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Abstract—Many applications require a timely acquisition of high
spatial and spectral resolution remote sensing data. This is often not
achievable since spaceborne remote sensing instruments face a
tradeoff between spatial and spectral resolution, while airborne
sensorsmounted onamanned aircraft are too expensive to acquire a
high temporal resolution. This gap between information needs and
data availability inspires research on using Remotely Piloted Air-
craft Systems (RPAS) to capture the desired high spectral and
spatial information, furthermore providing temporal flexibility.
Present hyperspectral imagers on board lightweight RPAS are still
rare, due to the operational complexity, sensor weight, and insta-
bility. This paper looks into the use of a hyperspectral–hyperspatial
fusion technique for an improved biophysical parameter retrieval
and physiological assessment in agricultural crops. First, a biophys-
ical parameter extraction study is performed on a simulated citrus
orchard. Subsequently, the unmixing-based fusion is applied on a
real test case in commercial citrus orchards with discontinuous
canopies, in which amore efficient and accurate estimation of water
stress is achieved by fusing thermal hyperspatial and hyperspectral
(APEX) imagery. Narrowband reflectance indices that have proven
their effectiveness as previsual indicators of water stress, such as the
Photochemical Reflectance Index (PRI), show a significant increase
in tree water-stress detection when applied on the fused dataset
compared to the original hyperspectral APEX dataset ( ,
< vs. , > ). Maximal values of 0.93 and

0.86 are obtained by a linear relationship between the vegetation
index and the resp., water and chlorophyll, parameter content
maps.

Index Terms—Citrus, fusion, hyperspatial, hyperspectral,
thermal, unmixing, water stress.

I. INTRODUCTION

F OR many precision farming applications, the continuous
retrieval of spatial, spectral, and/or thermal variability

within heterogeneous crops is of great importance. This detailed
information is needed for identifying vegetation stress, which is
one of the major factors influencing farming management deci-
sions making. Since wilting and dying of plants only occur at
extreme developed stress stages, a visual inspection of vegetation
health status is most often not time-efficient to avoid yield losses.

Numerous studies have focused on early, nondestructive stress
detection for more efficient crop management practices. From
these, we can conclude that the physiological responses to stress
can be captured in reflectance signals and temperature profiles
[1]–[3]. Methods regarding canopy temperature were mainly
focused on the effects of water stress on stomatal closure and
thermal energy dissipation pathways. In 1982, Idso [4] found out
that a large difference between canopy temperature and ambient
temperature (Tc–Ta) was associated with water stressed plants,
whereas low difference values were associated with well-
irrigated plots. Other studies mainly focused on reflectance
patterns. Vegetation indices (VIs) provide a very simple yet
elegant method for extracting the green plant quantity signal
from complex canopy spectra. Often computed as differences,
ratios, or linear combinations of reflected light in visible andNIR
wavebands [5]–[8], VIs exploit the basic differences between
soil and plant spectra. Broad waveband Vis, however, typically
lacks diagnostic capability for identifying a particular type of
stress or for determining why biomass is at a certain level.
Narrower band, hyperspectral, indices such as the Photochemical
Reflectance Index (PRI), Water Band Index (WBI), and Nor-
malized Pigment Chlorophyll Ratio Index (NPCI) are examples
of reflectance indices that are correlated with certain physiologi-
cal plant responses and have promise for diagnosing water and
nutrient stress [9]–[11].

Next to the high spectral and temporal resolution imagery
needed to timely capture subtle differences in reflectance spectra
caused by plant physiological responses, also high spatial
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resolution data are needed. Suarez et al. [12], e.g., indicated the
importance of acquiring very high spatial resolution imagery
( ) for assessing fruit quality andwater stress in citrus and
olive orchards. Stuckens et al. [13] came to a similar conclusion
when exploring the number of spectrallymixed pixels (i.e., trees,
weeds and/or soil all occur within a single image pixel) in
simulated orchards. They concluded that pixel sizes should be
smaller than 1 m in order to obtain a minimum of 50% pure pixels
and smaller than 10 cm for 82% pure pixels. Followup studies
demonstrated that thesemixing effects of plants and background/
litter, whether linear or nonlinear, play an important role in
obstructing a detailed assessment of crop conditions in these
heterogeneous architectures [14], [15].

Until recently, it was not feasible or affordable to capture high
spectral, spatial, and temporal resolution image datasets. For
high temporal resolution imagery, one should refer to spaceborne
data. However, due to physical limitations and data-transfer
requirements the design and development of spaceborne remote
sensors face a tradeoff between the spatial and spectral resolution
[16]. The Hyperion sensor on board the EO-1 satellite currently
offers the highest spectral resolution available from space. The
spatial resolution of 30 m restricts, however, a proper use of the
inherent potential of these data for detailed mapping purposes
[17] and precision farming applications [18]. On the other hand,
sensors such as Quickbird and WorldView-2 are able to offer
very high spatial resolution imagery, but at the expense of their
spectral resolution: panchromatic at submeter spatial resolution,
and 4 (Quickbird) to 8 (Worldview-2) broad spectral bands with
approximately 2.5 m spatial resolution. With the launch of new
high-resolution (HR) satellites such asWorldview-3 and planned
hyperspectral missions like Enmap [19], [20], Prisma [21], and
Hyspiri [22] much more data will become available to the user
community. Still, the tradeoff in spectral and spatial resolution
will remain and new advanced data and decision fusion
approaches are needed to make optimal use of the future sensor
ensembles.

Full-range (400–2500 nm) hyperspectral airborne sensors
such as Airborne Prism EXperiment (APEX), Airborne
Hyperspectral Scanner (AHS), Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), and Hyperspectral Mapper
(Hymap), also face this spectral–spatial resolution tradeoff
[16]. These hyperspectral airborne sensors are limited to a
spatial resolution of around 2 m, which for the above men-
tioned precision farming application might not be sufficient.
Novel hyperspectral sensors, such as HYSPEX and FIRST,
could be mounted on a manned aircraft which, when flying
very low, might provide high spatial and spectral resolution
data. However, due to the high operational cost of manned
flight campaigns, the temporal resolution of this kind of data
will be limited.

Innovative developments in Remotely Piloted Aircraft
Systems (RPAS) platforms and associated sensing technolo-
gies are nowadays expanding at an increasing rate, bringing
image resolutions to unprecedented levels of detail, thereby
opening exciting new application opportunities [23]. This is
especially of huge interest to the precision farming community
[24], which requires flexible and frequent data capturing.
Although, mainly due to payload restrictions, full-range optical

hyperspectral sensors (i.e., ranging from 350 to 2500 nm) are
not yet suited to be operated in an operational manner on these
lightweight RPAS platforms proposed for precision agriculture.
Only few studies have successfully tested pushbroom hyper-
spectral VNIR sensors on a small, lightweight, fixed-wing
RPAS [25].

In an attempt to overcome current spatial, spectral, temporal
resolution tradeoffs in spectral sensor design, this study inves-
tigates the possibility of assembling a promising new data source
through fusing very-high spatial and high spectral imagery based
on unmixing techniques, as such enabling more detailed moni-
toring purposes.We thereby hypothesize that the combination of
the high spatial resolution imagery captured by a sensor mounted
on a RPAS and the more detailed spectral information available
from airborne hyperspectral sensors, albeit at lower spatial
resolution, can help to overcome the spatial–spectral data avail-
ability tradeoff. Reviews of data fusion methods can be found in
[26] and [27]. An interesting unmixing-based fusion technique
was previously proposed by Zurita-Milla et al. [28], who
extended on the work of Zhukov et al. [29] and Filiberti [30].
In each of these studies, a multisensor, multiresolution fusion
technique was applied to unmix low spatial resolution images
using the information about their pixel composition from
coregistered high spatial resolution images. Yet, none of these
studies were performed on very high spatial (cm resolution)
and hyperspectral datasets. Filiberti [30] merged a high-spatial-
resolution panchromatic band with a low-spatial-resolution
multispectral Landsat TM band with a 1:2 ground sample
distance (GSD) ratio between the panchromatic (15 m) and the
TM multispectral band (30 m). As such, he aimed at restoring
the multispectral image using content from the higher resolu-
tion panchromatic image. Zurita-Milla et al. [28] showed that
the unmixing-based data fusion approach can be used to
successfully downscale MERIS FR information (300 m pixel
size, 15 bands) to a Landsat-like spatial resolution (25 m pixel
size, 6 bands) and as such obtain better MERIS land products.
They successfully used the MERIS fused images to assess
vegetation status by evaluating the Normalized Difference
Vegetation Index (NDVI), the Modified Transformed Chloro-
phyll Index (MTCI), and the Modified Green Vegetation Index
(MGVI).

To address the needs for the early detection of vegetation
stress, i.e., high detailed, hyperspectral, and frequent data, we
investigated the added value of unmixing-based fusion of un-
manned aerial systems and airborne hyperspectral imagery. A
spatial unmixing fusion algorithm is, therefore, implemented and
applied on simulated and experimental hyperspatial and hyper-
spectral citrus orchard image datasets. The simulated citrus
orchard thereby serves as a preliminary validation tool for the
fusion algorithm. For the in situ datasets, the fusion process is
applied on the most detailed information available both spectrally
and spatially. Hyperspatial (cm) images are gathered by a
thermal sensor installed on a highly flexible RPAS, whereas
the hyperspectral data are acquired by the APEX sensor. The
hyperspectral and hyperspatial datasets are fused or spatially
unmixed (SpU) in order to assess the performance of narrowband
physiological indices for estimating water stress levels in citrus
orchards at a 20-cm scale.
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II. METHODS

A. Drought Stress Assessment

Stem water potential ( ) is known to be a reliable plant-
basedwater status indicator for irrigation scheduling in fruit trees
[31], [32]. However, its measurement is a cumbersome proce-
dure and requires frequent trips to the field and a significant input
of labor.Measurements of the stemwater potential are, therefore,
not useful to monitor drought stress in an operational way.

For that reason, spectral VIs were preferred for estimating
water stress from complex canopy spectra, since they provide a
simple and efficient method to do so. The NDVI is probably the
most studied and implemented vegetation index ever [33]. The
NDVI makes use of the characteristic features of vegetative
reflectance spectra, namely low reflectance in the red region of
the spectrum due to chlorophyll absorption and high reflectance
values in the near infrared domain due to scattering caused by
internal leaf structure. The optimal information on the physio-
logical status of a plant is, however, not necessarily related to
those two regions. Moreover, the NDVI is often not a good
indicator of stress as it is only accurate for Leaf Area Index (LAI)
(defined as the one-sided green leaf area per unit ground surface
area), biomass, and chlorophyll determination at relatively low
factor levels, due to a saturation effect at higher levels of those
factors [34], [35]. The theory that underpins this vegetation
index is, however, promising. Standardized indices have the
potential of estimating biophysical parameters in a manner
more meaningful than simple ratio indices due to their inherent
characteristic of reducing the effects of spectral variations
caused by surface topography [36] and sun elevation for
different parts of an image. In line with this assumption, the
standardized difference of the simulated spectral reflectance
values [of low-resolution hyperspectral (LR-HS), HR, high-
resolution hyperspectral (HR-HS) images], and of the unmix-
ing-based fused HR, hyperspectral image, referred to as SpU
image was calculated for each possible combination of two
different wavelengths for realistic ranges of chlorophyll and
water content values (1) [37]

with and being the spectral reflectance at wavelength and
wavelength , respectively, with and ranging from 400 to
2500 nm.

Since the data in the validation experiment was simulated, the
portions or fractions of soil and vegetation for each pixel were
known as well. Multiplying these fractions with the leaf water
and chlorophyll content values enabled the reconstruction of
reference water and chlorophyll maps. Hitherto, two reference
biophysical parameter maps and four spectral images (LR-HS,
HR, HR-HS, and SpU) were available. A map representing the
coefficients of determination ( ) of the linear relationship
between each possible SDVI map and the reference water and
chlorophyllmapswas then calculated. This approach allowed the
selection of an optimal SDVI to estimate water and chlorophyll
content and in the meantime allowed to check how well the
commonly used biophysical parameter related VIs perform on

the 1) hyperspectral-low spatial (LR-HS), 2) hyperspatial–
hyperspectral (HR-HS), and the 3) fused hyperspectral–
hyperspatial (SpU) dataset.

Since narrowband indices (Table I) closely related to the
1) epoxidation state of the xanthophylls cycle; 2) chlorophyll

concentration; 3) blue/green/red ratio indices; 4) caroten-
oid concentration; and 5) tree crown structure have been applied
in a previous study to detect water stress in citrus orchards at the
tree level [11], our focus was reoriented on these indices for the
experimental study. Zarco-Tejada concluded from his study that
the xanthophyll pigment related PRI calculated with the 570 nm
(PRI570) [38] as well as with 515 nm (PRI515) band as a
reference [39], was significantly related to the stem water
potential, and as such indirectly to the water status of the plant.
Also in other studies, PRI has been used to assess previsual water
stress at leaf level [40], [41], at canopy level [42]–[44] and using
airborne imaging spectroscopy [45]. The PRI index [38], [46] is
based on the short-term reversible xanthophyll pigment changes
accompanying plant stress [9], [47]. These changes are linked to
the dissipation of excess absorbed energy that cannot be pro-
cessed through photosynthesis [10], [48]–[51]. At the leaf and
canopy levels, the PRI has been extensively found adequate to
estimate photosynthetic performance [52].

Also the Transformed Chlorophyll Absorption Ratio Index
(TCARI) showed sensitivity to stress levels, and the blue/green
ratio BGI1 was highly significant. The effects of water stress on
the canopy structure were successfully captured by structural
indices such as NDVI, RDVI, SR, MSR, OSAVI, TVI, and
MTVI. For the 14 trees under investigation in the three selected
orchards of the study area, the correlation between all possible
SDVIs, including the above-mentioned indices, and the stem
water potential was calculated. The index pixel values of the
fused image (28 cm) were averaged over each tree. A linear
relationship was sought between the VIs, calculated from the
fused and the original APEX datasets, and the in situ measured
stem water potentials as well as between the thermal data and the
stem water potentials.

TABLE I
COEFFICIENTS OF DETERMINATION OBTAINED THROUGH NARROWBAND INDICES

FROM APEX AND SPU IMAGERY AGAINST STEM POTENTIAL

* < ,
** < ,
*** < .
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B. Fusion Method—SpU

SpU is a fusion technique, which aims at combining the
detailed information from two images over the same study area:
one with low spatial and high spectral resolution (in our case a
hyperspectral airborne image), and one with high spatial and low
spectral resolution (in our case a thermal RPAS image) [28], [29].

In order to easily understand this fusion method, some theo-
retical background knowledge on spectral unmixing or spectral
mixture analysis (SMA) is required. Therefore, we hereby
shortly introduce this commonly used image analysis technique,
which converts mixed pixel reflectance values into numerical
subpixel fractions of a few ground components [53]. Although
nonlinear mixing effects are well-acknowledged in vegetated
areas [54], [55], [14], [96], [97], linear mixing models have
proven to be adequate in the monitoring of vegetative systems
[59], [60]. In the linear mixing model, mixed pixel signals (r) are
modeled as a linear combination of pure spectral signatures of its
constituent components (i.e., endmembers), weighted by their
subpixel fractional cover [56]

In (2), is a matrix in which each column corresponds to the
spectral signal of a specific endmember. is a column vector

denoting the cover fractions occupied by each of
the endmembers in the pixel. is the portion of the spectrum
that cannot be modeled using these endmembers. A critical
success factor of SMA is the selection of appropriate endmem-
bers [57], [58]. The spectral signatures of the endmembers may
be 1) derived from spectral libraries built from field or laboratory
measurements, obtained using ground-based or portable spectro-
radiometers (e.g., [59], [60]); 2) derived directly from the image
data themselves (e.g., [61]–[63]); or 3) simulated using radiative
transfer models (e.g., [64]–[66], Once the endmembers and their
spectral signatures are known and if the number of endmembers
is less than the number of spectral bands, the system of (1) is
over-determined and may uniquely be inverted using techniques
to solve for the fractions to solve for the fractions minimizing the
error term in (2). Least squares regression analysis is one of
themost commonly used optimization techniques [67]. SMAcan
be implemented without constraints (e.g., [68]), but physically
meaningful abundance estimates are often obtained by con-
straining the coefficients in (2) to sum to unity and to be positive
[69], [70].

The SpU fusion algorithm applied in this study differs from
spectral unmixing as it tries to recover the spectra for endmember
classes within a pixel, instead of the cover fractions of the
different materials. The material fractions can be deduced from
the high spatial, low spectral resolutionRPAS image. Fig. 1 gives
a visual representation of the spatial unmixing technique. Several
steps are involved in the procedure startingwith the classification
of the high spatial resolution image in classes (in casu, soil,
and vegetation). Fraction maps are subsequently created per
predefined kernel (in casu, five by five) of the hyperspectral
pixels, by counting for each class the amount ofHRpixels, which
are present in the corresponding lower resolution pixel. Once the
fraction maps are calculated and given the hyperspectral
reflectance values for the hyperspectral pixels at a particular

wavelength of interest, the spatial unmixing equation can be
solved by least squares optimization, in order to find the reflec-
tance value at that particularwavelength of the class endmembers

. The unmixing is thus solved for each low spatial resolution
band independently. Therefore, a kernel size larger than or equal
to the number of classes present in the neighborhood had to be
chosen, because each hyperspectral pixel provides only one
mixing equation [28]. Finally, each of the classes present in
the central pixel of the kernel is replaced by its corresponding
unmixed signal. By repeating this operation for all the airborne
hyperspectral pixels and bands, and for different combinations of

and , a series of fused images is generated in which end-
member variability is induced, which can be seen as a major
benefit of this unmixing-based fusion method [69].

Analogous to (2), the unmixing-based fusion method can be
defined as follows:

In (3), is a vector that contains the values of band for all
the hyperspectral pixels present in the neighborhood .
is the unknown vector containing spectral information of each of
the classes present in . is a matrix containing the cover
fractions occupied by each of the endmembers in each pixel in
. is the portion of the spectrum that cannot be modeled.
This indirectly implies that the number of classes ( ) and the

size of the neighborhood ( ) need to be optimized. needs to be
optimized based on the application demand and on the spectral
variability of the scene. also needs to be optimized because it
has a great impact on the spectral quality of the fused image.

The performance of the fusion method was first tested on
a simulated dataset, which is further described in detail in
Section III-A.

A robust classification of the hyperspatial image was achieved
by the linear discriminant analysis method with endmember
selection as available in the open source ENVI/IDL code [71].
After a sensitivity analysis (results not shown), a kernel size of

pixels was defined as optimal for spatial unmixing of these

Fig. 1. Overview of the spatial unmixing technique.
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datasets. Changing the kernel size had a major impact on the
endmember variability in the scene and played an important role
in the reconstruction of the hyperspectral signatures.

Next to the assessment of the index performances, the hyper-
spectral signatures reconstruction through unmixing-based fu-
sion was evaluated as well. The root-mean-square error (RMSE)
and relative-root-mean-square error (RRMSE) were calculated
to compare the hyperspectral signals from the reference HR-HS
image and the modeled signals from the SpU and LR-HS
(upscaling with a factor 10) images. RMSE, defined (4), is a
measure of the standard deviation, whereas RRMSE, defined in
(5), is RMSEas a percentage of themean observation. RMSEand
RRMSE should be as small as possible, optimally zero

In (4) and (5), is the reference or observed value at
wavelength ; the predicted value at wavelength ; the total
amount of measurements; and the average of the observations.

After validating the fusion algorithm on a simulated dataset,
the algorithm was applied on an experimental dataset, which is
described in Section III-B. By fusing the information from the
hyperspectral (APEX) and hyperspatial (thermal RPAS) datasets
into an SpU, hyperspatial, hyperspectral resolution scene (SpU),
we aimed at a more efficient assessment of the level of water
stress in capital intensive citrus orchards. The thermal RPASdata
were, therefore, classified in three physiological meaningful
temperature classes. A kernel size of was defined as most
optimal. Combining different kinds of images requires a perfect
coregistration. Fifteen ground control points (GCPs) were iden-
tified in both images for this purpose.

III. MATERIALS

A. Simulated Data Experiment

For this study, a ray-tracing experiment in a fully calibrated
virtual 3-D representation of a citrus orchard was used. This 3-D
radiative transfer model has been integrated in the web-based
RAMI Online Model Checker (ROMC) service [72], and has
previously been used as a reference tool for validation of image
analysis techniques for precision farming (e.g., [18], [66], Based
on detailed in situ calibration measurements, virtual 3-D replicas
of orchard trees were built as triangular meshes using a tree
geometry algorithm developed in Weber and Penn [73] (Fig. 2).

All reference data for calibration (and validation) were col-
lected in a 9-year-old Valencia “Midknight” orange grove near
Wellington, South Africa ( ; , altitude
100 m). The orchard block had a row spacing of 4.5 m, a tree
spacing of 2 m, and a row azimuth of . For each tree,
dendrometric (LAI, height, crown width, and diameter) and
optical properties (leaf and canopy reflectance) were determined.
Canopy and leaf reflectance spectra were collected using anASD

FR spectroradiometer (Analytical Spectral Devices, Boulder,
CO) ranging from 350 to 2500 nm with a spectral resolution
of 3 nm in the VIS and NIR and 10 nm in the SWIR. The noise
level for this instrument is provided by the manufacturer as

at 700 nm,
at 1400 nm, and at 2100 nm. A
field of view (FOV) barefiber opticwas used.Within the orchard,
60 trees were selected that cover the range of structural and
spectral variability encountered in the orchard. Leaf chlorophyll
and water content were derived from the measured leaf spectra
through inversion of the PROSPECT model [74]. These field
measurements were used to calibrate 3-D replicas of the mea-
sured trees. In order to increase the observed variability in tree
conditions, we further created for each of the 3-D trees three
additional clones. While the overall tree architecture remained
the same, we created 1) one clone with similar leaf spectra but
with a LAI, which was 56% of the reference trees by randomly
removing part of the leaves; 2) one clone with similar LAI and
leaf water content but reduced leaf chlorophyll content (50% of
the reference chlorophyll) (note that the new reflectance coeffi-
cients were recalculated with the PROSPECT model [75]); and
3) one clone with similar LAI and leaf chlorophyll but reduced
water content (70% of reference). The new reflectance coeffi-
cients were recalculated with the PROSPECT model [75]. Thus,
extra variability in the biophysical parameters and the spectral
data were created to incorporate different types of stress. All 3-D
tree replicas were then randomly placed in the orchard. The
physical and optical properties of the soil (sandy texture, gravi-
metric moisture content ranging between 0% and 15%) were
determined in the field and applied in the virtual model. Full
details on the calibration procedure can be found in Stuckens
et al. [75], whereas a more detailed description of the field
campaign can be found in Somers et al. [76].

Three synthetic images of the virtual orchard were generated
using a modified version of a physically based ray-tracer [77]
(Fig. 3, The first image of provided informa-
tion in 216 spectral bands ranging from 350 to 2500 nm with a

Fig. 2. (Left) a virtual 3-D replica of an orchard tree, (right) a real orchard tree.

Fig. 3. RGB representation of the synthetic images of the virtual orchard (left:
LR-HS—2 m, center: HR—0.2 m and right: HR-HS—0.2 m) generated using a
modified version of a physically based ray-tracer.
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spectral resolution of 10 nm and a spatial resolution of 2 m
(referred to as, low-resolution–hyperspectral or LR-HS, left
panel of Fig. 3). This is comparable to the resolutions obtained
by airborne hyperspectral sensors, such as APEX and CASI.

The second scene, depicted in the center panel of Fig. 3,
represents an image captured by a RGB sensor onboard a RPAS.
The image of with a spatial resolution of
0.2 m is further referred to as high resolution or HR) (Fig. 3,
center panel). The third or reference image scene simulated a
216-band hyperspectral sensor ranging from 350 to 2500 nm
with a spectral resolution of 10 nm and a spatial resolution of
0.20 m (high resolution-hyperspectral or HR-HS). Such detailed
imagery is currently not yet achievable on a recurrent basis (high
temporal resolution) by satellite or airborne systems. The air-
borne hyperspectral cameras, such as Hyspex, can possibly be
used in manned aircrafts to gather high spatial and spectral
resolution data, but the temporal resolution will be limited due
to financial constraints (manned aircrafts are expensive). Not-
withstanding this, it serves as a perfect reference scene to test the
efficiency of the unmixing-based data fusion of the first two
image scenes.

For each simulated image scene, detailed fraction maps
(cf. Section II-B) were available.

B. Real Data Experiment

An additional experiment was conducted in a 310-ha drip
irrigated commercial Citrus orchard near Picassent, in the prov-
ince of Valencia (Spain, 39.38N, 0.475E, altitude 47 m). In
Citrus, an accurate and previsual detection of water stress is of
utmost economic importance for farmers [78]. The orchard
design was characterized by large (5–6 m) row spacing, with
canopy ground cover below 65% even in the more vigorous
orchards. Three test orchards were selected based on the large
variation in plant water status of the measured trees. A total of
14 trees were used for assessment of midday stemwater potential
( ) determined using a pressure chamber in leaves that were
bagged at least 1 h prior to the measurements. Stem water
potential was chosen as the true field determination of citrus
trees water status due to its sensitivity to water deprivation [79].
The measurements of each tree were related with the individ-
ual tree canopy temperature (Tc) extracted from the airborne
imagery. Within the selected trees, varied from to

. According to a previous study by Ballester et al.
[80], these values correspond to well watered and relatively
severe tree water stress conditions, respectively.

Airborne hyperspectral APEX imagery was acquired over the
study area on September 8, 2011 around solar noon. The air
temperature and vapor pressure deficit (VPD) at the time of the
flight were and 2.1 kPa, respectively. The APEX sensor
recorded the reflected light in 288 bands, ranging from 380 to
2500 nm with a spatial resolution of 2.7 m. The airborne
measurements were accompanied with spectral field and lab
measurements for calibration and validation of the airborne data.
APEX geometric correction was accomplished based on the
delivered metadata (i.e., IMU). Atmospheric correction was
performed with the processing chain of VITO, based on the
algorithms of ATCOR [81]. The geometric correction was

performed by VITO’s own developed C++ module and is based
on direct georeferencing. Input data from the sensor’s GPS/IMU,
boresight correction data and the SRTMDEMwere further used
during the geometric correction process (Fig. 4).

Another set of aerial images was collected onAugust 23, 2011
at 10:00 GMT time with a thermal sensor installed on a RPAS,
acquiring imagery at 20 cm resolution. A thermal camera
(Miricle 307 K; Thermoteknix Systems Ltd, Cambridge, U.K.)
was installed on a RPAS developed at the Laboratory for
Research Methods in Quantitative Remote Sensing (Quantalab;
IAS-CSIC, Córdoba, Spain), as described by Zarco-Tejada et al.
[25]. The camera has a resolution of pixels, is
equipped with a 14.25-mm f1.3 lens, and is connected to a
computer via a USB 2.0 protocol. The spectral response was in
the range μ .

The air temperature and VPD at the time of the flight were
and 1.9 kPa, respectively. The camerawas calibrated in the

laboratory to obtain radiance values, and then upwelling and
downwelling sky temperature wasmeasured during the flight. In
addition, indirect calibrations were conducted using surface
temperature measurements to improve the calibration. The
accuracy of this method was evaluated by Berni et al. [23], who
have demonstrated an accuracy less than 1 K. The mosaicking
process selects only the most nadir part of the overlapping
images, limiting the viewing angle and thus avoiding directional
effects and thermal hotspot. Each snapshot had a relative tem-
perature scale, being theminimumvalue the coldest pixel and the
maximum value the hottest pixel of the snapshot [23].

Based on the temperature differences between plant canopy
and air temperature (Tc-Ta), all background and nonphotosyn-
thetic trees weremasked. This region of interest was subsequently
overlaid on the APEX image to remove all redundant informa-
tion from the APEX scene. This, however, also implied the
removal of all warm, i.e., nontranspiring and/or dead trees.

The hyperspectral APEX and hyperspatial, thermal images
were resampled to 2.8 and 0.28 m, respectively.

IV. RESULTS AND DISCUSSION

A. Simulated Dataset

The unmixing-based fusion of the LR-HS and HR simulated
image data resulted in an SpU image containing 216 bands at
20 cm resolution. The fused image product (SpU) now contains

Fig. 4. Left: APEX region of interest with 288 spectral bands and 2.80 m spatial
resolution, mid: RPAS region of interest with 1 thermal band and 0.28 m spatial
resolution. Right top: zoom of APEX orchard with 288 spectral bands and
2.80 m spatial resolution, right bottom: RPAS orchard with 1 thermal band and
0.28 m spatial resolution.
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more detailed spectral and spatial information on the individual
image elements or endmembers (e.g., orchard trees). This
becomes clearer when looking into the results of the hyperspec-
tral signature reconstruction evaluation study (Fig. 5).

Overall, we observed a significant increase in signature
modeling accuracy compared to the spectra of the LR image.
The increased accuracy was specifically remarkable in the
350–800 nm and 1200–2500 nmdomain,which ismost probably
due to the higher differences between soil and vegetation spectra
in these spectral regions [76]. This highlights that the spectral
mixing of vegetation and soil spectra, which remains the main
bottleneck when using LR imagery in precision agriculture [13],
[82], [18], can, to a large extent, be solved by SpU.

By better modeling the spatial variability in crop spectra—i.e.,
by removing the effects of undesired background effects—SpU
opens new opportunities for the site-specific monitoring of the
condition of crops (i.e., precision farming). In this light, we
evaluated the added value of the proposed method in estimating
the crop canopy water and chlorophyll content. Recall that for
this simulated scene we reconstructed HR (0.2 m resolution)
reference maps of the chlorophyll ( ) and water ( )
content of the crop canopies (Fig. 6). For each simulated image,
i.e., HR, LR-HS, and HR-HS, the coefficients of determination
( ) of the linear regression between all possible SDVIs and the
water ( ) and chlorophyll ( ) content maps are sum-
marized in Fig. 7.

As expected, the SDVI’s most closely related to chlorophyll
and water content, were mainly identical throughout the three
images. For the LR-HS ( ) image a
maximum of 0.35 and 0.30 were observed for water and
chlorophyll, respectively. A significant increase in predictive

power was found for the SpU image with maximal values up
to 0.77 for water and 0.71 for chlorophyll. The most appropriate
water and chlorophyll related indices contain wavebands corre-
sponding to the highest coefficient of absorption by water
(SWIR) [83] and chlorophyll (620–700 nm) [84], respectively.
It has to be mentioned that these spectral regions correspond to
the regions with the highest gain in signature modeling accuracy
by applying the unmixing-based fusion compared to the original
LR-HS and HR images (Fig. 5). This noticeably stresses the
potential of the proposed technique for better estimating plant
stress related to changes in biochemical parameter contents, such
as chlorophyll and water.

From Fig. 7, it was revealed that the best SDVIs to estimate
canopy water (6) and chlorophyll content (7) were, respectively

The corresponding SDVImaps are shown in Figs. 8 and 9. For
easy interpretation, and to allow a fair comparison, also the
reference water ( ) and chlorophyll ( ) maps are
shown.

Coefficients of determination ( ) calculated for the linear
regression between the reference ( and ) maps and
the most appropriate SDVI (6) and (7) maps, showed significant
differences in prediction accuracy for SpU ( :
and : ), compared to the original LR image
( : and : ). The highest possible
linear relationship between the selected SDVI (6) and (7) maps
and the biophysical parameter content maps ( and )
is shown in the (with ) and the
( ) maps. From these results, we can conclude that the
spatial resolution of 2m can be beneficial for large scalemapping
and monitoring of the citrus orchard, e.g., for delineating man-
agement zones in the orchard. However, the resolution is too
coarse to precisely manage the orchard system in which an
optimization of yield with a restricted input of natural resources
is endeavored. This corroborated previous findings of Stuckens
et al. [75] who illustrated that image interpretation in citrus
orchards was already seriously aggravated at pixel sizes as small
as 0.1 m resolution. At this resolution about 18% of the pixels
were still mixed, while for > , no pure pixels
were present anymore. In addition, Zarco-Tejada et al. [85]
demonstrated serious effects of soil background admixture on
the chlorophyll concentration estimates of olive trees using 1 m
ROSIS imagery. The SpU methodology provides a means to
combine: 1) the high spatial detail needed to reduce undesired
background effects; and 2) the high spectral detail for detailed
characterization of the plant state. The data fusion approach as
such allows providing adequate information support for agricul-
tural production and accurate and precise management of fruit
orchards.

B. Real Data Experiment

Applying the spatial unmixing technique on the 0.28-m
thermal RPAS and the 2.8-m hyperspectral APEX datasets

Fig. 5. RMSE (left) and RRMSE (right) plots calculated from the reference
spectra and 1) the reconstructed SpU spectra and 2) the downscaled LR-HS
spectra.

Fig. 6. The reference chlorophyll (left) and water map (right).
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resulted in an SpU image providing 288 bands at 0.28 m spatial
resolution (Fig. 10).

Avisual inspection of theAPEXpixel spectra already revealed
an intimate mixture of soils and crops. This could quantitatively
be verified, in Table I, comparing the coefficients of determina-
tion extracted from the relationship between narrowband index
values acquired from the APEX and SpU images, respectively,
against the stem water potential values. Results are shown for 21
narrowband stress-related VIs, already previously described in a
similar case study in citrus performed byZarco-Tejada et al. [25].

Although similar trends were found for the indexes extracted
from the APEX and SpU pixels, an overall better relationship

(higher ) was found for SpU. Due to the presence or admixture
of soil background and vegetation in the larger APEX pixels, all
indices performed worse in estimating water stress in the LR-HS
APEX image. This was particularly true for the PRI570 index
[Table I and Fig. 11, significant relationships ( < ) are
shown in bold] with for the SpU image compared to

for the LR-HS APEX image. The added value of the
hyperspatial resolution lies herein that VIs can be applied on pure
vegetation pixels without the contribution of soil background
and structural effects [15], [18]. Knowing that the stem water
potential is a good and reliable estimator of plant water stress, it
can be concluded from the relationship shown in Fig. 11 that

Fig. 8. Index (5) maps representing water content extracted from the LR
( ) (top left), SpU ( ) (top right), HR-HS ( ) (bottom
left) images, and reference water content map (bottom right).

Fig. 9. Index (6) maps representing chlorophyll content extracted from the LR-HS
( ) (top left), SpU ( ) (top right), HR-HS ( ) (bottom
left) images, and reference chlorophyll content map (bottom right).

Fig. 7. values indicating the performances of each possible SDVI to estimate chlorophyll (top) and water content (bottom) of the LR-HS, SpU, and HR-HS
simulated images. A lower threshold value is defined for each image to enlarge the color contrast.
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detailed spatial information is vital in water stress detection
studies.

When we also show results for all other SDVI’s in Fig. 12, it
becomes clear that an even better water stress detection becomes
possible when also the reflectance patterns of the SWIR domain
could be captured by the sensor. Numerous previous studies have
proven that the spectral behavior of vegetation in the SWIR
spectral domain is severely influenced and masked by water
absorption. In this study, values up to 0.81 (compared to 0.62
for PRI570) were obtained through a linear relationship of SpU
derived SDVIs based on 562 and 1650 nm against stem water
potential. The reflectance absorptions in the 1650–1850-nm
region are known to reflect not only the leaf water content, but
also the contents of leaf cellulose and lignin, and are directly
related to the plant growing status [86], [87].

This is a particularly interesting observation, since current
technology does not yet allow to gather such a high spatial, high
spectral imagery over the full spectral range with airborne
sensors. Yet, by fusing hyperspatial and full range (including
SWIR) hyperspectral images we can create a new data source
which, as shown in Fig. 12, opens new and promising oppor-
tunities for detailed water stress mapping.

From the previous studies [1], [88]–[95], we know that a good
correlation should exist between thermal data and water stress or
stem potentials, which was not found in our study, due to a
miscalibration of the thermal sensor. Within one image, the
relationship between stem potentials and thermal data were high

( ), but not as high as the PRI calculated from the SpU
and water potentials relationship ( ) within this same
image. The temperature differences caused by the sensor were
masked in the fusion method due to its inherent characteristic to
reconstruct hyperspectral endmember signatures based on the
materials present in the pixels within the kernel.

V. CONCLUSION

The aim of this study was to apply an unmixing-based fusion
technique on a hyperspectral airborne and hyperspatial RPAS
dataset for a better assessment of biophysical parameters in
agricultural areas. We first tested the unmixing-based fusion
method on simulated datasets to evaluate the proposed method
through standardized VIs and spectral signature reconstruction.
Based on the high correlations between the SDVI performances
calculated from the SpU image and those calculated from the
reference images, and the high ; values of the SDVI biophysi-
cal parameter content relations compared to those of the low-
resolution (LR) image, we concluded that the SpU method has
potential for more detailed research in water and chlorophyll
content estimation.

Subsequently, the fusion method was applied on a real test
case, in which hyperspectral APEX and hyperspatial thermal
RPAS images were combined in order to better and more
accurately detect water stress in commercial citrus orchards.
Thereby, a better relationship was found between the stem water
potential, and the PRI570 index, both known to be good and
reliable water stress indicators, when calculated on the fused
image compared to the one obtained from the original lower
resolution image ( vs. 0.21). Furthermore, VIs con-
taining shortwave infrared spectral bands have appeared to make
a sound contribution in terms of the strength of relationships
between spectral reflectance and water stress levels.

This fusion technique offers new opportunities to the user
community in that higher spatial spectral dataset become avail-
able for their research or operations. The need for a perfect
coregistration of the two input images (i.e., high spatial and high
spectral) can be seen as the major drawback of this technique.
Efforts have to be made in this processing step, which has a large
impact on the resulting fused image if not carefully done. Ideally,
the two sensors, of which one is focused on the spatial detail and
the other focused on the spectral detail should bemounted on one
chip, so that coregistration issues are minimized. This approach

Fig. 10. SpU image and detailed view.

Fig. 12. values of the linear relationship between the stem water potential of
the 14 trees of interest and all possible SDVIs (left) calculated from APEX pixels
(right) calculated from SpU pixels. Atmospheric water absorption bands were
masked from the analysis.

Fig. 11. Representation of the correlation between the coefficients of determi-
nation obtained through narrowband indices from APEX and SpU imagery
against stem potential.
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could be extended globally for the fusion of high spatial and high
spectral resolution satellite imagery, enabling also a temporal
hyperspectral, hyperspatial analysis. Ongoing research focuses
on quantification of nonlinear mixing effects in orchards, and its
influence on the accuracy of unmixing models. If proven to be
important, the implementation of nonlinear mixing models will
be necessary to further improve the performance of the proposed
algorithm.
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