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A B S T R A C T   

Spatial prediction of photosynthesis requires an understanding of how foliage nitrogen (N) and phosphorus (P) 
regulate this process and the relationship between these elements and scalable spectral proxies. Hyperspectral 
imagery has been used to predict important photosynthetic variables such as the maximum rate of carboxylation 
(Vcmax) and electron transport (Jmax). However, our understanding of how generally applicable these relation-
ships are for plants that are limited by N and P, characterised by respective mass based ratios of N/P ≤ 10 and N/ 
P > 10, is still incomplete as most studies assume N and P co-limit photosynthesis. 

Hyperspectral imagery and measurements of photosynthesis were obtained from one-year old Pinus radiata D. 
Don, grown under a factorial combination of N and P treatments. Using these data, the objectives of this study 
were to (i) identify whether trees were co-limited or independently limited by N and P, and then use hyper-
spectral imagery to (ii) partition N and P limited trees, (iii) build models of N and P from a range of hyperspectral 
indices and (iv) explore links between key plant traits and both Vcmax and Jmax. 

Compared to the use of all data, which assumes co-limitation, markedly stronger relationships between N and 
P and photosynthetic capacity were obtained through splitting data at N/P = 10 (independent limitation) for 
both Vcmax (R2 

= 0.40 vs. 0.59) and Jmax (R2 
= 0.38 vs. 0.64). A random forest model was used to accurately 

partition N from P limited trees and the two main variables used within this model were Photochemical 
Reflectance Index (PRI) and Solar-Induced Chlorophyll Fluorescence (SIF). Using data from the P limiting phase, 
the most precise models of P were created using PRI (R2 = 0.75) and SIF (R2 = 0.52). Indices that were proxies 
for chlorophyll were the most precise predictors of N within the N limiting phase but strong positive relationships 
were also evident between N and both PRI (R2 = 0.83) and SIF (R2 = 0.57). Through their correlations with N 
and P, there were strong positive relationships between both SIF, PRI and Vcmax (R2 = 0.78 and 0.83, respec-
tively) and Jmax (R2 

= 0.80 and 0.83, respectively) that were generalisable across both N and P limiting ranges. 
These results suggest that quantified SIF and PRI from hyperspectral images may have greater precision and 
generality for predicting both foliage nutrition and biochemical limitations to photosynthesis than other widely 
used hyperspectral indices.   

1. Introduction 

The prediction of foliage nutrient concentration across broad spatial 

scale has considerable utility for assessing health and productivity of 
ecosystems (McNeil et al., 2007a; McNeil et al., 2007b; Townsend et al., 
2003). Significant growth responses within forest stands have been 
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noted through the application of fertiliser, mainly in the form of nitro-
gen (N) and phosphorus (P) (Albaugh et al., 2003; Allen et al., 2005; 
Liechty and Fristoe, 2013). However, determining the optimal applica-
tion of fertiliser is often very difficult as nutritional deficiencies vary 
widely across the landscape (Campion, 2008; Fox et al., 2007). 

Foliage nutrition is also a key determinant of rates of carbon 
assimilation. Many studies have investigated the use of N and P to ac-
count for variation in photosynthetic capacity (Walker et al., 2014) and 
the importance of these elements on the photosynthesis process is well 
documented. Nitrogen is a major component of Rubisco (Niinemets and 
Tenhunen, 1997) and P has an impact on many important aspects of 
photosynthesis including membrane solubility, ATP, and NADPH pro-
duction (Marschner, 1995; Taiz et al., 2015). Given these strong links it 
is important to understand how N and P regulate photosynthesis when 
developing models of these elements that will be subsequently used to 
predict photosynthesis. 

Hyperspectral imagery has been successfully used to predict foliar 
concentrations of N for a wide range of broadleaf and coniferous species 
at both the leaf level and canopy level (for an overview see Hill et al., 
2019; Watt et al., 2019). Nitrogen shows marked absorption features in 
both the visible near infrared (VNIR) and short-wave infrared (SWIR) 
ranges (Curran, 1989; Kokaly, 2001; Kokaly et al., 2009) and models are 
able to capitalise on these features to predict N (Watt et al., 2019). At the 
leaf level the precision of models of N has been found to range widely (R2 

range of 0.37–0.99) but generally N has been predicted with moderate to 
high levels of precision, with mean R2 of 0.77, recorded across a wide 
range of species (Asner and Martin, 2008; Asner et al., 2011; Curran 
et al., 2001; Dechant et al., 2017; Gillon et al., 1999; Luther and Carroll, 
1999; Masaitis et al., 2014; Petisco et al., 2005; Schlerf et al., 2010; 
Serbin et al., 2014; Stein et al., 2014; Tsay et al., 1982; Wang et al., 
2018; Wang et al., 2015; Yoder and Pettigrew-Crosby, 1995). Despite 
the difficulties in scaling to the canopy, moderate to strong predictions 
of N have also been made at this level with values of R2 ranging from 
0.48 to 0.98 (Coops et al., 2003; Huang et al., 2004; Knyazikhin et al., 
2013; Martin et al., 2008; Martin et al., 2018a; Martin et al., 2018b; 
Ollinger et al., 2008; Singh et al., 2015; Smith et al., 2003). 

Although many studies have developed models of P, the lack of 
spectral absorption features associated with P is likely to limit their 
generality as these relationships are indirect. Leaf level hyperspectral 
data have generally been found to predict P empirically with moderate 
to high precision (mean R2 of 0.74) using proxies correlated with P, with 
R2 varying from 0.32 to 0.95 (Asner and Martin, 2008; Asner et al., 
2011; Curran et al., 2001; Gillon et al., 1999; Masaitis et al., 2014; 
Petisco et al., 2005; Stein et al., 2014). However, as P does not directly 
absorb energy in the shortwave spectrum, these predictions of P are 
actually due to the correlations with N found under most conditions 
(Asner and Martin, 2008; Gillon et al., 1999; Porder et al., 2005). As a 
consequence, these models may not be as robust when applied to con-
ditions where ratios of N/P deviate from typical ranges. Development of 
models of P using datasets with little correlation between N and P are 
likely to reveal the true precision between hyperspectral-based traits 
and P, likely resulting in predictions that have greater generality. 

Although little research considers whether N and P co-limit or 
independently limit photosynthesis, this is a key assumption that is 
likely to affect model precision, generality and applicability. Datasets 
used generally assume that photosynthesis is co-limited by N and P as 
both elements are predicted across their complete range. Although it has 
not been widely investigated, a number of studies suggest that N and P 
independently limit growth and photosynthesis in many species (Bown 
et al., 2007; Domingues et al., 2010; Ingestad, 1971, 1979; Ingestad and 
Lund, 1986). The premise underlying this research is that a mass based 
N/P ratio of 10 is optimal with values of N/P ≤ 10 leading to N limi-
tations and N/P > 10 resulting in P limitations (Aerts and Chapin, 2000; 
Marschner, 1995; Reich and Schoettle, 1988). Previous research sup-
ports this suggestion through showing that N and P independently in-
fluence the key biochemical limitations to photosynthesis that include 

the maximum rate of carboxylation (Vcmax) and electron transport (Jmax) 
(Domingues et al. 2010) and that a stoichiometric ratio of 10 can be used 
to partition N from P limitations for these variables (Bown et al. 2007). If 
photosynthesis is independently regulated by N and P it follows that 
Vcmax and Jmax will exhibit positive relationships with both elements 
within their respective limiting ranges and these relationships will be 
weaker when they are constructed using the entire dataset under the 
assumption of co-limitation. 

The assumption of independent limitations has important implica-
tions for the development of foliage nutrition models. In order to iden-
tify the type of required nutrient additions it would be useful to be able 
to partition N from P limitations at scales ranging from the tree to the 
forest level. Following this partitioning, the use of N and P models 
developed using data from their respective limiting ranges could be 
applied to estimate the severity of any deficiency and impact on 
photosynthesis within these two ranges. This approach may provide a 
means of improving spatial accuracy when characterising the type and 
extent of nutrient deficiencies. Understanding the nature of relation-
ships, within each limiting range, is also likely to provide considerable 
insight into the mechanistic link between plant functional traits quan-
tified from hyperspectral imagery and foliage nutrition and, as a 
consequence, growth and photosynthesis. Despite this, we are unaware 
of any research that has used this approach for developing models of N 
and P for tree species. 

Traditional methods used to track changes in plant nutrition from 
remote sensing have most often targeted chlorophyll content (Ca+b) as 
chlorophyll and other pigments such as carotenoids, xanthophyll and 
anthocyanins are important indicators of plant photosynthetic status 
(Baret et al., 2007; Evans, 1989; Yoder and Pettigrew-Crosby, 1995). 
Nitrogen is a major component of chlorophyll, and nitrogen and chlo-
rophyll deficiencies are directly related to reductions in photosynthetic 
rates (Evans, 1989). It therefore follows that Ca+b has been the focus of 
remote sensing research as a proxy for nitrogen within agriculture and 
forestry (Baret et al., 2007; Yoder and Pettigrew-Crosby, 1995). 

Remote sensing research carried out in the 1980s identified the red- 
edge and green spectral regions as potential targets for estimating Ca+b 
that were linked to nitrogen content (Carter, 1994; Gitelson and Mer-
zlyak, 1996; Rock et al., 1988). Further research developed specific 
narrow-band hyperspectral indices (Haboudane et al., 2002) including 
the red-edge Chlorophyll Index (Zarco-Tejada et al., 2001). Combined 
indices were also developed such as the Transformed Chlorophyll Ab-
sorption in Reflectance Index, TCARI (Haboudane et al., 2002) 
normalized by the Optimized Soil-Adjusted Vegetation Index, OSAVI 
(Rondeaux et al., 1996) to form the TCARI/OSAVI proxy for chlorophyll 
and nitrogen. 

In addition to Ca+b, recent research has identified other pigments, 
such as xanthophylls, that are more dynamically related to rapid 
changes in photosynthesis and are potentially more useful for tracking 
nutritional impacts on photosynthesis. The changes observed in the 
green spectral region through the Photochemical Reflectance Index 
(PRI) (Gamon et al., 1992) have been demonstrated to be linked to the 
xanthophyll cycle, and this index has been successfully used to predict 
photosynthetic rate (Drolet et al., 2008; Fuentes et al., 2006; Gamon 
et al., 1997; Guo and Trotter, 2004; Hilker et al., 2008; Middleton et al., 
2009; Nichol et al., 2000; Penuelas et al., 1995b; Stylinski et al., 2000) 
and the photosynthetic response of plants to a range of stresses (Bud-
denbaum et al., 2015; Dobrowski et al., 2005; Hernández-Clemente 
et al., 2011; Scholten et al., 2019; Suarez et al., 2008). 

During the last 50 years (see review by Mohammed et al., 2019) 
considerable research has demonstrated the utility and feasibility of 
Solar-Induced Chlorophyll Fluorescence (SIF) in predicting photosyn-
thetic activity at both the leaf and the canopy scales from a range of 
remote sensing platforms (Cendrero-Mateo et al., 2015; Zarco-Tejada 
et al., 2013; Zarco-Tejada et al., 2016). Given the strong relationship 
between chlorophyll pigments, the xanthophyll dynamics (PRI) and 
photosynthesis (through SIF) it also follows that these indicators might 
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be significantly related to N and P as these two elements are key de-
terminants of photosynthesis rate. 

Pinus radiata D. Don (radiata pine) is the most widely planted plan-
tation species within the southern hemisphere (Lewis and Ferguson, 
1993). Over 4.1 M ha of this species has been established in New Zea-
land, Chile and Australia, where the species comprises, respectively, 
90% (NZFOA, 2018), 62% (Salas et al., 2016) and 39% (Downham and 
Gavran, 2019) of the total plantation area. Pinus radiata frequently 
suffers from nutrient limitations, particularly during mid-rotation when 
nutrient demand often exceeds supply. The key elements that limit 
productivity of P. radiata are N and P (Watt et al., 2005). A shortage of 
these elements can result in significant reductions in growth (Raison and 
Myers, 1992; Sheriff et al., 1986) and also limits the key processes that 
control the rate of photosynthesis (Bown et al., 2009). 

In this study, measurements of hyperspectral imagery, photosyn-
thesis and foliage nutrition were taken from an experiment that included 
a factorial combination of N and P treatments applied to P. radiata. Using 
these data, the initial objective of this research was to (i) identify 
whether trees were co-limited or independently limited by N and P, and 
then use hyperspectral imagery to (ii) partition N and P limited trees, 
(iii) build models of N and P from a range of hyperspectral indices and 
(iv) explore links between key plant traits and both Vcmax and Jmax. 

2. Methods 

2.1. Experimental set up 

The experiment was undertaken within the Scion nursery, located in 
Rotorua, New Zealand. A total of 120 P. radiata seedlings were trans-
planted into 15 L pots during October 2018. The medium into which the 
plants were transplanted consisted of a mixture of perlite and vermic-
ulite which are silica-based products without any nutritional content. 
Plants were grown in a thermostatically controlled greenhouse where 
temperature in spring fluctuated between 10 and 24 ◦C during the day 
and between 10 and 16 ◦C during the night. These plants were watered 
weekly over the duration of the trial so that root-zone water content did 
not limit growth. This study reports on detailed measurements taken 
from 60 trees during October 2019, within this trial, that included 
twelve trees from each of the five treatments. 

The five fertiliser treatments consisted of a factorial combination of 
N and P that were applied as 500 ml of nutrient solution per plant every 
fortnight starting on the 20th February 2019. These five treatments 
included application of water only (Control), low N–low P (N0P0), low 
N–high P (N0P1), high N–low P (N1P0) and high N–high P (N1P1). 
Nutrient solutions consisted of two levels of nitrogen (N0 = 1.43 and N1 
= 7.14 mol m− 3) and phosphorus (P0 = 0.084 and P1 = 0.420 mol m− 3). 
Following Ingestad (1979), N was provided at concentrations of 100 
ppm (7.14 mM) and P at 13 ppm (0.420 mM) as the high-N and high-P 
supply regimes. The low-N (1.43 mM) and low-P (0.084 mM) supply 
regimes were chosen as one-fifth of the high-N and high-P concentra-
tions, respectively. Nitrogen was supplied as NH4NO3 and phosphorus as 
KH2PO4 and nutrients other than N and P were provided in optimum 
proportions in relation to N, as defined by Ingestad (Ingestad, 1971, 
1979). 

2.2. Hyperspectral imagery collection 

2.2.1. Data capture 
A hyperspectral camera (FX10, Specim, Spectral Imaging Ltd, Oulu, 

Finland) was used to acquire hyperspectral imagery outside during clear 
sky conditions from 10:30 am to 1:30 pm on the 4th October 2019. This 
push-broom camera captures 448 bands with wavelengths ranging from 
400 to 1000 nm with a spectral full width at half maximum (FWHM) of 
5.5 nm and a spectral sampling interval of 2.7 nm. The camera is 
designed for industrial applications and as such has a high maximum 
frame rate of 9900 frames per second with one band, and 330 frames per 

second using the full spectral range, as well as a high Signal-to-Noise 
Ratio (SNR) of 600:1. Within the field of view of 38◦ the spatial sam-
pling comprises 1024 pixels. We used the Lumo Recorder software 
interface to manage the image acquisition. 

The camera was mounted 2 m above ground on a cross beam that was 
supported by two posts and a conveyor belt was used to move the plants 
through the field of view. The speed of the conveyor belt was adapted to 
fit the frame rate of the camera, which in turn was dependent on the 
exposure time, which had to be adjusted to the current illumination 
conditions. During the measurements, the conveyor belt speed and 
frame rate were kept constant and the exposure time was adjusted to 
avoid over or undersaturation. A diffuse white reference standard 
(Spectralon, North Hutton, NH, USA) was placed so that it was visible in 
every frame allowing calibration of the imagery as a function of the 
changing illumination conditions. Images were recorded in nadir view. 
Since the trees were placed in the centre of the field of view, most pixels 
were recorded with view zenith angles <10◦. Solar zenith angles ranged 
from 32.5◦ to 38◦. 

2.2.2. Pre-processing of hyperspectral data 
All pre-processing of the hyperspectral data was carried out using 

Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) 
following the methods described in Buddenbaum et al. (2019). 
Measured digital numbers were transformed to reflectance factors by 
dividing each pixel’s value by the respective value of the white reference 
bar in the same image line, which were then multiplied by the reflec-
tance of the reference bar. Directional effects in the resulting spectra 
were corrected according to the methods described in Buddenbaum 
et al. (2019). Pixels with NDVI ≥ 0.5 and near-infrared reflectance (780 
nm) ≥ 0.2 were selected as vegetation pixels. Pixels with absolute first 
difference values ≥0.1 were masked out. The mean of all pixels for each 
tree was calculated to represent the canopy reflectance of the whole 
plant. 

Following these steps, the tree level spectra were smoothed using the 
Savitzky-Golay filter (Mouazen et al., 2010; Vasques et al., 2008). 
Smoothing used a third order polynomial which was applied across a 
moving window of 27 spectral bands. Reflectance and the 1st derivative 
of reflectance were extracted from these smoothed spectra. As there was 
considerable noise at the upper end of the smoothed spectral data, the 
bands above 951 nm were excluded from further analyses. Following 
these exclusions, 408 bands in the 400–951 nm spectral range were 
available for analyses. The reflectance spectra were interpolated to a 1 
nm resolution within Matlab to allow spectral indices to be determined 
using the wavelengths listed in the literature. Using these interpolated 
spectra the 83 indices listed in Appendix 1 were derived. These narrow- 
band indices were selected as previous studies have shown these to be 
related to foliage nutrition, pigment content, leaf and canopy structure, 
and photosynthesis (see Appendix 1 for references). 

2.2.3. Calculation of Solar Induced Chlorophyll Fluorescence 
Solar-Induced Chlorophyll Fluorescence (SIF) was quantified using 

the 760 nm O2-A region using the in-filling method based on the 
Fraunhofer Line Depth principle (FLD) (Plascyk, 1975). As previously 
described (Zarco-Tejada et al., 2013; Zarco-Tejada et al., 2016) SIF was 
calculated from a total of three spectral bands (FLD3) as follows, 

SIF =
EoutLin − EinLout

EoutEin
(1)  

where radiance, L, corresponds to Lin (L761), Lout (average of L747 and 
L780 bands), and the irradiance, E, to Ein (E761), and Eout (average of E747 
and E780 bands). Values of SIF were rescaled through addition of an 
offset value to ensure that calculations of SIF from Eq. (1) were not 
negative. 

The determination of SIF from hyperspectral instruments has been 
demonstrated by several studies that show that fluorescence can be 
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quantified using imaging sensors for stress detection (Calderón et al., 
2013; Damm et al., 2015; Zarco-Tejada et al., 2012). Previous modelling 
work has assessed the requirements of spectral bandwidth, spectral in-
terval and noise levels for determination of SIF (Damm et al., 2011). This 
research has demonstrated that FLD-based methods are feasible for 
retrieving SIF using wider spectral bands (i.e. around 5 nm FWHM) as 
long as high-spectral sampling intervals are used with signal-to-noise 
ratios that have a minimum of 300:1. 

2.3. Photosynthetic capacity 

Measurements of photosynthetic capacity were made on a sub- 
sample of 30 plants, that included six plants per treatment. These 
measurements were made using a coupled chlorophyll fluorescence and 
gas-exchange system (Imaging-PAM M-Series and GFS-3000, Walz, 
Effeltrich, Germany) from the 7th to 16th of October 2019 following 
measurements of hyperspectral data. For each of the 30 plants, the 
response of assimilation to intercellular CO2 concentration (ACi 
response) was measured on two to three fully expanded young fascicles 
that were selected from the upper third of the canopy. These needles 
were arranged inside the 6 cm2 cuvette without overlap and the area for 
these needles was determined by differentiating thresholded pixels 
using the Imaging-Win software of the coupled system. During the 
course of the measurements, conditions in the cuvette were maintained 
at 20 ◦C, with a relative humidity of 60% and an irradiance of 1,000 
μmol photons m− 2 s− 1. The external CO2 concentration (Ca) supplied to 
the plants included the following series: 400, 300, 200, 100, 75, 50, 400, 
600, 800, 1000, 1200, 1500, 2000 μmol mol− 1. Measurements were 
recorded after values of A, Ci and gs were stable. 

ACi curves were analysed using Farquhar-type equations (Long and 
Bernacchi, 2003). A generalised nonlinear least squares regression (gnls 
function, nlme package in R) was used to estimate Vcmax and Jmax. 

2.4. Determination of foliage N and P and nutrient ratios 

Analysis of foliage N and P was undertaken on approximately 10 
fully extended fascicles, that were selected from the upper third of the 
crown of each plant. These fascicles were dried at 70 ◦C for at least 48 h 
to constant dry mass and transported to the Manaaki Whenua Landcare 
Research laboratory (Palmerston North, New Zealand) for analysis of N 
and P. Foliage samples were finely ground, acid digested by the Kjeldahl 
method, and the N and P concentrations were determined colorimetri-
cally (Blakemore et al., 1987). 

Specific leaf area, (SLA) was determined from 20 fully expanded 
fascicles per plant and expressed on a hemi-surface leaf area basis. 
Following Bown et al. (2009), leaf area was determined from [nld(1 +
π/n)]/2, where d is fascicle diameter, l is fascicle length and n is the 
number of needles per fascicle. SLA was expressed in µg cm− 2 as the 
quotient of dry weight and leaf area. Measurements of SLA were used to 
convert foliage nutrient concentrations to a hemi-surface area basis. 

2.5. Data analysis 

All analyses were undertaken at the plant level using a combination 
of Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) 
and R (R Development Core Team, 2011). Matlab was used to plot the 
hyperspectral spectra while the analyses were undertaken using R. The 
precision of developed models was compared using the coefficient of 
determination (R2) and root mean square error (RMSE). Analyses that 
categorised N and P limited plants used the variance inflation factor 
(VIF) to reduce the indices to a set that were not highly correlated using 
a threshold of five (Akinwande et al., 2015). 

2.5.1. Relationships between N, P and biochemical limitations to 
photosynthesis 

The strength of relationships between foliage nutrition (N, P) and the 

biochemical limitations to photosynthesis (Vcmax, Jmax) was examined to 
determine if these elements co-limit or independently limit photosyn-
thesis. Using all the data, linear models were developed to determine 
precision assuming co-limitation of photosynthesis by N and P. Nutrient 
ratios were used to separate the dataset into plants that were either N or 
P limited to test the hypothesis that photosynthesis was independently 
limited by these elements. Following previous literature (Aerts and 
Chapin, 2000; Knecht and Göransonn, 2004; Marschner, 1995; Reich 
and Schoettle, 1988) trees with an N/P ratio (expressed on a mass basis) 
of ≤10 were categorised as N deficient, while those with N/P > 10 were 
categorised as P deficient. We also split the data at N/P = 5 and N/P =
15 to examine how partitioning at these two ratios either side of N/P =
10 impacted the strength of relationships. 

2.5.2. Categorisation of N and P limited plants 
Random forest (Liaw and Wiener, 2002) was used to partition trees 

into N or P limited classes, segregated at N/P = 10, using the hyper-
spectral indices and SIF. Prior to this analysis these 84 variables were 
reduced to a subset of six using a procedure that sequentially eliminated 
correlated variables with a VIF that exceeded five (Akinwande et al., 
2015). The random forest model was fitted to this reduced set of pre-
dictors using a five-fold cross validation. The model fit was assessed 
using the area under the receiver operating characteristic curve (AUC). 
The AUC ranges from 0 to 1 and values in excess of 0.9 are considered to 
represent an excellent classification accuracy. The sensitivity of the 
model to different hyperspectral variables was determined through ex-
amination of variable importance. 

2.5.3. Prediction of foliage nutrition 
Following Kattenborn et al. (2019), all modelling used nutrient 

concentrations expressed on an area basis. Analyses examined the cor-
relation of foliage nutrition (N, P) and biochemical limitations to 
photosynthesis (Vcmax, Jmax) with predictor variables derived from the 
hyperspectral data that included SIF and the 83 derived Indices (Ap-
pendix 1). Predictions of N and P were made using respectively, N and P 
limited plants and the precision of these models were compared to 
predictions made using the entire dataset for both elements. Relation-
ships were developed using a range of functions that included linear, 
polynomial and exponential forms, to ensure that predictions were 
relatively unbiased. The strongest two predictor variables from these 
analyses were identified and plotted against foliage nutrition (N, P) and 
biochemical limitations to photosynthesis (Vcmax, Jmax). 

3. Results 

3.1. Foliar nutrition 

The applied treatments resulted in a wide range in N and P (Fig. 1). 
Values of N ranged from 0.41 to 2.12% when expressed on a mass basis 
and 11.1–49.0 µg cm− 2 on an area basis while P varied from respectively 
0.052–0.330% and 1.33–7.66 µg cm− 2. The relationship between N and 
P was insignificant when data was expressed on a mass (R2 = 0.0073; P 
= 0.52) or area basis (R2 = 0.0006; P = 0.85). Of the 60 plants, 43 were 
categorised as N limited while 17 were P limited and the separation of 
these groups is shown by a dotted line in Fig. 1. 

3.2. Hyperspectral data 

Trees that were limited by N had higher reflectance than P limited 
trees within the visible and red edge range from 482 nm to 732 nm 
(Fig. 2). Differences in the first derivative between the two groups 
occurred across a wider range than reflectance (Fig. 2). As expected, the 
first derivative for plants that were N limited was higher from 427 to 
554 nm, lower from 562 to 675 nm and exhibited a leftwards shift in the 
red edge from 678 to 764 nm (Fig. 2). 
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3.3. Testing the independence of N and P limitations 

Relationships between N and both Vcmax and Jmax were positive and 
significant for all data (Fig. 3a) and for data partitioned at N/P ratios of 
5, 10 and 15 (Fig. 3b–d). Compared to the relationship using all data, the 
precision of these relationships markedly increased when data was 
partitioned into values with N/P ratio ≤5 (Table 1). Precision gains were 
more modest using data with N/P ratio ≤10. Although R2 was similar to 
values using all data (Fig. 3c), the more sensitive indicator, RMSE was 
lower using data with N/P ratio ≤10 for both Vcmax (3.7 vs. 4.0 µmol m− 2 

s− 1) and Jmax (10.3 vs. 12.0 µmol m− 2 s− 1). There were small increases in 
RMSE for these relationships as N/P ratio increased from 10 to 15 
(Table 1). For data that was limited by P with N/P > 10, the relationship 

between N and both Vcmax and Jmax was non-significant, with R2 of 
respectively, 0.01 and 0.02 (data not shown). 

Using all data, relationships between P and both Vcmax and Jmax were 
insignificant and weak with R2 ranging from 0.04 to 0.05 (Fig. 3e). Using 
data from the P limiting range partitioned at N/P > 5 the precision of 
these two relationships markedly increased (Fig. 3f). There were further 
increases in precision when data was restricted to the P limiting range at 
N/P > 10 (Fig. 3g, Table 1) and values of R2 for Vcmax and Jmax using this 
range were, respectively, 0.50 and 0.58 (Table 1). Compared to N/P =
10 there were reductions in precision as N/P further increased to 15 
(Table 1). For data that was limited by N at an N/P ratio of 10 (i.e. N/P 
≤ 10), the relationship between P and both Vcmax and Jmax was signifi-
cant but weak with R2 values of respectively, 0.33 and 0.31 (data not 
shown). 

The mean precision of models using N and P to describe Vcmax 
increased from an average R2 of 0.40 using all data to values of 0.51 and 
0.59, respectively, using data partitioned at N/P = 5 and 10 and then 
declined to an R2 of 0.41 at N/P = 15 (Table 1). Similarly, there were 
marked gains in precision of models using N and P to predict Jmax with 
mean R2 increasing from 0.38 for relationships using all data to values of 
0.59 and 0.64, respectively, using data partitioned at N/P = 5 and 10, 
which declined to an R2 of 0.58 at N/P = 15 (Table 1). These results 
suggest that biochemical limitations to photosynthesis are indepen-
dently limited by N and P and confirm that a N/P ratio of 10 is most 
appropriate for partitioning data into N and P limiting ranges. 

3.4. Categorisation of N and P limited plants 

The random forest model used to partition N from P limited plants 
was very accurate and had an AUC of 0.96. A total of five variables, were 
used in the model (Fig. 4a) and the two most important variables in this 
model were PRI and SIF. A plot of the two strongest variables, high-
lighted the utility of these variables in separating N from P limitations 
(Fig. 4b). 

Fig. 1. Plot of foliage nitrogen against phosphorus concentration by type of 
limitation. The dashed line represents a N/P ratio of 10. Values of foliage N and 
P content above the line are N limited (filled red circles) while those below the 
line are P limited (open blue circles). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Variation in (a, c) reflectance and (b, d) the 1st derivative of reflectance against wavelength for N (red) and P (blue) limited plants at the (a, b) tree level and 
(c, d) treatment level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.5. Models of N and P 

Indices that were most strongly related to N, using observations from 
the N limited dataset, included the Carter Index 1 (R695/R420) and 
Lichtenthaler Index 2 (R440/R690), which had respective R2 of 0.89 and 
0.88 (Table 2, Fig. 5). However, these two indices were not significantly 
related to N when predictions were constrained to P limited plants 
(Table 2) and Fig. 5 shows that these data added scatter into relation-
ships using N limited data at high values of N. Predictions of N with 
these indices using all data had a similar R2 to predictions using only N 
limited data (Table 2). However, the RMSE of these predictions was 
markedly lower using N limited data than all data for both Lichtenthaler 
Index (3.21 vs 4.01 µg cm− 2) and Carter Index (3.09 vs. 3.86 µg cm− 2) 
reflecting the greater scatter of P limited data at higher values of N 
(Fig. 5). Using N limited data, the relationship between the Carter Index 
and N was non-linear and negative and best fitted by an exponential 
decay function (Fig. 5a) while the relationship between Lichtenthaler 
Index and N was positive and best fitted with a second order polynomial 
(Fig. 5b). 

Using the N limited dataset, many other chlorophyll related indices 
were significantly related to N. A total of 12 indices were strongly 
related to N with R2 > 0.8 and were modelled using a combination of 
linear and second order polynomial functions. The six indices that were 
most strongly related to N included Blue Red Pigment Index (Zarco- 
Tejada et al., 2005), Simple Ratio Pigment Index (Penuelas et al., 
1995a), Normalised Pigment Chlorophyll Ratio Index (Peñuelas et al., 
1994), Modified Normalised Difference, Red Edge Modified Normalised 
Difference Vegetation Index (Sims and Gamon, 2002) and PRI. 

Models of P were markedly different when data were restricted to 
only P limited observations than relationships fitted to all data or N 
limited observations. Using all the data, P was most strongly predicted 
by Anthocyanin Reflectance Index ((1/R550) – (1/R700)), Red Green 
Ratio Index (R690/R550) and Reciprocal Reflectance (1/R700) and these 
linear relationships had respective R2 of 0.31, 0.26 and 0.20. In contrast, 
when data was restricted to the P limited range only PRI and SIF were 
significantly related to P. 

Using observations from the P limited dataset, PRI was most strongly 
related to P (blue circles, Fig. 6a) and this positive linear relationship 

Fig. 3. Relationship between nitrogen (left panels), phosphorus (right panels) and both Vcmax (filled teal circles) and Jmax (open black circles) by N/P ratio, with 
values shown for (a, e) all data and data partitioned at (b, f) N/P = 5, (c, g) N/P = 10 and (d, h) N/P = 15. Linear relationships are fitted to both Vcmax (teal lines) and 
Jmax (black lines) and the precision of these relationships are given in Table 1. 
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had an R2 of 0.75. In contrast, the relationship between P and PRI was 
markedly weaker using the N limited dataset (R2 = 0.29; P < 0.001) and 
all data (R2 = 0.08; P = 0.03) (Table 2). Similarly, SIF exhibited a linear 
relationship of moderate strength with P (R2 = 0.52, P < 0.01) using P 
limited data (Fig. 6b), which was markedly stronger than the relation-
ships using N limited observations (R2 = 0.10; P = 0.04) or all data (R2 

= 0.01; P = 0.51). Using analysis of covariance, the linear models fitted 
between P and both PRI and SIF for N limited plants had a significantly 
lower slope (P < 0.01 for SIF and P < 0.001 for PRI) and significantly 
higher intercept (P < 0.001 for both PRI and SIF) than linear models 
fitted to P limited trees. 

Both PRI and SIF were significantly related to N when data was 

Table 1 
Statistics of models using N and P to predict Vcmax and Jmax using all data, and 
data partitioned at N/P = 5, 10 and 15. Shown for each model are the R2 and 
root mean square error (RMSE). Also shown are the average R2 and RMSE values 
across both N and P limiting ranges for all datasets.  

Dependent variable Ratio Model with N Model with P Average for N, P 

R2 RMSE R2 RMSE R2 RMSE 

Vcmax All data  0.76  4.0  0.04  8.0  0.40  6.0  
N/P = 5  0.79  1.9  0.23  7.6  0.51  4.8  
N/P = 10  0.68  3.7  0.50  2.7  0.59  3.2  
N/P = 15  0.78  3.8  0.04  3.4  0.41  3.6  

Jmax All data  0.71  12.0  0.05  21.6  0.38  16.8  
N/P = 5  0.89  3.4  0.28  20.1  0.59  11.8  
N/P = 10  0.69  10.3  0.58  8.6  0.64  9.5  
N/P = 15  0.78  10.6  0.38  8.5  0.58  9.6  

Fig. 4. (a) Importance of variables used to partition N from P limitations and 
(b) relationship between the two most important variables, Solar-Induced 
Chlorophyll Fluorescence (SIF) and Photochemical Reflectance Index (PRI), 
by the type of limitation. 

Table 2 
Summary of statistics for models predicting area based nitrogen and phosphorus 
content from hyperspectral Indices and Solar-Induced Chlorophyll Fluorescence 
(SIF). The presented models use the entire dataset (n = 60) and both the N 
limited (n = 43) and the P limited dataset (n = 17). The two hyperspectral 
variables with the strongest relations to N and P are shown and the strength of 
these relationships is shown for predictions of both elements. Values shown 
include the RMSE and coefficient of determination (R2) which is followed by the 
P category, in which asterisks ***, **,* represent significance at P = 0.001, 0.01 
and 0.05, respectively, and ns = non-significant at P = 0.05.  

Variable All data N limiting P limiting 

R2 RMSE R2 RMSE R2 RMSE 

Prediction of N 
Carter Index  0.90***  3.86  0.89***  3.09 0.01ns  3.32 
Lichtenthaler Ind.  0.89***  4.01  0.88***  3.21 0.02ns  3.29 
PRI  0.76***  5.92  0.83***  3.82 0.05ns  3.23 
SIF  0.64***  7.16  0.57***  6.01 0.08ns  3.19  

Prediction of P 
PRI  0.08*  1.53  0.29***  1.45 0.75***  0.37 
SIF  0.01ns  1.59  0.10*  1.64 0.52**  0.52 
Carter Index  0.04ns  1.56  0.30***  1.45 0.14ns  0.70 
Lichtenthaler Ind.  0.02ns  1.58  0.27***  1.48 0.05ns  0.73  

Fig. 5. Relationships between nitrogen content and (a) Carter Index and (b) 
Lichtenthaler Index for N (filled red circles) and P (open blue circles) limited 
plants. Lines have been fitted to relationships that are significant at P < 0.05 
with the red lines fitted to N limited data. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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constrained to the N limiting dataset (Table 2). The relationship between 
PRI and N was exponential (Fig. 6c) and accounted for 83% of the 
variance in the data while the relationship between SIF and N was linear 
(Fig. 6d) with R2 of 0.57 (Table 2). Relationships between these two 
variables and N were insignificant using the P limited dataset (Table 2) 
and these data added considerable scatter to the regressions using N 
limited trees at high values of N (Fig. 6c, d). This was reflected by dif-
ferences in RMSE which were markedly higher for all data than N 
limited data for relationships between N and both PRI (5.92 vs 3.82 µg 
cm− 2) and SIF (7.16 vs. 6.01 µg cm− 2). 

3.6. Models of Vcmax and Jmax 

Predictions using SIF and PRI demonstrated that these variables 
could be used to estimate Vcmax and Jmax using a single equation across 
both N and P limiting ranges (Fig. 7). Using all the data SIF exhibited 
strong positive linear relationships with both Vcmax (R2 = 0.78; P <
0.001) and Jmax (R2 = 0.80; P < 0.001), which were slightly reduced in 
strength when data was restricted to N limiting measurements, to 
respective R2 values of 0.69 and 0.77 (Fig. 7a, b). Under P limiting 
conditions, SIF was moderately related to Vcmax (R2 = 0.35; P = 0.09) 
and strongly related to Jmax (R2 = 0.68; P < 0.01) and these relationships 
aligned very well with predictions made under N limiting conditions 
(Fig. 7a, b). Using P limited data, predictions of both Vcmax and Jmax 
using SIF were of a similar strength to predictions made directly using P 
and markedly higher than predictions made using other indices (Fig. 8). 

Using all the data there were strong relationships between PRI and 
both Vcmax (R2 = 0.83; P < 0.001) and Jmax (R2 = 0.83; P < 0.001) that 
were best described using a quadratic relationship (Fig. 7c, d). These 

relationships remained strong, but the precision was slightly reduced 
when data was restricted to N limited measurements to respective R2 

values of 0.77 and 0.79 (Fig. 7c, d). Under P limiting conditions, positive 
correlations of moderate strength were found between PRI and Vcmax 
(R2 = 0.34; P = 0.10) and Jmax (R2 = 0.41; P = 0.06), that were generally 
aligned with predictions under N limiting conditions (Fig. 7c, d). 
Although predictions under P limiting conditions using PRI were not as 
strong as those that used SIF or P, these predictions were markedly more 
precise than those using other indices (Fig. 8). 

4. Discussion 

This study advances our understanding of the functional relation-
ships between SIF, PRI and both foliage nutrition and photosynthesis. 
The strongest relationships between N and P and both Vcmax and Jmax 
were developed through splitting the data at N/P = 10 suggesting that 
photosynthesis is independently limited by these elements. The model 
that was used to accurately partition N from P limited trees demon-
strated the importance of PRI and SIF in separating these two groups. 
Within each of these two limiting phases robust predictions of N and P 
were made using PRI and SIF. Although indices that were surrogates for 
chlorophyll were also useful for prediction of N these variables exhibited 
little correlation with P when data were restricted to the P limiting 
range. Through their correlations with N and P, both PRI and SIF were 
positively correlated to Vcmax and Jmax and these relationships appeared 
to be generalisable across the N and P limiting ranges. Partitioning of 
data into N and P limited ranges revealed relationships between 
hyperspectral data, foliage nutrition and photosynthesis that were not 
evident using the unpartitioned dataset. 

Fig. 6. Relationships between phosphorus content and (a) Photochemical Reflectance Index (PRI) and (b) Solar-Induced Chlorophyll Fluorescence (SIF). Also shown 
are relationships between nitrogen and (c) PRI and (d) SIF. Data shown include trees grown under N (filled red circles) and P limiting conditions (open blue circles). 
Lines have been fitted to relationships that are significant at P < 0.05 with the red lines fitted to N limited data and blue lines fitted to P limited data. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Our results support the premise that N and P independently limit 
photosynthesis. There were marked increases in the strength of re-
lationships between P and both Vcmax and Jmax as data was increasingly 
restricted from all measurements to data with N/P > 10. Although N was 
positively correlated to both Vcmax and Jmax using all data, there were 
increases in the precision of these relationships when data was restricted 

to the N limiting range, particularly at N/P ≤ 5, but also at N/P ≤ 10. 
Further evidence that N independently limits photosynthesis was 
demonstrated by the lack of a significant correlation between N and 
either Vcmax and Jmax when data was restricted to the P limiting range at 
N/P > 10. Compared to these predictions using N, the use of P as a 
predictive variable for data with N/P > 10 markedly improved the 
strength of these correlations for both Vcmax (R2 = 0.50 vs. 0.01) and 
Jmax (R2 = 0.58 vs. 0.02) strongly suggesting that there is a functional 
explanation for this uncorrelated scatter at high values of N. 

Trees that were limited by N and P were accurately partitioned using 
PRI, SIF and three indices that were representative of differences in 
reflectance and photosynthesis between these two groups. Variable 
importance values show that group separation was primarily attribut-
able to PRI and SIF. The separation of N and P limited trees by PRI and 
SIF into respectively, low and high values, reflects the higher rates of 
photosynthesis in P limited plants. 

In contrast to previous research our predictions of P using all data 
were relatively weak. The precision of the strongest model of P using all 
data (R2 = 0.31) was at the lower end of reported values for a range of 
species, which ranged from 0.32 to 0.95 (Asner and Martin, 2008; Asner 
et al., 2011; Curran et al., 2001; Gillon et al., 1999; Masaitis et al., 2014; 
Petisco et al., 2005; Stein et al., 2014), but was comparable to a previous 
study in P. radiata that utilised hyperspectral imagery from satellite 
(Sims et al., 2013). The poor precision of these models was expected as N 
and P were not significantly related. This feature of our dataset, in 
combination with partitioning of data into limiting ranges, revealed the 
key hyperspectral variables that were related to P. 

When data were restricted to the P limited range, only SIF and PRI 
were significant predictors of P and these variables exhibited moderate 
to strong positive relationships with P. In contrast to other indices used 
in the analysis, which are mainly proxies for chlorophyll content, these 
two variables are plant related traits that are more directly linked to 

Fig. 7. Relationships between Photochemical Reflectance Index and Solar-Induced Chlorophyll Fluorescence and (a, c) Vcmax and (b, d) Jmax under N (filled red 
circles) and P limiting conditions (open blue circles). The black lines were fitted to both N and P limited data. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Coefficient of determination between Vcmax (filled teal circles), Jmax 
(open black circles) and area based phosphorus, SIF, PRI, and 17 additional 
indices that were most strongly related to Vcmax and Jmax. The relationships 
shown were constructed using P limited data and predictors are sorted in 
descending order of mean R2 for Vcmax and Jmax. 
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photosynthetic activity. The availability of P has an impact on many 
important aspects of photosynthesis (Marschner, 1995; Taiz et al., 2015) 
and, as shown in our study, P has been found to be significantly and 
positively related to both Vcmax and Jmax (Bown et al., 2007). Given that 
photosynthetic rate is also positively related to both PRI (Gamon et al., 
2016; Ripullone et al., 2011; Scholten et al., 2019; Wong and Gamon, 
2015a,b) and SIF (Frankenberg et al., 2011; Guanter et al., 2014; Smith 
et al., 2018) it follows that these traits were positively related to P when 
data was restricted to the P limiting range. 

Indices that were proxies for chlorophyll content were the strongest 
predictors of N. The most precise predictions of N were made using the 
Carter and Lichtenthaler indices which are similar formulations that 
characterise the extent of leftwards shift in the red edge that occurs in 
plants with lower chlorophyll content (Carter, 1994; Lichtenthaler et al., 
1996). These indices accounted for 88–89% of the variance in N which 
suggests that wavelengths associated with protein in the SWIR range are 
not as important for predicting N in P. radiata as those associated with 
chlorophyll in the VNIR range. Splitting the full dataset into the N 
limiting range did not markedly alter the R2 of these relationships but 
did improve the RMSE which is a more sensitive indicator of model 
error. When data was restricted to the P limited range neither the Carter 
nor Lichtenthaler index were significantly related to N. This finding 
reinforces the importance of removing P limited data from these ana-
lyses to avoid adding scatter into predictions at high values of N. 

Analyses show that PRI and SIF were the only two variables that 
could be used to predict both N and P with a reasonable degree of pre-
cision. The use of a N/P ratio to separate out the P limiting range allowed 
us to detect relationships between P and these two variables that were 
insignificant using all data. In contrast to proxies for chlorophyll, both 
PRI and SIF can account for variation in P, through their correlations 
with biochemical limitations to photosynthesis, which have a sound 
mechanistic basis. 

SIF was strongly correlated with both Vcmax and Jmax and predictions 
exhibited relatively robust correlations across both the N and P limiting 
ranges. Although SIF has been widely used to predict gross primary 
productivity (Meroni et al., 2009; Porcar-Castell et al., 2014; Rascher 
et al., 2015), and photosynthesis in a range of species (Frankenberg 
et al., 2011; Guanter et al., 2014; Smith et al., 2018), with few excep-
tions (Camino et al., 2019), little research has linked SIF to Vcmax and 
Jmax at a fine scale. It has been hypothesised that SIF is a useful predictor 
of photosynthetic capacity as it can be used to selectively measure the 
quantity of absorbed light in chlorophyll (Rascher et al., 2015). Our 
results suggest that SIF can at least partially account for the role of P on 
photosynthetic capacity at high values of N as supported by the strong 
relationship found between SIF and P under P limiting conditions. 

Similarly, PRI was also strongly related to photosynthetic capacity 
and was able to account for variation in Vcmax and Jmax across both N and 
P limitations. Research has widely demonstrated the utility of PRI for 
predicting light use efficiency (Garbulsky et al., 2011; Peñuelas et al., 
2011) and key photosynthetic parameters under a range of stresses 
including severe drought conditions (Ripullone et al., 2011), cold winter 
temperatures (Gamon et al., 2016; Wong and Gamon, 2015a, b) and 
herbicide damage (Scholten et al., 2019). The relationship found here 
between PRI and photosynthetic capacity is consistent with Scholten 
et al. (2019) and has a strong theoretical basis as PRI can track plant 
photosynthetic activity through its intimate link with the dissipation of 
excess energy by nonphotochemical quenching (NPQ) via the xantho-
phyll cycle (Gamon et al., 1997). The xanthophyll cycle is activated 
during periods of excess excitation energy in the leaf and through this 
process violaxanthin is de-epoxidized to zeaxanthin. These increased 
concentrations in zeaxanthin reduce reflectance at wavelengths around 
531 nm, which results in reductions in PRI (Gamon et al., 1992; Peñuelas 
et al., 1995). As with SIF, our results suggest that PRI may provide a 
generalisable means of predicting photosynthetic capacity, through the 
correlation of this variable with both N and P, under a range of nutri-
tional limitations. However, a detailed examination of the mechanistic 

links between photosynthesis, nutrition and both PRI and SIF was 
beyond the scope of this study. Further research is required to more fully 
understand the nature of these linkages. 

The use of PRI and SIF to predict photosynthesis and foliage nutrition 
could be scaled up using hyperspectral imagery acquired from UAV, 
fixed wing aircraft or satellite. Both PRI and SIF can be determined using 
lightweight hyperspectral imagers (see review by Aasen et al., 2018) on 
board drones using linear-array imagers (Zarco-Tejada et al., 2012) with 
a limited number of spectral bands (Poblete et al., 2020). For large-scale 
monitoring purposes, the presented models could be used to monitor 
thousands of hectares using manned aircraft and commercial imaging 
spectrometers including large facilities such as APEX (Damm et al., 
2015). Currently there are a number of sophisticated aircraft-based 
platforms that allow capture of hyperspectral data (for summary see 
Watt et al., 2019) often in conjunction with other data sources (i.e. 
LiDAR, thermal). Sensors that can capture at a fine spectral resolution 
(≤5 nm) include Carnegie Airborne Observatory (CAO) and CAO-2 
systems (Asner et al., 2012) G-LiHT (Cook et al., 2013) and the LiCHy 
system (Pang et al., 2016). 

As summarised in Mohammed et al. (2019) measurements of SIF are 
currently taken from a number of satellite platforms (e.g. GOME-2, OCO- 
2) and the first satellite mission designed for SIF measurement, FLEX, is 
scheduled for launch in 2022. The recently launched PRISMA, DESIS 
and HISUI hyperspectral imagers, and the EnMAP sensor, which is 
scheduled for launch in 2021, are particularly suitable for estimating 
PRI and will provide imagery at a spatial resolution of 30 m with a 
relatively fine spectral resolution of up to 6.5 nm within the VNIR range 
(Guanter et al., 2015). In addition, Sentinel-3 has been proposed for 
Vcmax estimation at global scales using radiative transfer models such as 
SCOPE (Prikaziuk and van der Tol, 2019). 

Scaling up the methods presented here using lower resolution im-
agery acquired as part of large-scale monitoring campaigns will require 
appropriate radiative transfer modelling methods. These are needed to 
account for the structural, background and shadow effects typical of 
forest stands. A robust assessment of the physiological status of vege-
tation will require physical models to analyse the impacts of structural 
effects on the radiance and reflectance signal used to calculate the 
fluorescence emission and indices such as PRI. 

In conclusion, this study shows that N and P independently pose 
biochemical limitations to photosynthesis and the most precise re-
lationships between foliage nutrition and Vcmax and Jmax were con-
structed using data partitioned at N/P = 10. Although the strongest 
models of N used indices that served as proxies for chlorophyll content 
these indices were not significantly related to P within the P limiting 
range. Using P limited data only PRI and SIF were significantly related to 
P and both of these variables were also robust predictors of N using N 
limited data as they are proxies for photosynthesis. Given the robust 
correlations of PRI and SIF with N and P, these variables were also 
precise predictors of Vcmax and Jmax across both N and P limiting ranges. 
Separation of data into N and P limited groups provided insight into 
relationships that would have otherwise been concealed and demon-
strate that more robust predictions of N and P and biochemical limita-
tions to photosynthesis can be developed using this method. Further 
research should examine this approach for identifying N and P limita-
tions and developing models that link hyperspectral data to nutrient 
content and photosynthesis at increased scale across a broader range of 
species. 
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Appendix 1. Summary of indices used within this study.  

Index Full name Equation Reference 

ARI Anthocyanin Reflectance Index (1/R550) − (1/R700) Gitelson et al. (2001) 
BGI1 Blue green pigment index R400/R550 Zarco-Tejada et al. (2005) 
BGI2 Blue green pigment index R450/R550 Zarco-Tejada et al. (2005) 
BRI1 Blue red pigment index R400/R690 Zarco-Tejada et al. (2005) 
BRI2 Blue red pigment index R450/R690 Zarco-Tejada et al. (2005) 
CARI Chlorophyll absorption ratio index (R700 − R670) − (0.2 × (R700 − R550)) Kim et al. (1994) 
CI Colouration index (R800 − R550)/R800 Liu and Moore (1990) 
CRI1 Carotenoid Reflectance Index (1/R510) − (1/R550) Gitelson et al. (2002b) 
CRI2 Carotenoid Reflectance Index 2 (1/R510) − (1/R700) Gitelson et al. (2002b) 
CTR1 Carter Index 1 R695/R420 Carter (1994) 
CTR2 Carter Index 2 R695/R760 Carter (1994) 
CTR3 Carter Index 3 R605/R760 Carter (1994) 
CTR4 Carter Index 4 R710/R760 Carter (1994) 
CTR5 Carter Index 5 R695/R670 Carter (1994) 
CUR Curvature index (R675 × R690)/R6832 Zarco-Tejada et al. (2001) 
Datt99 Datt, 99 (R850 − R710)/(R850 − R680) Datt (1999) 
Datt1 Maccioni, 2001 (R780 − R710)/(R780 − R680) Maccioni et al. (2001) 
DVI Difference vegetation index R800 − R680 Jordan (1969) 
EVI Enhanced vegetation index 2.5 × ((R800 − R670)/(R800 − (6 × R670) − (7.5 × R475) + 1)) Huete et al. (1997) 
GI Greenness index R554/R677 Zarco-Tejada et al. (2005) 
GM1 Gitelson and Merzlyak, 94 R750/R705 Gitelson and Merzlyak (1994) 
GM2 Gitelson and Merzlyak, 94 R750/R555 Gitelson and Merzlyak (1994) 
GM3 Gitelson and Merzlyak, 97 R750/R550 Gitelson and Merzlyak (1997) 
GM4 Gitelson and Merzlyak, 97 R750/R700 Gitelson and Merzlyak (1997) 
GNDVI Green Normalised Difference VI (R780 − R550)/(R780 + R550) Gitelson et al. (1996) 
GRG Gitelson ratio green (R800/R550) − 1 Gitelson et al. (2003) 
HNDVI2 Hyperspectral normalised difference VI (R827 − R668)/(R827 + R668) Oppelt and Mauser (2004) 
LIC1 Lichtenthaler Index 1 (R800 − R680)/(R800 + R680) Lichtenthaler et al. (1996) 
LIC2 Lichtenthaler Index 2 R440/R690 Lichtenthaler et al. (1996) 
LIC3 Lichtenthaler Index 3 R440/R740 Lichtenthaler et al. (1996) 
Macc01 Macc 01 (R780 − R710)/(R780 - R680) Maccioni et al. (2001) 
MCARI Modified chlorophyll absorption ratio index ((R700 − R670) − 0.2 × (R700 − R550)) × (R700/ R670) Daughtry et al. (2000) 
MCARI1 Mod. Chlorophyll absorption ratio index 1 1.2 × (2.5 × (R800 - R670) − 1.3 × (R800 − R550)) Haboudane et al. (2004) 
MCARI2 Mod. Chlorophyll absorption ratio index 2 1.5 × (2.5 × (R800 − R670) − 1.3 × (R800 − R550))

(
(2 × R800 + 1)2) − (6 × R800 − 5 ×

(
R6700.5

) )0.5
− 0.5  

Haboudane et al. (2004) 

MCARI3 Revised MCARI ((R750 − R705) − 0.2 × (R750 − R550)) × (R750/ R705) Wu et al. (2008) 
McM_94 McMurtrey, 1994 R700/R670 McMurtrey Iii et al. (1994) 
mND Modified normalised difference (R750 − R445)/(R750 + R705 − 2 × R445) Sims and Gamon (2002) 
mNDVI Modified NDVI (R750 − R705)/(R750 + R705) Gitelson and Merzlyak (1994) 
mNDVI1 Modified NDVI (R755 − R745)/(R755 + R745) Mutanga and Skidmore (2004) 
mNDVI8 Modified NDVI (R755 − R730)/(R755 + R730) Mutanga and Skidmore (2004) 
mNDVIre Modified NDVI red edge (R750 − R705)/(R750 + R705 − 2 × R445) Sims and Gamon (2002) 
mSAVI Modified Soil Adjusted VI 0.5 × (2 × R800 + 1 − (((2 × R800 + 1)2 − 8 × (R800 − R670))0.5)) Qi et al. (1994) 
mSR Modified Simple Ratio ((R800/R670) − 1)/((R800/R670 + 1)0.5) Chen (1996) 
mRESRI Modified Red Edge Simple Ratio (R750 − R445)/(R705 − R445) Sims and Gamon (2002) 
MTCI MERIS terrestrial chlorophyll index (R754 − R709)/(R709 − R681) Dash and Curran (2004) 
mTVI1 Modified Triangular VI 1 1.5 × (1.2 × (R712 − R550) − 2.1 × (R670 − R550)) Guan and Liu (2009) 
mTVI2 Modified Triangular VI 2 1.5 × (1.2 × (R800 − R550) − 2.5 × (R670 − R550))

(
(2 × R800 + 1)2) − (6 × R800 − 5 ×

(
R6700.5

) )0.5
− 0.5  

Haboudane et al. (2004) 

NDVI Normalised difference vegetation index (R800 − R670)/(R800 + R670) Rouse Jr et al. (1974) 
NDVI2 Normalised difference vegetation index 2 (R800 − R680)/(R800 + R680) Rouse Jr et al. (1974) 
NDVI3 Normalised difference vegetation index 3 (R831 − R667)/(R831 + R667) Merton (1998) 
NDVI4 Normalised difference vegetation index 4 (R774 − R667)/(R774 + R667) Zarco-Tejada et al. (1999) 
NPCI Normalised pigment chlorophyll ratio index (R680 − R430)/(R680 + R430) Peñuelas et al. (1994) 
NPQI Normalised phaeophytinization index (R415 − R435)/(R415 + R435) Barnes et al. (1992) 
OSAVI Optimised soil adjusted VI 1.16 × (R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. (1996) 
rOSAVI Revised OSAVI 1.16 × (R750 − R705)/(R750 + R705 + 0.16) Wu et al. (2008) 
PRI Photochemical Reflectance Index (R531 − R570)/ (R531 + R570) Gamon et al. (1992) 
PSND_680 Pigment specific normalised difference 680 (R800 − R680)/(R800 + R680) Blackburn (1998) 
PSND_635 Pigment specific normalised difference 635 (R800 − R635)/(R800 + R635) Blackburn (1998) 
PSSR_A Pigment specific simple ratio Chl a R800/R680 Blackburn (1998) 
PSSR_B Pigment specific simple ratio Chl b R800/R635 Blackburn (1998) 
RDVI Renormalised difference VI (NDVI2 × DVI)0.5 Roujean and Breon (1995) 
RENDVI Normalised difference VI – red edge (R750 − R705)/(R750 + R705) Gitelson and Merzlyak (1994) 
RGI Red Green Ratio Index R690/R550 Zarco-Tejada et al. (2005) 

(continued on next page) 
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(continued ) 

Index Full name Equation Reference 

Rre Reflectance at the inflection point (R670 + R780)/2 Croft et al. (2014) 
RR Reciprocal reflectance 1/R700 Gitelson et al. (1999) 
SIPI [680] Structure insensitive pigment index [680] (R800 − R445)/(R800 − R680) Penuelas et al. (1995a) 
SIPI [705] Structure insensitive pigment index [705] (R800 − R445)/(R800 + R705) Penuelas et al. (1995a) 
SR Simple ratio R774/R677 Chen (1996) 
SR VI Simple ratio VI R800/R670 Jordan (1969) 
SR VIb Simple ratio VI [750, 550] R750/R550 Gitelson and Merzlyak (1997) 
SRPI Simple ratio pigment index R430/R680 Penuelas et al. (1995a) 
TCARI Transformed chlorophyll absorption ratio index 3 × ((R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)) Haboudane et al. (2002) 
RTCARI Revised Transformed chlorophyll absorption index 3 × ((R750 − R705) − 0.2 × (R750 − R550) × (R750/R705)) Wu et al. (2008) 
TVI Triangular VI 0.5 × (120 × (R750 − R550) − 200 × (R670 − R550)) Broge and Leblanc (2001) 
VI Vegetation Index (R700 − R670)/(R700 + R670) Gitelson et al. (2002a) 
VOG1 Vogelmann index R740/R720 Vogelmann et al. (1993) 
VOG2 Vogelmann index (R734 − R747)/(R715 + R726) Vogelmann et al. (1993) 
VOG3 Vogelmann index (R734 − R747)/(R715 + R720) Vogelmann et al. (1993) 
ZM Zarco and Miller R750/R710 Zarco-Tejada et al. (2001) 
MCARI_OSAVI Ratio of MCARI to OSAVI MCARI/OSAVI  
MCARI3_rOSAVI Ratio of rMCARI/rOSAVI rMCARI/rOSAVI Wu et al. (2008) 
RTCARI_ROSAVI Ratio of revised TCARI to revised OSAVI RTCARI/ROSAVI Wu et al. (2008) 
TCARI_OSAVI Ratio of TCARI to OSAVI TCARI/OSAVI   
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Marshak, A., Carmona, P.L., Kaufmann, R.K., Lewis, P., 2013. Hyperspectral remote 
sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. 110, E185–E192. 

Kokaly, R.F., 2001. Investigating a physical basis for spectroscopic estimates of leaf 
nitrogen concentration. Remote Sens. Environ. 75, 153–161. 

Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E., Wessman, C.A., 2009. 
Characterizing canopy biochemistry from imaging spectroscopy and its application 
to ecosystem studies. Remote Sens. Environ. 113, S78–S91. 

Lewis, N.B., Ferguson, I.S., 1993. Management of Radiata Pine. Inkata Press, Melbourne.  
Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2, 

18–22. 
Lichtenthaler, H., Lang, M., Sowinska, M., Heisel, F., Miehe, J., 1996. Detection of 

vegetation stress via a new high resolution fluorescence imaging system. J. Plant 
Physiol. 148, 599–612. 

Liechty, H.O., Fristoe, C., 2013. Response of midrotation pine stands to fertilizer and 
herbicide application in the Western Gulf Coastal Plain. South. J. Appl. For. 37, 
69–74. 

Liu, J., Moore, J.M., 1990. Hue image RGB colour composition. A simple technique to 
suppress shadow and enhance spectral signature. Int. J. Remote Sens. 11, 
1521–1530. 

Long, S.P., Bernacchi, C.J., 2003. Gas exchange measurements, what can they tell us 
about the underlying limitations to photosynthesis? Procedures and sources of error. 
J. Exp. Bot. 54, 2393–2401. 

Luther, J.E., Carroll, A.L., 1999. Development of an index of balsam fir vigor by foliar 
spectral reflectance. Remote Sens. Environ. 69, 241–252. 

Maccioni, A., Agati, G., Mazzinghi, P., 2001. New vegetation indices for remote 
measurement of chlorophylls based on leaf directional reflectance spectra. 
J. Photochem. Photobiol., B 61, 52–61. 

Marschner, H., 1995. Mineral Nutrition of Higher Plants, second ed. Academic Press, 
London.  

Martin, M.E., Plourde, L.C., Ollinger, S.V., Smith, M.L., McNeil, B.E., 2008. 
A generalizable method for remote sensing of canopy nitrogen across a wide range of 
forest ecosystems. Remote Sens. Environ. 112, 3511–3519. 

Martin, R.E., Asner, G.P., Francis, E., Ambrose, A., Baxter, W., Das, A.J., Vaughn, N.R., 
Paz-Kagan, T., Dawson, T., Nydick, K., 2018a. Remote measurement of canopy water 
content in giant sequoias (Sequoiadendron giganteum) during drought. For. Ecol. 
Manage. 419, 279–290. 

Martin, R.E., Chadwick, K.D., Brodrick, P.G., Carranza-Jimenez, L., Vaughn, N.R., 
Asner, G.P., 2018b. An approach for foliar trait retrieval from airborne imaging 
spectroscopy of tropical forests. Remote Sens. 10, 199. 

Masaitis, G., Mozgeris, G., Augustaitis, A., 2014. Estimating crown defoliation and the 
chemical constituents in needles of Scots pine (Pinus sylvestris L.) trees by laboratory 
acquired hyperspectral data. Balt. For. 20, 314–325. 

McMurtrey Iii, J., Chappelle, E.W., Kim, M., Meisinger, J., Corp, L., 1994. Distinguishing 
nitrogen fertilization levels in field corn (Zea mays L.) with actively induced 
fluorescence and passive reflectance measurements. Remote Sens. Environ. 47, 
36–44. 

McNeil, B.E., de Beurs, K.M., Eshleman, K.N., Foster, J.R., Townsend, P.A., 2007a. 
Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An 
assessment using MODIS, Hyperion, and Landsat ETM+. Geophys. Res. Lett. 34. 

McNeil, B.E., Read, J.M., Driscoll, C.T., 2007b. Foliar nitrogen responses to elevated 
atmospheric nitrogen deposition in nine temperate forest canopy species. Environ. 
Sci. Technol. 41, 5191–5197. 

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 
2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods 
and applications. Remote Sens. Environ. 113, 2037–2051. 

Merton, R., 1998. Monitoring community hysteresis using spectral shift analysis and the 
red-edge vegetation stress index. In: Proceedings of the Seventh Annual JPL Airborne 
Earth Science Workshop, pp. 12–16. 

Middleton, E.M., Cheng, Y.-B., Hilker, T., Black, T.A., Krishnan, P., Coops, N.C., 
Huemmrich, K.F., 2009. Linking foliage spectral responses to canopy-level ecosystem 
photosynthetic light-use efficiency at a Douglas-fir forest in Canada. Can. J. Remote 
Sens. 35, 166–188. 

Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L., 
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