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A B S T R A C T   

Dothistroma needle blight, caused by the fungi Dothistroma septosporum and D. pini is globally one of the most 
damaging diseases of pine species. Infection from the pathogen, which is initiated in the lower crown, causes 
needle chlorosis, loss of cellular integrity, necrosis and premature needle loss with this developmental sequence 
impacting key plant functional traits such as chlorophyll content and leaf area index. This study uses data 
collected from four year old field grown radiata pine (Pinus radiata D. Don) exhibiting a wide range in disease 
severity (0 – 58%). Hyperspectral data collected from a UAV was used to determine how plant functional traits 
inverted from a 3D radiative transfer model (PRO4SAIL), can be used by random forests to improve predictions of 
disease severity, relative to a model with only narrowband hyperspectral indices. Model precision was assessed 
on a test dataset that was not used for model fitting and this cross validation process was repeated 50 times to 
ensure reported results were robust, with the mean precision reported from these repeats. 

The model of disease severity using narrow band hyperspectral indices was moderately precise (R2 = 0.52). 
Addition of the inverted plant functional traits markedly improved model precision and this final model strongly 
predicted disease severity with R2 of 0.85. Analyses of variable importance in the final model showed significant 
interchange in variable importance as the disease progressed. Early stages of the disease were most readily 
distinguished from asymptomatic trees (severity = 0%) using variables that predominantly describe changes in 
photosynthesis (Photochemical Reflectance Index), chlorophyll degradation (Normalized Phaeophytinization 
Index) and chlorophyll content. In contrast, the more severe impacts of the disease were most well characterised 
by traits associated with an extreme reduction in transpiration (carotenoid content) and loss of foliage.   

1. Introduction 

Dothistroma needle blight (DNB), also known as red band needle 
blight, is globally one of the most damaging foliage diseases of planta-
tions and natural stands of pine (Bradshaw, 2004). Although the causal 
agents have undergone a number of taxonomic revisions the most recent 
phylogenetic understanding of causation is two divergent lineages of 
fungi, Dothistroma septosporum (Dorog.) M. Morelet and D. pini Hulbary 
(Barnes et al., 2004). These fungi have been shown to infect 109 

Pinaceae host taxa within six genera (Abies, Cedrus, Larix, Picea, Pinus, 
Psuedotsuga) of which the majority are Pinus spp. accounting for 95 of 
the host taxa (Drenkhan et al., 2016). The disease has a very cosmo-
politan distribution and occurs in 76 countries with climates ranging 
from sub-arctic to tropical (Drenkhan et al., 2016; Watt et al., 2009). 
Although DNB is widespread the disease is most strongly expressed 
during warm conditions with high humidity and rainfall (Bulman et al., 
2013b; Fabre et al., 2012; Murray and Batko, 1962; Peterson, 1973; 
Rodas et al., 2016; Woods et al., 2005) and recent outbreaks over the last 
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two decades in northern Europe and west Canada are thought to result 
from warmer, wetter conditions (Welsh et al., 2014; Woods et al., 2016). 

The developmental stages and symptoms of the disease have been 
well characterised. Rain-splashed conidia most commonly infect needles 
through the stomata (Gibson, 1972) which leads to development of 
yellow spots, that later encircle the needle and widen to a necrotic band 
which often leads to tip death (Bradshaw, 2004; Gadgil, 1967; Shain and 
Franich, 1981). Red bands develop within the necrotic lesions as a result 
of the accumulation of the toxin dothistromin (Bassett and Buchanan, 
1970; Shain and Franich, 1981). Desiccation of tissue that is distal to the 
lesion then occurs and the needle progressively changes colour from pale 

green to brown or tan (Franich et al., 1986). The sequence of symptoms 
that usually occurs includes initial chlorosis, production of red and 
brown metabolites, loss of cellular integrity, cellular necrosis and pre-
mature needle loss (Edwards and Walker, 1978), which is accompanied 
by a reduction in growth and in severe cases tree mortality (Brown and 
Clayden, 2012; Brown and Webber, 2008). Infection is initiated in the 
lower crown within older foliage and spreads upwards (Macdonald, 
2011). 

The development of methods that can characterise disease severity 
for individual trees would be very useful for characterising the disease 
within genetic trials, where clones are often randomly distributed. At the 

Fig. 1. The displayed panels show (a) the location of the study site, (b) high resolution RGB orthophotograph of the study area (taken prior to the hyperspectral 
capture on the 13th November) showing the 13 plots that were sampled for this study, (c) an enlargement of plot 48 showing individual tree numbers and the masks 
that were applied to the hyperspectral data (transparent blue and red shapes). The selected trees in this plot have blue masks. Canopy reflectance for the circled trees 
is shown in (d) for trees 22 (purple line), 40 (orange line) and 46 (yellow line). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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tree level Dothistroma spp. can be identified using DNA techniques 
(Barnes et al., 2004; Barnes et al., 2016), real-time PCR (Ioos et al., 
2010) and from morphology characteristics (Barnes et al., 2004) while 
the disease itself can be identified from visual observation based on the 
distinctive symptoms (Bulman et al., 2004). However, all these methods 
are time consuming. Plant health and the response of plants to envi-
ronmental and biotic stressors is closely linked to plant functional traits 
(PT) such as biochemical composition, chlorophyll fluorescence, dry 
matter and water content, crown temperature and vegetation structure 
(Gonzalez-Dugo et al., 2014; Hernández-Clemente et al., 2019; 
Hernández-Clemente et al., 2011; Iordache et al., 2020; Mohammed 
et al., 2019; Sapes et al., 2021; Sims and Gamon, 2002; Zarco-Tejada 
et al., 2018; Zarco-Tejada et al., 2012). Fine scale hyperspectral and 
thermal imagery obtained from a UAV can be used to characterise many 
of these traits at the tree level and a recent review describes strategies to 
quantify PTs in natural forestry canopies (Hernández-Clemente et al., 
2019). 

The use of hyperspectral imagery to detect disease within forests and 
tree crops is complex as canopy heterogeneity has a strong impact on the 
effects caused by soil background, shadows and understory, which af-
fects the spectral signature of pure crowns (Hernández-Clemente et al., 
2019; Liu et al., 2020; Pisek et al., 2015). Despite these challenges, there 
are a number of recent examples of successful disease detection and 
characterisation at scale in the field when hyperspectral imagery is used 
in combination with 3-D radiative transfer models (3D-RTM) and ma-
chine learning data analysis methods. Using this approach, Holm oak 
decline, caused by Phytophthora cinnamomi, was detected with an ac-
curacy of 82% and pre-symptomatic trees were detected up to 2 years 
before visual identification (Hornero et al., 2021). The infection of olive 
trees by Xylella fastidiosa has been accurately detected using PT derived 
from 3D RTM with an accuracy of 80% and key PT in the model 
retrieved from hyperspectral and thermal imagery could reveal symp-
toms before they were visible (Zarco-Tejada et al., 2018). 

A number of studies have used remotely sensed data to detect and 
characterise the severity of DNB. Hyperspectral imagery from a fixed 
wing aircraft (CASI-2) was used to predict three levels of disease severity 
in radiata pine (Pinus radiata D. Don) plantations in Australia with an 
accuracy of over 70% (Coops et al., 2003). A combination of aerially 
acquired LiDAR and hyperspectral imagery was used to predict DNB 
severity on lodgepole pine (Pinus contorta Douglas) within central 
Scotland (Smigaj et al., 2019b). The LiDAR metrics were found to be 
more important than hyperspectral indices. However, the authors noted 
that that spatial resolution of the airborne hyperspectral imagery (2 m) 
was a major limiting factor and recommended further research should 
use UAV acquired hyperspectral imagery to facilitate tree level analysis 
(Smigaj et al., 2019b). In a study undertaken in the same area, six 
thermal captures made over the course of a day from a diseased stand of 
Scots pine (Pinus sylvestris L.), found significant correlations between 
canopy temperature depression (CTD) and DNB severity (Smigaj et al., 
2019a). The relationship between disease severity and CTD was stron-
gest (R2 = 0.41) when imagery was obtained during the time of highest 
solar radiation and maximum photosynthetic activity. In contrast to the 
previous study, the inclusion of structural metrics obtained from LiDAR 
only slightly improved predictions of disease severity (Smigaj et al., 
2019a). 

Although hyperspectral imagery has been used for prediction of DNB 
severity, further research is required to understand how utilisation of PT 
acquired from fine scale data can advance prediction accuracy. Hyper-
spectral imagery can also be used to identify the role of specific plant 
traits in DNB detection and to improve the understanding of the physi-
ological changes experienced by trees infected with Dothistroma spp. 
This study uses high spatial resolution UAV hyperspectral imagery ac-
quired from a field trial of radiata pine with wide variation in DNB 
severity. Using PT extracted from RTM, the objectives were to use ma-
chine learning methods to (i) predict DNB severity using narrow-band 
hyperspectral indices (NBHI) and (ii) compare these predictions to a 

model that combines both functional PT and key NBHI indices and (iii) 
identify the key NBHI and PT associated with different levels of DNB 
severity. 

2. Methods 

2.1. Experimental design and tree selection 

Data was obtained from a four-year old field trial located near 
Rangipo in the central North Island, New Zealand (Fig. 1a). The selected 
site had a grass understorey with very few weeds and the trees had not 
closed canopy at the time of measurement. The site was established with 
12 genotypes, that were selected to cover a range of attributes that 
included disease resistance and water use efficiency. The genotypes 
comprised one hybrid cross (Pinus radiata x attenuata), 10 clones of 
radiata pine, and a standard unselected radiata pine stock (GF19). These 
genotypes were laid out, as single genotype plots, in 144 square plots 
across the site that included 49 trees/plot. At the plot level each geno-
type was subjected to two ripping treatments (no ripping and 300 mm 
deep ripping) and two stand density treatments (planting density of 833 
and 1282 stems ha− 1) and these randomly allocated plots were repli-
cated across the sites in three blocks. Thus, the 144 plots comprised 12 
genotypes x four treatments x three blocks. 

We selected 13 plots of radiata pine within the trial that covered a 
range in foliage nutrition and DNB severity (Fig. 1b). These 13 plots 
included 6 clones and one plot that was established with GF 19 stock. 
Nutrition measurements from a previous sampling of the entire trial in 
February 2020, that pooled samples at the plot level, were used to 
identify plots covering the range in foliage N and P content. Preliminary 
measurements of disease severity undertaken during mid-late October 
2020 were used to identify plots and trees that expressed a range in DNB 
severity. Within the 13 plots, 126 trees were selected to cover a range in 
DNB severity and all the measurements described below were taken 
from these trees. 

2.2. Dothistroma needle blight severity 

Recent research, that utilised national survey data, shows peak dis-
ease severity for DNB within New Zealand to be reached in December 
(Watt et al., 2021). Consequently, we scheduled our data collection as 
close to this month as possible. Measurements of DNB severity that were 
used in this study were assessed on November 13 and December 2nd 

2020. 
Following the method described and illustrated within Smigaj et al. 

(2019a), severity was determined from the following equation: 

Sev = 100
Hinf − Hbase

Htop − Hbase
(1)  

where Hinf, Hbase and Htop are, respectively, the maximum height of the 
infection, base of the crown and top of the tree. The disease progresses in 
a uniform way from the ground towards the crown and the height of 
infection was taken as the uppermost height of the diseased needles on 
the tree. The base of the crown was defined as the base height of the 
lowest branch with needles. As these were young trees with relatively 
high needle retention the crown base was close to ground level for 
almost all trees and averaged 43 cm. These heights were measured by a 
single observer using a height pole for trees < 6 m and a Vertex 4 
hypsometer (Haglof, Langsele, Sweden) for trees ≥ 6m. It is worth 
noting that the method we used differs slightly from previous method-
ologies such as those described in Bulman et al. (2004) and Kershaw 
et al. (1982). 
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2.3. Hyperspectral imagery 

2.3.1. Data acquisition 
Hyperspectral imagery was captured from the trial on the 17th 

December 2020 using a Resonon Pika XC2 hyperspectral imager 
(Resonon Inc., Bozeman, MT, USA) that was mounted to a DJI Matrice 
600 (M600) Pro UAV (DJI Ltd., Shenzen, China). Data collection was 
scheduled for December, as sun angles are high and disease severity 
reaches a peak during this month (Watt et al., 2021). The Pika XC2 is a 
push-broom sensor that captures 447 bands with wavelengths ranging 
from 400-1000 nm with a spectral full width at half maximum (FWHM) 
of 1.9 nm and a spectral bandwidth of 1.3 nm. 

The flight planning used UgCS software (SPH Engineering, Riga, 
Latvia) to optimise the acquisition. Data was acquired between the hours 
of 11am and 12pm under completely clear sky conditions to minimise 
the effects of shadow. The camera was set to a frame rate of 145 fps to 
ensure that square pixels were captured. Data was captured from an 
altitude of 70 m at a speed of 3.5 m s− 1 and consistent with previous 
research we used a line spacing of 25 m, which resulted in a 35% overlap 
(Angel et al., 2019; Sankey et al., 2017). The resulting imagery had a 
GSD of 5 cm/pxl. 

A network of five ground control points (GCPs) was established 
across the area of interest, prior to data capture, to ensure the accurate 
geolocation of the imagery. Each GCP comprised a ~1 m square plastic 
target with high contrast black and white quarters. The GCPs were 
surveyed using a Trimble Geo7X handheld GPS unit (Trimble Inc., 
Sunnyvale, CA, USA) with a Trimble Zephyr Model 2 external aerial and 
each point was averaged for approximately 5 minutes to achieve 300 
point fixes. The resulting RMSE per point ranged from 0.05–0.15 m. 

A single 3 by 3 m grey calibration tarp (Type 822) with a reflectivity 
level of 24% (Group 8 Technology, Provo, Utah, USA) was laid out 
within the area of interest and later used in the data processing pipeline 
for spectral calibration. The Resonon Pika XC2 system also comprises a 
Flame-S VIS-NIR 350-1000 nm downwelling irradiance sensor (Ocean 
Optics Inc., Dunedin, FL, USA), which was mounted to the top of the 
UAV. Data from this sensor was used for measuring the irradiance and 
subsequent calculation of hyperspectral reflectance. 

2.3.2. Data processing 
The Spectronon Pro version 3.1.1 software (Resonon Inc., Bozeman, 

MT, USA) was used to process the hyperspectral data. To derive surface 
reflectance, the raw hyperspectral data cubes were converted to radi-
ance using radiometric calibration coefficients derived in the laboratory. 
The radiance-converted data cubes were then geo-rectified within the 
same software package utilising terrain data derived from a LiDAR 
Digital Elevation Model (DEM) that was collected over the site for a 
previous project (Hartley et al., 2020). This process involved calibrating 
the angular offset of roll, pitch and yaw from the imager to correct visual 
distortions in the imagery and produce calibrated and geolocated data 
cubes. To extract reflectance data, the radiance data were converted to 
reflectance using the mean reflectance of the calibration tarp within the 
image and the dark noise of the sensor. 

Regions of interest (ROIs) were manually drawn for each crown 
(Fig. 1c), and mean reflectance spectra for the crowns were extracted 
from the hyperspectral images (Fig. 1d). 

2.4. Modelling methods 

Reflectance was utilised for the calculation of narrowband hyper-
spectral indices (NBHI) and to retrieve leaf and canopy attributes via 
inversion of a Radiative Transfer Model (RTM). 

2.4.1. Calculation of narrowband hyperspectral indices 
Following Zarco-Tejada et al. (2018), NBHI that were related to 

structural traits, chlorophyll fluorescence, disease and concentration of 
plant pigments such as chlorophyll a+b, carotenoids, anthocyanins, and 

xanthophylls were calculated. These indices were determined from 
spectral bands in the VNIR spectral region and equations for these 
indices are given in Appendix 1. 

2.4.2. Retrieval of plant traits using machine learning to invert parameters 
from Radiative Transfer Models (RTM) 

The inversion of RTM involves the identification of the simulated 
reflectance that best matches with the measured reflectance in order to 
identify the optimal set of estimated parameters. The PRO4SAIL radia-
tive transfer model, which combines the leaf radiative transfer model 
PROSPECT-D (Féret et al., 2017), with the canopy radiative transfer 
model 4SAIL (Verhoef et al., 2007) was used to model leaf biochemical 
components and canopy structural features from vegetation pixels, as 
has been undertaken previously (Poblete et al., 2021; Zarco-Tejada 
et al., 2018; Zarco-Tejada et al., 2021). This model was used to simulate 
the concentration of leaf pigments such as chlorophyll a+b (Ca+b), an-
thocyanins (Anth.) and carotenoids (Cx+c), and structural features such 
as the leaf inclination distribution function (LIDFa) and the leaf area 
index (LAI). 

A look-up table of 200,000 simulations was built in forward mode by 
running the PRO4SAIL model using as inputs the parameters and their 
ranges shown in Table 1, which were varied randomly using continuous 
uniform distributions. The ranges used in Table 1 were based on pre-
viously published values for radiata pine and other tree species (Verrelst 
et al., 2010; Watt et al., 2020a; Zarco-Tejada et al., 2019). Although the 
initial range for anthocyanins was set wider than that typically used, the 
maximum inverted value of 3.65 µg/cm2 was consistent with previous 
studies focussed on disease detection (Hornero et al., 2021; Zarco-Te-
jada et al., 2021). The remaining settings were set to their default values. 
Data resampling was undertaken to match the spectral resolution of the 
hyperspectral sensor utilised in this research since simulated reflectance 
from PRO4SAIL spans the 400-2500-nm spectral region with an FWHM 
of 1 nm. This spectral resampling was performed using a Gaussian 
response function. 

The plant attributes resulting from model simulations were inverted 
using support vector machine (SVM) techniques. SVM models are non- 
parametric models that are based on statistical learning theory (Vap-
nik, 1999). These models have been widely used in remote sensing 
studies (Mantero et al., 2005) and are trained to locate the hyperplane 
that maximises the margin between classes while minimising misclas-
sification error. When used for regression Support Vector Regression 
(SVR) algorithms aim to discover the function with the greatest variance 
between the observed responses for all instances of observation. SVR 
models were trained in parallel with MATLAB (MATLAB; Statistics and 
Machine Learning toolbox, parallel computing toolbox, and Deep 
Learning toolbox; Mathworks Inc., Natick, MA, USA) and used as inputs 
the resampled reflectance and outputted the biochemical and structural 
traits described above. The SVR algorithms were trained using a radial 
basis function as the kernel and the remainder of the hyperparameters 
were optimised during training. Although we did not validate the 

Table 1 
Ranges of parameters used to perform simulations with the PRO4SAIL radiative 
transfer model.  

Parameter Abbreviation Units Range 

Chlorophyll content Ca+b [μg/cm2] [4,70] 
Carotenoid content Cx+c [μg/cm2] [1,15] 
Anthocyanin content Anth. [μg/cm2] [1,12] 
Dry matter content Cm [g/cm2] [0.005,0.04] 
Water content Cw [g/cm2] [0.004,0.08] 
Mesophyll struct. coeff. N - [1.2,1.6] 
Leaf area index LAI [m2/m2] [1,7] 
Average leaf angle LIDFa [deg.] [1,90] 
Hot spot parameter hot - 0.01 
Observer angle tto [deg.] 0 
Sun zenith angle tts [deg.] [45] 
Relative azimuth angle psi [deg.] 0  
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predictions from the model inversion this method is widely accepted and 
has been used in many recently published papers to detect diseases and 
abiotic stresses (Longmire et al., 2022; Poblete et al., 2020; Poblete 
et al., 2021; Zarco-Tejada et al., 2018; Zarco-Tejada et al., 2021) 

2.4.3. Disease severity prediction using random forest algorithms 
Several studies have focused on the detection of the disease inci-

dence by using classification algorithms to detect asymptomatic vs. 
symptomatic trees (Hornero et al., 2021; Poblete et al., 2020; Poblete 
et al., 2021; Zarco-Tejada et al., 2018; Zarco-Tejada et al., 2021). As the 
severity of DNB was quantified in this study as a continuous variable, 
based on the methodology proposed by Smigaj et al. (2019a), machine 
learning algorithms for regression were trained to predict the severity 
percentage. Random forest (RF) algorithms for regression were trained 
in parallel using MATLAB (MATLAB; Statistics and Machine Learning 
toolbox, parallel computing toolbox, and Deep Learning toolbox; 
Mathworks Inc., Natick, MA, USA). 

Disease severity was predicted by training two different models using 
as inputs i) a subset of non-collinear indices obtained from the full set of 
NBHI, and ii) the five plant traits retrieved from the inversion of RTM 
that were supplemented with non-collinear NBHI indices selected 
through a recursive feature elimination strategy. In i) the subset of 
indices was extracted by a dimensionality reduction applied over the 
NBHI pool. This reduction was undertaken using variance inflation 
factor (VIF) analysis (James et al., 2013), where indices with a VIF > 5 
(Akinwande et al., 2015) were excluded from the dataset. Within ii) the 
set of biochemical (Ca+b, Anth., Cx+c) and structural plant traits (LAI and 
LIDFa) were supplemented with a smaller variable subset derived from 
i). Using a recursive feature elimination strategy, the indices that did not 
contribute to the prediction precision, as assessed by the coefficient of 
determination (R2) and the root mean square error (RMSE), were 
omitted from the models and the retained indices were included for the 
severity prediction. 

Determination of fit and precision for both models was undertaken 
through randomly splitting the 126 observations into a training dataset 
that comprised 80% of observations while the remaining 20% of the 
observations were reserved for model testing. This process was repeated 
50 times using a different training: test split to ensure the reported 

results were robust. During each iteration the hyperparameters were 
optimised using Bayesian optimization (Statistics and Machine Learning 
toolbox; MathWorks Inc., Natick, MA, USA). The reported results for 
both models were a representative prediction that had the mean preci-
sion obtained from the 50 model runs. 

2.4.4. Contribution of plant traits within prediction models 
The contribution of plant traits to prediction of DNB severity was 

performed at two levels. First, the importance of each trait was evalu-
ated when predicting severity as a continuous variable in order to 
determine the relative importance of plant traits across the range of 
infection levels, including asymptomatic infection (i.e. severity = 0). 
This analysis was performed by training random forest (RF) algorithms 
for regression and the importance of each predictor was quantified using 
the permutation of the out-of-bag method (OOB) (Thomas et al., 2021). 

In the second analysis, plant trait importance was determined on 
three severity categories to examine if there was interchange in variable 
importance as severity increased. The three severity levels that were 
used for this analysis follow a previous categorisation (Bulman et al., 
2016) where trees with disease DNB severities of 1–10, 10–25 and >25% 
were classed as being of minor, low, and medium/major severity 
(hereafter termed major severity), respectively. Classification was un-
dertaken using RF algorithms that were trained by classifying asymp-
tomatic (disease severity=0) vs. infected trees at the three different 
severity levels. During each classification training stage, the disease 
severity was progressively increased by cumulatively adding trees with 
minor, low and then major severity to the analysis with the three classes 
including minor severity (1–10%); minor and low severity (1–25%); 
minor, low, and major severity (1–58%). The importance of the plant 
trait to the classification processes was assessed using the OOB meth-
odology. All the RF algorithms were trained in parallel and the hyper-
parameters were optimized using a Bayesian optimization method in 
MATLAB (Statistics and Machine Learning toolbox; MathWorks Inc., 
Natick, MA, USA). 

The functional form between DNB severity and important predictor 
variables (NBHI and PT) was explored through the use of boxplots and 
analysis of variance (ANOVA). The ANOVA was undertaken on each of 
these traits using four severity classes, that included trees that were 

Fig. 2. Biochemical and structural parameters obtained by Support Vector Regression (SVR) algorithms trained using reflectance from PROSAIL simulations as 
inputs: (a) chlorophyll content, (b) carotenoid content, (c) anthocyanin content, (d) leaf area index, and (e) average leaf angle. 
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asymptomatic (0%), or symptomatic with minor severity (1–10%), low 
severity (10–25%) and major severity (25 – 58%). The analysis included 
all seven NBHI identified in step (i) and the five PT used in step (ii). For 
variables that exhibited significant differences between severity classes 
Dunnett’s test was used to identify which of the three symptomatic 
classes were significantly different (at α < 0.05) from the asymptomatic 
trees. 

3. Results 

3.1. Range in pigments and structural parameters 

The concentrations of pigments and structural parameters were 
retrieved using SVR models that were trained using the simulated 
reflectance obtained from PRO4SAIL simulations (Fig. 2). The distri-
bution of chlorophyll and carotenoid contents were slightly left skewed 
while the anthocyanin content was slightly right skewed and more 
uniform than the other two pigments. Mean values for chlorophyll, 
carotenoid and anthocyanin contents were, respectively, 40.5, 10.7, and 
1.82 µg/cm2. The distribution of leaf area index was left skewed with a 
mean value of 3.76 m2/m2 and most values ranged between 3.5 – 4.0 
m2/m2. In contrast, the average leaf angle was right skewed with a mean 
value of 44.5 degrees. 

3.2. Model predictions of disease severity 

The model with NBHI was moderately precise and had an R2 of 0.52 
with RMSE of 9.41% (Fig. 3a). The NBHI included in this model were 
TVI, NPQI, PRIn, LIC3, B, BF1 and CUR. Across the four severity cate-
gories there was significant variation between the major and the 
asymptomatic category for PRIn, LIC3 and B (Fig. 4). There were sig-
nificant differences between asymptomatic and the higher two severity 
classes for NPQI. No significant differences between asymptomatic trees 
and the three severity classes were noted for BF1, TVI and CUR (Fig. 4). 

Addition of the inverted variables to a subset of these seven NBHI 
markedly improved model precision and this final model strongly pre-
dicted disease severity with R2 of 0.85 and RMSE of 4.5% (Fig. 3b). The 
five PT in this final model (Ca+b, Anth., Cx+c, LAI and LIDFa) were 
supplemented with four NBHI that included NPQI, PRIn, LIC3 and B. For 
the inverted variables, Ca+b in trees within the two highest severity 
categories significantly differed from the asymptomatic trees (Fig. 4). 
Values of Cx+c for trees in the highest severity category significantly 
differed from the asymptomatic trees. The Cx+c/Ca+b ratio increased 
from 0.249 for the asymptomatic trees to 0.273 and 0.270, respectively, 
for the two highest severity categories. No significant differences be-
tween asymptomatic trees and symptomatic trees were noted for Anth., 
LAI or LIDFa (Fig. 4). 

3.3. Variable importance of the final model 

Analysis of variable importance for the final model that was based on 
continuous severity values is shown in Fig. 5a. Carotenoid content was 
the most important variable, followed by PRIn, B, LAI and then Ca+b. The 
two least important variables within this model were Anth. and NPQI. 

The second analysis investigated variable importance for three 
models that classified symptomatic and asymptomatic trees (i.e. 
severity = 0). This analysis clearly showed significant interchange in 
variable importance for the model that included trees with minor 
severity and the model that included all three categories (minor, low, 
and major severity). This interchange in variable importance with 
increasing disease severity was most pronounced for NPQI, LAI, Cx+c, 
and LIC3 (Fig. 5b). 

For the model that included the contrast of minor severity vs. 
asymptomatic trees, the variables that were the most important 
included, NPQI, PRIn, Ca+b and LIC3, with B and Cx+c being the least 
important (Fig. 5b). In contrast, for the model that included all cate-
gories, the most important variables were LAI, followed by PRIn, Cx+c, 
and LIDFa, with LIC3 and NPQI the least important. Importance values of 
most variables for the intermediate model, that included minor and low 
severity trees, were between the values for models that included minor 
severity or all three categories of symptomatic trees (Fig. 5b). 

4. Discussion 

The observed DNB severity levels within our study covered a very 
wide range. Average disease severity within the dataset was 17.6% and 
ranged from 0 to 57.9%. The impacts of DNB have been classed, based 
on the percentage of affected foliage, as ranging from minor (0 – 10%) to 
major (51 – 75%) with our data covering this entire range. Among the 26 
countries with reports, most have minor and low severity with only New 
Zealand and Britain reporting major levels of DNB severity (Bulman 
et al., 2016). The upper values of severity reported here were also 
similar to maximum values observed within New Zealand from national 
monitoring undertaken from 1973 – 2010 in radiata pine plantations 
(Watt et al., 2011; Watt et al., 2021). 

A large part of the reported range in our data was attributable to 
variation in DNB severity between genotypes in different plots, with plot 
level averages ranging from 2.8 – 39.3%. Percentage reductions in 
annual volume growth for radiata pine trees that are infected with DNB 
over a three year period has been shown to be similar to the DNB 
severity percentage (van der Pas, 1981). Assuming that our trees are 
infected at a similar rate over three years this equates to average and 
maximum annual volume growth reductions of, respectively, ca. 18% 
and 58%. These impacts highlight the damaging nature of DNB and the 
need for a reliable method of characterising severity. 

Fig. 3. Prediction of tree level dothistroma needle blight severity made on the test dataset using random forest models. Shown is measured dothistroma severity 
against model predictions that use (a) non-collinear indices obtained from the set of Narrowband Hyperspectral Indices (NBHI), and (b) plant traits obtained by 
inversions of PRO4SAIL simulations and non-collinear NBHI selected by the recursive feature elimination method. 
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The methodology developed here provided a robust means of pre-
dicting DNB and extends previous research through use of PT extracted 
from radiative transfer modelling. The high importance of chlorophyll 
and carotenoid contents that was shown in the sensitivity analysis is 
consistent with fundamental leaf-level physiological processes. Consis-
tent with the disease induced decline in chlorophyll observed here, the 
infection of radiata pine with Dothistroma spp. has been previously 
shown to markedly reduce chlorophyll concentration within all ele-
ments of infected foliage and it is thought that the toxin dothistromin 
may target chloroplasts and/or chlorophyll (Kabir et al., 2015). Within a 
wide range of tree species the carotenoid: chlorophyll ratio has been 

found to increase in response to a variety of environmental stresses 
(Baquedano and Castillo, 2007; Ensminger et al., 2004; Gamon et al., 
2016) and this ratio provides an indicator of reduced photosynthetic 
activity (Gamon et al., 2016; Stylinski et al., 2002). Consistent with this 
research we found an increase in the carotenoid: chlorophyll ratio with 
increasing disease severity as reductions in carotenoid content were less 
sensitive and proportionally lower than those of chlorophyll content. 

Leaf area index is strongly affected by DNB, particularly during more 
advanced stages during which time there is premature needle loss and 
significant defoliation (Bradshaw, 2004; Stone et al., 2003). In contrast 
to other needle diseases, dead needles that are infected by DNB are held 

Fig. 4. Boxplots for plant traits obtained from the Radiative Transfer Model inversions and a subset of sensitive NBHI indices used for the prediction of DNB severity. 
Black lines inside the boxes represent medians, and the top and bottom line in each box represent the 75th and 25th quartiles, respectively. Whiskers represent ±1.5 
× the interquartile range and black crosses represent outliers. Red asterisks denote severity classes with significant differences from the asymptomatic trees according 
to Dunnett’s test at α < 0.05. The disease severity for trees associated with the displayed four classes were 0% for asymptomatic, 1–10% for minor severity, 10–25% 
for low severity and 25 – 58% for major severity. Full names for acronyms are as follows: PRIn, Photochemical Reflectance Index; NPQI, Normalized Phaeophyti-
nization Index; LIC3, Lichtenthaler Index; B, blue index; TVI, Triangular Vegetation Index; CUR, Reflectance Curvature Index. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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onto the tree for some time before dropping (Bulman et al., 2013a). This 
previous finding is consistent with our field observations that show 
needle loss was not a strong visual feature of the trees, at the time of 
measurement, and the tree crowns with needles, in almost all cases, 
reached the lowest branch. Consistent with these observations, values of 
LAI predicted from the model inversions did not significantly differ 
between asymptomatic trees and the three symptomatic severity classes 
and these inverted values were within normal ranges of measured LAI 
for radiata pine (Pearse et al., 2017). The importance of LAI in the RF 
model increased as trees with higher severity were added to the model 
(Fig. 5b) which does suggest that as the disease severity increases, re-
ductions in LAI will become a stronger feature of the symptoms. 

The four NBHI included in the final model have been widely used in 
detection of disease and plant stress and significantly differed between 
DNB severity levels providing confidence in the robustness of the pre-
dictive model. Photochemical reflectance index (PRI) was an important 
NBHI predictor across all stages of disease severity and has been pre-
viously identified as the most important NBHI for detection of DNB 
(Smigaj et al., 2019b). Many studies show that PRI is an indicator of 
pre-visual stress (Nichol et al., 2006; Peguero-Pina et al., 2008; Zar-
co-Tejada et al., 2009) and an effective proxy for photosynthetic traits 
(Hernández-Clemente et al., 2019). The changes in PRI that occurred 
with increasing disease levels are likely to reflect reductions in assimi-
lation and stomatal conductance and these linkages have been previ-
ously reported in diseased trees (Calderón et al., 2013; López-López 
et al., 2016) and more generally in stressed trees (Scholten et al., 2019; 
Watt et al., 2020b). Both NPQI and the blue index (B) are indices derived 
from the blue region of the spectrum and NPQI has been proposed to 
predict the impacts of pests and diseases on a variety of plants (Penuelas 
et al., 1995b; Zarco-Tejada et al., 2018; Zarco-Tejada et al., 2021) as this 
index accounts for the degradation of chlorophyll under stress (Barnes 
et al., 1992; Penuelas et al., 1995b). The observed reductions in the 
Lichtenthaler index with increasing disease severity characterise the 
extent of the leftwards shift in the red edge that occurs as stress increases 
and chlorophyll content diminishes (Lichtenthaler, 1996; Lichtenthaler 
et al., 1996). 

There was significant interchange in variable importance as the 
severity of DNB increased with structural variables assuming greater 
importance in more severely diseased trees. Analyses clearly showed 
that early stages were most readily distinguished from asymptomatic 
trees using NPQI, PRIn, Ca+b and LIC3 which predominantly describe 
changes in key photosynthetic traits such as xanthophylls (PRIn), chlo-
rophyll degradation (NPQI) and chlorophyll content (Ca+b, LIC3). The 
more severe impacts of DNB were characterised most well by traits 
associated with an extreme reduction in transpiration (Cx+c) and loss of 
foliage (LAI) that occurs when DNB reaches an advanced stage. This 
progression in trait importance is generally consistent with previous 

research for other diseases that demonstrates the importance of NPQI as 
an early indicator of disease (Zarco-Tejada et al., 2018) while structural 
indices such as LAI have been found to be important for predicting 
moderate to advanced disease damage (Hornero et al., 2021). 

Accurate prediction of disease severity is often more difficult to 
achieve than two class discrimination of healthy and damaged foliage 
(Hornero et al., 2021) and few studies have demonstrated the accuracy 
reported in this study. Using a combination of PT and NBHI allowed 
prediction of disease severity with very high precision on an indepen-
dent dataset (R2 = 0.85; RMSE = 4.5 %) that exceeds the accuracy of 
previous models describing DNB severity. In a comparable study, indices 
derived from airborne hyperspectral imagery were used to predict three 
classes of DNB severity in radiata pine with an accuracy of ca. 70% 
(Coops et al., 2003). Predictions of DNB severity in lodgepole pine that 
were made using UAV thermal imagery had an RMSE of 11% (Smigaj 
et al., 2019a). Our results were also more accurate than predictions of 
tree stress symptoms resulting from other pests or diseases that were 
characterised using high resolution spectral imagery acquired from 
either airborne or UAV platforms (Leckie et al., 2004; Lehmann et al., 
2015; Näsi et al., 2015; Pietrzykowski et al., 2007; Yu et al., 2021). The 
accurate predictions made within this study may be partially attribut-
able to the high spatial resolution of the imagery and the clear crown 
delineation that was possible in young trees with discontinuous canopies 
which contrasts previous studies undertaken in closed canopy stands (e. 
g. Coops et al., 2003). However, as shown in the results, a large pro-
portion of these gains resulted from use of radiative transfer modelling 
and PT estimation by inversion methods, rather than more conventional 
indices that do not fully account for the influence of canopy heteroge-
neity on spectra and that are calculated from a limited number of 
spectral bands. 

Thermal data was not collected in this study and further research 
should investigate if the fusion of thermal and spectral data improves the 
predictive precision of the developed model. Normalised canopy tem-
perature (Tc – Ta) and derived indices (Maes and Steppe, 2012) have 
been extensively utilised to characterise spatial variation in stomatal 
conductance (gs) and drought stress in orchard crops (Agam et al., 2014; 
Andrews et al., 1992; Ben-Gal et al., 2009; García-Tejero et al., 2011; 
Gonzalez-Dugo et al., 2012; Sepulcre-Cantó et al., 2006; Virlet et al., 
2014; Wang and Gartung, 2010; Zarco-Tejada et al., 2012) and to a 
lesser extent forests (Buddenbaum et al., 2015; Ludovisi et al., 2017; 
Scherrer et al., 2011; Seidel et al., 2016). Thermal data has also been 
successfully used to characterise disease in mainly agricultural and or-
chard crops (Calderón et al., 2013; Calderón et al., 2015; López-López 
et al., 2016; Mengistu et al., 1987; Nilsson, 1995; Nilsson, 1991; Zar-
co-Tejada et al., 2018) with fewer studies on forest species (Hornero 
et al., 2021). A study on olive trees showed the increases in canopy 
temperature that were associated with increased disease severity were 

Fig. 5. Variable importance for models that (a) 
predicted DNB severity as a continuous variable 
and (b) predicted DNB severity using classifi-
cation models that categorised the diseased 
trees against those that were asymptomatic (i.e. 
severity = 0). Three classes were used that 
included minor severity (1–10%); minor and 
low severity (1–25%); minor, low, and major 
severity (1–58%). Full names for acronyms 
given in the figure are as follows: NPQI, 
Normalized Phaeophytinization Index; PRIn, 
Photochemical Reflectance Index; Ca+b, total 
chlorophyll content; LAI, leaf area index; LIC3, 
Lichtenthaler Index; Anth, anthocyanin con-
tent; LIDFa, average leaf angle; Cx+c, carotenoid 
content; B, blue index. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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Table A1 
Narrow-band hyperspectral indices (NBHI) that were used in analyses  

Hyperspectral indices Equation Reference 

Structural indices   
Normalized Difference Veg. Index NDVI = (R800 − R670)/(R800 + R670) Rouse et al. (1974) 
Renormalized Difference Veg. Index RDVI = (R800 − R670)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(R800 + R670)

√

Roujean and Breon (1995) 
Optimized Soil-Adjusted Veg. Index OSAVI = ((1 + 0.16)⋅(R800 − R670) /(R800 + R670 + 0.16))

Rondeaux et al. (1996) 
Modified Soil-Adjusted Vegetation Index 

MSAVI =
2⋅R800 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2⋅R800 + 1)2
− 8(R800 − R670)

√

2 
Qi et al. (1994) 

Triangular Vegetation Index TVI = 0.5[120(R750 − R550) − 200(R670 − R550)] Broge and Leblanc (2001) 
Modified Triangular Veg. Index 1 MTVI1 = 1.2[1.2(R800 − R550) − 2.5(R670 − R550)] Haboudane et al. (2004) 
Modified Triangular Veg. Index 2 

MTVI2 =
1.5[1.2(R800 − R550) − 2.5(R670 − R550)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2
− (6R800 − 5

̅̅̅̅̅̅̅̅̅̅
R670

√
) − 0.5

√ Haboudane et al. (2004) 

Modified Chlorophyll Abs. Index MCARI = [(R700 − R670) − 0.2(R700 − R550)]⋅(R700 /R670) Haboudane et al. (2004) 
Modified Chlorophyll Abs. Index 1 MCARI1 = 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] Haboudane et al. (2004) 
Modified Chlorophyll Abs. Index 2 

MCARI2 =
1.5[2.5(R800 − R670) − 1.3(R800 − R550)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2
− (6R800 − 5

̅̅̅̅̅̅̅̅̅̅
R670

√
) − 0.5

√ Haboudane et al. (2004) 

Simple Ratio SR = R800/R670 Jordan (1969) 
Modified Simple Ratio 

MSR =
R800/R670 − 1

(R800/R670)
0.5

+ 1 
Chen (1996) 

Enhanced Vegetation Index EVI = 2.5⋅(R800 − R670)/(R800 + 6⋅R670 − 7.5⋅R800 + 1)
Liu and Huete (1995) 

Pigment indices   
Vogelmann indices VOG1 = R740/R720 Vogelmann (1993)  

VOG2 = (R734 − R747)/(R715 + R726) Vogelmann (1993)  
VOG3 = (R734 − R747)/(R715 + R720) Vogelmann (1993) 

Gitelson & Merzlyak indices GM1 = R750/R550 Gitelson and Merzlyak (1996)  
GM2 = R750/R700 Gitelson and Merzlyak (1996) 

Transformed Chlorophyll Absorption in Reflectance Index 
TCARI = 3⋅

[
(R700 − R670) − 0.2⋅(R700 − R550)⋅

(R700

R670

)]

Haboudane et al. (2002) 

TCARI/OSAVI TCARI
OSAVI Haboudane et al. (2002) 

Chlorophyll Index Red Edge CI = R750/R710 Haboudane et al. (2002) 
Simple Ratio Pigment Index SRPI = R430/R680 Penuelas et al. (1995a) Barnes et al. (1992) 
Normalized Phaeophytinization Index NPQI = (R415 − R435)/(R415 + R435) Penuelas et al. (1995a) Barnes et al. (1992) 
Normalized Pigments Index NPCI = (R680 − R430)/(R680 + R430) Penuelas et al. (1995a) 
Carter indices CTRI1 = R695/R420 Carter (1994)  

CAR = R695/R760 Carter et al. (1996) 
Reflectance band ratio indices DCabCxc = R672/(R550⋅3R708) Datt (1998)  

DNIRCabCxc = R860/(R550⋅R708) Datt (1998) 
Structure-Intensive Pigment Index SIPI = (R800 − R445)/(R800 + R680) Penuelas et al. (1995a) 
Carotenoid Reflectance Indices CRI550 = (1 /R510) − (1 /R550) Gitelson et al. (2003, 2006)  

CRI700 = (1 /R510) − (1 /R700) Gitelson et al. (2006)  
CRI550 515 = (1 /R515) − (1 /R550) Gitelson et al. (2006)  
CRI700 515 = (1 /R515) − (1 /R700) Gitelson et al. (2006)  
RNIR⋅CRI550 = ((1 /R510) − (1 /R550))⋅R770 Gitelson et al. (2003, 2006)  
RNIR⋅CRI700 = ((1 /R510) − (1 /R700))⋅R770 Gitelson et al. (2003, 2006) 

Plant Senescing Reflectance Index PSRI = (R680 − R500)/R750 Merzlyak et al. (1999) 
Pigment Specific Simple Ratio Chlorophyll a PSSRa = R800/R675 Blackburn (1998) 
Pigment Spec. Simple Ratio Chl. b PSSRb = R800/R650 Blackburn (1998) 
Pigment Specific Simple Ratio Carot. PSSRc = R800/R500 Blackburn (1998) 
Pigment Specific Normalized Difference PSNDc = (R800 − R470)/(R800 + R470) Blackburn (1998) 

(continued on next page) 
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related to reductions in gs (Calderón et al., 2013) demonstrating re-
ductions in crown transpiration from vascular disease are similar to the 
impacts of water stress. Consistent with these findings, weak to mod-
erate positive correlations have been found between DNB severity in 
Scots pine and both Tc – Ta and the standard deviation (SD) of Tc – Ta 
(Smigaj et al., 2019a). A model including both of these terms was very 
sensitive to the time of data collection, reaching a peak at midday (R2 

range of 0.07 – 0.41). Further research will be required to determine if 
addition of Tc – Ta improves the results presented here, but even without 
this variable, the developed model was able to account for 85% of the 
variation in the data. 

The methodology described here could be useful for characterising 
phenotypic variation in disease severity within genetic trials. Previous 
research shows that variation in susceptibility to Dothistroma spp. exists 
within and between pine species (Bulman et al., 2016), and this trait has 
moderate heritability in radiata pine (Ivković et al., 2010; Kennedy 
et al., 2014). These findings agree with our results that clearly show a 
considerable range in DNB severity between genotypes. The accurate 
characterisation of DNB achieved in this study is very promising and 

suggests that a robust methodology can be developed. Application of 
this method to field trials could be used to alleviate the phenotyping 
bottleneck associated with traditional methods and accelerate the 
breeding process. New Zealand has a large number of field based genetic 
trials that span the entire environmental range of radiata pine. The 
phenotyping of these trials using such methods will facilitate rapid 
identification of DNB resistant genotypes and allow accurate charac-
terisation of Genotype x Environmental interactions (G x E) for this trait. 

5. Conclusions 

The wide range in tree level DNB severity exhibited within the 
measured field trial (0 – 58%) was predicted with moderate precision by 
random forests using NBHI (R2 = 0.52; RMSE = 9.41%). Addition of five 
inverted PT to the set of predictive variables considerably improved 
precision and the final model strongly predicted DNB severity with R2 of 
0.85 and RMSE of 4.5%. Analyses demonstrate interchange in variable 
importance as DNB severity increased. Variables associated with key 
photosynthetic traits, chlorophyll content and degradation were most 

Table A1 (continued ) 

Hyperspectral indices Equation Reference 

Xanthophyll indices   
Photochemical Refl. Index (570) PRI570 = (R570 − R531)/(R570 + R531) Gamon et al. (1992) 
Photochemical Refl. Index (515) PRI515 = (R515 − R531)/(R515 + R531) Hernández-Clemente et al. (2011) 
Photochemical Refl. Index (512) PRIm1 = (R512 − R531)/(R512 + R531) Hernández-Clemente et al. (2011) 
Photochemical Refl. Index (600) PRIm2 = (R600 − R531)/(R600 + R531) Gamon et al. (1992) 
Photochemical Refl. Index (670) PRIm3 = (R670 − R531)/(R670 + R531) Gamon et al. (1992) 
Photochemical Refl. Index (670 and 570) PRIm4 = (R570 − R531 − R670)/(R570 + R531 + R670) Hernández-Clemente et al. (2011) 
Normalized Photoch. Refl. Index PRIn = PRI570/[RDVI⋅(R700 /R670)] Zarco-Tejada et al. (2013) 
Carotenoid/Chlorophyll Ratio Index PRI⋅CI = (R570 − R530)/(R570 + R530)⋅((R760 /R700) − 1))

Garrity et al. (2011) 
R/G/B indices   
Redness Index R = R700/R670 Gitelson et al. (2000) 
Greenness Index G = R570/R670 Calderón et al. (2013) 
Blue Index B = R450/R490 Calderón et al. (2013) 
Blue/green indices BGI1 = R400/R550 Zarco-Tejada et al. (2005)  

BGI2 = R450/R550 Zarco-Tejada et al. (2005) 
Blue/red indices BRI1 = R400/R690 Zarco-Tejada et al. (2012)  

BRI2 = R450/R690 Zarco-Tejada et al. (2012) 
BF1 BF1 = R400/R410 Zarco-Tejada et al. (2018) 
BF2 BF2 = R400/R420 Zarco-Tejada et al. (2018) 
BF3 BF3 = R400/R430 Zarco-Tejada et al. (2018) 
BF4 BF4 = R400/R440 Zarco-Tejada et al. (2018) 
BF5 BF5 = R400/R450 Zarco-Tejada et al. (2018) 
Red/green indices RGI = R690/R550 Zarco-Tejada et al. (2005) 
Ratio Analysis of Reflectance Spectra RARS = R746/R513 Chappelle et al. (1992) 
Lichtenthaler Index LIC1 = (R800 − R680)/(R800 + R680)] Lichtenthaler (1996)  

LIC2 = R440/R690 Lichtenthaler (1996)  
LIC3 = R440/R740 Lichtenthaler (1996) 

Chlorophyll fluorescence   
Reflectance Curvature Index CUR = (R675⋅R690)/R2

683 Zarco-Tejada et al. (2000) 
Plant disease index   
Healthy-index HI =

R534 − R698

R534 + R698
−

1
2

⋅R704 Mahlein et al. (2013)  
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important for distinguishing asymptomatic trees from those with minor 
severity. In contrast variables that described extreme reductions in 
transpiration and foliage loss were most important for characterising 
more advanced stages of DNB. Further research should investigate 
whether variables derived from thermal data can improve model pre-
cision and provide further insight into how radiata pine responds to 
infection from Dothistroma spp. 
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