
Remote Sensing of Environment 193 (2017) 165–179

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Assessing the effects of forest health on sun-induced chlorophyll
fluorescence using the FluorFLIGHT 3-D radiative transfer model to
account for forest structure
R. Hernández-Clemente a,⁎, P.R.J. North a, A. Hornero b, P.J. Zarco-Tejada c

a Department of Geography, Swansea University, SA2 8PP Swansea, UK
b Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
c European Commission, Joint Research Centre (JRC), Directorate D – Sustainable Resources - Bio-Economy Unit, Via E. Fermi 2749 – TP 261, 26a/043, I-21027 Ispra, VA, Italy
⁎ Corresponding author.
E-mail address: r.hernandez-clemente@swansea.ac.uk

http://dx.doi.org/10.1016/j.rse.2017.02.012
0034-4257/© 2017 Published by Elsevier Inc.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 August 2016
Received in revised form 3 February 2017
Accepted 24 February 2017
Available online xxxx
Sun-induced fluorescence (SIF) has been proven to serve as a proxy of photosynthesis activity and therefore, as
an early indicator of physiological alterations for global monitoring of vegetation. However, the interpretation of
SIF over different spatial resolutions is critical to bridge the existing gap between local and global scales. This
study provides insight into the influence of scene components, and forest structure and composition on the quan-
tification of the red and far-red fluorescence signal as an early indicator of forest decline. The experiments were
conducted over an oak forest (Quercus ilex) affected by water stress and Phytophthora infection in the southwest
of Spain. SIF retrievals through the Fraunhofer Line Depth (FLD) principlewith three spectral bands F (FLD3)was
assessed using high resolution (60 cm) hyperspectral imagery extracting sunlit crown, full crown and aggregated
pixels. Results showed the link between F (FLD3) extracted from sunlit crown pixels and the tree physiological
condition in this context of disease infection, yielding significant relationships (r2 = 0.57, p b 0.01) for midday
xylem water potential (ψ), (r2 = 0.63, p b 0.001) for the de-epoxidation state of the xanthophyll cycle (DEPS),
and (r2 = 0.74, p b 0.001) for leaf-level measurements of steady-state fluorescence yield (Fs). In contrast, a
poor relationship was obtained when using aggregated pixels at 30 m spatial resolution, where the relationship
between the image-based F (FLD3) and Fs yielded a non-significant relationship (r2 = 0.25, p N 0.05). These re-
sults demonstrate the need for methods to accurately retrieve crown SIF from aggregated pixels in heteroge-
neous forest canopies with large physiological variability among individual trees. This aspect is critical where
structural canopy variations and the direct influence of background and shadows affect the SIF amplitude
masking the natural variations caused by physiological condition. FluorFLIGHT, a modified version of the three
dimensional (3-D) radiative transfer model FLIGHTwas developed for this work, enabling the simulation of can-
opy radiance and reflectance including fluorescence at different spatial resolutions, such as may be derived from
proposed satellite missions such as FLEX, and accounting for canopy structure and varying percentage cover. The
3-Dmodelling approach proposed here significantly improved the relationship between Fs and F (FLD3) extract-
ed from aggregated pixels (r2= 0.70, p b 0.001), performing better thanwhen aggregation effects were not con-
sidered (r2 = 0.42, p b 0.01). The FluorFLIGHT model used in this study improved the retrieval of SIF from
aggregated pixels as a function of fractional cover, Leaf Area Index and chlorophyll content yielding significant
relationships between Fs ground-data measurements and fluorescence quantum yield estimated with
FluorFLIGHT at p b 0.01 (r2 = 0.79). The methodology presented here using FluorFLIGHT also demonstrated its
capabilities for mapping SIF at the tree level for single tree assessment of forest physiological condition in the
context of early disease detection.
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1. Introduction

Spatial and temporal estimation of photosynthesis of forest ecosys-
tems can provide advance information on plant performance and forest
(R. Hernández-Clemente).
dynamics in a given environment. Sun-induced chlorophyll fluores-
cence (SIF) has been extensively tested as a proxy of fundamental pro-
cesses of plant physiology to understand the photosynthetic activity of
plants and the stress development affecting photochemistry (Damm
et al., 2014; Krause andWeis, 1984; Zarco-Tejada et al., 2013a). Current
research efforts to monitor photosynthetic activity show a growing in-
terest in remote sensing of the SIF signal due to its potential to be
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measured at both local (high resolution images) and global scales (me-
dium and low resolution images) being a direct proxy of photosynthe-
sis. The first global maps of SIF were published (Frankenberg et al.,
2011; Joiner et al., 2014) using the TANSO sensor on board GOSAT
(Kuze et al., 2009) allowing qualitative assessments with annual and
seasonal vegetation patterns (Guanter et al., 2012). The spatial resolu-
tion provided by this sensor (10.5 km) is not, however, sufficient for
the understanding of the retrieved SIF in heterogeneous vegetation can-
opies due to the aggregation of scene components and the large effects
caused by background and shadows (Zarco-Tejada et al., 2013b). The
fast development of new hyperspectral sensors to be carried on board
manned and unmanned airborne platforms has given rise to the retriev-
al of high spatial resolution SIF at local scales, which is becoming a novel
area of research (Dammet al., 2015; Zarco-Tejada et al., 2013c). Howev-
er it remains very challenging to cover at very high resolution the large
areas required for forest monitoring analysis. This has hitherto been the
main limitation in studying physiological condition of forest canopies
with higher detail, as currently available satellite sensors are limited
by their spatial and spectral resolution for SIF retrieval purposes. To ad-
dress this gap, the ESA's Earth Explorer Mission of the ‘Fluorescence Ex-
plorer’ (FLEX) (Kraft et al., 2012), the first mission designed to observe
the photosynthetic activity of the vegetation layer has been recently ap-
proved, with 2022 as the tentative launch date. This mission will make
possible, for the first time, the assessment of the dynamics of photosyn-
thesis on forest canopies through SIF at 300 m spatial resolution, and
with potential to distinguish different fluorescence signals from PSI
and PSII (Rossini et al., 2015). This offers a great advantage over current
techniques used for photosynthesis monitoring based on structural in-
dices (e.g. the Normalized Difference Vegetation Index (NDVI)) ac-
quired from conventional Earth-resource satellites.

The chlorophyll fluorescence signal derived from global maps is af-
fected by illumination effects, leaf and canopy structure and composi-
tion of vegetation, and soil/background though to a lesser extent than
reflectance. The interplay of within-leaf scattering properties of leaf
structure and biochemical constituents are known to affect the bidirec-
tional chlorophyll fluorescence emission (Van Wittenberghe et al.,
2015, 2014; Verrelst et al., 2015). SIF flux through a leaf, upward and
downward leaf chlorophyll fluorescence emissions and scattering ef-
fects have been thoroughly studied using radiative transfer models
(RTMs) (Miller, 2005). However, few fluorescence models have been
developed at the leaf level and even fewer are available at the canopy
level, especially for the case of heterogeneous and complex canopies.
The first attempts were carried as part of a vegetation fluorescence can-
opy model developed in the framework of the ESTEC ESA project
(16365/02/NL/FF). The FluorMODleaf (Pedrós et al., 2008) and
FluorSAIL (Verhoef, 2004) leaf and canopy fluorescence models were
developedwithin the same project. FluorMODleaf is based on thewide-
ly used and validated PROSPECT leaf optical properties model and re-
quires inputs from PROSPECT-5 plus the σII/σI ratio referring to the
relative absorption cross-sections of PSI and PSII, as well as the fluores-
cence quantum efficiency of PSI and PSII, represented by the corre-
sponding mean fluorescence lifetimes τI and τII. The canopy model is
based on the turbid medium SAIL model (FluorSAIL) coupled with
FluorMODleaf andMODTRAN to provide the illumination levels through
the canopy. The Soil Canopy Observation, Photochemistry and Energy
fluxes (SCOPE) model recently developed by van der Tol et al. (2009)
as a means of jointly simulating directional Top of Canopy (TOC)
reflected solar radiation, emitted thermal radiation and SIF signals as
well as energy balance, water and CO2 fluxes, enables vertical (1-D)
modelling of integrated radiative transfer and energy balance by com-
bining a number of intra-canopy radiative, turbulent and mass-transfer
models, bearing inmind various processes involved in leaf biochemistry
(Duffour et al., 2015). Using retrievals of SIF simulated with SCOPE,
Verrelst et al. (2015) demonstrated that the main variables affecting
SIF signal were determined by leaf optical properties and canopy struc-
tural variables with a contribution of 77.9% of the SIF total variability.
Canopy re-absorption and scattering effects must be better understood
and quantified. Consequently, it is very important to make progress on
canopy-scale modelling approaches providing an explicit connection
between the canopy biophysical processes, view and illumination ge-
ometry and the resulting canopy fluorescence signal. In light of the
above, Zarco-Tejada et al. (2013b) demonstrated the need for RTM
methods to accurately retrieve vegetation fluorescence signal from veg-
etation-soil/background aggregated pixels. Due to the lack of complex
models to simulate SIF in heterogeneous canopies, Zarco-Tejada and
co-authors conducted the study using a leaf-canopy fluorescence
model (FluorMODleaf) combined with a geometric model to account
for canopy heterogeneity (FluorSAIL) and a first-order approximation
forest model (FLIM) of stand reflectance to account the effects of
crown transparency and shadowingon apparent reflectance. The results
demonstrated the large structural effects on the fluorescence retrieval
from mixed pixels, and therefore the need to develop more complex
models to account for the effect caused by the canopy architecture.

This aspect becomes particularly important in the assessment of
complex forest canopies characterised by high horizontal and vertical
heterogeneity (Widlowski et al., 2015). Unfortunately, currently avail-
able fluorescence models are only valid on homogeneous and uniform
canopies. Strategies to simulate the spectral signature in heterogeneous
forest canopies have been limited by difficulties in simulating canopy
structure such as Leaf Area Index (LAI), tree density, fractional cover
(FC), crown overlapping or mutual shading and multiple scattering be-
tween crowns. This paper aims to fill these gaps and in doing so to as-
sess the potential of chlorophyll fluorescence signal retrieval as an
early indicator of forest decline. The novel approach consists of coupling
the leaf optical model FLUSPECT (Vilfana et al., 2016) and the three-di-
mensional (3-D) ray-tracing model FLIGHT developed by North (1996)
to carry the scaling up approach from leaf to canopy dealing with mul-
tiple canopy components. In particular, the study aims at assessing: i)
SIF as an early indicator of forest health in a heterogeneous oak forest
canopy (Quercus ilex) affected by water stress and Phytophthora infec-
tion using very high resolution airborne hyperspectral imagery, ii) the
canopy structure effects on the retrieval of SIF in forest canopies using
a 3-D RTM, and iii) the retrieval of SIF through model inversion using
coarse-spatial resolution hyperspectral imagery.

2. Materials and methods

The methods used for the assessment of SIF from hyperspectral im-
agery for the early detection of forest decline condition are described
below, outlining field and airborne data collection, as well as the ap-
proach using the 3-D RTM FLIGHT adapted to account for fluorescence
(FluorFLIGHT). In both cases, SIF was retrieved within the far-red
region.

2.1. Field data collection

The experimental area is located in Puebla deGuzmán (Huelva prov-
ince, in southwestern Spain) (Lat 37°36′30.89″N, Lon 7°20′27.97″W)
(Fig. 1). The topography is slightly hilly, with acidic and poor soils. The
annual rainfall is around 490 mmwith an annual average temperature
of 18.1 °C, reaching an annual average of 32 °C during summer and an
annual average of 12.7 °C during winter. The vegetation is mainly com-
posed of mature trees of the species Quercus ilex subsp. Bellota with an
average density of 60 trees per ha (Roig Gómez et al., 2007). Since the
1990s, trees have shown symptoms of decline, leading to highmortality
rates from the 2000s (Maurel et al., 2001). This region is particularly
vulnerable because of the combined effect of water deficiency, soil com-
paction, nutrient losses, water erosion and the widespread distribution
of soil-borne pathogen (Pytophthora cinnamomi and Pythiumspiculum)
(Moralejo et al., 2009).

The field data measurements were conducted in 15 oak trees
(Quercus ilex subsp. Bellota) with similar height and age located in low



Fig. 1.Airborne hyperspectralflight line acquiredwith themicro-hyperspectral imager yielding 60 cm resolution (a), oak forest study site and tree crowns selected for the quantification of
SIF (b), high resolution spectral reflectance extracted from sunlit and shadowed crown and soil components (c).

Table 1
Ground truth data collected and optical measurements.

Variable Symbol Units

Biochemical constituents & physiological variables
Chlorophyll content Ca + b μg/cm2

Carotenoid content Cx + c μg/cm2

Water content Cw mg/cm2

Dry matter Cm mg/cm2

Xanthophyll cycle DEPS Arbitrary units
Steady State Fluorescence Fs Arbitrary units
Water potential ψ mpa

Optical measurements
Leaf reflectance ρ %
Leaf transmittance τ %
Solar irradiance Io

wm−2 sr−1 nm−1

Forest canopy structure
Density D trees/ha
Trunk diameter Øt m
Tree height H m
Crown diameter Øc m
Crown height Hc m
Leaf Area Index LAI m2/m2
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slope areas (b10%). The location of these trees was previously associat-
ed with the pathogenicity of P. cinmaomi (Ferraz et al., 2000) and heat-
induced tree die-off processes (Natalini et al., 2016). The trees were se-
lected to ensure a gradient in health condition based on the physiolog-
ical variables: de-epoxidation of the xanthophyll cycle (DEPS), midday
xylem water potential (ψ) and steady-state fluorescence yield (Fs).
Three different forest physiological conditions (FPC-1,2,3) were
established based on these variables, where FPC1 correspond with the
healthier and more vigorous trees, FPC2 with moderated affected
trees, and FPC3 with declining trees. In order to determine whether
FPCs differed significantly in terms of DEPS, ψ and Fs, a one-way
ANOVA was performed at a 0.05 significance level. Findings indicated
significant differences in physiological status for each FPC (p b 0.05). A
similar procedure was used by Hernández-Clemente et al. (2011) to
established physiological condition levels in a conifer forest affected
by water stress.

A summaryof thevariablesmeasured in thefield is included in Table 1.
Physiological measurements were carried out concurrently with the
airborne measurements (12:00 to 13:00 h local time) during three con-
secutive days (25–28 August in 2012). ψ was measured with a pressure
chamber (SKPM 1400, Skye Instruments Ltd., Powys, UK) (Scholander et
al., 1965) from 12 branches per tree, three branches per orientation in
the four cardinal directions. Fswasmeasured onfive leaves per orientation
and tree, with a total of 300 leaves sampled. Leaf fluorescence was mea-
sured using a FluorPen FP100 (Photon Systems Instruments, Brno, Czech
Republic), which was self-calibrated at the start of each session. Although
measurements made with the FluorPen FP100 differed from airborne SIF
retrievals, leaf data served as a field-level assessment of variability in
stress conditions (Zarco-Tejada et al., 2016).

Leaf biochemical constituents measured from the selected trees
were total chlorophyll (Ca + b) (chlorophyll a (Ca) and chlorophyll b
(Cb)), total carotenoids (Cx + c) and xanthophyll pigments, and leaf
water content (Cw) and dry mass (Cs). Leaf-level measurements were
collected on a total of 48 leaves per tree, 12 samples per orientation,
with a total of 720 leaves sampled. The samples were collected from
the top of the crownby selecting branches of illuminated areas. Leaf pig-
ments were processed and extracted as reported by Hernández-
Clemente et al. (2011). The DEPS was calculated as
(A + Z) / (A + V + Z) (Thayer and Björkman, 1990), where V is
violaxanthin, A is antheraxanthin and Z is zeaxanthin.

Opticalmeasurementswere taken on leaves from the samebranches
and trees used for pigment quantification. Leaf reflectance (ρ) and
transmittance (τ) were measured with a Li-Cor 1800-12 integrating
sphere (Li-Cor, Lincoln, NE, USA) coupled to a fiber optic spectrometer
(Ocean Optics model USB2000 spectrometer, Ocean Optics, Dunedin,
FL, USA), with a 1024-element detector array, 0.5 nm sampling interval,



Fig. 2. Example of a 30 × 30 m scene (highlighted squared) of the micro-hyperspectral
imagery acquired at 40 cm resolution in color-infrared (a) and sunlit and shadowed
component identification of the crown on the micro-hyperspectral imagery (b).
Example of a 30 × 30 m scene (highlighted squared) simulated with FluorFLIGHT (c)
and sunlit and shadowed component identification on simulated images (d). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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and 7.5 nm spectral resolution in the 340–940 nm range using the
method described in Zarco-Tejada et al. (2005).

In February 2013, the study areawas inventoried recording themain
structural variables of the canopy. A total of 200 trees were measured
recoding the trunk diameter at 1.3 m, tree height, crown diameter,
tree density, FC and height. Additionally, LAI values were taken from a
subsample of 15 trees of this data set. A detailed description of themea-
surement procedure can be found in Hernández-Clemente et al. (2014).

2.2. Airborne image acquisitions

The airborne campaign was conducted with a hyperspectral sensor
installed on an aircraft (CESSNA C172S EC-JYN) operated by the Labora-
tory for ResearchMethods inQuantitative Remote Sensing (QuantaLab),
Consejo Superior de Investigaciones Científicas (IAS-CSIC, Spain) at
650–700 m above ground level (AGL) and 2800 ft. above the sea level
(ASL). The imageswere acquired concurrentwithfield data acquisitions
on 28 August 2012 between 11:30 and 13:00, local time.

The images were collected with a visible and near-infrared (VNIR)
micro-hyperspectral imager (Micro-Hyperspec VNIR model, Headwall
Photonics, MA, USA). The sensor was configured in the spectral mode
of 260 bands at 1.85 nm/pixel and 12-bit radiometric resolution and ra-
diometrically calibrated as described in Zarco-Tejada et al. (2013c). The
hyperspectral sensor flown on board a manned platform yielding a
6.4 nm full-width at half-maximum (FWHM) with a 25-micron slit in
the 400–885 nm region and 60 cm pixel size (Fig. 1). Data acquisition
and storage module achieved a 50 fps (frames per second) with 18-
ms integration time. The 8-mm optical focal length lens yielded an in-
stantaneous field of view (IFOV) of 0.93 mrad and an angular field of
view (FOV) of 49.82°. Radiance values were converted to reflectance
using total incoming irradiance measured at the time of image acquisi-
tion. Field measurements were taken with an ASD Field Spectrometer
(FieldSpec Handheld Pro, ASD Inc., CO, USA) with a cosine corrector-
diffuser probe for the 350–1050 nm spectral range at lower resolution
(3 nm FWHM). The ASD Field Spectrometer was first calibrated using
a Spectralon (SRT-99-180, Labsphere, NH, USA) white panel. ASD mea-
surementswere resampled to 6.5 nmbyGaussian convolution tomatch
the irradiance spectra to the spectral resolution of the radiance imagery
acquired by the hyperspectral airborne sensor.

The high resolution hyperspectral imagery (Fig. 1a) acquired over
the oak forest (Fig. 1b) enabled the identification of different scene com-
ponents (Fig. 1c) for field validation purposes. The fluorescence signal
was quantified using the 760-nm O2-A in-filling method based on the
Fraunhofer line depth (FLD) calculated from a total of three bands
(FLD3):

F ¼ Eout � Lin−EinLout
Eout−Ein

ð1Þ

where radiance, L, corresponds to Lin (L761), Lout (average of L747 and
L780 bands), and the irradiance, E, to Ein (E761), and Eout (average of
E747 and E780 bands).

Other vegetation indices mostly related with physiology such as the
Photochemical Reflectance Index (PRI) (Gamon et al., 1992) and the
Red Edge ratio index (RE) (Zarco-Tejada et al., 2001) and with canopy
structure such as the NDVI (Rouse et al., 1974) were also tested in this
study.

The hyperspectral imagery acquired enabled full crown pixels
identification (Fig. 2a) and shaded and sunlit components within each
crown (Fig. 2b). Thus, in order to assess the implications of scene com-
ponents on the SIF signalwhen quantified in large pixels, FLDwas quan-
tified from three different strategies of aggregation (Fig. 2): from only
sunlit pixels within each crown, all pixels from each tree crown (full
crown pixels, including shaded and sunlit pixels) and from aggregated
pixels at 30 × 30 m (including tree crown, bare soil and shadows).
2.3. FluorFLIGHT model

FluorFLIGHT is a 3-D integrated RTM to calculate reflectance and
fluorescence in the observation direction as a function of canopy com-
ponents. It is based on existing theory of radiative transfer by coupling
the leaf fluorescence model FLUSPECT and the 3-D ray-tracing model
FLIGHT to account for canopy heterogeneity. The FluorFLIGHT model
was specifically developed to assess the sensitivity of the fluorescence
signal on heterogeneous forest canopy images.

FLUSPECTmodel is based on the Kubelka-Munk equation and requires
a total of 7 inputs included in Table 2. Six of them are original parameters
from the PROSPECT model (Feret et al., 2008; Jacquemoud and Baret,
1990), i.e., leaf structure parameterN, chlorophyll a+b(Ca+ b) and carot-
enoid (Cc + x) content, water equivalent thickness in cm (Cw), dry matter
content (Cm) and the senescence material (Cs). An additional parameter,
the fluorescence quantum efficiency (Fi), from 0 (no fluorescence) to 0.1
(10% fluorescence), is required to calculate the excitation-fluorescence
matrix for each photosystem (PSI and PSII). For this study, the Fi of PSI
was fixed at one-fifth that of PSII, as the total spectrally integrated flux
of PSII has been reported to be typically fivefold that of PSI (Franck et al.,
2002). The FLUSPECT model generates two excitation-emission fluores-
cencematrices (EEFM) from640 to 850 nmat 1 nm resolution and the re-
flectance and transmittance spectra of a leaf from 400 to 850 nm at 1 nm
resolution. TheEEFMmatrices are separately generated for eachphotosys-
tem for both sides of the leaf -the illuminated and the shaded side of the
leaf-, backward and forward scattering matrices, respectively.

The FLIGHT model is based on Monte Carlo and deterministic
ray tracing techniques to simulate the observed reflectance response
of 3-D vegetation canopies (North, 1996; North et al., 2010). Multiple
scattering within crown boundaries and between the crowns and
other canopy components is modelled to account for canopy heteroge-
neity. It has formed one of a set of six benchmark models for RTM eval-
uation under the RTM Intercomparison (RAMI) project (Widlowski et
al., 2008, 2007). Structural data may be specified as a statistical



Table 2
Nominal values and range of variation used in FluorFLIGHT simulation analysis based on
field data measurements.

Variable Variable
code

Nominal values Range

FLUSPECT
Mesophyll structure N 2.1 –
Chlorophyll content Ca + b

(μg/cm2)
35 10–60

Carotenoid content Cx + c

(μg/cm2)
12 5–20

Water content Cw
(mg/cm2)

0.013 –

Dry matter Cdm

(mg/cm2)
0.024 –

Senescent material Cs 0 0
Fluorescence quantum
efficiency

Fi 0.04 0–0.1

FLIGHT
Solar zenith, view zenith (°) θs, θv 31.3, 0.0 –
Solar azimuth, view
azimuth (°)

Φs, Φv 30.44, 0.0 –

Total LAI 3.15 0–3
Leaf angle distribution LAD[1–9] 0.015, 0.045, 0.074, 0.1,0.123,

0.143, 0.158,0.168, 0.174
Fractional cover (%) FC 70 0–100
Crowns shape CSh Ellipsoid
Crown coordinates, radius,
and centre to top distance

Xi, Yi, Exy,
Ez (m)

6.0, 5.0

Minimum and Maximum
height to first branch (m)

Hmin,
Hmax

4.0, 10.0

Density (trees/ha) D 60 8–400
Soil reflectance ρλsoil ASD measurements
Soil roughness Θsoil 0
Solar irradiance ρλs ASD measurements
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distribution, derived from field measurements or by direct inversion
from lidar data (Bye et al., 2017). FLIGHT calculates directional reflec-
tance by accumulating photon energy in the observation direction as a
function of different forest canopy components defining the canopy
structure (crown shape and size, tree height, position, density and dis-
tribution) (Table 2). The distribution and absorption of light
intercepting the canopy was calculated with a modified version of
FLIGHT including the EEFM contribution to radiance.

In addition, the canopy model requires a soil spectrum, solar irradi-
ance (inputs from Table 2) and the six outputs obtained from the leaf
model: leaf reflectance without fluorescence (ρn), leaf transmittance
without fluorescence (τn), and the backward and forward fluorescence
matrices for each photosystem (MbI, MbII, MfI, MfII).

Within FLIGHT, illumination at a facet such as a leaf is calculated as
the sum of direct and diffuse incoming light. For a facet L with normal
vectorΩL, viewed from vector directionΩm and illuminated from vector
direction Ω0, the surface-leaving radiance contribution to the detector
excluding fluorescence is defined according to the equation:

IL λð Þ ¼ I0 λð ÞγL Ω0→Ωð ÞP0 þ 1
m

∑m
1 Im λð Þ Ωmð ÞγL Ωm→Ωð Þ ð2Þ

where I0 is the direct solar beam illumination radiance at wavelength λ,
and Im denotes a sample of the incoming diffuse field from directionΩm,
andγL is the bi-directional reflectance or transmittance factor for facet L.
P0 has value 1 if there is a direct path to the source illumination, and 0
otherwise.

The non-fluorescent scattering contribution for an individual facet L
at wavelength λ is approximated here using a bi-Lambertian reflec-
tance/transmittance model:

γL ΩL;Ω0→Ω
� �

¼ π−1ρn λð Þ Ω �ΩLj j; if Ω �ΩLð Þ Ω0 �ΩL
� �

b0
π−1τn λð Þ Ω �ΩLj j; if Ω �ΩLð Þ Ω0 �ΩL

� �
N0

( )
ð3Þ
The fluorescence contribution FL is calculated using similar
equations, but using the full fluorescent scattering matrices at leaf
level, sampling direct and diffuse leaf-level incident illumination within
the excitation range 400–750 nm:

FL λð Þ
¼ ∑750

k¼400 I0 kð Þγ F Ω0→Ωð ÞP0 þ 1
m

∑m
1 Im kð Þ Ωmð Þγ F Ωm→Ωð Þ

� � ð4Þ

where

γ F ΩL;Ω0→Ω
� �

¼ π−1Mb k;λ½ � Ω �ΩLj j; if Ω �ΩLð Þ Ω0 �ΩL
� �

b0
π−1Mf k;λ½ � Ω �ΩLj j; if Ω �ΩLð Þ Ω0 �ΩL

� �
N0

( )
ð5Þ

where Mb is the sum of backward scattering matrices for PSI and PSII
contributions, and Mf for forward scattering. Total measured radiance
is calculated as the sum of the reflected light and fluorescent emission
terms. The full evaluation of the fluorescence scattering matrices at
each photon interaction at leaf level allows inclusion of fluorescent
emission in TOC spectra, accounting for 3-D structure, multiple scatter-
ing, and leaf-level light environment. Furthermore, the simulated reflec-
tance at the canopy level accounts for crown overlapping, mutual
shading, and multiple scattering among crowns. Sunlit and shadowed
pixels of the crown are identified based on the scene components
mask derived from the FluorFLIGHT model simulations (Fig. 2c, d).
This makes it possible to understand the contribution of each compo-
nent at different resolutions, particularly important for sensors acquir-
ing data with lower spatial resolutions and therefore, with higher
aggregation effects (Fig. 3). As an example, thefluorescence peak exper-
imentally observed in canopy reflectance and simulated with
FluorFLIGHT can be shown in (Fig. 3a, b).

The model is originally developed at 1 nm FWHM. Nevertheless, for
comparisons against the airborne hyperspectral imagery, the model
simulations are convolved to 6.5 nm FWHM to match the spectral reso-
lution of the radiance imagery acquired by the hyperspectral airborne
sensor. If no convolution is carried, the FWHM of the 1 nm (model) vs
6.5 nm (image) would derive different levels of fluorescence emission.
Accounting for the bandwidth of the imagery enables the comparison
between the fluorescence retrieved from the model and the one re-
trieved from the image at the tree crown level.

2.4. Model simulation approach

The coupled 3-D fluorescence model FluorFLIGHT was used in this
study with two primary objectives: i) the analysis of forest structure
effects on SIF retrievals, and ii) the estimation of SIF for detecting forest
stress from coarse-spatial-resolution imagery by Look-Up Table (LUT-
based) model inversion to account for the canopy architecture.

i) Modelling forest canopy structural effects on fluorescence signal.
ii) Fluorescence retrieval with FluorFLIGHT and hyperspectral data for

detecting forest stress.

FluorFLIGHTwas used to analyse the variation of SIF as a function of
forest structural components. The aim of this analysis was to assess the
influence of scene components on the retrieval of the chlorophyll
fluorescence signal by identifying the key variables determining SIF
variations at different scales. To do this, SIF was quantified using the
760-nm O2-A in-filling method (FLD3) from FluorFLIGHT simulated
data from three different strategies of aggregation (Fig. 2): from only
sunlit pixels within each crown, all pixels from each tree crown and
from aggregated pixels at 30 × 30 m (including tree crown, bare soil
and shadows). This selection was based on the SIF variations found
over different levels of aggregation in both, imagery and simulated
spectra (Fig. 4). Fig. 4 shows the variation in SIF extracted from the



Fig. 3. Example of the spectral radiance extracted from themicro-hyperspectral image (a) and from FluorFLIGHT simulated radiance (L) (b) for different scene components: sunlit crown,
full crown, sunlit soil, shadowed soil and aggregated pixels (30 × 30 m) in the O2-A feature used for fluorescence quantification. Spectral features extracted from Fig. 2.
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original high-resolution airborne hyperspectral image (Fig. 4c) and
froma FluorFLIGHT image (Fig. 4d) as a result of increasing the pixel-ag-
gregation level from sunlit crown pixels to aggregated pixels of
100 × 100 m window.

FluorFLIGHT simulations were calculated for a set of leaf fluores-
cence quantum efficiency (Fi) values and forest structure scenarios.
Leaffluorescence signalwas simulatedwith a varied range of Fi between
0 and 0.1. To cover the full range of canopy structural scenarios, a varied
range of LAI (0–4), FC (0–100%) and density (10–200 trees/ha) were
used to simulate the spectral response at the crown level (Fig. 5a) and
at the aggregated canopy level (Fig. 5b).

The potential of using FluorFLIGHT to predict SIF from spatially ag-
gregated pixels in a heterogeneous oak forest was analysed. For this
purpose, FluorFLIGHT was used in a multi-step LUT-based inversion
scheme (Fig. 6) to retrieve full crown SIF from a complex scene account-
ing for the influence of scene structure and composition. The estimation
of vegetation fluorescence emissionswas assessed from a spatial aggre-
gation of 30 × 30 m, which included variations in crown coverage and
shadows and sunlit proportions. The lack of complex RTMs to simulate
SIF in heterogeneous canopies (Zarco-Tejada et al., 2013b) has
constrained the progress on the fluorescence interpretation in forest
canopies. As shown in Fig. 6, SIF was quantified by inversion based on
the FLD3 estimated from the airborne image using the LUT derived
from FluorFLIGHT. As a prior step, an optimal parameter combination
of N, LAI, Ca + b, and FC was iteratively retrieved. Lastly, SIF retrievals
were then validated based on ground measurements of the physiologi-
cal variables related with the photosynthetic activity of the vegetation
such as DEPS, ψ, and Fs.

The detailed description of the inversion process shown in Fig. 6 is
detailed below.

Step 1. N determination by minimizing the merit function (ΔI):

ΔI
2 ¼ ∑n ρm λið Þ−ρ� λi;Nð Þð Þ2 þ τm λið Þ−τ� λi;Nð Þð Þ2

h i
ð6Þ

where ρm(λi), τm(λi) are the leaf reflectance and transmittance at
wavelength λ measured from the field, and ρ∗and τ∗denote the
modelled ones. A synthetic spectra database was simulated with
FLUSPECT producing 1000 simulations with a set of N random values
(1–4). Input parameterswere set up to simulate the typical range of var-
iation observed in the field Table 2.

Step 2. Green FC determination by minimizing the merit function
(ΔII):

For this purpose, FluorFLIGHTwas used for retrieving an optimal set
of vegetation parameters (FC, LAI and Ca + b) using a LUT-based inver-
sion scheme using aggregated pixels of 30 × 30 m.

ΔII
2 ¼ ∑n vim−vi� Θð Þ½ �2 ð7Þ

where vim is the vegetation index used for the retrieval of each param-
eter calculated from measured canopy reflectance and vi∗(Θ) and from
modelled canopy reflectance for a given set of input parameters Θ. FC
and LAI were retrieved using theNDVI (Rouse et al., 1974);mean values
of the range of possible solutions within the LUT were used since there
is ambiguity between FC and LAI corresponding to a givenVI valuewith-
out additional constraints on allowable structure. Ca + b was retrieved
using the RE (Zarco-Tejada et al., 2001) that showed robustness to shad-
owand structural effects in forest canopies. A synthetic spectra database
was simulated with FluorFLIGHT producing 1000 simulations. Leaf
input parameters were set up to simulate the typical range of variation
observed in the field (Ca + b = 10–80 μg/cm2; Cx + c = 2–18 μg/cm2;
Cw = 0.02; Cdm = 0.01). Leaf level spectra were simulated using N =
2.1 as derived from inversions of leaf-level optical measurements of
field samples estimated above (Step 1). Leaf fluorescence signal was
simulatedwith a varied range of Fi ranging between 0 and 0.1. The nom-
inal inputs used at the leaf level are shown in Table 2.

At the canopy level, forest structure attributes such as tree height,
crown diameter and LAI were randomly varied for different oak-forest
cover structures to generate a range of FC between (0–100%). Table 2
shows the input parameters required by the model and the nominal
variation range for the parameters used for canopy modelling with
FluorFLIGHT. The spectral sampling of the simulations was initially



Fig. 4. Subplots emulating the aggregation effects due to the spatial resolution overlaid onto themicro-hyperspectral imagery acquired at 60 cm resolution (a) and a FluorFLIGHT simulated
image (b), both in color-infrared. F (FLD3) variation based on the hyperspectral image (c) and the simulated image (d) estimated from: sunlit pixels of the crown (SL crown), shadowed
pixels of the crown (SW crown), full crown pixels (crown = SL + SW) and eighteen aggregated pixels from a 5 × 5 m window to a 100 × 100 m window. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Simulated canopy radiance including the effects of fluorescence using the FluorFLIGHTmodel for a varied range of Leaf Area Index (LAI) (0.5–4.5) (a) and fractional cover (FC) (15–
65%) (b). Fluorescence quantum yield efficiency at photosystem level (Fi = 0.06). All other input parameters of the model were set using nominal values included in Table 1.
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Fig. 6. Overview of the processing steps followed in the retrieval of sun-induced fluorescence (SIF) showing the input variables used for the simulations. Inputs description included in
Table 1.

Table 3
Correlation coefficient R between steady-state fluorescence yield (Fs), de-epoxidation
state of the xanthophyll cycle (DEPS) and water potential (ψ) and crown-based spectral
vegetation indices, including structural and physiological vegetation indices.

Functional-related indices Fs DEPS ψ

R R2 R R2 R R2

Fluorescence FLD3 0.79 0.62⁎⁎⁎ −0.67 0.44⁎⁎ 0.71 0.5⁎⁎

Photochemical
reflectance
index

PRI −0.45 0.2 0.65 0.42⁎⁎ −0.51 0.27⁎

Chlorophyll-RE R750/R710 −0.24 0.06 0.13 0.02 −0.22 0.04
Structure-NDVI NDVI −0.16 0.02 0.16 0.03 −0.18 0.03

⁎ Non-significant p N 0.05.
⁎⁎ Significant p b 0.01.
⁎⁎⁎ Highly significant p b 0.001.
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adjusted to 1 nm covering a range for 400 to 1050 nm. Then, simulated
images were resampled to the spectral bandwidth of the hyperspectral
airborne sensor through Gaussian convolution. The inverted values of
FC, LAI and Ca + b were obtained by matching measured and modelled
LUT vi through Eq. (7) and finding the optimal parameter combination
(Leonenko et al., 2013; Prieto-Blanco et al., 2009) and validated against
FC, LAI and Ca + b field measurements.

Step 3. Fluorescence inversion using the inverted FC, LAI andCa+ b as
multi-constraint regularization.

The simulated spectra with FluorFLIGHT were used here to retrieve
SIF using the inverted values of FC, LAI and Ca + b (Step 2) as constraints
in a regularization strategy attending to reduce the influence of struc-
tural canopy variables of the fluorescence signal.

ΔIII
2 ¼ ∑n Fm FLD3ð Þ−F�ðFLD3;ΘÞ½ �2 ð8Þ

where Fm(FLD3),is the FLD3 calculated from measured canopy radiance
and F∗(FLD3,Θ) is the FLD3 calculated from modelled canopy reflectance
for a given set of input parametersΘ. In both cases, radiance spectrawere
extracted from 30 × 30 m aggregated pixels (Fig. 6). The inverted values
of crown FLD3 and leaf Fi were obtained by matching measured and
modelled LUT spectra through Eq. (8) and finding the optimal values.

Finally, model-based retrievals derived from hyperspectral imagery
were compared to ground-truth fluorescence data. Additionally, results
were also compared to other physiological variables collected on the
ground.

3. Results

3.1. Relationships between physiological variables and airborne F (FLD3)

The capability of F (FLD) of discriminating different functional status
of the vegetation was analysed and compared to other vegetation
spectral indices (Table 3). The relationships between F (FLD3) quanti-
fied from full crown vegetation pixels and different physiological vari-
ables (Fs, DEPS, and ψ) were statistically significant (p b 0.01) and
stronger than the relationship with other physiological vegetation indi-
ces such as PRI or RE. Theweakness relationship foundwas between the
physiological variables and the NDVI, a sensitive indicator of canopy
structure.

The high spatial resolution obtained by the hyperspectral imagery
(60 cm resolution) enabled the identification of each scene components
(Fig. 2), enabling the estimation of F (FLD3) from sunlit crowns pixels.
The sunlit-crown F (FLD3) extracted was compared against (DEPS, ψ
and Fs) measured at the tree-level, yielding (r2 = 0.63; p b 0.001)
(Fig. 7a) between sunlit-crown F (FLD3) and ground measured DEPS.
Slightly lower relationships were found by comparing F (FLD3) and ψ
(r2 = 0.57; p b 0.01) (Fig. 7b). Statistically significant relationships
between sunlit-crown F (FLD3) and DEPS and ψ were consistent with
the relationships obtained between leaf Fs and airborne F (FLD3)



Fig. 7.Relationship between de-epoxidation state of the xanthophyll cycle (DEPS) (a) andwater potential (b) against F (FLD3) from sunlit pixel radiance L retrieved from the hyperspectral
image. Relationships between steady-state fluorescence yield (Fs) ground-data measurements of 15 oak trees and airborne-based F (FLD3) retrieved from sunlit pixel radiance (c) and
30 × 30 m aggregated pixels radiance (L) retrieved from the hyperspectral image (d). Trees with higher and lower level of affectation are highlighted within a dashed grey and black
line respectively.
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(r2 = 0.74; p b 0.001) (Fig. 7c). These results indicate that SIF retrieved
from sunlit vegetation radiance of the crowns was a good indicator of
physiological status of the trees within the context of this study.

It was also observed that healthy trees (FPC1) showed higher Fs and
ψ and lower DEPS while affected trees (FPC3) showed the opposite,
with moderate level of affectation (FPC2) in between. These results
showed that sunlit-crown F (FLD3) was also sensitive to the stress
levels, tracking the physiological change forced by forest decline
processes.

Additionally, the F (FLD3) was calculated from spectra extracted
from aggregated pixels from a 30 × 30 m window using as central
point the location of each tree. The SIF signal retrieved from aggregated
pixels was lower than that extracted from sunlit crown pixels with F
(FLD3) values ranged between (1.9–4.9 and 2.5–8) Wm−2 μm−1 sr−1

respectively (Fig. 7c, d). As it is shown in Fig. 7d, the sensitivity to Fs
ground-data was lower with F (FLD3) retrieved from aggregated
radiance pixels, yielding a (r2 = 0.25; statistically non-significant).
These results demonstrates the expected effect caused by the canopy
architecture on SIF retrieved from mixed pixels, and therefore, the
need of modelling those effects while using coarse-spatial resolution
images.
3.2. Modelling forest structural effects on SIF at the canopy level

The sensitivity of the fluorescence signal to the variation in canopy
structural components based on the relationships between crown SIF
and SIF from 30 × 30 m aggregated pixels is presented in Fig. 8. F
(FLD3) was retrieved for a range of LAI, tree density and percentage of
FC values showing the influence of scene components on fluorescence
signal from full crowns (Fig. 8a) and aggregated pixels (Fig. 8b).

The sensitivity of SIF to variations in forest canopy structure is higher
at lower values of LAI and FC, especiallywith aggregated pixels (Fig. 8b).
According to these results, SIF signal variations at the crown and canopy
level can only be directly linked to variations in photosynthetic activity
when structural parameters remain constant (Fig. 8). Only in this case, F
(FLD3) increased as the Fi input parameters increased.

Additionally, FluorFLIGHT simulations were used to develop rela-
tionships between sunlit crown pixels, crown pixels and aggregated
pixels as a function of FC and LAI. As shown in Fig. 9, LAI and FC were
varied to generate a range between 1 and 4 and 10–100%, respectively.

The simulated SIFwas calculated using the FLDmethod for the spec-
tral radiance extracted from sunlit crowns and then compared to differ-
ent components of the scene such as full crown (Fig. 9a) and aggregated
pixels of the scene (Fig. 9b). Modelling results show that the SIF signal
retrieved from exposed crown and full crown pixels is higher than for
aggregated pixels. The differences are even significant between the SIF
signal retrieved from sunlit pixels and full crown pixels (Fig. 9a) with
slightly higher values for exposed crowns. The results of quantifying
SIF from 30 × 30 m aggregated pixels as a function of LAI (Fig.9a) and
FC (Fig. 9b) show the large effects of both parameters of the fluores-
cence quantification. The contribution of a small percentage of sparse
grass component on the soil reflectance measured from ground mea-
surements hindered F (FLD3) to reach values slightly above zero.

Additionally, (Fig. 10) shows the impact on SIF retrieval through the
FLD3 method when it is retrieved from different levels of aggregation
(sunlit crown pixels, full crown pixels and aggregated pixels) for a
varied range of Fi, LAI and FC. Comparing the results obtained for the



Fig. 8. Effects of forest structural variables on simulated canopy fluorescence (FLD3) as a function of LAI (0–5) at the crown level (a) and fractional cover FC (10–90%) at the canopy level
(b). All other input parameters of the model were set using nominal values included in Table 1.
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different levels of aggregation, changes in aggregated pixels caused
highest uncertainties in retrieved F (FLD3), followed by full crown
pixels and shaded pixels. In contrast, LAI variations exerted a small var-
iation in F (FLD3) retrieved from sunlit pixels. The SIF signal retrieved
from sunlit crowns ranged between 0 and 8Wm−2 μm−1 sr−1, decreas-
ing the maximum range with the level of aggregation to 5.2, 3.6 and
1 Wm−2 μm−1 sr−1 for full crown, aggregated pixels and shaded
crowns, respectively. Moreover, the SIF signal retrieved from aggregat-
ed pixels was less sensitive to Fi variation than the SIF signal retrieved
from sunlit pixels. SIF signal in shaded crown pixels had minimal sensi-
tivity to Fi variations.

FluorFLIGHT model simulations obtained using a random synthetic
data set of values within the typical range of variation observed in the
field (Table 2) are shown in Fig. 11. F (FLD3) calculated from aggregated
radiance pixels wasweakly related to Fi due to the large variability in FC
percentages and LAI within simulations (Fig. 11a). A cross-comparison
of simulation results generated from different levels of aggregation
shows that the retrieval offluorescence improved usingfluorescence ra-
diance data from full crown pixels (r2= 0.75; p b 0.001) and improving
even more when sunlit crown pixels were used to calculate SIF (r2 =
0.91; p b 0.001) (Fig. 11b, c). This result was caused by the increase of
the effects of vegetation structure and percentages of soil and shadows
in aggregated pixels. The SIF signal retrieved from sunlit crown pixels is
less affected by such effects, increasing its sensitivity to leaffluorescence
quantum efficiency.
Fig. 9. Relationships between FluorFLIGHT simulations of canopy L obtained from sunlit crown
simulations of crown L obtained from sunlit crowns and aggregated pixels as a function of FC (
The sensitivity of SIF signal retrieved from sunlit crownswas further
analysed to determine the impact of using FWHM spectral resolution
lower than 1 nm. FluorFLIGHT simulations in Fig. 11c, d show the results
of estimating SIF signal with FLD3 in-filling method against the fluores-
cence simulated at 1 nm resolution and 6.5 nm resolution (as a proxy of
the spectral resolution of the micro-hyperspectral imager used in this
study). SIF signal retrieved at 6.5 nm and 1 nmhad relatively similar ac-
curacies, yielding r2 = 0.90 (for 6.5 nm data) and r2 = 0.97 (for 1 nm
data).

Therefore, the forest structure and composition were shown to play
themajor role in retrieved SIF due to the confounding effects caused on
aggregated pixels, with much less effect caused by the spectral
bandwidth.

These modelling results demonstrate the difficulties of interpreting
SIF from coarse resolution images where each aggregated pixel includes
a large variety of percentages of sunlit and shaded vegetation and soil.
The effect of the illumination condition of the crowns corroborates the
need to separate the two crown factions as is shown with high resolu-
tion SIF maps (Fig. 12).

Accounting for variations in those percentages, FluorFLIGHT was
then used to retrieve SIF from 30x30m aggregated pixels. The estima-
tion of leaf Fi and crown F (FLD3) through FluorFLIGHTmodel inversion
is shown in (Fig. 13).

Fig. 13a shows the relationship between Fs ground-data and the SIF
signal retrieved by inversion using FluorFLIGHT through the FLD3
pixels and full crowns as a function of LAI (1–4) (a). Relationships between FluorFLIGHT
10–90%) (b).



Fig. 10.Comparison of FluorFLIGHTmodel-basedfluorescence quantumefficiency (Fi) and
F (FLD3) retrieved from shaded and sunlit crown pixels, full crown pixels and aggregated
pixels as a function of LAI (0–4) and FC (0–100%).

Fig. 11. Relationships between the simulated FluorFLIGHT fluorescence quantum efficiency ret
(a), full crown pixels (b) and sunlit crown pixels at 6.5 nm (c) and at 1 nm (d). LAI (0–4) and FC
in Table 1.
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method from aggregated pixels (30 × 30m). According to these results,
pixel aggregation affected the accuracy in SIF retrieval (r2=0.42)when
pixel aggregationwas not considered. The retrieval accuracy was signif-
icantly improved when accounting for the effects of scene components
and FC (r2 = 0.70). When the Fi was retrieved from FluorFLIGHT ac-
counting for the percentage cover within each pixel, the relationship
with Fs ground-data measurements were significantly related (r2 =
0.79, Fig. 13b). These results are consistent with the relationship
found between Fi and the airborne-based F (FLD3) retrieved fromaggre-
gated pixels and sunlit pixels (Fig. 11a, c). Fig.14 shows the outputmaps
after the inversion approach applied at the crown level. The map shows
the spatial variability of fluorescence estimates within the oak forest
based on the F (FLD3) and the Fi inverted from FluorFLIGHT (Fig. 14).
The spatial distribution of fluorescence agrees with the spatial pattern
of Phytophthora infections showing different susceptibility levels from
trees nearby.
4. Discussion

The consistent relationship between the fluorescence signal SIF
retrieved from imagery and physiological variables (see Fig. 7) supports
the hypothesis that SIF signal is a good indicator of the physiological sta-
tus of the trees. Although similar observations have been made within
rieved (FLD3 method) from synthetic spectra retrieved from 30 × 30 m aggregated pixels
(40–60%). All other input parameters of themodel were set using nominal values included



Fig. 12. (a) Sunlit and shadowed component identification of the crown on the micro-hyperspectral imagery. (b) SIF map showing different values between sunlit and shaded crown F
(FLD3).
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other species e.g., for coastal shrubs (Naumann et al., 2008); for
vineyards and orange trees (Zarco-Tejada et al., 2013a and Zarco-
Tejada et al., 2016), this is the first attempt showing a consistent rela-
tionship between SIF calculated using the FLD3 method from image
pixels and physiological variables such as DEPS, Fs orΨ across different
functional forest health conditions (FPC 1, 2 and 3). In this particular
case, SIF was demonstrated to be a good indicator of the susceptibility
of oak species to damage associated with root pathogen on water
Fig. 13. Relationships between Fs ground-data measurements and fluorescence estimations
aggregation (30 × 30 m aggregated pixels) and accounting for pixel aggregation (full c
measurements and fluorescence quantum yield estimated with FluorFLIGHT (b).
relations. Other physiological vegetation indices such as PRI should be
also further explored and potentially applied in combination with SIF.
Stress-induced damage in oaks is related with an increase in Ψ (abso-
lute values), an increase in the deposition of xanthophylls and a decline
in the chlorophyll fluorescence emission (Fig. 7). These results are
promising because the early detection of the decline in the physiological
condition of the trees is essential to successfully control and manage
threatened forests.
retrievals using FluorFLIGHT applied to aggregated pixels without accounting for pixel
rown pixels) with FluorFLIGHT (a) Leaf level relationship between Fs ground-data



Fig. 14. Fi retrieval at the crown level estimated from the 60-cm hyperspectral image using the fluorescence in-filling method F (FLD3) within the oak forest.
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A major benefit of using a 60-cm hyperspectral image is that it en-
ables identification of the fluorescence signal emitted by the different
components of the canopy. When comparing the relationship between
the ground-based Fs against the SIF extracted from sunlit crown and
30× 30maggregated image pixels (r2=0.74 and r2=0.25, respective-
ly), we observe a significant decrease in the coefficient of determination
when using coarse pixel radiance. The slope of the SIF extracted from
sunlit crowns is greater than for 30 × 30 m aggregated pixels, showing
therefore a greater rate of change, probably increased by the reduced ef-
fects of the background in vegetation sunlit pixels. The sensitivity of re-
motely measured SIF to pixel aggregations is mainly produced by the
natural variations in canopy structure and chlorophyll concentration
of a heterogeneous canopy (Verrelst et al., 2016; Zarco-Tejada et al.,
2013b). The variation in SIF showed changes as a function of the pixel
aggregation level with the highest value yielded with aggregated pixels
from the sunlit part of the crown. SIF retrieved from aggregated resolu-
tions with a higher percentage of shadows (SW crown) and soil yielded
lower values. Beyond a spatial resolution of 25 × 25m, where the num-
ber of soil pixels is twice as large as the crown, the aggregation level no
longer exerted any influence on F (FLD3). F (FLD3) derived from simu-
lated data and from the hyperspectral image show similar effects: the
highest F (FLD3) values corresponded to sunlit crown pixels, and were
approximately 25% higher than F (FLD3) extracted from full crown
pixels (simulated images) and 32% higher (hyperspectral images).
Shaded crowns dramatically reduced the simulated fluorescence,
being 66% lower than F (FLD3) values from sunlit crowns. Shaded
crowns had a large effect on the radiance signal derived from
hyperspectral images by reducing up to 47% the F (FLD3) values as com-
pared to the sunlit part of the crown. Both, FluorFLIGHT-based F (FLD3)
and hyperspectral image-based F (FLD3) were significantly reduced
with the increase in pixel aggregation level. These results demonstrate
the difficulty of quantifying the fluorescence signal using aggregated
pixels beyond the crown scale in heterogeneous canopies.

Zarco-Tejada et al. (2013b) investigated the possibility of estimating
full crown fluorescence from aggregated pixels. Such efforts addressed
the effect of canopy structure of the SIF signal, raising important ques-
tions about the need to develop new models to simulate SIF from het-
erogeneous canopies. The main limitation of their study was the use of
the coupled FluorMODleaf + FluorSAIL accounting for the geometry
through FLIM, which did not take into account scene components
such as crown overlapping or illumination conditionswithin the canopy
in the simulations. The FluorFLIGHT model used in this study is a 3-D
RTM that allowed the study of the effects caused by the canopy struc-
ture, including sunlit and shaded proportions of the crowns and back-
ground effects on the retrieval of fluorescence signal from mixed
pixels. The experimental and modelling results demonstrated that the
estimation of SIF from sunlit crown pixel radiance is a critical issue af-
fecting the estimation accuracy as the mixture with shaded and back-
ground pixels increases.
In order to provide a proper interpretation of SIF signal retrieved at
global scales it is crucial to decouple the fluorescence signal produced
by the photosynthetic activity and the confounding effects produced
by the canopy structure and multiple scattering (Damm et al., 2014;
Verrelst et al., 2015). The FluorFLIGHT simulation analysis presented
here suggests that the canopy structure and compositionmay affect sig-
nificantly the quantification of SIF from coarse resolutions at global
scale. These results confirm some recent efforts done by other authors
in order to provide insights into the key variables that drive SIF from
vegetation canopies using RTM approaches within the SCOPE model
(Verrelst et al., 2016). However, multiple scattering effects within the
canopy cannot be addressed with the 1-D RTM SCOPE. Additionally,
FluorFLIGHT used here also investigated the effect of scene components
such as the percentage of vegetation or the illumination condition on
the interpretation of fluorescence signal retrieved from forest heteroge-
neous canopies. The proportion of sunlit green vegetation absorbs more
light and hence produce a higher SIF intensity (Genty et al., 1989)which
explains the higher values in SIF retrieval on sunlit crowns using the
FLD3 method. These results were demonstrated here through both the
model simulation approach and experimental data.

Another important issue that requires attention is the potential ef-
fect of the spectral resolution on the retrieval of fluorescence, which
has been questioned by some authors (Damm et al., 2014). To raising
awareness on this issue, the spectral resolution of the hyperspectral
sensor used in this study (6.5 nm) was also analysed. Both, experimen-
tal and simulation analysis demonstrated that the retrieval of fluores-
cence is feasible with such spectral resolution. SIF accuracy retrievals
are only slightly diminished by using a spectral resolution of 6.5 nm
comparedwith the effect produced by other factors such as forest struc-
ture and density. The expected deviation between absolute SIF values
retrieved at 1 nm and with 6.5 nm FWHM (with high sampling inter-
vals) do not likely affect the conclusions obtained in studies such as
this one, which focuses in fluorescence retrievals for stress detection
purposes rather than the absolute quantification of SIF values. In these
studies, the variation of fluorescence in relative terms enables the as-
sessment of early stress related to disease severity levels and forest de-
cline variability.

Besides the intrinsic factors that modulate the SIF at the canopy
level, the pixel aggregation used affects the estimated intensity. In par-
ticular, the accuracy of SIF retrieved from aggregated pixels beyond the
crown level is uncertain because the pixel mixturemay include the con-
founding effects of shaded pixels and background soil, decreasing the
absorption in the O2\\B band, and therefore, the overall magnitude of
the F-signal. A more refined 3-D canopy model including physiological,
aerodynamic and geometry variableswould be needed to better analyse
thephysiological regulation of thefluorescence yield as a function ofmi-
crometeorological drivers. Nevertheless, the results of the present study
showed a strong improvement in the retrieval of SIF at the leaf level
from coarse resolution pixels based on the inversion of FluorFLIGHT
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accounting for structural variables (r2 = 0.70) compared to the results
obtained ignoring those effects (r2 = 0.42).

Therefore, these results suggest that the use of a 3-D RTM, such as
FluorFLIGHT, may improve the estimation of SIF at global scales. SIF es-
timation at the crown level becomes particularly critical with invasive
plant pathogens affecting individual trees alternately and selectively
within the forest canopy. This is the case of sudden oak death disease
progression at local and spatial scales (Ramage et al., 2012). Local patch-
iness in disease presence/severity can be clearly observed with the high
local variability of the Fi inversion map estimated at the oak site. Hence,
mapping fluorescence emission based on FluorFLIGHT model inversion
approaches sets a new standard in the early detection of stress effects
towards precision forestry. The early detection of hotspot locations
(focus of infection or decline) might help to combat forest decline pro-
cesses, and in case of Phytophthora infections, prevent the spread of the
infection.

These results are of particular interest for the FLEX mission, ap-
proved as ESA's Earth Explorer 8 (Drusch et al., 2016), which will with
providefluorescence emission atfiner spatial scale than currently possi-
ble, and potential to resolve full fluorescence emission spectrum with
further information on stress attribution (Ač et al., 2015; Cogliati et al.,
2015). There are still many challenges for measurement of SIF from
space; further validation studies need to be undertaken to assessmodel-
ling results and the effect of environmental stress factors on ecophysio-
logical traits and forest productivity. Another important issue that
requires attention is the potential application of thesemethods to differ-
ent forest types increasingly complex in terms of structure and tree spe-
cies composition. The canopy structure and spatial heterogeneity of the
open-and-sparse oakwoodland studied heremay have a different effect
on global SIF estimates to other types of land covers:with higher canopy
density (closed forest canopies), with higher heterogeneity in species
and/or soil composition or higher vertical heterogeneity within forest
canopies.

It is important to highlight the difficulties of validating the estima-
tion of SIF from spaceborne sensors over forest canopies, which encom-
pass challenging experimental field campaigns and sampling
conditions. The use of very high resolution airbornehyperspectral imag-
ery as used in this and similar studies may be valuable. More studies
supporting the validation of SIF are foreseen to improve our under-
standing in the link between SIF and photosynthetic activity with a
greater degree of confidence. SIF retrievals using FluorFLIGHT should
be further validated for different types of canopies and physiological
conditions for monitoring forest decline processes.

5. Conclusions

Measuring SIF remotely is potentially a valuable tool to track the
health and productivity of forest but also brings important challenges.
This study gives the first 3-D model of canopy fluorescence, combined
with an original field campaign aimed at quantifying the link between
canopy physiology and detection at scales suitable for satellite remote
sensing. The results show a link between physiologically based indica-
tors and SIF retrieval from hyperspectral remote sensing for an oak for-
est affected by root pathogen infections and water stress.

Model estimations against in-situ measurements conducted over
the oak forest demonstrated significant utility of SIF for precision phys-
iological condition characterization. The FluorFLIGHT model enabled
the estimation of sunlit vegetation fluorescence from coarse pixels
(r2 = 0.79, p b 0.01) accounting for the large effects produced by the
FC and canopy structure. The model inversion approach at three steps,
which progressively approximates the observed canopy structure het-
erogeneity from the study sites, showed improvements in the estima-
tion of leaf-based fluorescence measurement.

The results presented in this study demonstrated the fluorescence
signal retrieved frommixed pixels is significantly affected by the effects
caused by the illumination condition and the structural component of
the canopy (r2=0.42). Those effects are intrinsic to all radiance spectral
retrieved from aggregated pixels irrespective of the sample size, but get
increasingly critical with increasing levels of aggregation (pixel size). In
particular, the SIF signal was significantly lower when retrieved from
coarse pixels (lower than 10 × 10 m resolution) than from sunlit pixel
crowns (b50%). Fluorescence retrieval using FluorFLIGHT and account-
ing for pixel aggregation minimized the impact of the canopy structure
and other scene components improving the accuracy of the estimations
(r2 = 0.70).
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