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ABSTRACT 

 

Integrating far-red solar-induced chlorophyll fluorescence 

(SIF760) and leaf biochemical constituents (primarily leaf 

chlorophyll content (Ca+b)) has recently been demonstrated 

to improve the estimation of leaf nitrogen (N) concentration 

from airborne and spaceborne hyperspectral imagery in 

homogenous and heterogeneous crop canopies. The advent 

of sub-nanometer resolution imagers capable of detecting 

narrow solar Fraunhofer lines (FLs) has enabled a novel 

opportunity to investigate the prospect of leaf N estimation 

using individual FLs in addition to SIF760 and Ca+b traits. 

This study seeks to determine whether incorporating distinct 

FL depth derived from sub-nanometer airborne 

hyperspectral imagery could improve leaf N estimates. A 

sub-nanometer hyperspectral imager with ≤0.2 nm full-

width at half-maximum (FWHM) resolution was flown in 

tandem with a narrow-band hyperspectral imager with 5.8 

nm FWHM over a winter wheat field. Plots were fertilized 

with variable concentrations of nitrogen to enable nutrient 

variability. Regression models utilizing Gaussian process 

regression (GPR) were built with different permutations of 

SIF, Ca+b and depths of individual FLs for estimating leaf N 

concentration. Laboratory-determined leaf N estimates were 

obtained by destructive sampling. Results show that GPR 

models incorporating the depth of distinct Fraunhofer lines 

as predictor variables performed better than the benchmark 

model constructed using Ca+b and SIF760 alone. The best leaf 

N-estimation model built with FLs from the red and far-red 

regions (Ca+b, FL682.97 nm, FL757.002 nm) yielded an R2 of 0.71, 

outperforming the standard approach used in previous works 

(Ca+b, SIF760) (R2 = 0.56).  

 

Index Terms— Airborne, Hyperspectral, SIF, GPR, 

leaf Nitrogen, Fraunhofer lines, sub-nanometer 

 

 

 

1. INTRODUCTION 

 

Nitrogen is a macronutrient that plays a crucial role in plant 

development, yield and grain quality, whilst it is often the 

dominant limiting factor in photosynthesis [1], [2]. Accurate 

field-wide assessments of leaf N concentration (N%) enable 

more targeted use of N-fertilizers, thereby mitigating the 

environmental effects of N-overfertilization while 

improving crop yields. Standard destructive sampling for 

leaf N determination relies on the laboratory analysis of leaf 

tissue using methods such as Kjeldahl digestion and Dumas 

combustion. Although accurate, these techniques are time-

consuming and expensive for monitoring the leaf N status of 

large areas. In recent decades,  the use of remote sensing 

technologies has increased, particularly through 

hyperspectral imagery, for mapping the spatial and temporal 

variations of crop leaf N concentration at the paddock scale 

[3]. There are three main categories of leaf N estimation 

approaches: 1) empirical methods, 2) physically-based 

model inversion methods, and 3) hybrid regression methods. 

Among these approaches, hybrid regression methods 

integrate physically-based models with advanced machine 

learning (ML) algorithms taking advantage of both the 

physical basis provided by radiative transfer models (RTMs) 

and the adaptability and efficiency of ML methods [4]. 

 

Recent studies utilizing narrow-band airborne and 

spaceborne hyperspectral imagers have demonstrated that 

accurate determination of leaf N concentration is feasible by 

combining the RTM-derived leaf biochemical constituents 

with SIF760 acquired from high-resolution airborne 

hyperspectral imagery [5]–[7]. Even though these studies 

have demonstrated improved leaf N retrievals when 

including SIF760, the potential of other spectral regions 

within the 650-800 nm SIF emission region to characterize 

both PSI and PSII photosystems has not yet been explored. 

Moreover, the potential information extracted from the red 

spectral region, i.e. SIF quantified at the O2-B absorption 
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band centered around 687 nm (SIF687) and the depth of solar 

FLs, which are absorption lines in the solar spectrum, could 

provide valuable insights for improved characterization of 

photosynthesis and leaf N variability. With the recently 

developed sub-nanometer resolution airborne hyperspectral 

imagers, it is now possible to investigate the potential of 

these narrow FLs within the SIF emission region. This study 

aims to assess the relative contribution of the solar-induced 

chlorophyll fluorescence emitted by each of the two 

photosystems (PSI and PSII) in explaining leaf N variability 

across the field. SIF760, SIF687 and the fractional depth of 

distinct solar FLs inside PSI and PSII emission regions 

derived from sub-nanometer airborne hyperspectral imagery 

are evaluated. 

 

2. MATERIALS AND METHODS 

 

2.1. Study site and airborne hyperspectral imagery 

 

An airborne campaign operated by the HyperSens 

Laboratory at the University of Melbourne's Airborne 

Remote Sensing Facility was conducted on 9 October 2019 

over a phenotyping trial site in Yarrawonga (36°02ʹ55"S, 

145°59ʹ02"E), Australia. Several cultivated varieties of 

rainfed wheat were grown under varying physiological 

conditions and N fertilization treatments. A sub-nanometer 

hyperspectral imager (FWHM ≤0.2 nm; 670–780 nm) and a 

narrow-band hyperspectral imager (FWHM = 5.8 nm; 400–

1000 nm) (Headwall Photonics Inc., Fitchburg, MA, USA) 

were used to collect airborne hyperspectral imagery at 20 

cm spatial resolution. Concurrent with the flights, ground 

measurements were conducted using a CC-3 VIS-NIR 

cosine corrector diffuser attached to an HR-2000 

spectrometer (Ocean Insight, Dunedin, FL, USA) with a 

0.065-nm FWHM for continuous measurement of the total 

incident radiation at the trial site. Pure vegetation pixels 

were extracted within individual plots, and mean radiance 

spectra corresponding to the sub-nanometer imager and 

reflectance spectra from the narrow-band hyperspectral 

imager were retrieved. Belwalkar et al. [8] provide a full 

description of the airborne campaign, data preprocessing, 

and image correction. In addition, the total leaf N 

concentration (%) was destructively determined in the 

laboratory using the Kjeldahl method, with samples 

consisting of 10–15 leaves randomly selected per plot. 

 

2.2. SIF quantification and identification of Fraunhofer 

lines  

 

The irradiance spectra obtained from the HR-2000 

spectrometer were convolved to the spectral characteristics 

of the sub-nanometer imager using Gaussian convolution. 

Using this convolved irradiance and the mean radiance 

derived from each plot, SIF760 and SIF687 were quantified 

using the in-filling approach, employing the Fraunhofer Line 

Depth (FLD) principle with a total of three spectral bands 

(3FLD) [9]. Furthermore, we identified 17 FLs across the 

670–780 nm spectral range of the sub-nanometer imager, 

excluding regions of significant water vapour and oxygen 

absorption [10]. The identified FLs were divided into two 

groups according to their positions in the spectral region. 

Five of these FLs were located in the red region of the 

spectrum (named here as red FLs), while the remaining 

twelve were located within the far-red region (named here 

as  far-red FLs). The exact location of the band centres 

corresponding to all FLs, and the O2-A and O2-B oxygen 

absorption bands is illustrated in Fig. 1. For each FL, the 

absolute depth in radiance units was computed as the 

difference between the radiance at the left shoulder 

wavelength and the wavelength at the bottom of the FL. The 

left shoulder wavelength was selected by searching for the 

local maxima closest to the bottom FL wavelength within 1 

nm.  

 

 
  

Fig. 1: Locations of the band centres corresponding to red 

FLs (a) and far-red FLs (b,c) shown in dashed black, and 

oxygen absorption lines (a,b) shown in dashed red identified 

from the average radiance spectra of one of the plots imaged 

by the sub-nanometer hyperspectral imager. 
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2.3. Regression model for N concentration estimation 

 

We trained regression models based on GPR to empirically 

estimate leaf N concentration using Ca+b, SIF760, SIF687 and 

the depth of distinct FLs as a pool of potential predictor 

variables. Ca+b, SIF760, and depth corresponding to a single 

FL were used to initially train GPR models. Subsequently, 

GPR models were trained using Ca+b, and one FL depth each 

from the red and far-red FL groups on leaf N estimation to 

further examine the effect of using FL depths corresponding 

to both the red and far-red FL groups as predictor variables. 

The GPR models were trained in parallel (MATLAB 

parallel computing toolbox), and the hyperparameters were 

optimized by incorporating Bayesian optimization into the 

leave-one-out cross-validation (LOOCV). The performance 

evaluation of the trained GPR models was carried out using 

the coefficient of determination (R2), root-mean-square error 

(RMSE) and normalized root-mean-square error (nRMSE). 

To limit random errors, for each possible combination of 

predictor variables, five GPR models were independently 

trained, and the average estimate was then used to determine 

R2, RMSE and nRMSE. 

 

Soil-Canopy Observation of Photosynthesis and Energy 

(SCOPE) [11] RTM-based hybrid inversion with random 

forest regression [12] was used to estimate Ca+b from the 

mean reflectance spectra obtained from the narrow-band 

hyperspectral imager in the 400-800 nm spectral region. To 

determine if the leaf N estimates could be further improved 

by including SIF emission regions other than the O2-A 

absorption band, we used the GPR model developed with 

Ca+b and SIF760 as a benchmark. Then, we compared this 

benchmark by adding the depth of distinct solar FLs into the 

models. Since PSII largely influences the red spectral 

region, the contributions of SIF687 and red FLs would be 

attributed only to PSII. In contrast, the contributions of 

SIF760 and far-red FLs would be attributed to both 

photosystems.  

 

3. RESULTS 

 

GPR models trained with a single FL as one of the three 

predictor variables produced a total of 17 distinct GPR 

models (5 models for the red FL group and 12 models for 

the far-red FL group). Among the red FL group, the 

performance of the GPR model with FL1 depth was 

comparable with the benchmark (R2 = 0.56; RMSE = 

0.229%; nRMSE = 5.89%; Fig. 2a and 2b), whereas the 

performance of the other four red FL depths did not improve 

the prediction. From the far-red FLs, the model that 

included FL13 depth showed the highest performance, 

outperforming the benchmark model (R2 = 0.63; RMSE = 

0.21%; nRMSE = 5.41%; Fig. 2c). Since FL13 performed the 

best among all red and far-red FLs, for the next set of GPR 

models with two FLs and Ca+b as predictors, we selected 

FL13 among the far-red FLs and independently evaluated all 

five red FLs as potential GPR model predictors. When 

compared to the benchmark model, the GPR model trained 

with FL5 (682.97 nm) and FL13 (757.002 nm) substantially 

improved the leaf N estimation (R2 = 0.71; RMSE = 

0.188%; nRMSE = 4.84%; Fig. 2d) with more data points 

closer to the 1:1 line. The model's performance did not 

improve further after including more FLs from either of the 

two FL groups. Furthermore, we found that the model's 

performance decreased by including SIF687 with any 

combination of predictor variables. This result could be 

potentially attributed to the high collinearity observed 

between Ca+b and SIF687. 

 

 
 

Fig. 2: Measured vs estimated mean leaf N concentration 

using the best GPR models as a function of Ca+b and SIF760 

(a), Ca+b, SIF760 and best performing red FL (b), Ca+b, SIF760 

and best performing far-red FL (c), Ca+b and best-performing 

combination of one red and one far-red FL (d). The dashed 

line indicates the 1:1 line. The error bars indicate the 

standard deviation based on five runs of the GPR model. 

The GPR model as a function of Ca+b and SIF760 was used as 

a benchmark. ***p-value<0.05. 

 

Our results suggest that FL depths corresponding to 757.002 

nm (FL13) and 682.97 nm (FL5), in conjunction with Ca+b 

estimated by RTM simulations, provided improved 

estimates of leaf N concentration. These results provide a 

foundation for future research into the use of FLs identified 

in sub-nanometer imagery in the context of precision 

agriculture and plant physiology monitoring. Future work 

will focus on evaluating their potential for identifying pre-

visual signs of vegetation stress. 

 

4. CONCLUSIONS 

 

This study evaluated the capability of 17 narrow solar 

Fraunhofer lines depth derived from sub-nanometer imagery 

to estimate leaf N concentration when combined with Ca+b 

and SIF760. With an RMSE of less than 0.19%, the best 
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results were achieved by the regression model constructed 

using Ca+b, red FL closest to O2-B band (682.97 nm), and 

far-red FL closest to O2-A band (757.002 nm). These results 

highlight the importance of integrating FLs around the two 

oxygen absorption bands for more accurate leaf N estimates. 

Furthermore, the proposed approach based on the depth of 

distinct FLs demonstrates the importance of sub-nanometer 

resolution imaging sensors for vegetation trait retrievals, 

supporting the need for future research focused on the entire 

SIF emission region for physiological assessment and 

vegetation stress detection. 
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