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ABSTRACT 

 

Standard remote sensing methods for nitrogen (N) 

assessment in precision agriculture rely on empirical 

relationships built with chlorophyll a+b (Cab) sensitive 

vegetation indices. Nevertheless, methods of N estimation 

based on the Cab vs. N relationships are strongly affected by 

the saturation of these indices at high N levels, and by 

canopy structure, shadows and soil background variability. 

These effects are even more pronounced in heterogeneous 

orchards where the tree crown structural variability is a 

major factor that limits the transferability of the algorithms 

within- and across-tree crop species. Solar-induced 

fluorescence (SIF) has been proposed in precision 

agriculture as a plant functional trait related to N due to its 

link with photosynthesis. However, retrieving SIF from 

orchards is challenging due to the mixture of sunlit and 

shaded crown components. The present study explored the 

retrieval of airborne SIF in almond orchards from 

hyperspectral imagery, assessing its contribution to the 

estimation of N. Results show that the assessment of N 

improved when SIF was coupled to the model estimated Cab 

(e.g., Cab+SIF; r2=0.95) as compared with using Cab alone 

(r2=0.87). 

 

Index Terms - Chlorophyll Fluorescence, SIF, 

Nitrogen, Hyperspectral, Almond, FluSAIL RTM 

 

1. INTRODUCTION 

 

Nitrogen (N) is an important indicator of plant growth and 

productivity as it is the major limiting factor in 

photosynthetic capacity [1]. Monitoring N status timely can 

inform fertilizer management strategy in terms of balancing 

plant production against economic losses and environmental 

effects [2] for sustainable agriculture purposes. Monitoring 

the spatial and temporal variability of N status at large 

scales requires rapid and cost-effective remote sensing 

methods to overcome the limitations of traditional 

biochemical analyses of leaf tissues. 

Traditional remote sensing methods for N assessment 

are commonly based on empirical models that use structural 

and chlorophyll-sensitive vegetation indices employing 

specific spectral bands [3]. Recent studies have proposed the 

use of plant traits estimated by radiative transfer models 

(RTMs) for assessing N in homogenous crops [4, 5]. 

However, the application of these methods to tree orchards 

is challenging due to the structural complexity of the 

canopies caused by clumping effects, crown heterogeneity, 

within-crown shadows, and soil background influence. 

Solar-induced chlorophyll fluorescence (SIF) has been 

shown as a proxy for photosynthetic activities [6, 7] and 

therefore sensitive to the leaf nutrient levels [8]. A recent 

study [4] presented SIF as an indicator for N quantification 

in wheat phenotyping that improved the predictions when 

coupled to chlorophyll content (Cab). However, the 

physiological dynamics of SIF vs. N may differ 

considerably between orchard trees and herbaceous crops 

due to the within-tree structural variability and background 

effects. In this study, we explored the retrieval of airborne-

quantified SIF in almond orchards from hyperspectral 

imagery, assessing the contribution of SIF and spectral plant 

traits for N estimation. 

 

2. MATERIAL AND METHODS 

 

2.1. Study area 

 

The study was conducted in a commercial almond orchard 

located in northwestern Victoria, Australia. The almond 
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orchard (Figure 1a) covers approximately 1200 hectares and 

was planted in 2006 (Northern blocks oriented N-S) and 

2007 (Southern blocks with mixed N-S and E-W 

orientations). Three different varieties comprising Nonpareil 

(planted in every two rows), Price (planted in every six 

rows), and Carmel were planted in groups of 6 rows for 

cross-pollination purposes [9]. All blocks received the same 

amount of water and nutrient rates across the entire orchard. 

 

2.2. Data collection 

 

2.2.1. Field measurements and laboratory analyses 

A total of 14 homogenous monitoring plots spread across 

the entire orchard were selected for leaf measurements and 

sampling purposes, comprising both Nonpareil and Carmel 

varieties. Leaf measurements were carried out before 

harvest on 20 fully exposed leaves per tree from each of the 

monitoring plots, comprising leaf Cab, anthocyanins (Anth), 

flavonol content and the nitrogen balance index (NBI) using 

a Dualex 4 Scientific instrument (FORCE-A, Orsay, 

France), leaf steady-state chlorophyll fluorescence (Ft) and 

leaf reflectance spectra within the visible and NIR region 

with FluorPen FP 110 and PolyPen RP 400 instruments 

(PSI, Brno, Czech Republic), respectively. Meanwhile, a 

total of 50 leaves per variety were collected from each plot 

for N determination in the laboratory using a LECO 

Nitrogen Analyzer (LECO Corporation, MI, USA). 

 

2.2.2. Airborne hyperspectral imagery 

Within a week of field data collection, an airborne campaign 

was carried out under clear sky conditions on 17th February 

2020. A hyperspectral VNIR camera (micro-hyperspec 

model, Headwall Photonics, Fitchburg, MA, USA) and a 

thermal infrared camera (A655sc model, FLIR systems, 

Wilsonville, OR, USA) were installed in tandem on an 

aircraft (Cessna 172R) operated by the HyperSens 

Laboratory, the University of Melbourne’s Airborne Remote 

Sensing Facility. The imagery was collected at midday 

flying in the solar plane at 550 m above ground level, 

yielding 45 cm and 60 cm pixel resolutions for the 

hyperspectral and thermal imagery, respectively. Raw 

images were then calibrated and pre-processed as described 

in Zarco-Tejada, et al. [10]. Reflectance spectra extracted 

from pure tree crowns (Figure 2a) and radiance extracted 

from sunlit vegetation pixels at the O2-A absorption feature 

(Figure 2b) were used to quantify the spectral plant traits 

and SIF employed for the analysis, respectively. 

 

2.3. Plant traits retrievals from hyperspectral imagery 

 

Mean reflectance per plot was calculated from pure sunlit 

pixels (Figure 1b) for the 358 spectral bands acquired by the 

airborne hyperspectral camera. Reflectance spectra were 

used to calculate structural and chlorophyll indices, such as 

NDVI,   EVI,   MCARI2,   CI   and  TCARI/OSAVI  among 

 

 
Figure 1. a) False color composite of the hyperspectral 

imagery acquired over a 1200 ha almond orchard in 

Victoria, Australia, b) image segmentation applied to 

individual tree crowns to extract tree crown reflectance and 

spectral radiance at the O2-A spectral feature. 

 

others (see Zarco-Tejada, et al. [10] for a complete list of 

indices). The spectral reflectance was also used as input for 

Fluspect-CX leaf [11] coupled with 4SAIL canopy RTM 

[12] as FluSAIL model to estimate Cab, carotenoids (Car), 

Anth, the de-epoxidation state of the xanthophyll-cycle 

pigments (Cx), dry matter (Cdm), mesophyll structure (N-

struc), leaf area index (LAI), and the leaf inclination 

distribution (LIDFa/b). A look-up table (LUT) containing 

50,000 random simulations of FluSAIL was used to retrieve 

all plant traits for each tree crown at the same time using an 

artificial neural network model [13]. 

SIF was quantified from pure sunlit vegetation pixels 

through the Fraunhofer Line Depth (FLD) principle [14] 

using three bands (3FLD) [15] from the O2-A oxygen 

absorption feature in the radiance spectra (Figure 2b). The 

method used the radiance at 762 nm (L762) as Lin, L750 and 

L778 as Lout and the same spectral bands from the irradiance 

(E) spectra concurrently measured in the field at the time of 

flight. 

a) 

 

b) 
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Figure 2. a) Spectra of different scene components extracted 

from the airborne hyperspectral image: reflectance of soil, 

sunlit and shaded tree crown pixels, b) radiance spectra 

extracted from sunlit tree crown pixels at the O2-A feature, 

and field measured irradiance at the time of flight. 

 

2.4. Statistical analysis for nitrogen estimation 

 

Regression random forest machine learning algorithm [16], 

a computational method that can assess the relative variable 

importance, was employed to predict N by using the 

coefficient of determination (r2) and RMSE as the first and 

second performance measure, respectively. The training and 

testing steps were performed using the leave-one-out-cross-

validation (LOOCV) method for N prediction from a pool of 

representative parameters, including i) biochemical and 

structural plant traits retrieved from pure reflectance spectra 

by FluSAIL model inversion, ii) airborne quantified SIF 

from the radiance spectra, and iii) crop water stress index 

(CWSI) calculated from the thermal infrared imagery. For 

each set of inputs, the variance inflation factor (VIF) and 

out-of-bag (OOB) predictor importance with sensitivity 

analysis were employed to suppress the input collinearity 

and to evaluate the relative contribution of each input to the 

models, respectively. The final selection of variables for the 

N prediction model was obtained by filtering the most 

collinear and less contributing parameters.  

 

3. RESULTS 

 

The analysis of the field data illustrated the existing 

variability of leaf nitrogen and pigment content throughout 

the orchard (Figure 3), observing the ranges of variation for 

N, NBI, Cab and Anth based on leaf fluorescence quartiles. 

Relationships between leaf N concentration vs. airborne 

NDVI (r2=0.27, n.s., Figure 4a) showed that the crown 

structure was not a major driver in the N variability 

throughout the orchard. While TCARI/OSAVI chlorophyll 

index was better related to N (r2=0.53, p<0.05, Figure 4b) 

than any other spectral index. Nevertheless, plant traits 

estimated by RTM inversion such as Cab (r2=0.70, p<0.001, 

Figure 4c) and airborne SIF (r2=0.64, p<0.001, Figure 4d) 

yielded stronger relationships than standard indices against 

leaf N concentration. Airborne-quantified Cab and SIF also 

showed statistically significant relationships with the 

equivalent field-measured leaf Cab (r2=0.64, p<0.001) and 

leaf Ft (r2=0.61, p<0.001) (data not shown). 

 
Figure 3. Ranges of variation for a) leaf nitrogen 

concentration, b) chlorophyll a+b, c) nitrogen balance index 

and d) anthocyanins content based on leaf fluorescence 

quartiles. Crossing line through the box and marker ‘x’ refer 

to the median and mean value, respectively. Box amplitude 

refers to the second and third quartiles’ limits. 

 

 
Figure 4. Relationships between nitrogen concentration and 

a) airborne NDVI, b) airborne TCARI/OSAVI, c) 

chlorophyll a+b estimated by RTM inversion, and d) SIF 

quantified at O2-A using the 3FLD in-filling method from 

the airborne radiance spectra. 

*p-value<0.05; **p-value<0.001; n.s.= not significant. 

 

The relative contribution of each plant trait for 

estimating leaf nitrogen assessed by the OOB predictor 

importance analysis showed that the model estimated Cab 

and airborne-quantified SIF were the spectra plant traits 

contributing the most (Figure 5), followed by Car, Cx and 

Anth biochemical constituents. The structural  trait  LAI,  and  
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Figure 5. Relative contribution of each input to the model 

built to estimate N concentration from the pool of FluSAIL 

model inverted plant traits, airborne quantified SIF, and the 

water stress indicator CWSI. 

 

the water stress indicator CWSI showed a weak contribution 

to N variability. However, the statistical analysis showed 

that Cab and SIF were not strongly collinear, while Car, Cx 

and Anth were discarded after presenting a VIF>10 with Cab. 

Results also showed that the model performance for 

assessing N content was improved when coupling airborne 

SIF with any plant traits, particularly with Cab derived from 

RTM inversion, increasing r2 from 0.87 to 0.95 and reducing 

the RMSE from 0.064 to 0.044. As a result, the model 

consisting of Cab and airborne SIF together explained 95% 

of the N variability in the almond orchard comprising 

different varieties, ages, and water status levels. 

 

4. CONCLUSIONS 

 

This study shows that airborne-retrieved chlorophyll 

fluorescence improves the prediction of leaf nitrogen 

content in almond orchards when coupled with plant traits. 

Notably, when airborne SIF is coupled to Cab estimated by 

radiative transfer simulations, the model explained 95% of 

the variability of nitrogen in the almond orchard. The 

analysis showed that Cab and SIF were non-collinear, while 

other biochemical constituents such as Car, Cx and Anth 

estimated from RTM inversion were discarded by the VIF 

analysis as they presented strong collinearity with Cab. This 

study demonstrates the interest of using SIF coupled to Cab 

for the assessment of N in structurally complex canopies 

such as almond orchards for precision agriculture purposes. 
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