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Abstract 

Large-scale monitoring of vegetation dynamics by remote sensing is key to 
detecting early signs of vegetation decline. Spectral-based indicators of phys-
iological plant traits (PTs) have the potential to quantify variations in pho-
tosynthetic pigments, chlorophyll fluorescence emission, and structural 
changes of vegetation as a function of stress. However, the specific response 
of PTs to disease-induced decline in heterogeneous canopies remains largely 
unknown, which is critical for the early detection of irreversible damage at 
different scales. Four specific objectives were defined in this research: i) to 
assess the feasibility of modelling the incidence and severity of Phytophthora 
cinnamomi and Xylella fastidiosa based on PTs and biophysical properties 
of vegetation; ii) to assess non-visual early indicators, iii) to retrieve PT 
using radiative transfer models (RTM), high-resolution imagery and satellite 
observations; and iv) to establish the basis for scaling up PTs at different 
spatial resolutions using RTM for their retrieval in different vegetation co-
vers. This thesis integrates different approaches combining field data, air- 
and space-borne imagery, and physical and empirical models that allow the 
retrieval of indicators and the evaluation of each component’s contribution 
to understanding temporal variations of disease-induced symptoms in heter-
ogeneous canopies. Furthermore, the effects associated with the understory 
are introduced, showing not only their impact but also providing a compre-
hensive model to account for it. Consequently, a new methodology has been 
established to detect vegetation health processes and the influence of biotic 
and abiotic factors, considering different components of the canopy and their 
impact on the aggregated signal. It is expected that, using the presented 
methods, existing remote sensors and future developments, the ability to 
detect and assess vegetation health globally will have a substantial impact 
not only on socio-economic factors, but also on the preservation of our eco-
system as a whole.  
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Chapter 1 
 
Introduction 

1.1. Biotic and abiotic stresses in plants 

Over the last decade, plant diseases and environmental stress have increased 
worldwide due to the global impact of anthropogenic and climate change, 
affecting the distribution and survival of many species and threatening to 
undermine human wellbeing (Sturrock et al., 2011). Stress in plants may be 
either physical or chemical, known as abiotic stress; or biological, like dis-
eases, insects, or pests, known as biotic. The co-occurrence of biotic and 
abiotic stressors is associated with massive and rapid increases in plant mor-
tality in crops (Carvajal-Yepes et al., 2019) and forest species (Forzieri et 
al., 2021) that threaten the survival of these species (Ennos, 2015). 

The occurrence of extreme weather events causes enormous damage to plant 
productivity and ecosystem sustainability (Allen et al., 2015; Pareek et al., 
2020). Global warming is predicted to significantly increase the frequency of 
droughts and floods. Other significant abiotic stresses driven by climate 
change include an increase in soil salinity, heat stress and a decrease of soil 
fertility (Pandey et al., 2017). Among all abiotic stressors, the temperature 
has been documented as a potent driver of drought accelerating forest de-
cline and tree mortality across the globe (Park Williams et al., 2013). 

Several pests, diseases, and other biotic agents have considerable impacts on 
the vegetation all over the world. For example, Phytophthora is a genus of 
some 150 species with a broad host range devastating natural forest 
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ecosystems in several countries of Europe, Oceania and the USA. Only in 
Australia, more than 40% of native plant species are susceptible to Phy-
tophthora dieback (Shearer et al., 2004). In Europe, Phythopthora-induced 
diseases are one of the main causes of tree mortality in Fagus, Castanea and 
Quercus genera. Specifically, in the case of oak decline, root rot caused by 
Phytophthora cinnamomi (Pc) is considered the main driver causing tree 
death (Colangelo et al., 2018; Ruiz Gómez et al., 2018). This invasive path-
ogen, regarded as one of the main invasive species in forest ecosystems in 
the northern hemisphere (Burgess et al., 2017), triggers several non-specific 
symptoms in oak trees, including general defoliation, crown desiccation or 
discolouration of the crown when the decay is regressive, or sudden tree 
death, with brown foliage remaining attached to the crown. Another exam-
ple is the massive effect caused by Xylella fastidiosa (Xf), a phytopathogenic 
bacterium with the ability to inhabit the xylem of more than 500 plant 
species and causing extensive damage to multiple plants worldwide (Almeida 
and Nunney, 2015). The first outbreak of Xf in Europe was detected in olive 
orchards in Puglia (southern Italy) in 2013, and it has recently been identi-
fied in France and Spain officially (EFSA, 2018) and even more recently in 
Israel (EPPO, 2019). According to the latest studies (Saponari et al., 2017), 
olive stands can be infected for more than five months without visible symp-
toms. During this period, the bacterium can spread within the xylem tissue 
and theoretically cause water-related stress that can lead, among other im-
pacts, to lower transpiration and photosynthetic rates. Symptoms then be-
come visible, with a progressive increase in discolouration and defoliation of 
tree crowns within several months, and leading to tree death within a few 
years. 

Pathogen-induced symptoms are often aggravated by biotic stressors (Man-
ion and Lachance, 1992; Trumbore et al., 2015). Furthermore, climate warm-
ing has also increased the expansion of several pests and diseases and in-
creased the severity of the damage caused to vegetation, resulting in massive 
agricultural production losses (Savary et al., 2019) and forest dieback (Seidl 
et al., 2018). In forests, the interaction of biotic and abiotic factors is more 
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intense than in crops, as the application of treatments that minimise the 
effects of environmental stress factors is more complex. Forest decline is a 
product of this complex multifactorial syndrome that responds to the high 
heterogeneity of natural ecosystems (Hutchings et al., 2000). Over the last 
decade, forest decline has increased worldwide due to the global impact of 
anthropogenic and climate change, affecting the distribution and survival of 
many species and threatening to undermine human wellbeing (Allen et al., 
2010). Tree mortality in conifers (Camarero et al., 2015) and broadleaved 
species presents a severe risk to the stability of forest ecosystems (Macpher-
son et al., 2017). 

There is a high likelihood for a plant to recover successfully from the damage 
caused by biotic and climate-induced physiological stress if the stress is tem-
poral, short-term, and mild. However, severe or prolonged stresses induce 
plant senescence and lead to an irreversible process of decline. These two 
temporal stages can potentially be monitored with different plant traits 
(PTs), allowing the assessment of the severity and incidence. PTs are de-
fined as anato-biochemical and morpho-pheno-physiological characteristics 
of plants, measurable at the individual level without reference to the envi-
ronment, which impact plant fitness through their effects on growth, repro-
duction and survival (Kattge et al., 2011; Violle et al., 2007). Early detection 
of alterations of different functional traits of the plant is therefore essential 
to assess and monitor the vegetation’s health status. 

1.2. Spectral plant trait alterations as indicators of  
plant health 

Plant functional traits, such as biochemical composition, chlorophyll fluo-
rescence, water content and vegetation structure, are strongly related to 
vegetation health status and how plants respond to environmental and biotic 
stressors (Ahrens et al., 2020). In particular, pathogen- and climate-induced 
plant decline typically involve two general stages: i) an early stage of stress 
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pressure or predisposition, during which a plant puts more energy into 
fighting off the pathogen, altering different biochemical PTs — e.g. leaf pig-
ments and water content, and altering the emission of chlorophyll fluores-
cence — with non-visible symptoms, and ii) an intermediate to an advanced 
stage with visual symptoms altering different vegetation structure PTs — 
e.g. Leaf Area Index (LAI) and Fractional Cover (FC) — which is not easily 
reversed. It is essential to identify and monitor both stages, but plant die-
off control is more effective when management practices, such as culling or 
clearance of affected plants, are applied at an early stage.  

Monitoring alterations in PTs caused by biotic and abiotic factors is crucial 
to assessing vegetation response, as well as to anticipate abnormal responses 
early enough to enable the implementation of effective management re-
sponses (Cunniffe et al., 2016). Defoliation and yellowing are the most com-
mon symptoms of vegetation change; thus, LAI and chlorophyll concentra-
tion have been extensively studied (Hernández-Clemente et al., 2019). Pas-
sive sensors collecting information in the visible and infrared are mainly used 
to study these variables. Both defoliation and discolouration — by means of 
chlorophyll degradation (Zarco-Tejada et al., 2019) — produce a decrease in 
the infrared signal and an increase in red and blue regions. This effect can 
be enhanced by the combination of spectral bands known as vegetation in-
dices (VIs). Fig. 1.1 shows physiological indicators used to quantify early-
stage vegetation health from multi/hyperspectral and thermal data. 
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Figure 1.1 An overview of physiological indicators and plant traits charac-
terisation. 

 

Recent work has shown that early symptoms of Xf infection in olive trees 
are detectable through very high-resolution hyperspectral and thermal re-
mote sensing images acquired from aerial platforms. These symptoms man-
ifest as alterations in photoprotection mechanisms, reduced photosynthetic 
activity due to reduction and degradation processes of photosynthetic pig-
ments, and decreased chlorophyll fluorescence emission and plant transpira-
tion rates (Zarco-Tejada et al., 2018a). Unfortunately, while airborne imag-
ing spectroscopy allows for detecting early non-visible symptoms of Xf in-
fection, such tree-level alterations cannot be directly detected by current 
satellite sensors due to their limited spectral and spatial resolutions. This 
raises the question of what alternatives we have if we are willing to cover 
larger areas or what kind of methodology would be appropriate when work-
ing with spatial resolutions where several environmental components are 
aggregated. Furthermore, unlike in homogeneous crops, the heterogeneity of 
discontinuous crop orchards and natural forest canopies in terms of species 
composition and structure and the differences between individuals due to 
microsite and ecophysiological conditions increase the spectral mixture, thus 
reducing the PTs’ accuracy retrieved from the images. 
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1.3. Retrieval methods of physiological plant trait 
indicators 

In recent years, several strategies have been implemented to retrieve PTs 
from spectral information: empirical relationships using different statistical 
regression methods, VIs, and radiative transfer models (RTMs). The empir-
ical relationship is the classic approach to fit field data observations with 
spectral data or VIs. The main disadvantage of empirical relationships is 
their limited applicability at different spatial and temporal levels, but the 
advantage is that they can be easily used for a wide range of variables. The 
use of VIs as proxies for PTs is another relatively straightforward solution; 
however, the signal cannot be decoupled, and when working with lower spa-
tial resolutions or looking at the physiological state of a particular compo-
nent, one would be limited. RTMs are physically-based functions that sim-
ulate the light energy scattered or absorbed through different media. When 
the models are applied to the vegetation canopy, RTMs help to understand 
the interactions of radiation with vegetation and the atmosphere, accounting 
for variations in different geometries, illumination conditions, and scene 
components (e.g. canopy, understory, and soil). Thus, the use of RTM helps 
us better represent the high level of context dependency by allowing us to 
generalise the results to different environments. 

1.3.1. Empirical relationships and VIs 

Empirical methods can be parametric (e.g. linear models, generalised linear 
models, or non-linear models) or non-parametric (e.g. machine learning re-
gression algorithms, random forest regressions, or neural networks) (Liu et 
al., 2016). Typical parametric models to assess vegetation features from sat-
ellite passive optical observations include the use of VIs with linear and 
multiple regression models. In contrast, non-parametric approaches exploit 
the entire reflectance signal and are able to model non-linear relationships. 
Non-parametric approaches have been shown to work well with high-
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dimensional and multicollinear hyperspectral data and have been shown to 
outperform linear parametric regression based on VIs (Verrelst et al., 2015b). 

The most widely used VI is the Normalised Difference Vegetation Index 
(NDVI). NDVI has been successfully applied for vegetation trend analysis 
(Beck et al., 2011; Chen et al., 2018; Fang et al., 2018; Gillespie et al., 2018) 
and for monitoring vegetation productivity, for instance, in olive groves 
(Brilli et al., 2013; Noori and Panda, 2016). In addition to its strengths, the 
limitations of NDVI for vegetation monitoring have received significant at-
tention in the literature (Montandon, 2009; Myneni et al., 1991). These lim-
itations stem from its sensitivity to soil and atmospheric characteristics, as 
well as its tendency to saturate in high biomass environments. Potential 
alternatives include the soil-adjusted vegetation index (SAVI) (Huete, 1988), 
the adjusted soil-transformed vegetation index (ATSAVI) (Baret and Guyot, 
1991), the atmosphere-resistant vegetation index (ARVI) (Huete et al., 
1994), and the global environmental monitoring index (GEMI) (Pinty and 
Verstraete, 1992). For example, ARVI has a similar dynamic range to NDVI, 
but is on average four times less sensitive to atmospheric effects than NDVI 
(Kaufman and Tanre, 1992). However, the spectral mixture obtained with 
medium-resolution satellite observations inherently limits the extent to 
which VIs can extend field observations of plant functional traits to entire 
landscapes (Atzberger and Richter, 2012; Zurita-Milla et al., 2015). Further-
more, the large contributions to canopy spectral reflectance produced by 
understory variation could have important implications for the applicability 
of VIs to the analysis of temporal change. The literature lacks studies focus-
ing on the sensitivity of VIs to variations in both vegetation health and 
temporal evolution, including the contribution of changes in the understory 
that significantly affect the reflectance acquired by Sentinel-2 imagery. 
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1.3.2. Radiative transfer modelling in heterogeneous 
canopies 

RTMs can overcome some of the typical limitations of strictly empirical 
approaches by minimising the dependence on field measurements and mod-
elling the mixing of reflectance produced by different components’ contribu-
tion at lower spatial resolution. These two factors are essential to improving 
the retrieval of vegetation biophysical parameters over time. In uniform veg-
etation canopies, 1-D RTMs such as SAIL (Verhoef, 1984) have been suc-
cessfully used to monitor grass and crop stress (Bayat et al., 2016; Martín 
et al., 2007). However, modelling heterogeneous and discontinuous vegeta-
tion canopies requires complex 3-D RTM models that account for tree can-
opy structure and background effects. Previous studies have used 3-D mod-
els such as FLIGHT (North, 1996) to provide a three-dimensional represen-
tation of tree canopies to adequately characterise the spatial heterogeneity 
of the tree canopy (Hernández-Clemente et al., 2012; Kötz et al., 2004; Liu 
et al., 2020; Roberts et al., 2020) or even to perform spatial and spectral 
scaling of different biophysical variables (Bye et al., 2017; Hernández-
Clemente et al., 2017). Still, none of these models includes the effects pro-
duced by the understory on spectral reflectance in open canopies. Understory 
variations are especially important in natural environments, with high im-
pacts on analysing time series data over heterogeneous and sparse canopies 
(Assal et al., 2016; Yang et al., 2014). Yet, at the same time, the large 
number of parameters needed in even more complex 3-D models can limit 
inversion procedures (Hernández-Clemente et al., 2014; Yáñez-Rausell et al., 
2015), and further research is required in order to understand the impact of 
structural components from medium (10–60 m/pixel) and high (< 10 
m/pixel) spatial resolution imagery. 

In this context, models are essential to relate observed optical properties to 
biophysical and biochemical attributes of leaves and analyse the effect of 
heterogeneous canopy structures at different spatial resolutions (Wu and Li, 
2009). Several methods have been proposed to estimate biochemical traits 
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from hyperspectral reflectance, including model scaling and inversion meth-
ods that couple leaf and canopy transfer models (Verrelst et al., 2018). Other 
strategies include using proven linear spectral unmixing techniques to sepa-
rate the spectral properties of forest floor and understory components 
(Markiet and Mõttus, 2020). Despite the progress made, this modelling ap-
proach does not yet include the contribution of fluorescence and the impact 
of multiple scattering between tree and understory components and the 
background layer. 

Regarding sun-induced chlorophyll fluorescence (SIF) emission, recent stud-
ies have included its modelling at leaf (Kallel, 2020; Pedrós et al., 2010; 
Vilfan et al., 2018, 2016) and canopy levels in homogeneous (Atherton et al., 
2019; Romero et al., 2020; Yang and van der Tol, 2018; Zeng et al., 2019) 
and heterogeneous (Hernández-Clemente et al., 2017; Liu et al., 2019; Zhao 
et al., 2016) canopies. In addition, previous studies have attempted to ac-
count for spatial heterogeneity using the first available model-based ap-
proaches (Zarco-Tejada et al., 2013a). Airborne sensors such as HyPlant, 
the first fluorescence sensor specifically designed to support the FLEX mis-
sion that is aimed at validating SIF retrieval for a large canopy and different 
vegetation types (Rascher et al., 2015), can provide valuable information 
with which to better model and understand the effect of SIF signals among 
mixed pixels. 

The impact of background components on SIF could particularly affect sea-
sonal analyses, in which the temporal variation of the understory fraction is 
high. Forest areas such as holm oak trees, or heterogeneously cultivated 
areas such as olive trees, have complex canopy structures and the distribu-
tion of the understory cover fraction depends mainly on topography, canopy 
positions, soil composition, and lighting conditions. Consequently, assuming 
an invariant and homogeneous soil effect as background could increase the 
uncertainty of biophysical parameters retrieved from high- and medium-res-
olution images (Tagliabue et al., 2019). These previous studies have demon-
strated the need to develop new modelling approaches that consider multiple 
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scattering, cross-shading of canopies, soil variation, and the background in 
the retrieval of SIF. 

1.3.3. Current strategies to improve the retrieval of 
physiological indicators 

There is extensive literature focused on developing quantitative methods to 
estimate vegetation canopy composition from images by applying empirical 
or physical RTM (Berjón et al., 2013). Given that diseases generate changes 
in the specific composition of the tree canopy, the development of these 
methods opens a new pathway in the analysis of the evolution of new dis-
eases. An emerging alternative method is the combined use of PTs retrieved 
using RTM and VIs with combinations in the visible, near-visible, and short-
wave infrared spectral bands. In that context, an essential aspect in VI ap-
plicability is to make a proper selection of formulations that best represent 
the composition by formulating, testing and modifying a large number of 
VIs to describe the amount of biomass loss that occurs at very advanced 
disease stages (Castrignano et al., 2020). Plant disease diagnosis has been 
demonstrated to require quantification of forest biomass and the physiolog-
ical state of that biomass, based on functional PTs such as photosynthetic 
rate, water stress, anthocyanins chlorophyll a and b, and leaf carotenoid 
content (Hernández-Clemente et al., 2019). 

Recently, new possibilities have been developed using photon-vegetation in-
teraction to detect plant physiological status, based on detecting SIF emis-
sion and thermal dissipation (Gonzalez-Dugo et al., 2014; Mohammed et al., 
2019; Zarco-Tejada et al., 2012). SIF, a faint glow produced by plant leaves, 
is a reliable indicator of photosynthetic activity in forest canopies and can, 
therefore, be used as a powerful non-invasive marker to monitor vegetation 
condition, resilience, and recovery. 

Nonetheless, the contribution of different PT indicators remains largely un-
known in forest species. Detecting the specific contribution of PT indicators 
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for the anticipation of forest decline processes is especially relevant to choos-
ing the suitable sensors for assessing damage and monitoring the right indi-
cators during the decline process. 

1.4. Upscaling plant traits from remote sensing data for 
large-scale plant health monitoring  

The retrieval of PT at larger scales is essential to extrapolating local infor-
mation to a larger context. For operational plant health monitoring, the 
development of robust and accurate tools for the effective and timely diag-
nosis of plant health is still needed: first, to reduce the spread of diseases, 
and second, to increase the efficiency of plant management treatments, e.g. 
for reducing crop yield and forest biomass losses (Hernández-Clemente et al., 
2019; Sisterson et al., 2010).  

The plant spectral signature provides a powerful and reduced cost alterna-
tive to field measurements to quantify the biochemical composition and 
functionality of vegetation over large areas (Homolová et al., 2013; Rocha 
et al., 2019). Remote sensing is a fundamental tool for the spatio-temporal 
analysis of vegetation’s physiological status using different PT indicators 
and allowing us to consider not only the effects of late stages of disease (e.g. 
defoliation or chlorosis) but also pre-visual early detection variables due to 
stomatal closure or reduced photosynthesis. Therefore, large-scale early de-
tection of PTs is one of the most critical factors for plant health monitoring 
and management.  

Unfortunately, retrieving PTs for large-scale monitoring in heterogeneous 
canopies is challenging due to spectral mixing effects produced by the struc-
ture of the vegetation canopy, shadows and understory. The development of 
techniques that facilitate the assessment and quantification of the vegetation 
condition in both time and space is a fundamental step in disease control. 
The use of spectral information collected from image time series allows the 
recording, analysis and detection of vegetation changes produced by various 
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factors such as environmental and seasonal changes or decay processes mod-
ifying the physiology, morphology and phenology of plants. The PTs’ deter-
mination that characterises these changes can be retrieved from high-reso-
lution hyperspectral airborne data or satellite imagery. 

1.4.1. Use of high-resolution airborne data 

The use of airborne sensors with high spatial and spectral resolution provide 
not only the desired timing but also the acquisition of an increased number 
of narrow and contiguous bands, which at the same time enables a better 
and more detailed description of the electromagnetic spectrum, and thus 
more accurate performance in the estimation of biochemical and biophysical 
parameters. Besides, the temporal resolution of airborne images can be used 
to establish trends in vegetation and detect any alteration caused by diseases 
or other abiotic agents. For this purpose, different statistical techniques 
adapted to time series analysis have been proposed so far (Paruelo et al., 
2005).  

In heterogeneous vegetation canopies, high-resolution images (< 10 m/px) 
are needed to distinguish the canopy and understory from the background 
(Wagner et al., 2018). Therefore, quantifying the contribution of each pixel 
helps to improve and understand the models used to quantify biophysical 
parameters from mixed pixels (Yu et al., 2018). Additionally, the impact of 
the understory on canopy reflectance is particularly challenging for studying 
complex canopies comprising different plant architectures and physiology 
(Eriksson et al., 2006). Therefore, it is essential to quantify the contribution 
of each component of the subpixel scene in mixed canopies characterised by 
a heterogeneous distribution of trees and understory when working with sat-
ellite imagery at medium (10–500 m/px) and low (> 500 m/px) spatial res-
olutions. Furthermore, temporal changes in the physiological state and com-
position of the understory also have an effect on the relationships between 
satellite data and vegetation properties due to the impact of mixed pixels. 
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1.4.2. Use of satellite image data 

Satellite missions such as Sentinel-2 are particularly relevant for operational 
vegetation monitoring. This mission’s specific objective is to provide multi-
spectral data with a high spatial and temporal resolution using two simul-
taneous satellites. The spectral bands of the multispectral instrument have 
been designed to study the land surface and offer a unique opportunity to 
monitor vegetation health.  Another recent mission of high relevance, to be 
launched in 2023, is FLEX (FLuorescence EXplorer), which aims to gain a 
deeper understanding of how the photosynthesis process works by making 
global measurements of fluorescence and how photosynthesis affects the wa-
ter and carbon cycles; measurements that will provide further insight into 
plant health and stress. 

Sentinel-2 satellite imagery is freely available and combines moderate to 
high spatial resolution (60 to 10 m) in 13 spectral bands, with a revisit time 
of about five days. Thanks to their combination of spatial, spectral, and 
temporal resolution, Sentinel-2 data could, in theory, be used to help moni-
tor disease propagation over entire regions at a frequency that cannot be 
achieved by other means. Studies prior to the launch and using simulated 
Sentinel-2 data products demonstrated the sensor’s ability to measure bio-
physical variables such as chlorophyll content (Frampton et al., 2013) and 
leaf area index (Herrmann et al., 2010). The added value of Sentinel-2 red-
edge bands consists of increased accuracy for estimating chlorophyll content 
(Zarco-Tejada et al., 2019), FC of forest canopies, quantification of LAI 
(Korhonen et al., 2011), and ground cover mapping (Forkuor et al., 2018). 
Thus, Sentinel-2 data extend the possibility of using passive optical satellite 
data for vegetation monitoring, especially in heterogeneous and complex 
canopies (Lange et al., 2017). The temporal resolution of Sentinel-2 can re-
port trends in vegetation characteristics affected by infectious agents more 
accurately than other satellites such as Landsat (Rahimzadeh-Bajgiran et 
al., 2018) or MODIS (Mura et al., 2018). Recent studies have investigated 
the actual sensor capabilities to monitor temporal changes in vegetation 
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activity in different canopy types such as wetlands (Araya-López et al., 2018; 
White et al., 2017), grasslands (Hill, 2013) and forests (Castillo et al., 2017; 
Zarco-Tejada et al., 2018b). 

Despite the great potential of Sentinel-2, its spatial resolution causes pixel 
mixing effects that make it difficult to separate the contribution of different 
components of the canopy scene, such as soil, shadows, and understory, es-
pecially in open vegetation canopies. The mixture of canopy components 
makes it difficult to scale up plant functional traits from pure canopy views 
to broader spatial scales. Besides, the understory and soil in heterogeneous 
vegetation canopies vary spatially and seasonally due to vegetation phenol-
ogy and understory dynamics, which affects multi-temporal spectral datasets. 
While airborne imaging spectroscopy allows, for instance, the detection of 
early and even non-visible symptoms of Xf infection (Zarco-Tejada et al., 
2018a), such tree-level disturbances cannot be directly detected by current 
satellite sensors due to their limited spectral and spatial resolutions. A hy-
pothesis, however, is that symptoms in the intermediate and advanced 
stages of the disease, which are visible in the form of leaf browning, wilting, 
chlorosis and leaf desiccation, should be observable in satellite images, such 
as the ones acquired by the Sentinel-2 satellite sensor, mainly due to spectral 
bands located in the red-edge region, which is sensitive to photosynthetic 
pigment absorption, and the feasibility of tracking structural changes due to 
the NIR bands. Satellite monitoring of these symptoms could support the 
tracking of outbreaks, providing spatial distribution related to its epidemi-
ology and contributing to the assessment of vegetation health by environ-
mental managers and other end-users. Also, this satellite’s short revisit in-
terval at moderate latitudes (up to 2–3 days) provides critical temporal in-
formation on short-term variation in vegetation condition over large areas. 
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1.5. Objectives and thesis structure 

This thesis is focused on the quantitative estimation of vegetation traits and 
dynamics using high-resolution hyperspectral data and medium resolution 
satellite imagery, and radiative transfer modelling. Four specific objectives 
were defined and addressed in this research: 

 Assessment of the ability of PT and biophysical properties of the 
vegetation to monitor incidence and severity disease levels in Xf and 
Pc affected areas 

 Assessing non-visual early indicators using spectral vegetation indices 
from high-resolution imagery and satellite-based observation 

 Developing and evaluating a methodology for PT retrieval using 3-D 
RTM and high-resolution hyperspectral and thermal images 

 Establishing the basis for the scaling up of PTs at different spatial 
resolutions using RTM tailored to the spatial and spectral resolution 
of satellite imagery for the retrieval of vegetation traits over different 
vegetation canopy types 

The methodology and developments carried out in the preparation of this 
thesis have had the main purpose of providing a valuable contribution to 
improve the understanding of vegetation dynamics and the early detection 
of diseases, improving an existing radiative transfer model to enhance its 
capabilities, which have not been contemplated to date in the monitoring of 
the physiological state of vegetation, and finally, paving the way for future 
studies that should focus on the decoupling of the signal at lower resolutions 
through the use of satellite by applying the proposed methodologies over 
large regions. 

This thesis covers five chapters. The first chapter provides a general over-
view; the last chapter offers the synthesis and concluding remarks, discuss-
ing them in a broad context and showing their implications and future 
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practical applications; and the three middle chapters represent individual 
research projects (Fig. 1.2), two of which are published in Remote Sensing 
of Environment, with the third currently under review. The particular ob-
jectives for these chapters are as follows:  

 Chapter 2: Determining whether satellite data could be used to mon-
itor Xf-induced temporal changes is key to providing information on 
Xf’s epidemiology spread over large areas. Thus, the applicability of 
spectrum-based indicators for disease detection on a larger scale using 
satellite data is one of the questions initially raised in this work, with 
an additional research question focused on assessing the feasibility of 
modelling changes in this disease from multi-temporal Sentinel-2 im-
agery data using VI and RTM. 

 Chapter 3: In order to better understand the SIF modelling from 
coarse spatial resolutions in heterogeneous canopies, the need arises 
to modify an existing RTM model by considering the separate con-
tribution of tree canopy and background components. More specifi-
cally, this objective is based on analysing the contribution of SIF 
emitted by the understory in aggregated pixels using high spectral 
and spatial resolution images collected from a high-resolution hyper-
spectral system dedicated explicitly for this purpose. Likewise, this 
would help us to provide a deeper understanding of the impact of the 
variation in understory cover fraction on the total SIF calculated at 
different scales. 

 Chapter 4: Implementing the retrieval and identification of the spe-
cific PTs that contribute most to recognising early symptoms of oak 
decline is the primary goal of the work in this chapter, providing 
continuity to the underlying objective of understanding the contribu-
tion of different PTs in the analysis of symptomatic and asympto-
matic trees affected by biotic and abiotic stressors. Making use of the 
model developed in the previous chapter, we aim to build a PT 
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analytical approach for the detection and assessment of severity levels 
in the early detection of vegetation decline. 

 

 
Figure 1.2 Flow between middle chapters highlighting the key connections 
motivating the research development. 

 

In an effort to integrate the material published in various academic journals 
into a more traditional thesis structure, the chapters have been reformatted 
to give them coherence. For ease of reference, all figures and tables have 
been listed and combined at the beginning of this thesis, and the references 
have been incorporated and arranged at the end of it. 

 



 

 

 

Chapter 2 
 
Monitoring the incidence of Xylella 
fastidiosa infection in olive orchards 
using ground-based evaluations, 
airborne imaging spectroscopy and 
Sentinel-2 time series through 3-D 
radiative transfer modelling 

Abstract 

Outbreaks of Xylella fastidiosa (Xf) in Europe generate considerable eco-
nomic and environmental damage, and this plant pest continues to spread. 
Detecting and monitoring the spatio-temporal dynamics of the disease symp-
toms caused by Xf at a large scale is key to curtailing its expansion and 
mitigating its impacts. Here, we combined 3-D radiative transfer modelling 
(3D-RTM), which accounts for the seasonal background variations, with 
passive optical satellite data to assess the spatio-temporal dynamics of Xf 
infections in olive orchards. We developed a 3D-RTM approach to predict 
Xf infection incidence in olive orchards, integrating airborne hyperspectral 
imagery and freely available Sentinel-2 satellite data with radiative transfer 
modelling and field observations. Sentinel-2A time series data collected over 
a two-year period were used to assess the temporal trends in Xf-infected 
olive orchards in the Apulia region of southern Italy. Hyperspectral images 
spanning the same two-year period were used for validation, along with field 
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surveys; their high resolution also enabled the extraction of soil spectrum 
variations required by the 3D-RTM to account for canopy background effect. 
Temporal changes were validated with more than 3000 trees from 16 or-
chards covering a range of disease severity (DS) and disease incidence (DI) 
levels. Among the wide range of structural and physiological vegetation in-
dices evaluated from Sentinel-2 imagery, the temporal variation of the At-
mospherically Resistant Vegetation Index (ARVI) and Optimized Soil-Ad-
justed Vegetation Index (OSAVI) showed superior performance for DS and 
DI estimation (r2

VALUES>0.7, p<0.001). When seasonal understory changes 
were accounted for using modelling methods, the error of DI prediction was 
reduced 3-fold. Thus, we conclude that the retrieval of DI through model 
inversion and Sentinel-2 imagery can form the basis for operational vegeta-
tion damage monitoring worldwide. Our study highlights the value of inter-
preting temporal variations in model retrievals to detect anomalies in vege-
tation health. 

2.1. Introduction 

Xylella fastidiosa (Xf), a plant pathogenic bacterium that can live in the 
xylem of more than 300 plant species, causes severe damage to multiple 
crops around the world, including olive trees and stone fruits (Almeida and 
Nunney, 2015). The first outbreak of Xf in Europe was detected in olive 
orchards in Apulia (southern Italy) in 2013 (Saponari et al., 2017), and the 
pathogen has now been officially identified in France and Spain (EFSA, 2018) 
and very recently (2019) in Israel (EPPO, 2019). According to Saponari et 
al. (2017), olive stands can be infected for more than five months without 
visible symptoms. During this period, the bacterium can spread within the 
xylem tissue and, theoretically, cause water-related stress that may lead to, 
among other things, lower transpiration and photosynthetic rates. Symp-
toms then start to become visible, with a progressive increase in discoloura-
tion and defoliation of the tree crowns within a few months, leading to tree 
death within a few years. 
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Accurate detection and diagnosis of Xf symptoms is critical for the opera-
tional monitoring of Xf spread and for the reduction of losses in crop yield 
(Sisterson et al., 2010). Recent work showed that early symptoms of Xf 
infection in olive trees are detectable through very high-resolution hyper-
spectral and thermal remote sensing images acquired from airborne plat-
forms: these symptoms manifest as alterations in photoprotective mecha-
nisms, reduction in photosynthetic activity due to photosynthetic pigment 
reduction and degradation processes, and decreased chlorophyll fluorescence 
emission and plant transpiration rates (Zarco-Tejada et al., 2018a). Unfor-
tunately, while airborne imaging spectroscopy permits the detection of early 
and even non-visible symptoms of Xf infection, such tree-level alterations 
cannot be detected directly by current satellite sensors due to their limited 
spectral and spatial resolutions. However, we hypothesise that symptoms at 
intermediate to advanced stages of Xf disease, which are visible as leaf 
browning, wilting, chlorosis, and desiccation of leaves, should be observable 
in Sentinel-2 satellite data due in large part to the spectral bands located in 
the red-edge region, which is sensitive to photosynthetic pigment absorption. 
Satellite-based monitoring of such symptoms could support the monitoring 
of Xf spread over large areas, providing the spatial distribution related to 
the epidemiology of Xf and contributing to the assessment of vegetation 
health by environmental managers and other end-users. Furthermore, the 
short revisit interval (up to every 2–3 days) of this satellite at moderate 
latitudes provides key temporal information about short-term variation in 
vegetation status over large areas. 

Sentinel-2 images from 2015 on are freely available and combine moderate-
to-high spatial resolution (10 to 60 m) in 13 spectral bands, with a revisit 
time of five days. Given their combination of spatial, spectral, and temporal 
resolution, Sentinel-2 data could, in theory, be used to help monitor the 
spread of Xf over entire regions with a frequency not achievable by other 
means. Pre-launch studies using simulated Sentinel-2 data products demon-
strated the potential of the sensor to measure biophysical variables such as 
chlorophyll content (Frampton et al., 2013) and leaf area index (Herrmann 
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et al., 2011). The added value of the Sentinel-2’s red-edge bands consists of 
increased accuracies for the estimation of chlorophyll content (Zarco-Tejada 
et al., 2019), the fractional cover (FC) of forest canopies, the quantification 
of leaf area index (LAI) (Korhonen et al., 2011), and land-cover mapping 
(Forkuor et al., 2018). Sentinel-2 data thus widen the possibility of using 
passive optical satellite data for vegetation monitoring, particularly in non-
homogeneous and complex canopies (Lange et al., 2017). The temporal res-
olution of Sentinel-2 can report trends in vegetation characteristics affected 
by infective agents with higher accuracy than other satellites such as Land-
sat (Rahimzadeh-Bajgiran et al., 2018) or MODIS (Mura et al., 2018). Re-
cent studies have investigated the actual capabilities of the sensor for mon-
itoring temporal changes in vegetation activity in canopy types such as wet-
lands (Araya-López et al., 2018; Whyte et al., 2018), grasslands (Hill, 2013) 
and forests (Castillo et al., 2017; Zarco-Tejada et al., 2018b). To the extent 
of our knowledge, no prior studies have explored the applicability of Senti-
nel-2 to evaluation of the spectral variations produced by Xf-induced disease. 

Despite the widespread interest in Sentinel-2, its spatial resolution causes 
mixed-pixel effects that make it challenging when attempting to separate 
the contribution of the different canopy-scene components such as soil, shad-
ows, and understory, particularly in open vegetation canopies. This aspect 
is critical in the case of olive orchards, where planting densities are typically 
in the range of 200 to 2000 trees/ha and the canopy is rarely closed (Sibbett 
and Ferguson, 2005). The mixture of canopy-scene components hampers the 
scaling up of plant functional traits from views of pure tree crowns to 
broader spatial scales. Furthermore, the understory and soil in these land-
scapes vary spatially and seasonally as a result of vegetation phenology, 
agricultural practices, and soil–vegetation understory dynamics, impacting 
the multi-temporal spectral datasets. 

Common approaches to assessing vegetation traits from passive optical sat-
ellite observations include the use of vegetation indices (VIs) and radiative 
transfer models (RTMs). The Normalized Difference Vegetation Index 
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(NDVI) has been widely applied for vegetation trend analysis (Beck et al., 
2011; Fang et al., 2018; Gillespie et al., 2018) and to monitor vegetation 
productivity in olive groves (Brilli et al., 2013; Noori and Panda, 2016). In 
addition to its strengths, the limitations of NDVI for vegetation monitoring 
have received much attention in the literature (Montandon, 2009; Myneni 
et al., 1991); these limitations stem from its sensitivity to soil and atmos-
pheric features, and its tendency to saturate in high-biomass environments. 
Potential alternatives include the Soil-Adjusted Vegetation Index (SAVI) 
(Huete, 1988), Adjusted Transformed Soil-Adjusted Vegetation Index 
(ATSAVI) (Baret and Guyot, 1991), atmospherically resistant vegetation 
index (ARVI) (Huete et al., 1994) and Global Environment Monitoring In-
dex (GEMI) (Pinty and Verstraete, 1992). For instance, ARVI has a similar 
dynamic range to NDVI, but on average it has been demonstrated to be four 
times less sensitive to atmospheric effects compared to NDVI (Kaufman and 
Tanre, 1992). However, the spectral mixture obtained with medium-resolu-
tion satellite observations inherently limits the extent to which VIs can scale 
up field observations of plant functional traits to entire landscapes 
(Atzberger and Richter, 2012; Zurita-Milla et al., 2015). In addition, the 
large contributions to the spectral reflectance of the canopy produced by 
variation in the understory could have important implications for the ap-
plicability of VIs to temporal change analysis. The literature lacks studies 
focused on the sensitivity of VIs to variations in both vegetation health and 
temporal change, including the contribution of changes in the understory 
that heavily affect the reflectance acquired by Sentinel-2 images. 

RTMs can overcome some of these typical limitations of purely empirical 
approaches, minimising the dependence on field measurements and model-
ling the reflectance mixture produced by the contribution of different com-
ponents at medium resolutions. These two factors are essential to improving 
the retrieval of biophysical vegetation parameters over time. For uniform 
canopies, 1-D RTMs such as SAIL (Verhoef, 1984) have been successfully 
used to monitor grass and crop stress (Bayat et al., 2016; Martín et al., 
2007). However, modelling heterogeneous and discontinuous vegetation 
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canopies requires complex 3-D RTM models that account for tree canopy 
structure and background effects. Previous studies have used FLIGHT to 
provide a 3-D representation of tree canopies and perform the spatial and 
spectral scaling of different biophysical variables (Bye et al., 2017; Hernán-
dez-Clemente et al., 2017). Still, none of these models includes the effects 
produced by the understory on the spectral reflectance in open canopies. 
The variations in understory are especially important in natural environ-
ments, with high impacts on time-series data analysis over heterogeneous 
and sparse canopies (Assal et al., 2016; Yang et al., 2014). Other RTMs such 
as DART (Gastellu-Etchegorry et al., 1996) have overcome these limitations 
and could particularly benefit the simulation of the canopy. By contrast, the 
large number of parameters needed in complex 3-D models limits the inver-
sion procedures (Hernández-Clemente et al., 2014; Yáñez-Rausell et al., 
2015). 

Here, we investigate the suitability of Sentinel-2 satellite images for moni-
toring disease symptoms in Xf-infected olive orchards. Using field observa-
tions and multi-temporal remote sensing data, we assessed (i) the capability 
of physiological and structural VIs calculated from Sentinel-2 imagery to 
accurately evaluate DI and DS in olive orchards infected by Xf in southern 
Italy, and (ii) whether the application of a 3-D radiative transfer model to 
account for temporal changes in the soil and understory improves the pre-
diction of Xf-disease incidence from Sentinel-2 time-series data. 

2.2. Materials and methods 

2.2.1. Study site and field data collection  

The study was conducted in an olive-growing area (Olea europaea L.) in 
Apulia (southern Italy, 40°30′50″N, 18°01′50″E) where Xf was officially 
detected for the first time in October 2013 (Fig. 2.1). The phytosanitary 
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measures implemented have been unsuccessful in preventing the spread of 
Xf throughout southern Apulia. The area is characterised by a temperate 
climate with mild winters and a landscape dominated by olive orchards that 
favour the natural spread of Xf  (Saponari et al., 2017; Strona et al., 2017). 
By 2015, the pathogen had spread to ca. 275,000 ha in the region, and it 
currently affects an area greater than 600,000 ha (labelled as ‘Infected zone’ 
in Fig. 2.1A). 

 
Figure 2.1 Sentinel 2A scene of southern Italy (large inset, A) with an 
overlay (green box, B) in which airborne hyperspectral mosaics are shown. 
The three hyperspectral images were acquired from aircraft on 28 June 2016 
with a micro-hyperspectral imager (red box, C) yielding 40-cm spatial 
resolution. The infected zone highlighted in the main map (A) outlines the 
area where Xylella fastidiosa has been observed as of March 2018 
(Commission Implementing Decision (EU) 2018/927, 2018) 

 

Field surveys were carried out in 16 olive orchards located in the Xf-infected 
zone in which qPCR analysis had confirmed its presence (Zarco-Tejada et 
al., 2018a). During the surveys, disease severity (DS) and disease incidence 
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(DI) were assessed for 3300 olive trees. Seem (1984) defines DS as the quan-
tity of disease that is affecting entities within a sampling unit; DI is a quan-
tal measure, defined as the proportion or percentage of diseased entities 
within a sampling unit. DS thus accounts for disease severity, while DI only 
considers whether a tree is affected or not. DI is, therefore, quicker and easier 
to measure, and generally more accurate and reproducible than other quan-
titative measures, making it the commonly preferred measurement method 
for the detection and enumeration of disease propagation patterns (Horsfall 
and Cowling, 1978). Based on visual inspection, we assigned individual trees 
to one of the five DS categories available (Fig. 2.2) depending on the pro-
portion of the crown affected by typical Xf symptoms including desiccation 
and discolouration of leaves and branches. DS ranged from 0, indicating the 
absence of symptoms, to 4, when most of the branches in the crown were 
dead (Table 2.1). DI was either 0 or 1, indicating non-symptomatic trees 
and symptomatic trees, respectively, where non-symptomatic trees corre-
sponded to a DS of 0 and symptomatic trees to any other severity (DS>0; 
Fig. 2.2) From these assessments for each tree, we calculated the average 
DS and DI of all trees for each orchard (DSo and DIo, respectively). 
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Figure 2.2 Examples of the five disease severity (DS) classes that olive trees 
(n=3300) were assigned to during a field survey in 2016 that was repeated 
in 2017. The classes related to the extent of severity of typical visual 
symptoms of Xylella fastidiosa ranging from apparently healthy trees (DS=0) 
to trees showing canopies with a prevalence of dead branches (DS = 4). 

 

Table 2.1 Xylella fastidiosa evaluation criteria: crown-level severity and 
incidence assignment. 

DS Level Severity Description Desiccation Incidence 

0 Healthy Symptomless 0% No incidence 

1 Initial severity 
Few desiccated branches af-
fecting a limited part of the 
canopy 

> 0 ≤ 25% Incidence 

2 Medium severity 
Desiccation affecting a large 
part of the canopy 

> 25 ≤ 50% Incidence 

3 High severity 
Canopy with desiccated 
branches uniformly distrib-
uted 

> 50 ≤ 75% Incidence 

4 Very high severity Severe tree decline > 75% Incidence 
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Figure 2.3 Example of olive orchards with medium (left panels) and high 
(right panels) incidence of Xf-related disease, viewed by an airborne high-
resolution narrow-band hyperspectral camera (VHR HS, top row), by 
Sentinel-2A (S2A, middle row, RGB-composite of bands B3, B2 and B4) 
and through their spectral signatures captured by the VHR HS and S2A 
(bottom row).  
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The first field survey was conducted in June 2016 and observed 48.5% of the 
trees to be asymptomatic; when the survey was repeated in July 2017, this 
value was 15.2%. Symptomatic trees were identified in all sampled orchards 
in both years, with a minimum DIo of 25.0% and 63.9% in 2016 and 2017, 
respectively. These values reflect the fact that all of the olive orchards across 
a very large region, extending more than 50 km from our study sites, are 
infected to some degree (Fig. 2.1). Given the ubiquity of Xf in such area and 
the challenge of locating an area free of Xf, a direct comparison between Xf-
infected and Xf-free orchards experiencing similar environmental conditions 
was not possible. The relative increase of Xf infection in the surveyed or-
chards, expressed as ΔDS and ΔDI, was measured based on the DSo and 
DIo observed between the 2016 and 2017 field surveys as: 

ΔDS = (DSoЄ΄͘ϝ μ+φ  − DSoЄ΄͘ϝ μ) / DSoЄ΄͘ϝ μ  (1) 

ΔDI = (DIoЄ΄͘ϝ μ+φ  − DIoЄ΄͘ϝ μ) / DIoЄ΄͘ϝ μ   (2) 

where values above zero for ΔDS and ΔDI imply an aggravation of the 
visual symptoms, zero values correspond to orchards with no significant 
changes, and values below zero indicate a lessening of visual symptoms in 
an orchard. 

2.2.2. Sentinel-2A imagery 

A temporal dataset of Sentinel-2 images was used to analyse the feasibility 
of detecting the ΔDS and ΔDI of Xf infection using VI trends. The Multi-
spectral Instrument (MSI), on board Sentinel-2A, acquires imagery at a 10-
day interval under constant viewing conditions, which results in 4- to 6-day 
revisit times at mid-latitudes due to the swath overlap between neighbouring 
orbits. The MSI measures reflected radiance in 13 spectral bands from visible 
and near-infrared (VNIR) to short-wave infrared (SWIR), with images at 12 
bits per channel and a spatial resolution of 10 m (Central Wavelength [CWL] 
at 496.6, 560.0, 664.5 and 835.1 nm with a bandwidth of 98, 45, 38 and 145 
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nm, respectively), 20 m (CWL at 703.9, 740.2, 782.5, 864.8, 1613.7 and 
2202.4 nm with a bandwidth of 19, 18, 28, 33, 143 and 242 nm, respectively) 
and 60 m (CWL at 443.9, 945.0 and 1373.5 nm with a bandwidth of 27, 26 
and 75 nm, respectively).  

We used the multi-temporal Sentinel-2A data available for the first two 
complete years after its launch in 2015 to build a multi-temporal spectral 
dataset from the 86 cloud-free Sentinel-2A images (Level-1C, ortho-rectified 
imagery expressed in top-of-atmosphere reflectance) (Richter et al., 2011) 
available from July 2015 to August 2017. From Level-1C, the images were 
atmospherically corrected to generate Level-2A (bottom-of-atmosphere – 
surface reflectance – provided with a pixel classification mask) with Sen2Cor 
(version 2.3.1). Using the scene classification from Level-2A, we then filtered 
the data that were affected by clouds or cirrus before calculating a suite of 
VIs. 

We selected spectral VIs that are primarily sensitive to canopy structure or 
pigment concentration and compatible with the spectral bandset of Sentinel-
2. The equations and references for each VI are shown in Table 2.2. More 
precisely, we calculated (i) conventional and corrected ratio and normalised 
indices derived from the near-infrared and red bands such as the Normalized 
Difference Vegetation Index (NDVI), Modified Simple Ratio (MSR), Green 
Normalized Difference Vegetation Index (GNDVI) and Renormalized Differ-
ence Vegetation Index (RDVI); (ii) conventional soil-adjusted indices such 
as the Adjusted Transformed Soil-Adjusted VI (ATSAVI), Optimized Soil-
Adjusted Vegetation Index (OSAVI) and Modified Soil-Adjusted Vegetation 
Index (MSAVI), and corrected versions using SWIR bands such as 
OSAVI1510; (iii) conventional and corrected chlorophyll VIs such as the Chlo-
rophyll Index (CI), Normalized Difference Index (NDI), Medium Resolution 
Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI), Pig-
ment Specific Simple Ratio A (PSSRa), Sentinel-2 Red-Edge Position 
(S2REP), and Inverted Red-Edge Chlorophyll Index (IRECI); and (iv) chlo-
rophyll indices formulated to minimise their sensitivity to structural effects 
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based on the Chlorophyll Absorption in Reflectance Index (CARI) and its 
transformations into Transformed Chlorophyll Absorption Ratio Index 
(TCARI) and Modified Chlorophyll Absorption Ratio Index (MCARI) nor-
malised by OSAVI in the form TCARI/OSAVI and MCARI1510 using SWIR bands, 
as formulated in Table 2.2. Finally, a smoothing algorithm based on Local 
Polynomial Regression Fitting (Cleveland et al., 1992) was used to reduce 
atmospheric variability and fill gaps to produce daily time series of the in-
dices. 

Table 2.2 Vegetation indices derived from Sentinel-2 data included in this 
study and their formulations. 

Vegetation index Equation Reference 
Normalized Difference Vegetation 
Index 

NDVI = (R΅ЈЈ − RϩϨЈ)/(R΅ЈЈ + RϩϨЈ) (Rouse et al., 1974) 

Chlorophyll Index CI =
RϨΘЈ
RϨφЈ

 (Zarco-Tejada et al., 2001) 

Normalized Difference Index NDI = (RϨЈϩ − RϩϩΚ)/(RϨЈΚ + RϩϩΚ) (Delegido et al., 2011) 
MERIS Terrestrial Chlorophyll 
Index 

MTCI = (RϨΘΚ − RϨЈν)/(RϨЈν − Rϩ΅φ) (Dash and Curran, 2007) 

Modified Chlorophyll Absorption 
Ratio Index 

MCARI = ((RϨЈЈ − RϩϨЈ) 
−0.2(RϨЈЈ − RΘΘЈ))०

Ϝɑɱɱ
Ϝɒɑɱ

१  (Haboudane et al., 2004) 

Green Normalized Difference 
Vegetation Index 

GNDVI = (R΅ЈЈ − RΘΘЈ)/(R΅ЈЈ + RΘΘЈ) (Gitelson et al., 1996) 

Pigment Specific Simple Ratio A PSSRa =
R΅ЈЈ
Rϩ΅Ј

 (Blackburn, 1998) 

Sentinel-2 Red-Edge Position S2REP = 705 + 35
RϨ΅ϯ + RϩϩΘ

2 − RϨЈΘ

RϨΚЈ − RϨЈΘ
 (Frampton et al., 2013) 

Inverted Red-Edge Chlorophyll 
Index 

IRECI = (RϨ΅ϯ − RϩϩΘ)/(RϨЈΘ + RϨΚЈ) (Frampton et al., 2013) 

Renormalized Difference Vegeta-
tion Index 

RDVI = (R΅ЈЈ − RϩϨЈ)/ఄ(R΅ЈЈ + RϩϨЈ) (Roujean and Breon, 1995) 

Modified Simple Ratio MSR =
R΅ЈЈ/RϩϨЈ − 1

(R΅ЈЈ/RϩϨЈ)ЈӳΘ + 1
 (Chen, 1996) 

Transformed Chlorophyll Ab-
sorption Ratio 

TCARI = 3
⎝
⎜⎛

(RϨЈЈ − RϩϨЈ) −

− 0.2 (RϨЈЈ − RΘΘЈ)
RϨЈЈ
RϩϨЈ⎠

⎟⎞ (Haboudane et al., 2002) 

Optimized Soil-Adjusted Vegeta-
tion Index 

OSAVI = (1 + 0.16) 
R΅ЈЈ − RϩϨЈ

R΅ЈЈ + RϩϨЈ + 0.16
 (Rondeaux et al., 1996) 
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Modified Soil-Adjusted Vegeta-
tion Index 

MSAVI = (1 + L)
R΅ЈЈ − RϩϨЈ

R΅ЈЈ + RϩϨЈ + L
 (Qi et al., 1994) 

TCARI/OSAVI TCARI/OSAVI =
TCARI
OSAVI

 (Haboudane et al., 2002) 

Modified Chlorophyll Absorption 
Ratio Index 1510 

MCARI1510 = ((RϨЈЈ − RφΘφЈ) 
−0.2(RϨЈЈ − RΘΘЈ))०

Ϝɑɱɱ
Ϝȯȁȯɱ

१  (Herrmann et al., 2010) 

Transformed Chlorophyll Ab-
sorption Ratio 1510 

TCARI1510

= 3
⎝
⎜⎛

(RϨЈЈ − RφΘφЈ) −

− 0.2 (RϨЈЈ − RΘΘЈ)
RϨЈЈ
RφΘφЈ⎠

⎟⎞ (Herrmann et al., 2010) 

Optimized Soil-Adjusted Vegeta-
tion Index 1510 

OSAVI1510

= (1 + 0.16) 
R΅ЈЈ − RφΘφЈ

R΅ЈЈ + RφΘφЈ + 0.16
 (Herrmann et al., 2010) 

Red Green Ratio Index IRG = RϩϨЈ − RΘΘЈ (Gamon and Surfus, 1999) 

Perpendicular Vegetation Index PVI =
R΅ЈЈ − a · RϩϨЈ − b√

aϵ + 1
 

(Richardson and Wiegand, 
1977) 

Ratio Vegetation Index - Simple 
Ratio 800/670 

RVI =
R΅ЈЈ
RϩϨЈ

 (Pearson and Miller, 1972) 

Adjusted Transformed Soil-Ad-
justed VI 

ATSAVI

= a ·
R΅ЈЈ − a · RϩϨЈ − b

a · R΅ЈЈ + RϩϨЈ − ab + x(1 + aϵ)
   (Baret and Guyot, 1991) 

Atmospherically Resistant Vege-
tation Index 

ARVI =
R΅ЈЈ − RϩϨЈ − y(RϩϨЈ − RΚΘЈ)
R΅ЈЈ + RϩϨЈ − y(RϩϨЈ − RΚΘЈ)

   (Bannari et al., 1995) 

Global Environment Monitoring 
Index 

GEMI = n(1 − 0.25n)
RϩϨЈ − 0.125

1 − RϩϨЈ
 

n = 
2ऺR΅ЈЈ

ϵ − RϩϨЈ
ϵऻ + 1.5 · R΅ЈЈ + 0.5 · RϩϨЈ

R΅ЈЈ + RϩϨЈ + 0.5
 

 

(Pinty and Verstraete, 
1992) 

Difference Vegetation Index DVI = g · R΅ЈЈ − RϩϨЈ 
(Richardson and Wiegand, 
1977) 

Aerosol Free Vegetation Index 
1600 

AFRI1510 = 

R΅ЈЈ − 0.66
RφϩЈЈ

R΅ЈЈ + 0.66 · RφϩЈЈ
 (Karnieli et al., 2001) 

Aerosol Free Vegetation Index 
2100 

AFRI2100 = 

R΅ЈЈ − 0.5
RϵφЈЈ

R΅ЈЈ + 0.56 · RϵφЈЈ
 (Karnieli et al., 2001) 

 

For each of the 16 orchards, we used the daily dataset of VIs to calculate 
the values for June 2016 and July 2017, taking the means over 2-week in-
tervals centred on the dates of the ground measurement collection to reduce 
random fluctuations in time-series data. We additionally calculated the 



Chapter 2 

32 

temporal rate of change for each VI in the form VIyear=n+1 / VI year=n in order 
to understand the temporal trajectory of VIs as a function of Xf infection. 
Finally, Pearson correlation analysis and p-values, adjusted with a Bonfer-
roni correction to control false positives (Haynes, 2013), were used to deter-
mine the strength and statistical significance of the relationship between the 
in-situ measurements of Xf impact, i.e. ΔDI and ΔDS, and the rate of 
change of VIs derived from Sentinel-2 data. 

2.2.3. Airborne hyperspectral images 

For validation purposes, we collected very high-resolution images (Fig. 2.3) 
on 28th June 2016 and 3rd July 2017 using a micro-hyperspectral imager—
Micro-Hyperspec VNIR model (Headwall Photonics Inc., Fitchburg, MA, 
USA)—on board a Cessna aircraft. Visible and near-infrared spectral regions 
(400–885 nm) were covered by operating the sensor with 260 bands and a 
radiometric resolution of 12 bits at a 1.865 nm CWL interval, yielding 6.4 
nm full-width at half-maximum (FWHM) spectral resolution with a 25-μm 
slit. The acquisition frame-rate on board the aircraft was 50 frames per sec-
ond with an integration time of 18 ms; with a focal length of 8 mm, an 
angular field of view (FOV) of 49.82° was produced (corresponding to an 
instantaneous FOV [IFOV] of 0.93 mrad). More platform and sensor config-
uration details can be found in Zarco-Tejada et al. (2013). The hyperspectral 
sensor was radiometrically calibrated in the laboratory with an integrating 
sphere (CSTM-USS-2000C Uniform Source System from Labsphere, North 
Sutton, NH, USA) by calculating coefficients derived from the calibrated 
light source at four illumination levels. The atmospheric correction was car-
ried out using the total incoming irradiance simulated with the SMARTS 
model (Gueymard, 1995, 2001), which allowed the conversion of radiance 
values to reflectance. The model was fed with data from a weather station 
(WX510 from Vaisala, Vantaa, Finland) and a Microtops II Sunphotometer 
(Solar Light Co., Philadelphia, PA, USA). Hyperspectral imagery was ortho-
rectified with PARGE (ReSe Applications Schläpfer, Wil, Switzerland) using 
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inputs from an inertial measurement unit (MTiG from Xsens, Enschede, 
Netherlands) installed on board and synchronized with the imager; image 
correction and data pre-processing are described in detail in Hernández-
Clemente et al. (2012) and Zarco-Tejada et al. (2016).  

The hyperspectral images had a ground resolution of 40 cm, allowing us to 
distinguish individual olive tree crowns from the background made up of soil 
and understory vegetation. We used the hyperspectral images to evaluate 
the contribution of the background to the relationship between ∆DI and the 
rate of change of VIs derived from the Sentinel-2 data. To do this, we cal-
culated for each orchard the hyperspectral VIs separately for the background 
areas surrounding the trees – by defining each tree crown as the area within 
a 5-m radius from the centroid and then masking the crowns by image seg-
mentation – and for the tree crowns only. 

We also used the very high-resolution images as ground-truth for model 
parametrisation, detailed in the next section, following the methodology pro-
posed by Zarco-Tejada et al. (2019) using scene components extracted from 
airborne hyperspectral images. Fig. 2.4 shows a strong correlation between 
VIs derived from Sentinel-2 and hyperspectral images over the 16 olive or-
chards in both 2016 (r2=0.86, p<0.001 for NDVI and r2=0.78, p<0.001 for 
OSAVI) and 2017 (r2=0.68, p<0.001 for NDVI and r2=0.66, p<0.001 for 
OSAVI). The consistency between the two datasets enabled the use of the 
high-resolution imagery as ground-truth for model parametrisation (Fig. 2.4). 
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Figure 2.4 Comparison between Sentinel-2A and high-spatial-resolution 
aircraft (Hyperspec VNIR) imagery using the vegetation indices NDVI (a) 
and OSAVI (b) of 16 olive orchards surveyed in June 2016 and July 2017. 
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2.2.4. Model simulations 

We used a coupled leaf-canopy radiative transfer model to analyse the sen-
sitivity of different VIs to orchard-level changes in Xf-induced disease inci-
dence through time and to evaluate the effects of the background and soil 
on symptom detection. The leaf optical properties were simulated with the 
PROSPECT-D model (Feret et al., 2017), which requires seven variables: 
the leaf structure coefficient (N), chlorophyll content (Ca+b), carotenoid con-
tent (Cx+c), anthocyanin content (Anth), brown pigment content (Cbrown), 
water equivalent thickness (Cw) and dry matter content (Cm). The PRO-
SPECT leaf model was coupled to the 3-dimensional FLIGHT model (Her-
nández-Clemente et al., 2017; North, 1996) to simulate the optical effects 
stemming from heterogeneous architecture of the olive tree crowns and or-
chards. FLIGHT uses Monte Carlo Ray Tracing (MCRT) techniques to sim-
ulate the radiative transfer within and between tree crowns and other can-
opy components. FLIGHT calculates directional reflectance of the canopy 
by accumulating photon energy in the observation direction as a function of 
different components defining the canopy structure (crown shape and size, 
tree height, position, density and distribution) (Table 2.3).  
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Table 2.3 Nominal values used in PROSPECT+FLIGHT simulation 
analysis. 

Variable Variable code Nominal values 
PROSPECT 

  

Structure coefficient N 1.2 
Chlorophyll a+b content Ca+b (μg/cm2) 10 – 80 
Carotenoid content Cx+c (μg/cm2) 10 
Anthocyanin content Anth (μg/cm2) 1.0 
Brown pigment content Cbrown (arb. unit) 0.0 
Water content Cw (cm) 0.015 
Dry matter Cm (g/cm2) 0.009 
FLIGHT 

  

Mode of operation MODE r (reverse) 
Dimension of model FLAG 3 (3D Representation) 
Solar zenith, view zenith (°) θs, θv 39.27, 0.0 
Solar azimuth, view azimuth (°) Φs, Φv 103.87, 0.0 
Number of wavebands NO_WVBANDS 401 
Image size IM_SIZE 200 x 200 
Number of photons traced - 40000 (reverse mode,  

from image size) 
Total LAI (LAI crown) TOTAL_LAI 0.25 – 3.5 
Leaf angle distribution LAD [1–9] 0.015, 0.045, 0.074, 0.1,0.123, 

0.143, 0.158, 0.168, 0.174 
Fractional cover (%) FRAC_COV 5 – 55 

 

Using the described PROSPECT+FLIGHT modelling approach, we gener-
ated a lookup table (LUT) to investigate the temporal dynamics of Xf-in-
duced disease incidence using VIs calculated from simulated spectra. We 
built a LUT with 7056 simulations using the input parameters described in 
Table 2.3. The nominal values used to generate the simulations were defined 
based on field measurements and hyperspectral imagery (Table 2.3) to 
mimic the orchards’ architecture and the level of disease impact across the 
study area. The 40-cm spatial resolution hyperspectral images (Fig. 2.3 top) 
were used to distinguish the scene components (Fig. 2.5), facilitating the 
parametrisation of the FLIGHT model simulations. In particular, we quan-
tified the fractional cover of each orchard (FCo) using NDVI calculated from 
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the high-resolution hyperspectral image. A threshold of NDVI > 0.3 was 
applied to distinguish tree crowns from background pixels during image seg-
mentation according to Niblack’s thresholding method (Niblack, 1986) and 
Sauvola’s binarization techniques (Sauvola and Pietikäinen, 2000). Next, we 
applied a binary watershed analysis using the Euclidean distance map for 
each object to automatically separate trees with overlapping crowns, which 
enables one to rebuild the scene with the same features. The FCo values 
retrieved from the airborne sensor were related to the field observations 
(DSo and DIo), with a linear regression model (r2=0.67, p<0.05) used as a 
proxy for DSo and DIo in the model simulation. The relationship between 
FCo and DSo was used to mimic the natural range of variation in FCo 
values for each DSo and used as input in the LUT. The initial LUT was 
then classified to set an approximate range of FCo per DSo and DIo (Table 
2.4). For each class (DSo Level 0 to 4), we assumed a range of crown diam-
eters and LAI per orchard to comply with the FCo defined for each level. 
We also assumed a decrease in the chlorophyll content values corresponding 
to the increase in DSo to mimic the typical discolouration observed in Xf-
infected olive trees. 

 
Figure 2.5 Overview of an olive grove acquired with a 40-cm hyperspectral 
sensor enabling the identification of single trees (left panel) and a 3-D scene 
generated with FLIGHT Monte Carlo simulation mimicking crown 
distribution (right panel).  
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Table 2.4 Classification criteria in the model inversion, including disease 
severity (DSo) and fractional cover (FCo) at orchard level, leaf area index 
at both crown (LAICROWN) and scene level (LAISCENE), and chlorophyll 
content (Ca+b). 

DSo Level  Description FCo (%) LAI CROWN Ca+b LAISCENE 

0 Healthy 45 – 55 2 – 3.5 65 – 80 0.9 – 1.925 
1 Initial severity 25 – 45 1.5 – 2 50 – 65 0.375 – 0.9 

2 Medium severity 20 – 25 0.75 – 1.5 35 – 50 0.15 – 0.375 
3 High severity 10 – 20 0.5 – 0.75 20 – 35 0.05 – 0.15 
4 Very high severity 5 – 10 0.25 – 0.5 10 – 20 0.0125 – 0.05 

 

To define the synthetic dataset associated with the change, we established 
a pool of combinations of change describing the positive increase rate of 
severity (𝑐 = ∑ 𝑘Θ

ֆ=φ ) between orchards classified at different levels for the 

years n and n+1 (year nL4→ year n+1L4, year nL3→ year n+1L3, year nL3→ 
year n+1L4, …, year nL0→ year n+1L4). The rate of change between simula-
tions for years n and n+1 was used for the final retrieval of ΔDI and ΔDS.  

Three different approaches were evaluated to account for the canopy back-
ground in the simulations: (i) a more complex solution that included the 
background spectral reflectance variation recorded by the hyperspectral im-
ages between 2016 and 2017 for each plot, named here as the “temporal 
background per plot” (TBP); (ii) a simpler approach considering a “persis-
tent spectral reflectance for the background” (PB) using a bare-soil spectrum 
extracted from the hyperspectral imagery collected in 2016; and (iii) a com-
promise alternative that computed the average of the background’s spectral 
reflectance recorded for all plots during 2016 and 2017, named here as the 
“mean temporal background scheme” (MTB). The performance of the model 
under each strategy was evaluated based on the Root Mean Square Error 
(RMSE) between the DI increase estimated from the retrieved Sentinel-2 
data and the field-observed DI scored for each of the 16 orchards evaluated. 
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2.3. Results 

In this section we present results from empirical approaches to detect vari-
ations in DI of Xf-infected olive orchards using physiological and structural 
VIs calculated from Sentinel-2 imagery. Then, we report results using a 3-D 
radiative transfer model to predict temporal changes of Xf-induced disease 
incidence that accounts for the soil and understory variations affecting the 
temporal trends. 

2.3.1. Temporal trends of DS and DI and vegetation indices 

Both DI and DS caused by Xf increased between 2016 and 2017 in all of the 
surveyed olive orchards (Fig. 2.6). DS and DI were significantly correlated 
with each other (r2=0.84, p<0.05), as were the temporal change rates ∆DS 
and ∆DI (r2=0.79, p<0.05). Orchards where incidence had already reached 
100% in 2016 continued to see an increase in symptom severity (e.g. Fig. 
2.6, orchards A5 and A4), and orchards with a low initial incidence and 
severity (e.g. C20 to B3), showed a strong increase in both one year later, 
as reflected by high ∆DI and ∆DS, respectively.  
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Figure 2.6 Temporal evolution of DIo and DSo between 2016 and 2017. 
(Top) DS and DI in 2016; (bottom) ΔDI and ΔDS between 2016 and 2017. 
X-axis labels refer to the 16 olive orchards surveyed. 

 

The rate of change in 17 out of the 26 Sentinel-2 VIs correlated significantly 
(p<0.001) with both ∆DS and ∆DI, and six of them showed a coefficient of 
determination (r2) exceeding 0.57 (Fig. 2.7). The indices ARVI and OSAVI 
produced the highest coefficients of determination with ∆DI (r2=0.75 and 
r2=0.76, respectively; p<0.001) (Fig. 2.8). Other VIs such as ATSAVI and 
NDVI yielded similar results (r2=0.72 and r2=0.71, respectively), 
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outperforming RDVI (r2=0.65) and MSR (r2=0.61). The relationships be-
tween these VIs and ∆DS yielded similar results (r2

ARVI=0.74, r2
OSAVI=0.71, 

r2
ATSAVI=0.72, r2

NDVI=0.71, r2
RDVI=0.57, r2

MSR=0.6; p<0.001 in all cases). Sur-
prisingly, however, greater ∆DI values were associated with smaller reduc-
tions in the VIs (Fig. 2.8), whether considering entire orchards (Fig. 2.8), 
the background cover only (Fig. 2.9a), or tree crowns only (Fig. 2.9b). Fur-
thermore, VIs calculated from the background area around each tree, made 
up of soil and understory vegetation and excluding tree crowns, displayed a 
similar pattern in which orchards with greater ∆DI showed smaller VI re-
ductions (Fig. 2.9). 

 
Figure 2.7 Relationship between increases in severity (∆DS) and incidence 
(∆DI) and temporal rate of change in Sentinel-2 vegetation indices selected 
for this study. Correlation coefficients range from −1 to 1. Cross (X) symbols 
indicate non-significant relationships (p-value ≥ 0.001). 
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Figure 2.8 Relationship between Xf incidence increase (∆DI) and the rate 
of change of the vegetation indices ARVI (a) and OSAVI (b). Rate of change 
was calculated from Sentinel-2 images taken in 2016 and 2017. 
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Figure 2.9 Relationship between Xf incidence increase (∆DI) and the rate 
of change of the vegetation index OSAVI with the background around a tree, 
determined by assuming a radius of 5 m around the centroid of each tree 
and masking the tree crowns by segmentation (a); and taking only tree 
crowns (b). Rate of change was calculated from hyperspectral imagery in 
2016 and 2017 due to its resolution sufficient to discriminate between 
background and trees. 

 

The analysis of the temporal changes observed by Sentinel-2A ARVI and 
OSAVI revealed distinct patterns in orchards with medium and high DI over 
the last two years (Fig. 2.10). Orchards with high DI had a lower ARVI and 
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OSAVI than those with medium DI. The differences between medium and 
high DI were more substantial during the summer, when the VIs tended to 
be lower than in winter, and much less variable than in spring, when infec-
tion symptoms develop more rapidly and potentially depend on local-scale 
environmental conditions as well as on the physiological status of individual 
trees. 
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Figure 2.10 Daily mean OSAVI (top) and ARVI (bottom) two-year time 
series of orchards with medium and high Xf incidence as evaluated in the 
field on 28 June 2016 (dots indicate the timing of the field survey). Lines 
represent the mean of medium-incidence (DIo2016<50%; n=10) and high-
incidence (DIo2016>50%; n=6) orchards, and bands extend two standard 
deviations around them. 
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2.3.2. Modelling changes in vegetation trends with S2A 

The results of the radiative transfer modelling approach, which was proposed 
to evaluate the sensitivity of VIs to track the temporal evolution of Xf dis-
ease, are displayed in Fig. 2.11. The FLIGHT model simulations obtained 
using a synthetic multi-temporal dataset, built with inputs within the typi-
cal range of variation observed in olive groves affected by Xf in two consec-
utive years for OSAVI (Fig. 2.11a) and ARVI (Fig. 2.11b), showed a direct 
relationship between ∆DI and the rate of change between two consecutive 
years. The simulated VIs generated using the MTB approach were signifi-
cantly related to ∆DI for OSAVI, ARVI and NDVI, and yielded similar 
accuracy to the empirical relationship with OSAVI (r2=0.74) but somewhat 
lower accuracy with ARVI (r2=0.49) and higher with NDVI (r2=0.68) (data 
not shown). In any case, the linear responses of the simulated VIs matched 
the empirical relationships very closely. 

∆DI estimated through model inversion using two different VIs (ARVI and 
OSAVI) corresponded well with the field observations of the ∆DI temporal 
change (Fig. 2.12). The complexity in accounting for the background in the 
models had an effect on the goodness-of-fit, introducing a bias in the DI 
change estimates (Fig. 2.12); when the year-to-year evolution of the back-
ground was considered independently for each of the orchards (TBP ap-
proach), the model simulations were entirely corrected for background ef-
fects and, therefore, the accuracy of ∆DI retrievals using OSAVI and ARVI 
was significantly higher (RMSEOSAVI=43% and RMSEARVI=44%; NRM-
SEOSAVI=0.19 and NRMSEARVI=0.20) (Fig. 2.12a, b). Model performance de-
creased when instead the mean background reflectance time series from all 
orchards (MTB approach) was used as a model input (RMSEOSAVI=50% and 
RMSEARVI=84%; NRMSEOSAVI=0.22 and NRMSEARVI=0.36) (Fig. 2.12 c, d). 
Finally, when model simulations did not account for the temporal changes 
in background reflectance at all (PB approach), the fitted models degraded 
significantly, leading to even larger errors (RMSE≥140%; NRMSE>0.6) (Fig. 
2.12e, f). 
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Figure 2.11 Simulations of the disease incidence increase (∆DI) with OSAVI 
(a) and ARVI (b), generated by PROSPECT+FLIGHT and using the 
average spectral reflectance measured in parts of the orchards not covered 
by olive tree crowns to represent the background in the model (MTB 
approach). Bands surrounding the points show the variability in results for 
the same ∆DI, and the points themselves are the average values within those 
simulations. 
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Figure 2.12 Estimated versus measured Xf incidence increase (∆DI) using 
OSAVI (left) and ARVI (right) vegetation indices. Graphs show 
PROSPECT+FLIGHT inversions calculated using TBP (a, b), MTB (c, d) 
and PB (e, f); see text for details. 
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Figure 2.13 Xf-disease incidence increase (∆DI) map generated from 
Sentinel-2A data of 29th June 2016 and 24th June 2017 using a lookup table 
(LUT) generated by inverting a PROSPECT+FLIGHT model that 
considered the temporal changes in background reflectance across all 
orchards (MTB approach; see text for details). Dots in the map indicate the 
individual olive orchards that were surveyed in the field. Bottom panels 
show incidence increases over different areas (green dots) where olive 
orchards were surveyed, representing a range of predicted ΔDI values. The 
observed incidence increase for each selected orchard is also indicated. The 
map has been masked with a layer of olive groves for Puglia extracted from 
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the Puglia Land Cover 2011 (InnovaPuglia Spa - Servizio Territorio e 
Ambiente, 2013). 

 

Applying model-inversion methodology with OSAVI and the MTB model 
(Fig. 2.11a, Fig. 2.12c) to entire Sentinel-2A scenes generated a map of the 
predicted yearly increase in Xf-induced disease incidence between June 2016 
and 2017 (Fig. 2.13). Looking in detail at four of the surveyed olive orchards 
(bottom panels in Fig. 2.13), representing a range of predicted ΔDI values, 
we can confirm that predictions of low to high percentages (0 to 180%) of 
Xf-disease incidence increase corresponded with the field observation records, 
which reported ΔDI from 0 to 194% for those fields. Furthermore, predicted 
maps generated with the model show enough spatial resolution to provide 
operational monitoring at the orchard level. 

2.4. Discussion 

The first research aim of this study was to determine whether satellite data 
could be used to monitor temporal changes of Xf-induced DI and DS, and 
to provide insights into the epidemiology of Xf spread over large areas. Non-
visual symptoms of Xf infection can be detected using very high-resolution 
hyperspectral images and radiative transfer models (Zarco-Tejada et al., 
2018a), providing an innovative tool for the early detection of infected olive 
trees on a local scale. However, since Xf has spread rapidly in southern Italy 
over the last few years, affecting entire olive orchards, tracking more con-
spicuous damage (such as DI and DS) across large areas could help measure, 
forecast, and mitigate the impact of Xf on the landscape and on socio-eco-
nomic sectors depending on it (Luvisi et al., 2017; White et al., 2017). The 
fast spread of Xf was reflected in our field observations: DI and DS increased 
considerably between 2016 and 2017, and ∆DI and ∆DS were linearly related. 
Indeed, the widespread increase of Xf infections in the last three years in 
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southern Apulia (Girelli et al., 2017) has posed a risk to the olive trees and 
to this economic sector in the region. 

Under natural conditions, biotic and abiotic factors jointly affect the devel-
opment of vegetation diseases over different spatial and temporal scales. The 
interaction may cause a progressive loss in chlorophyll and biomass, produc-
ing irreversible changes in the vegetation. Both alterations are detectable 
and quantifiable through VIs calculated from Sentinel-2 data (Zarco-Tejada 
et al., 2019). However, the relationships between VIs (OSAVI or NDVI) and 
DS or DI were poor when considering data from 2016 and 2017 together 
(r2<0.22, p<0.05) (Fig. A1, Appendix A.), indicating that the VIs reflect 
orchard characteristics other than Xf symptoms and that such characteris-
tics vary considerably between years. Hence, a precise disease assessment 
requires a quantitative estimation of the temporal evolution of the disease 
(∆DI and ∆DS) rather than a mere quantification of DI and DS at one spe-
cific time (Nutter et al., 2006). Indeed, the availability of frequent multi-
spectral data from Sentinel-2 offers the opportunity to assess both spatial 
and temporal variation in VIs to monitor Xf infections in olive orchards over 
time.  

When working with multi-temporal data acquired over non-closed canopies, 
one of the main challenges is to decouple the spectral reflectance changes 
produced by alterations in the vegetation condition from those produced by 
atmospheric and background factors. Here, the seasonal variation of VIs 
showed the highest variability in winter and early spring. In these periods, 
cloudy days are more frequent, increasing the residual noise in the data and 
the need for temporal interpolation. The sensitivity of different VIs to soil 
background and atmospheric effects were previously analysed in efforts to 
improve the accuracy of the retrieval of LAI and absorbed photosyntheti-
cally active radiation (APAR) (Baret and Guyot, 1991; Haboudane et al., 
2004; Huete et al., 1985) and chlorophyll (Haboudane et al., 2008; Zhang et 
al., 2008). The variation in FC of a forest under decline also affects the 
performance of some VIs with higher sensitivity to canopy structure changes 
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(Hernández-Clemente et al., 2011). The best-performing VIs in our study, 
OSAVI and ARVI, tend to be relatively robust to background and atmos-
pheric effects (Kaufman and Tanre, 1992; Rondeaux et al., 1996). Empirical 
and modelling results agreed regarding the accuracy of OSAVI as the best-
performing index to track ΔDI. By contrast, the performance of ARVI with 
regard to the field observations was not entirely confirmed by model simu-
lations. This may be related to the fact that ARVI is a vegetation index 
that minimises the atmospheric effects on the reflectance, conditions that 
were not included in the modelling, which assumed stable conditions for 
both years. 

The overall robustness shown by modified VIs such as OSAVI or ARVI is 
in disagreement with some other studies, in which traditional indices yielded 
better performance. For instance, Frampton et al. (2013) reported that LAI 
and chlorophyll could be extracted from Sentinel-2 NDVI images for crops 
as well as from novel indices such as S2REP and MTCI. Differences in the 
homogeneity of crop versus olive orchard canopies might explain this appar-
ent contradiction: in the latter case, the confounding effects produced by the 
structural heterogeneity of the orchards invalidated VIs with high sensitivity 
to soil effects and atmospheric conditions. 

The contribution of the background seems to affect not only the spectral 
reflectance of the canopy measured by Sentinel-2 but also the spectral re-
flectance retrieved from the diseased crowns using hyperspectral images. 
Both sensors, with different spatial and spectral resolutions, showed a sig-
nificant and similar relationship, with greater ΔDI leading to smaller VI 
reductions. This counterintuitive result is unlikely to be driven by weather 
patterns in the two years, as the sampled orchards experienced very similar 
meteorological conditions. Instead, it might reflect the impact of the back-
ground on the crown spectral response because olive tree crowns generally 
display low crown transmittance and LAI (Gómez Calero et al., 2011), and 
defoliation increases with DS. As a result, the background has a particularly 
large contribution to temporal VI trends once the Xf disease symptoms 
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increase, even when using self-corrected (Kaufman and Tanre, 1992) and 
soil-adjusted (Rondeaux et al., 1996) VIs and considering only tree crowns. 
Simultaneously, the increase in Xf infection was associated with a decrease 
in FC of the trees and an increase in the FC of the background, further 
increasing the dominance of the understory in the signal at orchard-level 
resolution. This inverse effect, i.e. an increase in the greenness of the back-
ground when the health of Xf-infected trees decreases, could be due to or-
chard management if diseased orchards are abandoned and no longer mowed 
or ploughed, leaving low-stature vegetation to reoccupy the soil. It may also 
be partly ecologically driven if diseased trees leave more nutrients and water 
available to the understory (Peltzer and Köchy, 2001). 

This pattern further emphasises the relevance of incorporating 3-D RTMs 
when analysing VIs to explicitly incorporate background effects if the impact 
of Xf on spectral characteristics of olive groves is to be modelled with con-
siderable precision (Meggio et al., 2008; Richardson and Wiegand, 1977). 
This conclusion links to our second research question, which focused on the 
feasibility of modelling changes in DI from multi-temporal Sentinel-2 image 
data using VIs and radiative transfer models. In fact, the background effect 
has a significant impact on the model estimation against in-situ measure-
ments: there was an improvement in the retrieval of ΔDI of 33.5% when 
accounting for the background effects, and a further 9.5% improvement 
when its heterogeneity was also considered. These results have critical im-
plications in the use of VIs to assess the temporal evolution of the disease 
due to the non-homogeneous background effects across orchards affected by 
Xf, which alter the spectral signature of the canopy obtained with Sentinel-
2 image data. The simulation approach demonstrated the benefit of using a 
3-D radiative transfer model accounting for such effects, which is critical 
when monitoring the future spread of Xf infections and understanding its 
epidemiology (Fuente et al., 2018). Therefore, this study takes one step fur-
ther via modelling methods to properly account for the changes observed in 
canopy monitoring studies, enabling the retrieval of vegetation trends 
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associated with Xf infections and improving the understanding of the dy-
namics of the understory.  

The proposed methodology based on the use of RTM and Sentinel-2 imagery 
offers the advantage of using free satellite data over any other remote sensing 
product limited by the availability of hyperspectral images. However, the 
applicability of these methods within a systematic detection system may be 
limited by the computational time required for model inversion, notwith-
standing this limitation can be overcome in combination with data-driven 
machine learning algorithms based on multi-output methods emulating the 
functioning of RTM (Rivera et al., 2015). The result of mapping disease-
incidence dynamics using radiative transfer modelling illustrates the poten-
tial of the Sentinel-2 sensor to assess olive groves’ health dynamics. The 
challenge of mapping disease infections has been thus far mainly addressed 
using environmental data and probabilistic models (Hay et al., 2006) and 
rarely approached in quantitative terms. Remote sensing that combines 
physical methods and VIs makes it possible to map the DI dynamics of Xf 
based on the main biophysical changes it causes at the landscape scale. The 
dense time series provided by Sentinel-2 satellites make continuous mapping 
feasible and bring new opportunities for monitoring diseases incidence world-
wide. Future work should consider methods to disentangle direct plant-level 
effects of Xf infection from those that manifest themselves in other compo-
nents of the landscape because of changes in either vegetation composition 
or management. 

2.5. Conclusions 

This study demonstrates that Sentinel-2 data enables the detection of 
changes associated with temporal variations of Xf-induced symptoms at the 
orchard level. The use of satellite imagery to monitoring large-scale dynam-
ics is key to combat Xf infections. Our work took advantage of a two-year 
dataset collected in the Xf-infected area in southern Italy, integrating 
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Sentinel-2 satellite images and high-resolution hyperspectral imagery, field 
observations and radiative transfer modelling. The temporal rate of change 
of disease incidence (DI) and disease severity (DS) was evaluated using dif-
ferent VIs and showed that the monitoring of Xf-infected orchards required 
the use of self-corrected and soil-adjusted VIs. Among the Sentinel-2 VI 
assessments, the best performance was observed for those that minimised 
the atmospheric and background effects such as ARVI, OSAVI and ATSAVI. 
These VIs performed better than traditional VIs such as NDVI, RDVI and 
MSR. However, the confounding effects of the understory had a considerable 
impact on the VIs obtained from Sentinel-2 over Xf-infected olive orchards 
due to the discontinuous canopy that characterises this crop. This study 
demonstrated that 3-D RTM and field observations properly explained the 
temporal variations experienced by both the tree canopy and the background, 
a critical aspect to accurately predicting ΔDI and ΔDS. Applying a tem-
poral trend analysis supported by the 3-D RTM demonstrated that ARVI 
and OSAVI can be used to monitor orchard-level changes in DI and DS, 
yielding Normalised Root Mean Square Error (NRMSE) values below 0.22 
and 0.36, respectively, for the two years of analysis. Overall, these results 
suggest that Sentinel-2 time-series imagery can provide useful spatio-tem-
poral indicators to monitor the damage caused by Xf infections across large 
areas. 

 

 

 



 

 

 

Chapter 3 
 
Assessing the influence of the 
understory in the interpretation of 
chlorophyll fluorescence retrieved from 
heterogeneous canopies through 3-D 
radiative transfer modelling 

Abstract 

A major international effort has been made to monitor sun-induced chloro-
phyll fluorescence (SIF) from space as a proxy for the photosynthetic activ-
ity of terrestrial vegetation. However, the effect of spatial heterogeneity on 
the SIF retrievals from canopy radiance derived from images with medium 
and low spatial resolution remains uncharacterised. In images from forest 
and agricultural landscapes, the background comprises a mixture of soil and 
understory and can generate confounding effects that limit the interpreta-
tion of the SIF at the canopy level. This paper aims to improve the under-
standing of SIF from coarse spatial resolutions in heterogeneous canopies by 
considering the separated contribution of tree crowns, understory and back-
ground components, using a modified version of the FluorFLIGHT radiative 
transfer model (RTM). The new model is compared with others through the 
RAMI model intercomparison framework and is validated with airborne data. 
The airborne campaign includes high-resolution data collected over a tree-
grass ecosystem with the HyPlant imaging spectrometer within the FLuo-
rescence EXplorer (FLEX) preparatory missions. Field data measurements 
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were collected from plots with a varying fraction of tree and understory 
vegetation cover. The relationship between airborne SIF calculated from 
pure tree crowns and aggregated pixels shows the effect of the understory at 
different resolutions. For a pixel size smaller than the mean crown size, the 
impact of the background was low (R2 > 0.99; NRMSE < 0.01). By contrast, 
for a pixel size larger than the crown size, the goodness of fit decreased (R2 
< 0.6; NRMSE > 0.2). This study demonstrates that using a 3D RTM model 
improves the calculation of SIF significantly (R2 = 0.83, RMSE = 0.03 mW 
m-2 sr-1 nm-1) when the specific contribution of the soil and understory layers 
are accounted for, in comparison with the SIF calculated from mixed pixels 
that considers only one layer as background (R2 = 0.4, RMSE = 0.28 mW 
m-2 sr-1 nm-1). These results demonstrate the need to account for the contri-
bution of SIF emitted by the understory in the quantification of SIF within 
tree crowns and within the canopy from aggregated pixels in heterogeneous 
forest canopies. 

3.1. Introduction 

International efforts have been carried out to monitor fluorescence from 
space in global studies using different sensors (Köhler et al., 2018; Moham-
med et al., 2019) and modelling approaches (Verrelst et al., 2015a). One of 
the main challenges of the global low-resolution (over 60 m/pixel) sun-in-
duced fluorescence (SIF) maps resides in the impact of the background com-
ponents when quantifying SIF from large pixels aggregating different scene 
components. The first SIF global maps (Frankenberg et al., 2011; Joiner et 
al., 2011) were derived from the thermal and near-infrared sensor for obser-
vation (TANSO) onboard the greenhouse gases observing satellite (GOSAT) 
(Guanter et al., 2012). A recent study has focused on downscaling SIF using 
the Global Ozone Monitoring Instrument 2 (GOME-2) and producing a daily 
corrected SIF global dataset with a spatial resolution of 0.05(Duveiller et 
al., 2020). The most recent SIF products based on the Orbiting Carbon 
Observatory 2 (OCO-2) launched in 2014 and the TROPOspheric 
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Monitoring Instrument (TROPOMI) in 2018 provide a footprint of 1.3 × 
2.25 km and 3.5 × 7 km at nadir respectively. OCO-2 and TROPOMI SIF 
products have the potential to provide GPP estimations for homogeneous 
vegetation type covers (Köhler et al., 2018; Li et al., 2018). Although these 
global maps were important achievements, questions were raised regarding 
the interpretation of the SIF quantified from mixed pixels that aggregate 
vegetation, soil and shadow components (Xinchen Lu et al., 2018). In the 
coming years, new possibilities of improving the spatial resolution of SIF 
global maps open up with the upcoming launch of the ESA Fluorescence 
Explorer (FLEX) satellite in 2022, designed to measure the instantaneous 
chlorophyll fluorescence signal with a very high spectral-resolution (0.1 nm) 
imaging spectrometer and a spatial resolution of 300 m. This will provide a 
completely new opportunity to assess the dynamics of actual photosynthesis 
through SIF, which offers a major advance over current capabilities that can 
only detect potential photosynthesis as derived through passive reflectance 
monitored by conventional Earth-resources satellites. The spatial resolution 
of FLEX is not, however, sufficient to understand the confounding effects of 
background components that affect the quantification of vegetation SIF at 
the pixel level. Recent initiatives, such as the FlexSense campaign (Sieg-
mann et al., 2019) for collecting airborne measurements at very fine resolu-
tion during the FLEX-Sentinel Tandem experiment, will contribute to the 
understanding and interpretation of SIF from aggregated pixels. Previous 
studies have attempted to interpret the SIF signal quantified at different 
scales, which is an important issue due to the effects of fractional vegetation 
cover and structure, and background (Zarco-Tejada et al., 2013b). 

In heterogeneous forest and agricultural canopies, high-resolution images are 
required to enable the crowns and understory to be delineated from the 
background (Wagner et al., 2018). The quantification of the contribution of 
each pixel helps to understand and to improve the models used to quantify 
biophysical parameters from mixed pixels (Yu et al., 2018). The estimation 
of some of these parameters, such as the fraction of green vegetation cover 
(FC), leaf area index (LAI), or the fraction of absorbed photosynthetically 
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active radiation (fAPAR), have critical implications in the estimation of 
Gross Primary Productivity (GPP) at the regional or global scale (Lin et 
al., 2018; Tagliabue et al., 2019). In fact, the impact of the understory on 
canopy reflectance is particularly challenging for studying complex canopies 
comprising different plant architectures and physiology (Eriksson et al., 
2006). Recent studies have demonstrated that SIF-GPP relationships not 
only are significantly affected by vegetation type (Li et al., 2018; Sun et al., 
2018) but even vary within the same kind of vegetation (Migliavacca et al., 
2017). These studies concluded that finer resolution SIF observations were 
required to improve the accuracy of the models. However, it remains unclear 
how the covariation between SIF and GPP is affected by mixed vegetation 
from landscape to global scales (Sun et al., 2017), although it has been shown 
that the canopy structure plays a dominant role in the SIF-GPP relationship 
(Dechant et al., 2020; Duveiller et al., 2020). Therefore, it is critical to quan-
tify the contribution of each sub-pixel scene component in mixed canopies 
that are characterised by a heterogeneous distribution of trees and under-
story when working with satellite images at medium and low spatial resolu-
tions.  

Furthermore, temporal changes in the physiological condition and composi-
tion of the understory also affect the relationships between satellite data and 
vegetation properties, due to mixed pixel effects. This is especially the case 
at medium and low spatial resolutions, which alter temporal relationships, 
as demonstrated by Hornero et al. (2020). In that study, Sentinel-2 data was 
used to show an inverse relationship between vegetation indices and the 
increase in the disease incidence quantified from trees affected by Xylella 
fastidiosa (Xf) infection due to understory effects. The results demonstrated 
that the decrease in tree density, caused by the disease, produced an increase 
in the understory fraction, resulting in a controversial increase in the Nor-
malized Difference Vegetation Index (NDVI) in the affected fields. 

In this context, models are essential to relate observed optical properties to 
leaf biophysical and biochemical attributes and to analyse the effect of 
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heterogeneous canopy structures at different spatial resolutions (Wu and Li, 
2009). Several methods have been proposed to calculate biochemical traits 
from hyperspectral reflectance, including scaling-up and model inversion 
methods that couple leaf and canopy transfer models (Verrelst et al., 2018). 
For instance, recent studies (Melendo-Vega et al., 2018) have used a coupled 
model strategy (1D PROSAIL + 3D FLIGHT) including the contribution 
of the grass background to improve the simulation of the spectral properties 
for multi-layered tree-grass ecosystems.  Other strategies include the use of 
linear spectral unmixing techniques tested to separate the spectral properties 
of forest floor and overstory components (Markiet and Mõttus, 2020). De-
spite the progress achieved, this modelling approach does not yet include 
the contribution of fluorescence and the impact of the multiple scattering 
produced between tree and understory components and the background 
layer. 

In recent modelling studies, the chlorophyll fluorescence emission has been 
included at the leaf (Kallel, 2020; Pedrós et al., 2010; Vilfan et al., 2018, 
2016) and canopy level in homogeneous (Atherton et al., 2019; Romero et 
al., 2020; Yang and van der Tol, 2018; Zeng et al., 2019) and heterogeneous 
forest canopies (Hernández-Clemente et al., 2017; Liu et al., 2019; Zhao et 
al., 2016). Furthermore, previous studies have attempted to account for spa-
tial heterogeneity using the first available model-based approximations 
(Zarco-Tejada et al., 2013b). A more complex three-dimensional canopy ra-
diative transfer model (RTM) – FluorFLIGHT (Hernández-Clemente et al., 
2017) – was developed to parameterise the canopy structure to estimate SIF 
from heterogeneous forest canopies. The model is based on the combination 
of FLUSPECT (Vilfan et al., 2016) with the 3D ray-tracing model FLIGHT 
(North, 1996) to simulate multiple scattering within the canopy including 
the contribution of the gap and shadows between the tree crowns. Modelling 
results with FluorFLIGHT showed that the variability in the percentage of 
sunlit and shaded vegetation and soil affects the absolute values of total SIF 
from aggregated pixels and therefore, the interpretation of SIF from coarse 
resolution images. 
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Despite the extensive work conducted with FLIGHT (Bye et al., 2017; Her-
nández-Clemente et al., 2017; Montesano et al., 2015; Zarco-Tejada et al., 
2019, 2018a), strategies that simulate SIF in heterogeneous canopies and 
consider the effects of different background components, such as soil type or 
understory fraction, have been limited by difficulties in simulating complex 
canopy structures and vertical heterogeneity. To simulate SIF of complex 
multi-scale plant architectures, another 3D ray-tracing approach, the Dis-
crete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry 
et al., 1996), has been proposed. This model has been recently used with 
data collected from a hand-held spectroradiometer to demonstrate that SIF 
is greatly influenced by canopy structure and understory vegetation (Liu et 
al., 2019). However, further research is still necessary to understand the 
impact of structural components on the retrieval of SIF from medium (10 ‒ 
60 m/pixel) to high (0.3 ‒ 10 m/pixel) spatial resolution satellite images. 
Airborne sensors such as HyPlant, the first fluorescence sensor designed to 
support the FLEX mission and dedicated to validating the retrieval of SIF 
for a large canopy and different vegetation types (Rascher et al., 2015), can 
provide valuable information with which to model and understand better 
the effect of SIF signals among mixed pixels. 

The impact of background components on SIF might particularly affect sea-
sonal analyses, where the temporal variation of the understory fraction is 
high. Forest canopies, in particular, exhibit a complex canopy structure and 
the distribution of the understory cover fraction mainly depends on topog-
raphy, sunfleck positions, soil composition and illumination conditions (Ta-
gliabue et al., 2019). Consequently, assuming an invariant and homogeneous 
effect of the soil as background might increase the uncertainty of biophysical 
parameters retrieved from high- and medium-resolution imagery (Hornero 
et al., 2020; Meng et al., 2018). These previous studies have demonstrated 
the need to develop new modelling approaches that consider the multiple 
scattering, mutual shading of the crowns, variation in the soil, and shading 
of the background in SIF retrieval.  
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In this study, we propose a modification of the 3D RTM FluorFLIGHT 
model to simulate canopy reflectance and SIF in heterogeneous canopies, 
including the effects of different background components, such as the soil 
and the understory cover fraction. In particular, we aim to i) analyse the 
contribution of SIF emitted by the understory in aggregated pixels using 
high spectral and spatial resolution imagery collected from the airborne hy-
perspectral HyPlant system, ii) study the impact of the variation in the 
understory cover fraction on the total SIF calculated at different scales. We 
compare this modified model with others from the Radiation Transfer Model 
Intercomparison (RAMI-3) exercise under the RAMI On-line Model Checker 
framework (ROMC) (Widlowski et al., 2008, 2007) and validate it with field 
and airborne data. 

3.2. Material and methods 

3.2.1. Study site and ground data collection  

The study was carried out in a Mediterranean tree-grass ecosystem (locally 
known as dehesa) located in Majadas de Tiétar (western Spain, 39°56′20″N, 
5°46′28″W) (Fig. 3.1). The dehesa is a unique and practically endemic 
agrosilvopastoral system of the Iberian Peninsula, formed mainly by holm 
and cork oaks, with a lower stratum of grasses and shrubs, and generally 
shows extensive livestock use. These two strata, trees and understory, 
mainly define the vegetation structure in the study area. The tree layer 
covers approximately 20% of the surface and is predominantly composed of 
holm oak (Quercus ilex L. subsp. ballota) (Bogdanovich et al., 2021). The 
understory grass layer is highly dynamic and is dominated by species of the 
three main functional plant forms of grasses, forbs and legumes (Migliavacca 
et al., 2017). 
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Figure 3.1 Location of the study site selected for the quantification of SIF 
through high-resolution hyperspectral imaging (left). The red shaded area 
represents the image coverage. The grey dots represent the 25 × 25 m plots 
that were sampled to obtain the biochemical and structural variables of the 
understory, and the white dotted circles represent the radiometric towers 
with FloX instruments attached measuring up- and down-welling radiance. 
The images on the right show the heterogeneity of the landscape and the 
understory within the area of study. 

 

Field measurements were taken on 24 June 2018 simultaneously with the 
airborne campaign described in section 2.2 to perform the image processing 
and model parametrisation. In particular, total incoming radiance was re-
quired for the SIF and the reflectance calculation for both empirical and 
simulated data. Solar irradiance data were measured at the time of image 
acquisition with a SIF-enabled high-resolution spectroradiometer instrument 
(FloX, JB Hyperspectral Devices, Düsseldorf, Germany) mounted and lev-
elled on a 9-metre tower above the tree canopy. Two FloX boxes were in-
stalled over two trees (Fig. 3.1) during the flight, and another one was also 
used to collect spectral data from the understory in 15 plots (transects) 
between these trees. Each FloX equipment consists of two sealed and iso-
lated spectroradiometers, FULL and FLUO (Table 3.1). Total incoming ra-
diation was also simulated by the SMARTS model (National Renewable 
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Energy Laboratory, United States Department of Energy) (Gueymard, 1995, 
2001), using aerosol optical depth measured at 550 nm from the AERONET 
(Holben et al., 1998) station over Majadas (Spain), located at a central point 
in the study area. A comparison between solar irradiance from different 
sources is presented in Fig. B1 (Appendix B.). 

Table 3.1 FloX specification. FULL and FLUO spectroradiometers used for 
the field data collection. 

OPTIC FULL FLUO 

Spectrometer-based model FLAME VIS-NIR QE Pro 
Wavelength range (nm) 400 – 950 650 – 800 
Spectral resolution (nm) 1.5 0.3 
Signal-to-noise ratio 250 1000 
Field of view (deg) 
(down- / up-welling radiance) 

180 / 25 180 / 25 

 

Biochemical and structural variables of the understory to enter into the 
model were obtained by destructive sampling of the grass layer in nineteen 
plots of 25 × 25 m located within the study area (Fig. 3.1). Two 25 × 25 
cm grass samples were collected on each plot in areas visually identified to 
be representative of the variability in each plot; if the plot contained trees, 
one of the samples was acquired below the canopy to take into account the 
potential variability induced by the tree crowns (Melendo-Vega et al., 2018; 
Mendiguren et al., 2015). The understory leaf area index (LAI) was also 
measured by destructive sampling. All rooted plants within each 25 × 25 
cm quadrant were collected using clippers and stored in sealed plastic bags. 
These were weighed in the field and then transported in a cooler to the 
laboratory, where subsamples were selected, and green and dry fractions 
were manually separated. Subsample fractions were scanned in an Epson 
Perfection V30 colour scanner (Epson American Inc., Long Beach, CA, 
USA). The leaf area was calculated automatically from the scanned images 
using the unsupervised classification algorithm ISOCLUS implemented in 
PCI Geomatica (PCI Geomatics, Richmond Hill, Ontario, Canada). ISO-
CLUS is based (with minor modifications) on the ISODATA method 



Chapter 3 

65 

described in Tou et al. (1974). To measure the chlorophyll a (Ca), b (Cb), 
a+b (Cab) and total carotenoids (Cca) pigment concentration, a parallel 
grass sample (pigment quadrant) was taken adjacent to the quadrant where 
biophysical and structural variables previously described were sampled. In 
each pigment quadrant, the green fraction of the standing vegetation was 
sampled, weighed and frozen in dry ice in the field (for further details see 
Gonzalez-Cascon and Martin, 2018). The pigment concentrations in the ho-
mogenised grass sample were spectrophotometrically analysed in four repli-
cates per sample using 80% (v/v) acetone as a solvent (Gonzalez-Cascon et 
al., 2017). Percentage of dry mass was determined as well in three replicates 
per sample. All samples were then placed in an oven for 48h at a constant 
temperature of 60 ºC to obtain their dry weight. Pigment concentrations 
per mass were determined in the green grass fraction material and calculated 
at 65 ºC. Pigment content per total leaf area (µg/cm2) was calculated com-
bining pigment concentrations per mass determined from the pigment quad-
rant and parameters obtained from the contiguous quadrant as: 

Cͣ͘Ӵΰ΄͘ΒӴΜϝ͘ϣϣ = φЈЈЈ դՆՇӱՉՒՆ՘՘ӱՌ ոՉӱ՘ӱ՛
բՑՊՆՋӱ

   (1) 

Where Cab,dmass,g (%) is the concentration of chlorophyll a + b per unit of dry 
mass of green grass measured in the pigment quadrant and Wd,s,v (g) and 
Aleaf,s (cm2) are the dry weight and leaf surface area respectively of the green 
fraction of a subsample collected in the contiguous quadrant. 

To characterise the tree canopy, leaf properties were measured for 19 indi-
viduals by destructive sampling using a Li-Cor 1800-12 integrating sphere 
(Li-Cor, Lincoln, NE, USA) coupled to an ASD Fieldspec 3 spectroradiom-
eter (Analytical Spectral Devices Inc., Boulder, CO, USA). Leaves were ob-
tained from two separate branches from the upper third of the tree crown 
on the south and north sides. The integrating sphere protocol is described 
by Zarco-Tejada et al. (2005), and further information regarding this sam-
pling method is detailed in Melendo-Vega et al. (2018). Measurements of the 
tree canopy LAI were derived using an LAI-2200 plant canopy analyser (LI-
COR, Lincoln, Nebraska, USA). Readings were taken above and below 
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isolated trees under direct illumination conditions with the sensor facing +/-
90º to the solar azimuth angle. The FV2200 processing tool (LI-COR, Lin-
coln, Nebraska, USA), which provides a mechanism (Kobayashi et al., 2013) 
that allows correction of measurements for radiation reflected and transmit-
ted by the foliage, was used to apply scattering corrections and to calculate 
LAI using crown-shape measurements derived from field images. 

3.2.2. Airborne hyperspectral and LiDAR data 

Airborne data collection (Fig. 3.2) was conducted on 24 June 2018 using the 
high-resolution triple-coupled hyperspectral solution HyPlant v3, developed 
by the Jülich Research Centre (Kreis Düren, Germany) in cooperation with 
SPECIM Spectral Imaging Ltd. (Oulu, Finland) (Siegmann et al., 2019) and 
a long-range laser scanner onboard a Cessna aircraft. The HyPlant system 
consists of two hyperspectral modules as a combination of three pushbroom 
imaging line scanners. The DUAL imager (available commercially as AisaF-
ENIX) comprises two integrated sensors in a single housing sharing the same 
optics, which provides continuous spectral information covering the visi-
ble/near-infrared (VNIR) and short-wave infrared (SWIR) regions of the 
spectrum (380 – 2500 nm), and yielding 3.5 and 12 nm full-width at half-
maximum (FWHM) spectral resolution, respectively. The FLUO module 
(commercially known as AisaIBIS) is an imager that acquires data between 
670 and 780 nm at higher spectral resolution (Celesti et al., 2019; Siegmann 
et al., 2019). The hyperspectral sensors were radiometrically calibrated with 
an integrating sphere on SPECIM’s facilities by calculating coefficients de-
rived from a calibrated light source and, prior to applying these coefficients, 
the dark frame correction was conducted. We calculated the top-of-canopy 
(TOC) spectral reflectance – Cluster II output as described in Siegmann et 
al., (2019) – from the DUAL imager in the VNIR and SWIR regions with 
ATCOR4 (ReSe Applications Schläpfer, Wil, Switzerland) using available 
sunphotometer measurements of Aerosol Optical Depth (AOD) as input pa-
rameters. We used at-sensor-radiance from the FLUO imager (Cluster III 
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output), extended by the application of the point-spread function deconvo-
lution (Siegmann et al., 2019). DUAL and FLUO sensors were boresight 
corrected and orthorectified with CaliGeoPRO (SPECIM Spectral Imaging 
Ltd., Oulu, Finland) using inputs from an inertial navigation system Oxford 
3052 GPS/INS (Oxford Technical Solutions Ltd., Oxford, UK) installed on-
board and synchronised with HyPlant. 
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Figure 3.2 Airborne high-resolution hyperspectral flight with the HyPlant 
sensors (colour-infrared, {860, 650, 550 nm}) over the study area (a). Yellow 
squares indicate the location of the 300, 25 × 25 m, scene grid selection. The 
different components that comprise a scene can be visually discriminated by 
the images acquired from b) the FLUO (false colour, {700, 754, 674 nm}) 
and c) DUAL (colour-infrared) sensors of the HyPlant tandem and d) from 
the digital surface model of the LiDAR sensor. Spectral radiance extracted 
from tree crowns, understory (shrubs and grasses) and soil components of 
Hyplant DUAL+FLUO images is shown in (e). 

 

LiDAR data were acquired using a Riegl LMS-Q780 system (RIEGL Laser 
Measurement Systems GmbH, Horn, Austria). A normalised digital surface 
model (nDSM), also known as canopy height model and generated from the 
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LiDAR point cloud, was used to measure canopy features: height, diameter 
and fractional cover (FC). The nDSM product also allowed image segmen-
tation to be performed, to separate tree crowns from the understory. 

The hyperspectral images had a ground resolution of 1.5 metres per pixel 
and allowed individual tree crowns to be distinguished from the background 
consisting of soil and understory vegetation. We used the images to calculate 
the spectral information of each scene component (Fig. 3.3), to calculate the 
NDVI (Rouse et al., 1974) and to quantify the fluorescence signal. For this, 
we used the O2 A-band in-filling method through the Fraunhofer Line Depth 
(FLD) principle (Plascyk, 1975), based on a total of three spectral bands 
(3FLD) (Maier et al., 2003); 

3FLD = ΃ȩɠɕ · ίɸȥ−΃ɸȥ·ίȩɠɕ
΃ȩɠɕ−΃ɸȥ

   (2) 

where radiance L corresponds to Lin (at 761 nm), Lout (mean value of L747 
and L780 spectral bands), and irradiance E to Ein (at 761 nm), and Eout (mean 
value of E747 and E780 spectral bands). The decision of using 3FLD is based 
on the successful performance of this index in previous studies (Cendrero-
Mateo et al., 2016; Damm et al., 2015; Liu et al., 2015; Liu and Liu, 2014). 
3FLD was calculated by using the at-sensor-radiance from the FLUO imager 
previously described, which does not take into account the atmospheric ab-
sorption and scattering effects. For this study, we assumed relatively low 
impact of these effects considering that we are assessing the relative contri-
bution of SIF emitted by the understory to the full canopy with data col-
lected from a single flight and acquired within 27 minutes in clear sky con-
ditions. In addition, a comparison was made between FloX measurements 
and the hyperspectral images. Using all the measured data (transects and 
tree-crown measurements) the relationship was reasonably strong (R2 = 0.67, 
RMSE = 0.12 mW m-2 sr-1 nm-1), improving when the assessment was carried 
out using the two FloX instruments permanently installed over two tree 
crowns (RMSE = 0.04  mW m-2 sr-1 nm-1).   
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The objective of using NDVI in this study is to show the behaviour of a 
standard and widely used vegetation index related to fractional cover, com-
paring the effects observed in both NDVI and SIF. The high-spatial resolu-
tion of the airborne hyperspectral images allowed the extraction of different 
scene components used as ground truth for the model inversion following 
the methodology proposed by Zarco-Tejada et al. (2019). A Mahalanobis 
Distance classification  (Richards and Jia, 1999) using ENVI/IDL (Exelis 
Visual Information Solutions, Boulder, Colorado) was also derived from the 
hyperspectral DUAL-sensor imagery to classify vegetation cover, soil, roads 
and water ponds throughout the study area. In this way, we constructed the 
scene grid and filtered scenes that contained roads, water or buildings. The 
scene grid enabled the spectral reflectance of each component to be calcu-
lated, which was then used to evaluate the behaviour of the model with 
different types of soil, understory variability and FC (Fig. 3.2). 

We used the tree-crown segmentation calculated from the nDSM LiDAR 
product to establish an external buffer of two metres, which was excluded 
from the analysis to avoid tree shadows, mixtures of tree branches and un-
derstory at the crown edges, and potential effects of misalignment between 
sensors (Fig. 3.3). 

 
Figure 3.3 Example of a) tree-crown delineation over the b) normalised 
digital surface model (nDSM) and the c) True colour DUAL orthoimage. 
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Taking into account the difference in NDVI and 3FLD values obtained from 
tree-crown and aggregated pixels (Fig. 3.4), we performed an empirical anal-
ysis over a selection of 300 scenes (Fig. 3.2a) that covered all the natural 
range found within the study area (NDVI: 0.25 – 1.00, 3FLD: 0.10 – 0.95 
mW m-2 sr-1 nm-1).  

 
Figure 3.4 Understory variability in different scenarios (colour-infrared 
composition; 25 × 25 m pixels along with the collected data) and how this 
variation affects the mean value in the NDVI (unitless) and 3FLD (mW  
m-2 sr-1 nm-1) indices. 

 

To assess the contribution of SIF emitted by the understory, we compared 
the values obtained from tree crowns and aggregated pixels at different spa-
tial scales (Fig. 3.5a). We selected the spatial resolutions of 5, 15, 25, 50 and 
100 m (Fig. 3.5b), which were either smaller than the tree crowns or much 
larger and even grouped several trees within the same sampling. Figures 3.5c 
and 3.5d show that NDVI and 3FLD values of the scene decrease as pixel 
aggregation increases. The spatial resolution selected is highlighted in differ-
ent colours covering different aggregation levels covering the entire range. 
Those resolutions were used to further analyse the contribution of the SIF 
emitted by the understory and tree crowns using empirical data and RTM 
as described below. 
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Figure 3.5 Spatial scales from 1 to 100 m (a) and its selection (b) at 5 m 
(green), 15 m (purple), 25 m (orange), 50 m (yellow) and 100 m (blue). 
Aggregated values of c) NDVI and d) 3FLD (mW m-2 sr-1 nm-1) at different 
spatial scales from a); horizontal lines show the mean tree-crown value and 
the Q1-Q3 interquartile range. 

3.2.3. Modified FluorFLIGHT Model to account for the 
understory 

In this study, we extended the 3D RTM FLIGHT (North, 1996) to account 
for the understory layer, including the SIF contribution of the crowns from 
the FluorFLIGHT modification (Hernández-Clemente et al., 2017). The 
main reason for using this model is that it has been previously validated in 
several applications for the quantification of biophysical parameters (Bye et 
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al., 2017; Guillen-Climent et al., 2012) and plant health condition (Hernán-
dez-Clemente et al., 2017; Hornero et al., 2020; Zarco-Tejada et al., 2018a). 
Furthermore, the computational speed of FLIGHT is relatively fast if com-
pared to other more complex 3D models (DART, Raytran or Librat) because 
sunlit and shaded canopy fractions are based on simple geometrical-optical 
properties as reviewed in Malenovský et al. (2019). The model is available 
for download on https://flight-rtm.github.io. 

The modification, named FLIGHT8, is based on the existing theory of RTM 
and couples an additional layer into the 3D ray-tracing model FLIGHT to 
account for the understory, including changes related to SIF and the inter-
action between the existing and new components (Fig. 3.6). We considered 
the contribution of SIF within the understory, as well as the multiple scat-
tering events between components. Similar to FluorFLIGHT, this approach 
is also coupled with the leaf fluorescence model FLUSPECT (Vilfan et al., 
2016), which is a physical model based on Kubelka-Munk theory that in-
cludes the fluorescence quantum efficiency parameterisation according to its 
core-original model PROSPECT (Feret et al., 2008; Jacquemoud and Baret, 
1990). 
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Figure 3.6 Example tree-canopy simulations a) without and b) with 
understory, c) including their spectra; d) graphical abstract representation 
of FLIGHT8. 

 

The Monte Carlo ray-tracing model FLIGHT was designed to rapidly simu-
late light interaction with 3D vegetation canopies at high-spectral resolution, 
to produce reflectance spectra and LiDAR returns for both forward simula-
tion and use in inversion (North, 1996; North et al., 2010), and recently 
extended to model solar-induced fluorescence (Hernández-Clemente et al., 
2017). Foliage is represented by structural properties of leaf area, leaf angle 
distribution, crown dimensions and fractional cover, and the optical proper-
ties of leaves, branch, shoot and ground components. The model explicitly 
represents multiple scattering and absorption of light within the canopy and 
with the ground surface and used as a benchmark by the Radiative Transfer 
Model Intercomparison (RAMI) (Widlowski et al., 2007). Scattering within 
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crown and understory components is evaluated by the Monte Carlo method 
of radiative transfer modelling approximation, where a photon can be sto-
chastically either absorbed or scattered into a new direction. Outside these 
components, the photon trajectory simulation proceeds by a deterministic 
ray-tracing approach. 

The new model includes an additional parameterisation that defines the un-
derstory layer. The understory extends from the soil layer (Fig. 3.6d) to a 
user-defined height. More input values were added to also define the under-
story leaf size and its distribution (leaf angle distribution), as well as the 
mean one-sided total foliage area index (LAI).  At leaf level, both the exist-
ing model and the understory addition use the same equations (3) to (6) 
described below to calculate radiance, with appropriate values for optical 
and structural properties, and here detailed for understory. 

Within the homogeneous understory layer, the illumination of a leaf is cal-
culated as the sum of direct and diffuse incoming light. For a leaf LUS, viewed 
from direction vector Ω and illuminated from vector Ω0, the contribution of 
the radiation leaving the surface to the detector without taking into account 
the fluorescence is defined as follows: 

𝐼խՀԾ
(𝜆) = 𝐼Ј(𝜆)𝛾խՀԾ

(𝜆, 𝛺Ј → 𝛺)𝑃Ј + φ
ֈ ∑ 𝐼ֈ(𝜆,𝛺ֈ)  𝛾էՀԾ

(𝜆,𝛺ֈ → 𝛺)ֈ
φ  (3) 

where I0 corresponds to the illumination radiance of the direct solar beam at 
the wavelength λ, Im represents the sample of the incoming diffuse field from 
the Ωm direction, and γLUS denotes the bidirectional reflectance/transmit-
tance factor for each leaf from the understory. If there is a direct path to 
the light source, P0 has a value 1, and 0 if not. The incoming diffuse light 
field is sampled using m directions over a sphere. Each sample traces a ray 
from the leaf to the next interaction in that direction, or sky, and which 
may leave the understory canopy and so be a contribution from non-under-
story components; radiance from this is calculated recursively using (3). The 
non-fluorescent scattering phase function within the understory component 
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at wavelength λ and leaf normal vector ΩL, has been approximated using a 
bi-Lambertian reflectance model: 

𝛾խՀԾ
(𝜆,𝛺խ, 𝛺′ → 𝛺) = খ𝜋−φ𝜌։(𝜆)|𝛺 · 𝛺խ|, (𝛺 · 𝛺խ)(𝛺′ · 𝛺խ) < 0

𝜋−φ𝜏։(𝜆)|𝛺 · 𝛺խ|, (𝛺 · 𝛺խ)(𝛺′ · 𝛺խ) > 0  (4) 

Following similar equations, the fluorescence contribution for an individual 
leaf within this layer (FL-US) is calculated using full fluorescent scattering 
matrices, through sampling direct and diffuse incident illumination within 
the excitation range from 400 to 750 nm: 

𝐹խՀԾ
(𝜆) = ∑ ॐ𝐼Ј(𝑘)𝛾էՀԾ

(𝑘, 𝜆,𝛺Ј → 𝛺)𝑃Ј + φ
ֈ ∑ 𝐼ֈ(𝑘,𝛺ֈ) 𝛾էՀԾ

(𝑘, 𝜆,𝛺ֈ → 𝛺)ֈ
φ ॑ϨΘЈ

ֆ=ΚЈЈ  (5) 

where γFUS: 

𝛾էՀԾ
(𝑘, 𝜆, 𝛺խ,𝛺′ → 𝛺) = খ𝜋−φ𝑀𝑏[𝑘, 𝜆]|𝛺 · 𝛺խ|, (𝛺 · 𝛺խ)(𝛺′ · 𝛺խ) < 0

𝜋−φ𝑀𝑓[𝑘, 𝜆]|𝛺 · 𝛺խ|, (𝛺 · 𝛺խ)(𝛺′ · 𝛺խ) > 0
       (6) 

where Mb and Mf represent the backward- and forward-scattering fluores-
cence matrices for both photosystems PS-I and PS-II, respectively. Similar 
to FluorFLIGHT at tree-crown level, total measured radiance in the under-
story component is calculated as the sum of the reflected light (ILUS) and 
fluorescent emission contribution (FLUS). 

The other components within the scene (Fig. 3.6d), the fluorescence contri-
bution within a tree crown, and the consideration of the incident diffuse field 
remain as described in North (1996), North et al. (2010) and Hernández-
Clemente et al. (2017). The Monte Carlo formulation allows the leaf-level 
fluorescence contribution to be readily scaled by an estimate of local fluo-
rescence quantum efficiency if available.  While single constant values are 
used separately for understory and canopy here, other recent studies have 
explored separation of values for sunlit and shaded leaves, or parameterisa-
tion by leaf-level PAR (Gastellu-Etchegorry et al., 2017; Zeng et al., 2020; 
Zhao et al., 2016). 



Chapter 3 

77 

To evaluate the included features in FLIGHT8, we compared the new un-
derstory layer as a single 1D simulation with homogeneous cases from the 
RAMI-3 experiments (Widlowski et al., 2007), which is the most recent and 
updated RAMI phase built for this purpose. No crowns were considered in 
this comparison because there is no existing model intercomparison that 
accounts for a two-layer homogeneous (HOM) and heterogeneous (HET) 
approach; for fluorescence there is no agreed intercomparison to date. A 
more recent experiment, RAMI-IV, featured a completely new set of exper-
iments for abstract canopies (Widlowski et al., 2013), but this exercise nei-
ther included any case with the HOM-HET combination nor purely homo-
geneous scenes. 

One of the difficulties in evaluating an RT model by comparison with other 
models is the absence of an absolute reference standard; therefore, to com-
pare the output of the model with a reference value, an alternative truth 
should be identified. This truth was generated as the mean of a series of 
models that were identified during the third phase of the RAMI-3 exercise. 
The radiative transfer models DART (Gastellu-Etchegorry et al., 1996), 
Drat (Lewis, 1999), FLIGHT (North, 1996), Rayspread (Widlowski et al., 
2006), Raytran (Govaerts and Verstraete, 1998) and Sprint (Thompson and 
Goel, 1998) participated in the generation of the reference data (RAMIREF). 

To cover the entire range of the different inputs (Table B1, Appendix B.), 
we summarised the intercomparison in 12 cases for the Bi-directional Reflec-
tance Factor (BRF) in the principal planes and orthogonal planes by varying 
the solar viewing angles. Root Mean Squared Error (RMSE) and Mean Ab-
solute Error (MAE) were then calculated between the simulated signal and 
the RAMIREF. 

3.2.4. Model simulation approaches 

Firstly, we evaluated the SIF of the understory on a theoretical set of sim-
ulations with a single tree by varying its fluorescence quantum efficiency (Fi 
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from 0 to 0.05) and setting the LAI to the maximum nominal value (LAI = 
3). Under the tree canopy, we defined an understory layer and varied its Fi 
(from 0 to 0.05) and LAI (from 0 to 3). These analyses aimed to understand 
the contribution of the SIF emitted by the understory layer with a minimum 
impact from structural tree canopy variables and shadowing. 

A more complex scenario was then designed to evaluate the impact on the 
SIF calculated by aggregating the tree canopy and the understory compo-
nents. For this purpose, high-resolution airborne images were used to set up 
the different scenes, and field measurements were taken to establish ranges 
of biophysical parameters and biochemical variables (Table 3.2). The pa-
rameters required by the models that could not be measured in the field 
(leaf mesophyll structure, leaf angle distribution, senescence material and 
fluorescence quantum efficiency) were established through previous studies 
using the values evaluated by Hernández-Clemente et al., (2017) for oak 
trees and by Melendo-Vega et al. (2018) for the understory. 

 

Table 3.2 Values used in the model simulation analysis. 

Variable Units Acronym Range 
Chlorophyll a+b content μg cm-2 Cab 0 – 64 
Carotenoid content μg cm-2 Cca 0 – 30 
Water content cm Cw 0 – 0.03 
Dry matter content g cm-2 Cdm 0.003 – 0.018 
Senescence material Fraction Cs 0 – 0.3 
Mesophyll structure - N 1 – 3 
Fluorescence quantum efficiency - Fi 0 – 0.2 
Leaf Area Index m2 m-2 LAI 0 – 3 
Leaf Size m LFS 0.01 – 0.05 
Leaf angle distribution - LAD Spherical 
Soil reflectance % Soil 4 samples 
Solar Zenith deg. SZA 25.84 
Solar Azimuth deg. SAA 122.89 
 

The inversion scheme was a multi-step LUT-based approach using NDVI, 
3FLD and 650 – 800 nm as described in Hernández-Clemente et al. (2017). 
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In the first stage of the analysis, we built a lookup-table (LUT) of +400k 
simulations by coupling FLUSPECT-B with FLIGHT8 in 1D mode. The 
LUT is used to estimate leaf parameters and LAI from the tree canopy and 
understory independently. The inversion was carried out in different steps 
by minimising the merit function consecutively for LAI and leaf biochemical 
parameters. In the next stage, the parameterisation retrieved for each of the 
scenes and components was used in a second set of simulations by coupling 
FLUSPECT-B with FLIGHT8 in 3D mode. The topography in the simula-
tions was simplified as flat terrain. The forward simulations were used to 
calculate the aggregated value of NDVI and 3FLD for the 300 scenes of 25 
m selected as described in section 2.2. This last step was applied using 
FLIGHT8 in two different modes, accounting for the specific contribution of 
SIF emitted by the understory layer (full mode) and disabling the SIF emit-
ted by the understory (single mode). Model simulations in single-mode use 
only one layer for the background (assumed Lambertian) and, for this anal-
ysis, we used the mean spectral reflectance extracted from the image which 
includes the average proportion of soil and understory found in the study 
area. Finally, the model-simulated aggregated pixel, from both the full- and 
single-mode approaches, was compared to that extracted from the hyper-
spectral image. The modelling approach performed is depicted in Fig. 3.7. 
The comparison between single-mode and full-mode approach was intended 
to understand the theoretical contribution of the understory integrated into 
FLIGHT8. 
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Figure 3.7 Model simulation approach diagram. 

3.3. Results  

Results from empirical approaches are presented to show the effect of the 
understory on NDVI and 3FLD derived from different pixel aggregation 
scales. Based on the need to correct these effects, we present results showing 
the performance of FLIGHT8 to account for the understory variations that 
affect the reflectance calculated from aggregated pixels. FLIGHT8 was ad-
ditionally compared with other models and widely accepted reference data. 
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3.3.1. Effects of the understory on airborne data calculated 
from aggregated pixels 

The comparison between the aggregated pixel and the tree-crown segmented 
value extracted from the airborne imagery showed the impact of the back-
ground at different scales for NDVI and 3FLD indices (Fig. 3.8a and 3.8b, 
respectively). In the case that the aggregated pixel includes more than one 
tree (Fig. 3.5), these are taken into account when computing the average 
value of the tree-crown and understory components. At a resolution of 5 m, 
where aggregated areas were centred on crowns (green points in Fig. 3.8a, 
b), the pixel size was smaller than the mean crown size (μØ = 11.98 m), 
and the impact of the background was relatively low for both NDVI and 
3FLD, with a high correlation between aggregated and pure crown values 
(R2 > 0.99; NRMSE < 0.01). The goodness of fit between tree-crown and 
aggregated pixels decreased with a pixel size slightly higher than the crown 
size (15 m), and the errors doubled with a crown size of 25 m (orange points) 
for NDVI (R2 = 0.47; NRMSE = 0.33) and 3FLD (R2 = 0.58; NRMSE = 
0.2). To elucidate the contribution of each component at this scale, we plot-
ted the relationship between the canopy and the understory FC (Fig. B2, 
Appendix B.). The dispersion of points increased and diverged from a linear 
fitting as the soil FC increased. The contribution of each component at the 
same resolution (25 m, Fig. 3.8c and 3.8d) showed that the slope of the 
linear relationship between the NDVI from aggregated pixels and understory 
was closer to the identity line than that of the tree crowns, confirming that 
the contribution of the understory is significant. 
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Figure 3.8 Relationship between airborne image data obtained from pure 
tree crowns and aggregated pixels from a 5 m window to a 100 m window 
for a) NDVI and b) 3FLD (mW m-2 sr-1 nm-1). Spatial scales start at 5 m 
(green points) and increase to 15, 25, 50 and 100 m (purple, orange, yellow 
and blue points, respectively). Relationship between c) NDVI and d) 3FLD 
values aggregated by tree-crown and understory components, and the total 
aggregated value at 25 m. 

3.3.2. The FLIGHT8 model approach to account for 
background effects 

As a previous step to the modelling approach, the performance of FLIGHT8 
was analysed using controlled conditions. A comparison against other RTM 
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models is included in Appendix B. Fig. B3 shows that the simulations ob-
tained (dark-green line) through the range of input variables agreed in 
RAMI showed a similar performance to that of the models used to generate 
the reference data RAMIREF (dashed light-green line). The shaded yellow 
area displays the absolute coverage range of these models, and in all cases, 
the simulations with FLIGHT8 were contained within this zone. More com-
parison results are presented in Appendix B. (Fig. B4), including the results 
from the RAMI On-line Model Checker (ROMC). In all cases, the observed 
degree of relationship between the reference value and the simulations from 
the modified model was very high, showing a coefficient of determination 
(R2) that exceeded 0.98, with a mean value of 0.99. The differences between 
these data sets were also minimal, and the greatest error was 0.007 for both 
RMSE and MAE metrics. The first set of results showed the sensitivity of 
aggregated pixel 3FLD to variation in the understory and tree-crown Fi and 
the understory LAI (Fig. 3.9). The total scene SIF increases with LAI and 
the Fi of both the understory and crowns (Fig. 3.9a). Understory LAI is 
shown to have the greatest impact on aggregate pixel SIF for the ranges 
shown. Within each subgroup of LAI (0.5 size step), there was a gradual 
increase in the variation in the aggregated pixel, which followed a similar 
pattern, except when the understory LAI was zero, where the scene SIF only 
varied depending on the tree parametrisation. For values of LAI in the un-
derstory above zero, a similar increase in SIF of the scene was observed with 
increasing values of understory and tree-crown Fi. Furthermore, there was a 
linear relationship between the SIF extracted from sunlit (Fig. 3.9b left) and 
full-crown pixels (Fig. 3.9b right) with respect to the aggregated pixels as a 
function of the variation in Fi (0 – 0.05) of the understory and the tree 
crowns. The SIF signal quantified from sunlit and full-crown pixels was 
higher than that from 25 m aggregated pixels. The differences were greater 
for sunlit crown pixels, where the impact of the background was lower. For 
lower values of crown Fi, the relative contribution of the background for 
sunlit and full tree crowns increased, and the differences between SIF quan-
tified from crown and aggregated pixels decreased. The Fi of the understory 
also affected the relationship, with fewer differences observed between SIF 
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quantified from tree crowns and aggregated pixels for the understory with a 
higher Fi. Fig. 3.9c and d show that if we try to calculate the SIF from the 
crown component based on the relationship between full-tree crowns and 
aggregated pixels, the increasing of the understory LAI reduces the correla-
tion between them. The highest increase in NRMSE is observed with under-
story LAI values between 0-1. These results show the contribution of the 
SIF emitted by the understory not only in the whole scene, but also at the 
tree-crown level, and illustrate the difficulties in interpreting SIF from coarse 
resolution images. 

 
Figure 3.9 Effects of the variation in fluorescence quantum efficiency (Fi, 0 
– 0.05) of the forest understory and the tree crown on the 3FLD (mW m-2 
sr-1 nm-1) quantified from 25 m aggregated pixels against the a) understory 
LAI and b) 3FLD from tree-crowns, where either only the sunlit component 
(left side) or the entire crown (right side) were aggregated. c) Effects of the 
variation in LAI (0 – 3) of the forest understory on the relationship between 
3FLD calculated from tree-crowns and 25 m aggregated pixels and d) the 
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associated R2 and NRMSE values for the linear model established for each 
subgroup of understory LAI.   

 

Based on the proposed modelling approach (Fig. 3.7), FLIGHT8 was then 
used to calculate NDVI and 3FLD from aggregated pixels that either did or 
did not account for the specific contribution of the soil and the understory 
layer (full or single mode, respectively; Fig. 3.10). The model simulations 
and the hyperspectral data were significantly related for NDVI (R2 = 0.95, 
RMSE = 0.04, Fig. 3.10a) and 3FLD (R2 = 0.83, RMSE = 0.03 mW m-2 sr-

1 nm-1, Fig. 3.10b) when the model accounted for the contribution of the 
understory. Similar results were obtained for NDVI using the single-mode 
model approach, where the specific understory contribution was not consid-
ered (R2 = 0.96, RMSE = 0.04, Fig. 3.10c). However, based on the same 
assumption, 3FLD was underestimated by the model and the retrieval ac-
curacy was significantly affected (R2 = 0.4, RMSE = 0.28 mW m-2 sr-1 nm-1, 
Fig. 3.10d). These results show the need to consider the contribution of the 
understory layer in assessing SIF from the aggregated pixels and confirm the 
ability to use RTM for modelling these effects. 
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Figure 3.10 Relationship between hyperspectral data from 25 m aggregated 
pixels and model-simulated NDVI and 3FLD (mW m-2 sr-1 nm-1) indices 
accounting for the contribution of SIF on the understory (full mode, a and 
b, green points with orange dashed line as 1:1 relationship). The same 
relationships obtained from model simulations without accounting for the 
contribution of SIF on the understory and using the empirical reflectance of 
the background as soil layer (single mode, c and d, light-blue points with a 
green dashed line as the identity line).  
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3.4. Discussion 

The availability of SIF observations from space raises the need to develop 
and validate new approaches for modelling SIF scattering and re-absorption 
at the canopy level. The quantification of the fluorescence contribution to 
top-of-canopy radiance is challenging due to the reduced availability of stud-
ies and models with which to interpret the scattering processes within the 
canopy (Qiu et al., 2019; Romero et al., 2018; Yang and van der Tol, 2018; 
Zeng et al., 2019). Seeking to fill this gap, the results of this study show the 
contribution of the SIF emitted by the understory and tree crown compo-
nents of the total forest canopy. A critical issue found was the selection of a 
model from among the available ones that can represent the main compo-
nents of the forest canopy, but that avoids laborious parameterisation that 
hinders the retrieval of the biophysical properties of the vegetation from 
images (Hernandez-Clemente et al., 2014). Early attempts at using a 3D-
RTM to simulate SIF from heterogeneous canopies (Hernández-Clemente et 
al., 2017) reported the impact of soil background on the estimation of SIF 
at the canopy level. Our study introduces a new factor, considering the com-
bined effect of soil and understory vegetation that contributes to the spectral 
reflectance of the background of an oak grassland at the end of the spring. 
We used data collected with HyPlant to demonstrate empirically that the 
understory affects the aggregated pixel values. The higher the aggregation, 
the more significant were the differences between the pure tree-crown value 
and the aggregated pixel, and these differences became less relevant at val-
ues close to or below the mean crown size. The empirical degradation of the 
NDVI and SIF by increasing the pixel size (Fig. 3.5) reinforces the results 
shown in Figure 3.8. The aggregated pixels larger than the mean crown 
diameter deviate significantly from the crown values. Therefore, it follows 
that to accurately interpret signals arising from spatially heterogeneous can-
opies using a larger pixel size, further development is required. The 3FLD 
and NDVI quantification were similarly affected by the difference in scale 
size. Hence, this study demonstrates that the spectral contribution of the 
understory in heterogeneous canopies might introduce large inaccuracies into 
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measurements calculated from satellite imagery with medium and low spa-
tial resolutions when the quantification of SIF is needed from separated 
components (tree crowns and understory). This aggregation increases the 
uncertainties in modelling SIF and other vegetation indices on a global scale 
when the spatial distribution and composition of the understory varies over 
the seasons. In a relatively constant dominant layer (e.g. evergreen canopies), 
phenological changes of the understory through the season translate into 
changes in the canopy structure that alter the relationship between GPP 
and SIF (due to the SIF scattered by the canopy and the re-absorption 
pattern) (Ahl et al., 2006; Xiaoliang Lu et al., 2018). Even if seasonality 
remains unchanged, several ecosystems are characterised by a heterogeneous 
distribution of understory vegetation, which affects the spectral reflectance 
observed at coarse satellite resolutions. Although this study is carried out 
with constant values of solar and viewing angles, future work could consider 
the variation of these parameters. This is possible because FLIGHT8 allows 
to simulate BRF using different illumination and viewing geometries as it is 
shown in Fig. B3. Upcoming studies focused on the analysis of the impact 
of the illumination condition on the quantification of SIF will be very inter-
esting for assessing temporal trends of SIF from different sensors. Another 
important parameter to consider in that case will be the adjustment of Fi 
for sunlit and shaded canopies which may vary depending on the short and 
long term light adaptation of the leaves.  

The quantification of SIF emitted by the tree crowns and the understory 
separately may not always be necessary, in particular for modelling global 
GPP (Joiner et al., 2014). However, for other studies such as the temporal 
evolution of photosynthesis related with decay, stress or disease, the physi-
ological state of each component independently should be accurately under-
stood (Stoy et al., 2019). This approach could also be useful for partitioning 
fluxes of canopy components, which is very challenging from eddy covariance 
techniques. It is therefore critical that we are able to separate components 
to take into account the evolution that each of them has over time. The 
relevance of assessing the contribution of SIF of the understory is consistent 
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with the model simulation reconstruction from terrestrial laser scanning 
shown by Liu et al. (2019).  Future studies should consider the impact of 
spatial and temporal variations driving global plant dynamics. For these 
cases, it would be interesting to analyse the sensitivity of these factors on 
different SIF proxies such as iFLD (Alonso et al., 2008), pFLD (Liu and Liu, 
2015), SFM (Mazzoni et al., 2012; Meroni et al., 2010) or NIRv (Badgley et 
al., 2017; Dechant et al., 2020). The latter, which without explicitly includ-
ing the telluric oxygen absorption bands, is strongly related to sun-induced 
chlorophyll fluorescence (Fig. B5) and to global and site-level estimates of 
GPP (Badgley et al., 2017). Similarly, Wu et al. (2020) demonstrate the 
great potential of NIRv for estimating daily or sub-day GPP from remote 
sensing data from high-resolution satellites. In physical terms, NIRv repre-
sents the proportion of the pixel reflectance attributable to the vegetation 
in the pixel, so it seems reasonable that the following advances were aimed 
at using hybrid models that allow us to separate the scene components and 
use indicators such as NIRv that, by isolating the signal from the vegetation, 
could reduce the effect of mixed pixels. 

The empirical results of the contribution of SIF emitted by the understory 
and tree crowns on the quantification of SIF from Hyplant images were in 
agreement with model simulations. The simulation analysis was performed 
with a new RTM that includes the option to analyse the contribution of the 
SIF emitted by the understory and the tree crowns. Although in this work 
it has not been possible to validate SIF through the RAMI experimental 
exercises because they are not yet available, RAMI-3 has allowed us to val-
idate the model's ability to represent a new layer. Using a straightforward 
set of simulations, we show that the higher the LAI of the understory, the 
smaller the effect of the soil, and therefore, the SIF of the canopy is more 
similar to the SIF of the scene (Fig. 3.9), reducing the impact of pixel size 
variation and scene heterogeneity. However separation of crown and under-
story is also complicated, and beyond approximately an understory LAI of 
0.5 the understory SIF contribution dominates the aggregated pixel. These 
results are consistent with the significant contribution of the SIF understory 
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to the TOC SIF reported by Liu et al. (2019) using an ASD hand-held spec-
trometer in an open-canopy boreal forest. Based on the need to understand 
the contribution of the understory at the landscape level, this study shows 
the accuracy of full tree-crowns SIF calculated from 25m aggregated pixels 
with the highest increase in NRMSE observed with understory LAI from 0 
to 1.  These results strengthen the interpretation of the aggregated pixel 
covered by previous studies in which only the soil effect was taken into 
account (Hernández-Clemente et al., 2017; Zarco-Tejada et al., 2018a). The 
evaluation of a larger set of simulations against the airborne imagery (Fig. 
3.10) revealed the capabilities of FLIGHT8 to model different ecosystem 
components. The comparison between airborne and model-simulated retriev-
als showed different effects on NDVI and 3FLD under the two proposed 
approaches: model simulations that included only one layer as background 
(single-mode) or those that accounted for the specific contribution of soil 
and understory layers (full-mode). The relationship between model-simu-
lated and airborne NDVI was similar (R2 = 0.95, RMSE = 0.04) in both 
cases (Fig. 3.10 a, c). This result was predictable as the presence of soil and 
vegetation cover is included in both approaches. In full-mode simulations, 
we account for the contribution of two different layers, understory and soil 
(Fig. 3.10 a). In single-mode simulations, the layer of the soil is the spectral 
response of the background extracted from an image with a pixel size of 1.5 
m in which both components (soil and vegetation) are mixed (Fig. 3.10 c). 
The main difference was observed in the quantification of SIF, as model 
simulations in single mode do not take into account the fluorescence emission 
of the understory. In this case, the relationship between airborne and model-
simulated 3FLD significantly improved using FLIGHT8 in full mode (R2 = 
0.83, RMSE = 0.03 mW m-2sr-1nm-1) in comparison with simulations per-
formed in single mode (R2 = 0.4, RMSE = 0.28 mW m-2sr-1 nm-1) (Fig. 3.10. 
b, d), because the canopy model does not include the understory contribu-
tion of the fluorescence emission in single mode. The results demonstrated 
that understory SIF could substantially contribute to the total canopy SIF 
quantified from aggregated pixels in open-canopy forests. Moreover, 
FLIGHT8 can be used to resolve the problem of interpreting information on 
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a large scale when the effect of the understory plays a fundamental role, 
such as in tree-grass ecosystems or open forests. 

The heterogeneous spatial distribution of trees and understory layers in the 
landscape is one of the main factors that inherently introduces uncertainty 
into the retrieval of biophysical parameters of vegetation through models 
(Eriksson et al., 2006; Yu et al., 2018). The estimation of these parameters 
simultaneously contains many implications for the recovery of GPP (Li et 
al., 2018) and even the interpretation of GPP using SIF as a proxy varies 
greatly depending on the type of cover (Tagliabue et al., 2019). This study 
highlights the need for a solution that allows the contribution of the under-
story in aggregated pixels and its impact on the fluorescence estimation of 
the total canopy to be modelled. Future studies should also take into account 
the vertical variability of the maximum rate of carboxylation (Vcmax), 
which has been proven to be a key parameter for estimation CO2 assimilation 
in crops (Camino et al., 2019) and the xanthophyll cycle included in the 
extended version of Fluspect (Vilfan et al., 2018). 

The results of this study contribute to understanding how the quantification 
of SIF from aggregated pixels can be improved for mixed tree, grass and 
woodland ecosystems, which cover a large part of the globe (up to 33% 
according to Hanan and Hill (2012)). The understory of Mediterranean oak 
woodlands is mainly covered by grasslands, where light availability and nu-
trient-induced changes alter plant functional traits and canopy structure and 
control the relationship between GPP and SIF (Migliavacca et al., 2017). 
However, in other types of ecosystems with higher density, the contribution 
of the understory may be different. Hence, future efforts should focus on 
assessing the contribution of the SIF emitted by the understory in the quan-
tification of total canopy SIF in other types of ecosystems and forest com-
plexities. These studies will be decisive for the ability to measure and inter-
pret SIF at the global scale. 
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3.5. Conclusions 

The results presented here demonstrate that the fluorescence signal calcu-
lated from medium spatial resolution is significantly affected by variations 
in the understory. The contribution of understory SIF increased rapidly with 
understory LAI values, dominating the total scene SIF for LAI greater than 
0.5. Beyond this range, the correlation strength of crown SIF with aggre-
gated pixel SIF reduces, requiring modelling of the system if separation of 
crown and understory SIF is necessary, for example in assessing forest health 
or seasonality. Thus, the use of medium- to low-resolution images for as-
sessing the physiological condition of forest and agricultural canopies re-
quires taking into account the contribution of the SIF emitted by the un-
derstory when working with heterogeneous ecosystems. 

This study demonstrates the need to include the contribution of SIF emitted 
by the understory in the interpretation of SIF emitted by forest canopies 
with RTM approaches. The use of FLIGHT8, which integrates the effect of 
fluorescence (FluorFLIGHT), has allowed a new model to be developed that 
takes into account the effect of the understory to model SIF signals and 
discriminate this information in each of its components. The model has been 
tested by intercomparison with other models and validated empirically using 
high spatial and spectral resolution imagery. Due to its spatial variability 
throughout, our study area enabled comprehensive evaluation. Multitem-
poral analysis of the impact of phenological changes of the understory over 
the vegetation canopy is beyond the scope of this study but will be the 
central topic of a follow-up contribution. 

The results suggest that this model could be used to improve the interpre-
tation of SIF at the tree canopy level when we need to separate between 
different aggregated components and account for the background effects. 
The ability to quantify SIF from coarse resolution images is a further ad-
vantage for quantification of the model at a global scale. Future studies 
should be focused on the potential use of 3D-RTM to provide information 
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at a high-spectral resolution and frequency from current and future satellite 
missions as OCO-2, TROPOMI or FLEX-Sentinel. 

 



 

 

 

Chapter 4 
 
Modelling hyperspectral- and thermal-
based plant traits for the early detection 
of Phytophthora-induced symptoms in 
oak decline 

Abstract 

Oak decline is a complex phenomenon influenced by abiotic and biotic fac-
tors that increasingly threatens oak species worldwide, necessitating the de-
velopment of scalable early detection methods for effective management. 
Spectral-based physiological plant traits (PTs) can be sensitive to disease-
induced stress, as they depend on photosynthetic processes and vegetation 
structure. However, the specificity of PT responses to disease-induced de-
cline remains largely unknown. This study examines the relationship be-
tween spectral-based PTs and oak decline incidence and severity. We eval-
uate the use of high-resolution hyperspectral and thermal imagery together 
with a 3-D radiative transfer model (RTM) to assess a supervised classifica-
tion model of Phytophthora-infected oak trees. Field surveys comprising 
more than 1100 trees with varying disease incidence and severity were used 
to train and validate the model and predictions. Declining trees showed de-
creases of model-based PTs such as water, chlorophyll, carotenoid, and an-
thocyanin contents, as well as fluorescence and leaf area index, and increases 
in crown temperature and dry matter content, compared to healthy trees. 
Our classification model built using different PT indicators showed up to 
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82% accuracy for decline detection and successfully identified 34% of declin-
ing trees that were not detected by visual inspection and confirmed in a re-
evaluation 2 years later. Among all variables analysed, canopy temperature 
was identified as the most important variable in the model, followed by 
chlorophyll fluorescence. This methodological approach identified spectral 
plant traits suitable for early detection and mapping of oak forest disease 
outbreaks up to 2 years in advance of identification via field surveys. Early 
detection can guide management activities such as tree culling and clearance 
to prevent the spread of dieback processes. Our study demonstrates the util-
ity of 3-D RTM models to untangle the PT alterations produced by oak 
decline due to its heterogeneity. In particular, we show the combined use of 
RTM and machine learning classifiers to be an effective method for early 
detection of oak decline potentially applicable to many other forest diseases 
worldwide. 

4.1. Introduction 

Plant functional traits, such as biochemical composition, chlorophyll fluo-
rescence, water and dry matter content, crown temperature, and vegetation 
structure, are closely linked to plant health conditions and the responses to 
environmental and biotic stressors (Ahrens et al., 2020). Changes in plant 
traits (PTs) may alert managers to biotic and abiotic stressors and thus 
enable timely management interventions (Cunniffe et al., 2016). Hyperspec-
tral signatures of plants provide an efficient alternative to standard field 
surveys by enabling monitoring of vegetation status (including biochemical 
and functional assessments) over large areas at a reduced cost (Homolová et 
al., 2013; Rocha et al., 2019). Recent studies provide evidence that the quan-
tification of PT from hyperspectral and thermal images can successfully de-
tect pre-visual symptoms of harmful crop pathogens, such as Xylella fastid-
iosa (Xf) infection in olive trees (Zarco-Tejada et al., 2018a).  
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Retrieving PTs from spectra obtained in non-agricultural contexts, such as 
forest canopies, is challenging because of their high variability. Natural for-
ests, for example, are highly heterogenous in species composition and canopy 
structure, resulting in spectral mixture effects produced by forest canopy 
structure, shadows, and understory. Furthermore, they may have high levels 
of intraspecific variability, driven by microsite and ecophysiological condi-
tions (Fernández i Marti et al., 2018; Navarro-Cerrillo et al., 2018). The 
spectral mixing produced in heterogeneous forest canopies reduces the accu-
racy of PTs retrieved from images, especially those derived from narrow 
regions of the spectrum such as the chlorophyll fluorescence emission region 
(Hernández-Clemente et al., 2017). 

Forest decline is a pervasive decrease of forest health resulting from a com-
plex interaction of a potentially large number of biotic and abiotic factors 
(Hutchings et al., 2000), including stresses such as water deficit, air pollution, 
and invasive pests (Manion and Lachance, 1992; Trumbore et al., 2015). In 
the case of oak decline on the Iberian Peninsula, water stress and root rot 
caused by Phytophthora cinnamomi and related oomycetes are thought to 
be the main drivers of tree death (Ruiz-Gómez et al., 2019). This pathogen 
is one of the most pervasive invasive alien species in forest ecosystems of the 
northern hemisphere (Burgess et al., 2017). Infected trees exhibit regressive 
decline immediately after showing visual symptoms such as defoliation, 
crown or canopy discolouration, and brown foliage remaining attached to 
the canopy. After these symptoms are detected, there is no opportunity for 
forest management to prevent tree death. For this reason, it is critical to 
develop methods for early detection of oak decline that maximises the effec-
tiveness of silvicultural treatments such as calcium soil fertilisers, biofumi-
gant crops, or fosetyl-aluminium treatments (Romero et al., 2019). 

Several spectral-based strategies have been developed to quantify critical 
PTs in natural forest canopies, as recently reviewed by Hernández-Clemente 
et al. (2019). Methodologies range from those based on simple empirical 
relationships between field observations and specific spectral bands or 



Chapter 4 

97 

vegetation indices (VIs) to more complex approaches involving 3-D radiative 
transfer models (RTMs) or machine learning (ML) techniques. While em-
pirical relationships can be readily developed for a wide range of traits of 
interest, 3-D RTM requires significant computational effort. A main disad-
vantage of the simple empirical approach is its limited generalisability to 
different spatial and temporal contexts. By contrast, RTMs are robust to 
variations in geometry, illumination, and scene components (i.e., canopy, 
understory, soil), helping incorporate context dependency and enabling gen-
eralisation to different environments. These properties are important for de-
riving PTs from forest canopies, where 3-D RTMs such as FLIGHT (North, 
1996) or DART (Gastellu-Etchegorry et al., 1996) represent the spatial het-
erogeneity of forest canopies fairly effectively (Hernández-Clemente et al., 
2017, 2012; Kötz et al., 2004; Liu et al., 2020; Roberts et al., 2020). A recent 
study using FLIGHT8 has shown the need to account for effects of shrub 
and/or grass understories in addition to tree canopies in quantifying varia-
bles such as chlorophyll fluorescence (Hornero et al., 2021). 

Another method is the combined use of PTs retrieved with RTMs and VIs 
(Zarco-Tejada et al., 2018a). Numerous VIs have been formulated and tested 
for quantifying biomass loss related to advanced stages of plant diseases 
(Castrignano et al., 2020). Some formulations, such as the soil-adjusted veg-
etation index (SAVI) or the modified chlorophyll absorption ratio index 
(MCARI), have been shown to minimise the background and atmospheric 
effects and perform better for forest canopies than traditional formulations 
such as NDVI (Hornero et al., 2020). Zarco-Tejada et al. (2001) demon-
strated that a red edge spectral index, R750/R710, reduced forest shadow ef-
fects better than other standard chlorophyll indicators used to estimate chlo-
rophyll a and b content. 

The diagnosis of plant diseases requires quantifying not only forest biomass 
but also the physiological condition of that biomass (Cunniffe et al., 2016). 
Functional PTs such as photosynthetic rate, water stress, leaf anthocyanin, 
chlorophyll a and b, and carotenoid content may be used for early detection 
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of diseases (Hernández-Clemente et al., 2019). Also, a group of carotenoids, 
the xanthophyll cycle carotenoids, plays a photoprotective role, preventing 
damage from excess light to photosynthetic systems, and are potentially 
detected through the photochemical reflectance index (PRI), thus serving as 
a proxy for forest health (Hernández-Clemente et al., 2011; Sims and Gamon, 
2002). Other useful indicators of plant health include sun-induced chloro-
phyll fluorescence (SIF) emission and canopy temperature, which are often 
used as powerful non-invasive markers to track the status, resilience, and 
recovery of vegetation (Gonzalez-Dugo et al., 2014; Mohammed et al., 2019; 
Zarco-Tejada et al., 2012).  

However, the relative importance of different PT indicators for detecting 
disease remains largely unknown for many forest species and ecosystems. 
Understanding the sensitivity of different spectral-based physiological indi-
cators for detecting forest decline in these heterogeneous environments will 
help guide management and future monitoring campaigns. In this study, we 
i) expanded our understanding of the contributions of different PTs in de-
tecting symptomatic and asymptomatic trees affected by biotic and abiotic 
stressors in a holm oak forest and ii) used this information to construct a 
PT-based analytical approach for the early detection and severity assess-
ment of forest decline. 

4.2. Materials and methods 

4.2.1. Study site and field data collection 

The study was conducted in an open Mediterranean-like oak savannah or 
dehesa located in Andalusia, southern Spain (37°36′45″ N, 7°21′8″ W, 148 
ha, Fig. 4.1). The dominant species in the forest was holm oak, Quercus ilex 
subsp. ballota (Desf.) Samp. Tree density ranged from 30 to 40 trees ha−1. 
There was an understory of annual plants and typical Mediterranean 
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sclerophyllous and sub-sclerophyllous shrub species, i.e., Cistus spp., Pista-
cia spp., Phillyrea spp., and Rosmarinus officinalis. The climate at the study 
site is dry thermo-Mediterranean, with mild winters and hot summers, in-
cluding approximately 120–150 biologically dry days, a mean annual rainfall 
of 570 mm, and an average annual temperature of 16.8°C, according to the 
Agroclimatic Information Network of Andalusia (Meteorological Station of 
Puebla de Guzmán, 37º33′07″ N, 07º14′54″ W). The bedrock is calcareous, 
and the terrain is characterised by smooth hills (slope <15%). Soils are Eu-
tric Cambisols, Chromic Luvisols, and Lithosols with Dystric Cambisols and 
Rankers (REDIAM, Junta de Andalucía, 2021). The study area is also af-
fected by the combined effect of water deficiency and erosion, soil compac-
tion, and nutrient losses (Moralejo et al., 2009). 

 
Figure 4.1 Location of the study site selected for PT retrieval through high-
resolution imaging (top). The square shaded in red represents the area of 
the field survey, and the grey dots indicate individual evaluation. Photo-
graphs illustrating the heterogeneity of the landscape within the study area 
are shown below. 
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Two field surveys were conducted in the study site in summer 2017 and 
summer 2019. During the surveys, disease severity (DS) and disease inci-
dence (DI) were assessed for 1146 individual holm oak trees. Seem (1984) 
defined DS as the quantity of disease affecting entities within a sampling 
unit; DI is a quantal measure, defined as the proportion or percentage of 
diseased entities within a sampling unit. DS thus accounts for disease sever-
ity, while DI considers only whether a tree is affected or not. DI is therefore 
quicker and easier to measure and is generally more accurate and reproduc-
ible than other quantitative measures, making it the commonly preferred 
measurement method for the detection and modelling of disease spreading 
patterns (Horsfall and Cowling, 1978).  

Based on visual inspection, we assigned individual trees to one of the four 
DS categories available (Fig. 4.2) depending on the proportion of the crown 
affected by defoliation (Eichhorn et al., 2017) and other typical Phy-
tophthora symptoms, including dead branches in the crown, stem cankers, 
and adventitious epicormic sprouts (Jung et al., 2000). DS ranged from 0, 
indicating the absence of visual symptoms, to 3, in which most of the 
branches in the crown were dead, following the classification of the Anda-
lusian Forest Damage Monitoring Network (Consejería de Medio Ambiente 
y Ordenación del Territorio, 2018) (Table 4.1; Fig. 4.2). According to this 
classification, defoliation refers to both reduced leaf retention and premature 
loss compared to regular tree growth cycles. The part of the crown that is 
evaluated includes all live branches and thin branches that are dead but still 
bear leaves. However, it excludes thick branches that have been dead for 
years and have already lost their natural buds, epicormic shoots below the 
crown, and gaps in the crown where branches have never existed. DI was 
either 0 or 1, indicating non-symptomatic trees and symptomatic trees, re-
spectively, where non-symptomatic trees corresponded to a DS of 0 and 
symptomatic trees to any other severity (DS ≥ 1). 

The presence of Phytophthora cinnamomi on holm oak roots was confirmed 
through molecular analyses in the study area. Soil samples were collected on 
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three different trees located in the centre of the study area. The analysis and 
the results are detailed in Ruiz-Gómez et al. (2019).  

 
Figure 4.2 Examples of the four forest disease severity (DS) levels assigned 
to holm oak trees (N = 1146) during a field survey in 2017, which was 
repeated in 2019. The classes range from apparently healthy trees (DS = 0) 
to trees whose canopies show a prevalence of dead branches (DS = 3). 
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Table 4.1 Forest health condition assessment: crown-level severity and in-
cidence levels. 

DS Level Severity Description Defoliation Incidence 

0 Healthy Symptomless or low symptom 
incidence 

015% No incidence 

1 Low to 
moderate 
severity 

Low to moderate defoliation and no or 
few additional symptoms affecting a 
limited part of the canopy 

1550% Incidence 

2 Medium to high 
severity 

Medium to high defoliation of the 
crown and several additional 
symptoms  

5085% Incidence 

3 High to 
extreme 
severity 

High defoliation uniformly distributed 
all over the crown, totally defoliated 
trees, and additional symptoms 

85100% Incidence 

Leaf pigment quantification 

Biochemical measurements were taken on leaves from 15 selected trees in 
the study area in the summers of 2013, 2015, and 2017, in which the chlo-
rophyll (Cab), carotenoid (Car), and anthocyanin (Anth) contents were meas-
ured (Table 4.2). Leaf pigment content was measured by destructive meth-
ods on 12 samples per tree (three biological replicates per orientation, i.e., 
North, East, South, and West). Samples were collected from the sunlit 
branches at the top of the crown during a 1-hour window around solar noon. 
Leaves were immediately frozen in liquid nitrogen in the field and kept below 
–20°C until the analysis of pigment concentration was performed in the la-
boratory. Photosynthetic pigment extracts (chlorophylls and carotenoids) 
were obtained from a mixture of 2-cm2 ground leaf material per sample (four 
discs of 0.5 cm2); the leaves were milled in a mortar bed on ice with liquid 
nitrogen and diluted in acetone to 5 mL (in the presence of sodium ascor-
bate). Extracts were then filtered through a 0.45-μm PTFE hydrophobic 
filter to separate pigment extracts from remaining fractions. Extractions and 
measurements were performed under reduced light conditions to avoid deg-
radation of the pigments, with five technical replications conducted per bi-
ological sample. Photosynthetic pigment quantification was done through 
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absorbance measurement after separation by high-precision liquid chroma-
tography (HPLC) following the methodology detailed by Hernández-
Clemente et al. (2012). 

Anthocyanins were extracted by suspending two 0.5-cm2 leaf discs in acidic 
solution (methanol 1% HCl) following Murray and Hackett (1991). The ab-
sorbance of anthocyanins (AAs) in the samples was calculated by subtract-
ing 24% of the maximum absorbance of chlorophylls (653 nm) from the 
maximum absorbance of the anthocyanins (532 nm) (1) 

AA = 𝐴Θϯϵ − 0.24𝐴ϩΘϯ    (1) 

Concentrations were estimated using a molar extinction coefficient of 30 mL 
mol–1 cm–1 (Steele et al., 2009). Five technical replicates were performed for 
each biological sample, and results are shown in units of µg cyanidin-3-glu-
coside equivalents per cm2 (Lee et al., 2008). 

Plant functional traits 

Steady-state leaf fluorescence (Fs) was measured for 15 trees using 12 leaves 
per tree (three per orientation) with a FluorPen FP100 (Photon Systems 
Instruments, Drásov, Czech Republic). These measurements were used as a 
proxy of the airborne SIF retrievals and a field-level assessment of plant 
functional stress for each severity level. 

In July 2013, the leaf area index (LAI) was measured using an LAI-2000 
Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA) for the same 15 
trees as above. At each tree, the device was placed with the optical sensor 
in eight different orientations under the canopy, 1 m above the ground, and 
using a 90° view-restricting cap. Measurements for LAI estimation included 
a reference reading above the canopy and several readings below the canopy. 
All measurements were made at dawn. The coordinates for all trees (both 
sampled and visually scored) were recorded using a GPS (Garmin GPSMAP 
64s) device with a spatial accuracy below 3 m. 
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Table 4.2 Summary of field measurements and surveys 

Year 
Tree-health 
field survey 

Cab Car Anth Fs LAI 

2013  ✓ ✓ ✓ ✓ ✓ 
2015  ✓ ✓  ✓  
2017 ✓ ✓ ✓  ✓  
2019 ✓      
Cab: chlorophyll a + b content; Car: carotenoids; Anth: anthocyanins; Fs: 
steady-state leaf fluorescence; LAI: leaf area index. 

4.2.2. Airborne hyperspectral and thermal imagery 

High-resolution image data collection 

We collected high-resolution images on 19 July 2017 using a visible near-
infrared (VIS-NIR) hyperspectral imager (Hyperspec model, Headwall Pho-
tonics Inc., Fitchburg, MA, USA), a hyperspectral sensor covering NIR and 
short-wave infrared (SWIR) regions (Hyperspec NIR-100, Headwall Photon-
ics), and a thermal camera (FLIR SC655, FLIR Systems, Wilsonville, OR, 
USA) installed in tandem onboard a Cessna aircraft operated by the Labor-
atory for Research Methods in Quantitative Remote Sensing (QuantaLab), 
Spanish National Research Council (CSIC). The imagery was acquired at 
350 m above ground level with the aircraft flying on the solar plane, with a 
track width of 185 m, resulting in 720 ha of ground surface covered (Fig. 
4.3). The VIS-NIR camera operated with 260 spectral bands (400–885 nm) 
and a radiometric resolution of 12 bits at a 1.865-nm centre wavelength 
(CWL) interval, yielding 6.4-nm full-width at half-maximum (FWHM) spec-
tral resolution with a 25-μm slit. The acquisition frame rate on board the 
aircraft was 50 frames per second with an integration time of 18 ms. The 
focal length was 8 mm, producing an angular field of view (FOV) of 49.82°. 
The images derived from this sensor resulted in a ground resolution of 60 
cm, allowing us to distinguish individual oak tree crowns from the 
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background. Further details regarding the platform and sensor configuration 
can be found in Zarco-Tejada et al. (2013). The NIR-SWIR sensor was op-
erated with 165 spectral bands (950–1750 nm), yielding 6.05 nm FWHM (25-
μm slit size) and 16-bit radiometric resolution. The sensor was configured 
with an acquisition rate of 25 fps with an integration time of 40 ms. The 
12.5-mm-focal-length lens resulted in an angular FOV of 38.6°, with a 90 
cm/px spatial resolution. The FWHM and the centre wavelength for each 
spectral band were derived after spectral calibration using a monochromator 
(Cornerstone 260 1/4 m, model 74100, Newport Oriel Instrument, CA, USA) 
and an XE-1 Xenon calibration light source (Ocean Optics, USA).  
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Figure 4.3 Flight path for image acquisition. White arrows and line indicate 
the flight path and the hashed green square is framed over the study area. 
The background shows the VIS-NIR hyperspectral mosaic, overlaid on an 
orthophoto from the Spanish National Geographic Institute (IGN, OrtoP-
NOA 2017 CC-BY 4.0) 

 

The thermal sensor (FLIR SC655, FLIR Systems, Inc., USA) had a resolu-
tion of 640 × 480 pixels and was connected to an acquisition board via the 
Gigabit Ethernet protocol. It was equipped with a 24.5-mm F-number 1.0 
lens providing an angular FOV of 45 × 33.7°. The detector is a focal plane 
array uncooled microbolometer and has a spectral range from 7.5 to 14 μm. 
This camera is equipped with a thermoelectric cooling (TE) stabilisation 
system, which enables a thermal sensitivity below 50 mK. The characteris-
tics of the sensors on board, as well as their specific setup in this study, are 
detailed in Table 4.3.  
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Table 4.3 Technical characteristics of the airborne imaging sensors and op-
erational settings 

 
     Hyperspectral Thermal 

VNIR NIR-100 SC655 

Wavelength range (μm) 0.4–0.885  0.95–1.75 7.5–14 
Spectral bands 260 165 1 
Spatial bands 1004 320 640 × 480 
Focal plane array detector Silicon CCD  InGaAs VOx 
TE cooling No Yes Yes 
Detector pixel pitch (μm) 7.4 12 17 
FWHM (nm) 6.4 6.05 – 
Slit size (μm) 25 25 – 
Radiometric resolution (bits) 12 16 16 
Integration time (ms) 18 40 8 
Frame period (ms) 55.55 18 1000 
Aperture F/1.4 F/2.0 F/1.0 
Focal length (mm) 8 12.5 24.5 
Spatial resolution (cm/px) 60 90 60 
FOV (deg) 49.82 38.6 45 × 33.7 
Communication protocol CameraLink USB GigE 
 

Image post-processing 

Both hyperspectral sensors were radiometrically calibrated by means of an 
integrating sphere (Uniform Source System, model CSTM-USS-2000C, Lab-
sphere Inc., North Sutton, NH, USA) using coefficients derived from the 
calibrated light source at four constant levels of illumination. Atmospheric 
correction for the VIS-NIR sensor was performed using the total incoming 
radiance measured with a field spectroradiometer (ASD HandHeld Pro, Mal-
vern Panalytical Ltd, Malvern, England). Atmospheric correction was sim-
ulated with the SMARTS model (Gueymard, 1995, 2001) for the NIR-100 
sensor, which allowed the conversion of the radiance images to reflectance 
for the full range of both sensors. Optical thickness measurements from a 
Microtops II sunphotometer (Solar Light Co., Philadelphia, PA, USA) and 
meteorological measurements from a weather station (model WXT510, 
Vaisala Corporation, Vantaa, Finland) were used as input parameters for 
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the model. Additionally, the effects of illumination and viewing angle were 
also adjusted using cross-track correction (San and Süzen, 2011) in both 
hyperspectral processing chains (Fig. 4.4). 

Thermal calibration was conducted in the laboratory using a black body 
calibration source (LANDCAL model P80P, Land Instruments International 
Ltd, Dronfield, England) and by indirect calibration using ground tempera-
ture measurements with a handheld infrared thermometer (LaserSight from 
Optris GmbH, Berlin, Germany) as described by Calderón et al. (2015) (Fig. 
4.4). Standardised canopy temperature (Tc-Ta) was calculated by subtract-
ing weather station air temperature (Ta, constant value) from canopy tem-
perature derived from calibrated thermal imagery (Tc). 

Orthorectification of hyperspectral images was performed using PARGE 
(ReSe Applications LLC, Wil, Switzerland) image rectification software for 
airborne optical scanner systems. Data from inertial measurement units in-
stalled on each sensor (IG-500N, SBG Systems S.A.S., Carrières-sur-Seine, 
France) were synchronised with each camera’s imager and used as inputs for 
the software. Orthomosaicing thermal imagery was performed using Pix4D 
(version 3.1.23, Lausanne, Switzerland) photogrammetry software. Data pre-
processing and image correction were as described in detail by Hernández-
Clemente et al. (2012) and Zarco-Tejada et al. (2013). 
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Figure 4.4 From left to right, the images from the VIS-NIR, NIR-SWIR, 
and thermal sensors are shown over the study area. Bottom row contains 
zoomed-in views of scenes above (green rectangle). 

Spectral-based indicators 

The high-resolution imagery acquired from each airborne sensor allowed us 
to identify and delineate tree crowns independently, seeking to minimise the 
effect of background and shadowing. This image processing was achieved 
using object-based segmentation methods through Niblack’s threshold 
(Niblack, 1986) and Sauvola’s binarisation techniques (Sauvola and Pie-
tikäinen, 2000). Finally, we applied a binary watershed analysis using the 
Euclidean distance map for individual objects to automate the separation of 
the trees with overlapping crowns (Fig. 4.5). 

Mean reflectance values for each tree were used to calculate 96 spectral-
based indicators, including: i) VIs related to tree crown structure, chloro-
phyll, carotenoid, anthocyanin and water contents, and the epoxidation 
state of the xanthophyll cycle (detailed in Appendix C.); ii) chlorophyll flu-
orescence emission through the Fraunhofer line depth (FLD) method as de-
scribed by Maier et al. (2003) using three bands for the in (L763 nm) and out 
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(L750 nm; L780 nm) bands (3FLD); and iii) thermal dissipation using Tc-Ta, as 
previously described. 

 
Figure 4.5 Overview of the entire crowns in the study area. Zoomed-in views 
(of the area in the yellow box) in the bottom row show the tree-crown seg-
mentation for each sensor. 

4.2.3. Model simulation analysis and plant trait retrieval 

Canopy structural traits and biochemical composition were quantified by 
inverting the 3-D RTM FLIGHT8 model, using the pixels extracted from 
the tree crowns. The model simulations were conducted using the atmos-
pheric and ground data set collected during the image acquisition. Input 
variables for the model (Table 4.4) were established according to the field 
measurements, estimates from existing literature, and nominal parameters 
to ensure that the generated look-up table (LUT) covered the range of spec-
tral variability in the tree crowns. The ill-posed problem generated when a 
wide range of PTs can be obtained from the same spectrum was alleviated 
using restricting ranges of input parameters based on field data measure-
ments (Combal et al., 2003). 
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Table 4.4 Inputs for the model simulation analysis. 

Variable Units Acronym Phase 1 Phase 2 
Chlorophyll a + b content μg cm2 Cab 10–60 21–33 
Carotenoid content μg cm2 Car 1–20 1–7 
Water content Cm Cw 0.013 0–0.03 
Dry matter content g cm−2 Cdm 0.024 0.003–0.018 
Anthocyanin content g cm−2 Anth NA* 0–6 
Senescence material Fraction Cs 0 0 
Mesophyll structure – N 2.1 2.1 
Fluorescence quantum efficiency – Fi 0–0.2 NA* 
Leaf area index m2 m−2 LAI 0–4 0.1–2.5 
Leaf size m LFS 0.05 0.05 
Leaf angle distribution – LAD Spherical Spherical 
Fractional cover % FC 70 70 
Soil reflectance % Soil 1 sample 1 sample 
Understory reflectance % US 4 samples 4 samples 
Crowns shape – CSh Ellipsoid Ellipsoid 
Solar Zenith deg. SZA 25.84 25.84 
Solar Azimuth deg. SAA 108.98 108.98 
*NA: Fi and Anth are not modelled in PROSPECT-D and in Fluspect-B, 
respectively. 

 

In the first phase of analysis (Fig. 4.6 top), we determined LAI, Cab, Car, and 
the sun-induced fluorescence quantum efficiency (Fi). We built a LUT of 
+800k simulations coupling the FLUSPECT-B (Vilfan et al., 2016) leaf re-
flectance model with the FLIGHT8 (Hornero et al., 2021) canopy model. 
FLUSPECT-B considers the pigment concentrations in the leaf and its pho-
tosynthetic efficiency, and FLIGHT8 takes into account the structural prop-
erties of the canopy and the effect of the soil and the understory. The senes-
cence material, water (Cw), and dry matter (Cdm) contents, and the struc-
tural parameter N were set to nominal values using a value previously de-
termined on this particular species in the same study area following Hernán-
dez-Clemente et al. (2017) (Table 4.4 – Phase 1). For comparisons with 
airborne hyperspectral images, we used convoluted model simulations as-
suming Gaussian band spectral response functions for their corresponding 
FWHM, centred on the band locations of each imager. The LUT-based 
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inversion followed a multi-step approach in which the LAI values were de-
termined first, followed by Cab, Car, and finally, Fi, using the MSR, PSSRb, 
CRI700m, and 3FLD spectral-based indicators as proxies for each PT, respec-
tively.  
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Figure 4.6 Model simulation approach diagram. 
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In the second phase, parameterisations retrieved from each tree were used 
to build a LUT of +200k simulations by coupling the PROSPECT-D (Feret 
et al., 2017) leaf reflectance model with the FLIGHT8 canopy model. The 
leaf reflectance model was used to specifically quantify Anth, as well as Cw 
and Cdm (Fig. 4.6 bottom). For the simulations and images, a smoothing 
algorithm based on local polynomial regression fitting (Cleveland et al., 1992) 
was applied to eliminate the noise affecting the model inversion. Through 
the use of wavelets (Strang and Nguyen, 1996), we decomposed the hyper-
spectral signatures into frequency components at different spectral scales, 
allowing us to identify the LUT spectra that showed a closer correspondence 
to the image spectra. The continuous wave transformation was performed 
over three spectral ranges, a) 470710 nm, b) 670850 nm, and c) 10001300 
nm and 15001700 nm, for the retrieval of Anth, Cdm, and Cw, respectively. 
At this stage, Kattenborn et al. (2017) and, more recently, Suarez et al. 
(2021) used a similar method to obtain the PTs from hyperspectral images; 
however, the methods used in this study differ in that a) an extended spec-
tral range was used based on double-coupled hyperspectral imagers, and b) 
only the first four transformation scales were used to characterise more spe-
cific spectral regions of interest, instead of the whole range of the signal. 

4.2.4. Plant trait selection and classification model 
approach 

Once the PTs were obtained for each tree, feature selection was performed 
using a random forest (RF) classifier (Breiman, 2001; Liaw and Wiener, 2002) 
combined with an adaptation of an algorithm developed by Kursa and Rud-
nicki (2010), henceforth referred to as the Boruta algorithm. In the Boruta 
algorithm, shadow variables (permuted copies) are created by shuffling the 
original ones. The RF classifier is then applied to the initial data set, which 
is composed of the original variables and their shadow counterparts at the 
same time. The Boruta algorithm evaluates iteratively the importance of 
each original variable against the shadow variables to determine which 
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variables are essential and at what magnitude. Variables are marked “Un-
confirmed” when they are significantly lower than the shadows and are per-
manently discarded, while variables that are significantly higher than the 
shadows are marked “Confirmed”. The process is repeated by re-generating 
the shadow variables and continues until only confirmed variables are left 
or until the maximum number of iterations defined at this stage is reached 
(set at 100 iterations). If the second scenario occurs, some variables may 
remain undecided, and they are considered “Tentative.” The confidence level 
defined in the Boruta algorithm was established at 99% with a multiple 
comparisons adjustment using the Bonferroni method (Haynes, 2013) to con-
trol false positives. Once this process was completed, the importance of each 
PT in the severity and incidence classification process was obtained. 

As an initial step, we performed the Boruta analysis using the field-based 
PT measurements, combining 2013, 2015, and 2017 evaluations, using only 
the three variables that were measured in all three years (Fs, Cab, and Car) 
on 45 observations (15 evaluations and physiological measurements per year) 
and comparing them to the levels of severity and incidence. The purpose of 
this analysis was to understand the sensitivity of field-based PT to forest 
decline.  

The feature selection process started using all the model-based PTs retrieved 
for each tree, including 8 variables and 1146 observations. Then, the Boruta 
analysis was repeated for all the spectral-based indicators (N = 96). The 
objective was to improve the reliability of the model using complementary 
information added by VIs to the initial model-based PT feature selection. 
Due to the high fluctuations in the importance calculation when a large 
number of variables are used, the process in Boruta starts with three rounds, 
in which only the selected shadow variables are compared, while in the re-
maining rounds — up to 100 iterations — the original variables are com-
pared with all the shadow variables. Figure 4.7a presents an overview of the 
entire process for the selection of variables conducted in this study. 

 



Chapter 4 

116 

Figure 4.7 Overview of the methodology used for a) the feature selection 
using the Boruta algorithm, including the iterative reduction of variables 
and the correlation analysis; and b) the classification approach based on 
2017 with the different cases assessed and a final comparison with a subse-
quent evaluation in 2019. 
 

To strengthen the selection of features used in the classification model, the 
PTs were set in the established order according to their importance, and the 
VIs were added based on their previously calculated importance as well. At 
each stage of accumulation, the variance inflation factor (VIF) — an indi-
cator that measures the extent to which the variance of an estimated regres-
sion coefficient increases due to collinearity (James et al., 2013) — was cal-
culated to avoid multicollinearity among the predictor variables. The varia-
ble was included only if the VIFs for all variables were below the threshold 
of 10. The final set of selected variables (PTs + VI) was used in the next 
screening stage. 
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Finally, Pearson’s correlation analysis and p-values were used to determine 
the degree of relationship between the previously selected variables. Through 
the calculated correlation matrix, the variables to be excluded were chosen 
to reduce the pair-wise correlations establishing a cutoff filter of 0.85 (Dor-
mann et al., 2013). The Boruta algorithm was applied to the remaining 
variables to determine the importance of each selected variable. A principal 
component analysis (PCA) was also conducted to determine to what extent 
the components capture the majority of the variance and to identify the 
variables that provide the most information and whether the less relevant 
ones could be discarded to reduce the dimensionality of the data set. The 
filtered variables were retained for the development of the classification 
model, as shown in Figure 4.7. 

Two ML algorithms were used to classify disease incidence and severity lev-
els: a supervised non-linear support vector machine (SVM) with a Gaussian 
kernel radial base function (Scholkopf et al., 1997) and the RF algorithm 
(Breiman, 2001), which were reported as the predominant classifiers on air-
borne imaging (Gigović et al., 2019; Gualtieri et al., 1999; Liu et al., 2017; 
Pal, 2005). 

We evaluated models for two different cases (Fig. 4.7b), assessing incidence 
and severity classification from i) CASE 1, all trees assessed in 2017 (N = 
1146), and ii) CASE 2, only confirmed trees, which were either still affected 
or unaffected again in 2019 (N = 506). To validate the selected models, we 
performed 100 iterations in which the data set was randomly divided into 
two samples, the training and the test samples by 80% and 20%, respectively, 
including k-fold cross-validation, in which the original sample was randomly 
partitioned into 10 equal-sized subsamples and repeated five times. Training 
data were subsampled for each iteration to avoid disproportionate frequen-
cies of classes, which could negatively impact the model fit. Finally, we as-
sessed the classification accuracy by calculating the overall accuracy (OA) 
and the Cohen’s kappa coefficient (κ), which is based on comparing the 
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observed agreement in a data set compared to what could occur by mere 
randomness (Richards and Jia, 1999). 

After assessing the models’ accuracy, we evaluated the anticipation capabil-
ity using the visual evaluation 2 years later. In particular, we analysed 
whether the model was able to predict the unconfirmed cases — trees that 
were assessed at a given incidence level and in the subsequent assessment, 2 
years later, were assessed at the opposing level — and refined towards those 
that improve or worsen, i.e., those that change from having incidence to not 
having it and the opposite, respectively. This last analysis helped us under-
stand the applicability of the model to predict a subsequent evaluation of 
forest decline using the data from previous images and evaluations. 

4.3. Results 

In this section, we present the results of the evaluation of the field and PT 
indicators to predict oak decline. Then, the remote sensing spatial model’s 
predictions are described, focusing on the importance of each PT in the 
screening of the physiological alterations caused by oak decline. 

4.3.1. Plant trait indicator assessment based on forest 
health field measurements 

The bi-annual empirical data collected from 2013 to 2017 show the capabil-
ity of the field-based PTs — Cab, Car, and Fs — to discriminate different 
levels of severity. Trees with low disease severity levels consistently had high 
values for Fs, Cab, and Car content (Fig. 4.8). Fs was identified as having 
importance values two times higher than Cab and Car in both severity and 
incidence levels (Fig. 4.8 right side). 
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Figure 4.8 Relationship between the level of severity and field-based plant 
traits – chlorophyll content (Cab), carotenoid content (Car), and steady-state 
leaf fluorescence (Fs) – in N = 45 trees measured in 2013, 2015, and 2017. 
Importance scores for field-based plant traits in detecting oak decline com-
puted via the Boruta algorithm are shown at right. 

4.3.2. Spectral- and model-based plant trait predictors of 
oak decline  

As with empirical measurements, model-based values of Fi and pigment con-
tent (Cab and Car) were inversely related to severity level (Fig. 4.9). The 
model-based PTs corresponded well with field data, having relatively low 
normalised error (NRMSELAI = 0.13, NRMSECab = 0.16, NRMSECar = 0.2, 
and NRMSEAnth = 0.12) and values within the expected range (data not 
shown). In Fig. 4.9, we also included the model-based retrievals of three 
other PTs (Cw, Cdm, and Anth) and Tc-Ta derived from thermal data. Severity 
level was positively associated with Tc-Ta and Cdm but negatively associated 
with LAI, Anth, and Cw. These results are also consistent with the classifica-
tion of incidence and severity obtained from field-based PT measurements, 
described in the previous section, where Fs was one of the most relevant 
variables to detect oak decline. 
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Figure 4.9 Relationship between severity and plant traits retrieved from 
hyperspectral and thermal images in 2017. 

 

Variable importance scores for model-based PTs and Tc-Ta are presented in 
Fig. 4.10. Tc-Ta and Fi had the highest importance scores in models discrim-
inating the first and second severity levels, while LAI and Cdm were deter-
mined to be the most important for differentiating the remaining severity 
levels (Fig. 4.11a).  

Figure 4.10 Overall importance scores for each plant trait when classifying 
both incidence and severity disease levels using the Boruta algorithm. 
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Figure 4.11 Severity subsampling importance scores for each plant trait (PT) 
(a) and spectral-based principal component (PC) predictors’ analysis (b) for 
both incidence (0–1) and severity (0–3) levels using the model-based PTs 
(Cab, Car, Anth, Cw, Cdm, LAI, and Fi) and the thermal-image-based PT (Tc-
Ta). The bidimensional plots display each variable’s loading, with vectors 
and the tree samples as points coloured by severity and incidence levels. The 
vectors’ length approximates the variance represented by each variable, 
whereas the angles between them represent their correlations. 

 

The principal components PC1 and PC2 explain 59.2% of the total variabil-
ity, with 42.5% for PC1 and 16.7% for PC2 (Fig. 4.11b). The PTs Tc-Ta and 
LAI were strongly negatively correlated in PC1 and PC2 space, having 
nearly the same magnitude and angle but different directions. These results 
may indicate that the more abundant the vegetation, the greater the 
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transpiration capacity and the lower the temperature difference. On an or-
thogonal ray, we find Car, which is scarcely related to them, and its im-
portance indicates its limited contribution to the model. The projection of 
Fi in the first two components was opposite that of Car, and this variable 
contributed substantially to model performance. This variable was more im-
portant than LAI for the development of an incidence classification model 
as well as distinguishing the first two severity levels. 

4.3.3. Remote sensing spatial model predictions of oak 
decline  

To find the best variables for predicting oak decline, the model-based PTs 
were combined with 95 VIs, of which only four passed the iterative VIF 
screening and pair-wise correlation threshold: LIC3, CI2, GnyLi, and MND 
(Fig. 4.12a). The variables with the lowest correlation coefficient (<0.05) 
were Car with LAI, Anth, and MND, a result that is consistent with the PCA 
showing Car as largely independent from other variables. 

Figure 4.12 Plant traits (PTs) and vegetation indices (VIs) correlations (a) 
and variable importance scores for spectral-based PT and VIs with severity 
and incidence (b) to detect oak decline. 
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The variable selection process yielded 12 final indicators with a VIF below 
the established threshold. Two indicators were associated with photosynthe-
sis regulation: Fi and Tc-Ta. Four indicators were related to pigment content: 
Cab, Car, Anth, and CI2. One indicator was related to fractional cover, namely, 
LAI. Five indicators were related to water content: Cw, Cdm, GnyLi, MND, 
and LIC3. Among all the indicators, the variables contributing the most to 
detecting different levels of incidence and severity were Tc-Ta and Fi. These 
PTs were included as predictors for the final classification model of oak 
decline; their importance scores are presented in Figure 4.12b. Variables 
with the highest importance included Tc-Ta, Fi, and CI2.  

Model accuracy was estimated on the basis of the total number of trees 
evaluated and confirmed cases reported in the subsequent survey (Fig. 4.13). 
Models classifying severity had an overall accuracy of 0.71 (κ = 0.51) in the 
best case (sampling of confirmed cases with RF algorithm). Models classify-
ing incidence were more accurate (OA = 0.82; κ = 0.62) for this same sce-
nario. The SVM algorithm was slightly more accurate when we used the 
complete data set (all trees; N = 1146), while RF performed better with the 
reduced-input data set (confirmed cases; N = 506). For models predicting 
incidence, the OAs were greater than 0.75 (thus considered ‘high’), and the 
Cohen’s kappa scores were fair to excellent, according to Cicchetti and Spar-
row (1981). 

The findings obtained when evaluating the anticipation capabilities (Table 
4.5) indicate a better behaviour of the RF algorithm when building the 
model with both confirmed cases — in which the best result is found — and 
all cases. When we analyse the prediction rate while segregating between 
trees that worsen (incidence: 0 → 1) and those that improve (1 → 0), for 
the former, the RF algorithm behaves better, and for the latter, SVM. 
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Figure 4.13 Overall accuracy (OA) and Cohen’s kappa scores for classifica-
tion models. Results were obtained from 100 iterations of random data sub-
sets for training and validation (80/20). Average OA and kappa values are 
shown as horizontal bars, the former in colour and the latter as narrower 
grey bars with dotted edges. The error bars indicate the minimum and max-
imum OA values across iterations. 

 

Table 4.5 Prediction rate for non-confirmed cases (NC) using models built 
with all cases or only confirmed ones. The best results for each case are 
highlighted in light green and in darker green overall. 

Method Sample NC 0↔1 (%) NC 0→1 (%) NC 0←1 (%) 

SVM All cases 29.9 27.4 34.0 

SVM Confirmed cases 33.8 34.8 32.1 

RF All cases 32.1 31.9 32.0 

RF Confirmed cases 35.5 40.2 27.4 

All cases: N = 1146; confirmed cases: N = 506. 
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Example predictions from a final incidence classification model using the 
SVM algorithm are presented in Fig. 4.14. Through this map and the field 
evaluations, the differences found can be appreciated, as well as their spatial 
variability. 

Figure 4.14 Field evaluation and spatial prediction map from the model 
output. Yellow and green filling indicates incidence or not, respectively. Tree 
crowns with a red outline are those that differ between the field evaluation 
and the model output.  

4.4. Discussion 

The first objective of this study was to identify the PTs that are most useful 
for detecting the incidence and severity of decline symptoms in holm oak. 
While Zarco-Tejada et al., (2018a) successfully used spectral-based PTs to 
improve the detection of X. fastidiosa symptoms in olive trees, quantifying 
PTs in heterogeneous forest canopies is significantly more difficult because 
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of the impacts of shadows, soil background, and understory, which dilute 
the spectral signature of pure crowns (Hernández-Clemente et al., 2019; Liu 
et al., 2020; Markiet et al., 2016; Pisek et al., 2015). For this reason, ad-
vanced 3-D simulation models designed specifically for heterogeneous forest 
canopies were a major methodological component of this study. The critical 
step resided in the successful retrieval of model-based PTs that allowed us 
to understand the contribution to each PT and complete the ML modelling 
approach with additional information derived from other spectral-based, un-
correlated variables. By applying a combination of 3-D model simulation 
and statistical analysis using ML approaches, we found that oak forest de-
cline can potentially be detected at an earlier stage and that severity levels 
can be accurately assessed at broad scales. 

Field data confirmed the association between Q. ilex status and several key 
PTs. Trees with lower disease incidence had higher values of Cab, Car, and 
Fs. As symptom severity increases, the concentration of these pigments and 
the chlorophyll fluorescence decrease. The decrease rate we observed in chlo-
rophyll fluorescence and pigment content associated with disease incidence 
are consistent with declines associated with drought and root rot stress found 
in other experiments under controlled conditions (Früchtenicht et al., 2018; 
Koller et al., 2013; Ruiz Gómez et al., 2018) and field surveys (Baquedano 
and Castillo, 2007; Camarero et al., 2012).  

It is notable that we found Fs to be more important than the other two PTs 
in identifying disease incidence from field data. Among model-based PTs 
retrieved from hyperspectral images, Fi similarly had a higher importance 
score than any other pigment content indicator for discriminating severity. 
This pattern is consistent with the variable importance ranking of variables 
in Zarco-Tejada et al. (2018a) for detecting Xf-induced symptoms in olive 
trees. 

Including spectral-based PT indicators in our analysis provided insight into 
the functional responses of oak trees to different disease levels. Tc-Ta was 
the most important indicator, regardless of whether we discriminate by 
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incidence or severity. Thermal imaging has improved the detection of several 
crop diseases in other studies, including Verticillium wilt in olive orchards 
(Calderón et al., 2015), water stress in peach orchards (Gonzalez-Dugo et 
al., 2020), and red leaf blotch in almond orchards (López-López et al., 2016). 
In this study, other important PTs included LAI and Fi, followed by Cdm, 
Cw, and Anth, and to a lesser extent Cab and Car. 

Focusing on the discrimination capacity of each PT between the different 
stages of severity, Tc-Ta was generally an important predictive variable for 
determining disease incidence, but LAI and Cdm were more relevant for dis-
criminating mild and advanced severity classes. Principal component analy-
sis showed that Tc-Ta and LAI contributed strongly to the same component 
but in opposite directions. Severity subsampling supports that while canopy 
temperature is particularly important for early incidence detection, LAI may 
provide more information about severity levels when a tree is infected. 

Another important aspect of this study is the consideration of VIs alongside 
other model-based PTs for classification. CI2, GnyLi, MND, and LIC3 were 
variables that passed through selection criteria, providing additional infor-
mation and avoiding collinearity with other variables. In the final model, Fs 
was selected as highly important, since part of the weight of LAI was dis-
tributed among other indicators such as CI2 or LIC3. The importance of 
indicators from the SWIR region (MND and GnyLi) also exceeded that of 
Cab, Car, Cdm, and Anth. 

This study showed that remotely derived PTs can support the early detec-
tion of holm oak decline. These results help bridge a gap in the understand-
ing of how forest decline affects PTs via complex interactions between biotic 
and abiotic factors. These interactions are difficult to disassociate, unlike in 
agricultural studies in which factors such as nutrient deficiency or water 
availability can be controlled. 

Predictive model accuracy was high, with an OA > 0.8 and  > 0.6, indi-
cating that the PTs we identified may be helpful for understanding 
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physiological responses to disease and other stressors. The model accuracy 
achieved in this study is comparable to that of prediction models developed 
for olive trees by Zarco-Tejada et al. (2018a).  Taking advantage of a sub-
sequent field evaluation performed 2 years later, the model’s anticipation 
ability was evaluated, which brought us significantly improved results since 
it managed to anticipate up to 40% in the best scenario.  

Forest canopy heterogeneity poses a challenge for spectral data modelling, 
due to discontinuous architectures and interference from shadows, under-
story, and soil composition. The utility of satellite-based spectral indicators 
for detecting diseases has been examined by Hornero et al. (2020) in olive 
trees and Hernández-Clemente et al. (2017) in holm oak. A common finding 
in these studies was that the soil and the understory both influence the 
spectral signature and the fluorescence signal of aggregated pixels. In this 
work, we used the FLIGHT8 model, a recently improved version of the 
FLIGHT model, which minimises background effects by considering the 
spectral contribution of the understory. The success of the methods pre-
sented here may be partially due to the high spatial resolution of hyperspec-
tral images collected and to the open nature of the woodland landscape. 
However, the FLIGHT8 model also accounts for increasing levels of pixel 
aggregation (e.g., using medium- to low-resolution satellite imagery) in het-
erogeneous canopies (Hornero et al., 2021). Future work should investigate 
the assessment and validation of the methods presented here performed with 
satellite imagery and/or different types of forest canopies.  

Monitoring and anticipating forest decline are clearly advantageous for ef-
fective management and mitigation. Large-scale monitoring may be further 
improved by including multitemporal data to track disease evolution. How-
ever, such data will increase the complexity of analyses, particularly due to 
variation in understory and soil reflectance from image to image, their im-
pact on aggregated pixels, and the need to account for those variations with 
RTM. The methodology presented here may be particularly relevant for the 
Sentinel-2 mission, which provides multitemporal data in the visible, 
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infrared, and short infrared regions, and the FLEX mission, which will pro-
vide fluorescence data after 2022. 

4.5. Conclusions 

This study proposes a methodology that integrates field data, airborne im-
agery, physical RTM, and empirical modelling to retrieve PTs and assess 
their association with forest decline and provides a tool to detect early-onset 
symptoms of decline in holm oak. Hyperspectral image data, including VNIR 
and SWIR spectral regions, combined with thermal imaging and RTM can 
be used to monitor the spread of forest decline over large areas. Thermal-
based canopy temperature (Tc-Ta) was the most important PT in the model 
to discriminate between different levels of severity and incidence, followed 
by the fluorescence (Fi) and LAI, whereas LAI and Cdm were the most rele-
vant indicators for discriminating advanced stages of severity. Additional 
spectral indicators such as CI2 or LIC3 complemented LAI, and VIs in the 
SWIR region (GnyLi and MND) were more important than PTs such as Cab, 
Car, or Anth. Overall, our results demonstrate that an integrated approach 
combining spectral- and model-based PT retrievals using 3-D RTM and 
classification methods is needed for the large-scale monitoring of forest de-
cline. This approach enabled the successful prediction of holm oak decline 
at an early stage; it is essential to monitor harmful forest diseases, and this 
task can be augmented through the retrieval of accurate forest health traits 
from advanced airborne imagery and satellite data observations. 

 



 

 

 

Chapter 5 
 
Conclusions 

5.1. Overview 

In the preceding chapters, a specific and detailed discussion of the findings 
associated with each study has been carried out. This chapter aims to sum-
marise the main findings, discuss them in a general context, show applica-
tions and practical implications, and suggest new directions for further re-
search. Throughout this thesis, new methods have been developed based on 
the quantitative estimation of vegetation dynamics using satellite images 
(chapter 2), high-resolution airborne imagery (chapter 3 and 4), and radia-
tive transfer modelling (RTM) (chapter 2, 3 and 4). Remote sensing data 
have been combined with field measurements and RTM to determine plants’ 
physiological status (chapters 2 and 4) in two different heterogeneous cano-
pies: olives groves and holm oak trees. Different strategies have been applied 
through imaging, as well as empirical and physical modelling, to detect the 
incidence of i) a bacterium, Xylella fastidiosa (Xf), in olive groves (chapter 
2), and ii) an oomycete, Phytophthora cinnamomi (Pc), in holm oak forests 
(chapter 4), where the understory plays a key role with more nutrients avail-
able in the soil. Also, in another holm oak area, the validation of the new 
features incorporated in an RTM model (chapter 3) has been developed, as 
well as their evaluation and robustness. At the image level, it is challenging 
to assess the incidence of the different factors, so the proposed methodologies 
have been used to not only retrieve the biophysical parameters of the 



Chapter 5 

131 

vegetation (chapter 2 and 3) but also to improve the understanding of each 
plant trait (PT) (chapter 4).  

This chapter discusses the implications of the previous chapters’ results for 
the development of methods to estimate vegetation health, the influence of 
understory, and the role of fluorescence along with other PTs. Figure 5.1 
summarises the key findings achieved for each of the objectives outlined and 
suggests where future work in this direction should be focused. 



 

 

 

 
Figure 5.1 Key findings, limitations, and recommendations for future studies are shown under each objective. Key findings 
are coloured according to the chapter from which they were extracted; limitations and possible future works are in grey boxes 
and italics. 
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5.2. Synthesis and general conclusions 

Monitoring vegetation dynamics on a large scale using remote sensing is key 
to detecting the early signs of vegetation decline and addressing plant 
health’s biotic and abiotic drivers. This thesis integrates different approaches 
combining field data, satellite and airborne images and physical and empir-
ical models that allow the analysis of functional PTs used as indicators of 
vegetation health. In particular, the methods have been tested for detecting 
and monitoring symptoms induced by Xf in olive trees and the forest decline 
in holm oaks associated with Pc and drought stress. A key aspect of the 
successful monitoring of vegetation health using RTM has been to consider 
the spectral contribution and the effects associated with understory in het-
erogeneous canopies, which has been ignored so far. This has resulted in the 
achievement of a tool to detect early symptoms considering the contribution 
of the different components of the environment, thanks to the use of ad-
vanced RTM and the proposed methodology. 

First, a dataset collected in the first declared Xf-infected area in Europe, in 
southern Italy, integrating Sentinel-2 satellite imagery and high-resolution 
hyperspectral imagery, field observations, and radiative transfer modelling 
has been used to demonstrate that Sentinel-2 data allow the detection of 
changes associated with temporal variations of Xf-induced symptoms. Dif-
ferent vegetation indices (VIs) were used to assess the temporal rate of 
change of disease incidence (DI) and severity (DS), showing that the moni-
toring of Xf-infected orchards required the use of autocorrected VIs and 
adjusted to the influence of the soil. The latter suggested the possible impact 
of background, given the heterogeneity of the crop, and how the disease 
spread left more nutrients available in the ground, and, consequently, for 
understory growth. On the one hand, the literature lacked studies focusing 
on the sensitivity of VIs to variations in both vegetation health and temporal 
change, including the contribution of understory changes that significantly 
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affect reflectance acquired by satellite imagery. On the other hand, the un-
derstory’s confounding effects had a considerable impact on the VIs obtained 
from Sentinel-2 over Xf-infected olive orchards due to the discontinuous can-
opy that characterises this crop. Therefore, the next part of the work was 
focused on improving the RTM used hitherto by including an additional 
component, the understory, and studying its impact one step further, while 
also focusing on the effect of sun-induced fluorescence (SIF) on the aggre-
gated pixel, which had not been studied to date and remains of particular 
interest for understanding the physiological state of the vegetation. 

Out of all the indicators evaluated with the satellite imagery, those that 
minimised atmospheric and background effects, such as ARVI, OSAVI and 
ATSAVI, performed better than traditional indices such as NDVI, MSR, or 
RDVI. It was shown that the use of 3-D RTM and field observations could 
correctly explain the temporal variations experienced in both the tree can-
opy and the background, which is critical for accurately predicting the in-
crease in DI and DS. The background effect had a significant impact on the 
estimation of the model compared to the field measurements, yielding an 
improvement in the retrieval of DI increase of 33.5% when background ef-
fects were considered and an additional improvement of 9.5% when its het-
erogeneity was also taken into account. For monitoring Xf damage over large 
areas, the results suggest that Sentinel-2 time series together with RTM, 
which considers environmental variations, can provide useful spatio-tem-
poral indicators, both to improve the understanding and to take the neces-
sary phytosanitary interventions to stop the spread of Xf. 

Simultaneous studies in which the author participated demonstrated that 
fluorescence was a key factor for disease detection (Poblete et al., 2020; 
Zarco-Tejada et al., 2018a); therefore, the next steps were designed to ad-
dress both biophysical parameters and fluorescence emission, creating a new 
RTM model that dealt with the aspects found so far.  Prior to its use in 
another heterogeneous canopy on a different scenario, a validation study was 
performed, together with the effect of the understory and the aggregated 
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signal. Modelling of the understory within the 3-D RTM approach led to the 
interpretation of results showing that the fluorescence signal calculated from 
medium-to-low resolutions is significantly affected by variations in the un-
derstory. Leveraging the development effort on an existing model, which 
already integrated the effect of fluorescence on tree leaves, has allowed the 
development of a new model that takes into account the impact of under-
story to discriminate between each of its components — addressing one of 
the first questions that arose after the first analysis — and also to model the 
fluorescence signal, which will be shown below to be one of the most im-
portant indicators when modelling forest decline. 

The model developed was tested in an intercomparison with other models 
and empirically validated using high spectral and spatial resolution imagery 
in the framework of a campaign — over a tree-grass ecosystem within the 
FLEX preparatory missions at the Majadas de Tiétar research station in 
western Spain — specially dedicated to the study of fluorescence, which at 
the same time allowed us to have field measurements to support this applied 
study. The selected study area, given its spatial variability and heterogene-
ity, allowed us to carry out an exhaustive evaluation that assessed not only 
the influence of the understory component in particular but also its charac-
terisation in the global impact over the scene. It was concluded that, in order 
to assess the physiological condition of heterogeneous agricultural and forest 
canopies using medium- and low-resolution images, the contribution of the 
SIF emitted by the understory had to be taken into account using RTM-
based approaches. 

Additionally, the proposed model could be used to improve the interpreta-
tion of SIF at the tree canopy level when it is necessary to separate between 
different aggregated components and to consider background effects. The 
ability to quantify SIF not only at the leaf or canopy level but also at lower 
spatial resolution is needed for the interpretation of SIF at a global scale. 

In the framework of a more extensive field campaign, using high-resolution 
thermal and hyperspectral imagery, spanning VNIR and SWIR spectral 
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regions, all of the aforementioned findings were gathered and further deep-
ened the understanding of the physiological state of the vegetation in the 
context of agroforestry decline. This study — conducted in a Pc-infected 
dehesa located in Andalusia, southern Spain — revealed the need for an 
integrated approach combining RTM-based PTs retrievals, complemented 
with VIs and subsequently building a machine learning (ML) classification 
model for monitoring forest condition. The importance of fluorescence for 
vegetation health monitoring was also confirmed in this third study. 

Among all of the PTs that were determined and analysed, the temperature-
based Tc-Ta indicator, followed by the fluorescence and the LAI, were the 
most relevant ones in the model development that distinguishes between 
different levels of DI and DS (OA = 0.82/0.71; κ = 0.62/0.51, respectively). 
LAI and dry matter content (Cdm) play a more relevant role in discrimi-
nating between advanced levels of severity. Complementarily, indicators 
such as CI2 or LIC3 cause a drop in the importance of LAI given their 
contribution to the model, and indicators in the SWIR region (e.g. Gny or 
MND) become more significant than Cab, Car, or Anth. Thanks to the pro-
posed strategy, it has been possible to successfully predict holm oak forest 
decline at an early stage, which is key to monitoring damaging forest diseases 
and their management. 

Overall, due to all of the analyses conducted throughout this thesis and the 
combined methodologies proposed, an overarching conclusion can be drawn 
regarding the importance of integrated approaches that combine the re-
trieval of indicators from RTM to provide a better understanding of the 
physical and physiological processes that are taking place in the vegetation. 
This allows us to not only have more accurate information from larger scales 
but also to be able to model it, anticipate it, and take preventive action in 
the field, or at least in the early stages of vegetation decline. 
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5.3. Practical implications 

5.3.1. Monitoring the spread of Xylella Fastidiosa  from 
space 

The first research question was to assess whether satellite data could be used 
to monitor temporal changes in DI and DS induced by Xf and whether it 
was likely to provide information on the widespread Xf epidemiology over 
large areas. Zarco-Tejada et al. (2018a) showed how non-visual symptoms 
of this infection could be detected from very high-resolution hyperspectral 
imagery and RTM, and more recently, Poblete et al. (2020) evaluated spec-
tral bands and indices and the contribution of SIF and the thermal region 
for Xf detection, advancing operational detection using airborne platforms. 
However, as Xf has spread rapidly in recent years, monitoring more visible 
damage over large areas could help measure, forecast and potentially miti-
gate the impact of Xf on the landscape (White et al., 2017), and hence on 
the socio-economic sectors that depend on it (Luvisi et al., 2017). 

The rapid propagation of Xf in the field was reported in the observations 
carried out. In fact, there was a considerable increase in DI and DS in the 
period analysed. As indicated by Nutter et al. (2006), an accurate assessment 
of the disease requires a quantitative estimation of the disease’s temporal 
evolution. Thus, the availability of high temporal resolution multispectral 
data from Sentinel-2 offers the opportunity to evaluate indicators for moni-
toring Xf infections in olive orchards over time. The results obtained show 
the feasibility of modelling changes in DI from satellite image data using 
different VIs and RTM. However, multitemporal data must also consider 
the variation of other components, such as understory and soil, and their 
impact on the aggregated pixels, being a challenge to disentangle spectral 
reflectance changes produced by alterations in vegetation condition from 
those produced by atmospheric and background factors. After an initial 
analysis, the best performing VIs were OSAVI and ARVI, which were shown 
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in previous studies (Kaufman and Tanre, 1992; Rondeaux et al., 1996) to be 
reasonably robust to the background and atmospheric effects. Both empiri-
cal and model results agreed on the accuracy of OSAVI as the best perform-
ing index for tracking ΔDI; however, the overall robustness shown is dis-
cordant with some other studies in which traditional indices performed bet-
ter. Frampton et al. (2013) found that both LAI and chlorophyll could be 
extracted from NDVI sentinel-2 images for crops. The most evident differ-
ence between these studies is in the homogeneity of crops versus the heter-
ogeneous canopies of olive orchards, explaining this apparent contradiction. 

5.3.2. The impact of the understory on monitoring 
vegetation dynamics 

The background’s contribution was found to affect not only the spectral 
reflectance of the canopy using satellite data but also through high-resolu-
tion hyperspectral imagery. The impact of the background on the spectral 
response of the tree canopy could be related to the natural canopy structure 
of olive trees (Gómez Calero et al., 2011) and their high level of defoliation 
in more severe stages.  Analogously, in the present work, an increase in Xf 
infections was associated with a decrease in the tree fractional cover (FC) 
and an increase in the background FC, further increasing the understory 
contribution to the aggregated signal at the orchard level. This inverse effect 
of an increase in background greenness with a decrease in the functionality 
of Xf-infected trees could be explained ecologically on the basis that diseased 
trees leave more nutrients and water available for the understory (Peltzer 
and Köchy, 2001). This pattern further emphasises the relevance of incor-
porating RTM if we seek to model the background effect with considerable 
accuracy (Meggio et al., 2008). 

The findings achieved have very relevant implications for the use of VIs to 
assess the temporal evolution of diseases and pathologies due to non-homo-
geneous background effects in Xf-affected orchards. The modelling approach 



Chapter 5 

139 

showed the need to use a 3-D RTM approach that considers these effects, 
which is essential to monitor the future spread of Xf infections and to un-
derstand their epidemiological evidence (Fuente et al., 2018). 

So far, the challenge of mapping disease infections has mainly been devel-
oped through the use of environmental data and probabilistic models (Hay 
et al., 2006) and is rarely implemented in quantitative terms. The prospect 
of mapping the evolution of disease incidence using RTM and satellite im-
agery is a new approach with high potential to assess vegetation health dy-
namics. 

The heterogeneous spatial distribution of trees and understory layers in the 
landscape is one of the main factors that inherently introduces uncertainty 
in retrieving biophysical vegetation parameters through modelling (Yu et al., 
2018). The estimation of these parameters simultaneously contains many 
implications for GPP retrieval (Li et al., 2018); even the interpretation of 
GPP using SIF as a proxy varies greatly depending on the canopy type 
(Tagliabue et al., 2019). Chapter 3 highlights the need for a solution that 
allows for modelling the understory’s contribution in aggregated pixels and 
its impact on the total canopy fluorescence estimation. Mixed tree-grass eco-
systems cover up to 33% of the global surface (Hanan and Hill, 2012), so the 
contribution of this work to understanding how to improve signal quantifi-
cation from aggregated pixels is key. 

5.3.3. The aggregated signal and its impact on sun-induced 
fluorescence 

The increasing availability of SIF observations from space raises the need to 
develop and validate new approaches for modelling SIF dispersion and reab-
sorption at the canopy level. Upcoming missions with satellite data are ex-
pected to bring another step forward in estimating the physiological state of 
plants, as operating with global sensors has the clear advantage of covering 
more area; however, quantifying the fluorescence contribution above the 
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canopy is difficult due to the limited availability of studies and models with 
which to interpret dispersion processes within the canopy (Qiu et al., 2019; 
Romero et al., 2018; Yang and van der Tol, 2018; Zeng et al., 2019). Seeking 
to fill this gap, the results in Chapter 3 show how to aggregate the SIF 
contribution emitted by scene components within an agroforestry canopy. 
Data collected with the high spatial and spectral resolution HyPlant sensor 
was first used to demonstrate empirically that understory does affect the 
aggregated pixel values.  

Not surprisingly, the higher the aggregation, the more significant were the 
differences between the pure tree crown values and the aggregated pixel, and 
these differences became less relevant at values close to or below the mean 
crown size. This aggregation increases uncertainties in the modelling of SIF 
and other global-scale vegetation indices when the spatial distribution and 
composition of understory vary across seasons. As reported by Joiner et al. 
(2014), the quantification of SIF emitted by tree crowns and understory 
separately may not always be necessary, in particular for modelling global 
GPP. However, for other studies, such as the temporal evolution of photo-
synthesis related to vegetation decline, stress, or diseases, each component’s 
physiological state must be accurately understood independently (Stoy et 
al., 2019). 

5.3.4. The need for modelling heterogeneous canopies 

At this point, the next question that arose was whether a model could rep-
resent the components within a heterogeneous canopy, and at the same time, 
model SIF scattering and reabsorption. Zhao et al., (2016) and Hernández-
Clemente et al., (2017) made the first steps to using 3-D RTM to simulate 
SIF from heterogeneous canopies and reported the impact of background on 
the estimation of SIF at the canopy level; however, no studies had taken 
into account the combined effect of soil and understory to date. Therefore, 
the ability to assume the understory as an additional layer was developed, 
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enriching the modelling processes in heterogeneous canopies. With this new 
RTM, FLIGHT81, a simulation analysis was performed to analyse the con-
tribution of SIF emitted by understory and tree canopy. The importance of 
evaluating this contribution is consistent with Liu et al.’s findings (2019) 
using model simulation reconstruction from terrestrial laser using an ASD 
hand-held spectrometer in an open-canopy boreal forest. 

By evaluating a large set of simulations over the airborne imagery, the ca-
pabilities to model different ecosystem components were revealed, results 
that at the same time reinforce the interpretation of the aggregated pixel 
covered by previous studies in which only the soil effect was taken into 
account (Hernández-Clemente et al., 2017; Zarco-Tejada et al., 2018a) with-
out considering additional components from the background. FLIGHT8 can 
be used to solve the problem of interpreting large-scale information when 
the understory effect plays a key role, such as tree-grass or open forest eco-
systems, as shown in Chapter 4. Moreover, in relatively constant dominant 
layers, such as evergreen forest canopies, phenological changes in understory 
over the same season translate into canopy structure changes that alter the 
relationship between GPP and SIF (Ahl et al., 2006; Xiaoliang Lu et al., 
2018). 

5.3.5. Understanding the role of PTs in assessing vegetation 
decline 

One of the final objectives was to understand the contribution of different 
PTs to detect severity levels of affected trees caused mainly by Pc and 
drought stress. Zarco-Tejada et al. (2018a) demonstrated that quantification 
of PTs from spectral imaging data could substantially improve the detection 
of Xf-infection symptoms in olive trees. However, some other studies 

                                      

1 Forest Light model v.8 — https://flight-rtm.github.io 
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(Hernández-Clemente et al., 2019; Liu et al., 2019; Markiet et al., 2016) 
show the limitations of quantifying PTs in heterogeneous forest canopies and 
challenges related to the impact of shadows, background, and understory 
that hamper the extraction of the spectral signature of pure crowns. Focus-
ing the last case study on using advanced 3-D simulation models using hy-
perspectral and thermal airborne imagery allowed us to characterise the het-
erogeneous composition of forest canopies, which was crucial to the method-
ological approach of this work. A critical step in chapter 4 was the successful 
retrieval of PTs that enabled us to understand their contribution and carry 
out a supervised classification in order to identify the severity level of each 
tree independently. Based on a combination of 3-D RTM and statistical 
analysis, it was found that the decline of oak forests can potentially be de-
tected and severity levels assessed. 

Among all the PTs analysed, the decrease in chlorophyll fluorescence and 
pigment content found in this study are in line with the decreasing rates 
reported in experiments induced by drought stress and root rot under con-
trolled (Früchtenicht et al., 2018; Koller et al., 2013; Ruiz Gómez et al., 
2018) and field conditions (Baquedano and Castillo, 2007; Camarero et al., 
2012). Empirical data showed that the discriminatory ability of PTs to de-
termine different severity levels is affected by biotic and abiotic factors. 
Trees with lower incidence have a higher chlorophyll and carotenoid content, 
and fluorescence emission. The more severe the tree, the lower the concen-
tration of these pigments and fluorescence, results that were also confirmed 
by model-based PTs retrieved from hyperspectral images, in which fluores-
cence again takes a more important role in discriminating between severity 
levels than any other indicator of pigment content.  

Disregarding whether discriminating by incidence or severity, the results 
showed that canopy temperature becomes the most important indicator, 
which is in line with previous work where thermal data were used for the 
detection of diseases in olive (Calderón et al., 2015) and almond trees 
(López-López et al., 2016) or water stress (Gonzalez-Dugo et al., 2020). This 
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observation was complemented by studying the importance of each indicator 
in the most advanced stages of the disease, where LAI and Cdm were the 
most relevant variables in the model, with temperature and fluorescence 
taking a secondary role. 

5.3.6. Providing a comprehensive approach for monitoring 
heterogeneous canopies 

Another critical issue requiring attention is the potential impact of forest 
canopy heterogeneity characterised by discontinuous architectures, shadows 
and soil composition, which makes the extraction of pure crown spectral 
data more challenging. The suitability of spectral-based indicators for dis-
ease detection on a larger scale using satellite data was questioned in Chap-
ter 2, which formed the third chapter’s basis and this focused on demon-
strating the significant impact of soil and understory on the fluorescence 
signal recovered from higher to lower spatial resolution images. This proved 
the need to consider those effects for a proper interpretation, thus developing 
the new FLIGHT8 model, which ensures the minimisation of errors due to 
the background effect by adding the spectral contribution of the understory. 

For all of the above, having a tool to monitor and anticipate vegetation 
decline in agricultural and silvicultural areas gives a clear timing advantage 
by allowing the necessary management measures to reverse the process. 
Large-scale monitoring will benefit from future approaches that add multi-
temporal analysis of disease evolution. However, the use of multitemporal 
image data will be conditioned by background variation and its impact on 
the aggregated pixels.  

5.4. Recommendations for further research  

The combined use of RTM, PTs, and VIs in remote sensing enables mapping 
the physiological state of vegetation and the biophysical changes that occur 
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due to biotic and abiotic agents. Given the high temporal resolution that 
satellites such as Sentinel-2 offer, or even in combination with Landsat or 
together with the upcoming FLEX mission, this global mapping would allow 
us to evaluate diseases or the monitoring of forest decline over large areas, 
bringing new opportunities for treatments at early stages that can be carried 
out to prevent its spread. Future studies should consider the impact of spa-
tial and temporal variations that drive global plant dynamics, establishing 
practices that can benefit the environment’s protection and encourage sus-
tainable multi-use management. 

The understory of Mediterranean oak forests is mainly covered by grassland, 
where changes induced by nutrients and light availability alter plant func-
tional traits and canopy structure. However, in other ecosystems with higher 
density, the contribution of the understory may be different. Therefore, fu-
ture efforts on disease detection should be focused on assessing the contri-
bution of SIF emitted by the understory to the quantification of total canopy 
SIF in other ecosystem types and forest complexities. At the same time, 
these studies will be essential for analysing the ability to measure and inter-
pret SIF on a global scale. 

Future studies should consider methods to i) unravel the direct plant-level 
effects of either Xf infection in olive trees or Pc in holm oaks from those that 
manifest themselves in other components of the landscape due to changes in 
vegetation composition or management, and ii) to move even one step for-
ward and determine if the plant is only affected by the incidence caused by 
that factor and what role other factors play and to what extent. 

Disentangling these effects and being able to separate the components of the 
environment to take into account the evolution of each of them over time is 
key, and the applications are multiple, from helping to understand how dif-
ferent species sharing an environment behave, to characterising different 
background compositions, or even partitioning canopy component fluxes. 



Chapter 5 

145 

From a physical modelling perspective, it would be interesting to analyse 
the sensitivity of the impact of spatial and temporal variations with different 
SIF proxies, including other telluric oxygen absorption bands and formula-
tions, such as iFLD (Alonso et al., 2008); pFLD (Liu and Liu, 2015); SFM 
(Mazzoni et al., 2012; Meroni et al., 2010); or NIRv (Badgley et al., 2017). 
Future studies could also take into account the vertical variability of the 
maximum carboxylation rate, which is a crucial parameter for estimating 
CO2 assimilation in crops (Camino et al., 2019) or consider the cycle of 
xanthophylls included in the extended version of Fluspect (Vilfan et al., 
2018). Given the importance of temperature in estimating the level of stress 
in vegetation (Gonzalez-Dugo et al., 2020) and the impact it has on the early 
detection of diseases (Calderón et al., 2015; López-López et al., 2016), it 
would be helpful to deepen more in developing models and tools that grant 
us a better understanding of the behaviour of temperature variation in the 
plant canopy and its impact on other components. 

5.5. Concluding Remarks 

The findings and achievements made throughout this work should be con-
sidered as valuable tools to improve the understanding of the impact of the 
aggregated signal on the vegetation cover and its composition. In particular, 
detecting processes related to vegetation health and the influence of biotic 
and abiotic factors contributes to establishing different management actions 
in terms of precision agriculture and forestry. A key point from the proposed 
methodology is that, despite using spectral information from various sensors 
and resolutions, the results showed high consistency with field measurements 
when using the proposed indicators and PTs. It is expected that thanks to 
the use of the methods presented, future developments, and the high perfor-
mance of available remote sensors, the ability to remotely detect and assess 
vegetation health using air- and space-borne sensors will contribute to a 
better understanding and evaluation of our environment, which has a strong 
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impact not only on socio-economic factors but also on the preservation of 
our ecosystem as a whole.
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Appendices 

Appendix A. 
 
Supplementary Material: chapter 2 

Figure A.1 Relationship between severity (DSo) and incidence (DIo) and 
vegetation indices (VIs) calculated from Sentinel-2A imagery in 2016 and 
2017. 
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Appendix B. 
 
Supplementary Material: chapter 3 

 
Figure B.1 Comparison between different sources of solar irradiance 
information. 
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Table B.1 Input range for FLIGHT8 according to the model intercomparison. 

Parameters 
Simulation* 

Solar Zenith 
Angle (deg) 

Scattered 
Radius (m) 

Leaf Area 
Index (m2 m-2) 

Canopy 
Height (m) 

Leaf Angle 
Distribution 

Leaf  
ρ/τ (%) 

Soil 
ρ (%) 

HOM01,TUR,ERE,NR1,00 0 0 1  1 Erectophile 0.5/0.5 1.0 

HOM03,DIS,ERE,RED,50 50 0.05 3 2 Erectophile 0.0546/ 0.0149 0.127 

HOM05,TUR,ERE,NR1,60 60 0 5 1 Erectophile 0.5/0.5 1.0 

HOM12,DIS,ERE,NR1,30 30 0.05 2 1 Erectophile 0.5/0.5 1.0 

HOM13,DIS,PLA,RED,20 20 0.1 3 2 Planophile 0.0546/ 0.0149 0.127 

HOM03,TUR,UNI,NIR,20 20 0 3 1 Uniform 0.4957/ 0.4409 0.159 

* HOM (Homogeneous) 
  TUR (Turbid), DIS (Discrete) 
  ERE (Erectophile), PLA (Planophile), UNI (Uniform) 
  NR1 (Purist corner), RED (Red, solar domain), NIR (Near-infrared, solar domain) 
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Figure B.2 Example of the contribution of scene components for a 25 m 
window based on the relationship between canopy and understory fractional 
cover (FC) and soil FC shown as different intensity orange points. 
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Figure B.3 Comparison of FLIGHT8 with other RTMs using the set of 
scenarios proposed by the RAMI intercomparison exercise. The results of 
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RAMIREF are shown by the dashed light-green line and those from other 
models within the shaded area 

 

 

 

Figure B.4 Global bi-directional reflectance factor 1-to-1 comparison (top) 
and histogram differences (bottom) for principal (left) and orthogonal planes 
(right) within the ROMC-generated results. 
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Figure B.5 Relationship between NIRv and 3FLD from hyperspectral data 
from 25 × 25 m aggregated pixels in the 300 scenes used in this study. 
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Appendix C. 
 
Supplementary Material: chapter 4 

Table C.1 Vegetation indices derived from airborne imagery included in this study and their formulations. 

Vegetation index Equation Reference 
Structural   
Normalized Difference Vegetation Index NDVI = (R΅ЈЈ − RϩϨЈ)/(R΅ЈЈ + RϩϨЈ) (Rouse et al., 1974) 
Near-Infrared Reflectance of Vegetation NIRϽ = R΅ЈЈ(R΅ЈЈ − RϩϨЈ)/(R΅ЈЈ + RϩϨЈ) (Badgley et al., 2017) 
Renormalized Difference Vegetation Index RDVI = (R΅ЈЈ − RϩϨЈ)/ఄ(R΅ЈЈ + RϩϨЈ) (Roujean and Breon, 1995) 
Simple Ratio SR = R΅ЈЈ/RϩϨЈ (Jordan, 1969) 

Modified Simple Ratio MSR = (R΅ЈЈ/RϩϨЈ − 1)/(〖(R΅ЈЈ/R_670)〗^0.5
+ 1) 

(Chen, 1996) 

Optimized Soil-Adjusted Vegetation Index OSAVI = (1 + 0.16) 
R΅ЈЈ − RϩϨЈ

R΅ЈЈ + RϩϨЈ + 0.16
 (Rondeaux et al., 1996) 
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Modified Soil-Adjusted Vegetation Index MSAVI = (1 + L)
R΅ЈЈ − RϩϨЈ

R΅ЈЈ + RϩϨЈ + L
 (Qi et al., 1994) 

Modified Triangular Vegetation Index 1 
MTVIφ = 1.2(1.2(R΅ЈЈ − RΘΘЈ) − 2.5(RϩϨЈ

− RΘΘЈ)) 
(Haboudane et al., 2004) 

Modified Triangular Vegetation Index 1 

MTVIϵ

= 1.5
1.2(R΅ЈЈ − RΘΘЈ) − 2.5(RϩϨЈ − RΘΘЈ)

అ(2R΅ЈЈ + 1)ϵ − ऺ6R΅ЈЈ − 5ఄRϩϨЈऻ − 0.5
 (Haboudane et al., 2004) 

Modified Chlorophyll Absorption Ratio Index 
MCARI = ((RϨЈЈ − RϩϨЈ)

− 0.2(RϨЈЈ − RΘΘЈ)) ঒
RϨЈЈ
RϩϨЈ

ও (Haboudane et al., 2002) 

Modified Chlorophyll Absorption Ratio Index 1 
MCARIφ = 1.2(2.5(R΅ЈЈ − RϩϨЈ) − 1.3(R΅ЈЈ

− RΘΘЈ)) 
(Haboudane et al., 2004) 

Modified Chlorophyll Absorption Ratio Index 2 

MCARIϵ

= 1.5
2.5(R΅ЈЈ − RΘΘЈ) − 1.3(RϩϨЈ − RΘΘЈ)

అ(2R΅ЈЈ + 1)ϵ − ऺ6R΅ЈЈ − 5ఄRϩϨЈऻ − 0.5
 (Haboudane et al., 2004) 

Enhanced Vegetation Index 
EVI = 2.5(R΅ЈЈ − RϩϨЈ)/(R΅ЈЈ + 6RϩϨЈ − 7.5RΚЈЈ

+ 1) (Huete et al., 2002) 

Lichtenthaler 1 LICφ = (R΅ЈЈ − Rϩ΅Ј)/(R΅ЈЈ + Rϩ΅Ј) (Lichtenthaler, 1996) 
Pigments   
Vogelmann 1 VOGφ = RϨΚЈ/RϨϵЈ (Vogelmann, 1993) 
Vogelmann 2 VOGϵ = (RϨϯΚ − RϨΚϨ)/(RϨφΘ + RϨϵϩ) (Vogelmann, 1993) 
Vogelmann 3 VOGϯ = (RϨϯΚ − RϨΚϨ)/(RϨφΘ + RϨϵЈ) (Vogelmann, 1993) 
Gitelson and Merzlyak 1 GMφ = RϨΘЈ/RΘΘЈ (Gitelson and Merzlyak, 1996) 
Gitelson and Merzlyak 2 GMϵ = RϨΘЈ/RϨЈЈ (Gitelson and Merzlyak, 1996) 
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Transformed Chlorophyll Absorption Ratio TCARI = 3
⎝
⎜⎛

(RϨЈЈ − RϩϨЈ) −

− 0.2 (RϨЈЈ − RΘΘЈ)
RϨЈЈ
RϩϨЈ⎠

⎟⎞ (Haboudane et al., 2002) 

TCARI/OSAVI TCARI/OSAVI =
TCARI
OSAVI

 (Haboudane et al., 2002) 

Chlorophyll Index CI =
RϨΘЈ
RϨφЈ

 (Zarco-Tejada et al., 2001) 

Triangular Vegetation Index  TVI = 0.5(120(RϨΘЈ − RΘΘЈ) − 200(RϩϨЈ − RΘΘЈ)) (Broge and Leblanc, 2001) 
Simple Ratio Pigment Index SRPI = RΚϯЈ/Rϩ΅Ј (Penuelas et al., 1995) 
Normalized Phaeophytinization Index NPQI = (RΚφΘ − RΚϯΘ)/(RΚφΘ + RΚϯΘ) (Barnes et al., 1992) 
Normalized Pigment Chlorophyll Index NPCI = (Rϩ΅Ј − RΚϯЈ)/(Rϩ΅Ј + RΚϯЈ) (Penuelas et al., 1995) 
Simple Ratio 695/420 Carter CTR = RϩνΘ/RΚϵЈ (Carter, 1994) 

Simple Ratio Carotenoids CAR = RΘφΘ/RΘϨЈ 
(Hernández-Clemente et al., 
2012) 

Datt Cab Cx+c Index DCabxc = RϩϨϵ/ (3 RΘΘЈRϨЈ΅) (Datt, 1998) 
Datt NIR Cab Cx+c Index DNCabxc = R΅ϩЈ / (RΘΘЈRϨЈ΅) (Datt, 1998) 
Structure Insensitive Pigment Index SIPI = (R΅ЈЈ − RΚΚΘ)/(R΅ЈЈ + Rϩ΅Ј) (Penuelas et al., 1995) 
Chlorophyll Reciprocal Reflectance Index 550 CRIΘΘЈ = 1/RΘφЈ − 1/RΘΘЈ (Gitelson et al., 2006, 2003) 
Chlorophyll Reciprocal Reflectance Index 700 CRIϨЈЈ = 1/RΘφЈ − 1/RϨЈЈ (Gitelson et al., 2006, 2003) 
Modified Chlorophyll Reciprocal Reflectance Index 
550 

CRIΘΘЈζ = 1/RΘφΘ − 1/RΘΘЈ (Gitelson et al., 2006, 2003) 

Modified Chlorophyll Reciprocal Reflectance Index 
700 

CRIϨЈЈζ = 1/RΘφΘ − 1/RϨЈЈ (Gitelson et al., 2006, 2003) 

Near-Infrared Chlorophyll Reciprocal Reflectance 
Index 550 

𝑅𝐶𝑅𝐼ΘΘЈ = 1/𝑅ΘφЈ − (1/𝑅ΘΘЈ) 𝑅ϨϨЈ (Gitelson et al., 2006, 2003) 
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Near-Infrared Chlorophyll Reciprocal Reflectance 
Index 700 

𝑅𝐶𝑅𝐼ϨЈЈ = 1/𝑅ΘφЈ − (1/𝑅ϨЈЈ)  𝑅ϨϨЈ (Gitelson et al., 2006, 2003) 

Plant Senescence Reflectance Index 𝑃𝑆𝑅𝐼 = (𝑅ϩ΅Ј − 𝑅ΘЈЈ)/𝑅ϨΘЈ  (Merzlyak et al., 1999) 
Lichtenthaler 3 𝐿𝐼𝐶ϯ = 𝑅ΚΚЈ/𝑅ϨΚЈ (Lichtenthaler, 1996) 
PRIs   
Photochemical Reflectance Index 𝑃𝑅𝐼 = (𝑅ΘϨЈ − 𝑅ΘϯЈ)/(𝑅ΘϨЈ + 𝑅ΘϯЈ) (Gamon et al., 1992) 

Photochemical Reflectance Index 515 𝑃𝑅𝐼ΘφΘ = (𝑅ΘφΘ − 𝑅ΘϯЈ)/(𝑅ΘφΘ + 𝑅ΘϯЈ) 
(Hernández-Clemente et al., 
2011) 

Modified Photochemical Reflectance Index 1 𝑃𝑅𝐼𝑀φ = (𝑅Θφϵ − 𝑅Θϯφ)/(𝑅Θφϵ + 𝑅Θϯφ) (Gamon et al., 1992) 
Modified Photochemical Reflectance Index 2 𝑃𝑅𝐼𝑀ϵ = (𝑅ϩЈЈ − 𝑅Θϯφ)/(𝑅ϩЈЈ + 𝑅Θϯφ) (Gamon et al., 1992) 
Modified Photochemical Reflectance Index 3 𝑃𝑅𝐼𝑀ϯ = (𝑅ϩϨЈ − 𝑅Θϯφ)/(𝑅ϩϨЈ + 𝑅Θϯφ) (Gamon et al., 1992) 

Modified Photochemical Reflectance Index 4 
𝑃𝑅𝐼𝑀Κ = (𝑅ΘϨЈ − 𝑅Θϯφ − 𝑅ϩϨЈ)/(𝑅ΘϨЈ + 𝑅Θϯφ

+ 𝑅ϩϨЈ) 
(Gamon et al., 1992) 

Normalized PRI 𝑃𝑅𝐼𝑛 = 𝑃𝑅𝐼/(𝑅𝐷𝑉𝐼 𝑅ϨЈЈ/𝑅ϩϨЈ) (Zarco-Tejada et al., 2013a) 
PRI⨯CI 𝑃𝑅𝐼 ⨯ 𝐶𝐼 = 𝑃𝑅𝐼(𝑅ϨϩЈ/𝑅ϨЈЈ − 1) (Garrity et al., 2011) 
BGR   
Blueness Index 𝐵 = 𝑅ΚΘЈ/𝑅ΚνЈ - 
Greenness Index 𝐺 = 𝑅ΘΘЈ/𝑅ϩϨЈ (Zarco-Tejada et al., 2001) 
Redness index 𝑅 = 𝑅ϨЈЈ/𝑅ϩϨЈ (Gitelson et al., 2000) 

Blue/Green Index 1 𝐵𝐺𝐼φ = 𝑅ΚЈЈ/𝑅ΘΘЈ 
(Zarco-Tejada et al., 2012; 
Zarco‐Tejada et al., 2005) 

Blue/Green Index 2 𝐵𝐺𝐼φ = 𝑅ΚΘЈ/𝑅ΘΘЈ 
(Zarco-Tejada et al., 2012; 
Zarco‐Tejada et al., 2005) 

Blue Fraction 1 𝐵𝐹φ = 𝑅ΚЈЈ/𝑅ΚφЈ - 
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Blue Fraction 2 𝐵𝐹ϵ = 𝑅ΚЈЈ/𝑅ΚϵЈ - 
Blue Fraction 3 𝐵𝐹ϯ = 𝑅ΚЈЈ/𝑅ΚϯЈ - 
Blue Fraction 4 𝐵𝐹Κ = 𝑅ΚЈЈ/𝑅ΚΚЈ - 
Blue Fraction 5 𝐵𝐹Θ = 𝑅ΚЈЈ/𝑅ΚΘЈ - 
Blue/Red Index 1 𝐵𝑅𝐼φ = 𝑅ΚνЈ/𝑅ϩνЈ (Zarco-Tejada et al., 2012) 
Blue/Red Index 2 𝐵𝑅𝐼ϵ = 𝑅ΚΘЈ/𝑅ϩνЈ (Zarco-Tejada et al., 2012) 
Relative Greenness Index 𝑅𝐺𝐼 = 𝑅ϩνЈ/𝑅ΘΘЈ (Ceccato et al., 2001) 
Ratio Analysis of Reflectance Spectra 𝑅𝐴𝑅𝑆 = 𝑅ϨΚϩ/𝑅Θφϯ (Chappelle et al., 1992) 
Lichtenthaler 2 𝐿𝐼𝐶ϵ = 𝑅ΚΚЈ/𝑅ϩνЈ (Lichtenthaler, 1996) 
Healthy Index 𝐻𝐼 = (𝑅ΘϯΚ − 𝑅ϩν΅)/(𝑅ΘϯΚ + 𝑅ϩν΅) − 𝑅ϨЈΚ/2 (Mahlein et al., 2013) 
Curvature Optical Index 𝐶𝑈𝑅 = (𝑅ϩϨΘ 𝑅ϩνЈ)/(𝑅ϩ΅ϯ)ϵ (Zarco-Tejada et al., 2000) 
NIR-VIS   
Pigment Specific Simple Ratio A 𝑃𝑆𝑆𝑅ռ = 𝑅΅ЈЈ/𝑅ϩ΅Ј  (Blackburn, 1998) 
Pigment Specific Simple Ratio B 𝑃𝑆𝑆𝑅ս = 𝑅΅ЈЈ/𝑅ϩϯΘ (Blackburn, 1998) 
Pigment Specific Simple Ratio C 𝑃𝑆𝑆𝑅վ = 𝑅΅ЈЈ/𝑅ΚϨЈ (Blackburn, 1998) 
Pigment Specific Normalised Difference C 𝑃𝑆𝑁𝐷վ = (𝑅΅ЈЈ − 𝑅ΚϨЈ)/(𝑅΅ЈЈ + 𝑅ΚϨЈ) (Blackburn, 1998) 
Anthocyanins   
Visible Atmospherically Resistant Index 𝑉𝐴𝑅𝐼 = (𝑅ΘΘΘ − 𝑅ϩΘЈ)/(𝑅ΘΘΘ + 𝑅ϩΘЈ − 𝑅ΚϨΘ) (Gitelson et al., 2001) 
Visible Atmospherically Resistant Index 2 𝑉𝐴𝑅𝐼ϵ = (𝑅ΘϩЈ − 𝑅ϩϩ΅)/(𝑅ΘϩЈ + 𝑅ϩϩ΅ − 𝑅ΚϨΘ) (Gitelson et al., 2001) 
Anthocyanin Reflectance Index 1 𝐴𝑅𝐼φ = 1/𝑅ΘΘЈ − 1/𝑅ϨЈЈ (Gitelson et al., 2001) 
Anthocyanin Reflectance Index 2 𝐴𝑅𝐼ϵ = 1/𝑅ΘΘЈ − 1/𝑅ϨЈЈ (Gitelson et al., 2002) 
Modified Anthocyanin Reflectance Index 𝑚𝐴𝑅𝐼 = 𝑅ϨϩЈͰ΅ЈЈ(1/𝑅ΘΚЈͰΘϩЈ − 1/𝑅ϩνЈͰϨφЈ) (Gitelson et al., 2006) 
Modified Anthocyanin Reflectance Index 1 𝐴𝑅𝐼φ𝑚 = 𝑅ϨϩЈͰ΅ЈЈ(1/𝑅ΘΘЈ − 1/𝑅ϨЈЈ) - 
Modified Anthocyanin Reflectance Index 2 𝐴𝑅𝐼φ𝑚ϵ = 𝑅΅ЈЈ(1/𝑅ΘΘЈ − 1/𝑅ϨЈЈ) - 
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Nitrogen   

Double-peak Canopy Nitrogen Index 
𝐷𝐶𝑁𝐼 = (𝑅ϨϵЈ − 𝑅ϨЈЈ)/(𝑅ϨЈЈ − 𝑅ϩϨЈ)/(𝑅ϨϵЈ

− 𝑅ϩϨЈ + 0.03) (Chen et al., 2010) 

SWIR   

Gnyp and Li Index 𝐺𝑛𝑦𝐿𝑖 =
(𝑅νЈЈ 𝑅φЈΘЈ) − (𝑅νΘΘ 𝑅φϵϵЈ)
(𝑅νЈЈ 𝑅φЈΘЈ) + (𝑅νΘΘ 𝑅φϵϵЈ)

 (Gnyp et al., 2014) 

CI1 𝐶𝐼φ = (𝑅Ϩϯϩ − 𝑅ϨϯΘ) 𝑅ννЈ / 𝑅ϨϵЈ  (Bao et al., 2013) 
CI2 𝐶𝐼ϵ = (𝑅Ϩϯϩ − 𝑅ϨϯΘ) 𝑅νЈЈ / 𝑅ϨϵЈ (Bao et al., 2013) 

Modified Chlorophyll Absorption Ratio Index 1510 
𝑀𝐶𝐴𝑅𝐼φΘφЈ = ((𝑅ϨЈЈ − 𝑅φΘφЈ)

− 0.2(𝑅ϨЈЈ − 𝑅ΘΘЈ)) ঒
𝑅ϨЈЈ
𝑅φΘφЈ

ও (Herrmann et al., 2010) 

Transformed Chlorophyll Absorption Ratio 1510 𝑇𝐶𝐴𝑅𝐼φΘφЈ = 3
⎝
⎜⎛

(𝑅ϨЈЈ − 𝑅φΘφЈ) −

− 0.2 (𝑅ϨЈЈ − 𝑅ΘΘЈ)
𝑅ϨЈЈ
𝑅φΘφЈ⎠

⎟⎞ (Herrmann et al., 2010) 

Optimized Soil-Adjusted Vegetation Index 1510 𝑂𝑆𝐴𝑉 𝐼φΘφЈ = (1 + 0.16) 
𝑅΅ЈЈ − 𝑅φΘφЈ

𝑅΅ЈЈ + 𝑅φΘφЈ + 0.16
 (Herrmann et al., 2010) 

TCARI/OSAVI 1510 𝑇/𝑂φΘφЈ = 𝑇𝐶𝐴𝑅𝐼φΘφЈ 𝑂𝑆𝐴𝑉 𝐼φΘφЈ   (Herrmann et al., 2010) 
Normalized Ratio Index 1510 𝑁𝑅𝐼φΘφЈ = (𝑅φΘφЈ − 𝑅ϩϩЈ)/(𝑅φΘφЈ + 𝑅ϩϩЈ) (Herrmann et al., 2010) 
Ratio Spectral Index 990 720 𝑅𝑆𝐼ννЈӴϨϵЈ = 𝑅ννЈ)/𝑅ϨϵЈ (Yao et al., 2010) 
Normalized Ratio Index 1770 𝑁𝑅𝐼φϨϨЈ = (𝑅φϨϨЈ − 𝑅ϩνϯ)/(𝑅φϨϨЈ + 𝑅ϩνϯ) (Ferwerda et al., 2005) 

Normalized Difference Nitrogen Index 𝑁𝐷𝑁𝐼 =
𝑙𝑜𝑔φЈ(1/𝑅φΘφЈ) − 𝑙𝑜𝑔φЈ(1/𝑅φϩ΅Ј)
𝑙𝑜𝑔φЈ(1/𝑅φΘφЈ) + 𝑙𝑜𝑔φЈ(1/𝑅φϩ΅Ј)

 (Serrano et al., 2002) 

Sulphur index 1080 SφЈ΅Ј = (RφЈ΅Ј − RϩϩЈ)/(RφЈ΅Ј + RϩϩЈ) (Mahajan et al., 2014) 
Sulphur index 1260 SφϵϩЈ = (RφϵϩЈ − RϩϩЈ)/(RφϵϩЈ + RϩϩЈ) (Mahajan et al., 2014) 
Normalized 1645 1715 NφϩΚΘӴφϨφΘ = (RφϩΚΘ − RφϨφΘ)/(RφϩΚΘ + RφϨφΘ) (Pimstein et al., 2011) 
Normalized 870 1450 N΅ϨЈӴφΚΘЈ = (R΅ϨЈ − RφΚΘЈ)/(R΅ϨЈ + RφΚΘЈ) (Pimstein et al., 2011) 
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Normalized 850 1510 N΅ΘЈӴφΘφЈ = (R΅ΘЈ − RφΘφЈ)/(R΅ΘЈ + RφΘφЈ) (Camino et al., 2018) 
Middle-infrared Normalized Difference MND = (RφЈ΅Ј − RφϩϨΘ)/(RφЈ΅Ј + RφϩϨΘ) (Malthus et al., 1993) 
Normalized Difference Water Index NDWI = (R΅ϩЈ − RφϵΚЈ)/(R΅ϩЈ + RφϵΚЈ) (Gao, 1996) 
Fluorescence   

3FLD 3FLD =
EπϷϬ  ·  LЏμ − EЏμ · LπϷϬ

EπϷϬ − EЏμ
 

(Maier et al., 2003; Plascyk, 
1975) 
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Appendix D. 
 
Further scientific contributions 
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