 +R475)

Datt Cab Cx + c Index DCabxc = R668/(3R560R717)

Datt NIR Cab Cx + c Index DNCabxc = R842/(R560R717)

(continued on next page) 

A. Hornero et al.                                                                                                                                                                                                                                



International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103679

14

(continued ) 

Vegetation Index Equation 

Structure Insensitive Pigment Index SIPI = (R842 − R475)/(R842 +R668)

Chlorophyll Reciprocal Reflectance Index 700 CRI700 = 1/R475 − 1/R717 

Modified Chlorophyll Reciprocal Reflectance Index 700 CRI700m = 1/R560 − 1/R717 

Near-Infrared Chlorophyll Reciprocal Reflectance Index 550 RCRI550 = 1/R475 − (1/R560)R842 

Near-Infrared Chlorophyll Reciprocal Reflectance Index 700 RCRI700 = 1/R475 − (1/R717)R842 

Plant Senescence Reflectance Index PSRI = (R668 − R475)/R717 

Lichtenthaler 3 LIC3 = R475/R717 

Photochemical Reflectance Index PRI = (R560 − R475)/(R560 +R475)

Normalised PRI PRIn = PRI/(RDVIR717/R668)

PRI × CI PRIâ¨CI = PRI(R842/R717 − 1)
Relative Greenness Index RGI = R668/R560 

Lichtenthaler 2 LIC2 = R475/R668 

Pigment Specific Simple Ratio A PSSRa = R842/R668 

Pigment Specific Simple Ratio C PSSRc = R842/R475 

Pigment Specific Normalised Difference C PSNDc = (R842 − R475)/(R842 +R475)

Visible Atmospherically Resistant Index VARI = (R560 − R668)/(R560 +R668 − R475)

Anthocyanin Reflectance Index ARI = 1/R560 − 1/R717 

Modified Anthocyanin Reflectance Index mARI = R842(1/R560 − 1/R717)

Appendix B. Ranges of parameters used to perform simulations with the FLIGHT RTM  

Variable Units Acronym Phase 1 Phase 2 

Chlorophyll a + b content μg cm− 2 Cab 10–60 21–33 
Carotenoid content μg cm− 2 Car 1–20 1–7 
Water content Cm Cw 0.013 0–0.03 
Dry matter content g cm− 2 Cdm 0.024 0.003–0.018 
Anthocyanin content g cm− 2 Anth 0 0–6 
Senescence material Fraction Cs 0 0 
Mesophyll structure – N 2.1 2.1 
Leaf area index m2 m− 2 LAI 0–4 0.1–2.5 
Leaf size m LFS 0.05 0.05 
Leaf angle distribution – LAD Spherical Spherical 
Soil reflectance % Soil 3 samples 3 samples 
Crowns shape – CSh Ellipsoid Ellipsoid 
Solar Zenith deg. SZA 36.67 36.67 
Solar Azimuth deg. SAA 115.76 115.76  

Appendix C. Predictive performance of random forest and support vector machine models for determining disease incidence (DI), disease severity (SD) and 
clustering of severity classes with each adjacent level (severities 0–1; severities 1–2; and severities 2–3), using multispectral and thermal RPAS on-board sensor 
data. The best and worst values are highlighted in green and red, respectively. No symbol is shown for accuracy P values above 0.05; * P ≤ 0.05; and ** P ≤
0.01. Darker shades indicate the extremes, while lighter ones denote a secondary rank in each case. 
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