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ABSTRACT 

In this paper, we discuss the integration of systems such 

as multi-dimensional radiative transfer models (RTM) with 

deep learning (DL) algorithms to estimate plant biochemical, 

physiological, and morphological traits at canopy level using 

high-resolution hyperspectral imagery (361 bands in the 400-

1000 nm spectral range). We applied the approaches to two 

case studies for dryland cropping in Australia (i.e., wheat and 

sorghum).  Crop type averages for the early flight for leaf area 

index (LAI) varied between 2, for Canola, to as high as 4.3 

for Lentils. Wheat and Barley had LAI of 4.1 and 3.8 (m2/m2), 

respectively. Chlorophyll a+b (Ca+b) averages for emerged 

crops were 18, 41, 44, 51 and 59 g/cm2 for Faba beans, 

Wheat, Canola, Barley and Oats, respectively.  The pigment 

Anthocyanin varied from 4.9 to 15.9 g/cm2 for Lentils and 

Canola, respectively. Similar patterns were observed in the 

Carotenoid (Cx+c) levels (as high as 16.5 g/cm2 for Oats). For 

sorghum plots, the integrated DL approaches showed 

significant high correlation in predicting sorghum LAI (R2 = 

0.84, RMSE = 0.65 m2/m2) and Ca+b (R2 = 0.94, RMSE = 4.94 

µgcm-2). The maximum velocity carboxylation rates (Vcmax) 

varied between 45-75 µmol m-2s-1.  For both studied periods, 

we yielded a R2 > 0.78 and RMSE <= 5.35 µmol m-2s-1, being 

the RMSE lower when using the modelled fluorescence 

emission for retrieving the Vcmax. In addition, we derived 

the solar induced fluorescence emission hyperspectral 

narrowband (5.8 nm) sensing and radiative transfer models 

(RTM).  

 

Index Terms — Machine learning, Hyperspectral data, 

AI, SCOPE, Pro4SAIL, VcMax, SIF 

 

3. INTRODUCTION 

Food security and sustainable agriculture are vital 

concerns to society and key topics in assessments of climate 

variability and change on crop production. However, the 

drivers of crop yield are complex and differ across spatial 

scales as a result of Genotype x Environment x Management 

(GxExM) combinations [1]. One such driver determining 

crop yield in interaction with environmental and management 

factors, is leaf photosynthetic capacity. During the last two 

decades, advances in global cereal yields have significantly 

slowed down [2]. Photosynthesis is the process by which 

chlorophyll in living plants converts sunlight, water, and CO2 

into energy and is a recent target in improving crop yield [3]. 

This is phenometrically manifested through growth in roots, 

leaves, inflorescence, and ensuing biomass. The advent of 

hyperspectral sensing will enable us to determine the effect 

of GxExM more accurately on photosynthetic function at 

plant, canopy, and field scales [4-6]. Here we exemplified the 

utility of hyperspectral sensing data for two dry land cropping 

examples for Australia. Firstly, for 108 plots with 93 diverse 

sorghum genotypes (Sorghum bicolor (L.) Moench) grown in 

a breeding experiment during the 2019/20 summer season at 

the Gatton Research Facility in Queensland and secondly, 16 

fields of six winter crops (including Wheat Triticum aestivum 

L.) in central Victoria. Hyperspectral imagers (full width at 

half-maximum resolutions of 0.1–0.2 nm and 5.8 nm) were 

flown in tandem around flowering and senescence for the 

winter crop fields. A narrowband imager (5.8 nm) was used 

to capture hyperspectral data at weekly intervals for the 

sorghum breeding plots. Specifically, we explore the ability 

of machine learning (ML) algorithms to retrieve maximum 

velocity of  carboxylation rate (Vcmax), structural parameters 

(e.g., Leaf area index and Leaf inclination distribution 
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function), and leaf photosynthetic pigments (e.g., chlorophyl 

content) derived from RTM [7] and hyperspectral imagery.  

In addition, we explored their relationships with 

chlorophyll fluorescence emission calculated at the 760 nm 

oxygen absorption region and spectral indices centered on the 

red edge spectral region (SIF). Although top-of-canopy 

(TOC) SIF is associated with plant photosynthetic capacity, 

it is also influenced by incident radiation and leaf and canopy 

characteristics, such as leaf chlorophyll concentration and 

Leaf Area Index (LAI). Consequently, SIF differs among 

plant species, with croplands exhibiting the highest SIF, 

followed by broadleaf and needleleaf species. In terms of the 

seasonal dynamics of SIF, the early stage of canopy 

development is characterized by low SIF values owing to the 

presence of young leaves. As the canopy develops and the 

leaf area index and proportion of mature leaves increase, SIF 

levels rise. In the later phases, when senescence and 

flowering occur, SIF eventually decreases [8]. Under stressed 

conditions, the three pathways of absorbed energy regulation 

(i.e., photochemistry, heat dissipation, and fluorescence 

emissions) perform differently, with fluorescence emission 

tending to decrease as a result of an increase in plant 

protection mechanisms [9]. Finally, to avoid potential ill-

posed solutions in the simulations, we constrained all inputs 

based on field measurements, information from literature, 

and preliminary simulations to ensure that the resulting look-

up tables (LUT) were within the range of the observations 

made by the hyperspectral sensor.  

 

2. METHODS 

2.1. Modelling methods 

Leaf biochemical constituents and canopy structural 

properties were retrieved using two inversion approaches 

based on the (i) PRO4SAIL radiative transfer model [10] 

PRO4SAIL couples the PROSPECT-D [11] leaf radiative 

transfer model and the 4SAIL [12] canopy radiative transfer 

model and (ii) SCOPE model [13, 14] to derive Vcmax and 

modelled SIF at 760 nm in the sorghum breeding plots. Leaf 

pigments such as Ca+b, Anth. and Cx+c were quantified. 

Structural traits such as LAI were estimated for each plot. 

This procedure was carried out for each specific study site 

considering the intrinsic variations between each dataset and 

time of collection (Table 1).  

 
Table 1. Ranges of parameters used for the simulations with the 

PRO4SAIL radiative transfer model for winter crops (Left) and 

sorghum using SCOPE (Right). 

 

For PRO4SAIL, a look-up table of 200,000 simulations 

varying uniformly distributing the parameters shown in Table 

1 left and right, and the rest of the parameters were used in 

their default ranges. The simulated reflectance was resampled 

to the spectral resolution of the hyperspectral sensor by a 

convolution using a Gaussian spectral response function. The 

plant traits were inverted using SVM algorithms [15]. For 

regression, SVM is called SVR, which finds the function with 

maximum deviation between observed responses. SVR 

models were trained in parallel using MATLAB 

(www.mathworks.com). The resampled reflectance was used 

as input, and the biochemical and structural traits were used 

as output. The SVR algorithms were trained 10-fold using a 

radial basis function as kernel and optimizing the 

hyperparameters during training for each variable.  

For the SCOPE model, we designed a Multi-tier ML 

approach to retrieve plant traits coupling hyperspectral 

imagery with the SCOPE model (version v2.1) in R software 

(R Core Team, 2022, www.R-project.org). We made 20,000 

simulations with the main plant trait ranges described in 

Table 1 (right). In addition, we applied a uniform distribution 

transformation for Vcmax and varied each plant trait within 

the specified range of 0-175 µmol m-2s-1, while incoming 

radiation was 200-1000 and 100-500 (W.m-2) for shortwave 

and longwave radiation, respectively. Additionally, we 

assumed correlation between main plant traits to avoid 

combinations of plant traits, which are not present in the 

studied forest canopies. Similar to PRO4SAIL approached, 

we distributed the data with a uniform distribution function 

for the inputs of Table 1 (right). To avoid noise in the data 

affecting the model inversion, we applied smoothing of the 

simulated spectra at 1 nm resolution using a Savitzky-Golay 

derived calculation method [16]. We then resampled each 

simulated spectrum to adjust its resolution to the bandwidth 

of the sensors using Gaussian spectral response functions 

defined by the FWHM values of the hyperspectral sensors.  

To make the Vcmax estimates, the resampled spectra 

simulated via SCOPE model were first randomly partitioned 

into two groups, the training sample with 80% of the 

simulations and the testing sample with the 20%. We then 

trained a one-dimensional convolutional neural network 

model (1D CNN) to retrieve Vcmax and fluorescence 

emission at 760 nm using the LUT configuration described in 

Tables 1 (Sorghum, right). 

 

2.2. Generation of SIF outputs  

The total incoming irradiance was continuously measured 

throughout the duration of the airborne campaign using the 

radiance reflected from a white reference panel 

(www.labsphere.com/) using a 0.065 nm FWHM Ocean 

Optics HR-2000 spectrometer (www.oceaninsight.com) 

installed at the field site. The acquired irradiance was then 

convolved assuming a gaussian spectral response function 

matching the narrow-band imager’s spectral characteristics. 

Using the radiance imagery from the narrow-band imager and 

the convolved irradiance from the HR-2000 spectrometer, a 

Parameter Abbreviation Units Value / Range 

Chlorophyll content  Ca+b [μg/cm²] [3,70] 

Carotenoid content  Cx+c [μg/cm²] [1,20] 

Anthocyanin content  Anth. [μg/cm²] [1,10] 

Dry matter content  Cm [g/cm²] [0.001,0.035] 

Water content  Cw [g/cm²] [0.001,0.035] 

Mesophyll struct. coeff. N - [0.5,3] 

Leaf area index  LAI [m²/m²] [0.5,5] 

Average leaf angle  LIDF [deg.] [1,90] 

Hot spot parameter hot - 0.01 

Observer angle  tto [deg.] 0 

Sun zenith angle  tts [deg.] 37.7 

Relative azimuth angle  psi [deg.] 0 

 

Range (sorghum)

[0.5-95]

[0.1-40]

[0-7]

[0.02]

[0-0.02]

[1.5-2.5]

[0-7]

[-0.5 -0.5] a,b

0.0

0.15

[15-35]

0

1953
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SIF map was generated utilizing the O2-A band in-filling 

method through the Fraunhofer Line Depth (FLD) principle 

and a total of three spectral bands (3FLD) [17]. Further 

scaling of SIF maps between 0 and 5 arbitrary units (a.u.) was 

performed to investigate the relative pattern across the study 

region. 

 

3. RESULTS 

3.1. Determining of canopy traits for winter crop fields. 

The results of the Ca+b estimations (Fig. 1) showed that 

Faba beans had the highest increase in Ca+b, from 15.54 

µg/cm2 to 70.61 µg/cm2. Barley had the largest decrease in 

Ca+b, from 54.11, 57.82, and 42.47 µg/cm2 to 7.4, 17.05, and 

35.23 µg/cm2. Lentils had similar concentrations for both 

fields in both years, with an average of 67.3 µg/cm2 in the 

second campaign. Wheat had the highest concentration of 

Ca+b in the first campaign, with 52.3 µg/cm2, and the lowest 

concentration in the second campaign, with 29.17 µg/cm2. 

Canola had similar values for both campaigns, with 50.21 and 

43.54 µg/cm2. Oats hay had a sharp decrease in Ca+b from 

59.41 µg/cm2 to 4.4 µg/cm2 from the first to the second 

campaign. Similar patterns in trends were observed for Cx+c 

and Anth. content for all crops and dates. However, the 

exception was the trends in LAIs, which had values around 4 

m2/m2 for all crops except for Canola and Oats, which had 

LAI ~2 m2/m2. for first date (e.g., flowering), for barley and 

oats, respectively. LAI during the second flight ranged 

reduced to around 2 m2/m2.  

 
Figure 1: Prediction of Chlorophyll (Ca+b) content for Oats hay, Barley, 

Canola, Wheat, Faba beans and lentils crops using hyperspectral 

imagery captured on 09th of August 2021 and 1st of November 2021. 

3.2. SIF for winter crops from airborne campaigns. 

Figure 2 shows the values of modelled SIF in a.u. The 

lowest SIF was observed for Oats with an average of 1.8 a.u.. 

For wheat the mean was 2.17 a.u., while in Barley it was 2.16 

a.u.. Canola had the highest average of 3.03 a.u. Faba beans 

had an average of 2.49 a.u.. Variation in SIF were observed 

between crop types and within fields. 

 

 

Figure 2: (a) Pixel-scale (0.5 m x 0.5m) SIF map showing the spatial 

pattern across the fields for the different crops (15,000 hectares). (b) The 

zoom-in map showing the average SIF values across fields. For cross 

scale comparison units were scaled to arbitrary units (a.u). 

 
3.3. Determining of Vcmax for sorghum breeding plots. 

The results of the Vcmax estimates (Fig. 3 top) showed 

that with the coupling between SCOPE and hyperspectral 

imagery we obtained n significant performance (R2 > 0.78) 

with the Vcmax measured in the sorghum crop plots. 

However, by adding the modelled SIF (Fig. 3 top B), we 

reduced the RMSE and the outliers, compared to the 

predicted Vcmax retrievals based exclusively on the applied 

CNN approach (Fig. 3 top A).  

In the sorghum crop plots for measured Vcmax and 

predicted plant traits, we noted a similar pattern for both 

inputs. In general, we observed higher plant trait values in the 

sorghum plots for the 2020 period than for sorghum plots 

placed in 2019. In this sense, the mean predicted Ca+b values 

were 40.55 µg/cm2 in 2020 lower than 44.68 µg/cm2 for Ca+b 

in the 2019 period (Fig. 3. bottom A). The predicted Vcmax 

yielded similar trend as measured Vcmax (Fig. 3 top) for both 

years. The predicted Vcmax when adding modelled SIF 

ranged between 45 to 80 µmol m-2s-1, (Fig. 3 bottom B) 

close to the observed Vcmax 40 and 85 µmol m-2s-1. 

 

6. HARNESSING HIGH RESOLUTION 

HYPERSPECTRAL DATA AND AI IN CROPPING 

SYSTEMS  

During the last decade, the fusion of biophysical models, 

climate forecast and hyperspectral remote sensing 

technologies have progressively become more achievable. 

This was mainly due to the acceleration in state-of-the-art 

data storage capacity and cloud computing and the evolution 

in artificial intelligence to solve convoluted “real-world” 

problems. In addition, high-resolution hyperspectral remote 

sensing platforms have rapidly advanced in temporal, spatial 

and spectral resolutions with global coverage. enable for 

more accurate estimation of biochemical, morphological, and 
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physiological traits in crop canopies across field scales. 

Furthermore, outputs from such integrated systems will result 

into objective, accurate and timely estimation of concomitant 

functional traits. These morphological, biochemical, and 

physiological traits is a direct outcome of plant responses for 

various GxExM combinations. Thus, illuminating our 

understanding of the impact of abiotic, biotic stresses and 

photosynthesis on ensuing crop growth and production. 

Finally, it is anticipated that outputs generated from high-

resolution earth observation sensors combined with targeted 

AI algorithms and linked to dynamic crop models [18] will 

advance the development of a functional and integrated 

systems approaches to elite high yielding varieties, mitigate 

risk and enhancing resilience.  

 

 

Figure 3: (Top): Relationship between measured Vcmax in sorghum 

breeding plots and Vcmax predicted by coupling the SCOPE model and 

hyperspectral imagery using two modelling strategies: A) a CNN model 

for estimating Vcmax; and B) a CNN model for estimating Vcmax + 

adding modeled fluorescence emission. (Bottom): boxplots of 

chlorophyll content (A; in µg/cm2) and Vcmax (B; in µmol m-2s-1) 

predicted coupling the SCOPE, modelled SIF, and hyperspectral 

imagery in sorghum breeding plots.  
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