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Resumen 

El nitrógeno (N) y el agua son los factores limitantes más importantes en la 

producción y crecimiento de un cultivo. Conocer el estado fisiológico de un cultivo 

durante sus etapas de crecimiento es crítico para la optimización de la aplicación de 

insumos agrícolas, la predicción del rendimiento y la vigilancia de enfermedades. Desde 

un punto nutricional, el N es un elemento esencial en la producción de clorofila, 

fundamental para el proceso de fotosíntesis, y otros componentes celulares de la planta 

(proteínas, ácidos nucleicos, aminoácidos). Por su parte, el déficit hídrico afecta los 

procesos de crecimiento, rasgos filogenéticos tales como estructura de la hoja y la 

forma, la eficiencia fotosintética, por lo que su detección temprana es sumamente 

importante.  

En la última década, la estimación de parámetros fisiológicos a partir del uso de 

sensores hiperespectrales y térmicos se ha desarrollado ampliamente. A diferencia de 

los sensores multiespectrales de banda ancha, los sensores hiperespectrales se 

caracterizan por un elevado número de bandas estrechas y contiguas a lo largo del 

espectro electromagnético que permiten una mejor descripción de porciones específicas 

del espectro y, por tanto, una mejor cuantificación de rasgos bioquímicos y biofísicos a 

través de modelos físicos de transferencia radiativa. El uso de sensores de imagen de 

tipo hiperespectral y térmico permite cubrir grandes áreas y cuantificar la variabilidad 

espacial de parámetros relacionados con el estado fisiológico del cultivo, siendo una 

alternativa real a los métodos destructivos tradicionales de muestreo en campo con 

medidas foliares. 

La presente tesis doctoral tiene como principal objetivo explorar la contribución 

que tiene la fluorescencia clorofílica (solar-induced fluorescence, SIF) cuantificada 

mediante sensores hiperespectrales a bordo de plataformas aéreas en la cuantificación 

de N y en la estimación de la tasa máxima de carboxilación (Vcmax), como proxy de la 

actividad fotosintética. Para ello, se han utilizado sensores hiperespectrales y modelos 

de transferencia radiativa en ensayos de fenotipado de selección de variedades de trigo 

en condiciones de secano y regadío. En el estudio se evaluaron las relaciones 

fisiológicas obtenidas entre las medidas realizadas en campo con los rasgos 

bioquímicos, biofísicos y fotosintéticos obtenidos mediante inversión de modelos de 

transferencia radiativa (PROSPECT-SAILH y SCOPE), índices espectrales de 
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vegetación obtenidos con bandas situadas entre la región del visible y el infrarrojo de 

onda corta (400-1750 nm), la fluorescencia clorofílica cuantificada mediante el método 

de la profundidad de las líneas de Fraunhofer, e indicadores obtenidos con cámaras 

térmicas sensibles al rango espectral de 8-14 m. 

Dada la importancia de los efectos estructurales en la estimación de parámetros 

biofísicos y bioquímicos mediante sensores remotos de alta resolución, esta tesis 

doctoral ha estudiado los efectos de la heterogeneidad estructural dentro de las copas de 

los árboles. Para ello, se han desarrollado métodos automáticos de segmentación de las 

imágenes obtenidas con sensores aerotransportados hiperespectrales y térmicos de alta 

resolución. El objetivo de este primer trabajo, fue analizar la variabilidad estructural 

dentro del árbol, y su efecto en las relaciones obtenidas entre las medidas fisiológicas de 

fluorescencia clorofílica y los indicadores térmicos. 

En la tesis doctoral se destaca el potencial que tienen las herramientas de detección 

remota para cuantificar la concentración de nitrógeno, detectar el estrés hídrico y 

estimar los rasgos de la fotosíntesis de la planta mediante el uso de imágenes 

hiperespectrales y térmicas combinadas con modelos de transferencia radiativa. Los 

resultados demuestran que la fluorescencia clorofílica natural mejora la estimación de la 

concentración de N y el parámetro Vcmax debido a la estrecha relación que tiene con la 

actividad fotosintética y la detección del estrés hídrico. Los resultados también resaltan 

la capacidad para estimar la tasa máxima de carboxilación utilizando inversiones con el 

modelo SCOPE y SIF cuantificado a partir de imágenes hiperespectrales de alta 

resolución en aplicaciones de fenotipado de alto rendimiento y agricultura de precisión. 
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 Summary 

Nitrogen (N) and water are the most important limiting factors in agricultural yield. 

Knowing the crop physiological status during the growth stages is critical for the 

optimization of resources use efficiency, yield predictions and the detection of diseases. 

Nitrogen is an essential element in the plant pigments (chlorophyll and carotenoids) and 

in the production of proteins, as well as in other plant cellular components such as 

nucleic acids. On the other hand, water deficit induces stomatal closure, affects growth 

rate and phylogenetic traits such as leaf structure and shape. Therefore, water stress 

decreases the photosynthetic rate and yield, and its early detection is critical. 

In the last decade, physiological trait quantification and water stress detection 

methods carried out from hyperspectral and thermal sensors have been widely 

developed. In contrast to the broadband multispectral sensors, the hyperspectral 

technology is characterized by a high number of adjacent narrow bands along the 

electromagnetic spectrum that allow an accurate description of specific portions of the 

spectrum and, therefore, a better quantification of plant physiological traits retrieved 

through hyperspectral imagery. In fact, the use of high-resolution hyperspectral and 

thermal sensors allows covering large areas. This approach provides a reliable tool for 

monitoring the spatial variability of the crop status, being a real alternative to the 

traditional destructive methods of leaf sampling and leaf measurements in the field. 

The main objective of this PhD thesis is to explore the contribution of the solar-

induced chlorophyll fluorescence (SIF) to retrieve nitrogen status and maximum 

carboxylation rate (Vcmax), as a proxy of photosynthesis activity, through the use of 

high-resolution hyperspectral imagery onboard aerial platforms and the use of radiative 

transfer models. The work was carried out in phenotyping trials for wheat selection 

under rainfed and irrigated conditions. In the experimental trial sites, the physiological 

relationships obtained between the field physiological measurements and airborne-based 

remote sensing indicators were evaluated. In this regard, well-known thermal-based 

indicators acquired from high-resolution thermal sensors sensible to spectral range of 8-

14 m and the following indicators from high-resolution hyperspectral were used: i) 

vegetation spectral indices retrieved in the spectral region located at the visible and 

short-wave infrared domain (400-1750 nm);  ii) plant traits derived by radiative transfer 
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model inversions (PROSPECT-SAILH, SCOPE) and iii) airborne-derived SIF retrievals 

by the Fraunhofer method. 

Given the importance of the role played by the canopy structure in the retrieval of 

biophysical and biochemical traits using high-resolution remote sensors, the effects of 

the within tree-crown structural heterogeneity was assessed through the development of 

automatic segmentation algorithms. The objective was to explore the effects of the 

structure on the relationship between leaf physiological measurements and the 

chlorophyll fluorescence retrievals and thermal indicators acquired from the high-

resolution hyperspectral and thermal imagery. 

The PhD thesis highlights the potentials of innovative remote sensing tools for the 

quantification of nitrogen concentration, the detecting water stress and the retrieval of 

plant photosynthetic traits through the use of high-resolution hyperspectral and thermal 

airborne imagery combined with radiative transfer models. The results demonstrate that 

the airborne-quantified solar induced chlorophyll fluorescence improved the estimation 

of N concentration and Vcmax due to the strong relation it has with plant photosynthetic 

activity and water stress detection. Results also highlight the ability to estimate the 

maximum rate of carboxylation using SCOPE model inversions with airborne-

quantified SIF derived from high-resolution hyperspectral imagers for high-throughput 

plant phenotyping and precision agriculture applications. 
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Chapter 1:  Introduction  

1.1 Photosynthesis: light absorption, regulation and its optical signal 

The photosynthesis process starts with the light absorption of the incoming 

photosynthetically active radiation (PAR) captured in the chloroplasts and it involves 

light-dependent and light-independent biochemical reactions on the leaves (Fig. 1.1). 

On average, about 75% of visible irradiance is absorbed by leaves, but a very small 

fraction is converted to organic matter (Tremblay et al., 2011). In the absence of stress 

(e.g. water and N deficiency), the photosynthesis process transforms the 

electromagnetic energy into chemical energy (glucose) using atmospheric CO2, water, 

ATP, NADPH and other molecules. For that, the Ribulose-1,5-biphosphate 

carboxylase/oxygenase (RuBisCO) uses the ATP and NADPH, which are generated into 

membranes of thylakoids, to synthesize RuBP, which reacts with CO2 to reduce the 3-

phosphoglyceric acid (3-PG) into glucose (Fig 1.1). The generation of ATP and 

NADPH used to regenerate RuBP is controlled by the maximum rate of electron 

transport (Jmax), while the latter biochemical reactions to produce glucose are 

constrained by the maximum rate of carboxylation (Vcmax).  

The light energy conversion to chemical energy takes place in multiprotein 

complexes called photosystems. Two types of photosystem are found embedded in the 

thylakoid membrane, the photosystem II (PSII) and photosystem I (PSI). Both 

photosystems have the same basic structure; the light-harvesting complexes (LHC). It 

consists of multiple antenna proteins that contain chlorophyll a, chlorophyll b and 

carotenoids, which surround the reaction centre (RC), where the photochemistry occurs. 

Inside the thylakoid membrane, both PSII and PSI together with the cytochrome 

complex, form the photosynthetic electron transport chain (Figure 1.2). The LHC 

participates in the conversion of light absorbed PAR energy to chemical energy 

catalyzed by the RCs, while the cytochrome b6f complex enables the transfer of 

electrons from PSII to PSI. That loss of energy is used to move hydrogen atoms from 

the stroma to the thylakoid lumen, generating a proton gradient across the thylakoid 

membrane. The proton gradient is used by ATP synthase during the process of ATP 

synthesis (Kramer et al., 2004). 
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Fig. 1.1. The light and dark reactions in the chloroplast. The chloroplast is involved in 

both stages of photosynthesis. The light reaction takes place in the thylakoid discs 

where the H20 is oxidized and O2 is released. The electrons freed up from H20 are 

transferred to ATP and NADPH molecules. The dark reaction occurs in the stroma and 

the cytoplasm. In the Calvin-Benson cycle, ATP and NADPH are used to fix CO2.  

The excess amount of energy absorbed by the light reactions is dissipated into in 

form of chlorophyll fluorescence and heat emission to prevent damages in the 

photosynthetic apparatus. Plants under N deficiency, water stress and other 

environmental constraints modify the relative proportions of absorbed PAR that is used 

for photosynthetic quantum conversion, chlorophyll fluorescence and heat emission. 

Nitrogen deficiency decreases the quantum yield of PSII electron transport, CO2 

assimilation of photosynthesis, the maximal efficiency of PSII photochemistry and 

increases the thermal energy dissipation activity (non-photochemical fluorescence 

quenching, NPQ)  (Jin et al., 2015; Nunes et al., 1993). Flexas and Medrano (2002) 

showed that the decreased RuBP impaired the ATP synthesis in early drought phases, 

reducing the photochemistry and RuBisCO activity at severe water stress. At high 

radiance exposures, there is an increase in levels of the photosystem, cytochrome b/f 

complex, ATP synthase complex, and the amount of RuBisCO enzyme (Walter et al. 

2015). 

The plants have developed effective strategies to regulate the light absorption, one 

of them consist of adjusting the leaf chlorophyll pigment content (Porcar-Castell et al., 

2014). Plants can also induce changes in the anthocyanins content, increasing the 

absorption in leaves and affecting the chlorophyll fluorescence emission and the 
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photosynthesis CO2 assimilation (Hlavinka et al., 2013). Among others, plants adjust 

the internal distribution of chloroplast (Sarvikas et al., 2010), the movements to PSII 

photo-protection (Arena et al., 2008), and changes in surface structures such as 

pubescence in response to drought (Ehleringer et al., 1976; Galmés et al., 2007; Morales 

et al., 2002) for modulating the photosynthetic light absorption. 

 

Fig. 1.2. Scheme of the photosynthetic electron transport chain. The excitation energy 

from absorbed photons in PSII (P680) is transferred to PSI via Cyt b6f complex. The 

energy from photons absorbed by PSI (P700) is used, via ferredoxin (Fd) to reduce the 

NADP+ into NADPH by the action of the ferredoxin-NADP reductase enzyme. Inside 

the thylakoid lumen, protons generated via Cyt b6f complex, plus the ones generated in 

the oxygen-evolving complex (OEC) into PSII, are transferred to chlorophyll stroma 

during ATP synthesis catalyzed by ATP synthase. 

As described before, the CO2 assimilation rate is determined by changes that occur 

during the biochemical and biophysical processes, which include CO2 transport through 

the leaf and stomata, and the biochemical processes. In this regard, our understanding of 

the photosynthetic pathway is crucial to develop advanced methods that combine 

biochemical photosynthesis models and remote sensing tools for retrieving plant traits 

related to assimilation rate and nitrogen. 

1.2 Drought stress on crops 

The changing rainfall patterns and climate trends are causing the frequent onset of 

droughts around the world, reducing the yield of the main crops (Lobell et al., 2011). It 

is estimated that drought stress would be intensified with the global warming, affecting 

arable areas, especially in semi-arid and arid regions. By the end of this century, global 

surface average temperature will increase about 2.6-4.8ºC according to the fifth 

assessment report (AR5) published by the Intergovernmental Panel on Climate Change 

(IPCC, 2014). In addition, drought stress is a worldwide problem that adversely 
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constraint the global crop production, food security, infrastructure and agricultural 

incomes, as well as including shifts in the production areas of food and non-food crops 

around the world.  

Drought stress is a complex physical-chemical process and one of the most 

important abiotic factors that cause a substantial decline in crop yields through negative 

impacts on plant growth, physiology, and reproduction (Barnabás et al., 2008). Under 

drought conditions, water deficits occur in crops when the evaporative demand exceeds 

the supply of soil water (Slatyer, 1967). Water stress is characterized by reduction of 

water content, turgor, water potential, wilting, closure of stomata, transpiration, CO2 

assimilation and decrease in cell enlargement and growth (Hsiao, 1973). Drought stress 

affects plant water status by decreasing the water potential and the water content in 

leaves. In addition, under severe water stress conditions, the plants halt the 

photosynthesis process, metabolism disturbance and finally, death occurs. The plant 

response to water stress occurs at several levels, according to the intensity and the 

duration of water stress, as well as on the growth stage of the crop. Water stress is 

accompanied by heat stress that causes changes at molecular, morphological, 

physiological and biochemical levels (Barnabás et al., 2008; Shao et al., 2008).  

In water stress conditions, the stomatal closure limits water loss by evaporation, and 

reduces the CO2 input from the atmospheric to the mesophyll, reducing the crop 

photosynthetic capacity and the synthesis of ribulose bisphosphate (RuBP) (Gimenez et 

al., 1992; Medrano et al., 1997). Under these conditions, the photorespiration increases 

due to the lower CO2:O2 ratio and the enzyme RuBisCO has a higher affinity for O2 

than CO2. Therefore it inhibits the photosynthesis activity (Boyer, 1976).   

The water deficiency in crops has a negative effect on photosystems, the electron 

transport system and CO2 reduction pathways (Lamaoui et al., 2018) that may lead to a 

reduction in the overall photosynthetic performance. The stress-induced stomatal 

closure reduces the CO2 availability into leaves, thereby decreasing CO2 assimilation as 

well as inhibition of key photosynthetic enzymes and ATP synthases (Tezara et al., 

1999; Zlatev and Cebola Lidon, 2012). The decrease in photosynthesis activity is also 

constrained by the inhibition of the processes in the Calvin cycle (Tezara et al., 1999), 

which occurs inside the chloroplasts. Under severe drought, the RuBisCO activity 

(Parry et al., 1993, 2002) and several non-stomatal effects are also affected (Medrano et 
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al., 1997; Reddy et al., 2004), such photophosphorylation process (Meyer and Genty, 

1999), the RuBP regeneration (Lawlor and Cornic, 2002), and the ATP synthesis 

(Tezara et al., 1999). In addition, drought stress affects mesophyll metabolism (Lawlor 

and Cornic, 2002), becoming progressively more important with increasing water 

deficiency (Gimenez et al., 1992).  

The water stress also inhibits the chlorophyll synthesis and increases the production 

of xanthophyll pigments, as a protective role within the leaves under severe water stress. 

The changes in photosynthesis activity associated with drought stress have also been 

related to changes in the de-epoxidation state of the xanthophyll cycle through non-

photochemical quenching (Evain et al., 2004; Nichol et al., 2006). Water stress linked to 

other co-limiting factors (e.g. heat stress, high irradiance exposures and nutritional 

stress) modifies the relative proportions of absorbed light energy that are used for 

photosynthetic quantum conversion, chlorophyll fluorescence and heat emission. Under 

drought stress, the CO2 assimilation is reduced, changing the solar-induced chlorophyll 

fluorescence (SIF) emission (Flexas et al., 2000, 1999; Flexas and Medrano, 2002) and 

heat dissipation. 

1.3 Nitrogen deficiency in crops 

Nitrogen (N) is the major limiting factor of crop yield and biomass after water 

deficiency. N is an essential element for plant growth, crop production, chlorophyll 

production and other plant cell components (Johnson, 2001; Bonfil et al., 2004; Zhu et 

al., 2008; Muñoz-Huerta et al., 2013) and it drives the canopy carbon assimilation (Li et 

al., 2014). An adequate N supply is crucial for the maintenance of plant biochemistry 

quality (Nobel, 2009) and enhances yield production and grain quality. In addition, N 

management has economic and environmental implications (Bonfil et al., 2004).Plants 

mainly absorb nitrogen from the soil in the form of ammonium (NH4
+
) and nitrate 

(NO3
−
). Insufficient application of N reduces plant growth and grain yield (Corp et al., 

2003). On the other hand, nitrogen overfertilization is the primary reason for low N-use 

efficiency and negative environmental impacts on air and water quality as well as on 

biodiversity (Lu and Zhang, 2000). In particular, excessive nitrogen supply causes 

significant effects on the environment, such as NO3
-
 leaching that greatly influence 

eutrophication and groundwater contamination (Inoue et al., 2012), as well as the 

nitrous oxide (N2O) emissions, which contributes to global warming into greenhouse 
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gas emissions (Muñoz-Huerta et al., 2013; Chen, 2015) and can also  damage human 

health through impacts on the air quality. In this regard, adequate N management is 

needed to improve the quality of life and reduce health care costs worldwide. In 

conclusion, optimized N fertilization programs are required to guide precision diagnosis 

of soil status and efficient crop management. 

When crops face N deficiency, different plant strategies have been developed to 

optimize uptake nitrogen from the soil. The first crop strategy relies on an increase in 

gene expressions encoding nutrient-specific root transporters (Amtmann and 

Armengaud, 2009; Gojon et al., 2009; Masclaux-Daubresse et al., 2010; Maillard et al., 

2015). This molecular response to nutritional deficiency is coupled with other plant 

strategies, such as growth and increased branching of roots for mineral nutrients uptakes 

(Giehl et al., 2014; Gruber et al., 2013), the root exudation of organic compounds for 

nutrient mobility (Maillard et al., 2015) and the remobilization of short or mid-term 

storage of N within the plant through the phloem, which occurs during vegetative and 

reproductive stages (Malagoli et al., 2005). N remobilization, which is correlated with 

foliar senescence, makes nutrients available for expanding leaves and younger organs, 

and contributes to increase the nitrogen use efficiency (Himelblau and Amasino, 2001). 

However, during the N remobilization, the photosynthesis activity is reduced due to the 

degradation of the enzyme RuBisCO, being the main N source of nitrogen for 

remobilization to other organs (e.g. seeds at the reproductive stage) during the 

senescence (Masclaux-Daubresse et al., 2010).  

N deficiency induces changes in many physiological processes. Approximately the 

75% of the total N content in leaves is contained in chloroplast proteins (Fig. 1.1), 

mainly in the RuBisCO and in chlorophyll binding proteins (Johnson, 2001; Rodriguez 

et al., 2006). Other studies found that in the chloroplast thylakoids about the 27% of 

total nitrogen is present in the RuBisCO (Makino et al., 1984) . Numerous works have 

shown a strong correlation between N and both RuBisCO (Evans, 1983) and 

chlorophyll content (Croft et al., 2017; Haboudane et al., 2002). N deficiency 

significantly induces a reduction in the photosynthetic capacity of leaves, because the 

chloroplast thylakoids and the Calvin-Benson cycle proteins represent the majority 

content of nitrogen in leaves. Evans and Terashima (1987) indicated that the amounts of 

thylakoid components per unit leaf are affected by nitrogen deficiency. However, as 

they showed the N deficiency does not alter the properties of the thylakoid membranes. 
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These and other studies have shown that chlorophyll content and RuBisCO content per 

unit leaf area decreased under N deficiency. Therefore, the partial electron transport rate 

through photosystem II (PSII) and the RuBisCO activity is affected by the N content per 

unit leaf area (Evans and Terashima, 1987; Seemann et al., 1987). Khamis et al. (1990) 

also demonstrated that the N deficiency had a small effect on photosynthetic quantum 

yield and a large effect on the light-saturated photosynthetic rate. In general, the 

nitrogen deficiency affects PSII photochemistry, lowering the quantum yield of PSII 

electron transport, the photochemical efficiency of PSII, and therefore the assimilation 

rate  (Jin et al., 2015; Lu and Zhang, 2000).  

1.4 Crop water stress and the infrared thermometry methodologies 

Water scarcity is a major issue in many agricultural crops. The efficient use of 

water is a key requisite to decrease the share of freshwater diverted to agriculture and 

release water resources to food production, ecosystem function, and others society 

sectors, where demand is increasing (Jury and Vaux, 2007). Crop transpiration regulates 

the canopy energy and water balance, being the major cooling mechanism of crop 

canopies. It is well known that the crop transpiration is limited by the intercepted 

radiation, the air temperature, the crop-air vapour pressure deficit, soil water content 

and the stomatal conductance. Given that the canopy temperature and the transpiration 

process are closely related, measuring plant canopy temperature enables the assessment 

of crop water and transpiration status.  

In recent years, water stress indicators have been successfully applied in many 

crops to monitor water status. In this regard, remote sensing technologies have been 

successfully demonstrated to have the capacity for monitoring water status and 

transpiration processes across entire fields (Meron et al., 2010; Gonzalez-Dugo et al., 

2015; 2019). These studies and others have demonstrated that canopy temperature 

retrievals are reliable remote sensing tools and these retrievals have the advantage of 

being non-destructive as compared to traditional measures. Until the infrared 

thermometry devices became available, most plant temperature measurements were 

carried out with sensors on, or embedded in, leaves.  Monteith and Szeicz (1962) and 

Tanne (1963) were among the first to estimate crop temperature using infrared 

thermometry technology. Ehrler (1973) using thermocouples embedded in cotton 

leaves, found that the relation found between leaf-air temperature and the air vapour 
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pressure deficit is linear. Idso et al. (1977) and Jackson et al. (1977) used the difference 

between canopy temperature (Tc) derived from infrared thermometry and air 

temperature (Ta) as an indicator of crops water status in wheat. These researches related 

the thermal-based indicator with yield and water requirements. Later, Idso et al. (1978) 

and Jackson et al. (1981) developed the concept of the crop water stress index (CWSI), 

as a thermal-based stress indicator using hand-held thermal infrared thermometers. The 

CWSI is based on the difference between canopy temperature and air temperature (Tc-

Ta), normalized by the vapour pressure deficit (VPD), and is inversely related to 

transpiration and stomatal conductance (Jackson et al., 1981). The CWSI is calculated 

using two boundary conditions: i) when the transpiration is completely halted (referred 

as upper limit) and ii) when the canopy is transpiring at its potential rate (referred as 

non-water-stressed baseline or lower limit).  

  

Fig. 1.3. Canopy-air temperature difference vs. air vapour pressure deficit (VPD). The 

upper and lower limits of the canopy-air temperature difference are represented in red 

and blue colours respectively. 

These initial works that started in the 1970s and 1980s established the foundations 

for monitoring crop water stress using infrared thermometry technology. However, 

these works were site-specific and not useful for monitoring the spatial distribution of 

water status within a field, reducing decision-making procedures allowing farmers to 

maximize the water use efficiency.  

In the context of thermal imaging for detecting water stress, the recent advance on 

remote sensing technologies offers the potential to retrieve thermal-based indicators 

from airborne thermal imaging and map spatial variability of water status. Sepulcre-

Cantó et al. (2006) showed that water stress can be detected at the tree crown level and 
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at the orchard level using high spatial resolution airborne thermal imagers. In addition, 

Sepulcre-Cantó et al. (2007) demonstrated that remote sensing estimates of tree crown 

temperature were well correlated to yield and fruit quality indicators under different 

irrigation regimes of commercial orchards. Many studies have shown that high-

resolution thermal imagery acquired from manned and unmanned aerial platforms 

enable the detection of water stress, showing accurate correlations with indicators of 

crop water status such as stomatal conductance and leaf water potential (e.g. Zarco-

Tejada et al., 2013a; Gonzalez-Dugo et al., 2015; Bellvert et al., 2016). Other studies 

have showed that canopy temperature can be used to quantify the overall plant water 

status for low and moderately stressed crops (e.g. González-Dugo et al., 2006). Hence, 

thermal-based CWSI is a valuable tool to assess the crop water status and provides 

thermal mapping at high-resolution over the entire field (Taghvaeian et al., 2012; 

Gonzalez-Dugo et al., 2014). 

1.5 Methods for sensing nitrogen status 

Assessing crop N status at the field scale has become one critical goal to ensure 

more precise N application. Traditionally, the nitrogen content is estimated using tissue 

analysis such as Kjeldahl digestion and Dumas-combustion. However, those standard 

methods are expensive, time-consuming, need complex chemical analysis and require 

destructive crop sampling (Muñoz-Huerta et al., 2013). In fact, these analyses are not 

applicable for continuous monitoring of nitrogen status at the field scale. Therefore, 

finding alternative tools designed for the spatial monitoring of N status based on plant 

optical properties could be potentially used for large-scale assessment as an alternative 

to traditional time-consuming methods. 

Remote sensing tools have received much attention as a fast and non-destructive 

method to estimate plant traits to determine plant constituents, including crop N status 

(Blackmer et al., 1994; Li et al., 2008; Silva-Perez et al., 2018). At leaf scale, the 

integrating spheres coupled with spectrometers have allowed characterizing the leaf 

optical properties (reflectance and transmittance). Subsequently, handheld proximal 

sensing systems have been designed to measure the reflectance and transmittance 

properties of leaves, and the emission of the chlorophyll fluorescence. The leaf 

reflectance devices, such as PolyPen RP-400 (Photon Systems Instruments, Brno, Czech 

Republic), designed to measure the leaf reflectance within the visible and near-infrared 
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(NIR) regions has been widely used to characterize optical plant traits and N deficiency 

using spectral indices. Other proximal sensing tools, such as SPAD-502 (Minolta Corp., 

Ramsey, NJ, USA), have been widely developed to measure the leaf chlorophyll content 

as a proxy for crop N status (Uddling et al., 2007; Cortazar et al., 2015). Other optical 

sensors designed to measure chlorophyll and polyphenols compound in leaves through 

chlorophyll fluorescence emission, such as the Dualex and Multiplex sensors 

(FORCE-A, Orsay, France) have been used to detect nutritional stress (Tremblay et al., 

2012; Quemada et al., 2014) and disease symptoms (Zarco-Tejada et al., 2018). Thoren 

and Schmidhalter (2009) developed a laser optical sensor capable of measuring 

chlorophyll content as a proxy for N status, via the fluorescence ratio emission using 

690 nm and 730 nm bands from near distances (3-4 meters). Other studies have used 

fluorometers to relate the chlorophyll fluorescence with photosynthesis plant traits 

(Flexas et al., 2000; Zarco-Tejada et al., 2016; Carmo-Silva et al., 2017).  

At canopy scale, remote sensing methods have focused on measuring spectral 

reflectance for the quantification of nitrogen through green and particularly red-edge 

reflectance regions, due to the strong correlation between the N and chlorophyll content 

(Johnson, 2001; Gitelson et al., 2005; Zhu et al., 2008; Silva-Perez et al., 2018). By 

providing both spatial and temporal information, remote sensing sensors may serve as a 

cost-effective source of data for fertilizer N applications. Remote sensing has a proven 

ability to provide spatio-temporal measurements of canopy properties, and it has been 

recognized as a potential method for N estimation through plant trait retrievals related to 

physiology and biochemistry. 

More advanced remote sensing technology relies on hyperspectral sensors onboard 

aerial platforms (unmanned/manned) to acquire canopy reflectance over a large number 

of narrow wavebands, generally with bandwidths less than 10 nm. With narrow bands, 

reflectance and absorption features of specific plant traits related to physiology and 

biochemistry can be retrieved, thus making progress on the quantification of nitrogen. 

Satellite sensors, such as QuickBird and Sentinel-2/3, have been proposed for the 

estimation of chlorophyll and N content using reflectance indices and the red-edge 

spectral bands (Bausch et al., 2008; Wong and He, 2013). However, the coarse spatial 

resolution of these satellite sensors, as well as the limited number of spectral bands 

hinders the independent retrieval of N in the context of precision agriculture and crop-

monitoring studies. 
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Several methods have been applied to estimate N and other biophysical parameters 

at leaf and canopy scales from their optical properties. Simple empirical relationships 

using spectral indices calculated from high-resolution hyperspectral imagery are still the 

dominant method used to estimate nitrogen using the visible and near-infrared (NIR) 

(Stroppiana et al., 2009; Wang et al., 2012; Li et al., 2014) and the shortwave-infrared 

(SWIR) regions (Serrano et al., 2002; Ferwerda et al., 2005; Herrmann et al., 2010; 

Pimstein et al., 2011; Gnyp et al., 2014; Mahajan et al., 2016). However, the nitrogen 

estimation at canopy level from remote sensing requires appropriate modelling 

strategies using radiative transfer models (RTM) due to the large contribution of soil, 

structural and shadow effects in the canopy reflectance.  

In recent years, chlorophyll fluorescence quantification has received increasing 

attention in the context of global monitoring of crop photosynthesis traits, potentially 

providing improvements for the estimation of nitrogen (Tremblay et al., 2012). The use 

of chlorophyll fluorescence emission retrievals at leaf and canopy scale has been widely 

demonstrated in numerous studies for detecting N deficiency (Schächtl et al., 2005; 

Corp et al., 2009; Tremblay et al., 2012) and effects of water stress (Flexas et al., 

1999,2000, 2002; Zarco-Tejada et al., 2013b) and its use in the context of plant 

phenotyping is discussed in the next section. 

1.6 Solar-induced chlorophyll fluorescence  

Plant stress modifies the relative proportions of absorbed light energy that is used 

for photosynthetic quantum conversion, chlorophyll fluorescence and heat emission. 

Understanding processes that take over the energy partitioning in PSII is essential to 

assess photosynthetic CO2 assimilation with chlorophyll fluorescence. The solar-

induced chlorophyll fluorescence emission (SIF) occurs when the incoming light energy 

is absorbed by chlorophyll molecules in the antenna of PSII. In the absence of stress, the 

energy is effectively used by photochemistry, reducing the fluorescence yield; this 

de-excitation pathway is referred to photochemical quenching (PQ) of fluorescence. 

This initial level, called Fo, attesting the QA electron acceptor is fully oxidized. In 

contrast, when the reaction centres are fully occupied fluorescence is no longer 

quenched and shows its maximum level (Fm). Therefore, the QA is completely reduced 

and an increase in photochemical efficiency of PSII (Fv/Fm; where Fv = Fm- Fo) is 

yielded. This increase in fluorescence is associated with the decay of non-
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photochemical quenching (NPQ). As the energy is dissipated at longer wavelengths 

within a very short time, the de-excitation of this energy is mainly attained through 

three competing processes: photochemistry, chlorophyll fluorescence emission, and 

non-radiative thermal energy dissipation (NPQ). These three energy dissipation 

mechanisms compete for excitation energy and are inter-dependent. In fact, the 

competing processes respond to changing physiological and environmental conditions. 

By measuring the chlorophyll fluorescence emission using remote sensing methods, we 

can retrieve information about changes in photochemistry efficiency and thermal 

dissipation.  

The amplitude of SIF typically spans within the 650–800 nm range in the NIR 

spectral region depending on plant physiological traits, environmental stress and canopy 

structure. The chlorophyll fluorescence spectrum is composed of two peaks located at 

685 nm and 740 nm (Fig. 1.4); the first one is mainly produced by the fluorescence 

emission of PSII, while the other maximum, located in the NIR region, is attributable to 

both PSI and PSII (Baker, 2008). In general, SIF is mainly driven by PSII because the 

contribution of fluorescence from PSI is generally weak, thus SIF at 685 nm is expected 

to yield a stronger relation with photosynthesis activity (Genty et al., 1989; Palombi et 

al., 2011). 

 

Fig. 1.4. Chlorophyll fluorescence signals with contributions from photosystem I (PSI) 

and photosystem II (PSII) simulated using the Soil-Canopy Observation of 

Photosynthesis and Energy (SCOPE) model. Blue and green lines indicate the PSI 

contribution of the photosystem I (PSI) and photosystem II (PSII), whereas the black 

lines indicate the total SIF (PSI + PSII contributions). The peak at 685 nm mostly 
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originates from PSII, while the peak at 740 nm originates from both PSI and PSII. The 

grey highlighted area is the absorption features due to oxygen in the O2-A absorption 

region at 760 nm used for the Fraunhofer method to extract the chlorophyll fluorescence 

emission. 

The total amount of chlorophyll fluorescence emission is relatively small compared 

to the incoming radiation (~1-2% of the total incoming light; Frankenberg and Berry 

2018). Nevertheless, with the recent advance in imaging spectroscopy technology and 

remote sensing data processing, the chlorophyll fluorescence emission can be quantified 

at leaf and canopy scales.  

The main methods used to measure chlorophyll fluorescence are based on i) pulse 

amplitude modulation (PAM) fluorometers systems or laser-induced fluorescence 

transient (LIFT) methods (active methods) and ii) the retrieval of SIF using passive 

methods. More generally, the active methods are applied at the leaf level, whereas 

passive methods are being commonly applied at the canopy level. The active methods 

allow the estimation of chlorophyll fluorescence yield parameters, such as Fo,  Fm, Fv 

and steady-state chlorophyll fluorescence (Fs) through the use of an artificially 

modulated light to induce the leaf fluorescence signal. However, active sensors provide 

relative values of chlorophyll fluorescence yield that cannot be related to absolute 

radiometric values (Quick and Horton, 1984). In addition, active sensors have a limited 

application for monitoring at field scales, due to the spatial scale of operation which 

ranges from several centimetres to meters (Kolber et al., 2005; Amoros-Lopez et al., 

2008). Alternatively, passive methods estimate SIF by combining solar irradiance and 

reflected radiance by vegetation through the use of atmospheric O2 absorption features 

(Fig. 1.5). Drawing on the molecular oxygen absorption features on the solar spectrum, 

the European Space Agency (ESA) planned the FLuorescence EXplorer (FLEX) 

mission to tackle two main goals: i) to improve the methodologies for vegetation 

fluorescence retrievals from spaceborne high‐resolution spectrometry and ii) to improve 

the current knowledge of vegetation chlorophyll fluorescence retrievals and its relation 

with the photosynthetic traits that drive the photosynthesis processes at global scales. 

Most of the existing methods for retrieving SIF at ground-, airborne- and satellite 

levels are mainly based on the Fraunhofer Line Discrimination (FLD) principle (Plascyk 

and Gabriel, 1975). The FLD method is based on using the narrow dark lines present in 

the solar spectrum where the solar irradiance is attenuated by the effect of atmospheric 

O2 absorption. Although, the solar irradiance exhibits several absorption features, the 
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O2B and O2A absorption bands located at 687.0 and 760.6 nm respectively, have been 

used to quantify chlorophyll fluorescence. 

𝑆𝐼𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 =
𝐿𝑖𝑛𝐸𝑜𝑢𝑡− 𝐿𝑜𝑢𝑡𝐸𝑖𝑛

𝐿𝑖𝑛−𝐸𝑜𝑢𝑡
     1.1 

The FLD method estimates SIF by comparing the radiance (L) and irradiance (E) 

measured at a wavelength inside and outside the O2 absorption feature (Eq. 1.1) 

according to the methods described (Moya et al., 2004; Meroni and Colombo, 2006; 

Damm et al., 2011). Recent studies have demonstrated that the FLD approach, used to 

quantify the chlorophyll fluorescence using two (FLD2) or three bands (FLD3) around 

the O2A absorption features is suitable for hyperspectral imagery with large spectral 

oversampling (1.85 nm sampling interval) and wider spectral bandwidths (Damm et al., 

2015; Zarco-Tejada et al., 2012; 2016).   

 

Fig. 1.5. The atmospheric irradiance (black) and the canopy radiance spectra (blue) used 

for fluorescence quantification with the 760 nm O2-A FLD in-filling method. The O2-A 

and O2-B absorption features are marked with grey rectangles. 

With the advent of imaging spectroscopy, SIF retrievals using remote sensing 

technologies have become a new area of research (Meroni et al., 2009, 2010) and 

opened a new perspective to assess photosynthesis at global (Frankenberg et al., 2011; 

Joiner et al., 2011; Koffi et al., 2015; Norton et al., 2017) and local scales (Pérez-Priego 

et al., 2005; Daumard et al., 2012). In fact, these advances in spectroscopy technology 
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opens up opportunities to use SIF emissions as an indicator of photosynthetic activity 

(Zhang et al., 2014; Zarco-Tejada et al., 2016), nutritional status (Tremblay et al., 2012; 

Quemada et al., 2014; Cendrero-Mateo et al., 2016) and gross primary productivity 

(Damm et al., 2015; Koffi et al., 2015; Yang et al., 2015; Norton et al., 2017; Smith et 

al., 2018). In addition, chlorophyll fluorescence is well-related to electron transport and 

is an indirect proxy with Vcmax through the accurate relationships found with 

chlorophyll content and net photosynthesis (Croft et al., 2017; Zarco-Tejada et al., 

2016). Therefore, having robust and non-destructive tools derived from remote sensing 

for monitoring photosynthesis, as the underlying process for plant growth, remains a 

challenge in the agricultural context. 

1.7 Radiative transfer modelling 

There is a growing interest in developing approaches to quantify photosynthetic 

capacity, biochemical, structural, and physiological traits through satellite and airborne 

hyperspectral imagery. This increasing interest is due to recent advances in imaging 

spectroscopy, which offers the potential to retrieve plant traits linked to photosynthetic 

activity through leaf pigments and absorbed PAR radiation. The remote estimation of 

leaf biochemical traits from satellite, manned and unmanned platforms using 

multispectral and hyperspectral sensors have been the subject of recent efforts aiming at 

better monitoring of crop processes (e.g. photosynthesis, evapotranspiration, 

respiration) and ecosystem functioning. Previous efforts using remote sensing products 

to improve modelled estimates of carbon fluxes from terrestrial ecosystems have 

focused on using vegetation indices such as the structure-sensitive normalized 

difference vegetation index (NDVI) (Rouse et al., 1973) as an indicator of canopy 

greenness, and the photochemical reflectance index (PRI) (Gamon et al., 1992) related 

to the xanthophyll pigments cycle. Remote sensing reflectance has been used to 

establish relationships between photosynthetic status and plant traits, which shows that 

it is a useful tool for retrieving photosynthetic capacity due to its strong relation to 

chlorophyll content. In particular, non-parametric regression methods such as partial 

least squared regressions (PLSR) have been widely proposed for estimating chlorophyll 

content (Yu et al., 2015; Wang et al., 2017), and machine learning algorithms for 

estimating nitrogen concentration (Huang et al., 2004). 
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The development of statistical models between leaf reflectance and biochemical 

traits are still the dominant approach. Nonetheless, simple vegetation indices have been 

widely used to infer information about Vcmax (Houborg et al., 2013; Alton, 2017), 

canopy properties (Gamon et al., 1995) and plant traits related to plant physiology and 

leaf biochemistry: i) chlorophylls pigments (Haboudane et al., 2002; Zarco-Tejada et 

al., 2004); ii) carotenoids (Gitelson et al., 2002; Hernández-Clemente et al., 2012), iii) 

anthocyanins (Gitelson et al., 2006), iv) nitrogen content (Herrmann et al., 2010) and 

other macronutrients (Mahajan et al., 2014; Pimstein et al., 2011); v) water content 

(Clevers et al., 2010; Colombo et al., 2008) and vi) lignin and cellulose (Kokaly, 1999). 

However, these simple empirical methods are usually not effective due to the lack of 

robustness and transferability as they are usually specific in time, crop and field. Hence, 

the limitations of these empirical remote sensing approaches can be partly solved by 

physically-based radiative transfer models (RTM).  

RTMs enable the simulation of the light absorption and scattering inside vegetation 

canopies accounting for leaf biochemical composition and canopy structural properties 

(Jacquemoud et al., 2009; Verhoef and Bach, 2007). Physical-based models enable a 

better understanding of the interaction of light with plants at both leaf and canopy 

levels. Physically based models offer advantages compared to statistical models built 

with narrow-band indices (Jacquemoud and Baret, 1990; Zarco-Tejada et al., 2004; 

Schlerf and Atzberger, 2006; Wang et al., 2015) and have been widely proposed for 

retrieving plant traits: i) chlorophyll and nitrogen content (Clevers and Kooistra, 2012; 

Wang et al., 2015); ii) carotenoid content (Hernández-Clemente et al., 2012), iv) water 

and dry matter content (Jacquemoud and Baret, 1990), v) structural parameters, such as 

leaf area index (Koetz et al., 2005; Sehgal et al., 2016), and vi) photosynthesis-related 

traits (Dechant et al., 2017; Zhang et al., 2014; Silva-Perez et al., 2018). In recent years, 

the combination of both approaches has successfully begun to develop through the use 

of hybrid methods (Verrelst et al., 2015a; Upreti et al., 2019). These methods exploit the 

RTM and non-linear non-parametric regression algorithms for the retrieval of 

biophysical traits using machine learning regression algorithm, PLSR or Gaussian 

processes regression (GPR). 

At the leaf level, PROSPECT (Jacquemoud and Baret, 1990) is one of the most 

widely used RTMs for retrieving leaf biophysical traits and simulating leaf directional 

hemispherical reflectance and transmittance. PROSPECT is a radiative transfer model 
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based on Allen's generalized "'plate model" (Allen et al., 1969, 1970), that represents 

the optical properties of plant leaves over the solar spectrum from 400 nm to 2500 nm. 

PROSPECT is based on the representation of the leaf as one or several absorbing plates 

with rough surfaces giving rise to isotropic scattering. The biochemical parameters 

included in PROSPECT model are the chlorophyll content (Cab), carotenoid content, dry 

matter (Cm), water content (Cw) and the leaf internal structure parameter (N). The 

PROSPECT model estimates the scattering process using the leaf structure parameter N 

and the spectral refractive index (n). Whilst, the absorption process is modeled using 

leaf chlorophyll concentration, water content, and the corresponding specific spectral 

absorption coefficients (KCab and Kw). In addition, PROSPECT assumes that the major 

light absorption is entirely caused by chlorophylls, although carotenoids (including 

xanthophyll pigments) and anthocyanins may be significant in greening or senescing 

leaves.  

Several versions of PROSPECT model have been released since 1990. The 

PROSPECT-5 model (Feret et al., 2008) included separation between chlorophyll and 

carotenoids. This pigments separation performed in PROSPECT-5 can significantly 

improve the remote sensing capacity to retrieve photosynthetic rates and more accurate 

monitoring of vegetation stress (Jacquemoud et al., 2009). The latest version of 

PROSPECT model, PROSPECT-D (Féret et al., 2017) enables the simulation of leaf 

optical properties using the three main pigments (chlorophylls, carotenoids, and 

anthocyanins) that control the leaf optical properties, taking into account the plant 

lifecycle (leaf emergence, anthocyanin response to stress responses and leaf 

senescence). 

The optical plant canopy properties largely depend on the optical properties of 

leaves, canopy scattering, and soil background. The simulation of reflectance at canopy 

level is the result of coupling different optical simulation models that take into account 

the leaf optical biochemical properties and the structure and composition of the canopy. 

One of the earliest canopy reflectance model was the scattering by arbitrary inclined 

leaves (SAIL) model (Verhoef, 1984, 1985). The SAIL model is an extension of the 1-D 

model developed by (Suits, 1971) to simulate the bidirectional reflectance at plant 

canopies, by solving the scattering and absorption of upward-downward radiative 

fluxes. The main biophysical variables included in SAIL model are the leaf area index 

(LAI), leaf inclination distribution function (LIDF), hot spot parameter, soil reflectance 



 

 

34 Chapter 1 

and the viewing and solar zenith angles. Since the SAIL model was proposed, 

subsequent models have been developed to describe the vertically heterogeneity of the 

canopies, including multi-layer and multi-element one-dimensional models such as 

GeoSAIL (Verhoef and Bach, 2003). Advances in numerical approaches have allowed 

developing optimized versions of the SAIL model, such as 4SAIL (Verhoef et al., 

2007). Other investigations coupled SAIL and geometric models to simulate 

discontinuous tree canopies using the shadowed and illuminated components, 

incorporating crown clumping, such as GeoSail (Huemmrich  2001). Besides this 

increase of complexity and new developments, SAIL has been adapted to include the 

fluorescence emission, such as in FLSAIL (Rosema et al., 1991), FluorSAIL (Miller et 

al., 2005), and the thermal emission in 4SAIL (Verhoef et al., 2007). 

SAILH has been coupled with PROSPECT to derive PROSAIL (Baret et al., 1992) 

to reduce the dimensionality of the inverse problems and to assess the retrievals of plant 

traits at leaf and canopy levels. Later, PROSPECT has been widely coupled with most 

subsequent versions of SAIL that have been developed to characterize the heterogeneity 

within the canopy such as GeoSAIL (Verhoef and Bach, 2003), 2M-SAIL (le Maire et 

al., 2008), and 4SAIL2 (Verhoef and Bach, 2007). It has been also integrated into other 

canopy reflectance models such as i) DART (Discrete Anisotropic Radiative Transfer) 

for simulations in heterogeneous 3D-scenes (Gastellu-Etchegorry et al., 1996), ii) 

SPRINT (Spreading of Photons for Radiation INTerception) developed by Goel and 

Thompson (2000) and it has been used for chlorophyll content estimation through 

Monte Carlo model (Zarco-Tejada et al., 2004), iii) coupled FluorMODleaf+ FluorSAIL 

(FLIM; Forest Light Interaction Model) for assessment of tree-crowns components on 

the quantification of the fluorescence signal (Zarco-Tejada et al., 2013), iv) FLIGHT 

model (three-dimensional Forest LIGHT interaction) for estimation of forest fire fuel 

properties (Kötz et al., 2004), v) FluorWPS model (Fluorescence model with Weighted 

Photon Spread method) to compute sun-induced chlorophyll fluorescence at 3-D canopy 

(Zhao et al., 2016) and the vi) FluorFLIGHT 3-D to account for forest structure 

(Hernández-Clemente et al., 2017). 

 The retrieval of plant traits related (Vcmax, Jmax) to photosynthetic capacity 

derived from satellite and hyperspectral data combined with terrestrial biosphere models 

(TBMs) simulations are increasingly emerging. TBMs are the principal approach for 

providing accurately estimation of terrestrial carbon uptake at local and global scales 
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(Beer et al., 2010). In recent years, progress has been made to quantify photosynthetic 

capacity from hyperspectral and satellite imagery, enabling the development of TBMs at 

new spatial scales for estimating gross primary productivity by combining satellite-

based SIF retrievals with the Soil Canopy Observation, Photochemistry and Energy 

fluxes (SCOPE) model developed by van der Tol et al. (2009) (Koffi et al., 2015; Zhang 

et al., 2018, 2014). 

Traditionally, Vcmax and Jmax are estimated by fitting the photosynthesis 

biochemical model to gas-exchange measurements (Sharkey et al., 2007; Walker et al., 

2014). Progress in TBMs has allowed to successfully estimate top-canopy 

photosynthetic capacity (Vcmax and Jmax) through chlorophyll fluorescence emission 

retrieved from satellites (Alton, 2017; Koffi et al., 2015; Zhang et al., 2018), imaging 

spectroscopy (Serbin et al., 2015) and spectrometers (Dechant et al., 2017). TBMs 

typically include a photosynthesis scheme coupled with leaf and canopy RTMs and 

balance energy models. In particular, SCOPE simulates reflectance and fluorescence 

emission of homogeneous vegetation canopies taking into account the leaf biochemical 

and biophysical traits, the photosynthesis process, vegetation structure, and micro 

meteorological conditions.  

New advances in SCOPE have enabled to simulate spectral and bidirectional 

reflectance, fluorescence, and photosynthesis on vertically heterogeneous vegetation 

canopies, such as the subsequent mSCOPE model (Yang et al., 2017). The inclusion of 

vertical heterogeneity of leaf properties in SCOPE promise a better understanding of the 

relations between remote sensing data and plant functional traits. For photosynthesis, 

SCOPE uses the biochemical photosynthesis models based on the Farquhar–von 

Caemmerer–Berry (FvCB) model (Farquhar et al., 1980) for C3, the Caemmerer model 

for C4 (Caemmerer, 2000) and the coupled photosynthesis-stomatal model for C3 

(Collatz et al., 1991) and C4 (Collatz, G., Ribas-Carbo, M., and Berry, 1992). At the leaf 

level, SCOPE model uses the Fluspect model (Vilfan et al., 2016), as an extension of 

PROSPECT, to simulates leaf reflectance, transmittance and fluorescence. At the 

canopy level, RTMo and RMTf (Van der Tol et al., 2016), which are based on 1-D 

SAIL model, compute the incident light radiation and emitted fluorescence.  

The integration of the main biochemical photosynthesis models into TBMs enables 

the estimation of CO2 assimilation across scales from leaf biochemistry to crop level. In 
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particular, RTMs coupled with biochemical photosynthesis models and balance energy 

models offer a physical-tool to investigate the effects of canopy structure and plant traits 

on the retrieval of chlorophyll fluorescence at the top of the canopy. They provide an 

estimation of canopy scattering of SIF by simulating the light-canopy interaction. 

Future works should address the development of spatial continuous maps of key 

photosynthetic traits at broad scales using TBMs and hyperspectral imagers. With this 

regard, this thesis is carried out for showing suitable methodologies for retrieving 

physiological traits using SIF derived from hyperspectral imagery and plant traits 

simulated by RMTs and TMBs. 
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Chapter 2:  Objectives 

 

The main objective of the PhD thesis is to assess the contribution played by 

airborne-retrieved solar-induced chlorophyll fluorescence (SIF) in the quantification of 

nitrogen and Vcmax under irrigated and rainfed Mediterranean conditions. In order to 

reach this specific objective, the thesis explores advanced remote sensing methods 

linking radiative transfer model inversions (RTM, e.g. PROSPECT-SAILH, SCOPE 

models) and photosynthetic traits quantified from high-resolution airborne hyperspectral 

imagery. In particular, nitrogen concentration, structural parameters and leaf 

biochemical constituents were assessed from hyperspectral remote sensing images as an 

alternative to traditional leaf-destructive and time-consuming methods.  

The first study conducted during the thesis aimed at exploring the airborne 

hyperspectral-derived SIF and thermal-based CWSI on the relationships with water 

stress indicator and photosynthetic traits in orchard crops. These results enabled to 

establish an accurate methodology for retrieving plant physiological traits through the 

use of automatic object-based tree-crown detection algorithm based on quartile breaks 

applied to the high-resolution hyperspectral and thermal imagery.  

From the crop nutritional point of view, the results reached during the thesis 

addressed the ability of regression models combining airborne-derived SIF and plant 

traits retrieved from VNIR-SWIR hyperspectral imagery and RTM inversions to predict 

N concentration under semi-arid conditions. 

Regarding the remote assessment of the photosynthesis capacity Vcmax, the thesis 

investigated the feasibility of the high-resolution airborne hyperspectral imagery 

combined with SCOPE model inversion to detect plant traits related to Vcmax and 

physiological changes induced by irrigation regimes and wheat varieties. Thus, the 

following specific objectives were identified: 

1. To assess the effects caused by the within-tree structural variability and 

background on the airborne-derived SIF and thermal-based CWSI physiological 

indicators for water stress detection. 
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2. To assess the retrieval of nitrogen using airborne-derived fluorescence 

and plant traits quantified from VNIR-SWIR hyperspectral imagery under 

irrigated and rainfed Mediterranean conditions. 

3. To evaluate the remote detection of the photosynthetic capacity in rainfed 

and irrigated plant phenotyping trials through radiative transfer Vcmax 

estimation from hyperspectral imagery and SIF. 

2.1 Outline of the Doctoral Thesis 

This Doctoral Thesis is presented as chapters, each one dealing with the objectives 

previously described. 

Chapter 3 addresses the Objective 1 and proposes methodologies for the automatic 

object-based tree crown detection algorithm based on watershed segmentation on high-

resolution hyperspectral and thermal airborne imagery. The method is applied at the 

tree-crown scale in an almond orchard under two irrigation regimes. This chapter 

highlights the importance of taking into account the structural and soil-background 

effects on the quantification of airborne solar-induced chlorophyll fluorescence (SIF) 

retrievals, the image-based spectral traits and thermal indicators derived from high-

resolution hyperspectral and thermal airborne imagery. This work demonstrates the 

large effects caused by the within-tree structural variability and background effects on 

the relations with assimilation rate and stomatal conductance by the airborne-derived 

SIF and CWSI physiological indicators used for water stress detection. This work was 

published in Remote Sensing: 

Camino C., Zarco-Tejada P. J. & González Dugo V. Effects of Heterogeneity within 

Tree Crowns on Airborne-Quantified SIF and the CWSI as Indicators of Water Stress in 

the Context of Precision Agriculture. Remote Sensing, 2018, 10(4), 604; 

https://doi.org/10.3390/rs10040604. 

 

Chapter 4 addresses the objective 2. The research presented here assesses the 

contribution played by airborne-retrieved solar-induced chlorophyll fluorescence on the 

retrieval of leaf nitrogen, comparing to traditional physiological indices (structural and 

chlorophyll a+b) and nitrogen indices calculated using the 400-1750 nm spectral 

domain under two water regimes in the context of wheat phenotyping. The work 

focuses on the use of the stepwise multiple regression analysis using biophysical 

parameters derived from radiative transfer models, narrow-band spectral indices and 
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chlorophyll fluorescence quantified from the high-resolution hyperspectral imagery over 

the VNIR and SWIR spectral range. This work was published in the International 

Journal of Applied Earth Observation and Geoinformation: 

Camino C., González-Dugo V., Hernández P., Sillero J.C. & Zarco-Tejada P. J. 

Improved nitrogen retrievals with airborne-derived fluorescence and plant traits 

quantified from VNIR-SWIR hyperspectral imagery in the context of precision 

agriculture. International Journal of Applied Earth Observation and Geoinformation, 

Volume 70, August 2018, Pages 105-117. https://doi.org/10.1016/j.jag.2018.04.013. 

 

Chapter 5 addresses the objective 3. The work completed the study conducted in 

Chapter 3, demonstrating the ability to estimate the maximum rate of carboxylation 

(Vcmax) using SCOPE model inversions with airborne-quantified SIF retrieved from 

high-resolution hyperspectral imagery. This work demonstrates that SIF is a reliable 

indicator of photosynthetic activity and could be estimated by airborne remote sensing 

for high-throughput plant phenotyping and precision agriculture applications. This work 

was accepted for publication in Remote Sensing of Environment (6 May 2019): 

Camino C., González Dugo V., Hernández P. & Zarco-Tejada P. J. Radiative transfer 

Vcmax estimation from hyperspectral imagery and SIF retrievals to assess 

photosynthetic performance in rainfed and irrigated plant phenotyping trials. Accepted 

in Remote Sensing of Environment, 6 May 2019. 

 

Chapter 6 summarizes the conclusions of each chapter and the general conclusions of 

this doctoral thesis. The main findings are synthesized including a general discussion 

that links the three main chapters developed in this work. In addition, this chapter 

summed up the further research work that needs to be carried out in the future.



 

Chapter 3  

 

 

Published in Remote Sensing, 2018, 10(4), 604 https://doi.org/10.3390/rs10040604  

https://doi.org/10.3390/rs10040604
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Chapter 3: Effects of heterogeneity within tree-crowns on airborne-

quantified SIF and the CWSI as indicators of water stress in the context 

of precision agriculture 

Resumen 

Esta investigación se centró en comprender los efectos de la heterogeneidad 

estructural dentro de las copas de los árboles en la estimación de la fluorescencia 

clorofílica inducida por el sol (SIF) y un índice de estrés hídrico, denominado Crop 

Water Stress Index (CWSI). En este trabajo, exploramos la variabilidad de SIF y CWSI 

observada en copas de árboles sometidos a diferentes regímenes de estrés hídrico, así 

como sus efectos en las relaciones con las medidas fisiológicas realizadas a escala 

foliar. Para ello, se adquirieron imágenes hiperespectrales de alta resolución (20 cm) 

para evaluar la cuantificación de la fluorescencia en las partes de las copas iluminadas 

por el sol y en copas completas aplicando el método de las líneas de Fraunhofer (FLD) 

y métodos automáticos de detección de objetos sobre copas de árboles. También 

medimos la distribución de la temperatura del dosel dentro de las copas de árboles 

utilizando algoritmos de segmentación basados en percentiles de temperatura aplicados 

a las imágenes térmicas de alta resolución (25 cm). El estudio se realizó en un huerto de 

almendros cultivado bajo tres regímenes de riego ubicado en Córdoba. Se realizaron tres 

campañas aerotransportadas con cámaras hiperespectrales y térmicas de alta resolución 

a bordo de un avión tripulado durante el verano de 2015. Las relaciones entre SIF y la 

tasa de asimilación mejoraron significativamente cuando se utilizaron los píxeles de las 

partes de copa iluminados por el sol en todas las fechas de vuelo. Por el contrario, la 

señal SIF extraída de las copas completas de los árboles se degradó considerablemente 

debido a la heterogeneidad del dosel observada dentro de las copas. Las segmentaciones 

mediante cuartiles aplicadas a las imágenes térmicas mostraron que los valores de 

CWSI obtenidos estaban dentro del rango teóricamente esperado de CWSI sólo cuando 

los píxeles pertenecían a las clases del percentil 50. Sin embargo, los valores de CWSI 

se sesgaron en el cuartil superior (Q75) para todos los regímenes de riego, debido a los 

efectos del suelo que afectan a la temperatura media calculada en la copa. La relación 

entre CWSI y Gs se vio muy afectada por los niveles de segmentación de copa 

aplicados, mejorando notablemente cuando los valores de CWSI se calcularon a partir 

de la segmentación de la copa del cuartil medio (Q50), correspondiente a los píxeles de 

vegetación con temperaturas más frías y más puros (r
2
=0.78 en píxeles de vegetación 
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pura frente a r
2
=0.52 en píxeles con temperaturas más altas). Este estudio destaca la 

importancia de utilizar imágenes hiperespectrales y térmicas de alta resolución para 

extracciones de las componentes puras de copas de árboles mediante segmentación en el 

contexto de la agricultura de precisión y la detección de estrés hídrico. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

61 Chapter 3 

Abstract 

This research focused on understanding the effects of structural heterogeneity 

within tree-crowns on the airborne retrieval of solar-induced chlorophyll fluorescence 

(SIF) and the Crop Water Stress Index (CWSI). We explored the SIF and CWSI 

variability observed within crowns of trees subjected to different water stress regimes 

and its effect on the relationships with leaf physiological measurements. High-

resolution (20 cm) hyperspectral imagery was acquired to assess fluorescence retrieval 

from sunlit portions of the tree crowns using the Fraunhofer line depth method, and 

from entire crowns using automatic object-based tree crown detection methods. We also 

measured the canopy temperature distribution within tree-crowns using segmentation 

algorithms based on temperature percentiles applied to high-resolution (25 cm) thermal 

imagery. The study was conducted in an almond orchard cultivated under three watering 

regimes in Cordoba, in southern Spain. Three airborne campaigns took place during the 

summer of 2015 using high-resolution hyperspectral and thermal cameras on board a 

manned aircraft. Relationships between SIF and the assimilation rate improved 

significantly when the sunlit tree crown pixels extracted through segmentation were 

used for all flight dates. By contrast, the SIF signal extracted from the entire tree crowns 

was highly degraded due to the canopy heterogeneity observed within tree crowns. The 

quartile crown segmentations applied to the thermal images showed that the CWSI 

values obtained were within the theoretically expected CWSI range only when the 

pixels were extracted from the 50th percentile class. 

However, the CWSI values were biased in the upper quartile (Q75) for all watering 

regimes due to the soil background effects on the calculated mean crown temperature. 

The relationship between the CWSI and Gs was heavily affected by the crown 

segmentation levels applied and improved remarkably when the CWSI values were 

calculated from the middle quartile crown segmentation (Q50), corresponding to the 

coldest and purest vegetation pixels (r
2
 = 0.78 in pure vegetation pixels vs. r

2
 = 0.52 

with the warmer pixels included in the upper quartile). This study highlights the 

importance of using high-resolution hyperspectral and thermal imagery for pure-object 

segmentation extractions from tree crowns in the context of precision agriculture and 

water stress detection. 
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3.1 Introduction 

 

Water deficits occur in crops when the evaporative demand exceeds the supply of 

soil water (Slatyer, 1967). As a result, plant growth and its physiological processes are 

affected (Hsiao, 1973). Particularly, water stress reduces photosynthetic activity and 

induces stomatal closure. Consequently, evaporative cooling is reduced and canopy 

temperature increases. Besides the increase of temperature experienced by plants under 

water stress, the steady-state chlorophyll fluorescence emission (i.e., solar-induced 

fluorescence, SIF) is also affected due to the reduction of photosynthesis (Schreiber and 

Bilger, 1987, Lichtenthaler and Rinderle, 1988; Lichtenthaler et al., 1996). At the leaf 

scale, relationships between SIF and the assimilation rate vary due to the stress 

conditions (Flexas et al., 1999, 2000, 2002) but also due to irradiance levels, 

temperature, nutritional status, and other environmental factors. For the purpose of 

characterizing plant water status, various field-level physiological measurements such 

as leaf water potential, stomatal conductance and net assimilation are currently used. 

However, these leaf-level measurements are time-consuming and therefore very 

restricted for operational purposes, especially when the aim is to characterize the spatial 

patterns of the physiological processes and within-field water status variability across an 

entire orchard. Therefore, finding adequate strategies for monitoring the within-field 

variability of physiological conditions is critical in the context of precision agriculture 

and for precision irrigation purposes. In this regard, image-based remote sensing 

methods based on innovative indicators directly linked to plant functioning are 

considered useful for the adequate monitoring of photosynthetic status and water stress 

in crops. 

Recent studies have successfully demonstrated that image-based remote 

quantification of SIF is directly associated with the photosynthetic rate for detecting 

vegetation stress (Pérez-Priego et al., 2005; Meroni and Colombo, 2006; Porcar-Castell 

et al., 2014; Rascher et al., 2015). Although the use of narrow bands has been proposed 

for accurate retrieval of SIF in absolute terms (i.e., below 1 nm FWHM), recent studies 

have demonstrated that airborne hyperspectral imagery acquired with broader 

bandwidths (5–7 nm) still captures the fluorescence signal, which makes it possible to 

monitor photosynthesis over time (Damm et al., 2010, 2011). 
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The high heterogeneity observed within tree-crowns and the large effects caused by 

soil background and sunlit/shaded areas must be considered due to their influence on the 

SIF signal quantified from remote sensing imagery. The acquisition of very high-

resolution hyperspectral imagery enables the extraction of the SIF signal from each 

crown component, assessing the large effects caused by the canopy structure. In fact, the 

effects of canopy architecture have been the focus of several studies using hybrid 

models (Zarco-Tejada et al., 2013) and 3D simulation (Hernández-Clemente et al., 

2017). The use of three-dimensional (3D) information on a canopy structure based on 

airborne full-waveform Light Detection and Ranging (LiDAR) to characterize canopy 

structure (Dandois and Ellis, 2013; Hernández-Clemente et al., 2014) is a promising 

field of research that may provide valuable information about the canopy architecture 

and the high heterogeneity observed within tree-crowns. Nevertheless, no studies have 

explored the effects of within-crown structure on SIF quantification or the relationship 

of such effects with photosynthesis. 

In the context of thermal imaging for detecting water stress, several studies have 

shown that high-resolution thermal imagery acquired from manned and unmanned aerial 

platforms enables the detection of water stress, showing accurate relationships with 

stomatal conductance (Jones et al., 2009; Bendig et al., 2015; V. Gonzalez-Dugo et al., 

2015; Zarco-Tejada et al., 2013) and water potential (Bellvert, 2014; Gonzalez-Dugo et 

al., 2014; Bellvert et al., 2016). Yet, within crown structure also plays a critical role in 

the quantification of crown temperature and in the relationships obtained with 

physiological measures. In fact, some studies have demonstrated that crown 

heterogeneity is a reliable tool for the early detection of plant water stress (Fuchs, 1990; 

Gardner et al., 1981). The variability of within-tree temperature and its relationship with 

water status can be due to several factors. At the individual tree level, stomatal closure 

related to water stress increases the overall canopy temperature and is affected by the 

water supply. In addition, it is well known that changes in leaf angle distribution, 

radiation exposure, leaf area density, and canopy architecture affect the variability of 

canopy temperature within crowns. Other factors, such as soil water and nutritional 

deficit (Rodriguez et al., 2005) as well as the effect of diseases (Calderón et al., 2013) 

also lead to differences in crown canopy temperature. As crown temperature is affected 

by the tree structure, the thermal-based indicator known as the Crop Water Stress Index 

(CWSI) (Idso et al., 1981; Jackson et al., 1981) is also affected. The CWSI is based on 
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the difference between canopy temperature and air temperature (Tc-Ta), normalized by 

the vapour pressure deficit (VPD), and is inversely related to transpiration and stomatal 

conductance (Jackson et al., 1981). Thus, within-tree structural variability plays a role in 

the relationships between the CWSI and stomatal conductance used to detect water 

stress. Moreover, external effects due to the surrounding non-vegetation targets may 

play a role in the quantified tree-level CWSI and its relationship with physiological 

measures. 

The research presented in this manuscript was carried out in an almond orchard 

subjected to different water stress regimes due to the regulated deficit irrigation levels 

imposed. The goal of this study was to assess within-tree structural effects on 

chlorophyll fluorescence and on the mean temperature quantified from high-resolution 

hyperspectral and thermal images in the context of water stress detection and precision 

irrigation. In addition, we explored the influence of tree structure and the background on 

the relationships between SIF and the field-measured assimilation rate, and the CWSI 

and stomatal conductance. 

3.2 Material and Methods 

3.2.1 Study site and field data collection 

The experiment was performed in July and August 2015 in an almond orchard 

subjected to regulated deficit irrigation treatments and a plot under rainfed (RF) 

conditions. The experimental site was located in Cordoba, in southern Spain, at the 

Alameda del Obispo Research Station (37°52′N, 4°49′W). The climate is Mediterranean 

with mild winters and warm and dry summers. A weather station located at 300 m from 

the experimental site collected an average of air temperature of 18.6 °C and relative 

humidity of 62% along the 2015 year. Annual rainfall and reference evapotranspiration 

(ETo; Penman-Monteith) were 330 and 1250 mm, respectively. In this research, three 

watering regimes were analyzed: a rainfed plot was compared to plots subjected to two 

irrigated treatments, a fully irrigated control (FI), where irrigation fulfilled crop water 

requirements, and a severely regulated deficit irrigation treatment (RDI, which received 

20% ETc during the period comprised in this study. The irrigated treatments were 

replicated four times using a randomized block design (Fig. 3.1). The orchard was drip 

irrigated with two lateral pipes per almond tree row and kept free of weeds, pests, and 
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diseases. For more information about the experimental design and the irrigation levels, 

see López-López et al. (López-López et al., 2018). 

 

 

Fig. 3.1. Overview of the almond orchard experimental site imaged by the hyperspectral 

sensor, showing the four replicates of the irrigated treatments and the rainfed condition 

plot (a). The central almond trees (in white) used to collect leaf measurements are 

shown. A detail view is displayed in (b). 

3.2.2 Airborne campaigns Study  

Three airborne campaigns were performed on July 1st (day of the year DOY 182), 

August 5th (DOY 217) and August 25th (DOY 237) in 2015. We used a micro-

hyperspectral imager (Micro-Hyperspec VNIR model, Headwall Photonics, Fitchburg, 

MA, USA) and a thermal infrared camera (FLIR SC655, FLIR Systems, Wilsonville, 

OR, USA) set in tandem on board a Cessna aircraft operated at 200 m altitude by the 

Laboratory for Research Methods in Quantitative Remote Sensing (QuantaLab) of the 

Spanish Council for Scientific Research (Consejo Superior de Investigaciones 

Científicas; IAS-CSIC, Córdoba, Spain). After each flight, the thermal and 

hyperspectral imagery was processed in the QuantaLab-IAS-CSIC laboratory.  

The Micro-Hyperspec VNIR was set up with a configuration of 260 spectral bands 

acquired at 1.85 nm/pixel and 12-bit radiometric resolution in the 400–885 nm spectral 

region, yielding a 6.4 nm full width at half maximum (FWHM) with a 25-μm slit. The 

acquisition and storage module achieved 50 frames per second at 25 ms integration 
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time. The 8-mm focal length lens yielded an IFOV of 0.93 mrad and an angular FOV of 

50° with a spatial resolution of 20 cm (Fig. 3.2a). The radiometric calibration was 

performed in the laboratory using coefficients derived from an integrating sphere 

(CSTM-USS-2000C LabSphere, North Sutton, NH, USA) at four levels of illumination 

and six integration times. The hyperspectral imagery was atmospherically corrected 

using the irradiance (E) measured at the time of the flight by means of an ASD Field 

Spectrometer (FieldSpec Handheld Pro, ASD Inc., Longmont, Colorado, USA) with 3 

nm bandwidth and a cosine corrector-diffuser probe. The spectral resolution of the 

airborne imagery was matched with irradiance through a Gaussian convolution. The 

orthorectification of the hyperspectral imagery was performed using PARGE software 

(ReSe Applications Schläpfer, Wil, Switzerland) with input data acquired with an 

inertial measuring unit (IMU) installed on board and synchronized with the 

hyperspectral camera. 

The thermal camera (FLIR SC655, FLIR Systems, Wilsonville, OR, USA) used in 

this study had a resolution of 640 × 480 pixels with a 13.1 mm focal length and 16 bit 

radiometric resolution, providing an angular FOV of 45 × 33.7°, which yielded a ground 

resolution of 25 cm at the altitude of the flights (Fig. 3.2c). The thermal imagery was 

calibrated using ground temperature data collected with a handheld infrared 

thermometer (LaserSight, Optris, Germany) on each flight date. The thermal imagery 

was processed and atmospherically corrected in the QuantaLab-IAS-CSIC laboratory 

(Berni et al., 2009; Zarco-Tejada et al., 2012). 

3.2.3 Within-crown segmentation methods 

Each individual tree crown was segmented based on quartile breaks applied to the 

high-resolution hyperspectral and thermal imagery. The image segmentation was 

automatically conducted using in R software (R Core Team, 2018). The methods to 

handle hyperspectral and thermal imagery and vector files were based on the “raster”, 

“maptools”, and “sp” packages (Bivand and Lewin-Koh, 2017; Bivand et al., 2013; 

Hijmans, 2017; Pebesma and Bivand, 2005) in R. An automatic object-based tree crown 

detection algorithm based on watershed segmentation (i.e., thresholds) using the 

“ClassInt” package (Bivand, 2017) in R was applied to the hyperspectral imagery to 

separate almond crowns from the soil background. For each tree crown, the next step 

focused on separating the sunlit crown from the mixed crown area (i.e., the remaining 
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tree crown, composed of soil contaminated pixels, shadows, and canopy background 

components) through spectral contrast analysis between sunlit/mixed pixels and 

background pixels. Tree crown hyperspectral reflectance (ρ) was segmented through the 

following steps: (1) the normalized difference vegetation index (NDVI) (Rouse et al., 

1973) was used as a structural index to discriminate between sunlit vegetation and non-

vegetation pixels (Xiao et al., 2004). Next, a NDVI threshold ≥0.55 was used (Fig. 

3.2a); (2) taking advantage of the strong absorption of chlorophyll in the 677 nm band 

and the high reflectance at 800 nm produced by pure vegetation pixels, we normalized 

the difference between both regions using Equation (1). The normalized difference 

between the red and infrared regions using an automatic quartile break using the 

classIntervals function from “ClassInt” package was introduced to separate the mixed 

and sunlit areas within each tree crown (Fig. 3.2b). This segmentation enabled us to 

identify the sunlit areas within entire crowns, separating them from shaded areas and 

pixels affected by background soil (due to low leaf area density). 
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Fig. 3.2.View of the entire crowns (in red with stripes) retrieved using automatic object-

based crown detection applied to the imagery acquired with the Hyperspec VNIR (a) 

and thermal FLIR SC655 (c) cameras. The sunlit crowns (in yellow) and mixed crowns 

(in red) extracted from the hyperspectral imagery are shown in (b). The temperature 

segmentations based on quartile methods using thermal imagery are shown in (d). 
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 Individual tree crown temperature was extracted from the high-resolution thermal 

imagery through image segmentation via automatic quartile breaks based on the 

temperature gradient. Using the same scheme as for the hyperspectral imagery, the 

watershed segmentation method was applied to separate the tree crown from the soil 

background. However, the watershed segmentation in the thermal imagery was applied 

using the Sauvola’s thresholding method (Sauvola and Pietikäinen, 2000) based on the 

standard deviation and average from the entire image. Next, each tree crown was 

divided into four quartiles by automatic object-based crown detection using the 

classIntervals function from “ClassInt” package in R. The pixels of individual tree 

crowns were divided into four classes using the 25th, 50th, and 75th percentiles (Fig. 

3.3d). The proposed four classes comprised (i) pixels below the first quartile (Q25), 

associated with the coldest and purest vegetation areas without soil background; (ii) 

pixels within quartile Q25 and the middle quartile (Q50); (iii) pixels within Q50 and the 

upper quartile (Q75); and (iv) pixels above the upper quartile (Q75), associated with the 

warmest areas mainly affected by the background soil. 

 
 

Fig. 3.3. View of an entire tree crown acquired with the hyperspectral (a) and the 

thermal camera (c). Identification of the sunlit crown and the mixed crown components 

in the hyperspectral (b) and the thermal imagery (d). 

3.2.4 Sub-crown SIF and CWSI retrieval calculated from the high-resolution imagery 

Single-tree crown radiance and reflectance spectra were extracted from the high-

resolution hyperspectral imagery. The solar-induced chlorophyll fluorescence (SIF) 

signal was retrieved using the Fraunhofer line depth (FLD) principle (Plascyk and 

Gabriel, 1975). According to the method described in (Moya et al., 2004; Meroni and 
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Colombo, 2006; Damm et al., 2011), the mean object-based radiance (L) for each tree 

crown calculated from the hyperspectral data and the irradiance obtained by the field 

ASD spectrometer at the time of the flight were used to quantify SIF. The retrieval 

method was based on two spectral bands located inside (762 nm) and outside (750 nm) 

of the O2–A absorption feature (Moya et al., 2004; Meroni et al., 2010) (see Fig. 3.5.4a). 

SIF was extracted from the entire tree crowns and the sunlit areas within each tree 

crown (Fig. 3.3b). SIF quantified from the trees of the experiment was compared to the 

leaf-level measurements of net photosynthesis acquired at the time of the flight for each 

date. In addition, following a similar methodology to that proposed by Zarco-Tejada et 

al. (Zarco-Tejada et al., 2016), a normalization scheme was applied to all trees and dates 

to compare the relationship between SIF and assimilation rates for water stress detection 

on the flight dates. The normalized SIF was calculated by dividing each within-tree 

object-level SIF value by the maximum value of FI (i.e., non-stressed trees) for each 

single date. 

Based on the temperature quartile segmentation (Fig. 3.3d), the CWSI was retrieved 

from the thermal imagery as a water stress indicator of the almond tree crowns. The 

average canopy tree crown temperature (Tc) extracted from the thermal imagery, air 

temperature (Ta), and relative humidity was used to calculate the CWSI according to the 

methodology proposed by Idso et al. (1981). Theoretical CWSI boundaries are 0 (no 

water stress) and 1 (maximum water stress). The CWSI was compared with the field 

measurements of stomatal conductance acquired at the time of the flight on the various 

dates. 

 
Fig. 3.4. Radiance spectra in W·sr

-1
·m

-2
·nm

-1
 (a) and reflectance spectra (b) retrieved 

from high-resolution hyperspectral imagery during the second flight. The spectra shown 

correspond to a tree crown under severe RDI. The vertical grey region in a) shows the 

O2-A atmospheric oxygen absorption band. 
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3.3 Results 

3.3.1 Field physiological measurements 

Fig. 3.5 shows the relationship between the assimilation rate (A; in μmol· 

m
−2

·s
−1

) and stomatal conductance (Gs; in mmol·m
−2

·s
−1

) as well as the temporal 

changes experienced by each physiological indicator as a function of the water stress 

treatments. Table 3.1 shows the separability between treatments for A and Gs using an 

analysis of variance (ANOVA) F test followed by Tukey’s HSD (honest significant 

difference) test. This table summarizes the basic statistics for the physiological 

measurements. As shown in Fig. 3.5a, the assimilation rate was linearly related to the 

stomatal conductance for the three flight dates. In general, for all flight dates, the 

physiological status showed higher values for FI than for RDI and RF treatments 

(Figure 3.5b, c). At the time of the three flights, the field physiological measurements 

taken at the leaf level from almond trees under RF conditions were kept below 1.8 

μmol·m
−2

·s
−1

 for A and 106 mmol·m
−2

·s
−1

 for Gs, indicating that these trees were 

severely affected by water stress. Meanwhile, trees subjected to the FI treatment yielded 

the highest average stomatal conductance and assimilation rate on all flight dates. 

  

Fig. 3.5. Scatter plot obtained between field assimilation rate (A; μmol·m
−2

·s
−1

) and 

stomatal conductance (Gs; in·mmol·m
−2

·s
−1

) for each flight date (F1–F3) (a). The 

boxplots show the A (b) and Gs (c) variability registered on rainfed (RF), severe 

regulated deficit irrigation (RDI) and full irrigation (FI) for each flight date (F1–F3). In 

the boxplots, the average values are shown with a red point. The black line within the 

box is the median, and the top and bottom of the box is the 75th and 25th quartile, 

respectively. The whiskers represent the upper and the lower limits based on the 

difference with the interquartile ranges (Q ± 1.5 × IQR). The outliers represented as 

asterisk correspond to values out of upper and lower limits. 
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The results of the ANOVA showed significant differences in Gs and A between all 

irrigation treatments for each flight date; these differences were greater in the flight 

performed on DOY 217 (F-value = 65.37 and 68.33 for A and Gs, respectively; both 

with p-values ≤ 2.82×10
-12

). Tukey’s HSD post-hoc analysis showed statistically 

significant differences in Gs between almond trees subjected to rainfed and irrigated 

treatments for each flight date (p-value < 0.05). However, there were no differences in 

assimilation rate between the two irrigated treatments on DOY 237. 

Table 3.1. Average assimilation rate and stomatal conductance measured for each water 

regime and flight date. F statistic and p-value obtained from the standard analysis of 

variance (ANOVA). 

 Mean ± SD ANOVA Tukey 

A RF RDI FI F-

value 

p-value p-value 

Flight 1 (DOY=182) 1.87 a 6.05 b ±2.7 11.1 c ±5.0 4.762 0.0238 <0.05 

Flight 2 (DOY=217) 1.60 a ±0.3 5.04 b ±1.6 9.82 c ±2.7 65.37 <2e-16 <0.001 

Flight 3 (DOY=237) 1.0 a ±0.4 7.40 b ±2.5 8.30 b ±3.9 20.15 8.48e-08 <0.001* 

Gs       

Flight 1 (DOY=182) 105.6 a ±18.2 377.4 b ±159.2 587.7 c ±82.1 22.53 1.06e-06 <0.001 

Flight 2 (DOY=217) 96.0 a ±31.4 285.1b ±78.0 504.5 c ±60.2 68.33 2.82e-12 <0.001 

Flight 3 (DOY=237) 76.6 a ±27.7 473.3b ±93.5 523.6 c ±202.4 28.18 9.11e-10 <0.05 
Notes: RF, RDI and FI correspond to rainfed, severe regulated deficit irrigation and full irrigation, 

respectively. Treatments sharing the same letter are not significantly different in Tukey’s honest 

significant difference (HSD) post-hoc test. SD = standard deviation. The * indicates significant 

differences between RF and the irrigated treatments. Letters (a, b and c) represent the results of Tukey’s 

post-hoc comparisons of group means. 

3.3.2 Within-crown SIF and CWSI variability as a function of water stress 

The object-based crown segmentation methods applied to the hyperspectral 

imagery to separate sunlit from mixed regions within tree-crowns (Fig. 3.3b and 3.4) 

made it possible to assess the coefficient of variation (CV; Table 3.2) as a function of 

water stress levels. These results indicated that the sunlit crown portions showed more 

homogeneity in pixel variability for all water stress regimes on each flight date. By 

contrast, entire crowns had more heterogeneity due to the mixture of sub-crown 

components such as pure vegetation, shaded areas, and soil effects. As a result of 

within-crown variability, SIF yielded a higher CV for entire crowns than for sunlit 

crowns, as expected (Table 3.2). It is interesting to note that the CV for sunlit crowns 

was higher in RDI than in FI and RF treatments. By contrast, the CV for entire crowns 

increased with higher values of water stress. Overall, SIF showed higher average values 

in sunlit crowns than in entire crowns. Moreover, SIF differences between treatments 

increased when the sunlit areas were considered. In general terms, the average SIF 
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signal was higher in the FI treatment, followed by the RDI and finally the RF treatment 

for both entire and sunlit crown segmentations. However, the mean fluorescence signal 

calculated from pixels of entire tree crowns was highly degraded compared to the SIF of 

sunlit crowns due to the effects of the mixed fractional canopy on each pixel (Table 

3.2). In these situations, the SIF emission caused a decrease in radiance values in the 

range close to the O2-A absorption peak (Fig. 3.4a), compared to the SIF signal when 

the sunlit crown segmentations were conducted. Moreover, as shown on Table 3.2, the 

SIF signal was more affected by the atmospheric conditions on each flight date for all 

studied water stress regimes than it was by the canopy temperature extracted from 

thermal imagery. Regarding the reflectance profiles, the pixels from sunlit crowns 

showed reflectance values higher in the near infrared region (Fig. 3.4b) as compared to 

pixels from mixed crowns (shaded areas, branches and soil background). However, 

entire crowns, which correspond to the aggregation of pixels from sunlit and mixed 

crowns, are displayed between sunlit crown and mixed crown radiance and reflectance 

(Fig. 3.4). 

Table 3.2. Average values and coefficient of variation (CV) of solar-induced 

chlorophyll fluorescence (SIF) and canopy temperature (Tc) retrieved from tree crown 

segmentation for each water stress regime and flight date. RF, RDI and FI correspond to 

rainfed, severe regulated deficit irrigation and full irrigation, respectively. The Tc value 

is divided into four quartile classes based on the 25th, 50th, and 75th quartiles (Q). 

 Average values (CV, coefficient of variation) 

  SIF Temperature (Tc in K) 

 Entire 

crowns 

Pure veg.  

pixels 

<Q25 Q25-Q50 Q50-Q75 >Q75 

Flight 1 (DOY=182)       

RF 2.43 (0.17) 2.67 (0.08) 308.1 

(0.01) 

308.7 

(0.02) 

309.8 

(0.05) 

315.1 

(0.03) 

RDI 2.73 (0.20) 3.11 (0.17) 304.7 

(0.05) 

305.2 

(0.05) 

306.0 

(0.07) 

311.1 

(0.06) 

FI 3.06 (0.26) 3.55 (0.11) 303.1 

(0.03) 

303.5 

(0.03) 

304.1 

(0.04) 

309.1 

(0.06) 

Flight 2 (DOY=217)       

RF 2.94 (0.11) 2.99 (0.09) 309.5 

(0.01) 

310.4 

(0.01) 

311.8 

(0.01) 

314.1 

(0.02) 

RDI 3.85 (0.15) 4.22 (0.11) 304.9 

(0.04) 

306.0 

(0.04) 

307.4 

(0.03) 

310.2 

(0.04) 

FI 4.21 (0.16) 4.71 (0.08) 303.3 

(0.03) 

304.1 

(0.02) 

305.2 

(0.03) 

308.0 

(0.05) 

Flight 3 (DOY=237)       

RF 1.25 (0.22) 1.41 (0.15) 308.9 

(0.01) 

311.0 

(0.01) 

313.6 

(0.02) 

316.8 

(0.02) 

RDI 1.88 (0.34) 2.25 (0.21) 305.3 

(0.04) 

306.5 

(0.04) 

308.8 

(0.05) 

313.0 

(0.05) 

FI 1.86 (0.36) 2.32 (0.20) 304.3 

(0.03) 

305.4 

(0.03) 

307.0 

(0.04) 

311.2 

(0.06) 
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The mean Tc values increased from <Q25 to >Q75. In addition, when average values 

for the four classes were compared for each flight and treatment, the difference between 

Q50–Q75 and Q75 was higher than between the other pairs of ranges, indicating that Q75 

was substantially different (Table 3.2). Looking at the spatial pattern of the range 

obtained within each tree crown (located on the crown edges, Fig. 3.3d), it can be 

observed that the effects of background and soil pixels on the average value were the 

main drivers of these differences. Overall, the average canopy temperature was greater 

in the RF treatment than in the RDI treatment, which was in turn higher than in FI. 

Similarly to what was observed for the CV of SIF values obtained from sunlit crowns, 

the variability of canopy temperature for all classes (except for >Q75) displayed an 

increasing value between FI and RDI treatments and then decreased for RF trees. 

These quartile segmentation methods enabled the characterization of the 

temperature distribution within individual tree crowns but also of its effects on the 

CWSI. The assessment of the CWSI, as a normalized indicator, enabled the comparison 

of the canopy temperature between dates and also between ranges. In the almond trees 

of the experiment, the rainfed treatment resulted in increased stomatal closure, smaller 

crowns, and lower leaf density caused by the long-term water stress imposed. As a 

consequence, the CWSI values obtained were close to the theoretical maximum value of 

1 (Fig. 3.6), even for Q25. Considering the overall high temperature retrieved in all 

quartiles, it seems that the CWSI values recorded for RF trees were more affected by 

soil background compared to severe RDI and FI trees (Table 3.2). The NDVI values 

retrieved for these trees agreed with this observation (data not shown). The quartile 

crown segmentations also showed that CWSI values were biased in the Q50–Q75 range 

and upper quartile (>Q75) for all watering regimes, as consequence of soil background 

effects (Fig. 3.6). As a result, mean CWSI values were shifted beyond the maximum of 

the theoretical CWSI limit (i.e., CWSI > 1), even for trees subjected to RF conditions in 

the Q25–Q50 quartile classes with smaller crowns. Overall, CWSI values retrieved from 

the two lower classes (≤50th percentile) were within the theoretical CWSI range for the 

irrigated regimes. The aggregation of pixels of the two classes below the 50th percentile 

resulted in values that may explain the observation and physiological measurements: the 

average values remained within the expected 0–1 range, indicating that pure vegetation 

pixels were targeted with little contamination from the soil background. The CWSI 

obtained from RF trees displayed an average value of 1.05, slightly above the 
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maximum. In trees subjected to the FI and RDI treatments, the CWSI values obtained 

were 0 and 0.30, respectively. 

 

Fig. 3.6. Box plot showing the airborne-quantified Crop Water Stress Index (CWSI) 

from entire crowns (Cr), the quartile classes separated using the 25th, 50th and 75th 

percentiles and the aggregated quartile classes (Q25 and Q25–Q50) for the water regimes 

of the experiment. RF, RDI and FI correspond to rainfed, severe regulated deficit 

irrigation and full irrigation, respectively. The grey shading corresponds to the 

theoretical CWSI limits between 0 and 1. Average values are shown with a red point. In 

the box plots, the black line within the box is the median, the top and bottom of the box 

is the 75th and 25th quartile respectively. The whiskers represent the upper and lower 

limits based on the difference with the interquartile ranges (Q ± 1.5 × IQR). The outliers 

represented as circles, correspond to values out of upper and lower limits. Treatments 

sharing the same letter were not significantly different in Tukey’s HSD post-hoc test (p-

value < 0.0005). 

3.3.3 Effects of crown segmentation on relationships between SIF and assimilation 

The average SIF quantified from each tree crown was correlated with the mean 

assimilation rate across all dates for the entire crown and for the sunlit crown pixel 

selection. Results were statistically significant (r
2
 > 0.66, p-value <0.005) across all 

dates for both crown segmentation levels (Fig. 3.7). Results slightly improved when the 

sunlit crown segmentations were used (Fig. 3.7b). The range of variation for the SIF 

values extracted from entire crowns became narrower and shifted towards lower SIF 

levels (Fig. 3.7c), as a consequence of the mixture of soil background and shaded areas. 

The changes observed in SIF retrieval were related to the contribution of shaded areas 

and background effects to the overall SIF signal quantified from the entire crown. 
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Fig. 3.7. Relationships found on single dates between leaf net assimilation rate and 

airborne chlorophyll fluorescence (SIF) for entire tree crowns (a) and sunlit tree crowns 

(b). Relationships between SIF extracted from entire tree crowns and sunlit tree crowns 

(c) for single dates. 

The relationship between the fluorescence signal and the net assimilation for entire 

and sunlit crowns was different for each flight date (Fig. 3.7). A method based on the 

normalization of SIF for each tree to the non-water stressed SIF value for each date 

yielded a single relationship between SIF and A on the three flights conducted 

throughout the season (Fig. 3.8a). The normalized SIF extracted from the sunlit crown 

segmentations yielded a slight better relationship with A (r
2
 = 0.66; p-value < 0.0005 

and residual standard error = 2.17) than that of entire crowns (r
2
 = 0.56; p-value < 

0.0005, residual standard error = 2.45). These results demonstrated the improved 

sensitivity to A when the sunlit pixel component was used both on individual dates and 

normalizing across the entire season. 

The separability among water stress treatments according to the seasonally-

normalized SIF assessed via an ANOVA and Tukey’s post-hoc analysis (Table 3.3) 

showed a statistically significant difference between the means of the water stress 

regimes. Tukey’s post-hoc analysis showed statistically significant differences between 

FI and RDI (p-value < 0.05) for sunlit crown segmentations, while the seasonally-

normalized SIF extracted from entire crowns did not show any differences between 

them. In particular, Figure 3.8b shows that differences between treatments in the median 

and the average of the normalized SIF were greater when it was extracted from sunlit 

crown segmentations than when it was derived from entire crowns. As a result, the SIF 

signal extracted from sunlit pixels was able to track the physiological changes due to the 

water stress regimes imposed. 
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Table 3.3. ANOVA and Tukey’s HSD post-hoc analysis of normalized solar-induced 

chlorophyll fluorescence values extracted from pure sunlit crowns and entire crowns for 

each water stress treatment. RF, RDI an d FI correspond to rainfed, severe regulated 

deficit irrigation and full irrigation, respectively. 

 ANOVA Tukey’s test 

 F-value p-value T-value p-value 

Entire crowns 16.39 9.55e-03   

FI-RF … … 5.720 < 1e-04 

FI-RDI … … -2.030 0.1169 

RF-RDI … … 4.225 0.000468 

Pure sunlit crowns 20.25 1.44e-06   

FI-RF … … 6.338 <0.001 

FI-RDI … … -2.534 0.0399 

RF-RDI … … 4.489 <0.001 

 

 

Fig. 3.8. Relationships found between leaf assimilation and normalized airborne-

quantified chlorophyll fluorescence for entire and pure sunlit crowns (a). Box plot of 

normalized SIF retrieved from entire crowns and pure sunlit crowns for the water stress 

regimes explored (b). The mean value is represented with a red point. For each 

segmentation, treatments sharing the same letter were not significantly different in 

Tukey's HSD post-hoc test (p-value < 0.05). 

3.3.4 Effects of crown segmentation on the relationships between the CWSI and   

stomatal conductance 

The average CWSI quantified from each tree crown was compared to mean 

stomatal conductance across all dates for all crown segmentation levels based on 

temperature quartile thresholds. The results in Fig. 3.9a show that the CWSI was 

linearly and inversely correlated with stomatal conductance. The relationships showed 

large effects due to the quartile-crown segmentations applied: CWSI values extracted 

from the upper quartile (>Q75) shifted towards high values of the CWSI due to the soil 

background effects; by contrast, in the lower half (<Q50) and entire crown pixels, CWSI 

values were lower than 1 for the irrigated regimes. Relationships with Gs improved 
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remarkably when CWSI values corresponded to the coldest and purest vegetation areas 

associated to the first quartile (<Q25) and pixels from the lower half quartile (<Q50), 

yielding an r
2
 = 0.77 and r

2
 = 0.78, respectively. However, the agreement with field-

measured stomatal conductance yielded a weaker coefficient of determination for >Q75 

(r
2
 < 0.52, p-value < 0.005). Fig. 3.9b shows the displacement between quartile classes 

in the lower half (<Q50), which obtained the best results with Gs. Quartile-crown 

segmentations with a greater mixture of shaded and background pixels within tree-

crowns were placed above the 1:1 line, compared to segmentations associated with the 

coldest and purest vegetation areas, which were close to the 1:1 line. 

 

Fig. 3.9. Relationships found between leaf stomatal conductance (Gs) and the CWSI by 

extracting pixels from entire crowns (E-Cr), pixels below the middle quartile (<Q50), 

and pixels in the upper quartile (>Q75) for all flight dates (a). Relationships between 

CWSI pixels extracted from the middle quartile class (<Q50) and all quartile-crown and 

entire tree crown segmentations explored (b). Solid black line represents the line 1:1, 

and dashed lines are fit lines for the studied quartile masks and entire crown mask. 

The separability among water stress treatments via the ANOVA F-test and Tukey’s 

HSD test (Table 3.4) showed statistically significant differences in the CWSI (p-value < 

0.0005) between all the treatments explored, indicating that CWSI derived from high-

resolution thermal imagery was able to separate between almond trees under different 

water regimes. 

 

 

 

 

 



 

 

78 Chapter 3 

Table 3.4. ANOVA and Tukey's HSD post-hoc analysis of the CWSI extracted from 

quartile segmentations for each water stress treatment. 

 ANOVA Tukey’s test 

 F-

value 

p-value T-value p-value 

<Q50 60.28 4.6e-12 60.28 4.6e-12 

FI-RF … … -10.944 < 1e-04 

FI-RDI … … 4.283 0.000383 

RF-RDI … … -7.814 < 1e-04 

3.4 Discussion 

This study explored the effects of within-tree crown variability on airborne-based 

fluorescence retrievals and the CWSI as indicators of water stress. The range of 

variation in water status observed in this experiment, ranging from well-watered to 

rainfed conditions, enabled the assessment of stress detection performance of the remote 

sensing indicators when different segmentation methods were applied to high-spatial 

resolution hyperspectral and thermal images. This methodology made it possible to 

assess the effects caused by shadows and background on the fluorescence and thermal 

indicators used for water stress detection. Sunlit vegetation and entire crowns were used 

to quantify the fluorescence signal, while temperature quartiles were used as a 

segmentation method for the canopy thermal imagery. It is important to note that the 

segmentation methods were applied automatically, minimizing the influence of the 

operator to identify the regions of interest. 

Previous studies have demonstrated that the SIF signal and its relationship with the 

assimilation rate is reduced under complex canopy structures and with background soil 

effects (Zarco-Tejada et al., 2013). In this study, SIF retrievals extracted from entire 

crowns were affected by shadows, structural, and background soil effects, masking 

changes in fluorescence amplitude caused by the physiological condition. The results 

presented here show that chlorophyll fluorescence retrieval was highly degraded due to 

the effects of structure, leaf density, sunlit/shaded areas, and soil background. As shown 

in Fig. 3.4a, when the entire crown was used, the radiance magnitude was reduced in the 

range close to the O2-A absorption peak, compared to sunlit pixels within the tree 

crowns. This result is in agreement with Hernández-Clemente et al. (2017), who 

demonstrated that SIF emission extracted from sunlit crown pixel radiance was greatly 

affected by the increasing contribution of shaded and background pixels. In this study, 

within-tree crown heterogeneity was confirmed by the higher coefficient of variation 
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observed in the SIF retrievals extracted from entire crowns (Table 3.2) for all watering 

regimes. By contrast, lower CV values of SIF were obtained from the sunlit crown 

segmentation areas, which are associated to vegetation pixels without soil 

contamination. The heterogeneity of the shaded and sunlit areas within almond tree 

crowns modulated the relationship between airborne fluorescence and assimilation rates. 

As shown in Fig. 3.7, the relationships between fluorescence and assimilation varied as 

a function of stress level and atmospheric conditions on each flight date. However, as 

shown on Table 3.2, water stress reduced airborne SIF retrievals, yielding a relative 

mean SIF that was lower in crowns of trees subjected to RF conditions than in those 

irrigated trees. This result is consistent with (Lee et al., 2013; Pérez-Priego et al., 2005), 

who demonstrated that the SIF signal is sensitive to plant water stress. 

Daumard et al. (2012) showed that atmospheric impacts on SIF retrievals should be 

taken into account. This issue was observed in Fig. 3.7, which shows a changing 

relationship between the assimilation rate and the SIF quantified on different dates. The 

changes in the slope and amplitude of the relationships with the assimilation rate that 

are shown in the figure were due to several reasons: (i) the SIF emission was affected by 

atmospheric scattering effects (i.e., aerosol optical depth, aerosol height, surface albedo, 

and surface pressure) when the O2-A absorption band at 760 nm was used to estimate 

the fluorescence emission (Frankenberg et al., 2011). Although the Fraunhofer method 

reduced the atmospheric scattering effects using bands close to the oxygen absorption 

band, these scattering effects were still present; (ii) the fluorescence signal was 

modulated not only by the irradiance levels but also by the water stress and ambient 

conditions imposed during the different flight dates; and (iii) the inherent offsets of the 

SIF approach created when it was calculated from broader bandwidth hyperspectral 

imagery (i.e., 5–7 nm FWHM), which generated absolute errors in the quantification of 

the SIF signal. For these reasons, specific strategies are required for the proper use of 

chlorophyll fluorescence measurements in precision agriculture. 

Following a normalization SIF scheme, fluorescence emission was normalized by 

the maximum fluorescence signal emitted by the control well-watered almond trees, 

which served as a reference. The relationship obtained between the normalized 

fluorescence emission and the field-measured assimilation rate was linear and yielded 

better results when the sunlit crown segmentation was applied (r
2
 = 0.66). Our approach 

confirmed the feasibility of using the normalized fluorescence signal as an indicator of 
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photosynthetic activity throughout the season. In this research, we also showed that 

normalized SIF retrieval was lower under rainfed conditions than under irrigated 

regimes in both tree crown segmentations explored (Fig. 3.8b). This result is consistent 

with previous studies (Flexas et al., 1999, 2002,; Zarco-Tejada et al., 2013b) that have 

shown that water stress induces changes in chlorophyll fluorescence emission. In this 

study, the ANOVA and Tukey’s HSD post-hoc test (Table 3.3) confirmed that the 

normalized SIF retrieval extracted from sunlit areas within tree-crowns was able to 

separate the three water stress regimes analyzed (as was observed with the physiological 

measurements); by contrast, the normalized SIF extracted from entire crowns showed 

no differences between the irrigated treatments. These results highlight the need for 

high-resolution hyperspectral imagery to extract the SIF signal from sunlit vegetation 

within tree-crowns. 

Other studies have shown that thermal imaging reveals spatial heterogeneity within 

tree-crowns (Agam et al., 2014; Gonzalez-Dugo et al., 2012) or between plant canopies 

(González-Dugo et al., 2006; Grant et al., 2007), which can be used as an indicator to 

monitor stress conditions. These studies have reported that the heterogeneity of canopy 

temperature is a reliable tool for tracking the water status using thermal airborne 

imagery. However, few studies have focused on the assessment of the variability of 

thermal airborne indicators within tree-crowns, probably due to the high resolution 

needed to accomplish this task. In this regard, Gonzalez-Dugo et al. (Gonzalez-Dugo et 

al., 2012) demonstrated that the mean canopy temperature in almond trees affects the 

relationship between intra-crown temperature variability and water potential. In fact, 

they demonstrated that the variability of crown temperature was higher in almond trees 

subjected to intermediate irrigation levels compared to well-watered ones and to trees 

subjected to the most water-stressed treatments. In that case, canopy architecture and 

soil background temperature had an influence as the temperature was extracted for 

entire tree crowns. However, in the present study, we extracted pure pixels. We 

analyzed CWSI variability between different crown areas and its relationship with 

stomatal conductance measured at the leaf level. The central part of the crowns 

displayed lower temperature values, which were associated with pure vegetation 

without soil contamination. However, in some cases, the pattern of the temperature 

distribution associated to pure vegetation may shift towards other crown areas due to 

changes caused by the density of vegetation canopy, crown structural effects, leaf angle 
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distribution, leaf area index, and the solar angle at the time of flight. The assessment of 

the CWSI as a temperature-derived normalized index allowed us to account for the 

environmental conditions at the time of acquisition and also to assess the thermal 

information from the three flight dates. Moreover, the calculation of the CWSI enabled 

the assessment of the area that better described overall plant performance, avoiding the 

contamination of soil background. 

This study shows that pixels contained in crown areas below the 50th percentile 

(<Q25 and Q25–Q50) corresponded to pure vegetation pixels without soil background 

effects (Figure 3.3d), compared to pixels included into the Q50–Q75 and Q75 quartile 

classes associated with pixels with soil contamination and with low leaf densities. These 

results explained the high average CWSI values displayed when pixels extracted from 

Q50– Q75 and Q75 segmentations were used (Fig. 3.6), an effect observed in all 

treatments (Table 3.2). As a result, the mean CWSI values reached the upper out-of-

range limit. Overall, the CWSI retrieved from the lower half quartile (<Q50) was within 

the theoretical CWSI range for the irrigated treatments and rainfed regime. However, 

the mean CWSI value recorded in RF trees for Q25–Q50 was slightly above the 

maximum theoretical CWSI value. This bias was due to the effect of soil background 

related to the low leaf area density. According to the ANOVA F-test followed by 

Tukey’s HSD post-hoc analysis (Table 3.4), the aggregated quartile classes (<Q50) 

displayed the required accuracy to identify the differences under different water 

regimes. 

The relationships obtained between the CWSI and field-measured stomatal 

conductance were statistically significant (p-value < 0.005) and well correlated, yielding 

weaker relationships with stomatal conductance for the upper quartile-crown 

segmentations (Q75) (r
2
 = 0.62). This inverse relationship with Gs yielded robust 

statistical results when the CWSI was extracted from pixels below the middle quartile 

(r
2
 = 0.78 and p-value < 0.005). The good agreement with stomatal conductance 

confirms that the CWSI can be used as a stress indicator in precision agriculture 

applications. In agreement with recent studies (Meron et al., 2010;Gonzalez-Dugo et al., 

2015), this research also showed that the CWSI is a reliable tool for monitoring the 

spatial variability of water stress using high-resolution thermal imagery. Furthermore, 

our results provide a detailed quantification of the spatial variability of the crown 



 

 

82 Chapter 3 

temperature within almond tree crowns and identify an automatic procedure for 

improving the accuracy for monitoring water status in orchard tree crops. 

3.5 Conclusion 

This study demonstrates the large effects caused by within-tree structural variability 

and background on the airborne-derived SIF and CWSI physiological indicators used 

for water stress detection. Results highlight the importance of collecting high-resolution 

hyperspectral and thermal imagery in orchard crops to enable targeting pure crown-level 

vegetation pixels. The crown segmentation methods applied to extract sunlit vegetation 

crown areas improved the relationships between SIF and field-measured leaf 

assimilation rate. The SIF retrievals carried out using sunlit vegetation pixels minimized 

the impact of canopy structure and reduced the soil background effects, enabling a 

better detection of water stress. In the thermal imagery, the crown segmentation 

methods demonstrated that within-crown shadows and the background affected CWSI. 

When entire tree crowns were used, the CWSI values obtained fell outside the expected 

theoretical range of variation, affecting the relationship with stomatal conductance. 
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Chapter 4: Improved nitrogen retrievals with airborne-derived 

fluorescence and plant traits quantified from VNIR-SWIR hyperspectral 

imagery in the context of precision agriculture 

Resumen 

En condiciones semiáridas, el nitrógeno (N) es, después del agua, el principal 

factor limitante del rendimiento del cultivo, y su cuantificación con precisión es 

esencial. Estudios recientes han demostrado que la fluorescencia clorofílica inducida 

por el sol (SIF) cuantificada a partir de imágenes hiperespectrales es un indicador fiable 

de la actividad fotosintética en el contexto de la agricultura de precisión y en la 

detección temprana de estrés del cultivo. En condiciones de estrés, el papel de la 

fluorescencia puede ser crítico para nuestra comprensión de los niveles de nitrógeno 

debido a su relación con la fotosíntesis y la tasa máxima de carboxilación (Vcmax). La 

investigación llevada a cabo en este estudio tiene como objetivo evaluar la contribución 

desempeñada por la fluorescencia clorofílica obtenida mediante sensores 

aerotransportados hiperespectrales en la cuantificación de N en condiciones 

mediterráneas de regadío y de secano. El estudio se llevó a cabo en tres ensayos de 

selección fenotípica de trigo localizados en el sur de España durante las campañas 2015 

y 2016. Las campañas aerotransportadas adquirieron imágenes con dos cámaras 

hiperespectrales que cubrían las regiones espectrales de 400–850 nm (20 cm de 

resolución) y 950-1750 nm (70 cm de resolución). Para cuantificar N, se construyeron 

modelos de regresión múltiple con y sin SIF a partir de caracteres de la planta estimados 

por inversión del modelo de transferencia radiativa (RTM) y mediante la utilización de 

índices espectrales. Los resultados mostraron que la precisión de los modelos para la 

estimación de N aumentó tras incluir la fluorescencia clorofílica (r
2

LOOCV≥0.92; p 

<0.0005) en comparación con los modelos construidos sólo con constituyentes 

bioquímicos como clorofila a + b (Cab), materia seca (Cm) y espesor de agua equivalente 

(Cw) (r
2

LOOCV varió de 0,68 a 0,77; p <0,005). Además, los índices de nitrógeno (NI) 

centrados en 1510 nm obtuvieron mejores relaciones con la concentración de N (r
2
 = 

0,69) que los índices de clorofila tradicionales (TCARI / OSAVI r
2
= 0,45) y los índices 

estructurales (NDVI r
2
= 0,57) calculados en la región VNIR. Este trabajo demuestra 

que, en condiciones de riego y secano, los indicadores directamente relacionados con la 

fotosíntesis, como la fluorescencia clorofílica, mejoran las predicciones de la 

concentración de N. 
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Abstract 

In semi-arid conditions, nitrogen (N) is the main limiting factor of crop yield after 

water, and its accurate quantification remains essential. Recent studies have 

demonstrated that solar-induced chlorophyll fluorescence (SIF) quantified from 

hyperspectral imagery is a reliable indicator of photosynthetic activity in the context of 

precision agriculture and for early stress detection purposes. The role of fluorescence 

might be critical to our understanding of N levels due to its link with photosynthesis and 

the maximum rate of carboxylation (Vcmax) under stress. The research presented here 

aimed to assess the contribution played by airborne-retrieved solar-induced chlorophyll 

fluorescence to the retrieval of N under irrigated and rainfed Mediterranean conditions. 

The study was carried out at three field sites used for wheat phenotyping purposes in 

Southern Spain during the 2015 and 2016 growing seasons. Airborne campaigns 

acquired imagery with two hyperspectral cameras covering the 400–850 nm (20 cm 

resolution) and 950-1750 nm (70 cm resolution) spectral regions. The performance of 

multiple regression models built for N quantification with and without including the 

airborne-retrieved SIF was compared with the performance of models built with plant 

traits estimated by model inversion, and also with standard approaches based on single 

spectral indices. Results showed that the accuracy of the models for N retrieval 

increased when chlorophyll fluorescence was included (r
2

LOOCV≥0.92; p<0.0005) as 

compared to models only built with chlorophyll a+b (Cab), dry matter (Cm) and 

equivalent water thickness (Cw) plant traits (r
2

LOOCV ranged from 0.68 to 0.77; p< 

0.005). Moreover, nitrogen indices (NIs) centered at 1510 nm yielded more reliable 

agreements with N concentration (r
2
=0.69) than traditional chlorophyll indices 

(TCARI/OSAVI r
2
=0.45) and structural indices (NDVI r

2
=0.57) calculated in the VNIR 

region. This work demonstrates that under irrigated and non-irrigated conditions, 

indicators directly linked with photosynthesis such as chlorophyll fluorescence 

improves predictions of N concentration. 
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4.1 Introduction 

Nitrogen (N) content plays an important role in the plant life cycle. In the most 

situations, N is the major limiting factor of crop yield after water deficiency, and it is an 

essential element in plant growth (Lemaire et al., 2008). It is well documented that an 

adequate N supply is crucial for the maintenance of plant biochemistry quality (Nobel, 

2009), and that N deficiency greatly changes the photosynthetic capacity, leading to a 

decrease in photosynthetic quantum yield and light-saturated photosynthetic rate 

(Khamis et al., 1990). N management of crops has important economic impacts and 

environmental implications, although nitrogen overfertilization is widely used by 

farmers as a form of insurance against uncertain soil fertility (Tremblay et al., 2012). In 

particular, a higher N supply causes significant effects on the environment. Hence, an 

adequate N management strategy is needed to guide precision diagnosis of soil status 

and efficient crop management.  

Traditionally, the N concentration is estimated using chemical analyses based on 

leaf tissue, such as Kjeldahl-digestion and Dumas-combustion, due to their reliability in 

organic N determination. However, these methods are destructive, time consuming, and 

need complex analysis. Moreover, traditional N estimates provide only limited 

information, as sampling is based on only a limited number of sites in a given field; they 

are therefore not suitable for the continuous monitoring of N content in the entire field. 

For these reasons, remote sensing and, in particular, hyperspectral imagery, can be 

useful for monitoring spatial and temporal variations in crop N content over large areas 

(Quemada et al., 2014). 

The use of simple empirical models that incorporate hyperspectral reflectance 

indices is still the dominant method used to estimate N (Ferwerda et al., 2005; 

Stroppiana et al., 2009; Herrmann et al., 2010; Wang et al., 2012; Li et al., 2014; 

Mahajan et al., 2016). Several studies have shown improvements in canopy N 

quantifications using reflectance bands in the near infrared (NIR) and in the short-wave 

infrared (SWIR) regions (Kokaly, 1999; Ferwerda et al., 2005; Herrmann et al., 2010; 

Pimstein et al., 2011; Gnyp et al., 2014; Mahajan et al., 2014), especially when indices 

calculated from wavelengths centered at 850 and 1510 nm are used, as described in 

detail by Herrmann et al. (2010). Serrano et al. (2002) also showed that the combination 

of the 1510 nm and 1680 nm spectral regions was sensitive to N concentration in green 
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biomass. Nevertheless, and despite the successful empirical relationships, nitrogen 

estimation at the canopy level from remote sensing requires appropriate modeling 

strategies due to the large contribution of structural and shadow effects to canopy 

reflectance (Zarco-Tejada et al., 2005). On the other hand, radiative transfer models 

offer advantages compared to index-based empirical models regarding robustness and 

transferability (Jacquemoud and Baret, 1990; Zarco-Tejada et al., 2004; Schlerf and 

Atzberger, 2006; Wang et al., 2015), and these have been widely proposed as a method 

for retrieving chlorophyll content, dry matter, and water content from remote sensing 

data (Clevers and Kooistra, 2012; Jacquemoud and Baret, 1990; Zarco-Tejada et al., 

2004). In this context, recent studies have evaluated the estimation of leaf N content 

using models built with leaf and canopy biophysical parameters retrieved by inversion 

(e.g. Wang et al., 2015), and these have yielded reasonable success (r
2
= 0.58). 

In recent years, the quantification of chlorophyll fluorescence has attracted 

increasing attention in the context of global monitoring of crop physiology and 

vegetation functioning, and this method can offer improvements on the estimation of N 

status (Tremblay et al., 2012). Chlorophyll fluorescence is generally considered as a 

direct proxy for electron transport rate and hence photosynthetic activity (Genty et al., 

1989; Weis and Berry, 1987). The leaf-level maximum carboxylation rate (Vcmax; 

μmol·CO2·m-2·s-1) is closely related to the chlorophyll content at leaf scale (Croft et 

al., 2017; Houborg et al., 2013) and with solar-induced chlorophyll fluorescence (SIF) 

(Rascher et al., 2015; Yang et al., 2015). In this regard, SIF can be considered as a 

direct link with Vcmax through its strong connexion to chlorophyll content and 

photosynthetic activity (Walker et al., 2014). In fact, recent studies have demonstrated 

the link between chlorophyll fluorescence and photosynthetic activity at leaf and canopy 

levels (see e.g. Zarco-Tejada et al., 2013, 2016; Cendrero-Mateo et al., 2016). The 

rationale is based on the dependence of chlorophyll fluorescence emissions on 

chlorophyll concentration and photosystem I (PSI) and II (PSII) efficiency 

(Lichtenthaler et al., 1996). It is well documented that N deficiency affects PSII 

photochemistry, lowering the quantum yield electron transport, the photochemical 

efficiency, and therefore the assimilation rate (Lu and Zhang, 2000; Jin et al., 2015).  
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Crop water status may alter N balance: crop N demand is reduced under drought 

conditions, as growth rate diminishes (Gonzalez-Dugo et al. 2010). In arid and semi-

arid environments, the co-limitation between nitrogen and water often reduces crop 

production which therefore must be considered together (Sadras, 2004). For these 

reasons, spectral indicators related to the leaf functioning, as chlorophyll fluorescence, 

is a potentially important candidate for improving the quantification of N concentration 

using passive remote sensing techniques. The present study aimed to explore the 

contribution of airborne-retrieved chlorophyll fluorescence to the quantification of N 

concentration using hyperspectral imagery. Specifically, we evaluated the fluorescence 

quantification in spring wheat (early sowing) grown under rainfed and irrigated 

conditions to assess whether they contributed significantly to the retrieval of N 

concentration in the context of precision agriculture and plant phenotyping experiments. 

4.2 Material and Methods 

4.2.1 Study area 

The study was carried out in 2015 and 2016 at three field trial sites for durum wheat 

(Triticum turgidum L. var. durum) and bread wheat (Triticum aestivum L.) selection in 

Southern Spain. The sowing date for all sites was mid-November in the previous year. 

Regarding fertilization, pest and disease management, all the plots received the same 

treatment at all trial sites. Fertilization with diammonium phosphate and urea was 

carried out in early November, while similar amounts of fungicides and pesticides were 

applied at the early and middle growth stages at all trial sites. 

The first trial site was located in Ecija (EC), near Seville, Southern Spain 

(37°32ʹ17ʺN, 5°06ʹ57ʺW), which was managed under rainfed conditions in 2015. The 

experiment was designed with a balanced square lattice design using 300 individual 

plots (6 x 1.25 meters) separated in four blocks, with 150 varieties of durum wheat and 

150 of bread wheat. Each cultivar was replicated three times per block (Fig. 4.1a).  

The second site trial was in Carmona (CA), also close to Seville, Southern Spain 

(37°30ʹ29ʺN, 5°34ʹ42ʺW) in 2015. The experiment comprised 882 individual plots 

(7.5x1.25 meters) divided into two blocks managed under rainfed conditions and one 

block under irrigated conditions. Each block contained a mixture of varieties of durum 

and bread wheat, each cultivar replicated three times per block (Fig. 4.1b).  
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The third trial site was managed by IFAPA in Santaella (SA), near Cordoba, 

Southern Spain (37°31ʹ34ʺN, 4°50ʹ40ʺW) in 2016, where 20 varieties of durum wheat 

and 20 varieties of bread wheat were replicated three times under irrigated and rainfed 

conditions (Fig. 4.1c). The plot size was 15 m
2
 (10 x 1.5 meters). 

 
 

Fig. 4.1. Scene of the field trial sites at EC (a), CA (b) and Santaella (c) obtained with a 

color infrared camera (CIR; a and b, not used for analysis in this study) and the 

hyperspectral imagery (c) on board the aircraft. Black rectangles indicate plots under 

rainfed conditions and blue rectangles indicate plot under irrigated conditions. 

4.2.2 Field data 

In order to assess the physiology and the leaf optical properties of the wheat, a 

series of leaf-level measurements were made concurrently with the airborne flights at 

midday (12:00 to 13:00 h local time) at all the trial sites. A summary of field 

measurements and airborne campaigns at each trial site is shown in Table 4.1. The 

wheat growth stage during the flight campaigns refers to the stem length at the time of 

the first flight in Santaella (SA-1) and grain filling (milking stage) at the time of the 

flights in EC, CA and the second flight in Santaella (SA-2). 
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Leaf water potential (𝜓𝐿; MPa) was measured using a pressure chamber (Model 

600 Pressure Chamber Instrument, PMI Instrument Company, Albany, NY, USA) on 

two sunlit leaves per plot. Assimilation rate (A; μmol·m
-2

·s
-1

) and stomatal conductance 

(Gs; mmol·m
-2

·s
-1

) were measured using a photosynthesis measurement system 

(LCDpro-SD, ADC Bioscientific Ltd., Herts, UK) on two sunlit leaves per plot. Steady-

state leaf fluorescence yield (Ft) and a SPAD chlorophyll content indicator were 

measured on 10 to 15 leaves per plot using a FluorPen FP100 (Photon Systems 

Instruments, Brno, Czech Republic) and a chlorophyll meter (SPAD-502, Minolta 

Corp., Ramsey, NJ, USA), respectively. The relationship between chlorophyll 

concentration and SPAD readings for wheat found by Uddling et al. (2007) was applied 

to convert SPAD data into chlorophyll content (µg·cm
-2

). Total N concentration was 

determined by the Kjeldhal method (Kjeldahl, 1883) on 20-25 sunlit leaves sampled per 

plot. As in the rest of the physiological measurements, a random selection of the sunlit 

leaves was carried out from the central area of each plot.  

Table 4.1. Field measurements and flight dates during the 2015 and 2016 campaigns. 

Year Site Flight 

dates 

Type of flight (a) Field measurements Plots with field data 

  

2015 EC 28/05 Noon (T+VNIR +SWIR) 𝜓𝐿, A, Gs, Ft,  SPAD, N  12 (b) 

  CA 30/05 Noon (T+VNIR +SWIR) 𝜓𝐿, A, Gs, Ft, SPAD, N  18 (b) 

2016 SA-1 17/03 Noon (T+VNIR +SWIR) 𝜓𝐿, A, Gs,  Ft,  SPAD, N  24
 
(b) and 45(c) 

  SA-2 26/04 Noon (T+VNIR +SWIR) 𝜓𝐿, A, Gs,  Ft,  SPAD, N  24
 
(b) and 50(c) 

 

a T= thermal camera, VNIR = hyperspectral visible and infrared camera (400-885 nm), SW NIR = 

hyperspectral near-infrared and short-wave infrared camera (950-1750 nm). 

b number of plots with all leaf measurements 

c number of plots with only measurements of SPAD and total leaf nitrogen. 

4.2.3 Airborne hyperspectral imagery 

A hyperspectral imager covering the visible and near-infrared region (Micro-

Hyperspec VNIR, Headwall Photonics, Fitchburg, MA, USA) and a second 

hyperspectral imager covering the NIR and the SWIR regions (Micro-Hyperspec NIR-

100, Headwall Photonics) were installed in tandem on a Cessna aircraft operated by the 

Laboratory for Research Methods in Quantitative Remote Sensing (QuantaLab), 

Consejo Superior de Investigaciones Científicas (IAS-CSIC, Spain). Imagery was 

acquired at 250 m above ground level with the aircraft flying on the solar plane during 

the flight campaigns of 2015 and 2016. The campaigns were flown at midday (local 

time) to minimize differences due to sun angle effects between flights. 
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The micro-hyperspec VNIR was set up with a configuration of 260 spectral bands 

acquired at 8 nm/pixel and 12-bit radiometric resolution in the 400–885 nm spectral 

region, thus yielding a 6.4 nm Full Width at Half Maximum (FWHM) with a 25-μm slit. 

The acquisition and storage module had a 50 fps frame rate with an integration time of 

25 ms. The 8-mm focal length lens yielded an IFOV of 0.93 mrad and an angular FOV 

of 50° with a spatial resolution of 20 cm (Fig. 4.2a) (further information regarding the 

setup of micro-hyperspec VNIR can be obtained from Zarco-Tejada et al., 2016). 

The micro-hyperspec NIR-100 camera was flown with a configuration of 165 

spectral bands and 16-bit radiometric resolution in the spectral region of 950 to 1750 

nm, yielding 6.05 nm FWHM with a 25-μm slit and an optical aperture of f/1.4. The 

FWHM and the center wavelength for each spectral band were derived after spectral 

calibration using a Cornerstone 260 1/4m Monochromator (model 74100; Oriel 

Instruments, USA) and the XE-1 Xenon Calibration Light Source (Oceanic Optics, 

USA). The frame rate on board the aircraft was set to 50 fps with an integration time of 

40 ms. The 12.5-mm focal length lens yielded an angular FOV of 38.6º with a spatial 

resolution of 70 cm (Fig. 4.2b). 

 
Fig. 4.2. Sample hyperspectral VNIR (400-800 nm region) (a) and hyperspectral NIR 

(900-1700 nm region) (b) imagery acquired during the 2015 and 2016 airborne 

campaigns performed at the trial sites at CA and SA-1, respectively.  
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Radiometric calibration of the hyperspectral cameras and ortho-rectification of the 

imagery were carried out as described by Zarco-Tejada et al. (2016). Atmospheric 

correction of the imagery was performed using aerosol optical depth (AOD) and 

weather data to simulate the incoming irradiance using the SMARTS model 

(Gueymard, 1995; Gueymard et al., 2002), measured in the field concurrently with the 

airborne flights. The SMARTS model has been used in previous studies to calculate 

reflectance from both multispectral and hyperspectral imagery (Berni et al., 2009;  

Zarco-Tejada et al., 2012, 2016; Calderón et al.,  2013, 2015). A further step was 

carried out to apply an empirical line calibration (Smith and Milton, 1999) using field-

measured spectra to remove noise. The average radiance and reflectance values of 

selected wheat plots from each trial site are shown in Fig. 4.3. 

 
 

Fig. 4.3. Mean radiance in W·sr
-1

·m
-2

·nm
-1

 (a) and reflectance spectra (b) retrieved from 

hyperspectral cameras at EC (in blue), CA (in black), SA-1(in red) and SA-2 (in Green). 

4.2.4 Fluorescence retrieval and calculation of narrow-band indices from the 

airborne hyperspectral imagery 

The atmospheric O2-A oxygen absorption band at 760.5 nm was used for the 

fluorescence retrieval via the in-filling method. In particular, the Solar Induced 

Fluorescence (SIF) was quantified from the radiance spectra (Fig. 4.3a) using the 

Fraunhofer Line Depth (FLD) principle (Plascyk, 1975) as described in Zarco-Tejada et 

al. (2013; 2016). The SIF signal calculated using the in filling method was based on two 

spectral bands in and out the O2-A feature, as described in Meroni et al. (2010). The 

FLD2 method used Lin (L762 nm) in this study extracted the radiance and Lout (L750 

nm) from the airborne imagery, and the irradiance Ein (E762 nm) and Eout (E750 nm) 

from irradiance spectra concurrently measured at the time of the flights. Measurements 



 

 

98 Chapter 4 

were made using an ASD Field Spectrometer (FieldSpec Handheld Pro, ASD Inc., CO, 

USA) with a cosine corrector-diffuser probe for the entire 400-1000 nm spectral region. 

A modelling study by Damm et al. (2011) quantified the effects of the spectral sampling 

interval, spectral resolution, signal to noise ratio (SNR) and the spectral shift on the 

accuracy of the fluorescence retrieval using the O2-A feature. They demonstrated the 

feasibility of the SIF retrieval via the FLD methods with broader spectral bandwidths 

(i.e., 5-7 nm FWHM) when high spectral sampling (below 2.5 nm) and SNR higher than 

300:1were available. These results agree with the fluorescence retrievals shown in 

Zarco-Tejada et al. (2012) and later in Damm et al. (2015) with APEX. According to 

these works, the hyperspectral configuration used in this study is suitable for the SIF 

retrievals (1.85 nm sampling interval, 6.4 nm bandwidths and SNR of 300:1 with spatial 

binning). 

Narrow-band indices were calculated from the average reflectance per plot using the 

260 spectral bands acquired by the micro-hyperspec VNIR, and from the 164 spectral 

bands acquired by the micro-hyperspec NIR cameras (Fig. 4.3b). In the SWIR region, 

the atmospheric water absorption spectral region (1330–1490 nm) was masked before 

analysis. Table 4.2 groups the vegetation indices (VIs) calculated from the micro-

hyperspec VNIR into four categories related to: 1) structure, 2) chlorophyll 

concentration, 3) chlorophyll fluorescence, and 4) nitrogen indices (NIs) using NIR and 

SWIR spectral domains. 

4.2.5 Modelling method  

Radiative transfer simulations were carried out with PROSPECT (Jacquemoud and 

Baret, 1990) linked to the SAILH model (Baret et al., 1992). Biophysical canopy 

parameters by means of numerical model inversion were estimated using look-up tables 

(LUT). The input variables and their ranges in PROSPECT and SAILH models are 

shown in Table 4.3. The viewing geometry, defined by the solar zenith and azimuth, 

and the viewing angles needed to simulate canopy reflectance were extracted for each 

flight date. In order to minimize the impact of the viewing geometry at each flight date 

and time, a step of five degrees around the solar zenith angle during the flights was 

applied to the PROSPECT-SAILH radiative transfer model inversions. 
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Table 4.2. Summary of the vegetation indices using the VNIR (400-800 nm region) and 

NIR (900-1700 nm region) hyperspectral airborne imagery. 

Indices Equation Reference 

Structural indices 

Normalized Diff. Veg. Index NDVI=(R800-R670)/ (R800+R670) Rouse et al. (1973) 

Opt. Soil-Adjusted Veg. Index  OSAVI=(1+0.16)( R800- R670)/( R800+ R670+0.16) Rondeaux et al. (1996) 

Renormalized Diff. Veg. Index RDVI=(R800-R670)/(R800+R670)
 0.5

 Roujean and Breon (1995) 

MCARI/MTVI2 MCARI/MTVI2 Eitel et al. (2007) 

Chorophyll a+b indices  

Transf. Chl. Absorp. Rfl. Index  TCARI = 3[(R700-R670)-0.2 (R700-R550)(R700/R670)] Haboudane et al. (2002) 

TCARI/OSAVI TCARI/OSAVI  Haboudane et al. (2002) 

Mod. Chl.  Absorp. Rfl. Index MCARI = [(R700-R670)-0.2 (R700-R550)](R700/R670) Daughtry et al. (2000) 

Pig. Spec. Simpl. Ratio Chl. b PSSRb =R800/R635 Blackburn (1998) 

Gitelson and Merzlyak Indices GM1=R750/R550; GM2=R750/R700 Gitelson and Merzlyak (1997) 

Vogelmann Index VOG=R740/R720 Vogelmann et al. (1993) 

Red-edge CI CI=R750/R710 Zarco-Tejada et al. (2001) 

Chlorophyll fluorescence (SIF) 

SIF FLD2=d-Rb;  where d=L762; R=(L762-L750)/(E762 –E750) and b=E762              
Moya et al. (2004); Plascyk 

and Gabriel (1975) 

Nitrogen indices (NIs)   

Double-peak C. N  DCNI=(R720- R700)(R700-R670)/(R720- R670)+0.3) Chen et al. 2010 

TCARI1510 nm TCARI1510=3[(R700- R1510)-0.2 (R700- R550)]( R700/ R1510) Herrmann et al. 2010 

TCARI /OSAVI1510 nm  
TCARI1510/ OSAVI1510= TCARI1510 /  

[(1+L) (R800- R1510)/ (R800+ R1510+L)] 
Herrmann et al. 2010 

MCARI1510 nm MCARI1510= [(R700- R1510)-0.2 (R700-R550)]( R700/ R1510) Herrmann et al. 2010 

GnyLi GnyLi=(R900* R1050) (R955* R1220) / (R900*R1050)+(R955*R1220) Gnyp et al. 2014 

Norm. Diff. N. Index NDNI=log(1⁄ R1510)-log(1⁄ R1680)/(log(1⁄ R1510) +log(1⁄R1680) Serrano et al. 2002 

N1645,1715 N1645,1715=(R1645-R1715)/( R1645+ R1715) Pimstein et al. 2011 

N870,1450 N870,1450=(R870- R1450)/(R870+ R1450) Pimstein et al. 2011 

N850,1510 N850,1510=(R850- R1510)/(R850+R1510) This study 

 

In this study two standard model inversions and one inversion method by steps 

were performed. The range of variation for Cab was determined on the basis of prior 

field information. In the standard model inversion method, the chlorophyll a+b, water 

and dry matter content were estimated at the same time, while in the inversion method 

by steps, the estimation of biophysical canopy parameters required consecutive steps 

(e.g.; as in Wang et al., 2015). The spectral range between 400 and 800 nm measured 

with the micro-hyperspec VNIR camera was used in the standard model inversion 

method (named here as INV-1), while the entire spectral region (400 to 1700 nm) from 

both hyperspectral VNIR and NIR-100 cameras was used in the full-range inversion 

(here called INV-2) and in the inversion model by steps. In the inversion by steps, the 

main input parameters were calculated using specific spectral ranges where the 

biophysical parameters have the greatest influence on the reflectance and transmittance. 

The procedure was conducted as follows: 1) leaf angle distribution function (LADF) 

was estimated over the entire spectral domain (400-1750 nm) with variables Cab, Cw and 

Cm according to Table 4.3. LADF was firstly retrieved by model inversion, given its key 
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role on canopy structure; 2) the mesophyll structure parameter (N-struct) and leaf area 

index (LAI) were simultaneously determined over the range 960–1300 nm once the 

LADF had been fixed to the value retrieved in the first step, and with variable Cab, Cw 

and Cm according to Table 4.3; 3) Cab was determined over the range 455–690 nm, with 

Cw and Cm according to Table 4.3, fixing LADF, LAI and N determined in previous 

steps; 4) Cw and Cm were concurrently retrieved over 900–1700 nm, where water and 

dry matter have the largest absorption effects (Baret and Fourty, 1997; Feret et al., 

2008; Fourty et al., 1996; Jacquemoud et al., 2009, 1996).  

Table 4.3. Ranges of the main variables used in the PROSPECT-SAILH radiative 

transfer model inversions. 

  Model Symbol Quantity Ranges Step Unit 

PROSPECT N-struct Leaf structure parameter 1.25-1.85  0.1 … 

  Cab Chlorophyll a +b content 10-70 0.5 µg cm
-2

 

  Cw Equivalent water thickness 0.001-0.05 0. 0005 g cm
-2

 

  Cm Dry matter content 0.001-0.05 0. 0005 g cm
-2

 

  Cs Brown pigment content 0 … … 

  Sl Hot-spot parameter 0.001 … … 

SAILH LAI Leaf area index 2-5 0.1 … 

  LADF 
Leaf inclination distribution 

function 
1,2,3 and 4* … … 

  TV Solar zenith angle 45º,60º,85º 5 deg 

  Phi Viewing zenith angle 0º … deg 

  PSR Relative azimuth angle 0º … deg 

* Canopy types proposed to define LADF: planophile (1), erectophile (2), plagiophile (3) and spherical (4).   

 

The accuracy of the estimated parameters (LADF, N-struct, LAI, Cab, Cw and Cm) 

via model inversion was evaluated by the RMSE calculated between the simulated and 

measured canopy spectral reflectance. For each standard model inversion, a total of 

500000 inversions were carried in forward mode, whereas a total of 200000 inversions 

were used for the inversion method by steps. Finally, the coefficient of determination 

(r
2
) was calculated to investigate the relationship between the retrieved biophysical 

parameters (Cab, Cw and Cm) obtained by PROSPECT-SAILH model inversion and the 

ground-truth physiological measurements. 

4.2.6 Statistical analysis 

Stepwise multiple regression analysis using forward mode and leave-one-out-cross-

validation (LOOCV) techniques were employed to select the best model to quantify N 

concentration using i) biophysical parameters derived from the different model 

inversion methods described above, ii) using narrow-band spectral indices calculated 
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from the VNIR and NIR-100 hyperspectral imagery; and iii) evaluating the performance 

of the models with the addition of chlorophyll fluorescence quantified from the 

hyperspectral imagery. Therefore, statistical tests were employed to assess the 

robustness of each regression model built for nitrogen quantification with and without 

including solar-induced fluorescence emission retrieved from hyperspectral imagery. A 

residual analysis model was used to assess the independence of the residual, and the 

Shapiro-Wilk test for homoscedasticity to verify the normal distribution. The F-test was 

used to test the significance of the linear regression model, and Student’s t-test for the 

significance of individual regression coefficients. Independent data sets were used for 

the statistical analysis, using a training data set to build a multiple regression, and an 

independent second data set to assess the performance of each model under rainfed and 

irrigated conditions. The training data set comprised the plots located in EC, CA and 

SA-1, in which the main physiological measurements were made. The test data set was 

built by SA-1 and SA-2 plots and separated under rainfed and irrigated conditions.  

The mean absolute error (MAE), root mean square error (RMSE), mean percentage 

error (MPE), mean absolute percentage error (MAPE) and coefficient of determination 

(r
2
) between the measured leaf nitrogen content and predicted values were used as skill 

scores to validate the performance of each model. The statistical analysis was conducted 

in R software (R Core Team, 2015). 

4. 3 Results 

4.3.1 Field measurements 

Mean values of the field physiological measurements and chlorophyll fluorescence 

retrieved from the airborne imagery for each field site under rainfed and irrigated 

conditions are shown in Table 4.4. The results revealed wide variations in the crop 

physiological status on all sites. As expected, the irrigated plots displayed overall better 

water and nutritional status than the rainfed plots. There were differences among the 

rainfed plots; average values of mean N concentration, assimilation rate (A), Gs, and 

SIF were lower in EC and SA-2 compared to CA and SA-1 (Table 4.4). The irrigated 

plots at SA-1, which were at an earlier stage of growth, and at SA-2, displayed an 

overall better water and nutritional status. These data confirmed the water and nutrient 

stress conditions in rainfed plots and a large variability among plots. 
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Table 4.4. Average N concentration (%), chlorophyll content derived from SPAD (Cab; 

µg·cm
-2

), net assimilation (A; μmol·m
-2

·s
-1

), stomatal conductance (Gs; mmol· m
-2

·s
-1

), 

leaf-water potential (ψL; MPa) and chlorophyll fluorescence (SIF in in Watt·sr
-1

·m
-

2
·nm

-2
), under rainfed and irrigated conditions at EC, CA, SA-1 and SA-2. The standard 

deviation is also shown. 

  N 

Conc. 

Cab 

(SPAD) 

A Gs ψL SIF 

Rainfed             

EC 2.50±0.46 23.4±3.7 7.7± 2.1 61.27±2 -2.3±0.2 3.74±0.62 

CA 3.28±0.34 28.0±3.6 11.3±2.1 71±24.8 -2.5±0.4 4.22±0.25 

SA-1 4.17±0.19 35.0±3.2 17.0±3.3 185.8±56.1 -2.4±0.2 4.88±0.57 

SA-2 2.63±0.32 26.0±2.4 10.0±2.5 121.8±40.5 -2.7±0.2 4.01±0.40 

Irrigated 
     

  

CA 3.37±0.04 28.5±2.3 14.7±4.1 270.6±65.4 -2.1±0.1 4.38±0.17 

SA-1 4.29±0.28 35.8±4.1 24.4±2.4 354.6±109.4 -1.7±0.2 5.71±0.29 

SA-2 2.95±0.31 29.3±3.9 18.3±2.4 283.2±65.2 -2.2±0.1 5.14±0.28 

 

4.3.2 Nitrogen concentration and narrow-band hyperspectral indices 

The solar induced fluorescence emission and narrow-band reflectance indices 

calculated from hyperspectral imagery were assessed against field measurements of 

nitrogen content, chlorophyll content measured with SPAD, and net assimilation (Table 

4.5). The results showed that the NIR/SWIR-based NIs were marginally better 

predictors of nitrogen content than the VNIR indices, with the MCARI1510 and the 

NDNI (Fig. 4.4a) indices yielding the best correlation with nitrogen content (r
2
=0.69; p-

value ≤ 0.005) as compared to MCARI (r
2
=0.63) and PSSRb (r

2
=0.63). The NIs that 

were modified to replace the 670nm band by the 1510 nm band due to its relationship 

with nitrogen absorption (TCARI1510, MCARI1510, TCARI/OSAVI1510) performed 

higher at quantifying canopy nitrogen content than their corresponding VNIR-based 

indices. The N1645/1715 using exclusively reflectance in the SWIR domain showed 

significant relationship with N content (r
2
=0.64, p-value<0.005) but still marginally 

inferior to MCARI1510 and NDNI. Table 4.5 also shows that the indices most sensitive to 

canopy structure yielded significant relationships with nitrogen content (r
2
=0.57; p-

value <0.005; NDVI). However, the structural indices exhibited saturation over dense 

canopy, as shown in Fig. 4.4b for NDVI which tends to saturate due to the higher 

canopy density at high nitrogen levels. Among the chlorophyll indices used in this 

study, PSSRb (Fig. 4.4c) obtained the best results for chlorophyll content estimation 

(r
2
=0.57, p-value ≤ 0.0005), yielding better results than NIs. The airborne-quantified 

chlorophyll fluorescence was also sensitive to nitrogen content (r
2
=0.51; p-value ≤ 
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0.005) and to the assimilation rate (r
2
=0.74; p-value ≤ 0.005; Fig. 4.4d), confirming 

other studies that demonstrated the link between airborne-retrieved chlorophyll 

fluorescence and the photosynthetic activity. 

  

Fig. 4.4. Relationships between N concentration (in %) vs. NDNI (a) and NDVI (b), Cab 

vs. PSSRb (c) and A vs. airborne-quantified SIF (d). For all relationships the 

significance level was p ≤0.0005. 

4.3.3 Nitrogen concentration and plant traits estimated by model inversion 

The coefficient of determination (r
2
) calculated between chlorophyll content (Cab), 

water content (Cw) and dry matter content (Cm) estimated by PROSPECT-SAILH model 

inversion and leaf-level physiological measurements (nitrogen concentration, net 

assimilation rate and chlorophyll content) are shown in Table 4.6. These results 

correspond with the method proposed in Wang et al. (2015) that used biophysical 

parameters retrieved by model inversion to evaluate the retrieval of leaf N 

concentration. In the present study, Cab estimated by model inversion by steps correlated 

with N concentration (r
2
=0.71; p-value ≤ 0.0005; Fig. 4.5a), field-measured leaf Cab 

(r
2
=0.81; p-value ≤ 0.0005; Fig. 4.5b) and with the assimilation rate (r

2
=0.59; p-value ≤ 

0.0005; Fig. 4.5c). Using this model-inversion approach by steps, the relationship 

between estimated and measured Cab content adjusted well with the 1:1 line for the 

entire dataset (Fig. 4.5b), yielding a RMSE=2.04 µg·cm
-2

 and MAPE=5.44%. The two 

standard model-inversion methods (INV-1 and INV-2) displayed quite different 

behavior; Cab was correctly estimated for plots with N concentration and Cab values that 

were higher than 3.5% and 30 µg·cm
-2

 respectively, while the retrievals failed for the 
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plots with nitrogen and Cab values below these (see outliers in Fig. 4.5b). The two 

standard model inversion approaches thus yielded weaker results in their estimates of 

nitrogen content (RMSE ≥ 6.33 µg·cm
-2

 and MAPE ≥ 17.68 %) than the model 

inversion by steps. 

Table 4.5. Coefficient of determination (r
2
) and level of significance for the narrow-

band hyperspectral indices and the solar induced chlorophyll fluorescence (SIF; 

Watt·m
-2

·sr
-1

· nm
-1

) quantified from hyperspectral imagery against N concentration, 

chlorophyll content derived from SPAD values (Cab-SPAD; µg·cm
-2

) and net 

assimilation (A; μmol·m
-2

·s
-1

). 

 
N concentration  Cab-SPAD Net assimilation (A) 

Indices r
2
 p-value r

2
 p-value r

2
 p-value 

Structural Indices           

NDVI 0.57  < 2.2e-16 0.53  < 2.2e-16 0.55 1.61E-08 

OSAVI 0.56  < 2.2e-16 0.49  < 2.2e-16 0.53 3.23E-08 

RDVI 0.56  < 2.2e-16 0.48  < 2.2e-16 0.53 3.92E-08 

MCARI/MTVI2 0.40 2.14E-13 0.25 2.14E-13 0.46 5.61E-07 

Chlorophyll a+b 

indices 
        

  

TCARI 0.54  < 2.2e-16 0.51  < 2.2e-16 0.60 1.02E-09 

TCARI/OSAVI 0.45 1.78E-15 0.30 8.64E-10 0.51 8.59E-08 

MCARI 0.63  < 2.2e-16 0.55  < 2.2e-16 0.57 4.78E-09 

PSSRb 0.63  < 2.2e-16 0.57  < 2.2e-16 0.66 3.72E-11 

GM1 0.36 8.32E-12 0.39 2.90E-13 0.47 3.62E-07 

GM2 0.52  < 2.2e-16 0.47 2.22E-16 0.26 4.79E-04 

VOG1 0.35 4.65E-10 0.32 1.75E-10 0.66 3.72E-11 

CI 0.31 1.31E-11 0.35 1.48E-11 0.47 3.62E-07 

Nitrogen Indices           

DCNI 0.56  < 2.2e-16 0.50  < 2.2e-16 0.59 1.77E-09 

TCARI1510 0.56  < 2.2e-16 0.44 1.78E-15 0.59 1.57E-09 

TCARI/OSAVI1510 0.52 2.35E-18 0.41 7.47E-14 0.63 2.26E-10 

MCARI1510 0.69  < 2.2e-16 0.56  < 2.2e-16 0.43 1.86E-06 

GnyLi 0.31 3.41E-10 0.31 2.36E-10 0.51 7.98E-08 

NDNI 0.69  < 2.2e-16 0.49  < 2.2e-16 0.61 5.75E-10 

N1645 0.64  < 2.2e-16 0.52  < 2.2e-16 0.59 1.57E-09 

N850-1450 0.64  < 2.2e-16 0.55  < 2.2e-16 0.63 2.26E-10 

NI850/1510 0.65  < 2.2e-16 0.53  < 2.2e-16 0.61 5.75E-10 

Fluorescence           

SIF 0.51  < 2.2e-16 0.35 1.37E-11 0.74 1.19E-11 

 

Leaf equivalent water thickness retrieval by model inversion was significantly 

related to N concentration (r
2
=0.66; p-value ≤ 0.0005), while dry matter content showed 

significant (yet lower coefficients of determination than for Cw) yielding r
2
=0.23 (step 

inversion method) and r
2
=0.49 (INV-1 method) (in both cases p-value ≤ 0.0005). In this 

case, the coefficient of determination was significantly affected by outliers, inducing an 

artificial increase in the correlation coefficients for INV-1 as compared to the step 
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inversion method. In summary, the three leaf biochemical parameters Cab, Cw and Cm 

estimated by radiative transfer model inversion from the hyperspectral imagery were 

significantly related to leaf N concentration (p-value ≤ 0.0005 in all three cases), but Cab 

and Cw yielded higher relationship with N than Cm. 

Table 4.6. Coefficient of determination (r
2
) between estimated leaf Cab, Cm and Cw 

parameters by PROSPECT-SAILH model inversion by steps and by standard inversion 

methods (INV-1 and INV-2) vs. N concentration, leaf-measured Cab with SPAD, and 

net assimilation (A). 

 N 

concentration  

Cab 

(SPAD) 

Net  

Assimilation 

(A) 

Chlorophyll content a+b (Cab)    
By step 0.71** 0.81** 0.59** 

INV-1 0.012 0.008 0.001 

INV-2 0.004 0.002 0 

Equivalent water thickness (Cw)    
By step 0.66** 0.56** 0.53** 

INV-1 0.017 0.008 0.008 

INV-2 0.27** 0.25** 0.19* 

Dry-matter content (Cm)    
By step 0.23** 0.1 0.18** 

INV-1 0.49** 0.32** 0.30** 

INV-2    0.38* 0.24** 0.23** 

** p-value < 0.0005; * p-value < 0.02 

 

 
 

Fig. 4.5. Chlorophyll content (Cab, µg·cm
-2

) estimated by model inversions vs. N 

concentration (in %) (a), chlorophyll content derived from SPAD (Cab-SPAD; µg·cm 
-2

) 

(b), and leaf assimilation rate (A, μmol·m
-2

·s
-1

) (c). Black points correspond to 

inversion by steps, black crosses using the INV-1 method and open black circles using 

the INV-2 model. 
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4.3.4 Leaf N estimation from the airborne hyperspectral imagery accounting for 

chlorophyll fluorescence 

 The stepwise multiple regression and LOOCV methods built to estimate N 

concentration using the leaf biochemical constituents Cab, Cw and Cm obtained by model 

inversion, were assessed accounting for the contribution of adding chlorophyll 

fluorescence. The statistical models built using all input parameters, with and without 

including SIF as predictor of nitrogen are shown in Table 4.7. The homoscedasticity and 

the normal distribution requirements were satisfied and passed the statistical test (F-

Test). According to the t-test, the regression coefficients for Cab and SIF were 

significant at the 5% significance level. In contrast, Cm and Cw parameters were non-

significant in some of the regression models (see Table 4.7). 

Table 4.7. Statistical tests for the validity of the regression models used to estimate N 

concentration. 

  F-test 
Shapiro-

Wilk  
p-value (t-test) 

 p-value   W p-value Cab Cw Cm SIF 

 

Without Fluorescence  
      

 
    

N=f(Cab)  2.4E-13 0.98 0.55 2.4E-13 
 

    

N=f(Cab,Cw)  2.9E-16 0.98 0.64 6.2E-06 0.0003     

N=f(Cab,Cm)  7.5E-17 0.98 0.46 7.6E-14  8.2E-5   

N=f(Cab,Cw,Cm)  6.4E-17 0.98 ≥0.05 8.7E-06 0.5911 0.0906   

 

With Fluorescence 
        

 
    

N=f(Cab, SIF)  8.2E-27 0.97 0.35 7.8E-10 1.1E-14     

N=f(Cab,Cw,SIF)   1.4E-28 0.96 0.17 1.0E-06 0.0059   2.7E-13 

N=f(Cab,Cm,SIF)  1.1E-27 0.97 0.23 1.9E-10  0.0519 7.2E-12 

N=f(Cab,Cw,Cm,SIF)  1.2E-28 0.97 0.2 0.0013 0.0429 0.5395 1.8E-12 

 

The ability of each model to predict N concentration was assessed using the 

LOOCV scores described earlier, showing the results in Table 4.8. Based on these 

statistical scores, the multiple linear regression models using SIF as predictive variable 

considerably improved the accuracy of N estimation (r
2

LOOCV ≥ 0.92; MAE LOOCV ≤ 0.19 

and RMSE LOOCV ≤ 0.23). As a comparison, regression models without including 

fluorescence (SIF) reached significantly lower predictive power (r
2

 LOOCV ≤ 0.77; MAE 

LOOCV ≥ 0.33 and RMSE LOOCV ≥ 0.40). The contribution of each variable is shown by 

standardized coefficients (β0; Table 4.8). These results show that in models that include 

SIF as predictor, its contribution to the retrieval of N was higher than the rest of the 

predictors, being almost double than the contribution of Cab. In the models that did not 
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use SIF as predictor, the estimated Cab by model inversion contributed the highest to N 

estimation.  

According to r
2
, RMSE, MAE and MAPE, the most accurate estimation was 

achieved by the regression model when the predictors were Cab, Cw, Cm and SIF, 

yielding r
2

LOOCV = 0.93, RMSELOOCV = 0.20, MAELOOCV = 0.18 and the lowest MAPE 

(Table 4.8). Nevertheless, the rest of models with less number of parameters (therefore 

simpler) obtained accuracies only marginally lower (e.g. r
2
=0.93 & RMSE=0.20 for the 

most complex model using Cab, Cw, Cm and SIF as compared to r
2
=0.92 & RMSE=0.23 

for the model using Cab and SIF). Fig. 4.6 shows the scatter plots between the measured 

and predicted N concentration using the model without (top plots) and with SIF as 

predictor (bottom plots). The models using SIF showed lower RMSE and better 

performance than the rest of the models that did not employ fluorescence as predictor. 

 
Fig. 4.6. Measured vs. estimated N concentration using the best regression LOOCV 

models without fluorescence (a,b) and with fluorescence (c,d) as a function of Cab (a), 

Cab, Cw and Cm (b), Cab and SIF (c) and Cab, Cw and Cm and SIF (d). The dashed line is 

the 1:1 line. 
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Table 4.8. Performance of the regression models built to estimate N concentration using 

r
2
, RMSE, ME, MAE, MAPE and standardized coefficients as performance indicators. 

Regression Models r
2
 RMSE MAE MAPE Standard. coefficients (β0) 

 

Without Fluorescence     
Cab Cw Cm SIF 

N=f(Cab)  0.68 0.47 0.39 12.0% 0.84 … .… … 

N=f(Cab, Cw)  0.74 0.41 0.34 9.9% 0.54 0.41 … … 

N=f(Cab, Cm) 0.77 0.40 0.33 9.7% 0.77 … -0.31 … 

N=f(Cab, Cw, Cm) 0.75 0.41 0.34 10.0% 0.70 0.11 -0.24 … 

 

With Fluorescence         

N=f(Cab, SIF) 0.92 0.23 0.19 5.9% 0.43 … … 0.63 

N=f(Cab, Cw, SIF) 0.92 0.22 0.18 5.6% 0.34 0.17 … 0.57 

N=f(Cab, Cm, SIF) 0.92 0.23 0.19 5.9% 0.44 … -0.10 0.57 

N=f(Cab, Cw, Cm, SIF) 0.93 0.20 0.18 5.5% 0.30 0.23 0.05 0.58 

 
Based on these results, the proposed models combining leaf biochemical 

constituents with and without SIF were evaluated as predictors for N concentration 

separately for rainfed and irrigated conditions. All models showed greater accuracies in 

predicting N concentration under rainfed (stress) conditions than under irrigated (non-

water stress) conditions (e.g. best model performance yielded r
2
=0.93 (rainfed) vs. 

r
2
=0.88; (irrigated) (Table 4.9). As Figure 4.7 shows, the plots were aligned over the 1:1 

line for both cases of rainfed (Fig. 4.7a) and irrigated conditions (Fig. 4.7b). Under 

rainfed conditions, the models with SIF as predictor yielded significantly higher scores 

(r
2
 ≥ 0.89, RMSE ≤ 0.26 and MAPE ≤ 6.8 %) than models without SIF as predictor (r

2
 ≥ 

0.78, RMSE ≤ 0.37 and MAPE ≤ 9.46 %). 

Under irrigated conditions, the models that used SIF as predictor also showed the 

best performance. The model built with Cab and SIF displayed better accuracy in 

predicting nitrogen concentration (r
2
 = 0.65, RMSE = 0.42 and MAPE ≤ 10.6 %) than 

the model with Cab only (r
2
 = 0.48, RMSE = 0.51 and MAPE ≤ 12.56 %), indicating that 

the contribution of SIF was highly significant under both irrigated and non-irrigated 

conditions. 
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Fig. 4.7. Measured vs. estimated N concentration for rainfed (a) and irrigated conditions 

(b) using the model built with Cab, Cm and Cw biochemical constituents (estimated by 

model inversion) including fluorescence. The solid line is the 1:1 line. 

Table 4.9. Statistics for r
2
, RMSE, ME, MAE, MPE and MAPE between measured and 

predicted N concentration under rainfed and irrigated conditions. 

 
r

2
 RMSE MAE MPE MAPE 

Rainfed conditions     
 

 

Without Fluorescence      

N = f(Cab)  0.78 0.37 0.29 -1.44% 9.46% 

N = f(Cab, Cm)                      0.81 0.34 0.27 -1.12% 8.50% 

N = f(Cab, Cw)        0.86 0.36 0.23 -0.92% 7.54% 

N = f(Cab, Cw, Cm)         0.86 0.29 0.23 -0.84% 7.24% 

With Fluorescence      

N=f(Cab, SIF) 0.89 0.26 0.21 -0.65% 6.89% 

N = f(Cab, Cm, SIF)   0.89 0.26 0.22 -0.64% 6.86% 

N = f(Cab, Cw, SIF)         0.92 0.23 0.18 -0.45% 5.68% 

N = f(Cab, Cw, Cm, SIF)         0.93 0.22 0.18 -0.45% 5.65% 

Irrigated conditions  
    

 

 

Without Fluorescence      

N = f(Cab)         0.48 0.51 0.44 -2.03% 12.56% 

N = f(Cab, Cm)        0.59 0.45 0.37 -1.65% 10.50% 

N = f(Cab, Cw)                      0.76 0.35 0.29 -0.89% 8.05% 

N = f(Cab, Cw, Cm)        0.77 0.34 0.28 -0.85% 7.68% 

With Fluorescence      

N=f(Cab, SIF) 0.65 0.42 0.36 -1.41% 10.6% 

N = f(Cab, Cm, SIF)   0.77 0.34 0.27 -0.93% 7.89% 

N = f(Cab, Cw, SIF)        0.84 0.28 0.34 -0.58% 6.77% 

N = f(Cab, Cw, Cm, SIF)         0.88 0.25 0.20 -0.47% 5.63% 

 

These modelling methods enabled the quantification of N concentration from the 

hyperspectral imagery to show its spatial distribution in the context of precision 

agriculture and plant phenotyping experiments. Fig. 4.8 shows the spatial distribution of 
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N concentration using Cab, Cw, Cm and SIF as predictors (Fig. 4.8) over plots under 

rainfed (Fig. 4.8b) and irrigated conditions (Fig. 4.8c) at the SA field site during the 

2016 campaign. Higher values of nitrogen concentration (blue color) from the rainfed 

plots indicate a better physiological status, while low N values (red color) indicate stress 

levels as consequence of the rainfed conditions. In comparison with irrigated conditions, 

the N map clearly showed the lower values obtained in the rainfed fields, with average 

values of 3.1± 0.18%; under irrigated conditions the average N concentration was 

higher (4.2± 0.3%). This methodology enables an operational quantification of canopy 

N concentration at the field level using high resolution hyperspectral remote sensing 

imagery and radiative-transfer model inversion methods. 

 

Fig. 4.8. Map showing the spatial distribution of N concentration estimated using the 

model built with chlorophyll a+b (Cab), water content (Cw), dry matter content (Cm) and 

solar induced chlorophyll fluorescence (SIF) estimated from hyperspectral imagery (a) 

and used as predictors under irrigated (b) and rainfed (c) conditions at SA field site 

during the 2016 airborne campaign. 

4. 4 Discussion 

Several studies have focused on the estimation of canopy N concentration using 

remote sensing techniques. The main problem encountered is that N does not absorb 

radiation with distinct features to enable its direct quantification with reflectance data. 

Instead, proxies physiologically related to N which are potentially retrievable from 
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remote sensing spectra are proposed as the only feasible way of detecting nitrogen 

levels under nutrient-deficiency conditions. An example is the widely used SPAD 

meter, a hand held instrument that measures chlorophyll content and generally accepted 

to track N concentration at the leaf level (Ravier et al., 2017). Most of the studies that 

assess the retrieval of N through non-destructive methods have been traditionally based 

on empirical models with spectral indices (i.e. spectral proxies) calculated from the 

visible (VIS) and near-infrared (NIR) regions (Clevers and Kooistra, 2012; Li et al., 

2014), while only a few studies focused on radiative transfer model inversions and the 

relationships between retrieved parameters (i.e. biophysical parameters and biochemical 

constituents as proxies) and nitrogen (Thorp et al., 2012; Wang et al., 2015). The 

present study evaluated these standard hyperspectral remote sensing techniques for the 

estimation of N concentration using narrow-band indices combining the VNIR and the 

SWIR region, but focusing on the potential contribution of a new indicator such as the 

radiance-based fluorescence SIF for improving the performance of N estimation. 

According to the results obtained by the regression models built with Cab, Cw, Cm and 

SIF from the stepwise multiple regression and LOOCV methods, the solar induced 

chlorophyll fluorescence quantified from the hyperspectral imagery significantly 

increased the performance for the estimation of N. This result confirms the findings of 

other studies that suggested a close link between fluorescence emission and nitrogen 

(Corp et al., 2003; Schächtl et al., 2005; Cendrero-Mateo et al., 2016). The contribution 

of SIF to predict N concentration was higher than that of Cab and leaf biochemical 

parameters such as dry matter and equivalent water thickness. In fact, models containing 

fluorescence emission among their predictors produced the most reliable nitrogen 

estimation when compared to models without SIF. The results indicated that SIF 

retrieval by the FLD method from high resolution hyperspectral imagery demonstrated 

its value for monitoring N concentration under both rainfed and irrigated conditions in 

the context of precision agriculture and plant phenotyping studies. The solar induced 

chlorophyll fluorescence provides a potential new tool to estimate canopy N 

concentration, due to their close link with photosynthetic parameters such as the 

maximum rate of carboxylation and with plant functioning. These results agree with 

recent studies that showed the ability of such methods to evaluate crop physiological 

status under conditions of water stress, compared to hyperspectral narrow-band indices 

(Herrmann et al., 2010; Ranjan et al., 2012; Gonzalez-Dugo et al., 2015; Zarco-Tejada 

et al., 2016).  This study also demonstrates that the biophysical parameters retrieved 
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from a radiative transfer model at canopy scale are needed for better N concentration 

estimation due to the more robust quantification of the parameters as compared to single 

narrow-band hyperspectral indices. This agrees with Wang et al. (2015) who 

demonstrated that the combination of biophysical parameters (leaf chlorophyll, dry 

matter and water content) retrieved via PROSPECT model inversion provided a reliable 

tool to estimate N at leaf scale. They found a higher correlation between leaf nitrogen 

content and dry matter and water content than with chlorophyll. Our results indicate 

that, in the absence of chlorophyll fluorescence as predictor, chlorophyll a+b was the 

parameter most related with nitrogen. This result is in agreement with other studies that 

indicate that the chlorophyll is the most widely used proxy for N estimation (Herrmann 

et al., 2010; Homolová et al., 2013). In this regard, this study displayed that Cw and Cm 

contributions for predicting nitrogen concentration were lower than Cab and SIF in both 

rainfed and irrigated conditions. However, it was observed that under irrigated 

conditions the models showed lower accuracy at predicting N concentration, especially 

when Cab was the only predictor. Under the conditions of this experiment, the lower 

performance obtained for irrigated vs. rainfed conditions was likely due to the smaller 

range of variability found for the predictors in the irrigated than in the rainfed plots. The 

results of this study showed that the contribution of SIF (which can be also derived from 

VNIR cameras) is superior than the contribution of the NIR-SWIR camera used here to 

estimate dry matter and equivalent water thickness. Considering the cost, complexity of 

operation, and the lower resolution generally obtained by SWIR cameras, the interest of 

retrieving SIF and chlorophyll content from a single VNIR camera outperforms the 

SWIR under the conditions and objectives of the present study. 

This work also demonstrates that the model inversion by steps yields more reliable 

retrievals than traditional inversions, which used the entire VNIR up to 1700 nm region 

to retrieve all parameters simultaneously. This result shows that model inversions 

conducted by steps reduced the ill-posed inverse problems (Combal et al., 2003; Wang 

et al., 2007; Yebra and Chuvieco, 2009; Li and Wang, 2011) and improves the 

parameter retrievals. Our results also confirm findings by Li and Wang (2011) regarding 

this issue.  

Another important result obtained in this study shows that the regression models 

built with parameters obtained by model-inversion yielded superior results than simple 

linear models based on spectral indices (Herrmann et al., 2010; Pimstein et al., 2011; 
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Bao et al., 2013; Mahajan et al., 2014; Gnyp et al., 2014). This conclusion was true 

even when using narrow-band indices centered at 1510 and 850 nm, which are highly 

correlated with N concentration. Regarding hyperspectral indices, our results confirmed 

findings reported by Herrmann et al. (2010) that the use of the SWIR domain 

significantly improved the estimation of nitrogen concentration when compared to the 

visible and near-infrared region of the spectrum. In our case, the use of the SWIR 

spectral range to determine NIs provided better quantification of N concentration than 

when only the VNIR region was used, in particular when using indices from bands 

centered at 1510 nm (Herrmann et al., 2010; Serrano et al., 2002). Among all indices, 

the NIs that combined 1510 nm and VNIR bands yielded the highest agreement with N 

concentration (i.e. r
2
=0.69 for MCARI1510 and r

2
=0.65 for NI1850/1510). However, these 

simple relationships obtained between N concentration and chlorophyll indices are 

affected by structure and the underlying soil. By contrast, the structural indices (e.g. 

NDVI) tend to saturate their values under dense canopies and with high nitrogen levels 

(Fig. 4.4b). Nevertheless, none of the hyperspectral index combinations outperformed 

the results obtained by model inversion when adding fluorescence (i.e. 

Cab+Cm+Cw+SIF), which was by far the best model for N estimation. 

An additional important topic is that the methodology used here for the airborne 

retrieval of chlorophyll fluorescence from radiance imagery is based on the work 

presented in previous studies (i.e.: Damm et al., 2015; Zarco-Tejada et al., 2016), 

confirming that the use of hyperspectral imagery acquired at broader spectral bands (i.e. 

with FWHM 2-7 nm) retains sufficient chlorophyll fluorescence signal to yield the most 

significant relationships against field-measured assimilation rates among all other 

image-derived indicators.  

An issue observed in this work is the potential limitations of the plot sizes normally 

used by plant breeders during their experimental designs. The plot dimension should be 

compatible with the spatial resolution of the imagery acquired by remote sensing. When 

the plots are too small, soil and background effects may play a critical role due to the 

mixing of the different components (i.e. soil and shadows) with the vegetation. This 

issue is important in the case in of the coarser resolution generally obtained by SWIR 

cameras. New sensors carried on board drones and low altitude manned aircraft can 

potentially obtain high- and ultra-high resolutions, which are compatible with the 

standard phenotyping and plant breeding experiments. Nevertheless, plant breeding 
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experimental design should be compatible with the spatial resolutions of the remote 

sensing sensors to be flown over the study sites. In this way, a line of at least 1/2 to 1 

pixel as edge around the center of the plot is recommended. 

4. 5 Conclusion 

The present study demonstrates that the airborne-quantified solar induced 

chlorophyll fluorescence (SIF) is a critical predictor for the estimation of N 

concentration under semi-arid and arid conditions when combined with chlorophyll a+b 

content and leaf parameters dry matter (Cm) and equivalent water thickness (Cw) plant 

traits retrieved by radiative transfer model inversion. When the models were built with 

airborne-quantified SIF, N estimation performance improved under both rainfed (water-

stress) and irrigated conditions. Additionally, the models that combined SIF and 

chlorophyll a+b content performed better than standard empirical methods based on 

simple linear relationships with narrow-band hyperspectral indices. In addition, this 

work demonstrates that SWIR-based indices centered at 1510 nm yield more reliable 

agreements with N concentration (r
2
=0.69) than traditional chlorophyll indices 

(TCARI/OSAVI r
2
=0.45) proposed as proxy for N quantification. 
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Chapter 5: Radiative transfer Vcmax estimation from hyperspectral 

imagery and SIF retrievals to assess photosynthetic performance in 

rainfed and irrigated plant phenotyping trials 

Resumen 

Los parámetros fotosintéticos de la planta pueden indicar tolerancia al estrés y el 

rendimiento de un cultivo, lo que origina que su evaluación precisa sea crítica en los 

ensayos de fenotipado. La tasa máxima de carboxilación (Vcmax) es un parámetro clave 

para estimar la asimilación de CO2 (A), ya que controla la tasa de fijación de CO2. Este 

estudio demuestra la utilidad de combinar fluorescencia clorofílica (SIF) cuantificada a 

partir de imágenes hiperespectrales mediante inversión del modelo Soil-Canopy 

Observation of Photosynthesis and Energy (SCOPE) para estimar Vcmax,  

aprovechando las  resoluciones  espectrales disponibles para su aplicación en el 

contexto de  agricultura  de precisión.  Vcmax se cuantificó en tres ensayos 

experimentales de fenotipado de trigo durante las campañas de 2015-2018 en 

condiciones de secano y de riego. Las campañas aerotransportadas se llevaron a cabo 

con dos cámaras hiperespectrales cubriendo las regiones espectrales de 400–850 nm 

(resolución de 20 cm) y 950–1750 nm (resolución de 70 cm), y con una cámara térmica 

(resolución de 25 cm) sensible a la región espectral entre 8–14 µm. La validación entre 

Vcmax estimado por el modelo y medido en el campo fue estadísticamente significativa 

(r
2
 = 0.77; valor de p ≤ 2.2e-16) permitiendo que Vcmax se asociara de manera 

adecuada con A, tanto en condiciones de riego como en condiciones de secano (r
2
 = 

0.65 y 0.5, respectivamente). Por el contrario, los indicadores estándar de detección 

remota (NDVI, Cab, PSSRb) no obtuvieron correlaciones significativas con la 

asimilación en parcelas regadas, mientras que el índice térmico CWSI obtuvo una 

correlación baja en parcelas de secano. Vcmax mostró sensibilidad superior en 

condiciones de riego, ya que no se vio afectado por las distorsiones causadas con 

densidades alta, como sí se observó en otros índices. La estimación de Vcmax mediante 

detección remota, así como la metodología mostrada en este estudio, son directamente 

aplicables para el fenotipado de plantas de alto rendimiento, así como para aplicaciones 

de agricultura de precisión. 
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Abstract 

Plant photosynthetic traits may be indicative of stress tolerance and performance in 

the field, making their accurate assessment critical in phenotyping trials. The maximum 

rate of carboxylation (Vcmax) is a key parameter for estimating CO2 assimilation (A), 

as it controls the CO2 fixation rate. This study demonstrates the utility of combining 

airborne-based solar-induced chlorophyll fluorescence (SIF) and hyperspectral imagery 

through the inversion of the Soil-Canopy Observation of Photosynthesis and Energy 

(SCOPE) model to estimate Vcmax, using sensor resolutions available in precision 

agriculture technologies. Vcmax was quantified in three wheat phenotyping 

experimental fields during the 2015-2018 growing seasons, comprising both rainfed and 

irrigated conditions. Airborne campaigns were carried out with two hyperspectral 

sensors, covering the 400–850 nm (20 cm resolution) and 950–1750 nm (70 cm 

resolution) spectral regions, and with a thermal camera (25 cm resolution) in the 8–14 

µm region. Validation between model-estimated and field-measured Vcmax was 

statistically significant (r
2
= 0.77; p-value ≤ 2.2e-16), and Vcmax was reliably associated 

with net assimilation both in irrigated and rainfed conditions (r
2
=0.65 and 0.5, 

respectively). By contrast, simulated chlorophyll content (Cab) and airborne-derived 

structural and chlorophyll indicators (NDVI and PSSRb) lacked significant correlations 

with assimilation rate in irrigated plots, while the relationship between assimilation rate 

and the crop water stress index (CWSI) was not significant in rainfed plots. The 

superior sensitivity of remotely-sensed Vcmax under irrigated conditions was likely 

related to its robustness to distortions from high canopy densities observed in other 

indices. The remote sensing retrieval of Vcmax, and the methodology demonstrated in 

this study is directly relevant for high-throughput plant phenotyping and for precision 

agriculture applications. 
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5.1 Introduction 

CO2 assimilation (A) occurs in the chloroplasts and involves light biochemical 

reactions (Quebbeman and Ramirez, 2016). Environmental conditions such as light 

intensity and temperature, biophysical processes such as CO2 transport through the leaf 

and stomata, and leaf biochemistry determine the assimilation rate (Sharkey et al., 

2007). At the leaf level, the photosynthetic capacity is defined by the maximum rate of 

carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Vcmax is 

the maximum rate of Ribulose-1,5 Bisphosphate (RuBP) carboxylation, which controls 

CO2 fixation (Farquhar et al., 1980). Jmax is the maximum rate of electron transport, 

which limits the supply of ATP and NADPH during the carboxylation and the 

regeneration of RuBP in the Calvin-Benson cycle (Quebbeman and Ramirez, 2016). 

Wullschleger (1993) demonstrated that Jmax should follow Vcmax across plant species, 

a relationship not affected by nitrogen content within leaves (Walker et al., 2014). 

The most common biochemical photosynthesis model for estimating the CO2 

assimilation at leaf level is the Farquhar–von Caemmerer–Berry (FvCB) model 

(Farquhar et al., 1980). The FvCB model and its subsequent variants (Caemmerer and 

Farquhar, 1981; Farquhar and Wong, 1984; Collatz et al., 1992; Harley et al., 1992) 

relate the kinetic properties of Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase 

(RuBisCo) to photosynthetic capacity (Caemmerer, 2000). The FvCB model is typically 

embedded in terrestrial biosphere models (TBM), which have been used to estimate 

photosynthetic carbon uptake (Norton et al., 2017), gross primary productivity (Sellers, 

1987; Koffi et al., 2015) and the leaf respiration (Sitch et al., 2003; Oleson et al., 2013). 

In recent years, progress has been made to quantify photosynthetic capacity from 

hyperspectral satellite imagery, enabling the development of TBMs at new spatial 

scales. In the context of a plant phenotyping study, Silva-Perez et al. (2018) 

demonstrated the use of hyperspectral reflectance to estimate Vcmax and other 

physiological traits in wheat crops. However, imagery was obtained at the leaf level, 

where the remote sensing signal was not affected by canopy structure, as it is for larger-

scale applications. For images at the canopy level, standard reflectance indices such as 

the normalized difference vegetation index (NDVI) (Rouse et al., 1973) have been 

widely used for detecting vigor, growth, yield and senescence patterns from airborne 

and near-field scales in maize and wheat crops (Cairns et al., 2012; Kipp et al., 2014). 

However, NDVI has well-known disadvantages associated with its saturation at high 
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biomass levels, its sensitivity to canopy background variations, and the inability to track 

short-term physiological changes due to its strong relationship with tissue structure 

(Huete, 1988; Huete et al., 2002). Despite these disadvantages, NDVI is still one of the 

most widely used indicators for the remote assessment of canopy characteristics by 

plant breeders.  

Several studies have demonstrated that canopy temperature can be related to 

physiological processes (Gonzalez-Dugo et al., 2015) or even used as an indirect proxy 

for the detection of nutritional deficiencies (Rodriguez et al., 2006). The thermal-based 

Crop Water Stress Index (CWSI) developed by Idso et al. (1978) and Jackson et al. 

(1981) is inversely related to transpiration and stomatal conductance, and therefore a 

potentially good proxy for estimating photosynthesis rates under stress conditions. 

However, a range of environmental factors may affect stomatal closure and its 

relationship with the canopy temperature, such as changes in radiation exposure, 

nutrient deficiency or soil water deficit (Radin et al., 1985; Jones et al., 1995; Zweifel et 

al., 2002) 

In the last twenty years the quantification of sun-induced chlorophyll fluorescence 

(SIF) through hyperspectral imaging has provided a new tool for monitoring crop 

photosynthetic activity and vegetation functioning (Frankenberg et al., 2011; Houborg 

et al., 2013; Zarco-Tejada et al., 2016; Norton et al., 2017). Chlorophyll fluorescence is 

closely related to the electron transport rate and hence to the photosynthetic activity 

(Genty et al., 1989; Weis and Berry, 1987). Chlorophyll fluorescence may therefore be 

a key indicator for detecting nutrient limitation in crops (Camino et al., 2018). 

Chlorophyll fluorescence may also be used to estimate Vcmax since both are linked 

with chlorophyll content (Houborg et al., 2013; Croft et al., 2017) and therefore 

photosynthetic activity (Rascher et al., 2015; Yang et al., 2015). 

Recent studies have successfully estimated Vcmax from satellite SIF retrievals 

(Guan et al., 2016; Zhang et al., 2014, 2018) using the Soil Canopy Observation, 

Photochemistry and Energy fluxes (SCOPE) model (Guanter et al., 2014; Koffi et al., 

2015; Zhang et al., 2014, 2018). Nevertheless, further progress is needed for the 

assessment of Vcmax under both water and nutrient-limited conditions (i.e. under 

stress) and in the context of plant phenotyping experiments with high-resolution 

imagery.  In some cases, SIF retrievals have been performed using cost effective 
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hyperspectral imagers with broader spectral resolutions (i.e. 2–7 nm FWHM) (Damm et 

al., 2015; Zarco-Tejada et al., 2016; Camino et al., 2018). Although offsets in the 

fluorescence retrievals may occur due to the broader spectral resolutions used in these 

imagers, the consequences may be negligible for most precision agriculture applications 

since emphasis is on relative spatio-temporal variability of stress rather than absolute 

fluorescence emission levels. 

The remote assessment of plant photosynthesis requires careful attention to the 

influence of stress. Photosynthesis is strongly affected by stress, with assimilation 

affected by water deficit (Chaves, 1991) and carboxylation capacity sensitive to leaf 

nitrogen levels (Walker et al. 2014).  However, under drought conditions, water deficit 

may alter the nitrogen balance as growth rate diminishes (Gonzalez-Dugo et al., 2010). 

In bread wheat, populations display heritable variation in photosynthetic traits, 

amenable to artificial selection (Carmo-Silva et al. 2017). As a result, remotely sensed 

chlorophyll fluorescence may be useful for phenotyping photosynthetic traits desirable 

for breeding. In this study we quantify Vcmax as a proxy for photosynthetic activity in 

wheat phenotyping trials using airborne hyperspectral-based SIF retrievals through 

SCOPE model inversions. Specifically, we evaluated airborne estimates of Vcmax 

under both well-watered and water-limited regimes. 

5.2 Material and Methods 

5.2.1 Study area 

Experiments took place at three field trial sites for bread wheat (Triticum aestivum 

L.) and durum wheat (Triticum turgidum L. var. durum) in Southern Spain in 2015, 

2016 and 2018 (Fig. 5.1). The regional climate is Mediterranean, characterized by mild 

winters, warm and dry summers and with annual rainfall averages around 600 mm. The 

first trial site was located in Ecija (37°32ʹ17ʺN, 5°06ʹ57ʺW), which was managed under 

rainfed conditions in 2015 and 2018. The plot size was 12.5 m
2
 (10 m×1.25 m) with a 

spacing of 1 m x 1.25 m between plots (Fig. 5.1a and 5.1d).   

The second site trial was located in Carmona (37°30ʹ29ʺN, 5°34ʹ42ʺW) in 2015, 

which was managed under both rainfed and irrigated conditions. Severe drought at the 

Carmona experimental site during the spring of 2015 (precipitation < 30 mm in 

preceding months of the airborne campaign) prompted irrigation in rainfed plots the 

week before the flights to partially recover the experiment and to avoid damage. At 
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Carmona, 882 individual plots (7.5×1.25 m) were divided across two blocks according 

to water regime. There was a space of 1.50 m x 0.25 m between plots (Fig. 5.1b). Forty-

nine varieties of durum or bread wheat were replicated three times per block.  

The third trial site was located in Santaella (37°31ʹ34ʺN, 4°50ʹ40ʺW), which was 

also managed under rainfed and irrigated conditions in 2016. Twenty varieties of durum 

wheat and 20 varieties of bread wheat were replicated three times across a total of 120 

plots (Fig. 5.1c). The plot size was 15 m
2
 (10×1.5 m) with a spacing of 2.50 m x 0.50 m 

between plots.  

At all trial sites, plots consisted of five rows of wheat with a spacing of 0.25 cm per 

row. Physiological measurements and spectral reflectance were taken from the three 

central rows. The remaining two rows were excluded from analysis. The soil in the three 

trial sites was dominated by vertisols (FAO classification), which ranged in texture from 

clay, clay loam to silt. Slope across sites ranged from 2 to 4%. Vertisols are often poor 

in organic matter and associated with nitrogen and phosphorus deficiencies. 

Fertilization with diammonium phosphate and urea was carried out in early November 

to ensure fertility levels. 

The wheat growth stage during the airborne campaigns corresponded to i) stem 

elongation stage, and ii) the grain filling (milking stage) (Table 5.1). All flights were 

performed under clear sky conditions. Average meteorological conditions during each 

flight (ERA-Interim atmospheric reanalysis data; http://www.ecmwf.int) are presented 

in Table 1. 

Table 5.1. Flight dates and field measurements collected during the airborne 

campaigns. The meteorological conditions at the time of the flights are included. 

Year Site Flight 

dates 

Growth Stage Airborne imagery Field 

measurements 

Meteorological 

conditions 

      Ta RH Rin 

2015 Ecija 28/05 Grain filling  T + VNIR + NIR 𝜓𝐿 , A, Cab , N  295.1 38.0 944.2 

  Carmona 30/05 Grain filling  T + VNIR + NIR 𝜓𝐿, A, Cab, N  296.8 38.8 935.8 

2016 Santaella 17/03 Stem elongation T + VNIR + NIR 𝜓𝐿 , A, Cab , N  289.6 49.2 558.2 

  Santaella 26/04 Grain filling  T + VNIR + NIR 𝜓𝐿 , A, Cab , N  297.5 42.5 933.3 

2018 Ecija 18/04 
Stem elongation T + VNIR + NIR A,  Cab, N, 

Curve A/Ci 

297.1 43.6 924.8 

T= thermal, VNIR = hyperspectral visible and infrared region, NIR = hyperspectral near-short wave infrared region, 

ψL= leaf water potential (MPa), A = net assimilation rate (μ·mol·m
−2

·s
−1

), Cab = chlorophyll content (μg·cm
−2

), 

N= nitrogen concentration (%), Curve A/Ci = response curves of A to the intercellular CO2 concentration, 
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Ta= air temperature (K), RH= relative humidity (%) and Rin= Incoming shortwave radiation (W·m
−2

). 

 

5.2.2 Field physiological measurements and leaf gas exchange curves 

A summary of the physiological variables measured for each site and sampling date 

is included in Table 5.1. Field measurements of assimilation rate (A; μmol·m
-2

·s
-1

) and 

leaf water potential (ψL; MPa) were made at the same time (±1 hour) as acquisition of 

high-resolution airborne imagery over the experimental field sites. These measurements 

were performed on leaves at the top of the canopy at noontime, under clear skies and 

with photosynthetically active radiation (PAR) values ranging from 1700 to 2200 μmol· 

m
-2

·s
-1

. To assess the physiology and nutritional status of the wheat plots under different 

water regimes, some additional leaf measurements were made at the trial sites (Table 

5.1). Leaf photosynthesis was measured with a photosynthesis measurement system (LC 

pro- SD, ADC Bioscientific Ltd., Herts, UK) on two leaves per plot. The LCpro-SD 

plant leaf photosynthesis chamber has a flow rate accuracy of ± 2% of its range. Leaf 

water potential (ψL) was measured on two sunlit leaves per plot with a pressure 

chamber (Model 600 Pressure Chamber Instrument, PMI Instrument Company, Albany, 

NY, USA). Chlorophyll content was measured on 10–15 leaves per plot using a hand-

held chlorophyll meter (SPAD-502, Minolta Corp., Ramsey, NJ, USA). The SPAD-502 

chlorophyll meter has an accuracy of ± 1 SPAD units. In 2018, leaf chlorophyll content 

was measured with the Dualex instrument (FORCE-A, Orsay, France), which has an 

accuracy of 5%. The SPAD and Dualex readings were converted to chlorophyll content 

(μg·cm-2) according to Uddling et al. (2007). Total N concentration (%) was 

determined by the Kjeldahl method (Kjeldahl, 1883) in random samples of 20-25 leaves 

from the top of the canopy in select plots. This value was demonstrated to be a good 

proxy of the crop nutritional status (Farruggia et al., 2004). 
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Fig. 5.1. Overview of the field trial sites at Ecija (a and b), Carmona (c) and Santaella 

(d).  Figures a and c were obtained with a CIR camera (a: 800 (R), 670 (G) and 550 (B) 

nm; c: true color). Figure b shows a sample of the thermal imagery. Figure d was 

obtained with a VNIR hyperspectral imager (composite: 706 (R), 679 (G) and 520 (B) 

nm). 

The response of assimilation to intercellular CO2 concentration was measured using 

the portable LCpro-SD photosynthesis measurement system during the field campaign 

at Ecija in 2018. To assess variability in CO2 response curves, six wheat varieties (WI to 

WVI) displaying contrasting nutritional and physiological statuses were selected across 

the trial site (Fig. 5.2). Varieties were selected based on patterns in chlorophyll content, 

nitrogen, and assimilation rate (red asterisks in Fig. 5.2). The photosynthetic photon 

flux density was kept constant at 1900 μmol·m
-2

·s
-1

 during measurements. Prior to 

sampling, selected leaves were adapted to the chamber light conditions, humidity and 

temperature for about 5 minutes. CO2 concentration was then ramped in steps of 100 

ppm, with each step lasting a minimum of 1 minute and a maximum of 3 minutes. 
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Fig. 5.2. Leaf physiological measurements on durum wheat plots (in blue) and bread 

wheat plots (in grey) carried out during the field campaign in Ecija 2018 under rainfed 

conditions: a) the nitrogen balance index (NBI) in dimensionless units (d.u.), b) 

chlorophyll content (Cab) in Dualex units (both measurements were collected with the 

hand-held Dualex device) and c) assimilation rate (A) in µmol·m
-2

·s
-1

, measured with 

the plant leaf photosynthesis chamber. The red asterisks indicate wheat plots selected 

for A/Ci curves. In the box plots, the black line within the box is the median, and the top 

and bottom of the box represent the 75th and 25th quartiles, respectively. The whiskers 

represent the upper and lower range. The average values are shown with a white point 

over each box plot. 

Leaf Vcmax was estimated from assimilation-intercellular CO2 concentration (A-

Ci) curves (Fig. 5.3) using the C3 FvCB photosynthesis model (Farquhar et al., 1980). 

Photosynthetic response [CO2] curves developed by Sharkey et al. (2007) were used to 

estimate Vcmax according to the FvCB model. Following this method, field 

measurements with intercellular CO2 partial pressure between 20 to 30 Pa were 

excluded to reduce errors associated with the interface between the RuBisCo-limited 

and RuBP-regeneration-limited state.  
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Fig. 5.3. Relationship obtained between assimilation rate (A; μmol·m
-2

·s-1) and 

intercellular CO2 partial pressure (Pa). Each colour is associated with different wheat 

varieties (Wn). The dashed lines represent the RuBisCo-limited (left) and RuBP-

regeneration-limited (right) state according to Sharkey et al. (2007). 

Kinetic parameters for respiration (Rd) and the mesophyll conductance (gm) were 

estimated for each wheat variety following the nonlinear curve fitting procedures 

outlined in Sharkey et al. (2007). The temperature dependence of the Michaelis-Menten 

constant of RuBisCo (Kc) for CO2, inhibition constant (Ko), photorespiratory 

compensation point (Γ*), Rd, gm, Vcmax, rate of photosynthetic electron transport (J) 

and triose phosphate use (TPU) were estimated using exponential functions of 

temperature responses described in Harley et al. (1992b). The scaling constant (c), 

enthalpies of activation (ΔHa), deactivation (ΔHd) and entropy (ΔS) were taken from 

Sharkey et al. (2017) in Table 1.  

The retrievals of Vcmax were adjusted to 25ºC using the FvCB model. Only 

measurements where leaf temperatures were ±0.5ºC of the average were used in 

generating these estimates. Atmospheric pressure and intercellular concentration of 

oxygen (Oi) for all collected wheat varieties were set to 21 kPa and 99.75 kPa, 

respectively. Rd and gm values used to estimate Vcmax are provided in Table 5.2.  
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Table  5.2. Input parameters and constants (adjusted to 25ºC), maximum carboxylation 

rate (Vcmax), photosynthetic electron transport rate (J) and triose phosphate use (TPU) 

obtained from the A/Ci curves shown in Fig. 3 for six wheat varieties using exclusively 

measures with a leaf temperature equal to the average ± 0.5ºC. The kinetic parameters 

include the Michaelis constant of RuBisCo for carbon dioxide (Kc), the inhibition 

constant (Ko), and the photorespiratory compensation point (Γ*). Day respiration (Rd) 

and the mesophyll conductance (gm) were used for adjusting estimates to 25ºC. 

Temperature responses were estimated using the equations described in Harley et al. 

(1992b). The specific kinetic constants [scaling constant (c), enthalpies of activation 

(ΔHa), deactivation (ΔHd) and entropy (ΔS)] were taken from Sharkey et al. (2007). 

Parameters WI WII WIII WIV WV WVI 

Temperature leaf (ºC) 32.6±0.2 24.12±0.5 25.2±0.2 26.2±0.2 26.42±0.5 23.5±0.5 

Constants for fitting      

Kc (Pa) 61.87 24.73 27.84 31.05 31.82 23.09 

Ko (kPa) 21.08 16.12 16.69 17.23 17.35 15.80 

Γ*(Pa) 4.79 3.63 3.77 3.89 3.92 3.56 

Constant for adjusting to 25ºC      

Rd (mmol·m
-2

·s
-1

) 1.601 0.947 1.013 1.078 1.094 0.910 

gm (mmol m-2 s
-1

·Pa
-1

) 1.611 0.943 1.014 1.083 1.100 0.904 

Outputs adjusting to 25ºC      

Vcmax (μmol·m
-2

·s
-1

) 109 118 106 109 101 104 

J (μmol·m
-2

·s
-1

) 201 292 275 259 227 299 

TPU (μmol·m
-2

·s
-1

) 18.6 24.1 23.1 21.2 2.5 25.0 

 

5.2.3 Airborne campaigns  

Five airborne campaigns were conducted using an aircraft operated by the 

Laboratory for Research Methods in Quantitative Remote Sensing (QuantaLab), 

Consejo Superior de Investigaciones Científicas (IAS-CSIC, Spain). Flights occurred at 

250 m above ground level (AGL) with heading on the solar plane. Images were 

acquired concurrently with field data acquisitions (Table 5.1) between 12:00 and 13:00h 

(local time) under clear sky conditions and free of coarse aerosol (i.e.: dust mineral, 

biomass burning). To minimize differences due to sun angle effects, the flights were 

performed at solar zenith angle between 45º and 60º, which varied according to the day, 

place and the exact flight time. The viewing zenith angle was 0º for all flights. Images 

were collected with a micro-hyperspectral imager (Micro-Hyperspec VNIR model, 

Headwall Photonics, Fitchburg, MA, USA), a Micro-Hyperspec NIR-100 (Headwall 

Photonics) and a thermal infrared camera (FLIR SC655, FLIR Systems, Wilsonville, 

OR, USA). The Micro Hyperspec VNIR was configured to acquire 260 spectral bands 

with a light dispersion of 1.85 nm/pixel with 12-bit radiometric resolution in the 400–

885 nm spectral region, yielding a 6.4 nm full width at half maximum (FWHM) with an 

entrance slit width of 25-µm. The acquisition and storage module obtained 50 frames 

per second at 25 ms integration time. The 8-mm focal length lens yielded an IFOV of 
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0.93 mrad and an angular FOV of 50º with a spatial resolution of 20 cm (Fig. 5.1c). The 

micro-hyperspec NIR-100 sensor was configured for 165 spectral bands at 16-bit 

radiometric resolution covering the 950–1750 nm spectral region, yielding 6.05 nm 

FWHM with a spatial resolution of 70 cm. Radiometric calibration of the VNIR and 

NIR 100 cameras was performed with an integrating sphere (CSTM-USS-2000C 

LabSphere, North Sutton, NH, USA) using four levels of illumination and six 

integration times. 

Hyperspectral imagery was atmospherically corrected using incoming irradiance 

measured with a field spectrometer (FieldSpec Handheld Pro, ASD Inc., Longmont, 

Colorado, USA) for the VNIR sensor, and simulated by the SMARTS model 

(Gueymard, 1995; Gueymard et al., 2002) for the NIR-100 sensor. In addition, the view 

and illumination angle effects were corrected using a bidirectional reflectance 

distribution function (BRDF) in the VNIR and NIR-100 hyperspectral imagery. 

Irradiance measurements were interpolated and convoluted to the bandwidth of each 

sensor. To simulate incoming irradiance, aerosol optical measurements (Table 5.3) were 

acquired at flight time with a Microtops II handheld multichannel sunphotometer (Solar 

Light, Philadelphia, USA) connected to a GPS-12 model (Garmin, Olathe, KS). The 

aerosol measurements carried out with the sunphotometer instrument at flight-time 

confirmed the absence of dust mineral, biomass burning (AOD500nm ≤ 0.25 and 

Ångström exponent (AE) ≥ 0.6, according to Cuevas et al. (2015)) and other extinction 

aerosols which could affect the reflectance and radiance spectrum during the airborne 

campaign. A portable weather station (Transmitter PTU30, Vaisala, Helsinki, Finland) 

was used for simultaneous readings of the relative humidity, temperature and pressure at 

the time of hyperspectral and thermal acquisitions. Ortho-rectification of hyperspectral 

imagery was performed following Zarco-Tejada et al. (2016). Sample average radiance 

and reflectance spectra of wheat plots obtained with the VNIR hyperspectral sensor at 

the Ecija trial site in 2018 are shown in Fig. 5.4. 
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Fig. 5.4. Mean radiance (W·sr
-1

·m
-2

·nm
-1

) (a) and reflectance spectra (b) retrieved from 

the VNIR hyperspectral camera at the Ecija site in 2018. The black lines correspond to 

the average spectra of all wheat plots. Shaded areas comprise the ± 1 standard deviation 

of the average radiance and reflectance profiles. 

The FLIR SC655 thermal camera used in this study had a resolution of 640 × 480 

pixels with a 13.1 mm focal length at 16 bits, providing an angular FOV of 45 × 33.7º 

and a ground resolution of 25 cm at the flight altitude (Figure 5.1d). Thermal imagery 

was calibrated using ground temperature data collected with a handheld infrared 

thermometer (LaserSight, Optris, Germany) on each flight date.  

Table 5.3. Average values of aerosol optical depth (AOD) at 500 nm, the Ångström 

exponent (AE) at 440 -936 nm, air mass and the precipitable water vapour column (in 

cm) measured using a hand-held sun photometer (MicroTops-II) instrument. The sun 

photometer measurements were performed at each trial site during the airborne 

campaigns of 2015-2018. 

 

Year Site Flight dates AOD500 nn AE440-936nm Air mass H2O atm 

(in cm) 

2015 Ecija 28/05 0.09 0.84 1.30 1.05 

  Carmona 30/05 0.07 0.75 1.28 1.30 

2016 Santaella 17/03 0.13 0.69 1.31 1.06 

  Santaella 26/04 0.09 0.65 1.27 1.22 

2018 Ecija 18/04 0.12 0.61 1.25 0.98 
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5.2.4 Fluorescence retrievals, narrow-band indices and the CWSI from the high-

resolution hyperspectral and thermal imagery 

According to the method developed by Camino et al. (2018b), an automatic 

segmentation based on quartile breaks was applied to the high-resolution hyperspectral 

imagery for minimizing the effect of the soil background inside wheat plots. The 

average radiance and reflectance spectra (Fig. 5.4) were extracted from the high-

resolution hyperspectral imagery using the segmented areas, which corresponded with 

the central region of each wheat plot. Using the same scheme as for the hyperspectral 

imagery, the watershed segmentation method was applied to high-resolution thermal 

imagery for separating the vegetation from the soil background. 

Solar induced fluorescence (SIF) was quantified from radiance spectra (Fig. 4a) by 

the in-filling method using the Fraunhofer Line Depth (FLD) principle (Plascyk and 

Gabriel, 1975). The FLD method compares canopy radiance to incoming irradiance at 

the 760.5 nm atmospheric O2-A oxygen absorption Fraunhofer Line, as described in 

Moya et al. (2004) and Meroni et al. (2010). We compared the radiance values Lin 

(L762 nm) and Lout (L750 nm) extracted from the VNIR hyperspectral imagery, to 

incoming irradiances Ein (E762 nm) and Eout (E750 nm) measured at the time of the 

flights. Reasonable SIF retrieval via the FLD method using broader spectral bandwidths 

(i.e., 5–7 nm FWHM) has been demonstrated in a simulation study (Damm et al., 2011) 

and experimentally (Zarco-Tejada et al., 2012, 2016; Damm et al., 2015; Hernandez-

Clemente et al., 2017). The configuration of the hyperspectral imager during the 

airborne campaigns carried out in this study (1.85 nm sampling interval, 6.4 nm 

bandwidths and SNR of 300:1 with spatial binning) is comparable to that of Zarco-

Tejada et al. (2012), and observations with the Airborne Prism EXperiment (APEX) 

sensor in Damm et al. (2015). In addition, NDVI and the pigment-specific simple ratio 

chlorophyll b index (PSSRb) proposed by Blackburn (1998) were calculated from the 

average reflectance values for each experimental plot (Fig. 5.4b).  

The Crop Water Stress Index (CWSI) was calculated from the thermal imagery 

according to the methodology proposed by Idso et al. (1981, Eq. 5.1). For the 

assessment of CWSI, the average canopy temperature (Tc) retrieved from the top of the 

wheat canopy at sunlit conditions and the air temperature (Ta) registered at the flight 

time were used. 
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𝐶𝑊𝑆𝐼 =
(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
                                                              (5.1) 

(Tc-Ta)LL represents the canopy-air temperature differential of a canopy transpiring 

at the maximum rate and (Tc-Ta)UL represents this temperature differential when 

transpiration is completely halted. The Non-Water-Stress-Baseline (NWSB) was used to 

derive (Tc-Ta)LL, defined as the relationship between the Tc-Ta of a well-irrigated 

wheat plot at a given vapour pressure deficit (VPD). The NWSB used in this study (Tc-

Ta=3.38-3.25∙VPD) was obtained by Idso (1982), while the upper limit was calculated 

according to the methodology proposed by Idso et al. (1981).  

5.2.5 Modelling methods 

Vcmax, standardized to a reference temperature at 25 °C (hereinafter referred to 

Vcmax), was estimated by inversion of the SCOPE model v1.70 (van der Tol et al., 

2009a) using biophysical parameter retrievals and SIF quantification for each wheat 

plot. SCOPE is a vertical (1-D) integrated radiative transfer and energy balance model.  

The SCOPE model is focused on the relationship between chlorophyll fluorescence 

and photosynthesis at the leaf level as a function of environmental conditions (van der 

Tol et al., 2009b). Photosynthesis and chlorophyll fluorescence simulations are carried 

out in SCOPE with meteorological forcing inputs (incoming shortwave and long-wave 

radiation, air temperature, humidity, wind speed and CO2 concentration) and four kinds 

of parameters: i) leaf parameters including leaf mesophyll structure (N-struct), leaf 

chlorophyll content (Cab), dry matter content (Cm), leaf equivalent water thickness (Cw), 

senescent material (Cs) and anthocyanins (Cant); ii) vegetation structural parameters, 

including the leaf area index (LAI), leaf angle distribution, leaf size and canopy height 

(hc); iii) optical parameters, including vegetation emissivity and soil reflectance in the 

visible, near infrared and thermal bands; and iv) physiological parameters, including 

stomatal conductance (m) and maximum carboxylation capacity. A summary of the 

relevant SCOPE inputs for this study is given in Table 5.4. 

The canopy geometry effects on the outgoing spectrum and on the heterogeneity of 

net radiation are treated stochastically with 60 elementary layers, with a maximum LAI 

of 0.1 each, 13 discrete leaf zenith inclinations and 36 leaf azimuth classes for shaded 

and sunlit leaves. The fluorescence contributions from individual leaves are integrated 

over the canopy layer to calculate top of canopy (TOC) fluorescence in the viewing 
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direction of the hyperspectral sensor based on absorbed fluxes over the photosynthetic 

active radiation (PAR) region (400–700 nm). The chlorophyll fluorescence at leaf level 

is computed as a product of the FvCB photosynthesis model, stomatal resistance 

(Cowan, 1978), the Ball–Berry stomatal conductance model (Ball et al., 1987), the 

coupled photosynthesis-stomatal model (Collatz et al., 1991), and the emission of 

chlorophyll fluorescence. The SCOPE model combines the Collatz et al. (1991) model 

and the Farquhar et al. (1980) photosynthesis model for retrieving the Vcmax, taking 

into account the stomatal conductance and assimilation rate. For further details see van 

der Tol et al. (2009b) and van der Tol et al. (2014). 
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Table 5.4. Range of the PROSPECT-SAILH and SCOPE parameters used in this study.  

Parameters                  Definition Unit Range Step 

PROSPECT 

Leaf biophysical 

N-struct Leaf structure mesophyll parameter [-] 1.25–1.85  0.1 

Cab Chlorophyll a +b content µg·cm
-2

 10–70 0.5 

Cw Equivalent water thickness g·cm
-2

 0.001–0.05 0. 0005 

Cm Dry matter content g·cm
-2

 0.001–0.05 0. 0005 

Cs Senescence factor [-] 0 … 

Sl Hot-spot parameter [-] 0
(d)

 … 

FLUSPECT (integrated into SCOPE model) 

Cant Anthocyanin content  µg·cm
-2

 3,5,10 … 

SAILH     

Canopy      

LAI Leaf area index m
2
·m

−2
 2–5 0.1 

LADF Leaf inclination distribution function [-] 1,2,3 and 4
(a)

 … 

TV Solar zenith angle deg 45,60,85 5 

Phi Viewing zenith angle deg 0 … 

PSR Relative azimuth angle deg 0 … 

SCOPE     

Leaf biochemistry 

Vcmax Maximum carboxylation capacity μmol·m
−1

·s
−1

 0–260 10 

m Ball-Berry stomatal conductance  [-] 8 … 

Rdparam Parameter for dark respiration [-] 0.015 … 

Kv 
Extinction coefficient for vertical 

Vcmax profile  
[-] 0.64 … 

Kc Cowan’s water use efficiency  [-] 700 … 

ρ(thermal) Leaf thermal reflectance [-] 0.01 … 

τ(thermal) Leaf thermal transmittance [-] 0.01 … 

ρs(thermal) Soil thermal reflectance [-] 0.06 … 

Stressfactor Stress multiplier for Vcmax [-] 1 … 

kNPQs Rate thermal dissipation [-] 0 … 

qLs Fraction active photosystems [-] 1 … 

fqe Fraction of photons partitioned to PSII [-] 0.02 … 

Canopy 

lw Leaf width m 0.1 … 

LIDFa Leaf inclination distribution of leaves [-] -1–1 0.05 

LIDFb Variation in leaf inclination [-] -1–1 0.05 

hc Canopy height m 1.2 … 

Micrometeorological 

p Air pressure hPa 988–997
(b)

 … 

u Wind speed m
−1

 2.2–2.8
(c)

 … 

Oa O2 concentration in the air per mille 209 … 

ea Atmospheric vapor pressure hPa 15 … 

Ca CO2 concentration in the air ppm 392.2 … 

Ta Air temperature ºC 18–25
(b)

 … 

Rin Incoming shortwave radiation W·m
−2

 500–950
(b)

 … 

Rli Incoming longwave radiation W·m
−2

 70–150
(b)

 … 

 

a) Canopy types proposed to define LADF: planophile (1), erectophile (2), plagiophile (3) and spherical (4) 

b) Meteorological variables retrieved from hourly ERA-Interim reanalysis dataset for each trial sites. 

c) Wind speed at 2-meter from a weather station located close to each trial sites. 

d) Leaves were under sunlit conditions without shadowing effects on the bidirectional reflectance 
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5.2.5.1 Ancillary climatic reanalysis data 

The meteorological inputs required for SCOPE simulations were extracted from 

ERA-Interim atmospheric reanalysis data (Dee et al., 2011) produced by the European 

Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim is the latest 

global atmospheric reanalysis produced by the ECMWF (http://www.ecmwf.int). 

Surface parameters extracted from 3-hourly time step ERA-Interim reanalysis included 

2-meter air temperature, air pressure, water vapour pressure, incoming shortwave and 

long-wave downward radiation, and 10-meter wind speeds. The data from ERA-Interim 

atmospheric reanalysis was spatially interpolated from their native spatial grid (0.75° by 

0.75°) to a finer 0.25° by 0.25º resolution using nearest-neighbour resampling. To 

assess the meteorological variables retrieved from ERA-Interim atmospheric reanalysis, 

data were compared with observations from the nearest meteorological stations in the 

regional agro-climatic network (Consejería de Agricultura y Pesca, Junta de Andalucía). 

Errors associated with convective processes at surface level were reduced using wind 

speed at 2 meters from this network. 

5.2.5.2 Leaf biophysical and structural parameters 

The leaf and canopy parameters needed for SCOPE simulations were estimated 

using a PROSPECT-SAILH model inversion scheme by steps from the reflectance in 

the 400–1700 nm spectral region. A look-up table (LUT) of 200,000 simulations was 

built to minimize the ill-posed inversion problem (Combal et al., 2003; Li and Wang, 

2011; Yebra and Chuvieco, 2009). The range of variation for Cab was determined based 

on prior field information. The main input parameters were calculated using specific 

spectral ranges (Table 5.3) where the biophysical parameters are known to have the 

greatest influence on reflectance and transmittance spectra. The iterative-optimization 

numerical (I-optN) approach was used to invert the PROSPECT-SAILH model for the 

estimation of leaf traits and canopy parameters from reflectance across the observed 

spectrum. The I-optN method estimates the set of parameters, symbolized by the vector 

θ = [LADF, LAI, N, Cab, Cm, Cw] which minimizes Δ
2
 (Eq. 5.2). The method calculates 

the root mean square error (RMSE) between the simulated reflectance and the 

hyperspectral image reflectance by successive input parameter iteration.  

Δ2 = ∑ [𝜌λ,obs − 𝜌λ,𝑠𝑖𝑚]
2

n       (5.2) 
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Where ρλ,obs is the image (canopy level) spectral reflectance, and ρλ,sim is the 

modelled canopy spectral reflectance with a set of parameters defined in the LUT for 

each wavelength n. The procedure was conducted in several steps: 1) a leaf angle 

distribution function (LADF) was estimated over the VNIR and SWIR spectral range 

(400–1750 nm) with variables Cab, Cw and Cm. LADF was first retrieved by model 

inversion, given its key role in canopy structure; 2) the mesophyll structural parameter 

(N-struct) and the leaf area index (LAI) were simultaneously determined over the range 

960–1300 nm using the LADF from step 1, and variable Cab, Cw and Cm inputs; 3) Cab 

was then calculated using reflectances in the 455–690 nm range, where chlorophyll 

absorption has the strongest effect, with fixed LADF, LAI and N estimated in previous 

steps; 4) Finally, Cm and  Cw were estimated over 900–1700 nm, where dry and water 

matter have the largest absorption effects (Baret and Fourty, 1997b; Feret et al., 2008; 

Fourty et al., 1996; Jacquemoud et al., 2009, 1996), fixing Cab, LADF, LAI and N 

obtained previously. 

5.2.5.3 SCOPE iterative-optimization for LIDFs and Rin parameters 

After meteorological, leaf, and canopy parameters had been obtained, the SCOPE 

model was run using an I optN approach with a LUT table of 27,500 simulations for 

optimizing the LADF and the broadband incoming shortwave radiation (Rin). The 

LADF retrievals derived from PROSPECT-SAILH were optimized with SCOPE 

iterative-optimization using the radiance spectrum, varying the leaf inclination angle 

distribution function (LIDF) parameters. The LIDFa and LIDFb parameters 

mathematically describe the LAD function estimated using PROSPECT-SAILH 

inversions, where LIDFa determines the average leaf inclination and LIDFb describes 

the variation in leaf inclination, controlling the distribution's bimodality. 

The I-optN method minimizes a cost function (Eq. 5.3) to estimate the set of 

parameters symbolized by the vector θ = [Rin, LIDFa, LIDFb]. In this step, the I-optN 

method was based on the calculation of the RMSE between the at-sensor canopy 

spectral radiance and the SCOPE-simulated spectra by successive input parameter 

iterations over the spectral region used for the SIF retrievals (740–780 nm).  

Δ2 = ∑ [𝐿λ,obs − Lλ,sim]
2

n       (5.3) 

 

Where Lλobs is the measured canopy spectral radiance, and Lλsim is the canopy 

spectral radiance modeled by SCOPE with the set of parameters defined in the LUT for 
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a given wavelength n. The LUT was built varying Rin and LIDFs, but keeping the 

Vcmax constant at 80 μmol·m
-2

·s
-1

 and the remaining default values fixed, as shown in 

Table 5.4. Rin varied 100 W·m
-2

 with a step of 5-10 W·m
-2

 from the incoming 

shortwave radiation from the ERA-Interim reanalysis for each trial site. The leaf 

inclination distribution factors (LIDFa and LIDFb) varied according to the LADF 

obtained from PROSPECT-SAILH inversions, using a total of 500 variations. Among 

the canopy structural variables, LIDFa, representing the inclination distribution of 

leaves, had the greatest effect on SIF variability. In fact, LIDFa had a large influence on 

modeled reflectance with a contribution of over 20% of the variation between 720–1150 

nm, while the LAI parameter governed over ≥ 50 % of variation in reflectance at 

wavelengths longer than 1400 nm. The remaining structural inputs used in SCOPE (leaf 

width, LIDFb, and canopy height) had a marginal impact on the modeled reflectance 

(Verrelst et al., 2015). Recent studies (Koffi et al., 2015; Verrelst et al., 2016, 2015) 

have demonstrated the importance of Rin, since the fluorescence spectrum is 

proportional to the absorbed PAR.  

5.2.5.4 Vcmax estimation from SCOPE model inversion 

Once the leaf, canopy and meteorological parameters were obtained following the 

I-optN approaches using the PROSPECT-SAILH and SCOPE simulations, the 

relationships between Vcmax and canopy fluorescence (Vcmax=f(SIF); Fig 5.5b) were 

established for all wheat plots. For this purpose, the SCOPE model was run in forward 

mode with the Vcmax range set to 0–260 µmol·m
-2

·s
-1

, divided into 27 intervals. As an 

additional step, the simulated radiance spectra from SCOPE at 1 nm resolution in the 

640–800 spectral windows was convoluted using the Whittaker Shannon interpolation, 

as described in Butzer et al. (2011). Fig. 5.5a shows the comparison between the 

radiance retrieved with the VNIR hyperspectral sensor, the original radiance simulated 

by SCOPE at 1nm, and the simulated SCOPE radiance spectra convoluted to match the 

airborne hyperspectral data. The spectral convolution of the radiance simulated by 

SCOPE was critical to match the broader resolution of the hyperspectral imager, and 

therefore to obtain comparable SIF values. Fig. 5.5b shows the effect of the convoluted 

radiance signal when applied to the SCOPE simulations, observing the relationship 

between SIF and Vcmax. 
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 Fig. 5.5. Radiance spectra obtained by the VNIR hyperspectral sensor (in grey), the 

radiance simulated by SCOPE model at 1 nm (in black) and the convoluted SCOPE-

simulated radiance using Whittaker and moving average filters (in red) (a). For the same 

wheat plot, the SCOPE-simulated SIF (black line) and the SIF obtained after 

convolution (red line) are shown as a function of Vcmax (µmol·m
-2

·s
-1

) (b) for 

simulations with Cab=33 µg·cm
-2

, LAI=2 and Rin = 575 W·m
-2

. 

5.3 Results 

5.3.1 Nutrient and water-stress variability in rainfed and irrigated study sites 

Field-based leaf physiological measurements (net assimilation, N concentration and 

water potential), Vcmax estimated by SCOPE inversions, Cab estimated by PROSPECT-

SAILH inversions, and CWSI for the entire experiment comprising rainfed and irrigated 

plots are shown in Fig. 5.6. There were large differences in the crop photosynthesis, 

water and nitrogen status between water regimes. As expected, irrigated plots had better 

water and nutritional status compared to rainfed plots overall. Irrigated plots had higher 

assimilation rates, N concentrations, Vcmax, and Cab (Fig 5.6a, b, d and e) than rainfed 

plots. ANOVA analysis confirmed statistically significant differences between the 

means of the two water stress regimes for all field physiological measurements (all p-

values ≤ 0.0036). 
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Fig. 5.6. Leaf- and canopy-level physiological data acquired in plots under rainfed (red) 

and irrigated (blue) conditions: a) assimilation rate (µmol·m
-2

·s
-1

); b) leaf N 

concentration (%); c) water potential (MPa); d) Vcmax estimated by SCOPE (µmol·m-

2·s
-1

); e) chlorophyll content estimated by PROSPECT-SAILH (µg·cm
-2

); and f) CWSI 

calculated from high-resolution thermal imagery. In the box plots, the horizontal black 

line represents the median and the top and bottom of the box is the 75th and 25th 

quartile, respectively. The whiskers represent the upper and lower range. The average 

values are shown with a white point over the box plot. 

There was a significant correlation between CWSI and water potential in rainfed 

plots (r
2
 = 0.30, p-value = 0.7e-4), although the correlation was stronger for irrigated 

plots (r
2
 = 0.72, p-value = 1.7e-5). The high variability in N concentration for both 

treatments (Fig. 5.6b) suggests that rainfed plots were also affected by N deficit. 

Assimilation rate was significantly correlated with the N concentration (r
2
 = 0.51 and 

0.56 for irrigated and rainfed, respectively) indicating that the N concentration also 

affected the photosynthetic capacity in both water regimes. 

5.3.2 Effects of the biochemical and environmental parameters on SIF and Vcmax 

estimation 

The sensitivity of the convoluted radiance signal simulated with SCOPE to 

chlorophyll content, LAI and the broadband incoming shortwave radiation are shown in 

Figure 5.7. Variation in Cab had a relatively small effect on radiance at the spectral 

region typically used to quantify chlorophyll fluorescence (750–775 nm), particularly as 

compared to LAI and Rin (Fig 5.7b and c). In general, for the same value of Cab, the 

radiance significantly increased with the increase of LAI and Rin in the O2-A region. 

However, large differences were observed as a function of Rin variation, reaching more 
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than 30 W·sr
-1

·m
-2

·nm
-2

. These results showed that Rin was a key micrometeorological 

variable in driving SIF variability simulated by the SCOPE model. 

Figure 5.8 shows the relationship between SCOPE-simulated SIF and Vcmax, as a 

function of LAI, Cab and Rin. At constant radiation (Rin = 800 W·m
-2

) and LAI (2), 

fluorescence increased with increasing values of Cab and Vcmax. The largest increase in 

the SIF retrievals occurred for Vcmax between 10–60 µmol·m
-2

·s
-1

. For larger Vcmax 

values (≥150 µmol·m
-2

·s
-1

), SIF retrievals remained steady, with a tendency to increase 

with Cab. 

 

Fig. 5.7. Sensitivity of SCOPE radiance profiles convoluted to match the FWHM of the 

hyperspectral imager used in the study, as a function of chlorophyll content (Cab) in 

µg·cm
-2

 (a), leaf area index (LAI) (b) and the broadband incoming shortwave radiation 

(Rin) in W·m
-2

 (c) for Vcmax = 80 µmol·m
-2

·s
-1

. CO2 and O2 concentration at the 

interface of the canopy were set to 382.17 ppm and 200 ×103 ppm, respectively. 

At constant Cab, there were dramatic changes in the relationship between simulated 

SIF and Vcmax with increased with LAI and Rin (Fig. 5.8b and c). SIF significantly 

increased with LAI, nearly doubling with an increase in LAI from 1 to 5 (Fig 5.8b). 

Unsurprisingly, SIF increased proportionally to Rin (Fig 5.8c). 
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Fig. 5.8. Relationships between SIF estimated from SCOPE radiance simulations and 

Vcmax (µmol·m
-2

·s
-1

) as a function of chlorophyll content (Cab) in µg·cm
-2

 (a), LAI (b) 

and the broadband incoming shortwave radiation (Rin) in W·m
-2

 (c). 

5.3.3 Validation of Vcmax estimated by SCOPE using leaf photosynthesis 

measurements.  

The relationship between the SCOPE-estimated Vcmax and the field-measured 

Vcmax is shown in Fig. 5.9a. There was an almost 1:1 linear relationship (r
2
= 0.77; p-

value ≤   2.2e-16 and RMSE = 2.61 µmol·m
-2

·s
-1

) between measured and estimated 

Vcmax, using the FvCB approach on the six wheat varieties from the airborne campaign 

in 2018. The relationship between the measured Vcmax and the net photosynthetic rates 

also displayed a significant relationship for both types of Vcmax estimates (r
2
=0.68; p- 

value ≤ 0.005) (Fig. 5.9b). 
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Fig. 5.9. a) Relationship between carboxylation maximum capacity (Vcmax; μmol·m
-

2
·s

-1
) retrieved from the hyperspectral image through the SCOPE model inversion vs. 

field measured Vcmax through Farquhar–von Caemmerer–Berry (FvCB) model using 

the curve A/Ci (wheat Ecija plots, 2018). The black line is the fit line and the dashed 

line is the one-to-one line; b) relationships between the average net assimilation (A; 

µmol·m
-2

·s
-1

) measured using the photosynthesis chamber at flight time and the 

simulated Vcmax (in black dots) and the Vcmax calculated from FvCB model (in blue 

dots). 

The relationship between Vcmax simulated by SCOPE model inversion and SIF 

quantified from the hyperspectral imagery at the different trial sites yielded a significant 

non-linear relationship (r
2
= 0.84; p-value ≤ 2.2e-16; Fig. 5.10). Irrigated plots had high 

SIF values (≥ 4.92 W·sr
-1

·m
-2

·nm
-2

) that were related to large values of Vcmax, mainly 

over 100 µmol·m
-2

·s
-1

. Under the severe water stress conditions in most rainfed plots, 

Vcmax was lower than 90 µmol·m
-2

·s
-1

. However, for some rainfed plots (Ecija 2018), 

which were in an early growth stage and under moderate water stress, Vcmax and SIF 

retrievals were larger than 90 µmol·m
-2

·s
-1

 and 5 W·sr
-1

·m
-2

·nm
-2

 for Vcmax and SIF, 

respectively.  
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Fig. 5.10. Relationship between carboxylation maximum capacity (Vcmax, μmol·m
-2

·s
-

1
) estimated by hyperspectral imagery through SCOPE model inversion and SIF 

quantified from the hyperspectral imagery, displaying rainfed (red) and irrigated (blue) 

conditions. Each symbol corresponds with a single plot measurement. 

5.3.4 Relationships between Vcmax and assimilation under irrigation and rainfed 

conditions 

The relationships between net assimilation and SCOPE-estimated Vcmax, CWSI, 

leaf Cab, and NDVI are shown in Fig 5.11 and Fig 5.12 for each water regime. The 

SCOPE-estimated Vcmax was significantly correlated with the assimilation rate 

(r
2
=0.50, p-value=2.91e-6) under rainfed conditions. This relationship was stronger 

under irrigated conditions (r
2
=0.65, p-value=9.31e-5). The slightly weaker correlation 

obtained in rainfed plots could be associated with nutrient and water limitations, as well 

as an increased influence of background effects under stress conditions. In this context, 

variation in Vcmax was reduced and values were smaller (< 90 µmol·m
-2

·s
-1

), relative to 

irrigated conditions. 
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Fig. 5.11. Relationship between average assimilation (A; µmol·m
-2

·s
-1

) measured in 

leaves and Vcmax (µmol· m
-2

·s
-1

) estimated by hyperspectral imagery through SCOPE 

model inversion under rainfed (red; n=33) and irrigated (blue, n=18) conditions. The 

average net assimilation per plot was obtained using two leaves from the top of the 

canopy and a portable photosynthesis chamber. 

Net assimilation was significantly related to Cab (r
2
=0.56; p-value =3.93e-7), NDVI 

(r
2
=0.46; p-value =1.19e-5) and PSSRb (r

2
=0.56; p-value =4.21e-7) under rainfed 

conditions (Fig 5.12b, c and d). Under rainfed conditions, chlorophyll indicators (Cab 

and PSSRb) had better correspondence to net assimilation than remote sensing estimates 

of Vcmax (r
2
=0.50). By contrast, the relationship between the assimilation rate and the 

thermal-based CWSI (Fig. 5.12a) was weak (r
2
 = 0.14, p-value < 0.03), suggesting that 

the chronic water-stress may have resulted in an associated nutrient deficiency that 

limited assimilation rates. Indeed, net assimilation under rainfed conditions was more 

related to nitrogen and pigment indicators rather than to CWSI. Furthermore, after the 

supplemental irrigation in the Carmona plots in 2015, photosynthetic rates remained 

low despite partially recovered water status. For these plots, CWSI reached values close 

to 0.4, while assimilation rates were maintained below 15 µmol·m
-2

·s
-1

. 

Under well-irrigated conditions, the relationships between net assimilation and Cab, 

NDVI and PSSRb showed weak, nonsignificant relationships (r
2 

< 0.13; p-value = 0.83 

for leaf Cab content; p-value = 0.41 for PSSRb; p-value = 0.15 for NDVI, Fig. 5.12). It is 

likely that these relationships exhibited scaling problems due to saturation effects 

associated with high canopy densities in irrigated plots. By contrast, the relationship 

between net assimilation and CWSI was strongly correlated for irrigated plots (r
2
 = 

0.73, p-value = 1.30e-5). The estimation of Vcmax as a function of SIF retrievals 
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enabled the calculation of the spatial distribution of Vcmax and the net assimilation in 

the wheat experimental plots (Fig. 5.13). Pixel-level estimates of Vcmax and 

assimilation for rainfed and irrigated wheat varieties were retrieved using the regression 

between SIF and Vcmax shown in Fig. 5.10 and Fig 5.11 respectively. 

 

 

Fig. 5.12. Relationships between net average net assimilation (A, µmol·m
-2

·s
-1

) and (a) 

CWSI, (b) chlorophyll content (Cab; µg·cm
-2

) estimated by PROSPECT-SAILH model 

inversion, (c) NDVI, and (d) PSSRb calculated from the hyperspectral imagery under 

rainfed (red points; n=33) and irrigated (blue points, n=18) conditions. Average net 

assimilation per plot was obtained from two leaves at the top of the canopy with a 

portable photosynthesis chamber. 
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Fig. 5.13. Maps of Vcmax (µmol·m

-2
·s

-1
) simulated using the SCOPE model (a) and 

assimilation rate (A; µmol·m
-2

·s
-1

) predicted from Vcmax (b), under irrigated and 

rainfed conditions at SA field site during 2016 airborne campaign. 

5.4 Discussion 

Several studies have shown the utility of remotely-sensed SIF as an indicator of the 

photosynthetic activity at across spatial resolutions (Meroni et al., 2009; Porcar-Castell 

et al., 2014; Rascher et al., 2015). SIF retrieved from satellite imagery has improved 

estimations of gross primary productivity at ecosystem to global scales (Frankenberg et 

al., 2011; Guanter et al., 2014; Smith et al., 2018). However, SIF-GPP relationships 

require appropriate modelling methods to compensate for structural effects of vegetation 

canopies (Levula et al., 2019), spatial and temporal scales (Hu et al., 2018), seasonal 

changes in photosynthetic pigments (Campbell et al., 2018), environmental conditions 

(Verma et al., 2017) and other confounding factors. In this regard, He et al. (2017) 

showed that the sun-satellite view observation geometry could produce unwanted SIF 

variations, affecting the accuracy of GPP. Due to its close link to photosynthetic 

activity, SIF also has great potential for use in precision agriculture and plant breeding 

programs. At both global (satellite) and local (airborne and drone) scales, remote 

estimation of the maximum rate of carboxylation, Vcmax is thought to be a suitable 

proxy for photosynthesis. Zhang et al. (2014) demonstrated that estimation of Vcmax 

from space-based SIF retrievals combined with SCOPE simulations in corn and soybean 

crops was feasible. Nevertheless, further work was needed to understand if these 

methods are applicable to remote sensing instruments readily available in the context of 

routine precision agriculture operations and in plant breeding programs. In particular, it 
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is necessary to test whether SIF and Vcmax retrievals are feasible with the technical 

constraints of the spectral resolution available for operational and commercial remote 

sensing work, the high spatial resolution required, and the general aim of detecting 

subtle physiological changes across varieties and under water and nutrient stress levels. 

The work presented here demonstrates that the Vcmax estimated from airborne 

hyperspectral imagery through SCOPE model inversion was able to detect physiological 

changes induced by differing irrigation regimes and crop varieties. The relationships 

between net photosynthetic rates and both measured Vcmax and simulated Vcmax (Fig 

5.9b) at the Ecija site were significantly correlated (r
2
 ≥ 0.68 and p-value ≤ 0.005). The 

sample size used in the validation of SCOPE-simulated Vcmax was low due to the time-

consuming nature of obtaining CO2 response curves.  Nevertheless, a larger dataset (n > 

50) was used to demonstrate the relationship between Vcmax retrieved from SCOPE 

and plant physiological traits (Fig 5.11 and Fig 5.12). It demonstrates that Vcmax 

estimates are related to the physiological changes associated to water status. Issues 

related to the coarser spectral resolution of hyperspectral instruments used in precision 

agriculture and plant breeding programs were evaluated with respect to SIF retrieval, 

and its impact on Vcmax estimation, as validated by field measurements of plant traits 

and net assimilation. In particular, the small plot sizes normally used by plant breeders 

during their wheat selection trials may limit the accuracy of remotely-sensed SIF. The 

planting-row designs with 25-cm row spacing used in this study could affect the 

retrievals of narrow-band and high-resolution hyperspectral (25 cm) and thermal (20 

cm) imagery. When the plots are too small, soil and background effects may 

contaminate the signal due to the mixing of the soil and vegetation reflectance. 

Therefore, segmentation algorithms should be implemented to reduce soil background 

effects on estimates of plant physiological traits at canopy level, especially in early 

growth stages where these effects could significantly reduce the accuracy of retrievals. 

This issue is especially relevant for coarse-resolution sensors such as the SWIR camera 

(70 cm) and the thermal sensors. Spatial resolution issues should be considered during 

the experimental design in breeding programs where the remote sensing sensors are 

expected to be used. 
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The SCOPE-simulated radiance data which was convoluted to match the spectral 

resolution of the airborne hyperspectral imager used in our study was critical for 

obtaining SIF and Vcmax parameters within expected ranges. Analysis confirmed that 

the canopy structure and the incoming shortwave radiation were the main driving 

variables for modeled SIF emissions (Verrelst et al., 2015, 2016). In particular, Rin had a 

dominant influence on SIF, as expected based on the pivotal role of PAR load on 

fluorescence emission. As explained in Van der Tol et al. (2014), PAR and Vcmax are 

the main contributors to the fluorescence yield in SCOPE. The effects of chlorophyll 

content, LAI and Rin on the relationship between SIF and Vcmax were also included in 

the sensitivity analysis reported in our manuscript, showing the large impact of Cab on 

the SIF Vcmax relationships (Fig. 5.8a), which is in agreement with Koffi et al. (2015).  

Estimates of Vcmax from wheat plot image spectra through SCOPE model 

inversion were within the ranges reported by other studies for wheat crops (10–219 

µmol·m m
-2

·s
-1

; Wullschleger, 1993; Silva-Pérez et al., 2017). The relationship between 

the estimated Vcmax and chlorophyll fluorescence (r
2
= 0.84; Fig. 5.10) differed greatly 

between irrigated and water-stressed plots. As shown in Fig 5.10, the SIF and Vcmax 

are modulated by water status. In this regard, Zheng et al. (2017) showed that 

photosynthesis at noon is mainly limited by Vcmax, further indicating that Vcmax may 

be a suitable proxy for evaluating plant stress levels. For irrigated conditions, the 

relationship was almost linear and displayed a steeper slope with larger Vcmax values 

(≥100 µmol· m
-2

·s
-1

). Under water deficit the relationship was weak. As crops reduce 

stomatal and mesophyll conductance in response to stress, the CO2 concentration within 

the chloroplast drops, causing a reduction in the photosynthesis capacity (Vcmax). 

Under low CO2 concentrations, plant carboxylation rates are limited by RuBisCo rather 

than Vcmax (Sharkey et al., 2007). Consequently, under severe water stress, both 

Vcmax and SIF retrievals were suppressed, which is in agreement with the findings by 

Zheng et al. (2017). 

Due to the intensive field-work required to estimate the relationships between A 

and Ci, the number of observations used to estimate Vcmax in the field was small. 

Nevertheless, our data suggests that simulated Vcmax corresponded well with in situ 

measurements. The results were satisfactory (r
2
=0.77; p-value ≤ 2.2e-16 and RMSE = 

2.6 µmol·m
-2

·s
-1

) despite the limited number of leaf Vcmax samples, suggesting that 

Vcmax could reasonably be estimated from SCOPE and convoluted SIF retrievals using 
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hyperspectral imaging technology suitable for precision agriculture. Simulated Vcmax 

yielded a significant relationship with assimilation rate at the Ecija site in 2018 under 

non severe water stress conditions (r
2
=0.68; p-value ≤ 0.005). These results are in 

accordance with results obtained by Zhang et al. (2014, 2018) in soybean and corn 

crops. The relationships observed between Vcmax and the net photosynthesis (Fig. 

5.11) supports the hypothesis that airborne-quantified Vcmax is a feasible indicator of 

crop functioning under contrasting water regimes. Moreover, we showed (Fig. 5.12) that 

in the absence of water stress, Vcmax was a stronger predictor of photosynthetic 

capacity than standard indicators such as Cab, and NDVI and PSSRb. These indicators 

likely performed poorly due to scaling problems related to the high canopy densities in 

irrigated plots. As a result, non-significant relationships were also found between net 

assimilation and these indices (all p-value ≥0.15). In dense biomass canopies, the NIR 

reflectance increases greatly, reducing the sensitivity of the normalized ratios such as 

NDVI or PSSRb to plant biochemical content (Thenkabail et al., 2000; Gitelson, 2004).   

Under rainfed conditions, i.e. in the presence of water stress, Vcmax, Cab and 

reflectance indices were related to CO2 assimilation rate, but thermal CWSI was not. 

Under water stress, stomatal closure reduces the CO2 concentration inside the 

chloroplast, decreasing the photochemical activity and also photo-inhibition processes 

(Flexas and Medrano, 2002). Thus, leaf photochemistry decreases, resulting in a 

reduction of the chlorophyll fluorescence and RuBisCo activity. The fact that 

reflectance-based indicators (Cab, PSSRb, and NDVI) became significantly associated to 

A, under water stress, suggests that the saturation effects from canopy biomass were not 

present in rainfed plots. In this study, partial recovery of the water status (as happened 

in Carmona field in 2015) after sever water stress did not result in elevated assimilation 

rates. This suggests that instantaneous assessment of water status might not track 

photosynthetic performance if severe water stress has affected the photosynthetic 

apparatus. 

From an operational perspective, the remote estimation of Vcmax from high-

resolution hyperspectral imagery through SCOPE model inversion methods provides a 

powerful tool to accurately assess crop assimilation rates in large plant breeding 

programs and in precision agriculture studies. Moreover, its robustness across both 

irrigated and water-stressed plots was demonstrated when compared against standard 
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reflectance-based remote sensing indicators widely used for crop screening and high-

throughput phenotyping 

5.5 Conclusions  

The work presented in this manuscript demonstrates the estimation of maximum 

rate of carboxylation (Vcmax) using SCOPE model inversion with airborne-quantified 

SIF from hyperspectral imagery. Estimates suitably tracked photosynthetic rates and 

clearly distinguished physiological differences in irrigated and rainfed conditions. 

Under water stress, all plant trait indicators performed similarly (Vcmax, NDVI, Cab and 

PSSRb) and were well related to assimilation rates. Nevertheless, estimated Vcmax 

outperformed standard remote sensing indices for the quantification of crop 

photosynthesis under irrigated conditions (i.e. in the absence of water stress). The 

methodology demonstrated in this study is directly relevant for high-throughput plant 

phenotyping and for precision agriculture applications. 
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Chapter 6: Conclusions 

6. 1 Conclusions of the main chapters 

From the research article: Camino C., Zarco-Tejada P. J. & González Dugo V. Effects 

of Heterogeneity within Tree Crowns on Airborne-Quantified SIF and the CWSI as 

Indicators of Water Stress in the Context of Precision Agriculture. Remote Sensing, 

2018, 10(4), 604; https://doi.org/10.3390/rs10040604. 

 

I. Airborne-derived SIF retrievals and thermal-based CWSI extracted from tree-

crowns were highly degraded due to the effects of structure, leaf density, 

sunlit/shaded areas and background soil effects, masking changes in 

fluorescence and CWSI amplitude caused by the physiological condition. 

II. The crown segmentation methods applied to target pure crown-level vegetation 

pixels improved the relations between SIF and field-measured leaf assimilation 

rate. 

III. The normalization scheme for SIF using the maximum fluorescence signal 

emitted by control well-watered almond trees confirmed the feasibility of using 

normalized SIF as an indicator of photosynthetic activity throughout the season. 

IV. CWSI retrievals were highly modulated by the spatial heterogeneity of canopy 

temperature within tree-crowns, affecting the relationship with stomatal 

conductance measured at leaf level. In particular, pixels more affected by soil 

background shifted the CWSI values beyond the maximum theoretical CWSI 

limit. 

V. The automatic object-based tree crown detection algorithm, based on quartile 

breaks, minimized the impact of canopy structure and reduced the soil 

background effects, enabling accurate estimations of plant photosynthetic traits. 

From the research article: Camino C., González-Dugo V., Hernández P., Sillero J.C. 

& Zarco-Tejada P. J. Improved nitrogen retrievals with airborne-derived fluorescence 

and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of 

precision agriculture. International Journal of Applied Earth Observation and 

Geoinformation, Volume 70, August 2018, Pages 105-117.  

https://doi.org/10.1016/j.jag.2018.04.013. 

 

I. The airborne-quantified solar induced chlorophyll fluorescence is a critical 

predictor for the estimation of N concentration under irrigated and rainfed 

Mediterranean conditions. 

 

https://doi.org/10.3390/rs10040604
https://doi.org/10.1016/j.jag.2018.04.013
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II. The chlorophyll a+b content and leaf parameters dry matter and equivalent water 

thickness retrieved from a radiative transfer model at canopy scale are needed 

for better N concentration estimation.  

III. Regression models with the airborne-quantified SIF and plant physiological 

traits improved the N quantification under both rainfed (water-stress) and 

irrigated conditions. 

IV. Multiple regression models for estimating N concentration yielded better results 

than standard empirical methods based on simple linear relationships with 

narrow-band hyperspectral indices. 

V. The nitrogen indices retrieved from the SWIR domain significantly improved 

the estimation of nitrogen concentration, as compared to pigment and structural 

indices based on visible and NIR spectral regions. In particular, SWIR-based 

NIs centered at 1510 nm yield more reliable agreements with N concentration. 

From the research article: Camino C., González Dugo V., Hernández P. & Zarco-

Tejada P. J. Radiative transfer Vcmax estimation from hyperspectral imagery and SIF 

retrievals to assess photosynthetic performance in rainfed and irrigated plant 

phenotyping trials. Submitted to Remote Sensing of Environment, 2018. 

I. This work showed a feasible remote sensing methodology for the estimation of 

Vcmax from airborne-based SIF retrievals combined with SCOPE simulations 

using high-resolution hyperspectral imagery at canopy scales. 

II. The maximum rate of carboxylation retrievals derived from SCOPE model 

inversion enabled to successfully capture the photosynthetic capacity in irrigated 

and rainfed conditions through the use of high-resolution hyperspectral imagery. 

III. The estimation of Vcmax outperformed standard remote sensing indices (eg. 

NDVI) and Cab for the quantification of crop photosynthesis under irrigated 

conditions. 

IV. Standard remote sensing indicators (NDVI, Cab, PSSRb) yielded non-significant 

correlations with assimilation in irrigated plots while the CWSI yielded non-

significant correlation in rainfed plots. The superior sensitivity of remotely-

sensed Vcmax under irrigated conditions was likely due to the fact that the 

structural effects typical of high canopy densities did not affect Vcmax as much 

as standard remote sensing indicators. 
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V. The estimation of Vcmax as a function of SIF retrievals enabled the calculation 

of the spatial distribution of Vcmax and the net assimilation in high-throughput 

plant phenotyping and for precision agriculture applications. 

6. 2 General conclusions 

The main goal of this research was to assess the contribution of the airborne-

retrieved solar-induced SIF and thermal-based indicators to the retrieval of nitrogen and 

plant photosynthetic traits under contrasted water stress regimes in different crops. This 

PhD thesis demonstrates that the use of radiative transfer models using hyperspectral 

imagery in the visible, near-infrared and short-wave infrared spectral region is a reliable 

method to estimate vegetation plant traits and to monitor nutritional status and 

photosynthesis activity. In particular, RTMs have been shown superior to empirical 

models based on single narrow-band hyperspectral indices. 

This PhD thesis shows a successful approach for the retrieval of plant 

photosynthetic traits through chlorophyll fluorescence emission coupled with terrestrial 

biosphere models. In particular, this thesis investigates an approach via SCOPE model 

that coupled RTMs, photosynthesis biochemical models and balance energy models to 

investigate the effects of canopy structure and plant traits using chlorophyll 

fluorescence estimation at the top of the canopy and high-resolution airborne 

hyperspectral imagery.  

The work conducted during this PhD thesis demonstrate that chlorophyll 

fluorescence is an important factor for improving the quantification of nitrogen 

concentration and for estimating the maximum rate of carboxylation (Vcmax) using 

passive remote sensing techniques in plant phenotyping experiments. These results 

highlight the critical importance of the remotely-sensed SIF as an indicator of Vcmax 

using hyperspectral imagery and physical-based models.  

In this research also we also confirm that CWSI is a reliable tool for monitoring 

water stress using high-resolution thermal imagery under different water regimes. This 

PhD thesis highlights that the thermal imaging for detecting water stress offers the 

potential to retrieve thermal-based indicators from airborne imaging to map spatial 

variability of water status.  In particular, our results provide a detailed quantification of 
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the spatial variability of the tree temperature within tree crowns, providing an automatic 

procedure for improving the accuracy for monitoring water status in orchard tree crops. 

The results presented in this PhD thesis, also highlight that the large effects driven 

by the canopy structure and soil background should be taken in account when 

estimating chlorophyll fluorescence and the thermal-based CWSI indicator from high-

resolution hyperspectral and thermal airborne imagery. This PhD thesis demonstrates 

the large impact played by the canopy and tree crown structure, yielding more robust 

relationships with stomatal conductance and assimilation rate when pure vegetation 

pixels were targeted. The visible, near infrared and short-wave infrared regions were 

studied for assessing N concentration in several water regimes. The work conducted in 

this research demonstrates the narrow-band indices based on NIR/SWIR regions 

improved the quantification of nitrogen concentration, compared to narrow-band indices 

calculated from the visible and near-infrared region of the spectrum.  

6. 3 Further research  

The research conducted during this thesis leads to establishing further research in 

the fields of high-throughput plant phenotyping and in precision agriculture. Future 

research topics include the following: 

- Future research is required on developing advanced methods for better 

quantification of the partitioning between excitation / fluorescence energy and 

thermal dissipation as part of photosynthesis processes in the context of nitrogen 

quantification. 

- Continue the research on thermal infrared and fluorescence imaging in the 

context of crop water stress to understand the links between plant photosynthesis 

traits, nitrogen status and chlorophyll fluorescence emission under water stress 

conditions 

- Assess the robustness and the transferability of the methodologies developed in 

this PhD thesis for the quantification of biochemical parameters and plant 

photosynthesis traits to other crops and environmental conditions. 

- Improve scaling up methods through radiative transfer modelling for the 

quantification of N and Vcmax using airborne-based SIF retrievals in crops with 

complex structural characteristics. 
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- Develop new remote sensing methods through high-resolution hyperspectral 

imagery for detecting new spectral bands sensitive to nitrogen content and other 

macronutrients using near-infrared and short-wave infra-red regions, including 

artificial intelligence methods such as machine learning algorithms. 
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Other scientific contributions derived from this Doctoral Thesis are listed below 

Publications in international journals 

P. J. Zarco-Tejada, C. Camino, P. S. A. Beck, R. Calderon, A. Hornero, R. Hernández-

Clemente, T. Kattenborn, M. Montes-Borrego, L. Susca, M. Morelli, V. González-

Dugo, P. R. J. North, B. B. Landa, D. Boscia, M. Saponari and J. A. Navas-Cortes. 

Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait 

alterations. Nature Plants, volume 4, pages 432–439 (2018). 

https://doi.org/10.1038/s41477-018-0189-7.  

S. Gálvez, R. Mérida-García, C. Camino, P. Borrill, M. Abrouk, R. H. Ramírez-

González, S. Biyiklioglu, F. Amil-Ruiz, The IWGSC,  G. Dorado,  H. Budak,V. 

González-Dugo, P. J. Zarco-Tejada, R. Appels, Cristobal Uauy,  Pilar Hernandez. 

Hotspots in the genomic architecture of field drought responses in wheat as breeding 

targets. Funct. Integr. Genomics. https://doi.org/10.1007/s10142-018-0639-3 

Publications in national journals 

R. Calderon, C. Camino, P.S.A. Beck, A. Hornero, R. Hernández-Clemente, T. 

Kattenborn, M. Montes-Borrego, L. Susca, M. Morelli, V. Gonzalez-Dugo, P.R.J. 
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Oral communications at conferences 

P. S. A. Beck, C. Camino, R. Calderón Madrid, A. Hornero Luque, R. Hernández-
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analysis. ICPP 2018. Abstracts of Concurrent Session. October 2018, Volume 108, 

Number 10S Pages S1.240-S1.319. https://doi.org/10.1094/PHYTO-108-10-S1.240 

C. Camino, P. J. Zarco-Tejada  and V. González-Dugo. Assessment of the spatial 

variability of CWSI within almond tree- crowns and its effects on the relationship with 

stomatal conductance. Geoscience and Remote Sensing (IGARSS), IEEE International 

Symposium, 22-25 July, 2018, Valencia Spain. 

C. Camino, V. González-Dugo R. Mérida-García, P. Hernández and P. J. Zarco-Tejada. 

Retrieval of wheat nitrogen content using airborne hyperspectral VNIR-SWIR imagery 

through radiative transfer models and chlorophyll fluorescence quantification. 10
th

 

EARSeL SIG Imaging Spectroscopy Workshop, 19-21 April 2017, Zurich. Switzerland. 
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