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Abstract
This paper presents a novel methodology for identifying homogeneous areas within high-
frequency drip-irrigated orchards and for defining the most sensitive and resistant areas 
of the field to water stress. The methodology proposed here is based on the assessment of 
water status at the tree level during mild water stress using remote sensing derived indi-
cators which provide valuable information about the spatial distribution of the response 
to water stress within an orchard. The areas more resistant to water stress will maintain 
a good water status, while those prone to water stress will develop initial symptoms of 
water deficit. The study was performed over three different peach orchards that were evalu-
ated from 2 to 3 years. Water status was monitored using high-resolution thermal imagery 
acquired before and after the onset of water stress. The Thermal Sensitivity Index (TSI), 
derived from the difference of the CWSI and the cumulated reference evapotranspiration 
between the two dates, demonstrated to be well related to the increase of stem water poten-
tial. The spatial distribution of TSI enables the identification of sensitive areas within a 
peach orchard, a first step for establishing precision drip irrigation programs.
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Introduction

Agricultural fields are naturally heterogeneous and this variability is often related to soil 
properties, mainly variations in slope, texture, depth and mineral composition (Camp and 
Sadler 1998). These factors are static or relatively stable from year to year, and have been 
used in the past to delineate management zones, or at least, to identify homogeneous areas 
within fields (Schepers et al. 2004; Bazzi et al. 2019). The identification of these manage-
ment units is particularly relevant for the optimized use of external inputs and for irrigation 
purposes. Considering the current situation of water availability and future climate change 
scenarios, it is essential to identify strategies to save water while maintaining crop produc-
tivity by the efficient use of water through improved management and advanced irrigation 
technologies. Deficit irrigation strategies, irrigation technologies to reduce the leaching 
and water losses, and precision irrigation are examples of the available techniques that can 
be implemented to increase water use efficiency.

A preliminary understanding of the field heterogeneity is essential for applying these 
strategies. This assessment is critical for the definition of management zones, defined as 
sub-areas with a relative homogeneity in crop production potential, due to similar soil 
nutrients and environmental effects caused by similar landscape or soil conditions (Yan 
et al. 2007). Therefore, this concept is strongly connected to soil properties. Focusing on 
soil properties to delineate homogeneous areas in the field is challenging. Physical proper-
ties such as slope and orientation are now relatively easy to monitor by the use of digital 
elevation models (DEM). However, monitoring some other properties, such as soil depth 
and mineral composition, is labor- and time-consuming. Additionally, there are other 
sources of variability that increase the differences in crop output and/or yield. Some of 
these factors are dynamic and may change along the crop cycle, such as water and nutrients 
availability or crop health (Hsiao et  al. 1976). The complexity of monitoring field vari-
ability from soil properties can be overcome by developing a methodology based on crop 
performance. Crop growth and development is affected by soil texture, chemical proper-
ties, as well as nutrient and water availability. Therefore, the development of a plant-based 
methodology would provide an easy and accurate approach for characterizing the overall 
effect of field heterogeneity on crop performance, which is the final objective of agricul-
tural practices.

The identification of those areas most sensitive to water stress within a field might be of 
special interest for several reasons, such as the optimization of the irrigation system design 
(Gonzalez-Dugo et al. 2015) and the selection of optimum field locations for the installa-
tion of soil and plant sensors (Bazzi et al. 2019). Based on the strategic decision adopted 
by the grower according to economic and agronomical aspects, sensors might be installed 
in average areas (that will provide information of the mean crop water status in the field), 
or it can be installed in those areas that are most sensitive to water stress (that will provide 
an early warning about water shortage).

Finally, this information can be helpful in precision irrigation strategies, where the 
grower has the ability to irrigate the field according to local water requirements. Variable 
rate irrigation (VRI) systems, such as pivots or lateral move irrigation machines, provide 
such flexibility of delivering water in a variable rate, according to local demand. These 
systems require detailed information about crop water needs in order to optimize its use. 
The combination of management zone maps and VRI systems has been demonstrated 
to be very effective at delivering site-specific water application (Dukes and Perry 2006; 
O’Shaughnessy et al. 2015).



Precision Agriculture 

1 3

Remote sensing (RS) methods appear as a suitable alternative to the use of ground-sen-
sors for identifying homogeneous zones. High-resolution RS enables the assessment of water 
status and crop performance over large areas, with sufficient resolution to identify individ-
ual trees in the field. The close relationship between canopy transpiration and surface tem-
perature allows using thermal imagery to derive crop water status (Jones et al. 2002; Ben-Gal 
et  al. 2009; Ramírez-Cuesta et  al. 2017), to monitor irrigation requirements (Bellvert et  al. 
2016) and to identify areas sensitive to water stress under low-frequency irrigation systems 
(Gonzalez-Dugo et al. 2015). In order to use canopy temperature as a water status indicator, it 
has to be normalized to account for the environmental conditions (Agam et al. 2013; Conesa 
et al. 2019). The normalization is often carried out by the development of indices, such as the 
Crop Water Stress Index (CWSI; Idso et al. 1981), which is the most commonly used indicator 
derived from canopy temperature.

Previous studies have used plant-derived information to delineate management zones. 
McClymont et al. (2012) developed a methodology for delineating homogeneous subzones in 
vineyards based on the assessment of NDVI and canopy temperature at a specific time. Cohen 
et al. (2017) highlighted the need for a dynamic definition of irrigation management zones 
based on thermal images by showing the in-season spatial changes in water status. Promising 
results have been obtained also in variable rate irrigation systems by using dynamic prescrip-
tion maps derived from thermal information (O’Shaughnessy et al., 2015). These maps pro-
vided valuable information for scheduling irrigation with no losses in crop yield when com-
pared to soil moisture-based irrigation scheduling methods. In orchard trees, such a dynamic 
approach over large areas requires multiple high-resolution aerial imagery acquisitions, which 
can be expensive and labor-consuming. On the other hand, the static approach depends on 
the instantaneous water status and may not capture all the variability of water status as water 
stress is imposed. Additionally, a static CWSI has some drawbacks that require special atten-
tion such as the definition of upper and lower baselines for a proper CWSI calculation. These 
thresholds can be dependent on the crop variety, the crop load, and the leaf age, among other 
factors (Gonzalez-Dugo et al. 2014). Thus, it would be desirable to develop a methodology to 
capture dynamic variations of water status while minimizing the requirements of aerial acqui-
sitions and the specifications of the indicator used to monitor water stress. Gonzalez-Dugo 
et al. (2015) developed a CWSI-based methodology that enables the identification of the most 
sensitive areas to water stress within a pistachio orchard under low-frequency irrigation. Nev-
ertheless, such a methodology cannot be used under a high-frequency irrigation scheme, as it 
is based on normalizing CWSI with the number of days since last irrigation. Depending on 
the soil properties and soil water reserves, water stress in drip irrigated fields would appear at 
a very slow rate, making the use of such a method unreliable. Therefore, such methodology 
needs to be adapted to daily irrigated fields.

The objective of this work is to develop a RS-based methodology derived from thermal 
imagery for identifying homogeneous areas within agricultural fields and for defining the most 
sensitive and resistant areas to water stress. The identification of such areas is of special inter-
est when a limited number of sensors are planned to be deployed in the field as well as for 
precision irrigation purposes.
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Materials and methods

The methodology proposed with the aim of identifying the sensitive area prone to water 
stress consisted of developing a mild water stress throughout the orchard, based on the rate 
of change of water status between two dates, before and after a period of irrigation with-
holding. The main hypothesis is that the areas more resistant to water stress will maintain 
a good water status, while those prone to water stress will develop initial symptoms of 
water deficiency at an earlier stage. To compute this, the entire orchard must be under well-
watered conditions at the beginning of the experiment, and for a short period, irrigation 
must be withheld, in order to develop the required mild water stress condition.

Study site description

The experiment was performed in three study sites: (i) a peach orchard (Prunus persica 
var. Amandine) of 3.4 ha planted in 2013 (hereafter Amandine; Fig. 1); (ii) a peach orchard 
(Prunus persica var. Nazario and Prunus persica var. Plawhite5) of 6.4 ha planted in 2005 
(Plawhite5) and 2009 (Nazario) (hereafter Nazario; Fig. 1); and (iii) a flat peach orchard 
(Prunus persica var. Carioca) of 6.7 ha planted in 2010 (hereafter Carioca; Fig. 1). All sites 

Fig. 1  Aerial image and location of the three experimental sites used in the study. The area of study is 
located in southern Spain in the region of Murcia (38°06′N, 1°12′W)
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are drip irrigated with two irrigation lines resulting in a total density of 12 drippers of 1.6 l 
 h−1 per tree. The row and plant spacing for the three sites were 5 and 3.5 m, respectively.

Fields were subjected to cycles of mild water stress, three cycles for Amandine field 
(2016–2018) and two for Carioca and Nazario (2017–2018). These cycles consisted on 
maintaining the trees in a good water status, inducing water stress by the lack of irrigation 
during a period of several days (from 3 to 6 days; Table 1). These cycles were applied at 
the post-harvest period, which is considered as a period less sensitive to water shortage. 
Indeed, it is suggested as a suitable phase to apply regulated deficit irrigation in early-
maturing cultivars, such as those selected for this study (Johnson et al. 1992; Girona and 
Fereres 2012).

Field measurements

Prior to the application of the cycles of mild water stress, irrigation uniformity was meas-
ured in order to ensure that the obtained results were not influenced by large differences in 
dripper water application.

Additionally, stem water potential (Ψs) was measured when trees were well-irrigated 
(Date 1 in Table 1) and after inducing water stress (Date 2). Ψs was measured at midday by 
means of a pressure chamber (Model 600, PMS Instrument Company, Albany, OR, USA) 
on west side-oriented and non-transpiring leaves previously bagged in hermetic plastic 
bags covered with aluminum foil for at least 1 hour before measurements. The number of 
Ψs measurements is indicated in Table 1.

Airborne imagery

In order to analyze the spatial variability of water status throughout the orchard, two aerial 
observations per year were conducted. The airborne operations were carried out on July-
August of 2016–2018 (Table 1), corresponding with Date 1 and Date 2 (Table 1).

Flights were performed on the solar plane (i.e., with the sun on the tail plane) to 
avoid solar bi-directional effects across the image, using a thermal camera and a micro-
hyperspectral imager installed in tandem on a Cessna aircraft operated by the Labo-
ratory for Research Methods in Quantitative Remote Sensing (QuantaLab), Consejo 
Superior de Investigaciones Científicas (IAS-CSIC, Spain). The thermal imagery was 
acquired in the 7.5–13 µm range with the FLIR SC655 thermal camera (FLIR Systems, 
Wilsonville, OR, USA). The camera yields a resolution of 640 × 480 pixels equipped 

Table 1  Summary of the study 
sites, the start and end of the 
irrigation withholding period 
and the number of stem water 
potential (Ψs) measurements 
performed

a The indicated number corresponds to the measurements performed at 
each date

Site Year Date 1 Date 2 N (Ψs)a

Amandine 2016 1 August 4 August 245
2017 18 July 24 July 78
2018 2 July 6 July 75

Carioca 2017 18 July 24 July 175
2018 2 July 6 July 75

Nazario 2017 18 July 24 July 147
2018 2 July 6 July 75
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with a 13.1  mm optical focal length, providing an angular FOV of 45° and a ground 
resolution of 25 cm when flying at 200 m above ground level (AGL). The camera’s radi-
ometric calibration was assessed in the laboratory using a blackbody (model P80P, Land 
Instruments, Dronfield, United Kingdom). After each flight, thermal images were pro-
cessed in the laboratory and mosaicked to generate the entire scene of surface tempera-
ture. The linear-array hyperspectral camera used in this study was the micro-hyperspec 
VNIR model (Headwall Photonics, Fitchburg, MA, USA) operated with a configuration 
of 260 spectral bands acquired at 1.85 nm pixel-1 and 12-bit radiometric resolution in 
the 400–885  nm region, yielding a 6.4  nm FWHM with a 25-micron slit and 20  cm 
resolution at the indicated flight altitude. For more information about camera settings 
and configuration, see Zarco-Tejada et al. (2012). The micro-hyperspectral sensor was 
radiometrically calibrated in the laboratory using an integrating sphere (LabSphere, 
North Sutton, NH, USA) at four levels of illumination and six integration times. The 
integrating sphere is an optical component consisting of a hollow spherical cavity with 
its interior covered with a diffuse white reflective coating, with small holes for entrance 
and exit ports providing calibrated radiance levels.

Image processing

Once the imagery was mosaicked, regions of interest were determined to identify pure veg-
etation pixels and to extract the canopy temperature and reflectance from each individual 
tree crown, as was described in Gonzalez-Dugo et al. (2019). Trees were identified using 
a fishnet methodology that created a mesh that was applied in all flights to get the same 
ID for each tree. Finally, CWSI and NDVI for the individual trees were computed for each 
date from thermal and hyperspectral data, respectively.

The mean value for each tree was used to calculate spectral indices (as described in 
“Crop water status assessment” section and “Development of the index” section). These 
values were interpolated by krigging to derive the maps using the software  ArcMap® 
(v10.5; Esri, Redlands, CA, USA).

Crop water status assessment

The CWSI was used to assess the crop water status and its temporal evolution, which is 
computed using the following equation:

where  Tc − Ta is the temperature difference between the canopy  (Tc) and the air  (Ta); and 
the subscripts LL and UL indicate the lower and upper limits, corresponding with non-
water stressed trees and non-transpiring trees, respectively. The lower limit was determined 
according to the non-water stress baseline (NWSB) developed by Berni et al. (2009). The 
upper limit was calculated using the methodology proposed by Idso et al. (1981) and cor-
responds with the intercept of the NWSB modified by the difference in vapor pressure 
induced by the  Tc  −  Ta value. This index varies from 0 for non-stressed crops, to 1 for 
severely affected trees.
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Development of the index

The new index developed here allows computing the increase of water stress after a mild 
water shortage. This index will serve as a basis to assess the sensitivity of any given area 
of the field to water stress, based on the increase of the CWSI for each tree from Date 1 to 
Date 2 (CWSI2 − CWSI1). But other aspects affecting the increase of CWSI between the 
two dates must also be taken into account. Under theoretical well-watered conditions, the 
CWSI on day 1 is expected to be equal to 0 throughout the orchard. But the natural vari-
ability that usually occurs in the field often results in a gradient of CWSI. For this reason, 
the term (1 − CWSI1) is proposed to be included into the definition of the index.

The climatic conditions occurring between the two dates must also be considered, as the 
rate of increase of CWSI will depend on the evaporative demand during the water short-
age period. The cumulated reference evapotranspiration (ΣETo) was used to compute the 
environmental conditions during the experiments. The climatic data were obtained from 
a meteorological station from the SIAM network (http://siam.imida .es), located at 1  km 
distance from the study area.

Taking these issues into account, the final formulation for the proposed index is as fol-
lows (Eq. 2):

This index has been named as Thermal Sensitivity Index (TSI;  mm−1), being subscripts 
1 and 2 the values for the first and second day of data acquisition, respectively.

Statistical analysis

The CWSI–Ψs data were randomly split into two parts, containing 75% of the observa-
tions (training dataset) and the remaining 25% as the testing dataset. The training dataset 
was used to build the models relating the CWSI-based formulations and the rate of change 
of water potential, while the independent testing dataset was used to test the models. The 
model performance was evaluated using the root mean square error (RMSE), the relative 
root mean square error (RMSEr), the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE).

Clusters of high and low values (hot spots) detected in the maps derived from the TSI 
were identified using the Getis-Ord Gi* statistics in ArcMap 10.1 (spatial statistic tools). 
This tool evaluates each feature within the context of neighboring features. A feature with 
a high value is interesting but may not be a statistically significant hot spot. To be a statisti-
cally significant hot spot, a feature will need to have a high value but also be surrounded by 
other features with high values as well. This tool was used to identify such areas sensitive 
and resistant to water stress.

(2)TSI =
(CWSI

2
− CWSI

1
)
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Results

Plant water status

Stem water potential

Figure 2 shows the average values of Ψs measured in all study sites for both well-irrigated 
and water-stressed conditions (Date 1 and Date 2 in Fig. 2, respectively). Initial Ψs values 
(Date 1) were close to −  10  bar for all study sites in the different campaigns; although 
the higher Ψs values measured in 2018 in all varieties suggest that in this crop season the 
trees were closer to the optimum water conditions than in 2017. The Ψs associated with the 
water stress cycle decreased to values ranging between − 15 and − 21 bar, the last observed 
in Amandine 2016. Comparing the effects on the different varieties, Amandine experi-
enced the highest Ψs decrease between the two dates (|Ψs,2 − Ψs,1|; ΔΨs ranged from 7.6 to 
9.8 bar) whereas Carioca and Nazario showed lower Ψs reductions (ΔΨs ranged from 4.9 
to 5.5 bar).

Crop water stress index

The CWSI maps demonstrated large variability of crop water status on the two measure-
ment dates (Figs. 3, 4 and 5). In all study sites, CWSI in Date 1  (CWSI1) was consistently 
lower than CWSI in Date 2  (CWSI2). In Amandine site, average  CWSI1 ranged from 0.03 
to 0.15 whereas average  CWSI2 reached values of 0.53 (Table 2; Fig. 3).  CWSI1 estimates 
in Carioca and Nazario sites resulted greater than Amandine, with values of 0.24–0.35, 
whereas  CWSI2 was similar than in Amandine site, with values ranging from 0.42 to 0.50 
(Table 2; Figs. 3 and 5). Additionally, the variability observed in CWSI was slightly higher 
in Date 2 than in Date 1, as reflected in the standard deviation values (Table 2; Figs. 3,  4 
and  5). When observing the variation of CWSI between both dates  (CWSI2-CWSI1; 
ΔCWSI), it can be observed that each field responded differently to the same water stress 
level. In Amandine site, the ΔCWSI ranged from 0.27 (2018) to 0.42 (2016) (Table  2; 

-25.0

-20.0

-15.0

-10.0

-5.0

0.0
2016 2017 2018 2017 2018 2017 2018

Amandine Carioca Nazario

Date1
Date2

Fig. 2  Average values of stem water potential (Ψs) for the different crop seasons
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Fig. 3); whereas Carioca and Nazario displayed a ΔCWSI lower than 0.20 (Table 2; Figs. 4 
and 5).

Stem water potential–crop water stress index relationship

The relationship between Ψs and CWSI at the time of flight was significant and displayed 
a similar regression line for the three experimental sites and years, yielding  R2 = 0.59 
(Fig. 6). For CWSI values below 0.2, Ψs was maintained rather stable and close to − 10 bar. 
Beyond this threshold of CWSI, the Ψs sharply decreased. The maximum value of CWSI 
observed in the monitored trees was 0.77, corresponding with a value of Ψs close to 
− 25 bar (Fig. 6).

Thermal Sensitivity Index

The first step was to develop an indicator related to the rate of change of Ψs (ΔΨs/n, 
MPa  day−1) in monitored trees, calculated as the difference between the two readings, 
divided by the number of days elapsed between them (ΔΨs/n). The simplest formulation 
tested was the difference between the CWSI values of the two dates  (CWSI2–CWSI1, 
ΔCWSI). Results yielded a low correlation when related to ΔΨs/n, with increased disper-
sion of data, especially as the level of water stress raised (Fig. 7a). When the formulation 
took into account the term (1 − CWSI1), the overall  R2 decreased (Fig. 7b) but the regres-
sions slightly improved for the individual datasets  (R2 ranged between 0.01 and 0.33 in 

Table 2  Average values and 
standard deviations of  CWSI1 
and  CWSI2 for all study sites

Crop season Parameter Mean St. Dev

Amandine 2016 CWSI1 0.03 0.11
CWSI2 0.46 0.15
ΔCWSI 0.42 0.11

Amandine 2017 CWSI1 0.15 0.13
CWSI2 0.53 0.14
ΔCWSI 0.35 0.11

Amandine 2018 CWSI1 0.15 0.09
CWSI2 0.41 0.16
ΔCWSI 0.27 0.10

Carioca 2017 CWSI1 0.35 0.12
CWSI2 0.50 0.14
ΔCWSI 0.14 0.09

Carioca 2018 CWSI1 0.24 0.06
CWSI2 0.39 0.10
ΔCWSI 0.15 0.08

Nazario 2017 CWSI1 0.27 0.10
CWSI2 0.45 0.12
ΔCWSI 0.18 0.11

Nazario 2018 CWSI1 0.24 0.08
CWSI2 0.42 0.12
ΔCWSI 0.20 0.11
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Fig. 7a and from 0.11 to 0.48 in Fig. 7b). There were clear differences among the regres-
sions for the study sites. When the increase of CWSI was normalized by the cumulated 
 ETo, the overall regression improved significantly  (R2 = 0.56) (Fig. 7c). Finally, when the 
formulation was computed according to Eq. 2, the regression obtained the best adjustment, 
with an  R2 equal to 0. 59. The index was also tested by including the NDVI in the denomi-
nator, but the performance was similar to the actual formulation (data not shown). The 
test data set was used to analyze the performance for the four models included in Fig. 7 
(Table  3). The lowest values of RMSE and the relative RMSEr were observed in the 
TSI (0.68 and 39%, respectively). MAE and MAPE of TSI displayed similar values than 
ΔCWSI/ΣETo (0.52 and 46%, respectively), and clearly lower than the other two formula-
tions, with MAE ranging from 0.52 to 0.59 and MAPE varying from 0.64 to 0.69.

Once the index was formulated and compared to the ground truth data, it was applied to 
the entire imagery to estimate the ΔΨs/n and analyze its spatial variability (Fig. 8). There 
were some variations between the years, although some similarities were also observed. 

Fig. 3  Interpolated maps of CWSI of Amandine site in 2016 (a and b), 2017 (c and d) and 2018 (e and f). 
Left column corresponds with the first flight, before irrigation cutoff, and right column corresponds with 
the second flight
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Fig. 4  Maps of CWSI of Carioca site in 2017 (a and b) and 2018 (c and d). Left column corresponds with 
the first flight, before irrigation cutoff, and right column corresponds with the second flight

Fig. 5  Maps of CWSI of Nazario site in 2017 (a and b) and 2018 (c and d). Left column corresponds with 
the first flight, before irrigation cutoff, and right column corresponds with the second flight
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This type of spatial analysis enables the identification of areas with a similar sensitivity to 
water shortage. In Fig. 9, the hot spots areas were identified according to the Gi* statistics.

According to the analysis based on the Gi* statistics, the percentage of the total area 
that was similarly classified across years ranged between 45 and 65%. The area that was 
identified as hot spot in all the crop seasons over the fields can be observed in Fig. 10.
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Discussion

This study presents a methodology to assess the sensitivity to water stress in orchard 
fields under high-frequency drip irrigation. The management zones are usually established 
according to stable soil properties (Yan et  al. 2007). This approach, although effective, 

Table 3  Root mean square error (RMSE; bar day−1), relative RMSE (RMSEr), mean absolute error (MAE; 
bar  day−1) and mean absolute percentage error (MAPE) calculated for the models considered in the study 
using the test data set

RMSE RMSEr (%) MAE MAPE (%)

ΔΨs/n = f(ΔCWSI) 0.72 49 0.52 64
ΔΨs/n = f(ΔCWSI; 1 − CWSI1) 0.79 53 0.59 69
ΔΨs/n = f(ΔCWSI; ΣETo) 0.61 41 0.42 56
ΔΨs/n = f(TSI) 0.68 39 0.42 56

Fig. 8  Spatial pattern of the ΔΨs/n obtained from TSI values in Amandine site (a to c), Carioca site (d and 
e) and in Nazario site (f and g), in 2016 (a), 2017 (b, d and f) and 2018 (c, e and g)
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requires a substantial effort acquiring soil samples for properly characterizing soil chemical 
and physical characteristics. The development of a methodology exclusively based on the 
crop response to water availability, derived from RS imagery, avoids such limitation. This 
strategy enables the assessment of the final effect of both static (e.g. soil texture, nutri-
ent status) and dynamic factors (e.g. weather conditions, crop management) over the crop 

Fig. 9  Identification of hot spot areas that demonstrated the highest (red) and lowest (blue) sensitivity to 
water stress, according to TSI in Amandine site (a to c), Carioca site (d and e) and in Nazario site (f and g), 
in 2016 (a), 2017 (b, d and f) and 2018 (c, e and g), based on the Gi* statistic (Color figure online)

Fig. 10  Areas identified as hot spot in all the crop seasons over the study sites. Blue color corresponds to 
areas resistant to water stress, while red indicates sensitive areas (Color figure online)
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growth and development. The methodology presented here is based on the assessment 
of the Thermal Sensitivity Index (TSI), which is derived from the information obtained 
from the CWSI acquired at two different dates and the evaporative demand accumulated 
between the two measurements. The TSI was consistently related to the rate of change of 
Ψs for the range of sensitivity to water stress observed in this study (from 0 to 4 bar day−1). 
It was demonstrated that the TSI developed here performs better than the rest of the formu-
lations tested. In addition to yielding higher  R2 values compared to the others  (R2 = 0.58 
vs.  R2 = 0.30–0.56), the measures calculated in the analysis of the model performance pre-
sented in Table 3 displayed the lowest error values. Moreover, the difference between the 
RMSE and MAE was minimal for the TSI-based model, indicating the smallest variance 
in the individual error of the sample and a more distributed dispersion of the error in the 
whole range.

In comparison with a single assessment of CWSI, this methodology enables the analysis 
of the rate of change of water status during a given period, taking into consideration the 
initial and final conditions, and the evaporative demand (in terms of  ETo) between the two 
dates.

The increase in variability of the CWSI for the second date compared to initial val-
ues before the onset of water stress (as it was observed in the standard deviation values, 
Table 2) indicates that trees respond differently to water stress. This intra-orchard variabil-
ity can be related to differences in soil properties, available water content, crop manage-
ment, and crop health, among other factors. Tree size might also influence significantly the 
variation of CWSI between the two dates. On one hand, large trees will deplete soil water 
content more rapidly, so it is expected to increase the sensitivity to water stress. On the 
other hand, large trees could have more developed root systems, enabling them to access a 
larger volume of available water. In this study, including NDVI in the formulation did not 
improve the assessment of the sensitivity to water stress. This is probably related to the 
small range of variation of NDVI observed in the three fields, but also due to the relatively 
high NDVI values observed (0.8 ± 0.07). It is well known that NDVI is not sensitive to 
difference in tree vigor under relatively dense canopy conditions (LAI > 3; Gilabert et al. 
1996). Further research regarding the effect of contrasted tree size and on the use of other 
vegetation indices less affected by saturation (e.g. based on red-edge spectral region and 
based on normalized ratios) may be of interest for widening the use of this methodology.

It is well-accepted that thermal imagery is one of the most suitable methods to retrieve 
water status over large areas (Jones et al. 2002). Nevertheless, it is important to identify 
the constraints of this methodology. High resolution thermal imagery requires specific 
airborne flights, which might have a relatively high cost, especially compared to satellite 
imagery freely available. Moreover, thermal imagery should be acquired around midday on 
cloudless days in order to reliably retrieve water status as it has been observed previously 
(Testi et  al. 2008). This can limit the total area that can be monitored. Although in this 
study promising results using a large dataset (comprising three areas and 2 to 3 years) have 
been obtained, it would be desirable to assess TSI robustness over different crops as well as 
climates.

The patterns of the ΔCWSI observed for the three fields were different. Nazario and 
Carioca displayed a lower ΔCWSI compared to Amandine for both years 2017 and 2018 
(Table 1). It was related to a higher CWSI on Date 1, and a smoother development of water 
stress. In Amandine plot, although initial CWSI was relatively lower than that of the other 
two fields, the rate of increase of CWSI was higher. It can be hypothesized that soil water 
reserves in Amandine field were lower than those of the two other experimental sites, 
resulting in a sharp increase of CWSI during the experiment, even if the initial water status 
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was more favorable. Moreover, some studies have reported a contrasted sensitivity of dif-
ferent peach cultivars to water stress (Girona and Fereres 2012). Further studies assessing 
the sensitivity of the cultivars used to water stress would provide more information about 
the contribution of this effect to the results observed here.

The study performed in August 2016 in Amandine displayed the highest values of ΔΨs 
and ΔCWSI. In water scarce situations, the irrigation is scheduled to optimize soil water 
use, depleting progressively the water reserves as the season advances. As a consequence, 
an irrigation withholding later in the season might reveal a higher sensitivity (for the same 
evaporative demand). It is in accordance with the dynamic variation of the maps resulting 
from this methodology, which partially vary from year to year. Although the index is a step 
forward as it considers the rate of change of CWSI and the evaporative demand during the 
time of the measurements, there are factors, such as the depletion of soil water reserves, 
which are not captured by the current formulation. This is the reason why absolute values 
were different among the different campaigns, and the index must be analyzed in relative 
terms. The use of the methodology and the index developed in this study has to consider 
this aspect. The application of this system at the beginning of the irrigation season might 
decrease the effect of those factors and provide with information about the crop water sta-
tus. Replicating the system several times during the irrigation season might increase under-
standing about the pattern of water status throughout the cycle.

The identification of homogeneous areas can be useful for the proper development of 
several strategies aiming at improving water productivity. It can help decision making 
when deficit irrigation is sought to be applied, as the level of water stress developed in sen-
sitive areas may be detrimental for tree performance (Fereres and Soriano 2007). By com-
bining the information provided by the TSI with the crop production function (that relates 
the crop yield and the water used), it is possible to implement models to assess the decline 
in production resulting from different irrigation strategies. Particularly under regulated 
deficit irrigation, it is crucial to avoid mild water stress that becomes too severe and detri-
mental for tree performance (Fereres and Soriano 2007). The data resulting from this study 
showed that under standard irrigation practices there is large variability in water status. If 
deficit irrigation strategies are applied under these circumstances, particularly in stone fruit 
trees, crop yield might be severely affected under some areas (Fereres et al. 2003).

In addition to this, the reasons for developing methods aiming at identifying sensitive 
areas within fields are multiple: identification of failures in irrigation systems design, iden-
tification of areas to install point sensors, and precision irrigation. Gonzalez-Dugo et  al. 
(2015) developed a methodology to identify sensitive areas to water stress for fields irri-
gated at low frequency. Dag et al. (2015) developed a methodology to automatically detect 
irrigation malfunctions, based on the analysis of the temperature histogram of the field. 
The procedure presented here analyzes the rate of increase of the CWSI over a certain 
period of time, so initial conditions are also considered. When trees are irrigated at daily 
scale, patterns of water stress are not easily observed, because trees are normally continu-
ously well-irrigated. When deficit irrigation is applied and the water stress is generalized to 
the entire orchard, sensitive areas cannot be distinguished either. It is necessary to analyze 
crop performance in the early stages of water deficit. Often, water stress in drip-irrigated 
orchard appears slowly, because of the high-frequency irrigation supply. Under this situ-
ation, the plants might develop mitigation strategies and adapt to water stress so that the 
stress does not affect significantly the crop, as happens in some cases under sustained defi-
cit irrigation (Fereres and Soriano 2007). Therefore, in practical terms, sudden and moder-
ate stress is the best strategy to identify those areas that are more sensitive to water stress 
within drip-irrigated agricultural fields.
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The TSI accounts for static and dynamic variables; therefore, the maps were not identi-
cal from year to year. Some parts were identified as sensitive or resistant systematically, 
because of the static factors affecting the water status. Those areas affected by the dynamic 
factors varied from year to year. Multiple acquisitions over the same area can provide this 
type of information. Nevertheless, more research is needed to fine-tune the methodology 
and validate this hypothesis.

The optimal number of sensors to be deployed in the field will depend on the variabil-
ity of the water status, which may be associated with the irrigation system, or crop or soil 
properties. Currently, the use of sensors to be deployed in the field to monitor water status 
is gaining interest even under commercial situations. Novel concepts, related to the IoT 
and sensors networks, are seeking to be implemented in the field. The optimal location for 
these will depend on the number of sensors available. When many sensors are available, 
they can be distributed in a grid pattern. Nevertheless, when only a few sensors are avail-
able, it is important to target the most representative areas. Bazzi et al. (2019) developed a 
methodology that identifies the best locations of point sensors according to the number of 
sensors available, and the variability of water status within tree and vine orchards, based 
on water potential and soil measurements. Remote identification of the variability within 
irrigated fields and the zoning according to the response to water stress may provide valu-
able information to determine what is the optimal number of sensors to be deployed and 
where these sensors should be installed. Analysis of the histogram of TSI at the beginning 
of the season allows the identification of homogeneous zones, according to the sensitivity 
to water stress. Moreover, if the study is repeated during the season, the information can be 
updated accordingly. In this work, the areas that are more prone to water stress have been 
systematically identified. By targeting these areas with point sensors, it is possible to detect 
water stress in the early stages and recalculate the irrigation accordingly. This procedure 
might be of special interest in those years when water is available. When water is scarce, or 
when the economic value of the crop yield is expected to be low, sensors can be deployed 
in areas displaying an “average behavior”.

The concept of precision irrigation involves the accurate assessment of water status and 
the precise application of this volume at the required time (Smith et al. 2010). Therefore, 
it implies a system that can adapt to the prevailing conditions. It can be based on the irri-
gation according to homogeneous sub-areas within the orchard (management zones), the 
site-specific application of water according to local needs or the remote (and real-time) 
information to be applied for irrigation scheduling. Initial developments of precision irriga-
tion were focused on site-specific irrigation systems, based on the modification of center 
pivot and lateral move irrigation machines to give spatially varied applications of water and 
nitrogen (Evans et al. 1996; Sadler et al. 1996). The potential water savings (under non-
stressed conditions) of these site-specific irrigation systems may be in the range of 10 to 
15% (Sadler et al. 2005), although more research is required to quantify water savings by a 
variable-rate application.

Tree nutrient status and the overall field management can affect the response of the crop 
to water application. It is well known that nitrogen deficiency may affect water relations 
(Radin and Parker 1979; Jacob et al. 1995). This could be in relation with fertilization man-
agement, but also any other application or operation that are carried out in the field deter-
mining the overall crop performance. This can be even more important in the case of peach 
orchards, which are intensively managed farming systems where operations such as fruit 
thinning, summer pruning, among others are intensively performed. These effects were not 
considered in this study, and might also influence the scatter of the data and be responsible 
for part of the apparent discrepancies observed among years. Further research might focus 
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some of these effects, by, for example, including some indicators related to nitrogen con-
tent and chlorophyll fluorescence as a proxy for plant photosynthesis.

Conclusion

A new indicator called Thermal Sensitivity Index (TSI) was developed using the high-res-
olution thermal imagery obtained at two dates, before and after moderate water tress was 
applied in commercial peach orchards. The index accounts for the rate of change in water 
status between the two dates. It also incorporates information about the climatic conditions 
during the stress period, using the cumulated thermal time. The index was demonstrated to 
be related to the rate of change of stem water potential between the two dates  (R2 = 0.57). 
This approach allows the identification of water-stress sensitive areas in the orchards. The 
maps showed some spatial consistency among years. Future work should verify other 
sources of variability affecting the index, particularly related to nutrient status and farm 
management practices.
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