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ABSTRACT 

Among all essential nutrients, nitrogen (N) is required by 

plants in large quantities throughout the entire developmental 

process. This is due to its importance for plant growth and 

development and as a primary source of energy for 

photosynthesis. Previous research has demonstrated that 

solar-induced chlorophyll fluorescence (SIF) coupled with 

chlorophyll a+b content (Cab) improved the estimation of leaf 

N, outperforming standard vegetation indices. The present 

study investigates the contribution of leaf Cx, a measure of 

the de-epoxidation state of the xanthophyll cycle, for 

explaining leaf N variability, concluding that it ranks third 

after Cab and SIF consistently over two growing seasons. 

Among the rest of the biochemical constituents estimated by 

model inversion, Cx contributed more than anthocyanins 

(Anth), the total carotenoid content (Ccar), and crown-level 

structural traits. 

Index Terms — Cx, airborne hyperspectral, nitrogen, 

xanthophyll cycle, de-epoxidation, PRI 

1. INTRODUCTION 

Nitrogen (N) is one of the major nutrients taken up during 

active plant growth and plays a significant role in preserving 

high fruit quality and yield [1, 2]. Consequently, a precise and 

sustainable agricultural management strategy in almond 

orchards requires an accurate leaf N status assessment in 

order to fine-tune fertilizer applications.  

Conventional remote sensing (RS) methods to assess 

leaf N rely on empirical algorithms involving chlorophyll-

sensitive vegetation indices (VIs) calculated from spectral 

bands in the visible, red-edge, and near-infrared regions, such 

as CIred-edge [3], TCARI/OSAVI [4], NDRE [5], and CCCI [6] 

among others. Additionally, the PRI family of indices, which 

involves 2-3 spectral bands in the green region, is sensitive to 

changes in xanthophyll pigments composition and has been 

proposed as a proxy for photosynthesis rate through light-use 

efficiency [7-9], therefore being suggested as N-induced 

stress indicators [10, 11].  

As alternatives to VI-based methods, a number of 

studies have focused on the estimation of leaf N using models 

based on plant traits, such as chlorophyll [12] content derived 

through radiative transfer model (RTM) inversion [13, 14]. 

The Cx parameter in the Fluspect-Cx RTM [15] tracks the 

dynamics of the de-epoxidation state of the xanthophyll 

cycle, thus receiving considerable attention in recent years. 

The model assessment of the xanthophyll epoxidation is 

based on in vivo absorption coefficients for two extreme 

states of the carotenoid [16] pool, corresponding to the two 

states of xanthophyll de-epoxidation and describes the 

intermediate states as a lineal mixture of these two extreme 

states.  

Recent advances have proposed models with leaf 

biochemistry and dynamic spectral traits linked to 

photosynthesis, such as solar-induced fluorescence (SIF), to 

explain the leaf N variability. SIF has been demonstrated as a 

plant stress indicator and proxy for leaf N content in various 

crop species. In a recent study, SIF was found to improve the 

leaf N estimation in almonds [17], concluding that Cab and 

SIF were the two most important predictors for leaf N 

content. As a step forward, we investigate the potential 

contribution of several plant traits linked to photosynthesis to 
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assess leaf N variability in almond orchards, particularly the 

xanthophyll pigments. 

2 MATERIALS AND METHODS 

2.1. Study area and field data collection 

The study site consists of a 1,200-hectare commercial almond 

orchard (see Fig. 1a for an overview of the orchard in a false-

color composite image) in Robinvale, northwest Victoria, 

Australia, with a Mediterranean climate. An almond tree 

planting program was undertaken in 2006 (northern blocks 

oriented N-S) and 2007 (southern blocks with mixed N-S and 

E-W orientations. Fig. 1b), including varieties of Nonpareil, 

Price, and Carmel. A drip fertigation system is used to supply 

nutrients, with one-hour intervals between rows of trees. 

Fertigation is adjusted based on previous year observations, 

resulting in different application rates between varieties. 

The field collection of leaf samples and ground data 

measurements were conducted at the pre-harvest stage for 

two growing seasons, 2019-2020 (March 2020) and 2020-

2021 (February 2021). Fifteen monitoring plots were 

sampled throughout the orchard, averaging two Nonpareil 

trees and two Carmel trees per plot. As part of the 

measurement process, 20 fully exposed mature leaves per tree 

were measured for leaf Cab, anthocyanins (Anth), flavonol 

content, and the nitrogen balance index (NBI) using a Dualex 

4 Scientific instrument (FORCE-A, Orsay, France). We also 

determined leaf steady-state chlorophyll fluorescence (Ft) 

and leaf reflectance spectra within the visible and near-

infrared (VNIR) region with FluorPen FP 110 and PolyPen 

RP 400 instruments (PSI, Brno, Czech Republic), 

respectively. Moreover, 20 additional leaves were sampled 

per plot for laboratory nutrient analysis using a LECO 

Nitrogen analyzer (LECP Corporation, MI, USA).  

2.2. Acquisition of airborne hyperspectral imagery 

Airborne campaigns were carried out within a week of each 

field campaign. The piloted aircraft, operated by the 

HyperSens Laboratory at The University of Melbourne, was 

equipped with a hyperspectral line-scanning sensor (Micro-

Hyprspec VNIR model, Headwall Photonics, Fitchburg, MA, 

USA) with 5.8 nm FWHM covering 371 spectral bands over 

the VNIR region. The flights' height at 550 m above ground 

level yielded a spatial resolution of 40 cm, enabling the 

identification of each tree crown and shaded features. Image 

pre-processing and calibration were performed following the 

method in [18]. Consequently, image mosaics of reflectance 

and radiance were derived over the orchard. 

 
Fig. 1. (a) Colour-infrared overview of the airborne 

hyperspectral image acquired over a study area of 1,200 

hectares at a 40-cm spatial resolution using 371 visible and 

near-infrared spectral bands. (b) Zoomed view of the planting 

blocks for almond rows that are oriented east-west and north-

south. (c) Sample reflectance (R, green colour) and radiance 

(L for SIF calculation, orange colour) spectrum extracted 

from the airborne hyperspectral image. 

2.3. SIF quantification and plant traits estimation 

Based on pure sunlit vegetation pixels extracted from 

radiance image, SIF was quantified by the Fraunhofer Line 

Depth (FLD) method [19] from O2-A oxygen absorption 

features at 762 nm. The reflectance mosaic was used to 

extract spectra from tree crowns used for the calculation of 

vegetation indices and the inversion of plant traits from RTM. 

Cx, along with other biochemical constituents (e.g., Cab, Ccar, 

and Anth), and structural traits (e.g., LAI) were retrieved 

simultaneously by constructing a 10-hidden layer artificial 

neural network (ANN) based on 500,000 simulations using 

the coupled Fluspect-Cx and 4SAIL model [20].  

2.4. Nitrogen prediction model assessment 

As part of a previous two-year validation study performed in 

the orchard, Cab and SIF were identified as the most critical 

plant traits for leaf N estimation [17]. With the retrieved plant 

traits, Gaussian process regression models were constructed 

for each year incorporating single plant traits (i.e., Ccar, Cx, 

Anth, LAI) in addition to Cab and SIF. The training and 

testing steps were performed using leave-one-out cross-

validation. Furthermore, the variance inflation factor (VIF) 

and out-of-bag predictor importance were employed to assess 

the input collinearity and relative contribution of the inputs, 

respectively. 

 

a)                                                                                       c) 

 

 

 

 

 

 

 

 

b) 
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3. RESULTS 

The xanthophyll pigment-related indices extracted from tree 

crowns were highly correlated with leaf N, in particular, PRI 

(r2 = 0.48, p-value < 0.005 in 2020, and r2 = 0.27, p-value < 

0.05 in 2021), and PRIm4 (r2 = 0.34, p-value < 0.05 in 2020, 

and r2 = 0.50, p-value < 0.005 in 2021). The RTM-derived 

parameter Cx, however, exhibited a superior and consistently 

significant relationship with leaf N for both years (r2 = 0.61 

in 2020 and r2 = 0.62 in 2021; p-values < 0.005). 

Relationships were obtained between Cx vs. leaf-measured 

PRIm4 (r2 = 0.48 in 2020 and r2 = 0.46 in 2021; p-values < 

0.005) and airborne-derived PRIm4 (r2 = 0.50 in 2020 and r2 

= 0.42 in 2021; p-values < 0.01, Fig. 2).  

Based on the relative contribution of each input to leaf 

N estimation, Cx was demonstrated as the best non-collinear 

(VIF<10) predictor after Cab and SIF. Moreover, the model 

incorporating Cx along with Cab and SIF (e.g., RMSE = 

0.079% in 2020+2021) outperformed the model built with Cab 

and SIF alone (e.g., RMSE = 0.092% in 2020+2021). With a 

model consisting of Cab, Cx, and SIF (N = f(Cab, Cx, SIF): r2 

= 0.86 in 2020, r2 = 0.65 in 2021, and r2 = 0.87 in 2020+2021, 

Fig. 3), leaf N variability was better explained than any other 

model combinations for each individual year and when 

combining the two years together. These results suggest that 

the RTM-derived Cx estimated from airborne hyperspectral 

imagery is an important predictor for leaf N assessment in 

almond orchards, improving the model performance when 

coupled to Cab and SIF. 

 
Fig. 2. Relationships between RTM-derived Cx and airborne-

derived PRIm4 in 2020 (hollow grey circle) and 2021 (solid 

black circle). All p-values < 0.01. 

 
Fig. 3. Relationships between leaf N concentration (%) and 

predicted leaf N using models based on chlorophyll content, 

Cx, and SIF. The blue dashed line represents correlation when 

combining data from 2 years. All p-values < 0.005. 

4. CONCLUSIONS 

This study demonstrates that the RTM-derived Cx parameter, 

an indicator of the xanthophyll pigments cycle, ranked third 

behind Cab and SIF when explaining the observed variability 

of leaf N in almond orchards. The leaf N prediction model 

that incorporated Cx in addition to Cab and SIF was found to 

outperform any other combinations of plant traits over the 

course of two years. Other leaf biochemical constituents such 

as anthocyanins (Anth), the total carotenoid content (Ccar), 

dry matter (Cdm), and structural traits yielded lower 

contributions when explaining the leaf N variability in 

almond orchards. 
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