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Resumen 

l olivo (Olea europaea L.) es el cultivo leñoso no tropical que ocupa mayor 

superficie en todo el mundo, con el 95% de la producción mundial localizada en 

la cuenca Mediterránea. España es el país con mayor superficie de olivar del mundo con 

2.5 MHa y aproximadamente el 39% de la producción mundial. Durante las últimas 

décadas, la Verticilosis, causada por el hongo de suelo Verticillium dahliae Kleb., ha 

ocasionado severas pérdidas de rendimiento en el olivar, convirtiéndose en la enfermedad 

más limitante causada por patógenos de suelo de este cultivo a nivel mundial. Este 

patógeno coloniza el sistema vascular de la planta, bloqueando el flujo del agua y 

finalmente induciendo estrés hídrico. El desarrollo de la Verticilosis en el olivo puede 

estar influenciado por factores bióticos y abióticos, sin embargo, poco se sabe sobre la 

influencia del medio físico en él. Actualmente, ninguna medida de control aplicada 

individualmente es completamente efectiva para el tratamiento de la Verticilosis del olivo, 

no obstante, una estrategia de control integrado es la mejor forma de manejar la 

enfermedad, combinando el uso de medidas de control previas y posteriores a la 

plantación. Las medidas de control posteriores a la plantación serían más efectivas si las 

zonas del terreno con árboles afectados por Verticilosis fueran identificadas en etapas 

tempranas del desarrollo de la enfermedad con el objetivo de disminuir la expansión del 

patógeno y sucesivas infecciones a árboles o plantaciones vecinas. Sin embargo, la 

inspección visual en campo de síntomas de la enfermedad en estadios tempranos de su 

desarrollo es costosa en tiempo y recursos. Por lo tanto, la teledetección puede ser una 

herramienta muy útil para detectar el estrés hídrico inducido por la infección de V. 

dahliae en olivos en etapas tempranas del desarrollo de la enfermedad. 

Los principales objetivos de la presente Tesis Doctoral fueron: (i) evaluar el efecto 

de la temperatura del suelo en el desarrollo de la Verticilosis teniendo en cuanta diferentes 

patotipos de V. dahliae y cultivares de olivo; (ii) valorar el uso de la teledetección térmica 

e hiperespectral de alta resolución como herramienta para detectar la infección y 

severidad por Verticilosis en parcelas de olivar y áreas de mayor extensión, evaluando la 

temperatura e índices fisiológicos desde escala foliar a escala de cubierta. 

El primer objetivo se llevó a cabo con plantas de olivo de los cultivares (cv.) 

Arbequina y  Picual que crecieron en suelo infestado con los patotipos defoliante (D) y no 

defoliante (ND) de V. dahliae bajo condiciones climáticas controladas en tanques de suelo 

con temperaturas de 16 a 32ºC. El desarrollo de la Verticilosis en plantas infectadas por el 

patotipo D fue más rápido y severo en cv. Picual que en cv. Arbequina. La temperatura de 

suelo óptima para el desarrollo de la infección del patotipo D fue de 16 a 24ºC para cv. 

Picual y de 20 a 24ºC para cv. Arbequina. Para el patotipo ND el rango de temperatura 

más favorable para la infección por V. dahliae fue de 16 a 20ºC. Estos resultados permiten 

E 
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un mejor conocimiento de la distribución geográfica diferencial de los patotipos de V. 

dahliae así como evaluar el efecto potencial del cambio climático en el desarrollo de la 

enfermedad. 

En una siguiente fase de esta serie de experimentos, el segundo objetivo de la Tesis 

Doctoral fue abordado a escala foliar. Para ello, se estimaron periódicamente a nivel foliar 

diversos parámetros relacionados con el estrés de la planta (i.e., temperatura, 

fluorescencia clorofílica en estado estacionario Fs, Photochemical Reflectance Index PRI, 

contenido de clorofila y producción de etileno) para estimar su relación con la infección 

por V. dahliae y el desarrollo de la enfermedad en plantas de olivo que crecieron a 

diferentes temperaturas de suelo. Esta relación se determinó por regresión logística 

multinomial y árboles de clasificación, identificando el contenido de clorofila, Fs y 

temperatura foliar como los mejores indicadores de la Verticilosis en etapas tempranas del 

desarrollo de la enfermedad, mientras que la producción de etileno y PRI sólo la 

detectaron en etapas avanzadas de su desarrollo. 

Para estudiar la detección de la Verticilosis a escala de cubierta, se realizaron vuelos 

durante tres años consecutivos con vehículos aéreos no tripulados (UAVs) usando 

cámaras térmicas, multiespectrales e hiperespectrales sobre dos parcelas de olivar. Las 

imágenes obtenidas se relacionaron con la severidad de la Verticilosis evaluada en campo 

al mismo tiempo que los vuelos. Además, se realizaron  medidas en campo a nivel foliar y 

de copa en una de las parcelas con el fin de apoyar los resultados obtenidos de las 

imágenes y corroborar que éstos se debían a la infección y colonización de los tejidos 

vasculares por V. dahliae y no sólo a los cambios estructurales causados por el estrés 

hídrico inducido por la enfermedad. Estos vuelos permitieron la detección temprana de la 

Verticilosis a partir de la temperatura de cubierta derivada de las imágenes térmicas, el 

Crop Water Stress Index (CWSI) calculado de las imágenes térmicas, los ratios azul/azul-

verde/azul-rojo y la fluorescencia clorofílica (FLD3), confirmando los resultados 

obtenidos en las medidas de campo. Los índices estructurales (i.e., NDVI), índices 

fisiológicos como PRI, el índice de enfermedad HI, los índices de clorofila y carotenos y 

los ratios rojo/verde fueron buenos indicadores para detectar la presencia de daño de 

moderado a severo. 

Posteriormente, este método para la detección de la Verticilosis a escala de parcela 

fue validado para vuelos en áreas de mayor extensión que constaban de varias parcelas de 

olivar que diferían en diversas características agronómicas. Se evaluó una metodología 

para la clasificación automática de la infección y severidad por V. dahliae usando 

imágenes térmicas e hiperespectrales de alta resolución adquiridas en un solo vuelo con 

una plataforma tripulada sobre una región olivarera de 3,000-ha. Los métodos de 

clasificación, análisis discriminante lineal (LDA) y support vector machines (SVM), se 

aplicaron para discriminar entre niveles de severidad de la Verticilosis, explotando la 
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información combinada de la temperatura de cubierta e índices fisiológicos calculados a 

partir de las imágenes. LDA alcanzó una precisión en la clasificación global del 59.0% y 

un coeficiente kappa (κ) de 0.487, mientras que con SVM se obtuvo una mayor precisión 

en la clasificación, 79.2% con un κ similar 0.495. Sin embargo, LDA clasificó mejor 

árboles con niveles de severidad iniciales y bajos, alcanzando precisiones de 71.4 y 

75.0%, respectivamente, en comparación con el 14.3 y 40.6% obtenido por SVM. La 

temperatura de cubierta, fluorescencia clorofílica FLD3, los índices estructurales, de 

xantofilas, clorofila, carotenos y de enfermedad fueron los mejores indicadores para 

detectar etapas tempranas y avanzadas de la infección por Verticilosis. Comparando con 

los resultados obtenidos a escala de parcela, la temperatura de cubierta y FLD3 

permitieron identificar olivos en etapas tempranas del desarrollo de la enfermedad tanto a 

escala de parcela como a mayor escala, no estando influenciados por la variación en 

características agronómicas dentro del área de estudio. Los índices estructurales, de 

xantofilas, clorofila, carotenos y de enfermedad y los ratios azul/verde/rojo fueron buenos 

indicadores para detectar la presencia de daño de moderado a severo a ambas escalas. 

Este trabajo demuestra el potencial de usar la teledetección térmica e hiperespectral 

de alta resolución para la detección temprana de olivos infectados por V. dahliae con el 

fin de diseñar estrategias de control de la enfermedad a escala de parcela y regional. 
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Abstract 

live (Olea europaea L.) is the most cultivated non-tropical fruit tree in the 

world, with 95% of the world production located in the Mediterranean Basin. 

Spain is the leading olive-producing country with 2.5 MHa and nearly 39% of the world 

production. During the last few decades, Verticillium wilt, caused by the soil-borne 

fungus Verticillium dahliae Kleb., has caused severe olive yield losses, becoming the 

most limiting soil-borne disease of this crop worldwide. This pathogen colonizes the 

vascular system of plants, blocking water flow and eventually inducing water stress. 

Development of Verticillium wilt in olive can be influenced by biotic and abiotic factors, 

nevertheless, little is known about the influence of the physical environment on it. 

Currently, no control measure applied singly is fully effective for the management of 

Verticillium wilt of olive; therefore an integrated disease management strategy is needed 

to manage the disease, combining the use of pre-planting and post-planting control 

measures. Post-planting control measures would be more efficient if Verticillium wilt-

affected trees patches within fields are identified at early stages of disease development in 

order to mitigate the spread of the pathogen and successive infections to neighboring 

trees. However, visual inspection of disease symptoms at early stages of development in 

the field is time-consuming and expensive. Thus, remote sensing is thought to be a useful 

tool to detect water stress induced by V. dahliae infection in olive trees at early stages of 

disease development. 

The main objectives of this PhD Thesis were: (i) to assess the effect of soil 

temperature on Verticillium wilt development taking into account different V. dahliae 

pathotypes and olive cultivars; and (ii) to evaluate the use of high-resolution thermal and 

hyperspectral remote sensing imagery as a tool to detect Verticillium wilt infection and 

severity in olive orchards and larger areas, assessing temperature and physiological 

indices from leaf to canopy scale. 

The first objective was conducted with olive plants of cultivar (cv.) Arbequina and 

cv. Picual grown in soil infested with the defoliating (D) or non-defoliating (ND) 

pathotype of V. dahliae under controlled climatic conditions in soil tanks with a range of 

soil temperatures from 16 to 32ºC. Verticillium wilt development in plants infected by the 

D pathotype was faster and more severe on cv. Picual than on cv. Arbequina. Models 

estimated that infection by the D pathotype was promoted by soil temperature in a range 

of 16 to 24°C for cv. Picual and of 20 to 24ºC for cv. Arbequina. For the ND pathotype a 

range of 16 to 20ºC was estimated as the most favorable for infection. These results 

provide a better understanding of the differential geographic distribution of V. dahliae 

pathotypes and assess the potential effect of climate change on Verticillium wilt 

development. 

O 
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In a next step of this PhD Thesis, the second objective at leaf level was approached. 

For that, several parameters related with plant stress (i.e., temperature, steady-state 

chlorophyll fluorescence Fs, Photochemical Reflectance Index PRI, chlorophyll content 

and ethylene production) were periodically measured at leaf level to assess their 

relationship with V. dahliae infection and disease development in olive plants growing at 

different soil temperatures. This relationship was determined by multinomial logistic 

regression and classification trees, identifying chlorophyll content, Fs and leaf 

temperature as the best indicators of Verticillium wilt at early stages of disease 

development, while ethylene production and PRI only detected Verticillium wilt at 

advanced stages. 

To study the detection of Verticillium wilt at canopy scale, time series of airborne 

thermal, multispectral and hyperspectral imagery were acquired with unmanned aerial 

vehicles (UAVs) in three consecutive years over two olive orchards and related to 

Verticillium wilt severity at the time of the flights. In addition, field measurements at leaf 

and tree-crown levels were conducted in one of the olive orchards to support the results 

obtained from imagery and to confirm that these results were due to the infection and 

colonization of vascular tissues by V. dahliae and not simply due to structural effects 

driven by the water stress induced by the disease. The airborne flights enabled the early 

detection of Verticillium wilt by using canopy-level image-derived airborne canopy 

temperature, Crop Water Stress Index (CWSI) calculated from the thermal imagery, 

blue/blue-green/blue-red ratios and chlorophyll fluorescence quantification from the 

hyperspectral imagery (FLD3), confirming the results obtained in the field. The structural 

indices (i.e., NDVI), physiological indices such as PRI, disease index HI, chlorophyll and 

carotenoid indices, and the red/green ratios were good indicators to detect the presence of 

moderate to severe damage. 

Furthermore, this methodology for Verticillium wilt detection at orchard scale was 

validated on flights conducted over larger areas comprising several olive orchards 

differing in agronomic characteristics. A methodology for the automatic classification of 

V. dahliae infection and severity was assessed using high-resolution thermal and 

hyperspectral imagery acquired with a manned platform over a 3,000-ha commercial olive 

area in one single flight. Linear discriminant analysis (LDA) and support vector machine 

(SVM) classification methods were applied to discriminate among Verticillium wilt 

severity levels exploiting the combined information of the canopy temperature and 

physiological indices calculated from the imagery. LDA reached an overall accuracy of 

59.0% and a kappa coefficient (κ) of 0.487, while SVM obtained a higher overall 

accuracy, 79.2%, with a similar κ, 0.495. However, LDA better classified trees at initial 

and low severity levels, reaching accuracies of 71.4 and 75.0%, respectively, in 

comparison with the 14.3 and 40.6% obtained by SVM. Canopy temperature, FLD3, 

structural, xanthophyll, chlorophyll, carotenoid and disease indices were found to be the 
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best indicators for early and advanced stage infection by Verticillium wilt. Comparing 

with the results obtained at orchard scale, canopy temperature and chlorophyll 

fluorescence FLD3 allowed identifying olive trees at the early stages of disease 

development as much at orchard scale as at larger scale, being not influenced by the 

variation of agronomic characteristics within the study area. Structural indices, 

xanthophyll, chlorophyll, carotenoid and disease indices and blue/green/red ratios proved 

to be good indicators to detect the presence of moderate to severe damage caused by 

Verticillium wilt at both scales. 

This work proved the potentials for the early detection of V. dahliae infection in 

olive trees using thermal and hyperspectral airborne imagery in order to design focalized 

Verticillium wilt control strategies at orchard level and at larger scales. 
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CHAPTER 1: Introduction 

ontemporary agriculture faces an enormous challenge: a rising demand of crop 

production that guarantee future food security (Fereres et al., 2011). By 2050, 

crop production need to be increased by 70-110% (FAO, 2011; Tilman et al., 2011) to 

meet this increasing demand caused by the population growth, dietary changes (especially 

meat consumption) and increasing bioenergy use (Godfray et al., 2010; Foley et al., 

2011). Numerous authors have suggested that increasing crop yields, rather than clearing 

more land for food production, is the most sustainable path for food security (Godfray et 

al,. 2010; Foley et al., 2011; Phalan et al., 2011). In this sense, crop protection plays a 

very important role in the reduction of yield losses caused by pests (weeds, animal pests 

and pathogens), which are responsible for losses ranging between 20 and 40% of global 

agricultural productivity (Teng, 1987; Oerke, 2006). The impacts of pests on yield are 

well known, however, the appearance of climate change on scene has made the study of 

these impacts be more complex and important than ever (Newton et al., 2011). Higher 

temperatures, increasing levels of carbon dioxide, water limitation and quality may all 

affect existing pests, increasing the incidence of some of them and reducing the incidence 

of others (Gregory et al., 2009; Newton et al., 2011). 

Precise disease control is a demanding challenge within precision agriculture in 

order to achieve high yields in agricultural crop systems while reducing the costs and the 

environmental impact of pesticide use. Therefore, the early detection of plant diseases in 

the field (before the onset of disease symptoms) could be a valuable source of information 

for executing proper disease management strategies and disease control measures to 

prevent the development and the spread of plant pathogens (Bock et al., 2010; Mahlein et 

al., 2012). However, conventional methods of detection rely on visual inspection of 

disease symptoms in the field, which is time-consuming and expensive and often results 

in detection after the optimum time for control has passed (Steiner et al., 2008). 

Furthermore, diseases as well as abiotic stress conditions are commonly heterogeneous in 

time and space in a production field. Thus, site-specific disease management has to be 

assessed by detailed recording of spatial distribution and disease development, requiring 

large-scale and geo-referenced monitoring of diseases in the crop for precise timing and 

application of control measures (Nutter et al., 2010). Consequently, precise and time-

saving methods are essential for disease monitoring (detection, identification and 

quantification). Therefore, in the last decade remote sensing methods have made progress 

in order to provide useful tools to detect disease symptoms at early stages of development 

and spatial heterogeneities due to pathogens at canopy scale (Bock et al., 2010; Nutter et 

al., 2010; Mahlein et al., 2012). The early detection of within-field differences in crop 

status or growth conditions caused by diseases would enable the farmer to streamline 

input factors thereby optimizing his profit margin, while simultaneously improving the 

overall stability of the agro-system. 
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1.1  Olive crop 

Olive (Olea europaea L.) is the most cultivated non-tropical fruit tree in the world, 

with an estimation of 865 million trees in production (IOC, 2013). Olive trees grow in a 

cultivated area of 10 million ha and produce an annual average of 14 million t of olives, 

which has increased during the last decade at an annual average rate of 4% (FAO, 2012; 

IOC, 2013). Olive oil is the main commodity of this crop with the 90% of total 

production, while the other 10% is assigned to table olives. Olive is one of the most 

important crops in the Mediterranean Basin that represents the 95% of the world 

production (Figure 1.1). Spain is the leading olive-producing country, comprising in 2012 

the 24% of the world olive area, 44% of the olive oil production and 21% of the table 

olives production (FAO, 2012; IOC, 2013) (Figure 1.1). Andalucía, at southern Spain 

accounts for the 60% of the Spanish olive area and the 80% of the Spanish olive oil 

production (Consejería de Agricultura y Pesca, 2012) (Figure 1.1). 

Due to the easy vegetative propagation of this species, most olive cultivars were 

selected many centuries ago in the same area as they are grown nowadays, probably 

starting by crosses between local wild olives and newly introduced cultivars from the 

Near East (Berlaj et al., 2010; Besnard et al., 2013). Therefore, high cultivar diversity is 

common in traditional olive producing countries (Rallo, 2005). The olive cultivars 

currently cultivated were selected mainly for their high oil content, high productivity and 

large fruit size (Rallo, 2005). In Spain, 262 different cultivars were identified (Barranco, 

1995) but only 24 were classified as major cultivars due to the large portion of the acreage 

or the predomination in one or more olive districts (Barranco and Rallo, 2000). Most of 

the major cultivars are used for olive oil, highlighting cv. ‘Picual’, ‘Hojiblanca’ and 

‘Arbequina’ which comprised the 37.7, 9.5 and 3.1% of the Spanish olive surface, 

respectively (Barranco, 2008). ‘Picual’ is the main cultivar because of its many favorable 

agronomic characteristics, such as early bearing, high yield, low fruit removal force 

facilitating mechanical harvesting, and high adaptability to different environmental 

conditions (Barranco, 2008). ‘Hojiblanca’ is characterized by high yield, late bearing, 

large fruit size, tolerance to chalky soils and drought and high oil quality (Barranco, 

2008). ‘Arbequina’ is increasing in acreage in intensive plantings, due to its low vigor, 

very early bearing, high productivity and high oil content and quality (Barranco, 2008). 

 

1.2. Verticillium wilt of olive 

Verticillium wilt of olive trees is the most limiting disease of this crop worldwide 

and is caused by the soil-borne fungus Verticillium dahliae Kleb (Tsror, 2011; Jiménez-

Díaz et al., 2012). This pathogen is able to infect more than 200 plant species, including 

most vegetables, flowers, fruit trees, field crops and shade and forest trees (Pegg and 
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Brady, 2002; Klosterman et al., 2009). In Spain, V. dahliae was firstly detected infecting 

cotton in the Guadalquivir valley (Blanco-López et al., 1984) in the early 1980s, but 

during the following decades it spread to affect newly established irrigated crops 

(Sánchez-Hernández et al., 1998; Jiménez-Díaz et al., 2011). Thus, this pathogen is 

currently a problem on a wide range of crops in several areas of Spain, but olive is the 

most affected host (López-Escudero and Mercado-Blanco, 2011; Jiménez-Díaz et al., 

2012). In 2014, Verticillium wilt of olive accounted for a mean incidence of 0.3%, but in 

some provinces it reached more than 0.6% with more than 40% of affected orchards (Ruiz 

Torres, 2015). In the last decade, the spread of Verticillium wilt in olive trees has been 

associated with the expansion of olive cultivation and changes in cropping practices 

aimed at increasing yields (Jiménez-Díaz et al., 2011). Such changes include the use of 

self-rooted planting stocks to establish high-density plantings, drip irrigation, reduced or 

no tillage, and high inputs of fertilizer in newly cultivated soils or fertile soils (Villalobos 

et al., 2006) previously cropped with plants susceptible to V. dahliae, such as cotton 

(Jiménez-Díaz et al., 2011). 

Figure 1.1. (a) Olive-producing countries in the world. (b) Olive area in Spain by provinces. (c) Olive 

distribution in Andalucía (Picture source: R. Calderón). 
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V. dahliae can be found in agricultural soils as long-lasting surviving structures 

called ‘microsclerotia’, which can survive for up to 15 years (DeVay et al., 1974) (Figure 

1.2). These structures germinate multiple times in response to root exudates (Schreiber 

and Green, 1963) and favorable soil environmental conditions, forming hyphae that 

penetrate into the plant roots and grow into the root cortex until reach the xylem vessels 

(Figure 1.2). The rapid upward spread of the pathogen in vascular tissues occurs primarily 

through conidia transported with the transpiration stream (Talboys, 1962) (Figure 1.2). As 

a result of xylem colonization, water flow decreases inducing water stress which is mainly 

responsible for the vascular wilt syndrome caused by V. dahliae (Ayres, 1978). The first 

Verticillium wilt symptoms in irrigated olive trees growing in V. dahliae-infested 

orchards develop 18-24 months after plantation, depending on the density of pathogen 

propagules in the soil, the V. dahliae pathotype prevailing in the soil, the olive cultivar 

susceptibility and the environmental conditions (Navas-Cortés et al., 2008). In the 

Mediterranean region, over an annual cropping season, disease incidence and symptom 

severity typically increase from late autumn-early winter to spring and sharply decrease in 

summer, with no further development until the next autumn (Navas-Cortés et al., 2008). 

 

Figure 1.2. Biological cycle of the soil-borne fungus Verticillium dahliae in olive trees (Composition: R. 

Calderón, pictures: R.M. Jiménez-Díaz). 
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Severity of attacks by V. dahliae depends on the virulence of pathogen isolates, 

which can be classified into defoliating (D) and non-defoliating (ND) based on their 

ability to cause defoliation or no defoliation of green leaves from shoots and twigs 

(Navas-Cortés et al., 2008; Jiménez-Díaz et al., 2012). The D pathotype is highly virulent 

and able to completely kill an olive tree, especially when it is young (López-Escudero and 

Mercado-Blanco, 2011) (Figure 1.3a). The ND pathotype is moderate or low virulent, 

although it has also been associated with wilting and death of olive trees (López-Escudero 

and Mercado-Blanco, 2011) (Figure 1.3b). The success of the pathogen colonization and 

the subsequent symptom development depends on the genetic resistance level of the host 

plant (Yadeta and Thomma, 2013). Therefore, planting resistant cultivars of olive is the 

most effective measure for controlling and limiting the spread of Verticillium wilt 

(Jiménez-Díaz et al., 2012). However, the most widely used olive cultivars in Spain (i.e., 

Picual and Arbequina) have been found to be highly susceptible and susceptible to D 

pathotype, respectively, and susceptible and moderately resistant to ND pathotype, 

respectively, under controlled conditions in artificial inoculation tests (López-Escudero et 

al., 2004) (Figure 1.3c, d). 

Current importance of Verticillium wilt is due to the severity of the infections, the 

long-term persistence in the field, the easy spread of the pathogen within and among 

orchards and the inefficacy of chemical compounds in controlling the disease (López-

Escudero and Mercado-Blanco, 2011). Therefore, an integrated disease management 

strategy is the best way to manage the disease, combining the use of preplanting and 

postplanting control measures (Tjamos and Jiménez-Díaz, 1998). Preplanting disease 

control measures include: (i) site selection to avoid planting into high risk soils (Figure 

1.3e, f); (ii) use of V. dahliae–free planting material; (iii) reduction or elimination of V. 

dahliae inoculum in soil; (iv) protection of healthy planting material from infection by 

residual inoculum in soil; and (v) use of resistant cultivars and rootstocks. Postplanting 

control measures are: (vi) cultural practices; (vii) soil solarization; and (viii) organic or 

biological amendments. 

 

1.3. Remote sensing for the detection of soil-borne plant 

pathogens 

Remote sensing has been used to detect, monitor and quantify a range of diseases in 

different crops. Comprehensive reviews on the application of remote sensing to the 

detection of plant diseases are available (e.g., Nilsson, 1995; Bock et al., 2010; Sankaran 

et al., 2010; Mahlein et al., 2012). Most studies have focused on foliar pathogens in 

annual crops, where disease symptoms are mainly characterized by distinct color changes 
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Figure 1.3. (a) Intense defoliation and large amount of fallen green leaves associated with infection by D V. 

dahliae. (b) Symptoms associated with infection by ND V. dahliae. Note olive branches with dried, necrotic 

leaves that remain attached to the symptomatic branch. (c) Death of a 3-years-old irrigated olive cv. 

Arbequina infected by V. dahliae. (d) Sectorial necrosis of branches and shoots in a 15-years-old rainfed olive 

cv. Picual infected by V. dahliae. (e) Verticillium wilt affected olive orchard located next to a cotton field. 

Note the patchy occurrence of symptoms due to the low mobility in the field of V. dahliae. (f) Olive orchard 

with Verticillium wilt infected trees showing nonrandom distribution (Picture source: (a,b) Navas-Cortés et 

al. 2008, (c,d,e,f) Lucena et al. 2009). 
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in the aerial parts of the plant. However, this technology is still poorly developed for 

detection of soil-borne plant pathogens. 

 

 

Figure 1.4. Leaf reflectance of olive trees infected by Verticillium dahliae (Source: Calderón et al., 2014). 

Remote sensing for the detection of damage caused by soil-borne plant pathogens is 

the best-fit technology for optimization of integrated disease management (Bock et al., 

2010; Hillnhüter et al., 2010; Sankaran et al., 2010; Mahlein et al., 2012). Soil-borne 

pathogens parasitize the plant roots, disrupting the xylem vessels and reducing nutrient 

and water uptake. Therefore, this damage results in a change of spectral reflectance due to 

a significant reduction in leaf transpiration rate which leads to a decline characterized by 

leaf chlorosis and defoliation (Hillnhüter et al., 2010) (Figure 1.4). Chlorophyll content 

tends to decrease in infected plants, showing a higher reflectance in the visible (VIS) 

green (550 nm) and red-edge (650-720 nm) regions that is correlated with the severity of 

symptoms (Figure 1.4). Stressed plants also show a drop in canopy density and leaf area 

that leads to a decrease of spectral reflectance in the near-infrared (NIR) range (680-800 

nm) (Figure 1.4). In addition, thermal-infrared (TIR) region (8000-15000 nm) is highly 

suitable for the detection of soil-borne pathogen infection due to the decrease in 

transpiration rate that increases canopy temperature. Considering these changes in the 

spectrum of infected plants, disease symptoms could be detected remotely in the VIS, red 

edge, NIR and TIR regions. In addition, these symptoms usually appear in long-term 
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stable and clearly delineated patches in the field which makes the use of remote sensing 

even more suitable for site-specific disease management to prevent yield losses 

(Hillnhütter et al., 2010; Mahlein et al., 2012). 

Nowadays, remote sensing has several platforms which are able to provide 

information of the vegetation, such as satellites, manned and unmanned airborne 

platforms. However, the choice of the platform will influence the spatial, spectral and 

temporal resolution of the imagery acquired. Therefore, due to the high spatial and 

spectral resolution required for crop management (e.g., disease detection), the selection of 

the platform is of vital importance. Current satellite-based imagery has limited application 

in crop management due to the low spatial and spectral resolutions provided and the lack 

of high resolution satellite thermal imagery. In particular, high spatial resolution imagery 

acquired in the visible and near infrared regions is relatively feasible with current airborne 

and satellite sensors. By contrast, thermal imaging is still limited to medium-resolution 

sensors due to the technical limitations of micro-bolometer technology (Berni et al., 

2009a). As an example, the Landsat Data Continuity Mission (LDCM) launched in 

February 2013 delivers two thermal infrared bands at 100 m resolution. Although it is 

useful for certain global monitoring studies, the low resolution of the thermal bands is a 

clear limitation for precision agriculture applications, such as disease detection and 

monitoring. Alternatives based on manned airborne platforms have demonstrated 

capabilities for vegetation condition monitoring due to the high spatial resolution used 

(0.5-2 m pixel sizes). However, their use is limited because of their high operational costs 

in some cases (Berni et al., 2009b). Remote sensors on board unmanned aerial vehicle 

(UAV) platforms provide sub-meter spatial resolution (Herwitz et al., 2004; Sugiura et 

al., 2005; Berni et al., 2009b). This allows retrieving of pure canopy temperature and 

reflectance, thus minimizing background and shadow effects. 

Sensors installed on board the different platforms are able to measure the 

electromagnetic radiance reflected (spectral sensors) and/or emitted (thermal sensors) by 

the earth’s surface. The first aerial images of damage caused by a soil-borne plant disease 

were made in 1927 when Taubenhaus et al. (1929) took pictures from an US Army 

airplane to detect symptom development of cotton root rot caused by Phymatotrichum 

omnivorum. Once the use of aerial photography was established as a technique, infrared 

(IR) cameras were developed and available for experimentation. The first use of IR 

imagery for detection of soil-borne plant diseases was conducted in the early 1960s by 

Norman and Fritz (1965) to detect the nematode Radophoulus similis in citrus trees before 

visible symptom development. Heald et al. (1972) took IR aerial images of cotton fields 

to detect the nematode Rotylenchulus reniformis as well as early symptoms of Phym. 

omnivorum root rot. A sugar beet field study using IR picture was conducted by Schmitz 

et al. (2003) to detect infection of the nematode Heterodera schachtii by supervised 

classification methods. The use of airborne multispectral sensors in the detection of 
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diseases caused by soil-borne pathogens was firstly assessed by Brodrick et al. (1971) 

who identified avocado trees infected with Phytophthora cinnamomi root rot with an 

accuracy of 100%, even at initial disease severity level, while IR film only showed an 

accuracy of 80%. Multispectral sensors have a combination of three or more 

spectroradiometers so that each sensor record one scene of a small band which are then 

combined to obtain the multispectral image. Other examples of the use of multispectral 

imagery for the detection and evaluation of diseases caused by soil-borne pathogens 

include creeping bentgrass affected by Rhizoctonia blight infected by Rhizoctonia solani 

(Raikes and Burpe, 1998); interaction between the root-knot nematode Meloidogyne 

incognita and root rot due to Phym. omnivorum in kenaf (Cook et al., 1999); the 

nematode Heterodera glycines in soybean fields (Nutter et al., 2002); soybean root rot 

caused by Fusarium spp. (Wang et al., 2004); and Fusarium head blight in winter wheat 

(Dammer et al., 2011). 

In the last decade, technological advances in spectral sensors development, in 

particular progress from multispectral broadband sensors to hyperspectral narrowband 

sensors, have drastically increased the quantity and quality of information on the spectral 

characteristics of the canopy surface that can be used to detect and quantify disease 

symptoms (Schowengerdt, 1997). These devices provide information over a wide spectral 

range (350-2500 nm), obtaining a spectral resolution up to <1 nm (Bock et al., 2010). 

Typically, hyperspectral images consist of hundreds of registered and contiguous spectral 

bands such that for each pixel it is possible to derive a complete reflectance spectrum. 

Hyperspectral reflectance enabled the detection of disease symptoms of the nematodes 

Globodera pallida and Globodera rostochinensis in potato plants (Heath et al., 2000), 

root rot caused by Rhizoctonia solani in sugar beet at field conditions (Laudien et al., 

2004; Reynolds et al., 2012) and the co-infection of sugar beet with this pathogen and the 

plant parasitic nematode Heterodera schachatii (Hillnhütter et al., 2011, 2012), 

Verticillium dahliae (Chen et al., 2008, 2011) and the nematode Rotylenchulus reniformis 

(Lawrence et al., 2004) infecting cotton at field conditions as well as Fusarium head 

blight in wheat (Bauriegel et al., 2011). Nevertheless, only relatively recently have 

hyperspectral sensors been explored for the detection and quantification of diseases 

caused by soil-borne pathogens, especially at the near-range scale (leaf, plants or small 

quadrats) (Heath et al., 2000; Chen et al., 2008, 2011; Bauriegel et al., 2011; Hillnhütter 

et al., 2012; Reynolds et al., 2012). Up to now, few studies have successfully detected 

and quantified these plant diseases at canopy level using airborne hyperspectral sensors 

(Laudien et al., 2004; Lawrence et al., 2004; Hillnhütter et al., 2011). 

Leaf temperature results from the incoming radiation, the water status of the plant 

and the functionality of the epidermal layer (cuticle and stomata) to regulate the 

transpiration of leaves, as well as from environmental conditions like air temperature, 

relative humidity and wind speed (Jones, 1992). As leaf temperature is negatively 
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correlated to transpiration rate form the canopy surface (Inoue et al., 1990), TIR sensing 

of the canopy temperature can be used to monitor the transpiration rate of plants (Jones, 

1999). Infections by soil-borne pathogens causing vascular wilt diseases affect the water 

uptake of plants, inducing the stomatal closure which reduces the transpiration rate. In 

turn, this decreases evaporative cooling and increases leaf temperature (Jones, 2004). 

Therefore, thermal imagery has shown to be particularly useful to detect root infection 

and vascular colonization by soil-borne pathogens that lead to water stress symptoms. 

Thermal imagery has potential for use in early disease detection, even prior to the 

appearance of visual symptoms, which is very important for efficient and environmentally 

friendly disease control methods that can be used to reduce the quantity and quality of 

yield losses (Oerke and Steiner, 2010). Thermal sensors are used to quantify the 

temperature, being able to measure the radiance emitted by a surface in the TIR range of 

the spectrum between 8 and 15 µm. The first experiment using IR thermometry on the 

detection of biological stress in plants infected by soil-borne pathogens was conducted by 

Pinter et al. (1979), who found foliar temperatures 3-5 ºC higher than those of healthy 

plants in sugar beet and cotton infected by Pythium aphanidermatum and Phym. 

omnivorum, respectively. Other examples of the use of leaf temperature include beans 

infected by Fussarium solani, Pythium ultimum or R. solani (Tu and Tan, 1985); soybeans 

affected by brown stem rot caused by Phialophora gregata (Mengistu et al., 1987); wheat 

with moderate take-all symptoms caused by Gaeumannomyces graminis var. tritici 

(Nilsson, 1991); the flag leaf temperature of cereals with root and vascular diseases, such 

as barley infected by Pyrenophora graminea and wheat infected by Cephalosporium 

gramineum (Nilsson, 1995); and oil seed rape plants infected by V. dahliae, which 

exhibited leaf temperatures 5-8 ºC higher than non-infected plants (Nilsson, 1995). The 

use of hand-held thermometers in the previous examples provide no spatial information, 

so their use is limited because of influences of environmental conditions like sunlight, 

wind, soil, etc. Thus, the development of thermal imaging systems has increased 

considerably the potential of IR thermography in plant stress detection due to the 

assessment of spatial heterogeneities on various scales, from the leaf level to canopies 

(Oerke and Steiner, 2010). Thermal imagery was used to detect significantly higher 

canopy temperatures in wheat soils moderately infested by Heterodera avenae as 

compared to low infestations (Nicolas et al., 1991). Schmitz et al. (2004) were able to 

differentiate between sugar beet varieties susceptible and resistant to the nematode H. 

schachtii by using aerial thermal imagery. 

However, as occurred with hyperspectral sensors, most of the studies of detection of 

diseases caused by soil-borne pathogens with thermal sensors were conducted in terms of 

near remote sensing with ground based-equipment at leaf and quadrat level (Pinter et al., 

1979; Tu and Tan, 1985; Mengistu et al., 1987; Nicolas et al., 1991; Nilsson, 1991, 

1995). Yet, to the best of our knowledge, airborne thermal cameras have been only used 
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to detect temperature differences in sugar beet infected by H. schachtii (Schmitz et al., 

2004). 

The ability to identify diseases at early stages and to quantify severity accurately is 

crucial in plant disease assessment and management. Spectral remote sensing has been 

extensively used to early detect diseases caused by soil-borne pathogens as much at near-

range scale as at canopy scale (i.e., Chen et al., 2008, 2011; Hillnhütter et al., 2011). 

Nevertheless, TIR remote sensing only has been employed to early detect and quantify 

root rot in bean at leaf level with IR-thermometers (Tu and Tan, 1985). Despite that, 

thermal imagery has been widely used to early detect water stress in different crops 

(Leinonen and Jones, 2004; Cohen et al., 2005; Sepulcre-Cantó et al., 2006, 2007; Berni 

et al., 2009a; Zarco-Tejada et al., 2012). Thus, taking into account the water stress 

induced by soil-borne pathogen infection, thermal imagery has poorly taken advantage of 

the early detection of this kind of diseases. Up to now, no studies have been conducted to 

study olive tree diseases using spectral and thermal remote sensing. 

 

 1.4. Early detection of wilting stress using remote sensing 

Verticllium dahliae penetrates into the plant roots, bloquing water flow and reducing 

the transpiration rate which eventually induced water stress (Ayres, 1978). The early 

detection of water stress is a key issue to avoid yield losses due to plant pathogens (Hsiao 

et al., 1976). It is well known that severe water deficits affect many physiological 

processes and have a strong impact on crop yield (Hsiao et al., 1976). However, even 

moderate water deficits, which are not easy to detect, can also have important negative 

effects on yield (Hsiao and Bradford, 1983). Water stress in plants caused by either 

infection by soil-borne wilting pathogens or drought-induced stomatal closure reduces the 

transpiration rate. In turn, this decreases evaporative cooling and increases leaf 

temperature. Remote sensing has successfully proved the early detection of water stress in 

the past using TIR radiation (Jackson et al., 1977, 1981; Idso et al., 1978, 1981; Jackson 

and Pinter, 1981). Thermal remote sensing of water stress has been fulfilled using 

spectrometers at ground level (Jackson et al., 1977, 1981; Idso et al., 1978, 1981), 

thermal sensors at image level (Leinonen and Jones, 2004; Cohen et al., 2005; Sepulcre-

Cantó et al., 2006, 2007; Berni et al., 2009a; Zarco-Tejada et al., 2012) and satellite 

thermal imagery (Sepulcre-Cantó et al., 2009). Working with hand-held infrared 

thermometers on herbaceous crops, Jackson and co-workers (Idso et al., 1978; Jackson et 

al., 1981) developed the Crop Water Stress Index (CWSI), which became a standard 

thermal-based stress indicator. The CWSI is based on the normalization of differences 

between canopy (Tc) and air temperature (Ta) with evaporative demand (by means of the 

vapor pressure deficit of the air).  



 

  14 

 

Apart from the progress made in water-stress detection using the thermal region, the 

VIS part of the spectrum has also been useful for early water stress detection. This 

involves using indices focused on bands located at specific wavelengths where 

photosynthetic pigments are affected by stress conditions. In the past, several indicators 

related with structural changes in the vegetation such as wilt or loss of foliar area 

(Broadford and Hsiao, 1982; Wolfe et al., 1983) and the estimation of the decrease in 

biochemical components such as chlorophyll (Björkman and Powles, 1982) or water 

(Peñuelas et al., 1993, 1997; Gao, 1996) only detected water stress at advanced stages 

when the symptoms were visible. On the other hand, nowadays two spectral indicators of 

water stress, spanning from initial through severe symptoms, are widely used. One is the 

Photochemical Reflectance Index (PRI) (Gamon et al., 1992). This index is sensitive to 

the epoxidation state of the xanthophyll cycle pigments and to photosynthetic efficiency, 

serving as a proxy for water stress detection (Thenot et al., 2002; Peguero-Pina et al., 

2008; Suárez et al., 2008, 2009, 2010). The PRI has been used to assess pre-visual water 

stress al leaf level (Thenot et al., 2002; Winkel et al., 2002), at canopy level (Evain et al., 

2004; Dobrowsky et al., 2005; Peguero-Pina et al., 2008; Sun et al., 2008) and using 

airborne imaging spectroscopy (Suárez et al., 2008, 2009, 2010). Despite the successful 

results obtained with PRI as a proxy for photosynthesis, some studies have shown that 

this index is highly affected by the canopy structure, leaf pigments and background 

(Suarez et al., 2008, 2009). 

Another indicator of water stress is solar-induced chlorophyll fluorescence emission 

(Flexas et al., 1999, 2000, 2002; Zarco-Tejada et al., 2009, 2012), because of the strong 

relationship found between steady-state chlorophyll fluorescence (Fs) and the reduced 

assimilation caused by water stress conditions. Chlorophyll fluorescence is associated 

with photosynthesis and other physiological processes, as demonstrated consistently in 

laboratory studies (e.g., Papageorgiu, 1975; Krause and Weis, 1984). Water-stressed 

plants dissipate a fraction of the excess of intercepted radiation as heat while the other 

fraction is re-emitted as fluorescence light with well-defined wavelength characteristics. 

Fs is emitted in two broad and overlapping bands with peaks at 690 and 740 nm. At early 

stages of water stress, the plant increases the dissipation of energy as heat, reducing Fs 

(Yahyaoui et al., 1998). Thus, the detection of the decrease in Fs could be useful to 

determine the level of stress. Over the last few years, scientific interest in Fs obtained 

under natural outdoor conditions has increased due to its potential development using 

remote sensing methods (Soukupová et al., 2008). The main problem for the detection of 

Fs relies on the small contribution of fluorescence to the vegetation’s radiance signal (2-

3% of the radiance), its mixture with the surface reflectance and the influence of 

atmospheric effects. It results in a light increase of the detected radiance and, therefore, of 

the canopy reflectance. One approach for the detection of Fs is based on the observation 

of those regions of the spectrum which shows a high atmospheric absorption. In these 

bands, known as Fraunhofer lines, the incoming solar radiation reaching the Earth surface 
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is minor, so that the reflected radiance is mainly caused by the fluorescence. The 

Fraunhofer lines are: the Hα line at 656.3 nm is due to the hydrogen absorption by the 

solar atmosphere whereas two bands at 687nm (O2-B) and 760 nm (O2-A) are due to the 

molecular oxygen absorption by the terrestrial atmosphere. Specially the O2-A and O2-B 

bands overlap with the chlorophyll fluorescence emission spectrum and are wide enough 

to allow quantifying fluorescence at the leaf and canopy levels with very narrow spectral 

bands (Meroni et al., 2008a, 2008b, 2009; Pérez-Priego et al., 2005). This method is 

called “in-filling” and recent studies (Zarco-Tejada et al., 2009) used 1 nm FWHM (full-

width at half-maximum) airborne multispectral imagery acquired over crops for early 

stress detection, showing the feasibility of mapping fluorescence at 40 cm resolution 

using micro-hyperspectral imager on board an UAV (Zarco-Tejada et al., 2012). The 

modeling study conducted by Zarco-Tejada et al. (2009) showed that the fluorescence 

using in-filling methods were little affected by structural changes of the canopy such as 

leaf area density. 

According to these advances obtained in the early detection of water stress, canopy 

temperature, PRI and Fs may be useful indicators for the early detection of the water 

stress induced by V. dahliae infection in olive trees. 
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CHAPTER 2: Objectives 

ue to the reasons explained in Chapter 1, the early detection of Verticillium 

dahliae infection in olive would help to avoid the spread of the pathogen into 

new areas, especially if they are free of V. dahliae, and to improve the efficiency of 

available control measures. Therefore, the main objective of this Thesis was to evaluate 

the use of high-resolution thermal and hyperspectral remote sensing imagery as a tool to 

detect Verticillium wilt infection and severity in olive orchards and larger areas. In 

addition, the effect of soil temperature on Verticillium wilt development was assessed in 

order to determine the effects of this environmental factor on disease development and the 

feasibility of related stress parameters used in the remote sensing studies to detect V. 

dahliae infection in a range of biological combinations of pathogen and plant genotypes 

interactions. These results could be of use to better understanding the differential 

geographic distribution of V. dahliae pathotypes and to assess the potential effect of 

climate change on the development of Verticillium wilt of olive under future climate 

change scenarios. 

Thus, the following specific objectives were identified: 

1. To quantify the combined effects of biotic factors (Verticillium dahliae-pathotype 

virulence and olive-cultivar susceptibility) and abiotic factors (soil temperature) 

on the development of Verticillium wilt and olive tree growth. 

2. To determine the relationship between stress indicators including several remote 

sensing parameters and Verticillium wilt severity at leaf level. 

3. To evaluate the use of high-resolution thermal imagery and physiological indices 

calculated from hyperspectral imagery as indicators of Verticillium wilt infection 

and severity in olive orchards. 

4. To develop a robust and accurate method for the automatic detection of V. 

dahliae infection and severity in olive growing areas using remote sensing at 

large scale. 

 

2.1.  Outline of the thesis 

This Thesis is presented as chapters, each one dealing with the objectives previously 

described. 
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Chapter 3 approaches objectives 1 and 2. In a first phase, the effect of soil 

temperature on Verticillium wilt development caused by defoliating (D) and non-

defoliating (ND) V. dahliae pathotypes in olive cultivars (cv.) Picual and Arbequina was 

explored. In a second stage, several parameters related with stress (i.e., temperature, 

steady-state chlorophyll fluorescence Fs, photochemical reflectance index PRI, 

chlorophyll content and ethylene production) were periodically measured at leaf level to 

assess the stress caused by V. dahliae in olive plants at different soil temperatures and the 

relationship between such parameters and disease severity. To achieve this, olive plants of 

cv. Arbequina and cv. Picual grew in soil infested by the D or ND pathotypes of V. 

dahliae under controlled conditions in soil tanks with a range of soil temperatures from 16 

to 32 ºC. This chapter has been published in the research journal PLoS ONE: 

Calderón, R., Lucena, C., Trapero-Casas, J. L., Zarco-Tejada, P. J., & 

Navas-Cortés, J. A. (2014). Soil Temperature Determines the Reaction 

of Olive Cultivars to Verticillium dahliae Pathotypes. PLoS ONE 

9(10):e110664, DOI: 10.1371/journal.pone.0110664 

Chapter 4 attends to objective 3, focusing on the evaluation of canopy temperature 

and physiological indices (chlorophyll fluorescence, structural, xanthophyll, chlorophyll 

a+b, carotenoids and blue/green/red indices) calculated from high-resolution thermal, 

multispectral and hyperspectral imagery for the early detection of water stress caused by 

Verticillium dahliae infection and disease severity in two olive orchards with different 

agronomic characteristics. To attain this, time series of airborne thermal, multispectral 

and hyperspectral imagery was acquired with unmanned aerial vehicles (UAVs) in three 

consecutive years and related to Verticillium wilt severity at the time of the flights. In 

addition, field measurements at leaf and tree-crown levels were conducted in one of the 

olive orchards to support the results obtained from imagery and to confirm that these 

results are due to Verticillium wilt and not simply influences by structural effects driven 

by the water stress induced by V. dahliae infection. This chapter has been published in the 

research journal Remote Sensing of Environment: 

Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. 

(2013). High-resolution airborne hyperspectral and thermal imagery 

for early detection of Verticillium wilt of olive using fluorescence, 

temperature and narrow-band spectral indices. Remote Sensing of 

Environment 139:231-245. 

Chapter 5 addresses objective 4 and proposes a methodology for the automatic 

classification of V. dahliae infection and severity of disease symptoms using high-

resolution thermal and hyperspectral imagery acquired with a manned platform over a 

3,000-ha commercial olive area. Linear discriminant analysis (LDA) and support vector 
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machine (SVM) classification methods were assessed to discriminate among Verticillium 

wilt severity levels exploiting the combined information of the canopy temperature and 

physiological indices calculated from the imagery. This work completed the previous one 

conducted in Chapter 4 at orchard scale, extrapolating the methods to larger areas 

comprising several olive orchards differing in soil and crop management characteristics. 

This chapter has been published for publication in the research journal Remote Sensing: 

Calderón, R., Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2015). Early 

detection and quantification of Verticillium wilt in olive using 

hyperspectral and thermal imagery acquired by manned platforms 

at large scale. Remote Sensing 7(5):5584-5610, DOI: 

10.3390/rs70505584. 

Chapter 6 summarizes the conclusions of each chapter and the general conclusions 

of this Thesis.  
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CHAPTER 3: Soil temperature determines the reaction of 

olive cultivars to Verticillium dahliae 

pathotypes 

Resumen 

ntecedentes: El desarrollo de la Verticilosis en olivo, causada por el hongo de 

suelo Verticillium dahliae, puede estar influenciado por factores bióticos y 

abióticos. En este estudio se demostraron i) los efectos combinados de los factores 

bióticos (i.e., virulencia de patotipo y susceptibilidad de cultivar) y abióticos (i.e., 

temperatura de suelo) en el desarrollo de la enfermedad y ii) la relación entre la severidad 

de la enfermedad y varios parámetros de teledetección e indicadores de estrés de la planta. 

Metodología: Las plantas de olivo de los cultivares Arbequina y Picual se 

inocularon con aislados de los patotipos de V. dahliae defoliante y no defoliante y se 

cultivaron en tanques de suelo con temperaturas de 16 a 32ºC. La evolución de la 

enfermedad se correlacionó con parámetros de estrés de la planta (i.e., temperatura foliar, 

fluorescencia clorofílica en estado estacionario, photochemical reflectance index, 

contenido de clorofila, y producción de etileno) y parámetros relacionados con el 

crecimiento de la planta (i.e., longitud de cubierta y peso seco). 

Resultados: El desarrollo de la enfermedad en plantas infectadas por el patotipo 

defoliante fue más rápido y severo en Picual.  Los modelos estimaron que la infección por 

el patotipo defoliante fue favorecida por temperaturas de suelo de 16 a 24ºC en cv. Picual 

y de 20 a 24ºC en cv. Arbequina. En el patotipo no defoliante, temperaturas de suelo de 

16 a 20ºC fueron las más favorables para la infección. La relación entre los parámetros 

relacionados con el estrés y la severidad de la enfermedad determinada por regresión 

logística multinomial y árboles de clasificación fue capaz de detectar los efectos de la 

infección por V. dahliae y la colonización del flujo de agua que finalmente causa estrés 

hídrico. 

Conclusiones: El contenido de clorofila, la fluorescencia clorofílica en estado 

estacionario, y la temperatura foliar fueron los mejores indicadores para la detección de la 

Verticilosis en etapas tempranas del desarrollo de la enfermedad, mientras que la 

producción de etileno y el photochemical reflectance index fueron indicadores para la 

detección de la enfermedad en etapas avanzadas. Estos resultados aportan una mejor 

comprensión de la distribución geográfica diferencial de los patotipos de V. dahliae y 

evalúan el efecto potencial del cambio climático en el desarrollo de la Verticilosis. 
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Abstract 

ackground: Development of Verticillium wilt in olive, caused by the soil-

borne fungus Verticillium dahliae, can be influenced by biotic and 

environmental factors. In this study we modeled i) the combined effects of biotic factors 

(i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil 

temperature) on disease development and ii) the relationship between disease severity and 

several remote sensing parameters and plant stress indicators. 

Methodology: Plants of Arbequina and Picual olive cultivars inoculated with 

isolates of defoliating and non-defoliating V. dahliae pathotypes were grown in soil tanks 

with a range of soil temperatures from 16 to 32ºC. Disease progression was correlated 

with plant stress parameters (i.e., leaf temperature, steady-state chlorophyll fluorescence, 

photochemical reflectance index, chlorophyll content, and ethylene production) and plant 

growth-related parameters (i.e., canopy length and dry weight). 

Findings: Disease development in plants infected with the defoliating pathotype was 

faster and more severe in Picual. Models estimated that infection with the defoliating 

pathotype was promoted by soil temperatures in a range of 16 to 24ºC in cv. Picual and of 

20 to 24ºC in cv. Arbequina. In the non-defoliating pathotype, soil temperatures ranging 

from 16 to 20ºC were estimated to be most favorable for infection. The relationship 

between stress-related parameters and disease severity determined by multinomial logistic 

regression and classification trees was able to detect the effects of V. dahliae infection 

and colonization on water flow that eventually cause water stress. 

Conclusions: Chlorophyll content, steady-state chlorophyll fluorescence, and leaf 

temperature were the best indicators for Verticillium wilt detection at early stages of 

disease development, while ethylene production and photochemical reflectance index 

were indicators for disease detection at advanced stages. These results provide a better 

understanding of the differential geographic distribution of V. dahliae pathotypes and to 

assess the potential effect of climate change on Verticillium wilt development. 

Received: 19 April 2014 / Accepted: 24 September 2014 / Published: 17 October 2014 

 

3.1.  Introduction 

Verticillium wilt (VW) of olive (Olea europaea L.), caused by the fungus 

Verticillium dahliae Kleb., is the most important soil-borne disease affecting olive trees 

worldwide (Tsror, 2011; Jiménez-Díaz et al., 2012) and can cause severe yield losses and 

plant death (Levin et al., 2003). The disease was first observed in Italy in 1946 (Ruggieri, 

1946) and is now present in many Mediterranean countries and in California, USA 
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(Jiménez-Díaz et al., 2012). In Spain, the spread of Verticillium wilt in olive trees has 

been associated with the expansion of olive cultivation and changes in cropping practices 

aimed at increasing yields (Jiménez-Díaz et al., 2011). Such changes include the use of 

self-rooted planting stocks to establish high-density plantings, drip irrigation, reduced or 

no tillage, and high inputs of fertilizer in newly cultivated soils or fertile soils (Villalobos 

et al., 2006) previously cropped with plants susceptible to V. dahliae, such as cotton 

(Jiménez-Díaz et al., 2011). 

Microsclerotia, the long-lasting surviving structures of V. dahliae, constitute the 

main potential infective inoculum of the pathogen in field soils, where it can survive for 

up to 15 years (Wilhelm, 1955). These structures germinate multiple times in response to 

root exudates (Schreiber and Green, 1963) and favorable soil environmental conditions, 

forming hyphae that penetrate the plant root, grow across the root cortex, and upon 

reaching the xylem vessels facilitate the rapid upward spread of the pathogen by conidia 

transported in the transpiration stream (Talboys, 1962). As a result of xylem colonization 

by the pathogen, water flow decreases, leading to water stress (Ayres, 1978). Infection 

with V. dahliae in olive trees has resulted in two main disease syndromes, namely 

defoliating (D) and non-defoliating (ND), which are induced by specific D and ND V. 

dahliae pathotypes, respectively (Navas-Cortés et al., 2008; Jiménez-Díaz et al., 2012). 

The D syndrome is characterized by early drop of asymptomatic green leaves from 

individual twigs and branches, eventually leading to complete defoliation and necrosis 

(Jiménez-Díaz et al., 2012). These symptoms can develop from late fall to late spring 

(Navas-Cortés et al., 2008). Conversely, the ND syndrome comprises two symptom 

complexes: (i) apoplexy, a rapid and extensive dieback of twigs and branches of olive 

trees without loss of leaves occurring in late winter, and (ii) slow decline, mainly 

characterized by flower mummification and necrosis of inflorescences along with leaf 

chlorosis and necrosis (Jiménez-Díaz et al., 2012), which occurs during springtime 

(Navas-Cortés et al., 2008). Infections with the D pathotype can be lethal to the plant, 

whereas ND-infected olive trees may eventually show remission from symptoms 

(Jiménez-Díaz et al., 1998; Levin et al., 2003). D and ND V. dahliae pathotypes also have 

different modes of dispersal and produce different spatial patterns of disease (Navas-

Cortés et al., 2008). Infections with the D pathotype are of greater concern because the 

pathogen can spread rapidly over short and relatively long distances through windblown 

infected leaves that fall early and in large numbers from diseased trees (Navas-Cortés et 

al., 2008). Planting resistant cultivars is the most effective measure for controlling and 

limiting the spread of Verticillium wilt (Jiménez-Díaz et al., 2012). However, the most 

widely used olive cultivars in Spain (i.e., Picual and Arbequina) have been found to be 

highly susceptible and susceptible to D V. dahliae, respectively, and susceptible and 

moderately resistant to ND V. dahliae, respectively, under controlled conditions in 

artificial inoculation tests (López-Escudero et al., 2004). 
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A recent study on Verticillium wilt in olive trees has shown that overall disease 

incidence is related to initial inoculum density in the soil (López-Escudero and Blanco-

López, 2007). However, the development of symptoms in relation to inoculum density is 

variable and strongly influenced by environmental and soil conditions (DeVay et al., 

1974). Soil temperature is a critical factor for the development of Verticillium wilt and 

fungal growth (Pegg and Brady, 2002). Using soil tanks, McKeen (1943) found that 

infection of potato by V. albo-atrum occurred between 12 and 32ºC, but symptom 

expression was greatest between 20 and 28ºC. In southern Spain, Bejarano-Alcázar et al. 

(1996) reported that the optimal temperature for in vitro growth of V. dahliae isolates 

from cotton ranged from 24 to 27ºC in the D pathotype and from 21 to 24ºC in the ND 

pathotype. In China, Xu et al. (2012) determined that the optimal growth temperature for 

V. dahliae isolates of the D and ND pathotype was 25ºC, although D pathotype isolates 

can adapt well to high temperatures and severely infect cotton at temperatures ranging 

from 25 to 30ºC. In olive plants, development of Verticillium wilt is favored by air and 

soil temperatures close to the optimal growth range of V. dahliae (Jiménez-Díaz et al., 

1998). In Mediterranean-type climates, severity of Verticillium wilt attacks is favored by 

moderate air temperatures during spring, but high summer temperatures suppress further 

development of the disease (Levin et al., 2003; Navas-Cortés et al., 2008). Nevertheless, 

very little is known about the influence of the physical environment on Verticillium wilt 

in olive trees, which limits our understanding of the disease (Jiménez-Díaz et al., 2012). 

In plants, water stress caused either by V. dahliae infection or drought induces 

stomatal closure, which reduces the transpiration rate (Ayres, 1978). As a result, 

evaporative cooling decreases and leaf temperature increases. In the past, this increase in 

leaf temperature has been detected early using thermal infrared radiation (Jackson and 

Pinter, 1981) recorded by spectrometers at ground level. The visible part of the spectrum 

has also been used for early water stress detection based on indices that use bands at 

specific wavelengths in which photosynthetic pigments are affected by stress. An example 

of such indices is the photochemical reflectance index (PRI), a narrowband spectral index 

(Gamon et al., 1992) that is sensitive to the epoxidation state of xanthophyll-cycle 

pigments and to photosynthetic efficiency, serving as a proxy for water stress detection at 

leaf level (Thenot et al., 2002). Another indicator of water stress is chlorophyll 

fluorescence emission, as shown by several laboratory studies that have found it to be 

strongly correlated with photosynthesis and other physiological processes (Papageorgiu, 

1975). Over the last ten years, scientific interest in steady-state chlorophyll fluorescence 

(Fs) (i.e., fluorescence emitted under constant illumination without saturation flashes) has 

increased because measurements of Fs do not require high-energy sources and can be 

conducted remotely using active or passive methods (Flexas et al., 2000). In particular, 

leaf-level Fs measurements obtained with instruments known as pulse amplitude 

modulating (PAM) fluorometers have been used successfully to detect plant water stress 

(Flexas et al., 2000). In fact, Minolta Corporation developed a portable chlorophyll meter 
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(SPAD) in the 1990s to take rapid measurements of chlorophyll content in leaves. This 

instrument uses two light-emitting diodes (650 and 940 nm) and a photodiode detector to 

measure transmission of red and infrared light through plant leaves. Given that there is a 

close relationship between leaf chlorophyll content and the output of the SPAD meter 

(Fanizza et al., 1991), such measurements have been used to assess stress in crops 

(Fanizza et al., 1991; Hayat et al., 2008), revealing that water stress levels decrease 

chlorophyll content in leaves and consequently SPAD readings. 

Leaf-level remote sensing studies have been conducted to detect and assess diseases 

in various crops. Most of these studies have focused on foliar pathogens in annual crops. 

Leaf temperature has been shown to successfully detect water stress caused by soil-borne 

pathogens, as mentioned above. In fact, Pinter et al. (1979) recorded leaf temperatures 3-

4ºC higher than those of healthy plants in sugar beet and cotton crops affected by Pythium 

aphanidermatum and Pymatotrichum omnivorum, respectively. Other examples of leaf 

temperature measurements for the detection of root diseases include beans infected by 

Fusarium solani, Pythium ultimum, and Rhizoctonia solani (Tu and Tan, 1985), soybeans 

affected by brown stem rot caused by Phialophora solani (Mengistu et al., 1987), and 

wheat with moderate takeall symptoms caused by Gaeumannomyces graminis var. tritici 

(Nilsson, 1991). As regards V. dahliae infection, Nilsson (1995) reported that infected 

oilseed rape plants exhibited leaf temperatures 5-8ºC higher than those of non-infected 

plants. Calderón et al. (2013) found increases of 2ºC at early stages of Verticillium wilt 

development in olive trees under field conditions. Chlorophyll fluorescence was also 

found to be a good indicator for detecting Verticillium wilt at early stages of the disease, 

while the photochemical reflectance and chlorophyll indices were good indicators for 

detecting the disease at advanced stages (Calderón et al., 2013). 

The objectives of this study were (i) to quantify the combined effects of biotic 

factors (i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil 

temperature) on the development of Verticillium wilt and olive tree growth and (ii) to 

determine the relationship between stress indicators including several remote sensing 

parameters and VW severity according to the hypothesis that thermal, reflectance, and 

fluorescence measurements are sensitive to physiological changes induced by infection 

and colonization by V. dahliae pathotypes. 
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3.2. Materials and Methods 

3.2.1. Verticillium dahliae isolates, olive plants, inoculation, and growth 

conditions 

Olive plants were inoculated with V. dahliae isolates V138 (D) and V176 (ND), 

which have been characterized in previous studies (Mercado-Blanco et al., 2003) and are 

deposited in the culture collection of the Departamento de Protección de Cultivos (Crop 

Protection Department) of the Instituto de Agricultura Sostenible (IAS-CSIC) in Cordoba, 

Spain. Isolates were stored by covering cultures on plum extract agar with liquid paraffin 

and keeping them at 4ºC in the dark. Active cultures of isolates were obtained on 

chlortetracycline-amended water agar (1 l of distilled water, 20 g of agar, 30 mg of 

chlortetracycline) and were further subcultured on Potato Dextrose Agar (PDA; Difco 

Laboratories, Detroit, USA). Cultures on PDA were grown for 7 days at 24ºC in the dark. 

Eight-month-old plants of olive cvs. Arbequina and Picual were used. Plants were 

obtained by micropropagation techniques and provided by Cotevisa (L’Alcudia, Valencia, 

Spain). Arbequina and Picual are olive cultivars grown extensively throughout Spain 

(Barranco et al., 2004). Picual plants were inoculated with both V. dahliae pathotypes, 

while Arbequina plants were inoculated with the D isolate only. 

Inocula of V. dahliae were produced in an autoclaved cornmealsand (CMS) mixture 

in flasks incubated at 24±1ºC in the dark for 6 weeks. Infested CMS substrate was mixed 

thoroughly with an autoclaved soil mixture (clay loam/sand/peat at 1:1:1 vol/vol/vol) at a 

rate of 1:10 (wt/wt) to reach an inoculum density of approximately 4x104 CFU/g of soil 

for each of the V. dahliae isolates. Non-infested CMS mixed with the autoclaved soil 

mixture at the same rate explained above served as control. Plants were grown in soil 

tanks (Frisol S.A., Córdoba, Spain) placed inside a walk-in growth chamber adjusted to 

24±1ºC, 40 to 70% relative humidity, and a 14-h photoperiod of fluorescent light at 360 

µE m-2·s-1 for 3 months. Pots with soil and plant roots were set inside the soil tanks at a 

constant temperature of 16, 20, 24, 28 and 32ºC, with a maximum variation of ±1ºC  for 

each of temperatures. Plants were watered daily as needed and fertilized weekly with 100 

ml of Hoagland’s nutrient solution (Hoagland and Arnon, 1950). 

The experiment consisted of a three-way factorial treatment design with pathotype of 

V. dahliae, olive cultivar, and soil temperature as factors. For each soil temperature there 

were ten and six replicated pots (one plant per pot) for inoculated and non-inoculated 

plants, respectively, in a completely randomized design. The full experiment was repeated 

twice. 
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3.2.2. Disease assessment 

Incidence (0 = plant showing no disease symptoms; 1 = plant showing disease 

symptoms) and severity of symptoms were assessed at 2- to 3-day intervals throughout 

the duration of the experiment, 3 months after inoculation. Disease severity was assessed 

by visually observing foliar symptoms in each individual plant and rating them on a 0 to 4 

scale according to the percentage of foliage with disease symptoms, where 0 = 0%, 1 = 1 

to 33%, 2 = 34 to 66%, 3 = 67 to 100%, and 4 = dead plant (Mercado-Blanco et al., 

2003). Symptoms caused by the ND pathotype consisted on a dieback of twigs and 

branches where leaves turned light-brown, rolled back toward the abaxial side, dried up 

and remained attached to the symptomatic shoots; whereas, those caused by the D 

pathotype were characterized by early drop of green, infected leaves that eventually gave 

rise to complete defoliation and necrosis of branches. Upon termination of the 

experiments, colonization of plant tissues by V. dahliae was determined in each plant by 

isolating the fungus on water agar amended with Aureomycin (1 l of distilled water, 20 g 

of agar, 30 mg of aureomycin). For each plant, six 5-mm-long stem pieces representative 

of the lower, middle and upper parts were thoroughly washed under running tap water for 

30 min. The surface of the samples was disinfested in 0.5% NaClO for 1.5 min; next, the 

samples were rinsed with sterile water, plated onto the medium, and incubated at 24ºC in 

the dark for 7 days (Mercado-Blanco et al., 2003; Navas-Cortés et al., 2008). Colonies of 

V. dahliae were identified by microscopic observation of verticillate conidiophores and 

formation of microsclerotia. Data from the stem isolations of the pathogen were used to 

calculate the intensity of stem vascular colonization, determined as the percentage of stem 

pieces from which the pathogen was isolated. 

 

3.2.3. Disease, stress, plant growth-related parameters, and data analyses 

3.2.3.1. Relationship between disease development and parameters associated 

with disease progress curves 

Disease progress curves were obtained from accumulated disease severity scores 

over time in days from the date of inoculation. The nonlinear form of the Gompertz model 

was evaluated for goodness of fit to disease severity progress data using nonlinear 

regression analyses. In the Gompertz equation, 

  DS(t) = K exp[–B exp(–r t)] [3.1] 

where DS = disease severity, K = asymptote parameter, B = constant of integration, r = 

relative rate of disease increase, and t = time of disease assessment in days after 

inoculation. 
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To further assess disease development, four additional variables associated with 

disease progression were explored. These variables included (i) the incubation period 

(IP), established as the time in days to first symptoms or its reciprocal (IPR = 1/IP); (ii) the 

final disease incidence and severity assessed at the end of the experiment; (iii) the 

standardized area under the disease severity progress curve (SAUDPC), calculated using 

the trapezoidal integration method standardized by duration of disease development in 

days (Simko and Piepho, 2011); (iv) the intrinsic rate of disease increase (rho) parameter 

estimates of the Gompertz model fitted to the disease severity progress data; and (v) the 

intensity of stem vascular colonization determined as the percentage of stem pieces from 

which the pathogen was isolated. 

3.2.3.2. Leaf-level stress-related parameters 

In addition to disease-associated parameters, several stress-related parameters were 

measured in six leaves of each of ten (inoculated) and six (non-inoculated, control) plants 

for each soil temperature and olive cultivar-V. dahliae pathotype combination. All 

measurements were taken at 2-week intervals, starting 20 days after inoculation until the 

end of the experiment, and comprised (i) leaf temperature; (ii) leaf chlorophyll 

fluorescence; (iii) leaf photochemical reflectance index; (iv) leaf chlorophyll content 

(through SPAD readings); and (v) ethylene production. For each stress-related parameter, 

average daily increase was determined as the standardized area under the parameter value 

progress curve over the observation period, calculated with the trapezoidal method. Such 

increase was used to assess the relationship between stress-related parameters and soil 

temperature and differences between experimental treatments in such parameters. Leaf 

temperature and steady-state chlorophyll fluorescence measurements were conducted with 

the PAM-2100 pulse-amplitude modulated fluorometer (Heinz Walz GMBH, Effeltrich, 

Germany). Steady-state chlorophyll fluorescence was also assessed separately with a 

second instrument designed to measure chlorophyll fluorescence (FluorPen, Photon 

System Instruments, Brno, Czech Republic). In addition, measurements of the leaf 

photochemical reflectance index (Gamon et al., 1992), calculated as (R570-

R531)/(R570+R531) (Suárez et al., 2008, 2009; Zarco-Tejada et al., 2012), were obtained 

with a custom-designed instrument to measure the R531 and R570 spectral bands with a 

bandwidth of 10 nm (PlantPen, Photon System Instrument, Brno, Czech Republic). Leaf 

chlorophyll content was obtained with the SPAD-502 chlorophyll meter (Minolta Corp., 

Ramsey, NJ, USA). This instrument was used preferentially because of the strong 

relationship between its digital readings and real leaf chlorophyll content, as demonstrated 

by several authors (e.g., Yadava, 1986; Marquard and Tipton, 1987). Ethylene production 

was determined in the two youngest fully expanded leaves in the upper part of the plant. 

Leaves were separated from the stem and enclosed in 3-ml test tubes containing 50 ml tap 

water. Tubes were sealed with rubber caps and incubated in the dark at 24ºC for 24 h. 

Before sampling, the test tubes were stirred to favor the diffusion of ethylene gas into the 
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water. Gas samples were withdrawn from the incubation tubes with a 1 ml gas-tight 

syringe and assayed with a Hewlett Packard gas chromatograph (Model 5890A), as 

previously described (Romera et al., 1999). 

3.2.3.3. Plant growth-related parameters 

At the end of the experiments, plants were removed from the soil and their roots 

were washed free of soil. We measured the weight of fresh roots and dry and fresh aerial 

plant parts as well as the length of stems and shoots of individual plants. For this latter 

parameter, we calculated a daily growth rate relative to the initial values. 

3.2.3.4. Relationship between disease, stress and plant growth-related 

parameters, and soil temperature 

Three functions were used to describe the effects of soil temperature on disease, 

stress, and plant growth-related parameters for the different olive cultivar-pathogen 

pathotype combinations. We used the following reverse sigmoid function to determine the 

relationship between disease incidence, disease severity, and intensity of stem vascular 

colonization: 

 YT = ƒ(T) = a kn / (an + Tn) [3.2] 

where YT is the response of disease-related parameters to soil temperature (T), a 

determines the maximum asymptote, and k is the half maximum parameter. 

For the remaining disease-related parameters and leaf temperature measurements, we 

used the modified beta function (Hau, 1988):  

 YT = ƒ(T) = G[(T - Tmin)/(Topt - Tmin)][H(Topt–Tmin)/(Tmax–Topt)][(Tmax - T)/(Tmax - Topt)
H] [3.3] 

where YT is the response of disease-related parameters to soil temperature, and Tmax and 

Tmin are 36 and 8ºC, respectively, which are known maximum and minimum temperatures 

for growth of V. dahliae isolates (Bejarano-Alcázar et al., 1996; Pegg and Brady, 2002; 

Xu et al., 2012). The shape parameter (H) determines the soil temperature range near the 

optimal soil temperature (Topt) at which the response values are close to the maximum 

response (G). For the remaining parameters, we used a Type I combined exponential and 

power model:  

 YT = ƒ(T) = a Tb cT [3.4] 

where YT is the response of the measured variable to soil temperature, and a, b and c are 

parameters that closely interact to control the shape of the curve (Sit and Poulin-Costello, 

1994). 
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All regression analyses were conducted using the Marquardt nonlinear least-squares 

iterative procedure for nonlinear models (NLIN) of SAS software (version 9.3; SAS 

Institute, Cary, NC, USA). The coefficient of determination (R2), mean square error, 

standard errors associated with the parameter estimates, confident intervals of predicted 

values, and pattern of standardized residuals plotted against either predicted values or the 

response variable were used to evaluate the appropriateness of models to describe the data 

(Madden et al., 2007).  

3.2.3.5. Relationships between experimental treatments and disease, stress, 

and plant growth-related parameters 

The overall response of experimental treatment combinations to disease, stress, and 

plant growth-related parameters was first explored by cluster analyses. To establish 

functional groups of correlated experimental treatments, agglomerative clustering based 

on the Spearman correlation matrix was performed using the Ward clustering method 

(Borcard et al., 2011). The optimal number of clusters was estimated on the basis of the 

average silhouette width according to the Mantel statistic. The number of clusters in 

which the within-group mean intensity of the link between the objects (i.e., experimental 

treatments) and their groups was highest (i.e., with the largest average silhouette width) 

indicated the optimal cluster number. A dendrogram was then produced representing the 

treatment groups identified (Borcard et al., 2011). A heat map was developed to visualize 

the values of the different treatments and parameters used in the analysis. All cluster 

analysis calculations were performed using R software, version 3.0.2 (R Foundation for 

Statistical Computing, http://www.R-project.org/) with the cluster (Maechler et al., 2013), 

gplots (Warnes et al., 2013) and vegan (Oksanen et al., 2013) packages. 

3.2.3.6. Relationship between disease severity classes and stress-related 

parameters 

Two approaches were used to assess the ability to discriminate among disease 

severity classes and stress-related parameters: logistic regression models and 

classification trees. Logistic models are direct probability models that are stated in terms 

of the probability of occurrence of an event (i.e., disease severity class) under a given set 

of conditions (i.e., stress parameters) (Hosmer and Lemeshow, 2000). In this study, a 

multinomial logistic regression model was fitted to each stress parameter as an 

independent-explanatory variable and disease severity class as the dependent-response 

variable, using healthy plants as the reference category. Multinomial models with ordinal 

responses are an extension of standard (i.e., binary) logistic regression to regression with 

three or more ordered categories (Agresti, 2007). To assess the statistical significance of 

each independent variable, each model was compared to the null model using a likelihood 

ratio test. The proportion of the variance explained by each model was evaluated using 

the maximum rescaled R2 determination coefficient, and classification accuracy. This was 
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done by using the LOGISTIC procedure of SAS software. To assess the combined effects 

of all stress-related variables, a multiple logistic regression model was fitted using the 

stepwise procedure. The developed model was externally validated by partitioning of 

individuals into two samples: the training sample containing 80% the data of each 

severity class selected at random and the testing or validation sample with the remaining 

20%. The logistic model was fitted using the training sample and externally validated by 

using the testing sample to assess its classification accuracy. 

Classification trees were used to determine the thresholds of stress parameters that 

discriminated between disease severity classes. The decision tree was obtained by 

recursive data partitioning, thereby splitting the data set into increasingly smaller subsets 

based on the predictive variables. The optimal tree was determined using the minimal 

estimate of cross-validated prediction error for different numbers of splits (Everitt and 

Hothorn, 2010). Residual mean deviance and misclassification error rates were used as a 

measure of goodness of fit of the selected tree. The analysis was conducted using the 

rpart package (Therneau et al., 2013) in the R environment. The selected tree was 

validated by dividing the full data set into two parts and testing for classification 

accuracy, as described above for the logistic regression analyses. 

 

3.3. Results 

3.3.1. Verticillium wilt development 

Treatment effects 

Soil temperature, olive cultivar, and pathotype of V. dahliae were found to influence 

the development of Verticillium wilt in olive. Plants grown in soil infested with the D 

pathotype showed typical symptoms of the defoliating syndrome in the full range of soil 

temperatures tested, irrespective of the olive cultivar. Disease incidence, disease severity, 

and intensity of stem vascular colonization decreased with increasing soil temperature 

according to a reverse sigmoid model with asymptotic optimal values in the range of 16 to 

28ºC and 16 to 24ºC for the interaction of the D pathotype with cvs. Picual and 

Arbequina, respectively (Fig. 3.1A-C). In these two cultivars, no significant differences 

(P≥0.05) existed between temperatures within the optimal range regarding levels of 

disease incidence or intensity of stem vascular colonization caused by the D pathotype 

(Fig. 3.1A-B). At 32ºC, the three disease parameters (i.e., disease incidence, disease 

severity, and intensity of stem vascular colonization) decreased markedly in both 

cultivars, reaching 40.0%, 1.00 (on a 0-4 scale), and 44.2% in cv. Picual and 15%, 0.23, 

and 13.3% in cv. Arbequina, respectively (Fig. 3.1A-C). Disease was scarce in cv. Picual  



 

  46 

 

Figure 3.1. Relationship between Verticillium wilt-related parameters and soil temperature. Relationship 

between Verticillium wilt-related parameters and soil temperature in olive cvs. Arbequina (Arb) and Picual 

(Pic) grown in soil infested with the defoliating (D) or non-defoliating (ND) pathotype of V. dahliae. A. Final 

disease incidence; B. Overall disease severity (0-4 scale: 0 = no symptoms, 4 = dead plant); C. Intensity of 

stem vascular colonization determined at the end of the experiment by isolation in growth media; D. 

Reciprocal incubation period (time to initial symptoms); E. Standardized area under the disease severity 

progress curve (SAUDPC); F. Rate of disease increase parameter of the Gompertz function fitted to disease 

progress data. Each point represents the mean of data from two repeated experiments, each comprising 10 

pots with one plant per pot. Vertical bars represent the standard error of the mean. Lines represent the 

predicted model calculated with a reverse sigmoid function (left panels) or a Beta function (right panels). 
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plants grown in soil infested with the ND pathotype and incubated at 16 to 28ºC, and no 

symptoms were observed at 32ºC (Fig. 3.1A-C). In this combination, disease incidence 

and intensity of stem vascular colonization was highest at 16ºC (i.e., 46.7 and 45%, 

respectively) and decreased steadily with increasing soil temperature to 5% of stem 

vascular colonization at 32ºC (Fig. 3.1C). 

Time to symptom expression in olive plants was shortest at 24ºC in both cultivars 

grown in soil infested with D V. dahliae. Symptoms started to develop 27 to 29 days after 

planting in cv. Picual and about 3 days later in cv. Arbequina; yet, symptom appearance 

was delayed the most at 20ºC, followed by 16, 28, and 32ºC (Fig. 3.1D). Disease 

development over time was adequately described by the Gompertz model (R2 > 0.97; 

RMSE < 0.7631) for all cultivar-soil temperature combinations involving the D pathotype 

(Fig. 3.2). The increase in disease severity (DS) became asymptotic (i.e., DS > 3 on a 0-4 

scale) at all soil temperatures except for cv. Picual (DS = 1.0) at 32ºC and cv. Arbequina 

at 28 and 32ºC (DS = 0.77 and 0.23, respectively). Nevertheless, disease severity was 

always significantly greater (P < 0.05) in cv. Picual than in cv. Arbequina regardless of 

soil temperature (Fig. 3.1B, Fig. 3.2).  

The beta function adequately described the effects of soil temperature on the 

reciprocal of the incubation period, the standardized area under the disease severity 

progress curve (SAUDPC), and the intrinsic rate of disease progression (rho parameter of 

the Gompertz model fitted to temporal disease severity progress). Those three disease-

related parameters increased within the range of 16 to 24ºC and rapidly started to decrease 

at 28 and 32ºC (Fig. 3.1D-F). Values of those parameters were significantly lower (P < 

0.05) in Arbequina plants compared to Picual plants infected with D V. dahliae at all soil 

temperatures, except for the incubation period at the extreme temperatures of 16 and 

32ºC, for which values were similar in the two cultivars (Fig. 3.1D-F). 

 

3.3.2. Relationship between leaf-level measurements of stress-related 

parameters and soil temperature 

Similarly to the disease-related parameters described above and for all olive cultivar-

V. dahliae pathotype combinations, leaf temperature (estimated as the difference between 

leaf and mean air temperature) increased with soil temperature according to a beta model. 

Leaf temperature increased in the range of 16 to 28ºC soil temperature and decreased at a 

soil temperature of 32ºC (Fig. 3.3A). Leaf temperature in Arbequina plants infected with 

the D pathotype was 0.03 to 0.64ºC higher than that of non-inoculated control plants at 20 

to 32ºC soil temperature (Fig. 3.3A). Conversely, there were minor differences in the leaf 

temperature of Picual plants infected with D or ND V. dahliae, although leaf temperature 

was higher in the most susceptible interaction – cv. Picual/D pathotype (1.47 to 2.29ºC) –,  
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Figure 3.2. Verticillium wilt disease progress at different soil temperatures. Verticillium wilt disease 

progression in olive cvs. Arbequina and Picual grown in soil infested with the defoliating pathotype of 

Verticillium dahliae and incubated at different soil temperatures. Each point represents the mean disease 

severity (0-4 scale: 0 = healthy, 4 = dead plant) of data from two repeated experiments, each comprising 10 

pots with one plant per pot, at 2-to-3-day intervals. Solid lines represent the predicted disease progress curve 

calculated with the Gompertz function. 

decreased in plants infected with the ND pathotype (1.51 to 2.05ºC), and was the lowest 

in control plants (Fig. 3.3B). Progression of the remaining four stress-related parameters 

with soil temperature was well described by a Type I combined exponential and power 

function. The photochemical reflectance index showed different relationships with soil 

temperature depending on the olive cultivar infected with D V. dahliae (Fig. 3.3C-D). 

Specifically, minimum values were measured in Arbequina plants grown at 24 and 28ºC 

soil temperature, while the opposite occurred in Picual plants. Overall, however, both 

cultivars exhibited a similar range of PRI values: 0.03 to 0.04 (Fig. 3.3C-D). In the 
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remaining three experimental treatment combinations, PRI values were not greatly 

modified by soil temperature. Values were highest in Arbequina control plants (in a range 

of 0.031 to 0.034), decreased to a range of 0.025 to 0.031 in the cv. Picual/ND pathotype 

interaction, and were lowest (0.024 to 0.026) in Picual control plants (Fig. 3.3C-D). 

Steady-state fluorescence also exhibited a different relationship with soil temperature 

depending on the olive cultivar. In cv. Arbequina, steady-state chlorophyll fluorescence 

values increased with higher soil temperatures ranging from 16 to 24ºC and decreased at 

28 and 32ºC in both D-pathotype-infected and control plants. Yet, steady-state 

chlorophyll fluorescence values were lower in the control treatment group regardless of 

soil temperature (Fig. 3.3E). In cv. Picual, the highest steady-state chlorophyll 

fluorescence values were reached at the extreme 16 and 32ºC soil temperatures. In this 

cultivar, at each soil temperature, steady-state chlorophyll fluorescence values were 

highest in control plants and tended to decrease in plants infected with V. dahliae 

regardless of the pathotype (Fig. 3.3F). Infection with the D pathotype had a strong effect 

on chlorophyll content estimated with SPAD readings. Specifically, in both olive 

cultivars, chlorophyll content was lowest in D V. dahliae-infected plants grown at 16 to 

24ºC (42.4 to 48.0 SPAD units), increased at 28ºC (51.3 to 51.8 SPAD units), and reached 

the highest levels at 32ºC (60.9 to 61.5 SPAD units). Chlorophyll content values exhibited 

minor differences between control plants of both cultivars and Picual plants infected with 

the ND pathotype at soil temperatures ranging from 20 to 32ºC (59.7 to 66.0 SPAD units), 

but slightly lower values were recorded at 16ºC (56.7 to 60.4 SPAD units) (Fig. 3.4A-B). 

Similarly, high ethylene production was detected mostly in olive plants infected with the 

D pathotype and was particularly higher in plants grown at 20 to 24ºC, and in Picual 

plants (12.8 to 25.2 pmol g-1 root fresh weight h-1) compared to Arbequina plants. 

Ethylene production was always lower and almost constant irrespective of soil 

temperature for the remaining treatment combinations, ranging from 7.4 to 10.4 pmol g-1 

root fresh weight h-1 in the cv. Picual/D pathotype combination and from 4.2 to 9.8 pmol 

g-1 root fresh weight h-1 in control plants of both cultivars (Fig. 3.4C-D). 

Plant growth, estimated by the relative rate of canopy growth and dry canopy 

weight, was also strongly affected by the experimental treatments. The lowest values for 

both growth measures were observed in plants infected with the D pathotype of V. dahliae 

at a soil temperature ranging from 16 to 24ºC. At these soil temperatures, based on 

measurements of canopy height at the beginning and the end of the experiments, 

Arbequina plants exhibited a 1.5 to 1.7 rate of canopy growth. The rate of canopy growth 

of Picual plants was 1.3 to 1.4 times lower than on Arbequina plants (Fig. 3.5A, B). At 

the same soil temperature levels, canopy dry weight values exhibited few differences, 

ranging from 2.4 to 2.8 g in cv. Arbequina and from 2.3 to 2.5 g in Picual plants; this 

parameter was about 75 to 82% lower than in non-infected control plants (Fig. 3.5C, D). 

At a soil temperature of 28ºC, both growth parameters increased by 3.4 cm/day and 7.4 

g/day  in  cv.  Arbequina,  and  by  2.4  cm/day  and  3.4  g/day  in  cv.  Picual.  At  32ºC,  
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Figure 3.3. Relationship between stress-related parameters and soil temperature. Relationship between 

stress-related parameters and soil temperature in olive cvs. Arbequina (Arb) (left panels) and Picual (Pic) 

(right panels) grown in sterilized soil (control) or in soil infested with the defoliating (D) or the non-

defoliating (ND) pathotype of V. dahliae. A, B. Leaf temperature minus air temperature (Tl-Ta); C, D. 

Photochemical reflectance index (PRI); E, F. Steady-state chlorophyll fluorescence (Fs). Each point 

represents the mean of data from two repeated experiments, each comprising 6 pots with one plant per pot, at 

2-week intervals. For each parameter, the average daily increase was calculated as the standardized area 

under the parameter value progress curve over the observation period. Vertical bars represent the standard 

error of the mean. Lines represent the predicted model calculated with a Beta function (leaf temperature 

minus air temperature) or a Type I combined exponential and power function. 
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maximum growth values were observed in all treatments and both cultivars. Plant growth 

of Picual plants infected with the ND pathotype was about 24 to 36% lower than that of 

control plants at a soil temperature of 16 and 20ºC but minor differences were observed 

when plants grew at a soil temperature range of 24 to 32ºC. In control treatments, plant 

growth tended to increase with the increase in soil temperatures but did so at a lower rate 

than in infected plants. Specifically, soil temperature reduced plant growth only in the 

lower soil temperature range of 16 and 20ºC, and optimal maximum growth took place at 

24 to 32ºC (Fig. 3.5). 

Figure 3.4. Relationship between stress-related parameters and soil temperature. Relationship between stress-

related parameters and soil temperature in olive cvs. Arbequina (Arb) (left panels) and Picual (Pic) (right 

panels) grown in sterilized soil (control) or in soil infested with the defoliating (D) or the non-defoliating 

(ND) pathotype of V. dahliae. A, B. Chlorophyll content (SPAD readings); C, D. Ethylene production. Each 

point represents the mean of data from two repeated experiments, each comprising six pots with one plant per 

pot, at 2-week intervals. For each parameter, the average daily increase was calculated as the standardized 

area under the parameter value progress curve over the observation period. Vertical bars represent the 

standard error of the mean. Lines represent the predicted model calculated with a Type I combined 

exponential and power exponential function. 
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Figure 3.5. Relationship between plant growth-related parameters and soil temperature. Relationship between 

plant growth-related parameters and soil temperature in olive cvs. Arbequina (Arb) (left panels) and Picual 

(Pic) (right panels) grown in sterilized soil (control) or in soil infested with the defoliating (D) or the non-

defoliating (ND) pathotype of V. dahliae. A, B. Relative rate of canopy growth; C, D. Dry weight of the 

canopy. Each point represents the mean of data from two repeated experiments, each comprising six pots with 

one plant per pot, at the end of the experiments. Vertical bars represent the standard error of the mean. Lines 

represent the predicted model calculated with a Type I power exponential function. 

 

3.3.3. Relationships between experimental treatments and parameters 

related to disease, stress, and plant growth 

To further analyze the interactions between V. dahliae pathotype, olive cultivar, and 

soil temperature, we performed a multivariate hierarchical cluster analysis, including all 

12 parameters related to disease, stress, and growth as response variables. This analysis 

led to the creation of four functional groups – A to D – among the 25 experimental 

treatment combinations (Fig. 3.6). Group A included seven experimental treatments with 

a severe disease reaction, including plants infected with the highly virulent D pathotype 
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grown at optimal soil temperature for Verticillium wilt development (i.e., 16 to 28ºC for 

cv. Picual and of 16 to 24ºC for cv. Arbequina). Overall, high values of disease severity-

related parameters were associated with high levels of leaf temperature and ethylene 

production and low levels of chlorophyll content and growth-related parameters. In this 

group, Arbequina plants also exhibited low and high levels in PRI and steady-state 

chlorophyll fluorescence parameters, respectively; Picual plants exhibited the opposite 

pattern. Group B comprised four experimental treatments with a moderate disease 

reaction. It included Arbequina and Picual plants infected with the D pathotype and 

grown at 28ºC and 32ºC, respectively, and plants in the cv. Picual/ND pathotype 

combination grown at 16 or 20ºC. This group of treatment combinations exhibited 

intermediate values in most of the parameters included in the study. Group C comprised 

three experimental treatments associated with a low level of disease. Specifically, plants 

in the cv. Arbequina/D pathotype combination grown at 32ºC, and plants in the cv. 

Picual/ND pathotype combination grown at 24 or 28ºC. The low Verticillium wilt 

development observed in treatment combinations within this group was associated with 

moderate values of stress and plant growth parameters. Group D comprised the remaining 

eleven treatments with healthy plants, including asymptomatic Picual plants inoculated 

with the ND pathotype grown at 32ºC and all non-inoculated control plants of both 

cultivars at all soil temperature levels tested (Fig. 3.6). 

 

3.3.4. Relationship between stress-related parameters and Verticillium wilt 

severity classes 

A multinomial logistic regression analysis was performed to determine the 

relationship between stress-related parameters and Verticillium wilt severity classes. 

Logistic regression models fitted for each variable (Table 3.1, Fig. 3.7) exhibited 

significant differences between Verticillium wilt severity classes in all stress-related 

parameters. When fitted individually, chlorophyll content, ethylene production, and leaf 

temperature were the most explanatory parameters and had the highest correct 

classification rate (i.e., the Verticillium wilt severity class matched the assigned class with 

the highest probability) (Table 3.1, Fig. 3.7A-E). Although the PRI and steady-state 

chlorophyll fluorescence values were also statistically significant (P < 0.011), their 

explanatory power and correct classification rate was lower (Table 3.1, Fig. 3.7D-E). In 

addition, we fitted a multiple logistic model using a stepwise procedure, selecting a model 

that included the four stress parameters with the highest explanatory power (i.e., 

chlorophyll content, ethylene production, leaf temperature, and steady-state chlorophyll 

fluorescence) but did not include the PRI. The model explained 98.75% of the total 

variability  and  correctly  classified  73.40%  of  the  cases  (Table  3.1,  Fig. 3.7F-I). 
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Figure 3.6. Dendrogram showing results of cluster analyses and heat map representation of disease, stress, 

and plant growth parameters. The 12 parameters selected for the heat map representation were related to 

Verticillium wilt reaction (5 parameters): Final disease incidence (Inc), Overall disease severity (Sev), 

Standardized area under disease severity progress curve (SA), Time to initial symptoms (Ip), and Intensity of 

stem vascular colonization (Col); related to stress (five parameters): Leaf temperature minus air temperature 

(Tl-Ta), Steady-state chlorophyll fluorescence (Fs), Photochemical reflectance index (PRI), Chlorophyll 

content (Spad), and Ethylene production (Eth); and related to plant growth (two parameters): Relative rate of 

canopy growth (Cgr) and Dry canopy weight (Cdw). Agglomerative cluster analyses were performed based 

on the Spearman correlation matrix calculated from values of the different parameters using the Ward method. 

Cluster groupings of experimental treatment combinations represented in different colors were estimated on 

the basis of the average silhouette width according to the Mantel statistic. In the heat map, for each column, 

cells represent the relative value of each parameter for each experimental treatment combination of soil 

temperature, olive cultivar, and non-inoculated control and Verticillium dahliae pathotypes of the study from 

two repeated experiments. 

Interestingly, 76 (91.6%) of the 83 healthy plants were correctly classified; of the 

remaining seven plants, three were classified as asymptomatic and four were classified as 

plants with only minor symptoms (data not shown), demonstrating the ability of the 

model to discriminate between healthy and diseased plants. Overall, in the selected model 

the probability of increase of Verticillium wilt symptom severity increased with growing 

leaf temperature and ethylene production, but the opposite occurred for chlorophyll 

content and steady-state chlorophyll fluorescence values. Figures 3.7F to I show the 

predicted probability distribution curves for the stress parameters included in the model 
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keeping the remaining three stress parameters constant. The predicted probability 

distribution curves corresponding to Verticillium wilt severity classes from healthy to 

severely affected were distinct in all the parameters (Fig. 3.7). Moreover, chlorophyll 

content values showed distinct curves for all five severity classes (Fig. 3.7F), and ethylene 

production showed distinct probability curves for all Verticillium wilt severity classes 

except for asymptomatic and low symptom severity, which overlapped (Fig. 3.7G). 

Finally, leaf temperature (Fig. 3.7H) and steady-state chlorophyll fluorescence (Fig. 3.7I) 

showed distinct probability curves for healthy, asymptomatic, and low symptom severity 

classes, but overlapping curves for moderately or severely affected classes. The model 

was validated using a test data set containing 20% of the data of the original set that had a 

correct classification rate of 76.60% and explained 99.81% of the variation.  

 

Table 3.1. Results of the multinomial logistic regression models fitted for each variable separately and the 

multivariate multinomial logistic regression model fitted with a stepwise method. 

 

 LRT testb   

Predictora Chi-square P>Chi-square Max-rescaled R2 b 
Correct 

classification (%)b 

SPAD 423.05 <0.0001 0.8964 59.57 

Ethylene 122.30 <0.0001 0.4854 56.38 

Tl-Ta 26.65 <0.0001 0.1358 49.47 

Fs 16.78 0.0021 0.0869 47.74 

PRI 13.17 0.0105 0.0888 46.28 

SPAD, Ethylene, 

Tl-Ta, Fs 
819.35 <0.0001 0.9875 73.40 

a A multinomial logistic regression model was fitted to each of the stress parameters as independent variable 

(predictor) and disease severity class as independent variable, using healthy plants as the reference category. 

To assess the combined effect of all stress related variables, a multiple logistic regression model was fitted 

using the stepwise procedure. SPAD: SPAD index; Ethylene: Ethylene production; Tl-Ta: Leaf temperature 

minus air temperature; Fs: Steady-state chlorophyll fluorescence. 

b Likelihood ratio test (LRT), maximum rescaled R2 determination coefficient and correct classification rate 

were obtained when using the models for prediction. 
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Figure 3.7. Predicted probabilities according to the multinomial logistic regression model with Verticillium 

wilt severity as the response variable and stress-related parameters as explanatory variables using healthy 

plants as the reference category. Left panels (A to E) represent the predicted probability distribution curves 

for each stress parameter fitted separately. Right panels (F to I) represent the predicted probability for each of 

the four stress parameters when the other three are fixed. A, F. Chlorophyll content (SPAD value); B, G. 

Ethylene production; C, H. Leaf temperature minus air temperature (Tl-Ta); D, I. Steady-state chlorophyll 

fluorescence (Fs); E. Photochemical reflectance index (PRI). Severity class indicates the severity of 

Verticillium wilt symptoms from Healthy control plants to Severe symptom development. Data include a 

training set of 188 plants selected at random from a total set of 235 plants in two repeated experiments 

comprising all experimental combinations of soil temperature, olive cultivars, and non-inoculated control and 

Verticillium dahliae pathotypes of the study. 

 

3.3.5. Identification of stress-related parameter thresholds 

The optimal classification tree fitted to the data had seven terminal nodes and a 

discrimination ability of 76.6% (Fig. 3.8). Chlorophyll content (44.7%), ethylene 

production (37.3%), and steady-state chlorophyll fluorescence (30.4%) were the most 

important parameters in the construction of the classification tree. Leaf temperature and 

the PRI accounted for a much lower importance (i.e., 18.5 and 17.7%, respectively). 

Chlorophyll content was the main factor (i.e., first splitting stress parameter) that 

differentiated between plants in the healthy and low symptom severity class and those in 

moderate to severely affected classes with a chlorophyll content value <53.8 SPAD units. 

At the second level, ethylene and leaf temperature differentiated between both groups. 

Specifically, healthy plants were separated from asymptomatic plants by an ethylene 

production threshold of 11.5 pmol g-1 root fresh weight h-1. Plants below this threshold 

with a steady-state chlorophyll fluorescence >4658 were healthy, while plants with a 

lower fluorescence value were asymptomatic. In addition, plants with ethylene production 

above 11.5 pmol g-1 root fresh weight h-1 and a chlorophyll content value >58.5 SPAD 

units were asymptomatic and those with a lower chlorophyll content value exhibited mild 

symptoms. Moderate and severe Verticillium wilt classes separated by a chlorophyll 

Predicted probabilities 
 for single predictor effect 
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content value <53.8 SPAD units were divided into two groups by leaf temperature: plants 

with a leaf temperature >1.9ºC, which exhibited severe Verticillium wilt symptoms, and 

plants with a lower leaf temperature, which were in turn split in two new groups (i.e., 

plants with moderate Verticillium wilt symptoms and a steady-state chlorophyll 

fluorescence value <5670 and plants with severe Verticillium wilt symptoms and a 

steady-state chlorophyll fluorescence value above this threshold). The selected tree was 

validated using a test data set containing 20% of the data of the original set that was found 

to have a correct classification rate of 85.11%. 

Figure 3.8. Classification tree to discriminate among Verticillium wilt severity classes based on stress-related 

parameters. Five stress-related parameters were used: Chlorophyll content (SPAD value), Ethylene 

production, Steady-state chlorophyll fluorescence (Fs), Leaf temperature minus air temperature (Tl-Ta), and 

Photochemical reflectance index (PRI). Severity class indicates the severity of Verticillium wilt symptoms 

from Healthy control plants to Severe symptom development. For each terminal node the most prevalent 

Verticillium wilt severity class is indicated. The histogram for each terminal node represents the percentage of 

plants in each severity class (where H = Healthy, A = Asymptomatic, L = Low, M = Moderate and S = Severe 

symptoms). Data include a training set of 188 plants selected at random from a total set of 235 plants in two 

repeated experiments comprising all experimental combinations of soil temperature, olive cultivars, and non-

inoculated control and Verticillium dahliae pathotypes of the study. 

 

3.4. Discussion 

The development of Verticillium wilt in various crops has been related to 

environmental and soil conditions (Pegg and Brady, 2002). Soil temperature has been 

found to affect the development of diseases caused by V. dahliae in different crops (Pegg 
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and Brady, 2002). However, no studies have explored the relationship between 

Verticillium wilt development and soil temperature in olive trees. The main objective of 

this study was to explore the relationship between soil temperature and Verticillium wilt 

symptom development, considering the potential influence of the virulence of V. dahliae 

pathotypes and the susceptibility of the host cultivar. We also measured several 

parameters at leaf level to assess the stress caused by the pathogen in olive plants at 

different soil temperatures and the relationship between such parameters and disease 

severity. 

In our study, the most favorable soil temperature for Verticillium wilt development 

caused by the V. dahliae D pathotype was 24ºC in both olive cultivars, showing the 

highest values in the five disease-related parameters measured (i.e., incubation period, 

final disease incidence and severity, standardized area under the disease severity progress 

curve, intrinsic rate of disease increase, and intensity of stem vascular colonization). At 

16 and 20ºC soil temperatures, high values of these parameters were also observed, 

although they were lower than those reached at 24ºC. At 28 and 32ºC, such disease 

parameters decreased dramatically, reaching the lowest values at 32ºC. Our results are in 

close agreement with most studies on the effect of temperature on disease caused by V. 

dahliae in various host plants (Pegg and Brady, 2002). For example, studies conducted in 

cotton, tomato, and pepper infected by V. dahliae revealed that the optimal soil 

temperatures for V dahliae growth were close to 20ºC and temperatures higher than 28ºC 

greatly reduced the development of the disease (Pegg and Brady, 2002). Temperature also 

interacts with the expression level of resistance of host cultivars. Specifically, severe 

disease symptoms caused by a highly virulent isolate can be modified by a temperature of 

28ºC and above to reach those of a moderately susceptible cotton cultivar (Pegg and 

Brady, 2002), as occurred in our experiments with Picual plants infected with D V. 

dahliae. High temperatures delay germination of microsclerotia and therefore impair the 

ability of V. dahliae to penetrate the plant and cause disease (Pullman et al., 1981; Tjamos 

and Fravel, 1995). Values reached by disease-related parameters were higher in cv. Picual 

than in cv. Arbequina, as previously found by López-Escudero et al. (2004), who reported 

that cv. Picual was more susceptible than cv. Arbequina to the D pathotype. Moreover, 

stress-related parameters showed the highest differences between D-V. dahliae-infected 

plants and control plants at 24ºC. The reason for this was probably that 24ºC was the most 

favorable soil temperature for Verticillium wilt development and consequently that plants 

at this soil temperature suffered the highest level of stress. Leaf temperature was higher in 

infected plants than in control plants, and the lowest differences them were recorded at 16 

and 32ºC soil temperatures. The higher leaf temperatures observed in infected plants than 

in control plants are consistent with the results of similar studies in oilseed rape plants 

infected by V. dahliae (Nilsson, 1995) and other soil-borne pathogens (Pinter et al., 1979; 

Tu and Tan, 1985; Mengistu et al., 1987; Nilsson, 1991, 1995; Hayat et al., 2008). In 

potato, infection with V. dahliae has been found to cause lower stomatal conductance, 
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lower transpiration, and therefore higher leaf temperature (Bowden and Rouse, 1991). In 

sunflower plants, however, Sadras et al. (2000) did not observe changes in leaf 

temperature or stomatal conductance due to infection with V. dahliae. 

The photochemical reflectance index was higher in infected plants than in control 

plants in the cv. Picual/D pathotype combination; by contrast, this only occurred at a soil 

temperature of 16 and 32ºC in the cv. Arbequina/D pathotype combination. These results 

are consistent with those obtained by Suárez et al. (2008, 2009) in trees subjected to water 

stress. Leaf chlorophyll fluorescence measurements estimated from steady-state 

chlorophyll fluorescence showed lower values in D pathotype infected plants of cv. 

Picual; in the cv. Arbequina/D pathotype combination, however, steady-state chlorophyll 

fluorescence values were higher in infected plants. The opposite trends observed in the 

two cultivars for the photochemical reflectance index and steady state fluorescence to soil 

temperature showed on Fig. 3.3C to F could be due to the differential response of both 

olive cultivars to infection by V. dahliae and soil temperature. Specifically, maximum 

disease severity and symptom expression is reached when Picual plants are grown at 20 to 

28ºC, while at these same soil temperatures disease severity and symptom expression on 

Arbequina plants are moderate or low. This is also supported by the minor differences 

showed between cultivars for both stress parameters at extreme soil temperatures (i.e., 16 

and 32ºC) where disease symptoms are low. The decrease in steady-state chlorophyll 

fluorescence in cv. Picual/D pathotype infected plants could be also expected according to 

previous results obtained with trees under water stress (Zarco-Tejada et al., 2009, 2012). 

Depression in photosynthetic activity mainly due to drought in plants inoculated with 

wilting fungi has been described in several pathosystems, including potato infected with 

V. dahliae (Bowden and Rouse, 1991), tomato infected with Verticillium albo-atrum 

(Lorenzini et al., 1997), and Quercus ilex infected with Cryphonectria parasitica (El 

Omari et al., 2001). Chlorophyll content in leaves estimated by SPAD readings was 

inversely correlated with disease severity, as previously found in potato plants infected 

with V. dahliae (Gamliel et al., 1997). Similarly, SPAD values related to chlorophyll 

content levels were able to indicate a reduction in photosynthetic activity in tomato plants 

(Fanizza et al., 1991) and grapevines (Flexas et al., 2000) under water stress. 

Ethylene is a plant hormone that acts as a signaling molecule in basal plant defense 

responses (Fradin and Thomma, 2006) and is known to increase rapidly upon V. albo-

atrum infection (Pegg and Gronshaw, 1976). In our study, ethylene production in leaf 

petioles was greater in infected plants of susceptible cv. Picual than in those of 

moderately susceptible cv. Arbequina. This agrees with the results of Birem et al. (2009), 

who reported higher levels of ethylene in cv. Picual than in resistant cv. Frantoio plants 

due to infection by D V. dahliae. These findings are also consistent with those of Pegg 

and Cronshaw (1976), who reported a significant production of ethylene in internodes of a 
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susceptible cultivar, but low or no ethylene production in a resistant tomato cultivar 

following infection with V. albo-atrum. 

The most favorable soil temperature for Verticillium wilt development of the V. 

dahliae ND pathotype in cv. Picual was 16ºC. From that temperature upwards, values of 

disease incidence and severity and intensity of stem vascular colonization progressively 

decreased. These values were much lower than those reached by the D pathotype, as 

previously found by López-Escudero et al. (2004), who reported that cv. Picual was more 

susceptible to the D pathotype than to the ND pathotype. In agreement with such findings, 

the greatest differences in stress-related parameters between ND pathotype infected plants 

and control plants were found at 16ºC and decreased with rising soil temperatures. These 

differences were lower than those obtained in the D pathotype, confirming that the lower 

Verticillium wilt development in plants infected with the ND pathotype is related to a 

lower stress level. In plants infected with the ND pathotype, however, chlorophyll content 

and ethylene production showed similar values to those of control plants, revealing that 

photosynthesis and ethylene production were not affected by pathogen infection. In 

consequence, plant growth parameters of ND pathotype-infected plants showed almost no 

differences when compared to those of control plants. 

According to our results, the optimal soil temperature for D pathotype infection was 

in a range of 16 to 24ºC in cv. Picual plants and 20 to 24ºC in cv. Arbequina plants. The 

optimal soil temperature for ND pathotype development was in a range of 16 to 20ºC. 

Differences found in the optimal temperature range for disease development for both V. 

dahliae pathotypes are in agreement with the optimal mycelial growth for isolates of the 

D and ND pathotypes. Indeed, in V. dahliae cotton isolates from southern Spain, 

Bejarano-Alcázar et al. (1996) estimated that the optimal temperature for in vitro growth 

(over a 21 to 30ºC range) was 24 to 27ºC for isolates of the D pathotype compared to 21 

to 24ºC for the ND isolates. In addition, the lower temperature optimum for the ND 

pathotype may explain why this V. dahliae pathotype tends to be geographically restricted 

to cooler areas of southern Spain such as Granada and Huelva provinces, whereas the D 

pathotype is present in most olive growing areas but is particularly prevalent in the 

warmer areas of the Guadalquivir Valley (Jiménez-Díaz et al., 2011). 

The relationship between stress-related parameters and Verticillium wilt severity 

classes was determined by a multinomial logistic regression analysis and a tree 

classification. According to the multinomial regression models fitted for each parameter 

separately, significant differences were found among Verticillium wilt severity classes in 

all stress-related parameters. The parameters with the highest explanatory power were 

chlorophyll content, ethylene production, leaf temperature, and steady-state chlorophyll 

fluorescence. Predicted probability distribution curves corresponding to chlorophyll 

content values were different for all Verticillium wilt severity classes, which made it 
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possible to discriminate between each disease severity level, even at early stages of V. 

dahliae infection. However, ethylene production showed similar probability curves for 

asymptomatic and initial-low symptom development classes, while leaf temperature and 

steady-state chlorophyll fluorescence were similar in moderately and severely affected 

plants. In fact, ethylene production of plants at early stages of Verticillium wilt 

development did not differ significantly from that of plants in the asymptomatic class, 

while leaf temperature and steady-state chlorophyll fluorescence showed significant 

differences between plants in such classes. Based on the results of the multinomial 

regression models fitted for each parameter separately, we fitted a multiple logistic 

regression model including the four best stress parameters: chlorophyll content, ethylene 

production, leaf temperature, and steady-state chlorophyll fluorescence. The model 

explained 98.75% of the variance and correctly classified 73.40% of the cases. The 

optimal classification tree had a similar discrimination ability (76.6%), revealing that 

chlorophyll content, ethylene production, steady-state chlorophyll fluorescence, and leaf 

temperature were the most important parameters. As shown by the logistic regression 

analysis, chlorophyll content was the main factor that differentiated between 

asymptomatic and low Verticillium wilt severity classes, while ethylene production did 

not distinguish between them. Nevertheless, leaf temperature and steady-state chlorophyll 

fluorescence differentiated between moderate and severe Verticillium wilt classes; by 

contrast, in the logistic regression analysis, these two parameters distinguished between 

all Verticillium wilt severity classes except moderate and severe classes. The PRI was the 

parameter with the lowest explanatory power and classification rate in both classification 

methods. These results obtained at leaf level under controlled conditions confirmed those 

obtained at leaf and canopy levels under field conditions by Calderón et al. (2013), who 

proved the potential for early detection of V. dahliae infection and discrimination among 

Verticillium wilt severity levels in olive crops using thermal, multispectral, and 

hyperspectral imagery acquired with an unmanned aerial vehicle. In that study, 

temperature and chlorophyll fluorescence were identified as the best indicators to detect 

Verticillium wilt at initial stages of disease development, while the photochemical 

reflectance and chlorophyll indices proved to be good indicators to detect moderate and 

severe Verticillium wilt severity classes under field conditions. 

In conclusion, the optimal soil temperatures for D and ND pathotype development 

were 20-24ºC and 16-20ºC, respectively, with a drastic reduction of Verticillium wilt 

symptom development at soil temperatures higher than 28ºC. Cv. Picual plants were more 

susceptible to the D than to the ND pathotype and were more affected by the D pathotype 

than Arbequina plants. Stress-related parameters were able to detect the effects of V. 

dahliae infection and colonization on water flow that eventually cause water stress 

effects. Results demonstrated that leaf temperature, physiological indices (i.e., 

photochemical reflectance, steady-state chlorophyll fluorescence, and chlorophyll 

content), and ethylene production are related to physiological stress caused by 
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Verticillium wilt. Chlorophyll content, steady-state chlorophyll fluorescence, and leaf 

temperature were identified as the best indicators to detect Verticillium wilt at early 

stages of disease development, while ethylene production and the photochemical 

reflectance index were good indicators to detect Verticillium wilt at advanced stages. In 

addition, chlorophyll content was the parameter with the highest explanatory power and 

correct classification rate in the classification models used in this study, followed by 

ethylene production, steady-state chlorophyll fluorescence, and leaf temperature. These 

results will be useful to better understand the differential geographic distribution of V. 

dahliae pathotypes in southern Spain found by Jiménez-Díaz et al. (2011) and to assess 

the potential effect of climate change on the development of Verticillium wilt of olive 

under different future climate change scenarios. 

 

Acknowledgments 

M. Medina is acknowledged for her support in remote sensing parameter 

measurements. We thank R.M. Jiménez-Díaz and B.B. Landa from IAS-CSIC for 

critically reading the manuscript and making valuable suggestions prior to submission. 

 

Funding 

Financial support for this research was provided by Project P08-AGR-03528 from 

‘‘Consejería de Economía, Innovación y Ciencia’’ of Junta de Andalucía and the 

European Social Fund (JANC), and projects AGL-2012-37521 (JANC) and AGL2012-

40053-C03-01 (PJZT) from the Spanish ‘‘Ministerio de Economía y Competitividad’’ and 

the European Social Fund. R. Calderón is a recipient of research fellowship BES-2010-

035511 from the Spanish ‘‘Ministerio de Ciencia e Innovación’’ and C. Lucena was a 

recipient of a JAE-DOC postdoctoral contract from ‘‘Consejo Superior de Investigaciones 

Científicas’’ (CSIC) co-funded by the European Social Fund. The funders had no role in 

study design, data collection and analysis, decision to publish, or preparation of the 

manuscript. 

 

Author Contributions 

Conceived and designed the experiments: RC CL JLTC PJZT JANC. Performed the 

experiments: RC CL JLTC PJZT JANC. Analyzed the data: RC JANC. Contributed 

reagents/materials/analysis tools: JANC PJZT. Wrote the paper: RC PJZT JANC. 



 

  64 

 

References 

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed. Hoboken, NJ, 

USA: John Wiley & Sons, Inc. 

Ayres, P.G. (1978). Water relations of diseased plants. In Kozlowski, T.T. (Eds.), Water 

Deficits and Plant Growth (vol.5, pp. 1-60). London, United Kingdom: Academic 

Press. 

Barranco, D., Fernández-Escobar, R., & Rallo, L. (2004). El cultivo del olivo, 5th edition. 

Madrid, Spain: Ediciones Mundi-Prensa. 

Bejarano-Alcázar, J., Blanco-López, M.A., Melero-Vara, J.M., & Jiménez-Díaz, R.M. 

(1996). Etiology, importance, and distribution of Verticillium wilt of cotton in 

southern Spain. Plant Dis. 80:1233-1238.  

Birem, F., Alcántara, E., Blanco-López, M.A., & López-Escudero, F.J. (2009). 

Physiologycal differences expressed by susceptible and resistant olive cultivars 

inoculated with Verticillium dahliae. In 10th International Verticillium 

Symposium, Book of Abstracts (p. 71). Corfu Island, Hellas. 

Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical Ecology with R. New York, 

NY, USA: Springer. 

Bowden, R.L., & Rouse, D.L. (1991). Effects of Verticillium dahliae on gas exchange of 

potato. Phytopathology 81:293-301. 

Calderón, R., Navas-Cortés, J.A., Lucena, C., & Zarco-Tejada, P.J. (2013). High-

resolution airborne hyperspectral and thermal imagery for early detection of 

Verticillium wilt of olive using fluorescence, temperature and narrow-band 

spectral indices. Remote Sens. Environ. 139:231-245. 

DeVay, J.E., Forrester, L.L., Garber, R.H., & Butterfield, E.J. (1974). Characteristics and 

concentration of propágulos of Verticillium dahliae in air-dried field soils in 

relation to the prevalence of Verticillium wilt in cotton. Phytopathology 64:22-29. 

El Omari, B., Fleck, I., Aranda, X., Moret, A., & Nadal, M. (2001). Effect of fungal 

infection on leaf gas-exchange and chlorophyll fluorescence in Quercus ilex. Ann. 

For. Sci. 58:165-174. 

Everitt, B.S., & Hothorn, T. (2010). A Handbook of Statistical Analysis Using R, 2nd ed. 

Boca Raton, FL, USA: Chapman and Hall/CRC Press. 



 

  65 

 

Fanizza, G., Ricciardi, L., & Bagnulo, C. (1991). Leaf greenness measurements to 

evaluate water stressed genotypes in Vitis vinifera. Euphytica 55:27-31. 

Flexas, J., Briantais, J.M., Cerovic, Z., Medrano, H., & Moya, I. (2000). Steady-state and 

maximum chlorophyll fluorescence responses to water stress in grapevine leaves: 

A new remote sensing system. Remote Sens. Environ. 73:282-297. 

Fradin, E.F., & Thomma, B.P.H.J. (2006). Physiology and molecular aspects of 

Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant 

Pathol. 7:71-86. 

Gamliel, A., Grinstein, A., Peretz, Y., Klein, L., Nachmias, A., Tsror, L., Livescu, L., & 

Katan, J. (1997). Reduced dosage of methyl bromide for controlling Verticillium 

wilt of potato in experimental and commercial plots. Plant Dis. 81:469-474. 

Gamon, J.A., Peñuelas, J., & Field, C.B. (1992). A narrow-wave band spectral index that 

tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41:35-

44. 

Hau, B. (1988). Ein erweitertes analytisches modell für epidemien von 

pflanzenkrankheiten (An extended analytical model for epidemics of plant 

diseases). Giessen, Germany: Justus-Liebig-Universität. 

Hayat, S., Hasan, S.A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato 

(Lycopersicon esculentum) in response to salicylic acid under water stress. J. 

Plant Interact. 3:297-304. 

Hoagland, D.R., & Arnon, D.I. (1950). The water culture method for growing plants 

without soil. California Agricultural Experiment Station, Circular No. 347. 

Hosmer, D.W., & Lemeshow, S. (2000). Applied Logistic Regression, 2nd ed. New York, 

NY, USA: John-Wiley & Sons, Inc. 

Jackson, R.D., & Pinter, P.J., Jr. (1981). Detection of water stress in wheat by 

measurement of reflected solar and emitted thermal IR radiation. In Proc. Intern. 

Colloquium on Spectral Signatures of Objects in Remote Sensing (pp. 399-406). 

Versalles, France: Institut National de la Reserche Agronomique.  

Jiménez-Díaz, R.M., Cirulli, M., Bubici, G., Jiménez-Gasco, L.M., Antoniou, P.P., & 

Tjamos, E.C. (2012). Verticillium wilt, a major threat to olive production: Current 

status and future prospects for its management. Plant Dis. 96:304-329. 

Jiménez-Díaz, R.M., Olivares-García, C., Landa, B.B., Jiménez-Gasco, M.M., & Navas-

Cortés, J.A. (2011). Region-Wide Analysis of genetic diversity in Verticillium 



 

  66 

 

dahliae populations infecting olive in southern Spain and agricultural factors 

influencing the distribution and prevalence of vegetative compatibility groups and 

pathotypes. Phytopathology 101:304-315. 

Jiménez-Díaz, R.M., Tjamos, E.C., & Cirulli, M. (1998). Verticillium wilt of major tree 

hosts: Olive. In Hiemstra, J.A., & Harris, D.C. (Eds.), A Compendium of 

Verticillium Wilt in Tree Species (pp. 13-16). Wageningen, The Netherlands: 

Ponsen and Looijen. 

Levin, A.G., Lavee, S., & Tsror, L. (2003). Epidemiology of Verticillium dahliae on olive 

(cv. Picual) and its effects on yield under saline conditions. Plant Pathol. 52:212-

218. 

López-Escudero, F.J., & Blanco-López, M.A. (2007). Relationship between the inoculum 

density of Verticillium dahliae and the progress of Verticillium wilt of olive. 

Plant Dis. 91:1372-1378. 

López-Escudero, F.J., del Río, C., Caballero, J.M., & Blanco-López, M.A. (2004). 

Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur. J. Plant 

Pathol. 110:79-85. 

Lorenzini, G., Guidi, L., Nali, C., Ciompi, S., & Soldatini, G.F. (1997). Photosynthetic 

response of tomato plants to vascular wilt diseases. Plant Sci. 124:143-152. 

Madden, L.V., Hughes, G., & van den Bosch, F. (2007). The Study of Plant Disease 

Epidemics. St. Paul, MN, USA: APS Press, The American Phytopathological 

Society. 

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2013). cluster: 

Cluster Analysis Basics and Extensions. R package version 1.14.4. 

Marquard, R.D., & Tipton, J.L. (1987). Relationship between extractable chlorophyll and 

an in situ method to estimate leaf greenness. HortScience 22:1327.  

McKeen, C.D. (1943). A study of some factors affecting the pathogenicity of Verticillium 

albo-atrum. R. & B. Can. J. Res. 21:95-117. 

Mengistu, A., Tachibana, H., Epstein, A.H., Bidne, K.G., & Hatfield, J.D. (1987). Use of 

leaf temperature to measure the effect of brown stem rot and soil moisture stress 

and its relation to yields of soybeans. Plant Dis. 71:632-634. 

Mercado-Blanco, J., Rodríguez-Jurado, D., Parrilla-Araujo, S., & Jiménez-Díaz, R.M. 

(2003). Simultaneous detection of the defoliating and nondefoliating Verticillium 



 

  67 

 

dahliae pathotypes in infected olive plants by duplex, nested polymerase chain 

reaction. Plant Dis. 87:1487-149.  

Navas-Cortés, J.A., Landa, B.B., Mercado-Blanco, J., Trapero-Casas, J.L., Rodríguez-

Jurado, D., & Jiménez-Díaz, R.M. (2008). Spatiotemporal analysis of spread of 

Verticillium dahliae pathotypes within a high tree density olive orchard in 

southern Spain. Phytopathology 98:167-180. 

Nilsson, H.E. (1991). Hand-held radiometry and IR-thermography of plant diseases in 

field plot experiments. Int. J. Remote Sens. 12:545-557. 

Nilsson, H.E. (1995). Remote sensing and image analysis in plant pathology. Annu. Rev. 

Phytopathol. 15:489-527. 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., et al. (2013). vegan: 

Community Ecology Package. R package version 2.0-10. 

Papageorgiu, G. (1975). Chlorophyll fluorescence; an intrinsic probe of photosynthesis. In 

Govindjee (Eds.), Bioenergetics of photosynthesis (pp. 319-371.). New York, NY, 

USA: Academic Press. 

Pegg, G.F., & Brady, B.L. (2002). Verticillium Wilts. Wallingford, United Kingdom: 

CABI Publishing. 

Pegg, G.F., & Cronshaw, D.K. (1976). Ethylene production in tomato plants infected by 

Verticillium albo-atrum. Physiol. Plant Pathol. 8:279-295. 

Pinter, P.J., Stanghellini, M.E., Reginato, R.J., Idso, S.B., Jenkins, A.D., & Jackson, R.D. 

(1979). Remote detection of biological stresses in plants with infrared 

thermometry. Science 205:585-587. 

Pullman, G.S., DeVay, J.E., Garber, R.H., & Weinhold, A.R. (1981). Soil Solarization: 

Effects on Verticillium Wilt of Cotton and Soilborne Populations of Verticillium 

dahliae, Pythium spp., Rhizoctonia solani, and Thielaviopsis basicola. 

Phytopathology 71:954-959. 

Romera, F.J., Alcántara, E., & De la Guardia, M.D. (1999). Ethylene production by Fe-

deficient roots and its involvement in the regulation of Fe-deficiency stress 

responses by strategy I plants. Ann. Bot. 83:51-55. 

Ruggieri, G. (1946). A new disease of olive. L’Italia Agricola 83:369-372. 



 

  68 

 

Sadras, V.O., Quiroz, F., Echarte, L., Escande, A., & Pereyra, V.R. (2000). Effect of 

Verticillium dahliae on photosynthesis, leaf expansion and senescence of field-

grown sunflower. Ann. Bot. 86:1007-1015. 

Schreiber, L.R., & Green, R.J., Jr. (1963). Effect of root exudates on germination of 

conidia and microsc1erotia of Verticillium albo-atrum inhibited by the soil 

fungistatic principle. Phytopathology 53:260-264. 

Simko, I., & Piepho, H.-P. (2011). The area under the disease progress stairs: calculation, 

advantage, and application. Phytopathology 102:381-389. 

Sit, V., & Poulin-Costello, M. (1994). Catalogue of curves for curve fitting. Biometrics 

Information Handbook Series, 4. Victoria, Canada: Forest Science Research 

Branch, Ministry of Forests. 

Suárez, L., Zarco-Tejada, P.J., Berni, J.A.J., González-Dugo, V., & Fereres, E. (2009). 

Modelling PRI for water stress detection using radiative transfer models. Remote 

Sens. Environ. 113:730-740. 

Suárez, L., Zarco-Tejada, P.J., Sepulcre-Cantó, G., Pérez-Priego, O., Miller, J.R., 

Jiménez-Múñoz, J.C., & Sobrino, J. (2008). Assessing canopy PRI for water 

stress detection with diurnal airborne imagery. Remote Sens. Environ. 112:560-

575. 

Talboys, P.W. (1962). Systemic movement of some vascular pathogens. Trans. Br. 

Mycol. Soc. 45:280-281. 

Thenot, F., Méthy, M., & Winkel, T. (2002). The photochemical reflectance index (PRI) 

as a water-stress index. Int. J. Remote Sens. 23:5135-5139. 

Therneau, T., Atkinson, B., & Ripley, B. (2013). rpart: Recursive Partitioning. R package 

version 4.1-4. 

Tjamos, E.C., & Fravel, D.R. (1995). Detrimental Effects of Sublethal Heating and 

Talaromyces flavus on Microsclerotia of Verticillium dahliae. Phytopathology 

85:388-392. 

Tsror, L. (Lahkim) (2011). Review: Epidemiology and control of Verticillium wilt on 

olive. Israel J. Plant Sci. 59:59-69. 

Tu, J.C., & Tan, C.S. (1985). Infrared thermometry for determination of root rot severity 

in bean. Phytopathology 75:840-844. 



 

  69 

 

Villalobos, F.J., Testi, L., Hidalgo, J., Pastor, M., & Orgaz, F. (2006). Modelling potential 

growth and yield of olive (Olea europaea L.) canopies. Eur. J. Agron. 24:296-

303. 

Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., et al. (2013). 

gplots: Various R programming tools for plotting data. R package version 2.12.1. 

Wilhelm, S. (1955). Longevity of the Verticillium wilt fungus in the laboratory and field. 

Phytopathology 45:180-181. 

Xu, F., Yang, L., Zhang, J., Guo, X., Zhang, X., & Li, G. (2012). Effect of temperature on 

conidial germination, mycelial growth and aggressiveness of the defoliating and 

nondefoliating pathotypes of Verticillium dahliae from cotton in China. 

Phytoparasitica 40:319-327. 

Yadava, U.L. (1986). A rapid and nondestructive method to determine chlorophyll in 

intact leaves. HortScience, 21, 1449-1450. 

Zarco-Tejada, P.J., Berni, J.A.J., Suárez, L., Sepulcre-Cantó, G., Morales, F., & Miller, J. 

R. (2009). Imaging chlorophyll fluorescence from an airborne narrow-band 

multispectral camera for vegetation stress detection. Remote Sens. Environ. 

113:1262-1275. 

Zarco-Tejada, P.J., González-Dugo, V., & Berni, J.A.J. (2012). Fluorescence, temperature 

and narrow-band indices acquired from a UAV for water stress detection using a 

hyperspectral imager and a thermal camera. Remote Sens. Environ. 117:322-337. 

 



 

 



 

 

Chapter 4: High-resolution airborne hyperspectral 

and thermal imagery for early detection of 

Verticillium wilt of olive using fluorescence, 

temperature andices 

 

 

 

Authors: Calderón, R., Navas-Cortés, J.A., Lucena, C., & 

Zarco-Tejada, P.J.  

Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones 

Científicas (CSIC), Córdoba, Spain 

Published in: Remote Sensing of Environment 139:231-245 

 dx.doi.org/10.1016/j.rse.2013.07.031  



 

 

 



 

  73 

 

CHAPTER 4: High-resolution airborne hyperspectral and 

thermal imagery for early detection of 

Verticillium wilt of olive using fluorescence, 

temperature and narrow-band spectral 

indices 

Resumen 

a Verticilosis (VW) causada por el hongo de suelo Verticillium dahliae Kleb., 

es la enfermedad más limitante en todas las regiones olivareras tradicionales del 

mundo. Este patógeno coloniza el sistema vascular de las plantas, bloqueando el flujo del 

agua y finalmente induciendo estrés hídrico. El presente estudio exploró el uso de 

imágenes térmicas de alta resolución, fluorescencia clorofílica, índices estructurales y 

fisiológicos (índices de xantofilas, clorofila a+b, carotenos y azul/verde/rojo B/G/R) 

calculados a partir de imágenes multiespectrales e hiperespectrales como indicadores 

tempranos del estrés hídrico causado por la infección y severidad de la Verticilosis. El 

estudio se llevó a cabo en dos parcelas de olivar naturalmente infectadas por V. dahliae. 

Se adquirieron series temporales de imágenes térmicas, multiespectrales e 

hiperespectrales en tres años consecutivos y se relacionaron con la severidad de la 

enfermedad evaluada al mismo tiempo que los vuelos. Simultáneamente a las campañas 

de vuelo, las medidas de campo tomadas a nivel foliar y de copa mostraron un aumento 

significante en la temperatura de copa (Tc) menos la temperatura del aire (Ta) y un 

descenso de la conductancia estomática foliar (G) a lo largo de los niveles de severidad, 

identificando árboles infectados por la enfermedad en etapas tempranas del desarrollo de 

la misma. Elevados valores de Tc − Ta y bajos valores de G medidos en campo fueron 

asociados con niveles de severidad avanzados. A nivel de hoja, la reducción en G causada 

por la infección de la Verticilosis fue asociada con un aumento significante en el 

Photochemical Reflectance Index (PRI570) y una disminución en la fluorescencia 

clorofílica (F). Los vuelos permitieron la detección temprana de la Verticilosis usando Tc 

− Ta derivada de las imágenes térmicas, el Crop Water Stress Index (CWSI) calculado a 

partir de las imágenes térmicas, los ratios azul/azul-verde/azul-rojo (índices B/BG/BR) y 

la fluorescencia clorofílica, confirmando los resultados obtenidos en campo. Tc − Ta 

obtenida de los vuelos mostró valores en aumento con un incremento significante de ~2 K 

en niveles de severidad bajos, y fue significantemente correlacionado con G (R2 = 0.76, P 

= 0.002) y PRI570 (R2 = 0.51, P = 0.032). Etapas tempranas del desarrollo de la 

enfermedad pudieron ser diferenciadas basándose en un aumento del CWSI a medida que 

la enfermedad progresaba, obteniendo una fuerte correlación con G (R2 = 0.83, P < 

0.001). Igualmente, la fluorescencia clorofílica obtenida a nivel de cubierta descendió en 

niveles de severidad avanzados, mostrando un aumento significante a medida que la 
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enfermedad progresaba. Estos resultados indican el potencial de una detección temprana 

de la infección por V. dahliae y la discriminación de los niveles de severidad usando 

teledetección. Los indicadores basados en temperatura de copa como CWSI, y ratios 

visibles B/BG/BR así como la fluorescencia fueron efectivos en detectar la Verticilosis en 

etapa tempranas del desarrollo de la enfermedad. En arboles afectados, los índices 

estructurales, PRI, índices de clorofila y carotenos, y los ratios R/G fueron buenos 

indicadores para evaluar el daño causado por la enfermedad. 

Palabras clave: Detección de estrés, Hiperespectral, Térmico, Fluorescencia, Alta 

resolución, UAV, Índices fisiológicos, Verticillium dahliae. 

 

Abstract 

erticillium wilt (VW) caused by the soil-borne fungus Verticillium dahliae 

Kleb, is the most limiting disease in all traditional olive-growing regions 

worldwide. This pathogen colonizes the vascular system of plants, blocking water flow 

and eventually inducing water stress. The present study explored the use of high-

resolution thermal imagery, chlorophyll fluorescence, structural and physiological indices 

(xanthophyll, chlorophyll a+b, carotenoids and blue/green/red B/G/R indices) calculated 

from multispectral and hyperspectral imagery as early indicators of water stress caused by 

VW infection and severity. The study was conducted in two olive orchards naturally 

infected with V. dahliae. Time series of airborne thermal, multispectral and hyperspectral 

imagery was acquired in three consecutive years and related to VW severity at the time of 

the flights. Concurrently to the airborne campaigns, field measurements conducted at leaf 

and tree-crown levels showed a significant increase in crown temperature (Tc) minus air 

temperature (Ta) and a decrease in leaf stomatal conductance (G) across VW severity 

levels, identifying VW-infected trees at early stages of the disease. Higher Tc − Ta and 

lower G values measured in the field were associated with higher VW severity levels. At 

leaf level, the reduction in G caused by VW infection was associated with a significant 

increase in the Photochemical Reflectance Index (PRI570) and a decrease in chlorophyll 

fluorescence (F). The airborne flights enabled the early detection of VW by using canopy-

level image-derived airborne Tc − Ta, Crop Water Stress Index (CWSI) calculated from 

the thermal imagery, blue/blue–green/blue–red ratios (B/BG/BR indices) and chlorophyll 

fluorescence, confirming the results obtained in the field. Airborne Tc − Ta showed rising 

values with a significant increase of ~2 K at low VW severity levels, and was 

significantly correlated with G (R2 = 0.76, P = 0.002) and PRI570 (R
2 = 0.51, P = 0.032). 

Early stages of disease development could be differentiated based on a CWSI increase as 

VW developed, obtaining a strong correlation with G (R2 = 0.83, P < 0.001). Likewise, 

the canopy-level chlorophyll fluorescence dropped at high VW severity levels, showing a 
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significant increase as disease progressed. These results indicate the potentials of an early 

detection of V. dahliae infection and discrimination of VW severity levels using remote 

sensing. Indicators based on crown temperature such as CWSI, and visible ratios 

B/BG/BR as well as fluorescence were effective in detecting VW at early stages of 

disease development. In affected trees, the structural indices, PRI, chlorophyll and 

carotenoid indices, and the R/G ratio were good indicators to assess the damage caused by 

the disease. 

Keywords: Stress detection, Hyperspectral, Thermal, Fluorescence, High resolution, 

UAV, Physiological indices, Verticillium dahliae. 

Received: 27 July 2012 / Received in revised form: 24 July 2013 / Accepted: 27 July 2013 

/ Available online: 5 September 2013 

 

4.1. Introduction 

Verticillium wilt (VW) of olive (Olea europaea L.) trees, caused by the soil-borne 

fungus Verticillium dahliae Kleb., is the most limiting disease of this crop in all 

traditional olive-growing regions worldwide (Tsror, 2011; Jiménez-Díaz et al., 2012) and 

causes severe yield losses and tree mortality (Levin et al., 2003). In Spain, the first reports 

of the disease, which was found to affect olive crops in the Guadalquivir valley, were 

documented in the early 1980s (Blanco-López et al., 1984). However, in the last 15-20 

years the disease has spread to affect newly established irrigated crops (Sánchez-

Hernández et al., 1998; Jiménez-Díaz et al., 2011). Under field conditions, the first VW 

symptoms in irrigated olive trees growing in V. dahliae-infested orchards develop 18-24 

months after plantation, depending on the density of pathogen propagules in the soil, the 

V. dahliae pathotype prevailing in the soil, the olive cultivar susceptibility and the 

environmental conditions (Levin et al., 2003; Navas-Cortés et al., 2008). In the 

Mediterranean region, over an annual cropping season, disease incidence and symptom 

severity typically increase from late autumn–early winter to spring and sharply decrease 

in summer, with no further development until the next autumn; this results in polyetic 

epidemics over several cropping seasons (Navas-Cortés et al., 2008). 

V. dahliae can be found in agricultural soils as resistant survival structures called 

‘microsclerotia’ that are stimulated to germinate by root exudates (Schreiber and Green, 

1963) and favorable soil environmental conditions, forming hyphae that penetrate into the 

plant roots and grow into their tissues until they reach the xylem vessels. The rapid 

upward spread of the pathogen in vascular tissues occurs primarily through conidia 

transported with the transpiration stream (Talboys, 1962; Garber and Houston, 1966; 

Presley et al., 1966; Emechebe et al., 1975). This enables the pathogen to spread 
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throughout the aerial parts of its host within one growing season. The net effect of 

pathogen infection is a reduction in water flow that induces water stress and is thought to 

be mainly responsible for the vascular wilt syndrome caused by V. dahliae and other wilt 

pathogens (Ayres, 1978; DeVay, 1989; Van Alfen, 1989). 

Water stress in plants caused by either V. dahliae infection or drought-induced 

stomatal closure reduces the transpiration rate. In turn, this decreases evaporative cooling 

and increases leaf temperature. Early detection of water stress using remote sensing has 

been successfully achieved in the past using thermal infrared radiation (Jackson et al., 

1977, 1981; Idso et al., 1978, 1981; Jackson and Pinter, 1981). Thermal remote sensing of 

water stress has been fulfilled using spectrometers at ground level (Jackson et al., 1977, 

1981; Idso et al., 1978, 1981), thermal sensors at image level (Leinonen and Jones, 2004; 

Cohen et al., 2005; Sepulcre-Cantó et al., 2006, 2007; Berni et al., 2009b; Zarco-Tejada 

et al., 2012) and satellite thermal imagery (Sepulcre-Cantó et al., 2009). Working with 

hand-held infrared thermometers on herbaceous crops, Jackson and co-workers (Idso et 

al., 1978; Jackson et al., 1981) developed the Crop Water Stress Index (CWSI), which 

became a popular thermal-based stress indicator. The CWSI is based on the normalization 

of differences between canopy (Tc) and air temperature (Ta) with evaporative demand (by 

means of the vapor pressure deficit). Apart from the progress made in water-stress 

detection using the thermal region, the visible part of the spectrum has also been useful 

for early water stress detection. This involves using indices focused on bands located at 

specific wavelengths where photosynthetic pigments are affected by stress conditions. 

Two spectral indicators of water stress, spanning initial through severe disease symptoms, 

are widely used. One is the Photochemical Reflectance Index (PRI) (Gamon et al., 1992). 

This index is sensitive to the epoxidation state of the xanthophyll cycle pigments and to 

photosynthetic efficiency, serving as a proxy for water stress detection (Thenot et al., 

2002; Peguero-Pina et al., 2008; Suárez et al., 2008, 2009, 2010). Another indicator of 

water stress is solar-induced chlorophyll fluorescence emission (Flexas et al., 1999, 2000, 

2002; Moya et al., 2004; Zarco-Tejada et al., 2009, 2012), because of the strong 

correlation found between steady-state chlorophyll fluorescence and the reduced 

assimilation caused by water stress conditions. The PRI has been used to assess pre-visual 

water stress at leaf level (Thenot et al., 2002; Winkel et al., 2002), at canopy level (Evain 

et al., 2004; Dobrowsky et al., 2005; Peguero-Pina et al., 2008; Sun et al., 2008) and 

using airborne imaging spectroscopy (Suárez et al., 2008, 2009, 2010). Chlorophyll 

fluorescence is associated with photosynthesis and other physiological processes, as 

demonstrated consistently in laboratory studies (e.g., Papageorgiu, 1975; Krause and 

Weis, 1984). Over the last five years, scientific interest in steady-state chlorophyll 

fluorescence (Fs) obtained under natural outdoor conditions has increased due to its 

potential development using remote sensing methods (Soukupová et al., 2008). Although 

the contribution of fluorescence to the vegetation's radiance signal is estimated to be 2-

3%, methods have been developed to extract the signal (Meroni et al., 2004, 2008a, 
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2008b, 2009; Moya et al., 2004), proving the feasibility of the fluorescence retrieval using 

the O2-A absorption feature at 760 nm. 

Remote sensing has been used to detect, monitor and quantify a range of diseases in 

different crops. Comprehensive reviews on the application of remote sensing to the 

detection of plant diseases are available (e.g., Jackson, 1986; Hatfield and Pinter, 1993; 

Nilsson, 1995; West et al., 2003; Sankaran et al., 2010; Barton, 2012). Most studies have 

focused on foliar pathogens in annual crops, where disease symptoms are mainly 

characterized by distinct color changes in the aerial parts of the plant. However, this 

technology also has shown potential for detecting root diseases in several crops (e.g., 

Raikes and Burpee, 1998; Wang et al., 2004; Reynolds et al., 2012). Canopy temperature 

has shown to be particularly useful to detect root impairment caused by soil-borne 

pathogens that lead to water stress symptoms, as mentioned above. In fact, Pinter et al. 

(1979) found foliar temperatures 3-4°C higher than those of healthy plants in sugar beet 

and cotton. Other examples of the use of leaf temperature for the detection of diseases 

caused by soil-borne pathogens include beans infected with Fusarium solani, Pythium 

ultimum or Rhizoctonia solani (Tu and Tan, 1985); soybeans affected by brown stem rot 

caused by Phialophora gregata (Mengistu et al., 1987); the flag leaf temperature of 

cereals with root and vascular diseases, such as barley infected by Pyrenophora graminea 

and wheat infected with Cephalosporium gramineum (Nilsson, 1995); and wheat with 

moderate take-all symptoms caused by Gaeumannomyces graminis var. tritici (Nilsson, 

1991). 

Other approaches have included the use of multispectral and hyperspectral imagery, 

as well as airborne digital color or video imagery, to detect crop diseases. Multispectral 

imagery enabled the detection of head blight in winter wheat (Dammer et al., 2011), 

assessment of severity of soybean root rot (Wang et al., 2004) and to evaluate Rhizoctonia 

blight in creeping bentgrass (Raikes and Burpee, 1998). Hyperspectral canopy reflectance 

was used to quantify Rhizoctonia crown and root rot in sugar beet (Reynolds et al., 2012) 

and to detect the co-infection of sugar beet with this pathogen and the plant parasitic 

nematode Heterodera schachatii (Hillnhütter et al., 2011) as well as Fusarium head blight 

in wheat (Bauriegel et al., 2011). 

Some research has been conducted on remote detection of diseases caused by V. 

dahliae. Nilsson (1995) reported that oilseed rape plants infected with V. dahliae 

exhibited leaf temperatures 5-8°C higher than non-infected plants. Chen et al. (2008, 

2011) reported the application of hyperspectral reflectance to identify cotton canopy 

affected by VW. They found that the spectral characteristics of infected plants changed 

gradually with the increase in the visible region with disease severity, while a reduction 

occurred in the near-infrared region. Yet, to our knowledge remote sensing physiological 

indices and fluorescence indicators have not been used to study olive tree diseases. 
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The main objective of this research was to evaluate the use of high-resolution 

thermal imagery and physiological indices calculated from multispectral and 

hyperspectral imagery as indicators of VW infection and severity in olive orchards. Time 

series of airborne thermal, multispectral and hyperspectral imagery were acquired in three 

consecutive campaigns and related to VW severity at the time of the flight. The 

hypothesis is that thermal and hyperspectral indices acquired from the airborne imagery 

are sensitive to physiological changes induced by the infection and colonization by V. 

dahliae. 

 

Figure 4.1. Overview of the two study sites in southern Spain used in this study: (a) 7 ha commercial olive 

orchard in Castro del Rio (Cordoba province); (b) 10-ha commercial olive orchard in Utrera (Seville 

province). 

 

4.2. Materials and Methods 

4.2.1. Study site description 

The experimental areas were located in Andalucia, in southern Spain, a region of 

Mediterranean climate characterized by warm and dry summers and cool and wet winters, 

with an average annual rainfall of over 550 mm. Two study sites were selected in the 

Cordoba and Seville provinces, respectively, to account for differences in weather 

conditions, crop age and tree-crown size, olive cultivars with different reactions to VW 

and VW incidence and severity. The first study site was located in Castro del Rio 

(Cordoba province, Spain) (37° 42′ 20″ N, 4° 30′ 45″ W) in a 7-ha commercial orchard 

planted in 2001 with the olive cultivar (cv.) Picual at a spacing of 6 × 4 m (Fig. 4.1a). Cv. 

Picual has been found to be highly susceptible to D and susceptible to ND V. dahliae, 

under controlled conditions in artificial inoculation tests (López-Escudero et al., 2004). 

The initial VW incidence (i.e., percentage of VW symptomatic trees) was estimated in 

a b 
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12%. The second study site was located in Utrera (Seville province, Spain) (37° 4′ 42″ N, 

5° 50° 58″ W), in a 10-ha commercial orchard planted in 2006 with cv. Arbequina (Fig. 

4.1b). Cv. Arbequina has been shown to be susceptible to D and moderately resistant to 

ND V. dahliae, under controlled conditions in artificial inoculation tests (López-Escudero 

et al., 2004). The olive trees were planted at a spacing of 6 × 3 m. The initial VW 

incidence was estimated in 30%. Both orchards were drip irrigated and managed using 

no-tillage practices; weed control was achieved with herbicide treatments between rows. 

 

4.2.2. Verticillium wilt assessment 

Incidence and severity of VW symptoms were assessed in both plots in spring and 

summer of 2009, 2010 and 2011 in coincidence with airborne campaigns. Severity of the 

disease was assessed by visual observation of foliar symptoms in each individual tree and 

assessment on a 0 to 4 rating scale according to the percentage of foliage with disease 

symptoms, where: 0 = 0%, 0.2 and 0.5 = initial symptoms, 1 = 1 to 33%, 2 = 34 to 66%, 3 

= 67 to 100%, and 4 = dead plant. V. dahliae infection was confirmed in a sample from 

each experimental plot by isolating six stem fragments sampled from each of four young 

symptomatic branches per symptomatic tree as previously described (Navas-Cortés et al., 

2008). Identification of V. dahliae isolates was based on the morphology of conidiophores 

and microsclerotia and confirmed by molecular typing through PCR assay using primers 

DB19/ DB22/espdef01 (Mercado-Blanco et al., 2003); this method yielded a polymorphic 

amplicon of 523 or 539 bp specific to V. dahliae. PCR amplification and gel 

electrophoresis were conducted as described previously (Mercado-Blanco et al., 2003). 

 

4.2.3. Field measurements 

Leaf and near-canopy field measurements were conducted in the olive orchard 

located in Castro del Rio (Cordoba) during the summer of 2011 to take: a) diurnal 

measurements throughout the day to monitor the diurnal variation of crown temperature 

(Tc – Ta) and stomatal conductance (G) in trees covering a gradient in severity levels; and 

b) leaf and crown measurements at midday to monitor the variation along the VW 

severity levels of Tc – Ta, leaf chlorophyll fluorescence, leaf Photochemical Reflectance 

Index (PRI570) (Gamon et al., 1992) and leaf stomatal conductance (G). Eight trees 

showing different VW severity levels were selected to record pure crown temperature 

(Tc) with the objective of monitoring its diurnal variation. These measurements were 

conducted from 7:00 to 17:00 GMT at 5-minute intervals in two dataloggers (model 

CR10X, Campbell Sci., Logan, UT, USA) with infrared temperature (IRT) sensors (22° 

half-angle FOV) (model IRR-P, Apogee, Logan, UT, USA) placed 1 m above trees. The 
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single-band infrared temperature (IRT) sensors covered the 6.5-14 μm range and were 

evaluated both in the laboratory and in field conditions to characterize the IRT response to 

diurnal temperature variation (Sepulcre-Cantó et al., 2006). The results yielded errors 

within the accuracy limits of the instrument (±0.4°C) over a 5° to 40°C range. The 

instruments were calibrated in the laboratory using a uniform calibration body 

(integrating sphere, CSTM-USS-2000C Uniform Source System, LabSphere, NH, USA) 

at two different levels of illumination. This procedure has been reported to be successful 

in other studies focused on monitoring crown temperature as an indicator of water stress 

(Berni et al., 2009b; Sepulcre-Cantó et al., 2006; Zarco-Tejada et al., 2012). Air 

temperature (Ta) and relative humidity (RH) were measured above the canopy with a 

portable weather station (Model WXT510, Vaisala, Finland) placed 1 m above the canopy 

(approx. 6 m above the ground). In each of the eight monitored trees, leaf stomatal 

conductance was measured from 7:00 to 17:00 GMT at 2-hour intervals with a leaf 

porometer (model SC-1, Decagon Devices, Washington, DC, USA) to monitor the diurnal 

variation of crown stomatal conductance for the different VW severity levels. A total of 

five illuminated leaves per tree were measured at each time interval. 

In addition to the diurnal measurements conducted for temperature and stomatal 

conductance, 25 trees covering a gradient in severity levels from asymptomatic to 

severely affected trees were chosen to monitor the variation of Tc – Ta, leaf chlorophyll 

fluorescence, leaf PRI570 and leaf G between 10:00 and 13:00 GMT on 27 and 28 July 

2011. Leaf chlorophyll fluorescence measurements taken under natural sunlight 

conditions were conducted using the PAM-2100 Pulse-Amplitude Modulated Fluorometer 

(Heinz Walz GMBH, Effeltrich, Germany). This device measured steady-state Fs and Fm' 

fluorescence parameters in 25 illuminated leaves per tree. Leaf PRI570 measurements 

calculated as (R570 − R531) / (R570 + R531) (Suárez et al., 2008, 2009, 2010; Zarco-Tejada et 

al., 2012) were taken in 25 illuminated leaves per tree with a PlantPen instrument custom 

designed to measure the R531 and R570 bands (Photon System Instrument, Brno, Czech 

Republic). Leaf G was measured in five illuminated leaves per tree with the leaf 

porometer previously used. 

 

4.2.4. Airborne campaigns and remote sensing indices 

Imagery in the three years of experiments was acquired from both study sites using 

narrow-band multispectral, hyperspectral and thermal cameras. The multispectral and 

thermal cameras were used in airborne campaigns conducted twice per crop season in 

spring (April/May) and summer (July) of 2009 and 2010. In addition, the thermal camera 

was flown twice in June 2011. The multispectral and thermal imagery was always 

acquired at similar sun angles at 10:30 and 12:00 GMT respectively to minimize 

differences due to sun angle effects between airborne campaigns. Hyperspectral and 
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thermal images were acquired from the Castro del Rio site on 23 June 2011 at 9:00 GMT 

using a hyperspectral imager concurrently with the thermal camera operated in 2009 and 

2010. 

The flights were conducted with two different unmanned aerial vehicles (UAVs) 

operated by the Spanish Laboratory for Research Methods in Quantitative Remote 

Sensing (Quantalab, IAS-CSIC, Spain) (Zarco-Tejada et al., 2008, 2012; Berni et al., 

2009b). The UAV used for the multispectral and thermal acquisition had a 2-m wingspan 

for a fixed-wing platform at 5.8 kg take-off weight (TOW) (mX-SIGHT, UAV Services 

and Systems, Germany) capable of 1-hour endurance. Hyperspectral images were 

acquired with a larger UAV with a 5-m wingspan for a fixed-wing platform having 13.5 

kg take-off weight (TOW) (Viewer, ELIMCO, Seville, Spain) capable of 3-hour 

endurance. This larger platform was required when operating the hyperspectral imager 

due to the heavier payload. Both UAV platforms were controlled by an autopilot system 

(AP04, UAV Navigation, Madrid, Spain) that provided autonomous navigation based on 

coordinates programmed during the mission planning. 

 

Figure 4.2. Multispectral scene (a) obtained with the multispectral camera on board the UAV platform at 20-

cm resolution, showing the Castro del Rio orchard study site (Córdoba province). (b) Automatic object-based 

crown detection applied to the multispectral imagery to identify pure olive crowns. Yellow square (a) shown 

in detail in (b). 

The multispectral sensor consisted of a 6-band multispectral camera (MCA-6, 

Tetracam, Inc., California, USA) flying at 250 m above ground level (AGL). The camera 

was equipped with six independent image sensors and optics with 25-mm diameter filters 

of 10-nm full width at half-maximum (FWHM) bandwidth (Berni et al., 2009b; Zarco-

Tejada et al., 2009). Image resolution was 2592 × 1944 pixels with 10-bit radiometric 

resolution and an optical focal length of 8.4 mm, yielding an angular field of view (FOV) 

a b 



 

  82 

 

of 38.04° × 28.53° and a spatial resolution of 20 cm at 250 m altitude (Fig. 4.2a). The 

band sets used in each study site included centered wavelengths at 450, 490, 530, 570, 

670 and 800 nm. 

The hyperspectral imager (Micro-Hyperspec VNIR model, Headwall Photonics, MA, 

USA) was flown in 2011 at Castro del Río site in the spectral mode with 260 bands at 1.85 

nm/pixel at 12-bit radiometric resolution. It yielded a 3.2-nm FWHM with a 12-micron slit 

and a 6.4-nm FWHM with a 25-micron slit. Data acquisition and storage on board the 

UAV was set to 50 fps with 18-ms integration time. The 8-mm optical focal length yielded 

an IFOV of 0.93 mrad and an angular FOV of 49.82°, obtaining a swath of 522 m at 53 × 

42 cm resolution, resampled to 40 cm (Fig. 4.3a) for a flight conducted at 550 m AGL 

altitude and 75 km/h ground speed (Zarco-Tejada et al., 2012). 

The multispectral and hyperspectral images were radiometrically calibrated with a 

uniform light source system (integrating sphere, CSTM-USS-2000C Uniform Source 

System, LabSphere, NH, USA) at four different levels of illumination and six different 

integration times. Atmospheric correction was performed with the SMARTS simulation 

model developed by the National Renewable Energy Laboratory, US Department of 

Energy (Gueymard, 1995, 2001). This was done using aerosol optical depth measured at 

550 nm with a Micro-Tops II sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA). 

This radiative transfer model has been used in previous studies to perform the 

atmospheric correction of both narrow-band multispectral and hyperspectral imagery 

(Berni et al., 2009a, 2009b; Suárez et al., 2010; ZarcoTejada et al., 2012). 

A miniaturized inertial measurement unit (IMU) installed on board the UAV and 

synchronized with the hyperspectral imager acquired altitude data at 100 Hz frequency. 

The imagery was later orthorectified using PARGE software (ReSe Applications 

Schläpfer, Wil, Switzerland) (Fig. 4.3a). The mean radiance and reflectance spectra 

calculated for the six spectral bands obtained by the multispectral camera and the 260 

spectral bands acquired by the hyperspectral imager were then used to calculate several 

spectral indices related to: i) tree crown structure; ii) epoxidation state of the xanthophyll 

cycle; iii) chlorophyll a+b concentration; iv) blue/green/red ratio indices; v) carotenoid 

concentration; vi) chlorophyll fluorescence and vii) spectral disease indices (Table 4.1). 

The chlorophyll fluorescence retrieval method used was based on the FLD principle 

(Plascyk, 1975) using three bands as in Maier et al. (2003) (see Zarco-Tejada et al., 2012 

for fluorescence quantification in a citrus crop using this same hyperspectral imager). 

Previous results demonstrated the feasibility of retrieving the chlorophyll fluorescence 

signal using this hyperspectral imager (Zarco-Tejada et al., 2012, 2013). For this reason, 

the FLD principle could be applied to the hyperspectral imagery to estimate the 

fluorescence signal, using a total of three bands required for the FLD3 method, where the 

band inside the O2-A feature (the “in” wavelength indicates the radiance at L763 nm) and 
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the radiances (L750 nm; L780 nm) determined at two wavelengths outside and on either 

side of the O2-A feature, referred to as the “out” bands. 

 

Figure 4.3. Hyperspectral scene (a) obtained with the hyperspectral imager on board the UAV platform at 40-

cm resolution. Automatic object-based crown detection applied to the hyperspectral imagery to identify pure 

olive crowns (b). The methodology enabled the separation of pure olive crowns from shaded and sunlit soil 

reflectance, observing the effects of pixel aggregation (c). Yellow square (a) shown in detail in (b). 

 

a 

b c 
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Table 4.1. Overview of the vegetation indices used in this study and their formulations. 

 

Vegetation indices Equation Reference 

Structural indices   
Normalized Difference Vegetation Index 𝑁𝐷𝑉𝐼 = (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670) Rouse et al. (1974) 

Renormalized Difference Vegetation Index 𝑅𝐷𝑉𝐼 = (𝑅800 − 𝑅670)/√(𝑅800 + 𝑅670) Rougean & Breon (1995) 

Optimized Soil-Adjusted Vegetation Index 𝑂𝑆𝐴𝑉𝐼 = ((1 + 0.16) · (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 0.16)) Rondeaux et al. (1996) 

Triangular Vegetation Index 𝑇𝑉𝐼 = 0.5 · [120 · (𝑅750 − 𝑅550) − 200 · (𝑅670 − 𝑅550)] Broge & Leblanc (2000) 

Modified Triangular Vegetation Index 𝑀𝑇𝑉𝐼 = 1.2 · [1.2 · (𝑅800 − 𝑅550) − 2.5 · (𝑅670 − 𝑅550)] Haboudane et al. (2004) 

Simple Ratio 𝑆𝑅 = 𝑅800/𝑅670 Jordan (1969) 

Modified Simple Ratio 𝑀𝑆𝑅 =
𝑅800/𝑅670 − 1

(𝑅800/𝑅670)0.5 + 1
 Chen (1996) 

Xanthophyll indices   

Photochemical Reflectance Index (570) 𝑃𝑅𝐼570 = (𝑅570 − 𝑅531)/(𝑅570 + 𝑅531) Gamon et al. (1992) 

Photochemical Reflectance Index (515) 𝑃𝑅𝐼515 = (𝑅515 − 𝑅531)/(𝑅515 + 𝑅531) Hernández-Clemente et al. (2011) 

Chlorophyll a+b indices   
RedEdge 𝑍𝑀 = 𝑅750/𝑅710 Zarco-Tejada et al. (2001) 

Vogelmann 𝑉𝑂𝐺1 = 𝑅740/𝑅720 Vogelmann et al. (1993) 

Gitelson &Merzlyak indices 𝐺𝑀1 = 𝑅750/𝑅550 Gitelson & Merzlyak (1997) 

 𝐺𝑀2 = 𝑅750/𝑅700 Gitelson & Merzlyak  (1997) 
Pigment Specific Simple Ratio Chlorophyll a 𝑃𝑆𝑆𝑅𝑎 = 𝑅800/𝑅675 Blackburn  (1998) 
Pigment Specific Simple Ratio Chlorophyll b 𝑃𝑆𝑆𝑅𝑏 = 𝑅800/𝑅650 Blackburn  (1998) 

Modified Chlorophyll-Absorption-Integral 𝑚𝐶𝐴𝐼 =
(𝑅545 + 𝑅752)

2
· (752 − 545) − ∑(𝑅 · 1.158)

𝑅752

𝑅545

 Laudien et al. (2003) 

Transformed Chlorophyll Absorption in Reflectance Index 𝑇𝐶𝐴𝑅𝐼 = 3 · [(𝑅700 − 𝑅670) − 0.2 · (𝑅700 − 𝑅550) · (𝑅700/𝑅670)] Haboudane et al. (2002) 

Transformed Chlorophyll Absorption in Reflectance Index/ 

Optimized Soil-Adjusted Vegetation Index 

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
=

3 · [(𝑅700 − 𝑅670) − 0.2 · (𝑅700 − 𝑅550) · (𝑅700/𝑅670)]

((1 + 0.16) · (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 0.16))
 Haboudane et al. (2002) 

R/G/B indices   

Redness index 𝑅 = 𝑅700/𝑅670 Gitelson et al. (2000) 

Greenness index 𝐺 = 𝑅570/𝑅670 This study 

Blue index 𝐵 = 𝑅450/𝑅490 This study 

Blue/green indices 𝐵𝐺𝐼1 = 𝑅400/𝑅550 Zarco-Tejada et al. (2005) 

 𝐵𝐺𝐼2 = 𝑅450/𝑅550 Zarco-Tejada et al. (2005) 

Blue/red indices 𝐵𝑅𝐼1 = 𝑅400/𝑅690 Zarco-Tejada et al. (2012) 

 𝐵𝑅𝐼2 = 𝑅450/𝑅690 Zarco-Tejada et al. (2012) 

Lichtenhaler index 𝐿𝐼𝐶3 = 𝑅440/𝑅740 Lichtenhaler et al. (1996) 

Carotenoid indices   

Structure-Intensive Pigment Index 𝑆𝐼𝑃𝐼 = (𝑅800 − 𝑅445)/(𝑅800 + 𝑅680) Peñuelas et al. (1995) 

Pigment Specific Simple Ratio Carotenoids 𝑃𝑆𝑆𝑅𝑐 = 𝑅800/𝑅500 Blackburn (1998) 

R520/R500 𝑅520/𝑅500 Zarco-Tejada et al. (2012) 

R515/R570 𝑅515/𝑅570 Zarco-Tejada et al. (2012) 

R515/R670 𝑅515/𝑅670 Zarco-Tejada et al. (2012) 

Fluorescence   

FLD 𝐹𝐿𝐷3 (747; 762; 780) 
Plascyk (1975) 

Maier et al. (2003) 

Zarco-Tejada et al. (2005) 

Plant disease index   

Healthy-index 𝐻𝐼 =
𝑅534 − 𝑅698

𝑅534 + 𝑅698
−

1

2
· 𝑅704 Mahlein et al. (2013) 

Crop water stress index   

CWSI 𝐶𝑊𝑆𝐼 =
𝛾 · (1 + 𝑟𝑐/𝑟𝑎) − 𝛾∗

∆ + 𝛾 · (1 + 𝑟𝑐/𝑟𝑎)
 Jackson et al. (1981) 
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Figure 4.4. Thermal scene (a) of the Castro del Rio site (Córdoba province) obtained with the thermal camera 

on board the UAV platform at 20-cm resolution, enabling pure olive crown identification (b). Automatic 

object-based crown detection applied to the thermal imagery to identify pure olive crowns (c). Yellow square 

(a) shown in detail in (b; c). 

The thermal camera (MIRICLE 307, Thermoteknix Systems Ltd, Cambridge, UK) 

installed on board the two UAVs operated in this study was flown over the experimental 

sites at altitudes ranging between 150 m and 250 m AGL in 2009 and 2010, and at 550 m 

AGL when flown together with the hyperspectral imager in 2011 in the morning (~ 9:00 

GMT). This camera had a 14.25 mm f1.3 lens connected to a computer via a USB 2.0 

protocol. The image sensor was a Focal Plane Array (FPA) based on uncooled 

microbolometers with a spectral range of 8-12 μm, yielding a 25 μm pixel size. The 

a 

b c 
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camera delivered raw images with a 640 × 480 pixel resolution and 14-bit at-sensor 

uncalibrated radiance.  The camera was radiometrically calibrated in the laboratory  using 

blackbodies at varying target and ambient temperatures to develop radiometric calibration 

algorithms along with an internal calibration for non-uniformity correction (NUC). 

Thermal images were acquired at 20 cm pixel resolution, enabling the retrieval of “pure 

crown” average temperature from each tree studied (Fig. 4.4a). Local atmospheric 

conditions were determined by air temperature, relative humidity and barometric pressure 

at the time of flight using a portable weather station (Model WXT510, Vaisala, Finland). 

The high-resolution imagery acquired over the orchards enabled single tree 

identification for field validation purposes (Fig. 4.4b), successfully separating pure crown 

from soil pixels (Fig. 4.3c). Each single pure tree crown in the entire orchard was 

identified using automatic object-based crown detection algorithms (Figs. 4.2b; 4.3b; 

4.4c). The algorithms applied to the thermal, multispectral and hyperspectral imagery 

enabled calculation of mean temperature and multispectral and hyperspectral reflectance 

at pure-crown level for the entire scenes acquired with the unmanned vehicles. The Crop 

Water Stress Index (CWSI) was calculated for each single tree crown using the high-

resolution airborne thermal imagery acquired as described in Berni et al. (2009a), with the 

inputs detailed in Table 4.2. 

Table 4.2. Inputs used to calculate the Crop Water Stress Index (CWSI) from high resolution airborne 

thermal imagery acquired in June 2011 in the Castro del Rio site. The CWSI was calculated as described in 

Berni et al. (2009a).  

Inputs Values 

2 June 2011 15 June 2011 

Air temperature (ºC) 22.93 29.58 

Relative humidity (%) 30.31 30.14 

Wind speed (m/s) 1 1 

Wind measurement height (m) 5 5 

Atmospheric pressure (kPa) 99.45 99.60 

Cloudiness 0.2 0.2 

Latitude (ºN) 37.7058 37.7058 

Longitude (ºE) -4.5117 -4.5117 

Altitude (m) 236 236 

Solar time (decimal hour) 12.05 12.35 

DOY 153 166 

Canopy temperature (ºC) From image From image 

Canopy height (m) 4 4 

Frontal LAI 1 1 

Canopy emissivity ε 0.98 0.98 
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4.3. Results and Discussion 

4.3.1. Verticillium wilt symptom development 

VW symptoms developed extensively in both study sites from early autumn to early 

winter, reaching their maximum expression during the spring. In the Utrera study site, 

characterized by 3-year-old cv. Arbequina olive trees, the symptoms consisted mainly of 

an extensive early drop of infected leaves that were still green; in most cases, this caused 

a complete defoliation and necrosis of affected branches. In the more established Castro 

del Rio study site, characterized by 10-yr old cv. Picual olive trees, affected plants mainly 

exhibited a quick dieback of olive twigs and branches where leaves turned light brown, 

rolled back toward the abaxial side and dried up, but typically remained attached to the 

symptomatic shoots. In both experimental sites, if the first VW symptoms developed in 

the spring, the trees underwent flower mummification and necrosis of both inflorescences 

and leaves of affected shoots, which usually fell. The type of VW symptoms and temporal 

dynamics of VW epidemics observed in both study sites were similar to those described 

in olive orchards affected by VW in southern Spain (Navas-Cortés et al., 2008). 

In May 2009, 13.7 and 32.2% of trees were affected by VW in the Castro del Rio 

and Utrera study sites, respectively (Fig. 4.5a,c), with a mean disease severity in 

symptomatic trees of 1.26 and 1.19 (0-4 rating scale), respectively. These figures were 

determined from 41.4% that showed initial disease severity (DS) symptoms (0 > DS ≤ 

0.5), 37.5% had low disease severity symptoms (0.5 > DS ≤ 1.5), 12.7% had moderate 

disease severity symptoms (1.5 > DS ≤ 2.5) and 8.4% of symptomatic trees had severe 

(DS ≥ 3) disease symptoms at Castro del Rio. At Utrera, 32.7, 43.0, 17.7 and 6.6% of 

trees showed these same severity levels, respectively (Fig. 4.5). During the spring of 

2009, the disease progressed in both study sites to reach a global incidence of 15.9 and 

39.3% in summer at Castro del Rio and Utrera, respectively (Fig. 4.5b,d); however, a 

similar frequency of trees remained in the three severity classes indicated above. In the 

2010 season, overall disease incidence increased to 17.3 and 44.7% at Castro del Rio and 

Utrera, respectively (Fig. 4.5b,d), but mean disease severity decreased to 1.10 and 1.05 in 

both sites, respectively. However, minor differences were observed between both sites 

and the two assessment dates regarding the frequency of affected trees in the three 

severity classes. The overall frequency of trees at Castro del Rio in the four severity 

classes ranged from initial (47.3-53.9%), to low (35.6-31.4%), moderate (7.8-1.1%) and 

severe (9.3-1.6%) disease symptoms (Fig. 4.5b,d). 
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Figure 4.5. Frequency (%) of olive trees showing Verticillium wilt (VW) symptoms at the different severity 

values in Castro del Rio (Córdoba province) (a,b) and Utrera (Seville province) (c,d) study sites assessed in 

May and July of 2009 (a,c) and 2010 (b,d). VW severity was assessed by visual inspection of each individual 

tree using a 0-4 rating scale according to percentage of foliage with disease symptoms, where: 0 = 0%, 

IS=initial symptoms, 1 = 1 to 33%, 2 = 34 to 66%, 3 = 67 to 100% and 4 = dead plant. Severity of disease 

symptoms were grouped in asymptomatic (DS=0), initial (0.2≤DS≤0.5), low (1≤DS≤1.5), moderate 

(2≤DS≤2.5) and severe (3≤DS≤4) disease symptoms. 

 

4.3.2. Field measurement results 

Diurnal crown measurements were conducted with the IRT sensors on trees selected 

to represent asymptomatic trees and those showing initial, low, moderate and severe 

disease symptoms. Results revealed that midday (i.e., 10:00 to 14:00 GMT) was the best 

time period to maximize differences in Tc − Ta values. In fact, Tc − Ta values at midday 

increased with the rise in disease severity level (Fig. 4.6), showing up to 7 K temperature 

differences between asymptomatic trees (DS = 0) and severely affected trees (DS ≥ 3). 

Moreover, Tc − Ta values were able to discriminate asymptomatic trees from those 

affected at early stages of disease development (DS ≤ 1.5), which showed Tc − Ta values 

from 1 to 2.5 K higher. These results showing lower Tc − Ta values in asymptomatic than 
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in symptomatic diseased olive trees are in agreement with other studies. Thus, Nilsson 

(1995) reported higher leaf temperatures in oil seed plants infected with V. dahliae. The 

leaf stomatal conductance (G) data measured on the same trees consistently showed a 

decrease in stomatal conductance values as crown temperature and disease severity levels 

increased (Fig. 4.7). These results are in agreement with Berni et al. (2009b) and 

Sepulcre-Cantó et al. (2006), who assessed the relationship between stomatal conductance 

and water stress levels due to deficit irrigation practices in olive trees using thermal 

sensors and a leaf porometer. A greater difference in stomatal conductance between 

healthy asymptomatic trees and VW-affected trees was recorded in the morning, with G 

differences up to 900 mmol/m2/s between trees with extreme DS values (i.e., DS = 0 vs. 

DS ≥ 3). These differences decreased to a maximum of 700 mmol/m2/s at midday and 

declined to 500 mmol/m2/s after sunset. In addition, our results showed that stomatal 

conductance was able to discriminate between healthy trees and those at early stages of 

disease development, which had G values at least 300-500 mmol/m2/s lower than those of 

healthy trees. 

 

Figure 4.6. Diurnal mean crown temperature (Tc-Ta) 

measured from 7:00 to 17:00 GMT at 5-minute 

intervals and obtained with the IRT sensors from 

trees showing different Verticillium wilt severity 

levels in the Castro del Rio site (Córdoba province) 

in the summer of 2011. 

Figure 4.7. Diurnal mean leaf stomatal conductance 

G measured from 7:00 to 17:00 GMT at 2-hour 

intervals and obtained with the leaf porometer from 

trees showing different Verticillium wilt severity 

levels (n=5 per tree at each measuring time) in the 

Castro del Rio site (Córdoba province) in the 

summer of 2011. 
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Data on crown temperature (Tc − Ta), leaf stomatal conductance (G), leaf PRI570 and 

fluorescence (Fs) acquired between 10:00 and 13:00 GMT in July 2011 were analyzed in 

trees with different VW severity levels (Fig. 4.8). Crown temperature data (Tc − Ta) 

measured at midday with IRT sensors in VW affected trees was significantly (P < 0.05) 

higher than that measured in asymptomatic trees, being highest for trees affected by 

severe VW symptoms (Fig. 4.8a). By contrast, stomatal conductance G showed a negative 

trend as VW severity increased, showing significant (P < 0.05) changes from 

asymptomatic trees at those showing moderate and severe symptoms (DS ≥ 2) (Fig. 4.8b). 

Moreover, PRI570 was lowest (P < 0.05) in asymptomatic trees, and increased steadily 

with the increase in VW severity (Fig. 4.8c). These results are consistent with that 

obtained by Suárez et al. (2008, 2009) in water-stressed trees. Leaf chlorophyll 

fluorescence measurements of Fs (Fig. 4.8d) showed a downward trend as VW severity 

level increased as previously found for trees under water stress (Pérez-Priego et al., 2005; 

Zarco-Tejada et al., 2009, 2012).  

 

Figure 4.8. Mean measurements of crown temperature (Tc-Ta) (a), leaf stomatal conductance (G) (b), leaf 

PRI570 (c) and leaf Fs (d) for every Verticillium wilt severity level. Analysis of variance of each index was 

conducted and asterisks indicate significant differences from the asymptomatic plants according to Dunnett’s 

two-tailed test at P < 0.05. Error bars indicate standard errors. 
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Leaf-level measurements conducted for temperature, stomatal conductance, 

fluorescence and the PRI570 in healthy and VW symptomatic trees showed that Tc − Ta 

and PRI570 were sensitive to V. dahliae infection and subsequent fungal colonization of 

affected trees and not simply influenced by structural effects driven by water stress. 

However, leaf G showed significantly lower values than asymptomatic trees in those 

affected by moderate or severe VW symptoms, while no significant differences in leaf Fs 

existed due to V. dahliae infection (Fig. 4.8). 

 

4.3.3. Airborne hyperspectral, multispectral and thermal imagery results 

4.3.3.1. Tree crown temperature (Tc − Ta) and CWSI 

Crown temperature (Tc − Ta) extracted from the airborne thermal imagery in the 

summer of 2011 was compared against leaf stomatal conductance (G) and leaf PRI570 data 

measured in 25 trees affected by VW (Fig. 4.9). Crown temperature (Tc − Ta) was 

significantly and linearly correlated with both the decrease of leaf G (R2 = 0.76, P = 

0.002; Fig. 4.9a) and the increase of PRI570 (R
2 = 0.51, P = 0.032; Fig. 4.9b). Furthermore, 

leaf G showed an inverse linear correlation to the leaf PRI570 (R
2 = 0.52, P = 0.028; Fig. 

4.9c). Crown temperature (Tc − Ta) tended to increase as VW severity level increased 

(Fig. 4.10). VW affected trees showed up to 2 K higher Tc − Ta than that measured in 

healthy asymptomatic trees and were consistent in all measurements taken in April and 

July in both study sites. Indeed, symptomatic trees showed significantly (P < 0.05) higher 

Tc − Ta values than asymptomatic trees at any disease severity level at Castro del Rio, or 

at low or higher disease severity at Utrera. These results showed similar trends as those 

presented in Fig. 4.8a, with significant (P < 0.05) increases in Tc − Ta at leaf and canopy 

levels. 

As expected, the CWSI estimated from the high-resolution airborne thermal imagery 

acquired on 2 June 2011 in the Castro del Rio site showed significantly (P < 0.05) lower 

values for asymptomatic trees, with an upward trend as VW severity level increased (Fig. 

4.11a). CWSI derived from the thermal imagery on 15 June 2011 decreased linearly and 

significantly as a function of G obtained on 27 and 28 July 2011 (R2 = 0.83; P < 0.001) 

(Fig. 4.11b). These results indicate that the CWSI obtained from high spatial resolution 

thermal imagery can be used to detect the lower transpiration rates induced by V. dahliae 

infection, as could be expected according to previous results (Berni et al., 2009a) showing 

the usefulness of the CWSI as a water stress indicator. CWSI values estimated on the two 

different assessment dates in June 2011 were significantly (P < 0.05) lower for healthy 

trees than for those affected by the disease. At early stages of disease development (DS ≤ 

1.5), CWSI ranged from 0.21 to 0.35 on 2 June 2011, and from 0.36 to 0.48 on 15 June 

2011.  At more advanced  stages  of  VW development for trees affected by  moderate  or  
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Figure 4.9. Relationship between crown 

temperature extracted from the thermal imagery 

and leaf stomatal conductance (G) (a) and leaf 

PRI570 measurements (b) taken on olive trees 

showing different Verticillium wilt severity 

levels, and relationship between leaf G and leaf 

PRI570 (c). Thermal imagery was obtained at 

11:00 GMT on 15 June 2011 and leaf 

measurements were obtained between 10:00 and 

13:00 GMT on 27 and 28 July 2011 from 

crowns with different VW severity levels in the 

Castro del Rio study site (Córdoba province). 

Error bars indicate standard errors. 
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severe symptoms, CWSI values tended to increase, ranging from 0.35 to 0.76 on 2 June 

2011 and from 0.48 to 0.71 on 15 June 2011. 

 

 

Figure 4.10. Mean measurements of crown temperature (Tc-Ta) for every Verticillium wilt severity level. Tc-

Ta was calculated from thermal imagery obtained in summer of two consecutive years (2009 and 2010) for 

the two study sites, Castro del Rio (Córdoba province) (a, c) and Utrera (Seville province) (b, d). Analysis of 

variance was conducted and asterisks indicate significant differences from the asymptomatic plants according 

to Dunnett’s two-tailed test at P < 0.05. Error bars indicate standard errors. 
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Figure 4.11. (a) Mean values of Crop Water Stress Index (CWSI) for every Verticillium wilt severity level on 

2 June 2011 in the Castro del Rio study site (Córdoba province). Analysis of variance was conducted and 

asterisks indicate significant differences from the asymptomatic plants according to Dunnett’s two-tailed test 

at P < 0.05. Error bars indicate standard errors. (b) Relationship between leaf stomatal conductance (G) and 

the CWSI in trees with different VW severity levels. Leaf stomatal conductance measurements were obtained 

between 10:00 and 13:00 GMT on 27 and 28 July 2011 and the CWSI was calculated from the thermal 

imagery obtained at 11:00 GMT on 15 June 2011 in the Castro del Rio study site. Error bars indicate standard 

errors. 

4.3.3.2. Structural indices 

The effects of VW on the canopy structure were captured by structural indices such 

as the NDVI (Fig. 4.12a), RDVI, OSAVI, TVI, MTVI, SR and MSR, that showed higher 

values for asymptomatic trees except for TVI and MTVI which showed an increase at 

early stages of disease development. Thus, moderate and severe VW wilt symptoms 

induced significantly (P < 0.05) lower values of NDVI, OSAVI, SR and MSR indices 

than those estimated in asymptomatic trees (Table 4.3). Furthermore, TVI and MTVI 
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showed an increase (P < 0.05) in trees showing initial symptoms (Table 4.3). These 

results demonstrate the consistency of structural indices as VW damage indicator due to 

the expected effects on crown density at moderate or advanced stages of disease 

development. 

4.3.3.3. Physiological indices 

The revised xanthophyll indices were calculated based on PRI formulations using 

R570 as the reference band (PRI570) (Fig. 4.12b) and the new formulation using band R515 

as a reference to minimize structural canopy effects, PRI515 (Fig. 4.12c). These indices 

showed an upward trend as VW severity level increased. The PRI515 index was more 

sensitive to VW than PRI570, and showed significantly (P < 0.05) lower values when trees 

were affected by moderate or severe symptoms (Table 4.3). This result confirms those 

obtained by Hernández-Clemente et al. (2011) in forest canopies and those of Stagakis et 

al. (2012) in orange and mandarin orchards, which demonstrated the robustness of the 

PRI515 to structural effects. Both, airborne-derived (Table 4.3) and leaf-level PRI570 (Fig. 

4.8c) showed similar positive trend with disease severity, however only at leaf-level 

resulted in significant differences between healthy and VW affected trees. The 

chlorophyll indices TCARI (Fig. 4.12d) and TCARI/OSAVI showed an upward trend at 

early stages of the disease, reaching a maximum of 0.058 and 0.103 units at the low 

disease severity level, respectively, compared to 0.004 (TCARI) and 0.007 

(TCARI/OSARI) observed for healthy trees. These results could indicate a decrease in 

chlorophyll a+b content (Ca+b) at early stages of V. dahliae infection (reducing stomatal 

conductance and photosynthesis rate). At advanced stages of the disease, the TCARI and 

TCARI/OSAVI inverted their trends due to the sharp leaf area index (LAI) drop 

associated with VW severity, showing significantly (P < 0.05) lower values at severe 

disease symptoms with 0.022 and 0.025 value drops between moderate and severely 

affected trees, respectively. The chlorophyll red edge index, VOG1, GM1, GM2, PSSRa 

and PSSRb showed significantly (P < 0.05) lower values on moderately and severely 

affected trees compared with values estimated on asymptomatic trees. The mCAI reached 

a significantly (P < 0.05) higher value at trees showing initial symptoms but steadily 

decreased in trees affected by moderate and severe symptoms. 

The Greenness, red index and the blue/green ratio BG2 were not able to detect V. 

dahliae infection, since no significant (P > 0.05) changes were detectable when compared 

with healthy trees (Table 4.3). Interestingly, the blue index (Fig. 4.12e) could discriminate 

between healthy trees and those affected at any of the disease severity levels that reached 

significantly lower values (P < 0.05). Similarly, the blue/green ratio BG1 presented a 

significant (P < 0.05) decrease at early stages of disease development, but increased  

slightly  at  advanced  stages,  probably  due  to  structural changes occurring in  
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Table 4.3. Sensitivity of hyperspectral indices to Verticillium wilt symptoms in olive trees. Vegetation 

indices were calculated from the hyperspectral imagery obtained on 23 June 2011 in the Castro del Rio site 

(Córdoba province, Spain). 

a F statistic and p-value obtained from the standard analysis of variance (ANOVA). 
b Significant changes in vegetation indices from asymptomatic plants according to Dunnett’s two tailed 

test at P < 0.05 are indicated with X for initial (I) (0.2≤DS≤0.5), low (L) (1≤DS≤1.5), moderate (M) 

(2≤DS≤2.5) and severe (S) (3≤DS≤4) Verticillium wilt symptoms. 

Vegetation indices Fa Pa 
Severity of disease symptomsb 

I L M S 

Structural indices       

NDVI 21.66 <0.001   X X 

RDVI 9.02 <0.001    X 

OSAVI 11.52 <0.001   X X 

TVI 7.80 <0.001  X  X 

MTVI 7.27 <0.001  X  X 

SR 14.35 <0.001   X X 

MSR 16.49 <0.001   X X 

Xanthophyll indices       

PRI570 2.98 0.0183     

PRI515 11.30 <0.001   X X 

Chlorophyll a+b indices       

RedEdge 15.95 <0.001   X X 

VOG1 22.56 <0.001   X X 

GM1 10.99 <0.001   X X 

GM2 13.93 <0.001   X X 

PSSRa 14.70 <0.001   X X 

PSSRb 14.35 <0.001   X X 

mCAI 5.26 0.0003  X   

TCARI 6.72 <0.001    X 

TCARI/OSAVI 3.30 0.0105    X 

R/G/B indices       

R 12.27 <0.001     

G 16.51 <0.001     

B 16.01 <0.001 X X X X 

BG1 6.41 <0.001 X X   

BG2 2.25 0.0611     

BR1 12.01 <0.001 X X X  

BR2 13.68 <0.001  X X X 

LIC3 5.72 <0.001    X 

Carotenoid indices       

SIPI 12.43 <0.001   X X 

PSSRc 9.73 <0.001   X X 

R520/R500 3.67 0.0055     

R515/R570 3.08 0.0152     

R515/R670 14.06 <0.001     

Fluorescence index       

FLD3 4.66 0.0010 X X   

Plant disease indices       

HI 9.54 <0.001  X X X 
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trees severely damaged by the pathogen. The blue/red ratios BR1 and BR2 showed 

downward trends with the increase in disease severity that resulted in significantly lower 

values at the initial, low and moderate symptom severity in BR1 (Fig. 4.12f) and low, 

moderate and severe in BR2. The LIC3 index showed a slightly decrease at early stages of 

the disease, followed by a significant (P < 0.05) increase on severely affected trees. The 

indices SIPI and PSSRc were inversely correlated with disease severity, showing 

significantly (P < 0.05) lower values at moderate and severe stages of disease 

development. The R520/R500, R515/R570, and R515/R670 ratios were not useful for the 

detection of VW as no significant differences were detected between asymptomatic and 

VW affected trees. 

The chlorophyll fluorescence signal estimated from the hyperspectral imagery with 

the FLD method showed a significant (P < 0.05) increase at initial and low stages of 

disease symptom severity (2.677 W·m-2·μm-1·sr-1), slightly decreasing to 2.019 W·m-

2·μm-1·sr-1 at the severe VW severity level (Fig. 4.12g). This result may indicate that the 

photosynthetic apparatus of the plant remains undamaged being able to dissipate the 

excess of energy by fluorescence that could not be maintained when the reduction in 

photosynthesis occurred at severely stressed plants, causing a decrease in the chlorophyll 

fluorescence rate. These results are in agreement with the studies conducted by Pérez-

Priego et al. (2005) and Zarco-Tejada et al. (2009, 2012) in citrus and olive orchards 

under water stress conditions. Comparable results were obtained in airborne (Table 4.3) 

and leaf-derived chlorophyll fluorescence (Fig. 4.8d) that in both cases reached lower 

values in trees affected by moderate or severe symptoms. However, a significant (P < 

0.05) increase in fluorescence occurred in trees at the early stage of disease development 

only at canopy level (Table 4.3). Finally, the health index (HI) developed to discriminate 

between healthy and diseased sugar beet leaves affected by different foliar pathogens 

showed in this study lower values (P < 0.05) as the VW disease severity level increases to 

low, moderate or severe symptoms, respectively (Table 4.3; Fig. 4.12h). 

 

4.4. Conclusions 

The present study assessed remote sensing methods for early detection of 

Verticillium wilt in two olive orchards of different agronomic characteristics. It applied 

techniques based on the detection of the effects of V. dahliae infection and colonization 

on water flow that eventually cause water stress effects, assessed with thermal, 

multispectral and hyperspectral domains. It demonstrated that canopy temperature and 

physiological hyperspectral indices (i.e., PRI and chlorophyll fluorescence) are related 

with physiological stress caused by VW. Moreover, structural indices (i.e., NDVI) were 

more related to structural damage caused by VW. Field measurements showed large 

differences  in  temperature  (Tc − Ta)  and  stomatal conductance (G) across VW severity 
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Figure 4.12. Mean measurements of NDVI (a), PRI570 (b), PRI515 (c), TCARI (d), Blue index (B) (e), B/R 

index (BR1) (f), chlorophyll fluorescence FLD3 (g) and healthy-index (HI) (h) for every Verticillium wilt 

severity level. Analysis of variance of each index was conducted and asterisks indicate significant differences 

from the asymptomatic plants according to Dunnett’s two-tailed test at P < 0.05. Error bars indicate standard 

errors. 
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levels, with higher Tc − Ta and lower G as severity level increased. This allowed 

identifying trees at the early stages of disease development. At leaf level, the reduction in 

transpiration and G caused by VW infection was associated with a significant (P < 0.05) 

increase in the PRI570 and a decrease in fluorescence. The flights conducted with thermal, 

multispectral and hyperspectral cameras enabled VW detection by using crown 

temperature (Tc − Ta; CWSI), assessing structural indices (NDVI, RDVI, OSAVI, TVI, 

MTVI, SR, MSR), the PRI515 index, chlorophyll indices (red edge, VOG1, GM1, GM2, 

PSSRa, PSSRb, mCAI, TCARI, TCARI/OSAVI), R/G/B indices (B, BG1, BR1, BR2, 

LIC3), carotenoid (SIPI and PSSRc), fluorescence, and the healthy index (HI). This study 

proved the potentials for the early detection of V. dahliae infection and discrimination 

among VW severity levels in olive crops using thermal, multispectral and hyperspectral 

imagery acquired with an unmanned aerial vehicle. Crown temperature, CWSI, B, BG1, 

BR1 and FLD3 were identified as the best indicators to detect VW at early stages of 

disease development, while NDVI, PRI515, HI, and chlorophyll and carotenoid indices 

proved to be good indicators to detect the presence of moderate to severe damage.  
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CHAPTER 5: Early detection and quantification of 

Verticillium wilt in olive using 

hyperspectral and thermal imagery over 

large areas 

Resumen 

os métodos automáticos para una detección temprana de enfermedades de 

plantas (i.e., síntomas visibles en etapas tempranas del desarrollo de la 

enfermedad) usando teledetección son cruciales para la protección de cultivos. La 

Verticilosis (VW) del olivo causada por Verticillium dahliae puede controlarse sólo si es 

detectada en etapas tempranas de su desarrollo. Los métodos de clasificación, análisis 

lineal discriminante (LDA) y support vector machine (SVM), fueron aplicados para 

clasificar la severidad de V. dahliae usando teledetección a gran escala. Imágenes 

térmicas e hiperespectrales de alta resolución se adquirieron con una plataforma tripulada 

que voló un área de olivar comercial de 3,000-ha. LDA alcanzó una precisión en la 

clasificación global de 59.0% y un κ de 0.487 mientras que SVM obtuvo una mayor 

precisión en la clasificación, 79.2% con un κ similar, 0.495. Sin embargo, LDA clasificó 

mejor los árboles en niveles de severidad inicial y bajo, alcanzado precisiones de 71.4% y 

75.0%, respectivamente, en comparación con el 14.3% y 40.6% obtenidos por SVM. La 

temperatura de cubierta normalizada, fluorescencia clorofílica, índices estructurales, de 

xantofilas, clorofila, carotenos y enfermedad fueron los mejores indicadores de etapas 

tempranas y avanzadas de la infección por VW. Estos resultados demuestran que los 

métodos desarrollados en otros estudios a escala de parcela son válidos para vuelos en 

mayores áreas que constan de varias parcelas de olivar que difieren en características de 

manejo de suelo y cultivo. 

Palabras clave: Verticilosis, detección temprana, hiperespectral, térmico, support 

vector machine, análisis discriminante lineal. 

 

Abstract 

utomatic methods for an early detection of plant diseases (i.e., visible 

symptoms at early stages of disease development) using remote sensing are 

critical for precision crop protection. Verticillium wilt (VW) of olive caused by 

Verticillium dahliae can be controlled only if detected at early stages of development. 

Linear discriminant analysis (LDA) and support vector machine (SVM) classification 

methods were applied to classify V. dahliae severity using remote sensing at large scale. 

L 
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High-resolution thermal and hyperspectral imagery were acquired with a manned 

platform which flew a 3,000-ha commercial olive area. LDA reached an overall accuracy 

of 59.0% and a κ of 0.487 while SVM obtained a higher overall accuracy, 79.2% with a 

similar κ, 0.495. However, LDA better classified trees at initial and low severity levels, 

reaching accuracies of 71.4% and 75.0%, respectively, in comparison with the 14.3% and 

40.6% obtained by SVM.  Normalized canopy temperature, chlorophyll fluorescence, 

structural, xanthophyll, chlorophyll, carotenoid and disease indices were found to be the 

best indicators for early and advanced stage infection by VW. These results demonstrate 

that the methods developed in other studies at orchard scale are valid for flights in large 

areas comprising several olive orchards differing in soil and crop management 

characteristics. 

Keywords: Verticillium wilt, early detection, hyperspectral, thermal, support vector 

machine, linear discriminant analysis. 
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5.1.  Introduction 

Olive (Olea europaea L.) is one of the most important crops in the Mediterranean 

Basin, representing 95% of the world production. Spain is the leading olive-producing 

country with 25% of the world acreage and nearly 39% of the production (FAOSTAT, 

2012). Verticillium wilt (VW), caused by the fungus Verticillium dahliae Kleb., is the 

main soil-borne disease threatening this crop worldwide (Jiménez-Díaz et al., 2012). In 

Spain, VW is of increasing concern for olive production because of its rapid spread and 

increasing severity associated with recent changes in cropping practices implemented to 

increase olive yields (Jiménez-Díaz et al., 2011, 2012). These changes include use of self-

rooted planting stocks to establish high-tree-density, drip irrigation, reduced or no tillage 

and high inputs of fertilizers in newly cultivated soils or fertile soils (Villalobos et al., 

2006) previously grown with susceptible crops to V. dahliae, such as cotton (Jiménez-

Díaz et al., 2011). 

Currently, no control measure applied singly is fully effective for the management of 

VW of olive, however, an integrated disease management strategy is the best way to 

manage the disease, combining the use of preventive, pre-planting and post-planting 

control measures (Tjamos and Jiménez-Díaz, 1998). Post-planting control measures 

include: cultural practices (e.g., irrigation managing, weed control and tillage practice), 

soil solarization and organic or biological amendments. Post-planting VW control 

measures would be more efficient if VW-affected trees patches within fields are identified 

at early stages of disease development (i.e., visible symptoms) in order to mitigate the 
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spread of the pathogen and successive infections to neighboring trees (Navas-Cortés et 

al., 2008). However, visual inspection of disease symptoms at early stages of 

development in the field is time-consuming and expensive (Steiner et al., 2008). Remote 

sensing for the detection of damage caused by soil-borne plant pathogens has proved to be 

the best-fit technology for optimization of integrated pest management. These methods 

are rapid and reliable, allowing real-time plant disease monitoring for disease control and 

management (Sankaran et al., 2010; Mahlein et al., 2012). 

V. dahliae infects the plant through the roots and colonizes its vascular system, 

blocking water flow and eventually inducing wilt symptoms (Van Alfen, 1989). This 

damage results in a significant reduction in leaf transpiration rate which finally leads to 

leaf chlorosis and defoliation, causing a change of spectral reflectance (Hillnhütter et al., 

2010). Chlorophyll content tends to decrease in infected plants, showing a higher 

reflectance in the visible (VIS) green (550 nm) and red-edge (650-720 nm) regions. 

Stressed plants also show a drop in canopy density and leaf area that leads to a decrease 

of spectral reflectance in the near-infrared (NIR) range (680-800 nm). In addition, the 

thermal-infrared (TIR) region (8000-15,000 nm) is highly suitable for the detection of V. 

dahliae infection due to the decrease in transpiration rate which induces stomata closure, 

reducing evaporative cooling and increasing canopy temperature. Considering these 

changes in the spectrum of infected plants, disease symptoms could be remotely detected 

in the VIS, red edge, NIR and TIR regions. 

Recent work on VW in olive trees demonstrated the success of high-resolution 

thermal and hyperspectral imagery acquired with an unmanned aerial vehicle to early 

detect V. dahliae infection in two olive commercial orchards in southern of Spain 

(Calderón et al., 2013). Normalized canopy temperature (Tc − Ta), chlorophyll 

fluorescence and blue ratios B/BG/BR were found to be the best indicators of early stage 

infection by VW while the Photochemical Reflectance Index (PRI), structural, 

chlorophyll and carotenoid indices detected only moderate to severe V. dahliae infection. 

These results obtained at the canopy level using airborne imagery were confirmed by 

those obtained by Calderón et al. (2014) at leaf level under controlled conditions. SPAD 

readings (as an indicator of leaf chlorophyll content), leaf chlorophyll fluorescence and 

normalized leaf temperature were demonstrated to be early VW indicators while the 

ethylene production and PRI detected only advanced stages of VW development. 

Up to now, the remote sensing methods discussed above have only been used to 

detect VW successfully at local scales, in particular, in olive orchards of no more than 10 

hectares using small unmanned aircraft. Under these small-scale conditions, unmanned 

aerial platforms obtain high resolution imagery in short flights of 10 to 40 minutes that 

avoid large ambient temperature variations, large changes in illumination levels or 

atmospheric differences during the flight. In addition, the methods were tested in olive 
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orchards with homogeneous tree structural and crown shape characteristics as well as with 

a generally uniform background types, understory and soil types across the field. The 

collection of very high-resolution hyperspectral and thermal imagery over large areas is 

only possible using manned aircraft or high endurance unmanned aerial systems (UAS) 

flying over long periods to cover extensive areas at the optimum resolution (i.e. 30-50 cm 

pixel size) generating mosaics comprising several fields of very different structural and 

architectural characteristics (i.e., planting patterns, crown shapes and sizes, and 

background / soil types). Therefore, it is critical to assess methods to detect VW incidence 

and severity over large areas in order to design VW control strategies at large scale. In 

this way, the indices identified as indicators for the early and advanced VW detection at 

local scale (Calderón et al., 2013) should be tested at larger scales to demonstrate their 

robustness and accuracy over orchards of varying types and conditions. 

When acquiring hyperspectral imagery, large amounts of data are obtained and 

calculated from each single tree, therefore the analysis is complex and different 

approaches can be used to obtain satisfactory results (Sankaran et al., 2010). In this study, 

large hyperspectral (50 cm) and thermal (62 cm) mosaics were obtained (ca. 3,000 

hectares) comprising a total of 130 fields in order to test different methods for the 

successful detection among VW severity levels using two different supervised 

classification approaches: linear and non-linear classification methods. On the one hand, 

linear classification tries to find linear functions that separate the observations into the 

different classes. Several linear classification methods have been used to successfully 

classify remote sensing data for disease detection, such as linear discriminant analysis 

(LDA) (Delwiche and Kim, 2000), principal component analysis (PCA) (Qin et al., 2008) 

and logistic regression analysis (LRA) (Delalieux et al., 2007). For the data analyzed in 

this study, we selected LDA rather than LRA because LDA is a more powerful and 

efficient analytic strategy when the assumptions of multivariate normality of the 

independent variables within each class are met, the dependent variable has more than 

two groups and not all classes have large sample size (Grimm and Yarnold, 1995). 

Moreover, LDA is superior to PCA in classifying remote sensing data because PCA 

changes the shape and location of the original data when transformed to a different space 

whereas LDA only tries to provide more class separability and draw a decision region 

between the given classes (Balakrishnama and Ganapathiraju, 1998). The classification 

criterion of LDA (Fisher, 1936) is based on the pooled covariance matrix yielding a linear 

function and each observation is placed in the class from which it has the smallest 

generalized squared distance. On the other hand, when classes are not separable by linear 

boundary, non-linear classification methods are more appropiate. For disease detection 

from remote sensing data, artificial neural networks (NN) (Moshou et al., 2004) and 

support vector machines (SVM) (Rumpf et al., 2010) have been the most used non-linear 

classification methods. SVM methods have been selected in this study because of the 
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superior performance shown, particularly with respect to the classification of 

hyperspectral remote sensing data (Camp-Valls et al., 2004). The advantages of SVM 

over NN (Zanaty, 2012) are: i) the solution achieved by SVM is global and unique due to 

quadratic programming; ii) computational complexity of SVM does not depend on the 

dimensionality of the input space so it is usually much quicker for large data sets; iii) 

SVM is less prone to overfitting; iv) SVM has few parameters to consider; and v) has 

good generalization capability with few training samples. SVM is based on statistical 

learning theory (Vapnik, 1998) which aims determine a hyperplane that optimally 

separates two classes. The optimum hyperplane works in the manner that maximizes the 

margin between classes. 

This study describes an automatic procedure to classify VW infection and severity in 

olive growing areas with a special focus on the early detection to design focalized VW 

control strategies at large scale. Because VW is related to several physiological 

modifications which are reflected in spectral changes, a method based on the combination 

of various vegetation indices calculated from high-resolution hyperspectral and thermal 

imagery was applied using LDA and SVM classification methods to fully exploit their 

combined information. 

 

5.2. Material and Methods 

5.2.1.  Study site description 

The study site is located in Écija (Seville province, southern Spain) (37º 40’ 46’’N, 

4º 59’ 41’’ W) and consisted of a 3,000-ha commercial olive area (Fig. 5.1). Within this 

area several olive orchards were selected differing in soil and crop management 

characteristics that are shown in Table 5.1 and Figure 5.1. All plots were drip-irrigated. 

The climate of the area is Mediterranean characterized by warm and dry summers 

and cool and wet winters with an average annual rainfall of 550 mm, concentrated from 

autumn to spring climate (De León et al., 1989). 
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Table 5.1. Agronomic characteristics of olive plots assessed in this study. 

Plot Olive cultivar 
Plant age 

(years) 

Plant density (trees 

per ha.) 
Soil management 

1 Picual 30 204 Non tillage 

2 Hojiblanca 20 204 Tillage 

3 Picual 20 204 Tillage 

4 Hojiblanca 15 204 Tillage 

5 Picual 20 204 Tillage 

6 Picual 15 357 Tillage 

7 Hojiblanca 30 123 Non tillage 

8 Picual 20 204 Tillage 

9 Picual 30 204 Non tillage 

 

 

Figure 5.1. Overview of the olive area flown with the manned platform located in Écija (Seville province). 

Verticillium wilt severity was assessed in the plots which are shown in yellow. High-resolution detail of each 

individual olive plot assessed in this study was shown with lettering (a-i) in agreement with the plot lettering 

(a-i) in central image. Note differences in soil and crop management among plots. 
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5.2.2.  Verticillium wilt assessment 

Incidence and severity of VW symptoms were assessed in the summer of 2013 in 

nine selected plots spatially distributed throughout the study site, collecting data for 5,352 

olive trees. Disease severity (DS) was assessed by visual inspection of every tree for 

foliar symptoms and assessment on a 0 to 4 rating scale according to the percentage of 

foliage with disease symptoms, where: 0 = 0%, 0.2 and 0.5 = initial symptoms, 1 = 1 to 

33%, 2 = 34 to 66%, 3 =67 to 100%, and 4 = dead plant (Calderón et al., 2013). These 

VW severity levels were then regrouped in five VW severity classes: asymptomatic (DS = 

0), initial (0.2 ≤ DS ≤ 0.5), low (1 ≤ DS ≤ 1.5), moderate (2 ≤ DS ≤ 2.5) and severe (3 ≤ 

DS ≤ 4) symptoms (Figure 5.2). V. dahliae infection was confirmed by isolating six stem 

fragments sampled from each of four young symptomatic branches per symptomatic tree 

as previously described (Navas-Cortés et al., 2008). Identification of V. dahliae isolates 

was based on the morphology of conidiophores and microsclerotia and confirmed by 

molecular typing through PCR assay using primers DB19/DB22/espdef01 (Mercado-

Blanco et al., 2003). This method yielded a polymorphic amplicon of 523 or 539 bp 

specific to V. dahliae. PCR amplification and gel electrophoresis were conducted as 

previously described (Mercado-Blanco et al., 2003). 

 

5.2.3.  Airborne hyperspectral and thermal imagery acquisition 

Imagery was acquired from the whole study site on 12 June 2013 using a 

hyperspectral sensor and a broad-band thermal camera on board a Cessna aircraft 

operated by the Laboratory for Research Methods in Quantitative Remote Sensing of the 

Consejo Superior de Investigaciones Científicas (QuantaLab, IAS-CSIC, Spain). Both 

cameras were flown at 500 m above ground level (AGL). Hyperspectral and thermal 

images were acquired between 10:30 and 12:00 GMT at 50 cm and 62 cm pixel 

resolution, respectively. 

The hyperspectral sensor flown was the visible and near-infrared (VNIR) micro-

hyperspectral imager (Micro-Hyperspec VNIR model, Headwall Photonics, MA, USA) 

configured in the spectral mode of 260 bands at 1.85 nm/pixel and 12-bit radiometric 

resolution. It yielded a 6.4 nm full-width at half-maximum (FWHM) with a 25-micron slit 

in the 400-885 nm region. Data acquisition and storage rate on board the manned platform 

was set to 50 fps (frames per second) with 18-ms integration time. The 8-mm optical focal 

length lens yielded an instantaneous field of view (IFOV) of 0.93 mrad and an angular 

field of view (FOV) of 49.82°. 

Radiometric calibration and atmospheric correction methods were applied to the 

imagery to calculate the spectral reflectance, as described Zarco-Tejada et al. (2012). The  
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Figure 5.2. RGB images showing olive trees with the five different Verticillium wilt severity classes: (a) 

asymptomatic, (b) initial, (c) low, (d) moderate and (e) severe disease symptoms. 
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hyperspectral images were radiometrically calibrated in the laboratory using derived 

coefficients with a uniform light source system (integrating sphere, CSTM-USS-2000C 

Uniform Source System, LabSphere, North Sutton, NH, USA) at four levels of 

illumination and six integration times. Radiance values were converted to reflectance 

using total incoming irradiance simulated with SMARTS model (Gueymard, 1995, 2001) 

and aerosol optical depth measured at 550 nm with Micro-Tops II sunphotometer (Solar 

LIGHT Co., Philadelphia, PA, USA) at the study site at the time of the flight (Berni et al., 

2009a,b). This model has been previously used in other studies to perform the 

atmospheric correction of hyperspectral imagery, such as in Zarco-Tejada et al. (2012) 

and Calderón et al. (2013). 

Bidirectional reflectance effects are prominent for airborne sensors operating with 

wide FOV (e.g., in this study the FOV of hyperspectral sensor was 49.82º). Effects are 

most pronounced in the angular range higher than ±30º from nadir (Beisl, 2001). To 

minimize directional effects, the flight was conducted in the solar plane, trying to keep the 

assessed olive orchards as close as possible to the nadir within angular range ±30º from 

nadir. Hyperspectral reflectance from each training tree was acquired within a range in 

view angle between -21.6º and +18.6º from nadir. These data ensured that training trees 

were not affected by off-nadir pixels acquired on each single frame. Ranges in view 

angles between training trees from the same olive orchard were between 9.3º and 31.4º 

range. Moreover, due to the large along- and cross-track overlap achieved during the 

flight (>70%), the resulting hyperspectral mosaic was not affected by pixels falling on the 

edge of the imagery. 

Ortho-rectification of the hyperspectral imagery was conducted using PARGE (ReSe 

Applications Schläpfer, Wil, Switzerland). This was done using input data acquired with a 

miniaturized inertial measuring unit (IMU) (MTiG model, Xsens, The Netherlands) 

installed on-board and synchronized with the micro-hyperspectral imager. The mean 

radiance and reflectance spectra calculated from the 260 spectral bands obtained by the 

hyperspectral imager were used to calculate several narrow-band hyperspectral indices in 

agreement to the study conducted by Calderón et al. (2013), where their ability to detect 

Verticillium wilt at early and/or advanced stage of disease development was 

demonstrated. The indices that contribute most to the model conducted in this study are 

shown in Table 5.2 with regard to: (i) tree crown structure; (ii) epoxidation state of the 

xanthophyll cycle; (iii) chlorophyll a+b concentration; (iv) blue/green/red ratio indices; 

(v) carotenoid concentration; (vi) chlorophyll fluorescence and (vii) spectral disease 

indices. 
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Table 5.2. Overview of the vegetation indices that contribute most to the model conducted in this study and 

their formulations. 

Vegetation indices Equation Reference 

Structural indices   
Normalized Difference Vegetation Index 𝑁𝐷𝑉𝐼 = (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670) Rouse et al. (1974) 

Renormalized Difference Vegetation Index 𝑅𝐷𝑉𝐼 = (𝑅800 − 𝑅670)/√(𝑅800 + 𝑅670) Rougean & Breon (1995) 

Enhanced Vegetation Index 𝐸𝑉𝐼 = 2.5 · (𝑅800 − 𝑅670)/(𝑅800 + 6 · 𝑅670 − 7.5 · 𝑅400 + 1) Liu & Huete (1995) 

Optimized Soil-Adjusted Vegetation Index 𝑂𝑆𝐴𝑉𝐼 = ((1 + 0.16) · (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 0.16)) Rondeaux et al. (1996) 

Triangular Vegetation Index 𝑇𝑉𝐼 = 0.5 · [120 · (𝑅750 − 𝑅550) − 200 · (𝑅670 − 𝑅550)] Broge & Leblanc (2000) 

Modified Triangular Vegetation Index 𝑀𝑇𝑉𝐼 = 1.2 · [1.2 · (𝑅800 − 𝑅550) − 2.5 · (𝑅670 − 𝑅550)] Haboudane et al. (2004) 

Modified Simple Ratio 𝑀𝑆𝑅 =
𝑅800/𝑅670 − 1

(𝑅800/𝑅670)0.5 + 1
 Chen (1996) 

Xanthophyll indices   

Photochemical Reflectance Index (570) 𝑃𝑅𝐼570 = (𝑅570 − 𝑅531)/(𝑅570 + 𝑅531) Gamon et al. (1992) 

Chlorophyll a+b indices   

Vogelmann 𝑉𝑂𝐺1 = 𝑅740/𝑅720 Vogelmann et al. (1993) 

Gitelson &Merzlyak indices 𝐺𝑀1 = 𝑅750/𝑅550 Gitelson & Merzlyak (1997) 

Pigment Specific Simple Ratio Chlorophyll b 𝑃𝑆𝑆𝑅𝑏 = 𝑅800/𝑅650 Blackburn  (1998) 
Transformed Chlorophyll Absorption in Reflectance Index 𝑇𝐶𝐴𝑅𝐼 = 3 · [(𝑅700 − 𝑅670) − 0.2 · (𝑅700 − 𝑅550) · (𝑅700/𝑅670)] Haboudane et al. (2002) 

Transformed Chlorophyll Absorption in Reflectance Index/ 

Optimized Soil-Adjusted Vegetation Index 

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
=

3 · [(𝑅700 − 𝑅670) − 0.2 · (𝑅700 − 𝑅550) · (𝑅700/𝑅670)]

((1 + 0.16) · (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 0.16))
 Haboudane et al. (2002) 

R/G/B indices   

Redness index 𝑅 = 𝑅700/𝑅670 Gitelson et al. (2000) 

Blue/green indices 𝐵𝐺𝐼1 = 𝑅400/𝑅550 Zarco-Tejada et al. (2005) 

Lichtenhaler index 𝐿𝐼𝐶3 = 𝑅440/𝑅740 Lichtenhaler et al. (1996) 

Carotenoid indices   

Pigment Specific Simple Ratio Carotenoids 𝑃𝑆𝑆𝑅𝑐 = 𝑅800/𝑅500 Blackburn (1998) 

R515/R570 𝑅515/𝑅570 Zarco-Tejada et al. (2012) 

R515/R670 𝑅515/𝑅670 Zarco-Tejada et al. (2012) 

Fluorescence   

FLD 𝐹𝐿𝐷3 (747; 762; 780) 

Plascyk (1975) 

Maier et al. (2003) 

Zarco-Tejada et al. (2005) 

Plant disease index   

Healthy-index 𝐻𝐼 =
𝑅534 − 𝑅698

𝑅534 + 𝑅698
−

1

2
· 𝑅704 Mahlein et al. (2013) 

 

The Fraunhofer Line Depth (FLD) principle calculated from a total of three bands 

(FLD3) was applied to the hyperspectral radiance imagery to quantify the fluorescence 

signal as described by Zarco-Tejada et al. (2012). The bands required for the FLD3 

method were the band inside de O2-A feature (the “in” wavelength indicates the radiance 

at L762 nm) and the radiances at two wavelengths outside and on either side of the O2-A 

feature, referred as the “out” bands (L750 and L780 nm). Previous studies demonstrated 

successful results in retrieving the chlorophyll fluorescence signal using the micro-

hyperspectral imager due to the large spectral oversampling (1.85-nm sampling interval) 

and 6.4 nm bandwidths (Zarco-Tejada et al., 2012, 2013; Calderón et al., 2013). 

The thermal camera (FLIR SC655, FLIR Systems, USA) delivered 640 x 480 pixel 

resolution and was equipped with a 24.5 mm f1.0 lens, connected to a computer via USB 

2.0 protocol. This camera operates with a thermoelectric (TE) cooling stabilization, giving 

us high sensitivity below 50 mK. The spectral response was in the range of 7.5-13 μm. 

Radiometric calibration was conducted in the laboratory using a blackbody (model P80P, 

Land Instruments, Dronfield, UK) at varying target and ambient temperatures and through 
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vicarious calibrations using surface temperature measurements. Surface temperature was 

obtained applying atmospheric correction methods to thermal imager data based on 

MODTRAN radiative transfer code, which models the atmospheric transmissivity and 

longwave upwelling thermal radiation. Downwelling thermal radiation was measured in 

the field with a thermal sensor (LaserSight, Optris, Germany). Since only vegetation 

temperature is retrieved, surface emissivity is considered as 0.98 as an accepted value for 

natural vegetation (Berni et al., 2009b). Local atmospheric conditions such as air 

temperature, relative humidity and barometric pressure were measured at the time of the 

flight with a portable weather station (Model WXT510, Vaisala, Finland) (Table 5.3) and 

used as input into MODTRAN model. Atmospheric correction methods conducted with 

single-band thermal cameras were shown to provide successful estimation of vegetation 

surface temperature (Berni et al., 2009b). Canopy temperature (Tc), extracted from 

thermal imagery, minus air temperature (Ta) was calculated as a water stress indicator of 

olive trees (Tc − Ta). 

Table 5.3. Local atmospheric conditions measured by a portable weather station during the flight at 30-min 

interval. 

GMT time 

(h) 

Air temperature 

(ºC) 

Relative 

humidity (%) 

Air VPD 

(KPa) 

Wind speed 

(m/s) 

Solar radiation 

(W/m2) 

10:30 32.4 27.3 3.5 0.7 989 

11:00 33.0 26.9 3.7 0.6 984 

11:30 33.3 27.8 3.7 0.8 967 

12:00 33.8 24.9 4.0 0.9 938 

 

Single tree crown temperature and reflectance were extracted from high-resolution 

thermal and hyperspectral imagery (Figure 5.3a; 5.4a), respectively, using an automated 

object-based method. Image segmentation was automatically conducted using Fiji 

package of ImageJ software (National Institutes of Health, Bethesda, USA, 

http://www.fiji.sc) to split the digital image into multiple regions that made possible to 

identify single pure tree crowns (Figure 5.3b; 5.4b). Algorithms developed at the 

QuantaLab/IAS-CSIC were applied afterwards using GRASS GIS software (GRASS 

Development Team, http://grass.osgeo.org/) to extract feature for each object, calculating 

temperature and reflectance's mean statistics of all the pixels composing each whole 

crown (Figure 5.3c; 5.4c).  

http://www.fiji.sc/
http://grass.osgeo.org/
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Figure 5.3. Thermal mosaic (a) obtained with the thermal camera on board the manned platform at 63-cm 

resolution, enabling pure olive crown identification (b). Pure olive crowns were identified using automatic 

object-based crown detection. Mean crown normalized temperature (Tc-Ta) calculated from thermal imagery 

is shown for every Verticillium wilt severity class in (c). Mean values of Tc-Ta were supported by the data of 

the 9 plots, consisting of 510, 98, 64, 46 and 38 olive trees which correspond to asymptomatic, initial, low, 

moderate and severe severity classes, respectively. Error bars indicate standard errors. Red square (a) is 

shown in detail in (b). 

 

5.2.4.  Data analyses 

Multivariate analyses were used to develop models that detected VW infection and 

severity. The strength of association among normalized canopy temperature (Tc − Ta) and 

vegetation indices and the VW severity classes was assessed by LDA and SVM methods. 

Every olive tree assessed was designated with the presence of VW infection and severity 

of symptoms, as well as Tc − Ta and vegetation indices calculated from the thermal and 

hyperspectral imagery, respectively. 
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Figure 5.4. Hyperspectral mosaic (a) obtained with the hyperspectral sensor on board the manned platform at 

50-cm resolution. Pure olive crowns were identified using automatic object-based crown detection (b). 

Sample crown reflectance obtained by the hyperspectral imagery from Verticillium wilt asymptomatic, 

initially symptomatic and severely symptomatic olive trees is shown in (c). Red square (a) is shown in detail 

in (b). 

First, the STEPDISC procedure of SAS software (version 9.4; SAS Institute, Cary, 

NC, USA) was used to eliminate variables within the model that did not provide 

additional information or were redundant as determined by the Wilk’s lambda method, as 

well as to add variables outside the model that contribute most to the model (Khattree and 

Naik, 2000). The DISCRIM procedure of SAS was then used to generate a discriminant 

function capable of determining the classification accuracy of the dataset, based on the 

pooled covariance matrix and the prior probabilities of the classification groups. Due to 

the fact that the data were not normally distributed, a non-parametric discriminant 
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analysis was conducted specifying a k-value for the k-nearest-neighbour rule. In this 

study we used a k-value of 4, so each observation is classified into a VW severity class 

focusing on the information from its four nearest neighbours. A dataset of 756 olive trees 

was created by randomly selecting the 10% of the asymptomatic trees and including all 

the trees belonged to the symptomatic VW severity classes. This set was used to run the 

STEPDISC selected model and then DISCRIM for classifying VW severity groups. Then 

the classification accuracy of the selected model was evaluated by calculating the overall 

accuracy value and the kappa (κ) coefficient, which gives an overall accuracy assessment 

for the classification based on commission and omission error for all classes. The data 

obtained from the stepwise analysis were further subjected to a canonical discriminant 

analysis using the CANDISC procedure of SAS to separate classification variables (VW 

severity classes) based on linear combinations of the quantitative variables (Tc − Ta and 

vegetation indices). The linear combinations of variables (canonical variates) were then 

correlated with the original VW severity classes. Canonical variates means (centroid 

values) were calculated for each classification variable and significance between means 

was determined using Mahalanobis distance (Khattree and Naik, 2000). Individual values 

for each canonical variate were plotted in a bi-plot for the first and second canonical 

variables and for the first and third ones. 

SVM analysis calculations were conducted using R software, version 3.1.1 (R 

Foundation for Statistical Computing, http://www.R-project.org/) with the e1071 (Meyer 

et al., 2014) package which provides an interface to the open source machine learning 

library libsvm (Chang and Lin, 2014). For multiclass classification with k classes, libsvm 

uses the one-against-one approach, in which k(k-1)/2 binary classifiers are trained and the 

appropriate class is found by a voting scheme. SVM conducted non-linear classifications 

using kernel functions and introducing a cost parameter C to quantify the penalty of 

misclassification errors. The radial basis function kernel was used in this study because it 

has fewer parameter values to predefine and yet has been found at least as robust as other 

kernel types (Joachims, 1998; Huang et al., 2002). As shown in the equation 1 of this 

kernel, the only parameter that needs to be predefined is γ: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾·‖𝑥𝑖−𝑥𝑗‖
2

 [5.1] 

In order to specify the best radial basis function and to find an appropriate factor for 

penalizing classification errors, the parameter C and γ have to be optimized. In this 

respect, we applied a grid search method using cross validation approach as 

recommended by Hsu et al. (2010). The main idea behind the grid search method is that 

different pairs of parameters are tested (C and γ in this case) and the one with the highest 

cross validation accuracy is selected. 

 

http://www.r-project.org/
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5.3.  Results 

In the summer of 2013, 4.94% of the trees assessed at the field level were infected 

by VW, with a mean DS in symptomatic trees of 1.41 (0-4 rating scale). Taking account 

symptomatic trees, 40.08% showed initial DS symptoms, 25.92% had low DS symptoms, 

18.62% had moderate DS symptoms and 15.38% of symptomatic trees had severe DS 

symptoms. 

In the forward stepwise discriminant analysis 22 out of 34 indices were selected 

(Table 5.4). In this model, Tc − Ta and the indices calculated from the thermal and 

hyperspectral imagery, respectively, that contributed most (partial R-square > 0.05) to 

discriminate among VW severity classes were OSAVI, LIC3 and normalized canopy 

temperature (Tc − Ta), followed (partial R-square > 0.03 < 0.05) by GM1, R515/R570, 

PRI570, red index (R) and TCARI/OSAVI. HI, FLD3, VOG, PSSRb and RDVI showed 

the lowest contribution (partial R-square < 0.015) to the discriminant function (Table 5.4). 

Use of LDA allowed classifying the sampled olive trees in a given VW severity class. 

71.4%, 75.0%, 78.3% and 76.3% of the initial, low, moderate and severe VW affected 

trees were correctly classified, respectively (Table 5.5). Interestingly, all symptomatic 

trees were correctly classified and 55.5% of the asymptomatic plants that were considered 

symptomatic in the analysis were classified as plants with initial symptoms, the lowest 

severity class. Overall, the classification accuracy of the model was 59.0% (Table 5.5) 

and the κ value 0.487 (95% confident interval 0.437 – 0.536). The degree to which the 

five VW severity categories are separated is measured by the Mahalanobis distance 

between centroid values for each VW severity category (Table 5.6). As expected, all 

pairwise distances between the five VW severity categories were statistically significant 

(P < 0.005). 

Tc − Ta and vegetation indices, that were part of the discriminant model shown in 

Table 5.4, were used in a canonical discriminant analysis. In this analysis, three canonical 

functions (variates) showing significant differences (P < 0.0001) among VW severity 

classes were created. The first canonical variate significantly accounted for 42.3% of the 

variation while the second and the third ones only accounted for 13.8% and 9.5% of the 

variation, respectively. The structural indices (i.e., OSAVI, RDVI, MTVI1 and MSR) 

dominated the three variates. In addition, the first canonical variate was also dominated 

by positive loadings from Tc − Ta, TCARI, GM1, PSSRb, PRI570, R515/R570 and HI and 

negative loadings from FLD3. In the second canonical variate positive loadings from 

PSSRb, VOG, TCARI/OSAVI, BGI1, LIC3 and R515/R670 were found. The third 

canonical variate was dominated by positive loadings from PSSRc and negative loadings 

from GM1, PSSRb and R (Table 5.7). According to canonical loadings, the asymptomatic 

trees were detected mainly at low Tc − Ta, GM1, PSSRb, PRI570, R515/R570 and HI, and  
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Table 5.4. Variables selected from normalized canopy temperature (Tc-Ta) and vegetation indices in the 

forward stepwise discriminant analysis to determine the severity of Verticillium dahliae infection in olive 

trees. 

Source 
Wilks' 

Lambda 

Partial  

R-square 
F value Pr > F Pr <Lambda 

OSAVI 0.833 0.1666 37.52 <0.0001 <0.0001 

LIC3 0.718 0.1385 30.13 <0.0001 <0.0001 

Tc-Ta 0.676 0.0585 11.63 <0.0001 <0.0001 

GM1 0.586 0.0397 7.71 <0.0001 <0.0001 

R515/R570 0.610 0.0375 7.26 <0.0001 <0.0001 

PRI570 0.565 0.0349 6.74 <0.0001 <0.0001 

R 0.654 0.0321 6.20 <0.0001 <0.0001 

TCARI/OSAVI 0.634 0.0304 5.86 0.0001 <0.0001 

EVI 0.501 0.0295 5.61 0.0002 <0.0001 

TCARI 0.549 0.0289 5.52 0.0002 <0.0001 

MTVI1 0.464 0.0288 5.43 0.0003 <0.0001 

R515/R670 0.455 0.0200 3.73 0.0051 <0.0001 

NDVI 0.516 0.0198 3.73 0.0052 <0.0001 

BGI1 0.483 0.0191 3.58 0.0066 <0.0001 

PSSRc 0.447 0.0183 3.42 0.0088 <0.0001 

TVI 0.492 0.0165 3.08 0.0156 <0.0001 

MSR 0.435 0.0156 2.90 0.0213 <0.0001 

HI 0.534 0.0148 2.77 0.0262 <0.0001 

FLD3 0.526 0.0143 2.68 0.0310 <0.0001 

VOG 0.542 0.0132 2.49 0.0421 <0.0001 

PSSRb 0.442 0.0103 1.91 0.1067 <0.0001 

RDVI 0.478 0.0098 1.81 0.1250 <0.0001 

Table 5.5. Confusion matrix for Verticillium wilt severity classes using the linear discriminant classification 

based on the indices selected by the forward stepwise discriminant analysis. 

 Ground truth  

Prediction Asymptomatic Initial Low Moderate Severe 
Class 

precision 

Asymptomatic 263 0 0 0 0 100% 

Initial 137 70 5 1 1 32.7% 

Low 48 15 48 2 4 41.0% 

Moderate 37 6 6 36 4 40.5% 

Severe 25 7 5 7 29 76.3% 

Class recall 51.6% 71.4% 75.0% 78.3% 76.3% 59.0% 
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high structural indices and FLD3 values. As the VW severity increased, the values of Tc 

− Ta, TCARI, GM1, PSSRb, PRI570, R515/R570 and HI were higher, and structural indices 

and FLD3 were lower. Furthermore, the ranges of the indices values became higher as the 

VW severity level increased. In contrast, blue/green/red indices (BGI1, R and LIC3), 

chlorophyll (TCARI/OSAVI and VOG) and carotenoid indices (R515/R670 and PSSRc) 

were not able to detect differences among asymptomatic, initial and low severity levels 

but could discriminate among asymptomatic, moderate and severe levels (Figure 5.5). 

Table 5.6. Squared Mahalanobis distances for Verticillium wilt severity classes obtained in a forward 

stepwise discriminant analysis. 

 Squared Mahalanobis distance 

VW severity class Asymptomatic Initial Low Moderate Severe 

Asymptomatic - 3.102 7.032 9.704 18.410 

Initial 3.102 - 2.385 5.545 11.067 

Low 7.032 2.385 - 3.614 8.761 

Moderate 9.704 5.545 3.614 - 5.569 

Severe 18.410 11.067 8.761 5.569 - 

 

 F values 

VW severity class Asymptomatic Initial Low Moderate Severe 

Asymptomatic - 3.102*** 7.032*** 9.704*** 18.410*** 

Initial 3.102*** - 2.385** 5.545*** 11.067*** 

Low 7.032*** 2.385** - 3.614*** 8.761*** 

Moderate 9.704*** 5.545*** 3.614*** - 5.570*** 

Severe 18.410*** 11.067*** 8.761*** 5.570*** - 

**   P < 0.0005 

*** P < 0.0001 

SVM classification was also conducted for the differentiation among VW severity 

classes using the vegetation indices selected in the forward stepwise discriminant analysis 

showed in Table 5.4. Table 5.8 summarizes the results of the SVM model, which 

classified every olive tree assessed at field level in a given VW severity class. The overall 

classification accuracy was 79.2% and the κ value 0.495 (95% confident interval 0.433 – 

0.557), that was slightly higher than that obtained by LDA. 99.4% of asymptomatic trees 

were correctly classified in the asymptomatic class and the 14.3%, 40.6%, 67.4% and 

55.3% of the initial, low, moderate and high severity infected VW trees were correctly 

classified, respectively. In contrast to LDA results, SVM was very effective in correctly 



 

  130 

 

identifying asymptomatic trees but showed lower power to identify symptomatic trees. 

Mostly, this classification method failed in separating between plants infected at early 

stages of VW development. Thus, 63.2% and 56.3% of trees showing initial or low VW 

severity were considered as asymptomatic (Table 5.8). The maps generated in Figure 5.6 

represent the spatial pattern of VW severity classes assessed at field level and the severity 

classes predicted by LDA and SVM. Such maps showed an overestimation of VW 

symptomatic classes by LDA while SVM revealed an underestimation of these classes. 

 

Table 5.7. Standardized canonical coefficients (SCCs) and correlation coefficients (CCCs) of discriminant 

canonical functions of canopy normalized canopy temperature (Tc-Ta) and vegetation indices selected by the 

forward stepwise discriminant analysis that determine Verticillium wilt severity levels. 

 SCCs  CCCs 

Source Variate 1 Variate 2 Variate 3  Variate 1 Variate 2 Variate 3 

OSAVI -5.773 23.593 -14.241  -0.614 -0.050 0.270 

LIC3 -0.262 0.775 0.206  -0.585 -0.090 -0.297 

Tc-Ta 0.384 0.214 0.118  0.471 0.032 0.089 

GM1 3.326 -0.100 -6.922  -0.565 -0.143 0.164 

R515/R570 1.282 -0.022 0.009  0.339 -0.059 -0.001 

PRI570 1.149 1.137 0.035  0.342 0.080 0.142 

R 1.083 0.760 -2.353  0.324 0.187 0.166 

TCARI/OSAVI -0.736 1.567 -0.348  -0.274 0.360 0.119 

EVI -3.119 -9.210 -2.857  -0.584 -0.072 0.256 

TCARI 2.036 -1.356 1.153  -0.459 0.163 0.142 

MTVI1 -6.244 9.113 -14.574  -0.559 -0.016 0.285 

R515/R670 -0.961 2.189 1.139  -0.327 -0.009 -0.100 

NDVI -1.867 -3.687 1.187  -0.618 -0.054 0.196 

BGI1 0.230 0.824 0.470  -0.054 -0.010 -0.150 

PSSRc -1.626 0.499 7.490  -0.396 -0.126 0.260 

TVI -1.418 1.260 5.868  -0.527 0.044 0.319 

MSR -6.167 -9.539 0.776  -0.530 -0.111 0.130 

HI 3.354 -1.410 1.030  -0.471 -0.024 -0.146 

FLD3 -0.340 -0.271 0.262  -0.379 -0.156 0.137 

VOG -1.017 1.486 -0.067  -0.598 -0.084 0.143 

PSSRb 4.601 6.268 -2.450  -0.496 -0.145 0.116 

RDVI 15.945 -18.906 24.147  -0.592 -0.049 0.317 
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Figure 5.5. Classification of 756 olive trees assessed in Ecija into five Verticillium wilt severity classes based 

on (a) the first and second canonical variates and (b) the first and third canonical variates, from the canonical 

discriminant analysis. 
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Table 5.8. Confusion matrix for Verticillium wilt severity classes using the support vector machine 

classification based on the indices selected by the forward stepwise discriminant analysis. 

 Ground truth  

Prediction Asymptomatic Initial Low Moderate Severe 
Class 

precision 

Asymptomatic 507 79 36 15 11 78.2% 

Initial 0 14 1 0 0 93.3% 

Low 3 3 26 0 3 74.3% 

Moderate 0 2 1 31 3 83.8% 

Severe 0 0 0 0 21 100% 

Class recall 99.4% 14.3% 40.6% 67.4% 55.3% 79.2% 

 

 

 

Table 5.9. Overall accuracy and kappa obtained from the linear discriminant analysis (LDA) and the support 

vector machine (SVM) classification methods to detect Verticillium wilt severity levels for the individual 

olive plots assessed and for the all the plots together. 

 LDA  SVM 

Plot Overall accuracy Kappa  Overall accuracy Kappa 

1 0.600 0.486  0.862 0.712 

2 0.796 0.761  0.880 0.788 

3 0.684 0.543  0.785 0.230 

4 0.753 0.766  0.685 0.538 

5 0.600 0.382  0.825 0.250 

6 0.732 0.593  0.902 0.787 

7 0.600 0.523  0.911 0.785 

8 0.829 0.808  0.927 0.798 

9 0.613 0.415  0.793 0.555 

All plots 0.590 0.487  0.792 0.495 
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Figure 5.6. Spatial distribution of Verticillium wilt severity classes assessed at field level (a, d, g) and the 

severity classes predicted by the linear discriminant analysis (LDA) (b, e, h) and support vector machine 

(SVM) methods (c, f, i) in three different plots. 
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When analyzing the different plots separately, LDA model reached classification 

accuracies between 60.0% and 82.9% and κ ranging from 0.382 to 0.808 (Table 5.9). On 

the other hand, SVM model showed better classification accuracies between 68.5% and 

92.7% and slightly lower κ ranging from 0.230 to 0.798. Applying the forward stepwise 

discriminant analysis to each plot separately, the indices which contributed most to 

discriminate among VW severity classes for the global model were selected in the 

majority of plots. Interestingly, Tc − Ta, was selected in all plots, R in seven plots and 

TCARI/OSAVI in six plots. In addition, structural indices were selected in no more than 

three plots in contrast to the high discrimination power showed in the global model (Table 

5.10). 

Table 5.10. Variables selected in the forward stepwise discriminant analysis to distinguish among 

Verticillium wilt severity levels for each individual plot assessed. 

 Plot 

Source 1 2 3 4 5 6 7 8 9 

OSAVI  X  X      

LIC3 X X    X  X X 

Tc-Ta X X X X X X X X X 

GM1  X X   X   X 

R515/R570  X  X  X X X  

PRI570    X      

R  X  X X X X X X 

TCARI/OSAVI X X X X  X  X  

EVI X X   X     

TCARI    X    X X 

MTVI1          

R515/R670    X      

NDVI  X X     X  

BGI1  X X       

PSSRc   X X      

TVI  X  X      

MSR          

HI   X X    X  

FLD3  X  X   X X X 

VOG  X    X    

PSSRb  X  X      

RDVI  X        
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5.4.  Discussion 

Remote sensing has been demonstrated to be a useful decision support system for 

crop management (Sankaran et al., 2010; Mahlein et al., 2012). In combination with 

powerful data analysis methods, remote sensing becomes an essential tool for integrated 

disease management. In particular, the detection of olive trees infected by V. dahliae 

would be of importance for the management of VW, particularly at early stages of V. 

dahliae infection. The early detection of V. dahliae infection would help to avoid the 

spread of the pathogen to new areas, especially if they are free of V. dahliae, and to 

improve the use of available control measures (Tjamos, 1993; Navas-Cortés et al., 2008; 

Jiménez-Díaz et al., 2012). A recent study has demonstrated early detection of VW using 

high-resolution thermal and hyperspectral imagery in two commercial olive orchards 

(Calderón et al., 2013). V. dahliae penetrates into the plant roots, blocking water flow and 

reducing the transpiration rate which induced the stomata closure. Consequently, 

evaporative cooling is reduced and canopy temperature increases. Moreover, the 

reduction in photosynthesis caused by V. dahliae infection leads to an increase of the 

dissipation of energy by fluorescence. Considering these changes, several studies showed 

the feasibility of VW detection of olive trees at leaf and local scale even before 

characteristic disease symptoms were visible using normalized temperature, chlorophyll 

content, chlorophyll fluorescence and blue B/BG/BR indices (Calderón et al., 2013, 

2014). However, to our knowledge no studies have explored the robustness of these 

methods using narrow-band indices and thermal imagery for the early detection of VW in 

larger olive growing areas (i.e. thousands of hectares) characterized by large differences 

in crop age, tree-crown size, olive cultivars, crop managements and classes of disease 

severity. Therefore, the main objective of this study was to develop a robust and accurate 

method to detect the stress caused by V. dahliae infection and severity in olive growing 

areas to design localized VW control strategies at large scale. 

In our study, thermal and hyperspectral imagery were obtained from the study area, 

obtaining the data for each individual tree of normalized canopy temperature (Tc − Ta,) 

and 260 spectral bands. As the number of spectral bands increases, the analysis of the data 

becomes more limited and complex so a dimensional reduction is required without losing 

important information (Chang, 2013). Thus, the calculation of vegetation indices results 

in a reduction of the data dimension, which may be also useful in effective data analysis 

for disease discrimination (Sankaran et al., 2010). Since vegetation indices commonly 

used in remote sensing of vegetation are disease-specific indices, in this study we used the 

indices that Calderón et al. (2013) proved to be good indicators of VW at early and 

advanced stages of disease development. Then, these indices were introduced in a forward 

stepwise discriminant analysis to select the ones contributing the most to the 

discriminatory power among VW severity classes, so that the spectral dimensionality was 
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further reduced. Results of this work demonstrates that Tc − Ta,, structural (OSAVI, 

MTVI1, NDVI, TVI, MSR and RDVI), chlorophyll (GM1, TCARI/OSAVI, TCARI, 

VOG and PSSRb), carotenoid (PSSRc), blue/green BGI1, blue/red LIC3, FLD3 and HI 

indices were robust VW indicators in agreement with Calderón et al. (2013). However, 

chlorophyll indices (ZM (Zarco-Tejada et al., 2001), GM2 (Gitelson and Merzlyak, 

1997), PSSRa (Blackburn, 1998), mCAI (Laudien et al., 2003)), SIPI (Peñuelas et al., 

1995), PRI515 (Hernández-Clemente et al., 2011), blue (B) (Calderón et al., 2013) and the 

blue/red ratios BR1 and BR2 (Zarco-Tejada et al., 2012) were not good indicators in the 

present study, demonstrating to be influenced by the variation of agronomic 

characteristics within large olive areas. By contrast, indices that were not robust in 

Calderon et al. (2013), such as PRI570, red (R), R515/R570, R515/R670, were demonstrated to 

be useful for VW detection in this study. At large scale, these indices may work better 

detecting VW at advanced stages where crown structural and density changes due to 

disease stress are more differentiated as the variation in agronomic characteristics within 

the study area is bigger. When applying the forward stepwise discriminant analysis to 

individual plots, the indices selected in the analysis including all plots demonstrated their 

robustness for each plot analyzed separately, with the exception of structural indices. The 

non-inclusion of structural indices by the stepwise discriminant analysis may be due to 

the lower within plot variability on crown structure and density according to the presence 

of fewer differences on agronomic characteristics.  

In remote sensing for plant disease detection, different classification methods have 

been used in order to maximize information obtained from imagery. In this study, two 

different supervised classification methods were used for data analysis, the LDA and the 

non-linear SVM methods. Both classification methods have shown good results for 

detecting plant diseases at small scale (Delwiche and Kim, 2000; Naidu et al., 2009; 

Rumpf et al., 2010; Römer et al., 2011) but to our knowledge have not been used 

previously for the detection of plant diseases at large scale, such as the one of this study. 

For the whole dataset, LDA reached an overall accuracy of 59.0% and a κ of 0.487 while 

SVM showed a higher overall accuracy, 79.2%, and a slightly higher κ, 0.495. LDA 

correctly classified the 51.6% of the asymptomatic trees while SVM classified the 99.4%. 

However, LDA was more efficient in classifying the trees at initial and low VW severity 

levels, reaching accuracies of 71.4 and 75.0%, respectively, in comparison with the 14.3 

and 40.6% obtained by SVM. Both classification methods showed an increase of the class 

accuracy (class recall) as the VW severity level increased. It is due to the higher 

differences found in Tc − Ta, and vegetation indices values with the increase in VW 

severity level when is compared to the asymptomatic class (Calderón et al., 2013). When 

considering individual olive orchards, the overall classification accuracy reached by both 

classification methods were generally higher than that attained with the whole dataset. 
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The lower within plot variability on agronomic characteristics could be responsible for 

this effect. In addition, SVM obtained higher overall accuracies and κ than LDA. 

Recently, there has been growing interest in exploring the potential of SVM for early 

detection of plant diseases. Thus, Rumpf et al. (2010) used this approach to discriminate 

between healthy sugar beet leaves from that infected with various foliar pathogens that 

included Cercospora beticola, Uromyces beate and Erysiphe betae at early stages of 

pathogenesis based on hyperspectral data. Similarly, Römer et al. (2011) detected wheat 

leaf rust at a pre-symptomatic stage using UV-light induced fluorescence data analysed by 

SVM classification methods. Nevertheless, in our study, although SVM reached the 

highest overall accuracy, LDA classified olive trees better at the initial and low VW 

severity levels with accuracies of 71.4% and 75.0%, respectively, in comparison with the 

14.3% and 40.6% obtained by SVM. After LDA, a canonical discriminant analysis was 

conducted to reduce the dimensionality of the variables included in the model. Thus, three 

canonical variates were derived accounting for 42.3%, 13.8% and 9.5% of the variation, 

respectively. The first canonical variate allowed the discrimination between the 

asymptomatic and symptomatic VW severity classes, particularly at the initial and low 

levels. This variate was dominated by Tc − Ta,, structural indices (RDVI, MTVI1, MSR, 

OSAVI and EVI), PRI570, FLD3, HI, chlorophyll (TCARI, GM1, PSSRb) and carotenoid 

(R515/R570) indices, whose value ranges increased as the severity level increased. The 

second and third canonical variates were able to distinguish between asymptomatic and 

VW severity levels at advanced stages of disease development. These variates were 

dominated by the blue/green/red (BGI1, R and LIC3), structural (OSAVI, RDVI, NDVI, 

EVI, TVI, RDVI, MTVI1 and MSR), chlorophyll (TCARI/OSAVI, PSSRb, GM1 and 

VOG) and carotenoid indices (R515/R670 and PSSRc). 

Canopy temperature has proven to be useful to detect root impairment caused by V. 

dahliae in several studies. Nilsson (1995) reported that oilseed rape plants infected with 

V. dahliae showed leaf temperatures 5-8ºC higher than non-infected plants. In addition, 

normalized leaf and canopy temperature were identified as early indicators of V. dahliae 

infection in olive trees (Calderón et al., 2013, 2014), showing up to 2ºC higher in VW 

infected trees. Hyperspectral reflectance differences were also demonstrated to identify 

VW in cotton and olive crops. Chen et al. (2008, 2011) confirmed that the spectral 

characteristics of cotton infected plants changed gradually with the increase in the visible 

region with disease severity, while a reduction occurred in the near-infrared region. 

Moreover, results obtained in this study at canopy level confirmed those obtained at leaf 

level under controlled conditions by Calderón et al. (2013), who identified SPAD 

readings (chlorophyll content) and chlorophyll fluorescence as early VW indicators. In 

addition, these results were also in agreement with the study carried out by Calderón et al. 

(2013) at canopy level in two olive commercial orchards, proving the potential for early 

detection of V. dahliae infection in olive crops using hyperspectral imagery acquired with 
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an unmanned aerial vehicle. In that study, FLD3, B, BGI1 and BRI1 were determined as 

VW indicators at initial stages of disease development. Moreover, Calderón et al. (2013) 

proved structural, chlorophyll, carotenoid and HI indices to be good VW indicators at 

advanced stages of disease development. In conclusion, Tc − Ta, calculated from thermal 

imagery and chlorophyll fluorescence estimated with the FLD3 in-filling retrieval method 

from the hyperspectral imagery allowed identifying olive trees at the early stages of 

disease development as much at orchard scale as at larger scale. Thus, the use of Tc − Ta, 

and FLD3 as early indicators of Verticillium wilt is not influenced by the variation of 

agronomic characteristics within the study area. However, it is not the case for blue/blue-

green/blue-red (B, BG1 and BR1) ratios which were found good indicators of 

Verticillium wilt at initial and low severity levels at orchard scale but only detected 

moderate and advanced severity levels at larger scale. Structural, xanthophyll, 

chlorophyll, carotenoid and disease indices and green/red ratios calculated from 

hyperspectral imagery proved to be good indicators to detect the presence of moderate to 

severe damage caused by Verticillium wilt as much at orchard scale as at larger scale. 

 

5.5.  Conclusions 

In the present study, a procedure to develop a robust and accurate method for the 

automatic classification of V. dahliae infection and severity using remote sensing was 

assessed at large scale. This study completed the one conducted by Calderón et al. (2013) 

at orchard scale, extrapolating the methods to larger areas comprising several olive 

orchards differing in soil and crop management characteristics. High-resolution imagery 

was acquired with a thermal and a hyperspectral camera installed on board a manned 

platform which flew a 3,000-ha commercial olive area. We calculated narrowband 

hyperspectral indices and normalized canopy temperature (Tc − Ta,) from the 

hyperspectral and thermal imagery and used linear discriminant analysis (LDA) and 

support vector machine (SVM) methods to discriminate among VW severity classes 

exploiting the combined information of these indices and Tc − Ta,. For the whole dataset, 

LDA reached an overall accuracy of 59.0% and a κ of 0.487 while SVM obtained a higher 

overall accuracy, 79.2%, and a similar κ, 0.495. However, LDA classified better the trees 

at initial and low severity levels, reaching accuracies of 71.4% and 75.0%, respectively, in 

comparison with the 14.3% and 40.6% obtained by SVM. Tc − Ta,, structural indices 

(RDVI, MTVI1, MSR, OSAVI and EVI), PRI570, FLD3, HI, chlorophyll (TCARI, GM1, 

PSSRb) and carotenoid (R515/R570) indices detected VW at early and advanced stages of 

disease development, while the structural (NDVI and TVI), blue/green/red (BGI1, R and 

LIC3), chlorophyll (TCARI/OSAVI and VOG) and carotenoid indices (R515/R670 and 

PSSRc) were good indicators of VW at advanced stages. Comparing with the results 

obtained by Calderón et al. (2013), Tc − Ta, and FLD3 allowed identifying olive trees at 
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the early stages of disease development as much at orchard scale as at larger scale, being 

not influenced by the variation of agronomic characteristics within the study area. 

Structural, xanthophyll, chlorophyll, carotenoid and disease indices and blue/green/red 

ratios proved to be good indicators to detect the presence of moderate to severe damage 

caused by VW. These results demonstrate that the methods developed at orchard scale are 

validated for flights in large areas consisting of olive orchards with different 

characteristics. 
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CHAPTER 6: CONCLUSIONS 

6.1. Conclusions of the Research Published Papers 

 Verticillium wilt development in olive plants infected by the D pathotype was 

faster and more severe on cv. Picual than on cv. Arbequina. Cv. Picual plants 

were more susceptible to the D than to the ND pathotype. 

 The optimal soil temperature range for the D pathotype development was 16 to 

24ºC for cv. Picual and 20 to 24ºC for cv. Arbequina. For the ND pathotype, a 

range of 16 to 20ºC was estimated as the most favorable for infection. Soil 

temperatures higher than 28ºC showed a drastic reduction of Verticillium wilt 

symptom development. 

 Stress-related parameters measured at leaf level (temperature, steady-state 

chlorophyll fluorescence Fs, Photochemical Reflectance Index PRI, chlorophyll 

content and ethylene production) were able to detect the physiological stress 

caused by V. dahliae infection and severity in olive plants, applying a 

multinomial logistic regression analysis and a tree classification which correctly 

classified 73.40 and 76.60% of the cases, respectively. 

 Chlorophyll content, Fs and leaf temperature were identified as the best indicators 

to detect Verticillium wilt at early stages of disease development, while ethylene 

production and PRI were good indicators to detect Verticillium wilt at advanced 

stages. 

 High-resolution thermal, multispectral and hyperspectral imagery acquired with 

an unmanned aerial vehicle (UAV) demonstrated its potential for the early 

detection of V. dahliae infection and discrimination among Verticillium wilt 

severity levels at orchard scale. 

 Field measurements at leaf and crown-level validated the results obtained from 

imagery, confirming that these results are due to the stress caused by Verticillium 
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wilt and not simply influences by structural effects driven by the water stress 

induced by V. dahliae infection. The reduction in transpiration and stomatal 

conductance caused by Verticillium wilt was associated with significant increases 

(P < 0.05) in leaf PRI and crown temperature and a decrease in leaf Fs. 

 Canopy temperature and Crop Water Stress Index (CWSI) calculated from the 

thermal imagery and blue/blue-green/blue-red (B, BG1 and BR1) ratios and 

chlorophyll fluorescence (FLD3) calculated from the hyperspectral imagery were 

identified as the best indicators to detect Verticillium wilt at early stages of 

disease development. Structural indices (i.e., NDVI), PRI, disease index (HI), 

chlorophyll and carotenoid indices and the red/green ratios calculated from 

hyperspectral imagery were good indicators to detect the presence of moderate to 

severe damage caused by Verticillium wilt. 

 The study conducted in the previous Research Article at orchard scale was 

validated over larger olive areas which comprise several olive orchards differing 

in soil and crop management characteristics. 

 Linear discriminant analysis (LDA) and support vector machine (SVM) methods 

were applied for the automatic classification of V. dahliae infection and severity 

in large olive areas. LDA reached an overall accuracy of 59.00% and a κ of 0.487 

while SVM obtained a higher overall accuracy, 79.20%, and a similar κ, 0.495. 

 LDA classified better the trees at initial and low severity levels, reaching 

accuracies of 71.42 and 75.00%, respectively, in comparison with the 14.29 and 

40.63% obtained by SVM. 

 When considering individual olive orchards, the overall classification accuracies 

reached by LDA and SVM were higher than those attained with the whole dataset 

due to the lower within variability on agronomic characteristics. 

 Canopy temperature, structural indices (RDVI, MTVI1, MSR, OSAVI and EVI), 

PRI, FLD3, HI, chlorophyll (TCARI, GM1, PSSRb) and carotenoid (R515/R570) 

indices detected Verticillium wilt at early and advanced stages of disease 

development, while the structural (NDVI and TVI), blue/green/red (BGI1, R and 

LIC3), chlorophyll (TCARI/OSAVI and VOG) and carotenoid indices (R515/R670 

and PSSRc) were good indicators of Verticillium wilt only at advanced stages. 
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6.2. General Conclusions 

 The optimal soil temperature range for the D pathotype development was 16 to 

24ºC for cv. Picual and 20 to 24ºC for cv. Arbequina. For the ND pathotype, a 

range of 16 to 20ºC was estimated as the most favorable for infection. Soil 

temperatures higher than 28ºC showed a drastic reduction of Verticillium wilt 

symptom development. These results will be useful to better understand the 

differential geographic distribution of V. dahliae pathotypes and to assess the 

potential effect of climate change on the development of Verticillium wilt of 

olive under future climate change scenarios. 

 At leaf level, Verticillium wilt was associated with an increase of temperature 

and reflectance in the visible green region due to a drop in chlorophyll content 

and a decrease of Fs because of a reduction in photosynthesis rate, even from 

early stages of disease development. V. dahliae infection was also detected by an 

increase of ethylene production and PRI, but only at advanced stages of disease 

development. 

 Canopy temperature and physiological indices calculated from high-resolution 

thermal and hyperspectral imagery were able to detect the stress caused by V. 

dahliae infection in olive trees, with special focus on the early detection to 

design focalized Verticillium wilt control strategies at orchard and larger scale. 

 Canopy temperature and CWSI calculated from thermal imagery and chlorophyll 

fluorescence estimated with the FLD3 in-filling retrieval method from the 

hyperspectral imagery allowed identifying olive trees at the early stages of 

disease development as much at orchard scale as at larger scale. Thus, the use of 

canopy temperature, CWSI and FLD3 as early indicators of Verticillium wilt are 

not influenced by the variation of agronomic and crop management 

characteristics within the study area. However, it is not the case for blue/blue-

green/blue-red (B, BG1 and BR1) ratios which were found good indicators of 

Verticillium wilt at initial and low severity levels at orchard scale but only 

detected moderate and advanced severity levels at larger scale. 

 Structural, xanthophyll, chlorophyll, carotenoid and disease indices and 

green/red ratios calculated from hyperspectral imagery proved to be good 

indicators to detect the presence of moderate to severe damage caused by 

Verticillium wilt as much at orchard scale as at larger scale. 
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