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Figure 14. The comparison between open loop run (a), data assimilation with UAS Ts observations (b), and data assimilation

Fioure 4. Workflow for SWC with synthetic data (six UAS flights per day). The performance of simulation with different schemes was shown in the left
T .. gHire = . TVDI on 18.06. 17 table. This result indicate high frequency UAS observations are needed for improving surface temperature simulation.
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Conclusion and future work
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