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Abstract 
Timely and precise detection of nutrient deficiencies in needles, especially nitrogen (N) and 

phosphorus (P), can facilitate sustainable forestry in Pinus radiata D. Don (radiata pines), 

where the goal is to guarantee sufficient nutrient supply for tree growth and wood production, 

as well as to avoid detrimental environmental impacts from over-fertilization. Airborne 

hyperspectral remote sensing provides detailed spectral information of vegetation targets, 

enabling non-destructive and on-demand monitoring. 

Previous studies using airborne narrow-band hyperspectral imagery have shown that plant traits 

derived from radiative transfer models (RTMs) and far-red solar-induced chlorophyll 

fluorescence (SIF760) effectively explain the observed variability in leaf N concentrations in 

crops. However, their contribution to leaf P concentration has not been explored. In Chapter 4, 

we evaluated the potential of using physiological plant traits derived from airborne narrow-

band hyperspectral imagery (Full-Width at Half-Maximum [FWHM] = 5.8 nm) to estimate 

needle N and P concentrations in radiata pines nutrient trials. We identified four predictors, 

including needle pigments derived from the RTM, PRO4SAIL2-derived [i.e., chlorophyll a + 

b (Cab), carotenoid (Car), and anthocyanin contents (Anth)], as well as SIF760, as most effective 

predictors both N and P when used as inputs for Gaussian Process Regression (GPR) models, 

demonstrating the robustness of the physically based modelling approach. Moreover, we 

observed consistent contributions of the blue spectral region to P estimations but not to N. 

Chapter 4 revealed the distinct contribution of far-red SIF and the blue spectral region for 

needle P compared to needle N, opening a new avenue for the physiological assessment of 

nutrient levels in forest stands using hyperspectral imagery. 

Motivated by the findings from Chapter 4, Chapter 5 drew closer attention to SIF evaluation in 

their contribution to needle nutrient assessment, specifically on the impact of sensor spectral 

resolution (SR) on the accuracy of airborne SIF retrievals at oxygen absorption features. We 

evaluated whether sub-nanometer resolution offered significant benefits for SIF applications in 

needle N and P estimations in radiata pines. The results showed that sub-nanometer resolution 

did not enhance the predictive contribution of SIF760 beyond what its narrow-band counterpart 

already did for either needle N or P. Uncertainties in SIF retrievals and the lack of validity 

prevented the assessment of the SIF retrieval accuracy. The further focused analysis of red SIF 

(SIF687) at the O2-B band and depths of Fraunhofer lines (FLs), which were only observable 

under the sub-nanometer resolutions, showed that SIF687 lack predictive capability for nutrient 
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content. Additionally, the depths of far-red FLs contributed more to needle N and P assessment 

than red FLs. These findings highlight the potential of far-red FLs, which are less affected by 

atmospheric effects than oxygen absorption bands, as predictors for needle P status. 

The application of narrow-band hyperspectral images in operational monitoring is restrained 

by their high monetary and computational costs, as well as the expertise required for data 

processing. Multispectral cameras can be a cost-effective alternative for such purposes, though 

their coarser spectral resolutions and limited spectral coverage restrict their capability to fully 

capture the subtle spectral changes related to needle nutrient levels. Therefore, it is crucial to 

select optimized bandsets for the specific objectives. Chapter 6 investigated whether the 

commercially available 10-band multispectral camera MicaSense Dual System (FWHM = 10-

54 nm) was suitable for needle N and P assessment. Furthermore, we adopted a novel 

clustering-based supervised band selection algorithm to identify optimized bandsets for needle 

N and P at a 10 nm FWHM. Our results suggest that the narrow-band-based models developed 

in Chapter 4 consistently outperformed all multispectral-based models. Although no 

multispectral bandsets could effectively explain the observed variabilities in N, multispectral-

based models were better suited for needle P assessment. The newly proposed 12-band bandset, 

BS12P, outperformed the 10-band bandset of MicaSense for needle P prediction across four 

datasets, suggesting the potential of the optimised BS12P bandset for developing next-

generation multispectral cameras for P assessment. 

Overall, this Ph.D. study advanced the physiological interpretation of radiata pine responses to 

nitrogen and phosphorus variations and demonstrated the effectiveness of hyperspectral remote 

sensing for nutrient monitoring in coniferous species. The findings contributed to the 

development of precision forestry in radiata pine plantations, which holds economic 

significance in Australia and worldwide. 
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Chapter 1  
Introduction 
 

1.1 Nitrogen and Phosphorus Deficiency in Radiata Pine 

Pinus radiata D. Don (radiata pine), native to North America, is now widely planted in the 

southern hemisphere, including Australia, New Zealand and Chile, as the primary softwood 

plantation species. In Australia alone, radiata pine plantations cover around 707,000 ha, 

accounting for almost 70% of the national softwood plantation area and 40% of the total 

plantation area (Legg et al., 2021b). Radiata pine is a fast-growing species, with a rotation 

period typically between 30 and 35 years (Forestry Corporation of NSW, 2016). In commercial 

plantations, radiata pines can grow up to 30 to 45 m high with an annual increment in volume 

between 16 and 21 m3/ha per year (Legg et al., 2021b). Its timber has versatile applications, 

such as construction, furniture making, paper and packaging. In 2023, the total volume of 

plantation softwood harvested reached 13,740,000 m3 in Australia, with an estimated gross 

value of around 1,372 million Australian dollars (ABARES, 2024). Given its significant value 

as the predominant softwood plantation species, it is critical to properly apply silvicultural 

practices to maximize the radiata pine wood production. 

Radiata pine is a nutrient-demanding species, and its growth is strongly influenced by soil 

nutrient storage, especially nitrogen and phosphorus (Watt et al., 2005a; Turner and Lambert, 

2011; Turner and Lambert, 2017). Studies have shown that the peak nutrient demand of a 

radiata pine stand can reach 130 and 12 kg/ha per year for nitrogen (N) and phosphorus (P), 

respectively (Lambert and Turner, 1988). The response of radiata pines to N and P fertilization 

and other growth-influencing environmental factors has been studied over the past few decades. 

It has been shown that N fertilization results in an increase of needle number and size, shoot 

production rate, tree biomass accumulation and stem growth (Nambiar and Fife, 1987b). 

Furthermore, N and P stress limit the branch growth more than the stem or height growth of 

radiata pines (Will and Hodgkiss, 1977). Benson et al. (1992) also demonstrated that N and 

water availability were intertwined in facilitating stem growth. Common symptoms of N 

deficiency include a high root-to-shoot ratio, yellow short needles, shedding of older needles 
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and thin branching and crowns, while P-deficient trees display similar visual symptoms but are 

typically characterized by dull green color (Will and Hodgkiss, 1977; Mead, 2013).  

However, overfertilization can be detrimental to the environment and counterproductive to the 

goal of maximizing wood production in radiata pine plantation management. It has been found 

that increased N supply, and thus leaf N concentrations, is associated with decreased wood 

density and a lower latewood percentage of radiata pine (Beets et al., 2001b), potentially 

impacting the quality and value of the wood. There is also the risk of excessive fertilizer runoff, 

such as nitrate (NO3-) and phosphate, into waterways, causing eutrophication (Johnston et al., 

2014). Hence, it is critical to detect the needle N and P stress in radiata plantations in a timely 

and accurate manner and apply fertilizers precisely, for the benefits of wood production and 

environmental protection. 

 

1.2 Leaf Nutrient Monitoring with Hyperspectral Remote Sensing 

Traditional diagnostic approaches for N and P deficiencies usually involve intensive field 

sampling and laboratory testing for foliage chemistry and pigment contents. Initially proposed 

by Ulrich and Hills (1967), the critical level method is one of the main diagnostic tools used in 

forestry. By comparing the measurements against the critical values, the deficiency status could 

thus be detected. It is critical to follow the standardized sampling procedures for proper 

comparison with the critical values, which differ for regions. However, the critical value 

method has major drawbacks, inhibiting large-scale monitoring. First, the representativeness 

of this method is limited when scaling up to the canopy level or extrapolating to other stands 

with different ages and conditions (Gregoire and Fisher, 2004; Watt et al., 2019). Second, the 

sampling and laboratory testing procedure can be laborious and costly. 

Conversely, remote sensing technology provides a non-destructive alternative for monitoring 

leaf nutrients at the operational scale. In particular, hyperspectral remote sensing has gained 

more attention due to its ability to capture detailed spectral information of the ground target. 

Hyperspectral imaging spectrometers typically have hundreds of spectral bands with a spectral 

resolution of less than 10 nm. Several spaceborne hyperspectral imaging spectrometers are in 

operation to date, such as the dedicated Earth observation satellites EnMAP (Guanter et al., 

2015), PRISMA (Cogliati et al., 2021), HySIS (Mahalingam et al., 2019), and DESIS onboard 

the International Space Station (ISS) (Krutz et al., 2019). However, spaceborne hyperspectral 
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remote sensing faces limitations, including coarse spatial resolution (usually 10 to 30 m), 

dependency on revisit frequency, and atmospheric inferences. On the other hand, airborne 

hyperspectral imagers onboard manned or unpiloted aircraft present the advantages of on-

demand flexible image acquisition and sub-meter spatial resolution, which is crucial for 

vegetation monitoring in heterogeneous canopies.  

The basis of using spectroscopy to assess leaf nutrient status lies in how plants utilize the 

absorbed light energy. When the incident solar radiation reaches the plant, it is either reflected, 

transmitted or absorbed by pigment systems.  Even under unstressed conditions, plants cannot 

fully utilize the absorbed light energy for photochemistry. As a result, plants need to dissipate 

the excitation energy through two other pathways: thermal dissipation (i.e., constitutive or 

regulated) and chlorophyll fluorescence (ChlF). All three pathways compete for the absorbed 

photosynthetic active radiation (PAR), thus the disturbance in one would affect the others. In 

literature and the following chapters of the thesis, the term “non-photochemical quenching 

(NPQ)” is used to refer to the regulated thermal dissipation process that involves photosystems. 

The term “quenching” represents all the processes that reduce fluorescence emissions (Krause 

and Weis, 1991; Mohammed et al., 2019).  The remote sensing of leaf N status predominantly 

relies on the fact that the biochemical composition of chlorophyll a + b molecules contains N 

(Evans, 1989). N deficiency thus affects the chlorophyll content, subsequently the 

photosynthetic activities, ChlF emission and NPQ. These physiological responses can be 

reflected by the variations of reflected radiation of plants in specific wavelengths, such as 

chlorophyll absorption features in the visible to near infrared (VNIR) regions.  P, as an essential 

macronutrient, participates in the formation of starch, cellulose and lignin, which impact the 

shortwave infrared region (SWIR) of the vegetation spectrum.  It has been proven that P 

deficiency leads to the accumulation of starch in leaves and stems (Qiu and Israel, 1992). 

However, as these SWIR absorption features are not as apparent and as well studied as the 

chlorophyll absorption features, the study of leaf P using remote sensing is relatively limited 

as opposed to N. In the VNIR region, P is indirectly associated with photosynthesis. On one 

hand, P is a component of chloroplast membrane phospholipids. On the other hand, P plays a 

role in the photosynthetic electron transport to photosystem I (PSI) as it affects the ATP 

(adenosine triphosphate) synthase activity (Carstensen et al., 2018). 

Remotely sensed hyperspectral data have been widely explored to track leaf N status through 

either empirical or physically based models. Empirical methods exploit relevant absorption 

features using either reflectance bands or spectral indices. The most widely used vegetation 
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index, the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974a), has been 

broadly applied to represent the green biomass of the canopy, thus reflecting on the chlorophyll 

content. Nevertheless, this index is not a direct proxy for the chlorophyll content, and it is well 

known that the index saturates at high chlorophyll concentration. Moreover, the interpretation 

of the index is also confounded by the canopy structural effects and other pigments. Recently, 

more chlorophyll indices have focused on the red edge region (~670–780 nm) due to its high 

sensitivity to chlorophyll content. For example, the reflectance ratio between 750 and 710 nm 

was proposed to approximate chlorophyll content in forest stands and was found to be 

insensitive to canopy structural and shadow effects (Zarco-Tejada et al., 2002). The chlorophyll 

red-edge index (CI) was subsequently shown to be insensitive to the effects of leaf thickness 

and closely related to leaf N status (Clevers and Gitelson, 2013a). Other non-chlorophyll 

indices have also been applied as stress indicators, including N deficiency. The Photochemical 

Reflectance Index (PRI) (Gamon et al., 1992a; Gamon et al., 1997b), calculated as the 

normalized reflectance difference at 531 and 570 nm, has been widely used to monitor plant 

photosynthetic activities and nutrient levels due to its close linkage with the xanthophyll cycle, 

an NPQ mechanism activated in plants under stress (Demmig-Adams and Adams III, 1996). 

Several studies have reported associations between PRI and water stress (Suárez et al., 2009a; 

Zarco-Tejada et al., 2013c), and leaf nitrogen status (Shrestha et al., 2012; Watt et al., 2020). 

However, these empirical relationships based on indices may be unreliable for three main 

reasons. First, indices do not explicitly account for the effects of canopy structure, understory 

and soil background, and illumination conditions at the time of image acquisition, resulting in 

potentially unstable prediction performance and limited transferability when applied to other 

sites and species (Hernández-Clemente et al., 2019b). Second, indices that use only two or 

three bands are unlikely to capture all the spectral information of the target variable, which 

may be nonlinearly related to the reflectance spectrum to some extent (Berger et al., 2018). 

Furthermore, the observed changes in the reflectance signals might be related to multiple 

properties and confounding factors (e.g., combined pigment and structure), consequently 

obscuring the true relationship between nutrient status and plant physiological responses.  

On the other hand, the physically based approach relying on radiative transfer theory provides 

more accurate and consistent estimates of the leaf properties that are more closely related to 

nutrient status than simple spectral signals. Vegetation radiative transfer models (RTMs) 

simulate light interactions with leaves and canopies. Leaf RTMs describe the optical properties 

of a single leaf by considering the scattering related to leaf physical properties and absorption 
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by biochemical content (e.g., pigment, dry matter and water). Canopy RTMs describe 

directional scattering and absorptions that are related to canopy architecture (e.g., leaf area 

index [LAI]) and illumination geometry (e.g., solar zenith angle) (Ustin et al., 2009). The 

coupled leaf-canopy RTMs have been used to interpret top-of-canopy (TOC) signals and to 

retrieve leaf biochemical properties or canopy structural parameters. As RTMs originally take 

leaf and canopy parameter values as inputs and output canopy reflectance, the retrieval of 

parameters such as the leaf chlorophyll content requires the inversion of the model. Previous 

studies have demonstrated the reliability of RTM-derived leaf chlorophyll content across 

species. Poblete et al. (2025) implemented the inversion of the model PRO4SAIL2 to retrieve 

needle chlorophyll for radiata pines from airborne hyperspectral images and achieved an 

estimation accuracy (R2) of 0.82 when compared to needle chlorophyll measurements in 

heterogeneous grassland. Similarly, Wang et al. (2022) reported a strong correlation between 

FluSAIL-derived leaf chlorophyll content and their ground-measured counterparts (R2 = 0.66) 

in almond orchards. Despite all the promising prospects, retrieving leaf biochemical and 

biophysical parameters from RTMs faces a few challenges. First, the implementation of RTM 

is computationally expensive. Complex models can provide a more realistic representation of 

the canopy reflectance, though it is more computationally demanding to invert them. Second, 

the ill-posed problem of RTM inversion is well known; that is, different combinations of RTM 

input variables can lead to the same reflectance response (Zurita-Milla et al., 2015). Therefore, 

it is crucial to choose an RTM that balances the trade-off between canopy representativeness 

and computational load, and also applies measures to regularise the ill-posed inversion problem. 

During the past few decades, Solar-induced Chlorophyll Fluorescence (SIF), which is 

chlorophyll fluorescence measured under solar illumination, has been widely investigated as 

an indicator for vegetation photosynthetic functioning and early stress before changes in 

chlorophyll content or stress-induced symptoms occur. As mentioned previously, 

photochemistry, NPQ, and ChlF compete for the PAR. This close physiological linkage allows 

the use of fluorescence to assess photosynthetic activities and to serve as an early indicator of 

stress. The spectral span of SIF covers the red to near-infrared (NIR) region (650-800 nm), with 

two maxima in red (F685) and far-red regions (F740), respectively. SIF emission in the red 

region is mainly attributable to PSII, while both PSI and PSII emit fluorescence in the far-red 

region. SIF signals superimpose on the reflected radiation, providing an opportunity to retrieve 

SIF from remotely sensed vegetation spectra. However, SIF retrieval is not trivial. Due to its 

small signals, the quantification of SIF is sensitive to various factors including atmospheric 
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interference, illumination conditions, canopy structural effects and sensor characterization. SIF 

retrieved from different platforms (e.g., ground, airborne and spaceborne) have been proven 

effective in detecting heat and water stress (Song et al., 2018; Xu et al., 2021; Wang et al., 

2023a), biotic stress (Calderón et al., 2013; Zarco-Tejada et al., 2018b; Zarco-Tejada et al., 

2021b),  predicting leaf nutrient content (Camino et al., 2018a; Camino et al., 2019; Jia et al., 

2021; Wang et al., 2022), and gross primary productivity (GPP) (Bacour et al., 2019; Ma et al., 

2022; Pierrat et al., 2024). To date, the application of airborne SIF in leaf P assessment has not 

been extensively investigated, particularly in coniferous species, where the complexity of the 

canopy structure poses challenges in interpreting the subtle SIF signals. 

The promising potential of the combined use of plant functional traits retrieved from RTM, 

along with innovative indicators such as SIF for leaf N estimation, has been demonstrated in 

recent studies. Camino et al. (2018a) found that the incorporation of SIF improved the leaf N 

prediction accuracy in wheat, compared with only using functional traits estimated from the 

model PROSPECT-SAILH. The results from a study in the almond orchard by Wang et al. 

(2022) also showed that the FluSAIL-derived leaf chlorophyll content and airborne far-red SIF 

as inputs provided an improved leaf N predictive accuracy (R2 = 0.95), as compared to the 

performance of the model with only leaf chlorophyll as predictors (R2 = 0.49). As airborne SIF 

retrieve accuracy is known to be sensitive to spectral resolution, Belwalkar et al. (2022) built 

leaf N predictive models for crop canopies with PRO4SAIL-derived leaf chlorophyll content 

and airborne SIF quantified either from narrow-band (FWHM = 5.8 nm) or sub-nanometer 

resolution (FWHM = 0.1-0.2 nm).  The authors reported a slight improvement in prediction 

accuracy (ΔR2 = 0.05, ΔRMSE = -0.03 %) for leaf N when the sub-nanometer SIF was used, 

though they contended that narrow-band resolution is sufficient (R2 = 0.87, p-value < 0.001, 

RMSE = 0.12 %) to differentiate the relative leaf N level across the site. This physically based 

modelling approach, which involves plant traits obtained from RTM inversion and SIF as leaf 

N predictors, has not been evaluated in coniferous species, where the unique and highly 

heterogeneous canopy structure heavily affects the choice of RTM and SIF retrieval accuracy. 

Furthermore, despite its importance in plant growth, leaf P estimation has not been investigated 

using the physically based approach. 

From an operational perspective, airborne hyperspectral remote sensing may not be suitable 

for frequent needle nutrient status monitoring at large scales due to the high monetary and 

computational costs. Multispectral cameras could be a cost-effective alternative for such 

purposes. However, the coarser spectral resolution and limited spectral coverage of 
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multispectral cameras restrict their capability to capture the subtle spectral features induced by 

nutrient deficiency fully. Therefore, we intend to evaluate whether the commercially available 

multispectral cameras can provide reasonable needle N and P estimation accuracy, as compared 

to the hyperspectral-based results. Moreover, we aim to utilize our hyperspectral-based analysis 

to inform the selection of optimal multispectral bandsets and, consequently, the design of next-

generation multispectral cameras, with the specific objective of assessing needle N and P 

content. 

 

1.3 Motivations and Scope 

The broad motivation of this study lies in facilitating sustainable forestry in radiata pine 

plantations by improving the monitoring of leaf N and P status using airborne hyperspectral 

remote sensing.  We intend to use physically based models to assess the needle N and P 

variabilities, which could provide a deeper understanding of plant physiology as opposed to 

empirical approaches based on spectral indices. Utilizing the valuable sub-nanometer 

hyperspectral imager, we further investigate sub-nanometer SIF and other fluorescence 

indicators in terms of their contribution to explaining needle N and P variability, as opposed to 

narrow-band-based SIF products. In addition, considering the need for cost-effective 

monitoring at operational scales, we explore the potential of multispectral bandsets for 

estimating needle N and P concentrations, benchmarking against the hyperspectral-based 

predictive models.  

The scope of the Ph.D. study considers the following aspects: 

• Nutrient focus: the analysis is restricted to needle N and P assessment. Other macro- and 

micronutrients are not considered. 

• Study area and species: the research is exclusively conducted on a radiata pine nutrient trial 

located in Durham, Victoria, Australia (see Chapter 3 for more information on the study 

site). The transferability of the developed models and methodology to other species and 

locations is beyond the scope of the study. 

• Spectral range: The study is focused on the VNIR spectral range (400 – 1000 nm), which 

reflects the spectral coverage of the hyperspectral and multispectral sensors used. The 

SWIR region is not considered. 
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• Platforms: The study focuses on airborne hyperspectral imagery. Applications of ground-

based and spaceborne platforms are not addressed. 

 

1.4 Thesis Overview 

This Ph.D. thesis comprises seven chapters. Chapter 1 introduces the background, motivations, 

and scope of the study, providing an overview of the thesis structure. Chapter 2 presents a 

literature review of current remote sensing approaches for estimating leaf nitrogen and 

phosphorus concentrations, from which research gaps are identified and research questions are 

formulated. Chapter 3 describes the study site and presents the field data collection and analysis 

of needle nitrogen and phosphorus measurements. These field data underpin the analysis of the 

following three main chapters. Chapters 4, 5 and 6 address the three identified research gaps 

correspondingly. Finally, Chapter 7 is a synthetic discussion of the major findings, highlighting 

the contributions, identifying the limitations, and providing recommendations for future 

research.  
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Chapter 2  
Literature Review 
 

This chapter reviews current hyperspectral remote sensing-based approaches for estimating 

leaf nitrogen (N) and phosphorus (P) status, including empirical methods and more advanced 

methods based on radiative transfer modelling (RTM) and solar-induced fluorescence (SIF). It 

discusses the strengths and limitations of these methods, with a focus on airborne applications 

and the specific challenges associated with complex coniferous canopies. In addition, it 

examines the potential of airborne multispectral bandsets for large-scale nutrient monitoring 

and evaluates strategies for selecting optimal bandsets for needle N and P assessment. The 

purpose of the review is to identify key research gaps and guide the formulation of the research 

questions for the Ph.D. study. 

2.1 Methods for Leaf N and P Estimation using Hyperspectral data 

2.1.1 Empirical methods 

Empirical methods rely on assessing reflectance signals (e.g., single spectral bands or spectral 

indices) as proxies for plant physiological properties, based on their direct relationships with 

specific physiological parameters. For instance, chlorophyll content can be estimated from 

reflectance data by exploiting its characteristic absorption features. Given the strong 

physiological linkage between nitrogen (N) and chlorophyll, chlorophyll indices have been 

extensively investigated as indicators of leaf nitrogen content in remote sensing applications. 

Many index designs have taken soil background, shadows and canopy structure into account 

to improve the chlorophyll estimation accuracy. For instance, the Transformed Chlorophyll 

Absorption in Reflectance Index normalized by the Optimized Soil-Adjusted Vegetation Index 

(TCARI/OSAVI) (Haboudane et al., 2004b) combines the chlorophyll index TCARI with the 

structural index OSAVI. TCARI/OSAVI has been found resilient to disturbance from soil, 

shadow and non-synthetic woody parts, capable of producing  accurate chlorophyll estimation 

across species  (Wu et al., 2008; Poblete et al., 2025). The red-edge region (~670–780 nm) has 

been found highly sensitive to chlorophyll variations, leading to the development of a few 

indices in this spectral region. For example, the reflectance ratio between 750 and 710 nm can 

approximate chlorophyll content in forests with low sensitivity to canopy structural and shadow 
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effects (Zarco-Tejada et al., 2002). The chlorophyll red-edge index (CI) was subsequently 

shown to be insensitive to the effects of leaf thickness and closely related to leaf N status 

(Clevers and Gitelson, 2013a).  

As changes in leaf biochemical content usually occur at a later stage of the stress development 

(Hernández-Clemente et al., 2019b), the use of chlorophyll indices to monitor leaf N status 

might not be timely enough for the implementation of corrective horticultural measures. In that 

regard, the Photochemical Reflectance Index (PRI) (Gamon et al., 1992a; Gamon et al., 1997b) 

tracks the spectral variations around 531 nm, which is associated with the xanthophyll cycle, 

an NPQ mechanism activated in plants under stress (Demmig-Adams and Adams III, 1996). 

The xanthophyll cycle involves the de-epoxidation of violaxanthin into antheraxanthin and then 

zeaxanthin, which contributes to the heat dissipation (i.e., NPQ). The inter-conversion process 

can be detected in reflectance at 531nm. PRI is related to N and P status in the needles of radiata 

pine seedlings (Watt et al., 2020) and water-stress conditions in various species (Suárez et al., 

2009a; Zarco-Tejada et al., 2013c). The Normalized Phaeophytinization Index (NPQI) (Barnes 

et al., 1992b; Peñuelas and Filella, 1998) utilizes bands in the blue spectral region to track the 

changes in phaeophytin content, a product of chlorophyll degradation that happens during plant 

senescence and under stress conditions. Previous studies have shown the sensitivity of NPQI 

to biotic stresses across species (Zarco-Tejada et al., 2018c; Zarco-Tejada et al., 2021b; Poblete 

et al., 2023).  

Other empirical methods use reflectance signals or their transformed formats as predictors for 

leaf nutrient concentrations, including N and P (Mutanga and Kumar, 2007; Ramoelo et al., 

2013; Guo et al., 2018; Ye et al., 2020; Lin et al., 2024). Spectral transformation techniques, 

such as logarithmic transform, first derivative, among others, are applied to improve the signal-

to-noise ratio (Li et al., 2018) of the hyperspectral data. In these spectrum-based methods, a 

band selection strategy is often performed to reduce data redundancy and to retain the bands 

that are closely related to the target variable (See section 2.2.2 for more details on band 

selection). The selected set of informative wavelengths is then used as inputs for regression 

models like Partial Least Squared regression (PLSR) (Ramoelo et al., 2013; Li et al., 2018; Lin 

et al., 2024), Multivariate Linear Regression (MLR) (Ye et al., 2020), or machine learning 

(MLs) algorithms (Mutanga and Kumar, 2007; Guo et al., 2018) to predict leaf nutrient 

concentrations. The spectrum-based empirical modelling approach is often more frequently 

used when working with the shortwave infrared (SWIR) region than the visible–near-infrared 

(VNIR) region. This is because the SWIR absorption features associated with protein, starch, 
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lignin etc, are less characterized than pigment absorption features in VNIR. However, several 

studies have shown that the significant contribution of SWIR region to leaf N and P estimations 

(Mutanga and Kumar, 2007; Mahajan et al., 2014; Camino et al., 2018a; Guo et al., 2018; Li 

et al., 2018). SWIR relates to N as proteins are one of the dominant N-containing constituents, 

while chlorophyll only accounts for 1.7% of total leaf N (Kokaly et al., 2009b). P is essential 

for the formation of starch, cellulose and lignin, which affect SWIR spectral responses (Qiu 

and Israel, 1992). 

These index- or spectrum-based empirical methods for leaf N and P monitoring, although 

computationally efficient, present a few drawbacks. First, they do not explicitly account for the 

effects of canopy structure, understory and soil background, and illumination conditions at the 

time of image acquisition, resulting in potentially unstable model performance and limited 

transferability when applied to other sites. Additionally, spectral indices only use two or three 

bands, leaving the rest of the spectrum unevaluated. Furthermore, the observed variations in 

reflectance spectrum represent a combined response to multiple factors (e.g. physiological and 

structural), which simple empirical methods cannot detangle.  

 

2.1.2 Radiative transfer modelling  

Radiative transfer models (RTMs) simulate the interaction between solar radiation and the 

vegetation target, including absorption, scattering and reflection. Leaf RTMs take the leaf 

internal structure and biochemical composition into account and generate leaf reflectance and 

transmittance spectra. Canopy RTMs describe the interaction between vegetation canopy 

elements and solar radiation, with emphasis on the directional scattering and absorption. Leaf 

and canopy RTMs can be coupled together for the interpretation of remotely sensed top-of-

canopy (TOC) reflectance data at both leaf and canopy levels. 

The most extensively evaluated leaf RTM is PROSPECT, developed by Jacquemoud and Baret 

(1990). PROSPECT uses four inputs to simulate leaf reflectance in the 400 to 2500 nm spectral 

range: chlorophyll a + b content (Cab), equivalent water thickness (Cw), dry matter content (Cm) 

and the leaf mesophyll parameter (Nmes). The later version PROSPECT-4 (Feret et al., 2008a) 

incorporates carotenoid content (Car). Anthocyanin content (Anth) was introduced in 

PROSPECT-D (Féret et al., 2017). A more recent version of PROSPECT-PRO  (Féret et al., 

2021) further breaks down leaf dry matter content into proteins and carbon-based constituents. 

Another variation, Fluspect (Vilfan et al., 2016), further incorporates the simulation of 
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chlorophyll fluorescence. Fluspect is further extended to simulate spectral changes associated 

with xanthophyll cycle, forming Fluspect-Cx (Vilfan et al., 2018). PROSPECT family was 

initially developed for broad leaves, though recent studies have demonstrated its applicability 

to coniferous species (Zarco-Tejada et al., 2004; Wang et al., 2018c; Poblete et al., 2025). 

One of the most widely used canopy RTM, 4SAIL (Verhoef et al., 2007), simulates the 

bidirectional canopy reflectance based on the four-stream radiative transfer theory, assuming a 

homogeneous canopy layer. The model requires inputs of canopy structural parameters (i.e., 

leaf area index, leaf inclination distribution function), parameters related to viewing geometry, 

and leaf reflectance and transmittance used as an input from the leaf RTM. The assumption of 

a uniform canopy makes 4SAIL not suitable for a heterogeneous forest canopy. A later 

extension 4SAIL2 (Verhoef and Bach, 2007) relaxed this assumption by considering both 

vertical and horizontal heterogeneity in canopy structures. 4SAIL2 is a two-layer model that 

treats the canopy as two separate layers to track the vertical gradient in leaves: the green-leaf 

layer and the brown leaf layer. Two parameters control the spectral effects of the brown layer: 

the fraction of brown leaf area (fb) and the layer dissociation factor (D). 4SAIL2 also accounts 

for the canopy by the vertical crown cover percentage (Cv) and tree shape factor (ξ). The former 

represented the vertically projected crown cover fraction, while the latter was defined as the 

ratio of crown diameter to the crown height at the crown's center above the ground. Another 

model, INFORM (Invertible Forest Reflectance Model) (Atzberger, 2000) was initially 

designed to simulate reflectance at both the leaf and canopy levels. The canopy representation 

in INFORM requires more detailed inputs, including crown shape, radiance, density and tree 

height, making the model parameterization challenging. More complex three-dimensional 

models were developed, such as the voxel-based Discrete Anisotropic Radiative Transfer 

(DART) model (Gastellu-Etchegorry et al., 2015) and the FLIGHT model (North, 2002), which 

relies on Monte Carlo simulation of photon transport. These models can provide a realistic 

representation of the forest canopy, albeit at the expense of high computational cost. In all, the 

choice of RTM should consider the representativeness of the model to the species under 

investigation and whether the model can be effectively inverted. 

To determine the unknown biochemical and biophysical parameters from reflectance measured 

by remote sensing platforms, the RTM needs to be inverted (i.e., RTM inversion), to link the 

observed spectra with the biochemical and structural parameters.  There are three commonly 

used RTM inversion techniques. The first approach is iterative numerical optimisation, where 

the observed spectrum is iteratively compared to various RTM simulations to minimise the 
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discrepancy between the two based on certain cost functions. Parameter values of the 

simulation where the minimum is found are used to represent the retrieved parameters of the 

observation. Optimization techniques are involved to find the minimum, such as the genetic 

algorithm (Fang et al., 2003) and the Quasi-Newton algorithm (Jacquemoud et al., 2000). This 

method is computationally intensive and is likely to converge at a local minimum depending 

on the optimization algorithm and the convergence criteria used. The second inversion 

technique is based on look-up tables (LUTs) (Darvishzadeh et al., 2008; Rivera et al., 2013; 

Duan et al., 2014). RTMs are executed in the forward mode with various combinations of 

parameters to generate simulated reflectance spectra on a large scale (usually more than 10,000 

simulations). Then the inversion is performed by querying the pre-computed LUT to find the 

simulation that is closest to the observed spectrum based on a cost function, such as root mean 

squared error (RMSE) between the simulated and observed spectrum. The LUT-based approach 

is relatively efficient compared to the iterative optimization technique, as the computationally 

heavy task of LUT generation is completed before the inversion process. However, the retrieval 

accuracy is shown to be affected by the choice of cost functions (Rivera et al., 2013) and the 

coverage of the LUT. The third inversion technique combines LUT and machine learning (ML) 

algorithms, such as Artificial Neural Network (ANN) (Yang et al., 2010; Wang et al., 2022), 

Support Vector Machines (SVM) (Belwalkar et al., 2022; Poblete et al., 2025) and Gaussian 

Process Regression (GPR) (Berger et al., 2020; Farmonov et al., 2025). Precomputed LUTs 

are used to train ML algorithms that take simulated reflectance as inputs and output the 

biochemical and biophysical parameters. The trained ML models can then be applied to the 

observed spectrum to retrieve corresponding parameters. Depending on the ML algorithms 

used, one or more parameters can be retrieved simultaneously. The primary advantage of this 

LUT-ML hybrid technique is that the trained model can be applied to a different dataset, 

provided the training LUTs are representative enough. However, the hybrid method highly 

relies on the training LUT, though larger LUT sizes lead to higher training cost. Regardless of 

the inversion techniques, RTM inversion is known to be prone to the ill-posed problem, where 

several different combinations of RTM biochemical and biophysical parameters lead to the 

same spectral response. In other words, the inversion result is not unique. Different strategies 

have been proposed to relieve the ill-posed issue. For example, prior knowledge obtained from 

experiments and literature can be used to constrain the solution. Ecological constraints can be 

applied to filter out unrealistic solutions (Darvishzadeh et al., 2011; Quan et al., 2017; Wang 

et al., 2018c). Baret and Buis (2008) provided a detailed review of the regularization techniques 

for RTM inversion. 
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RTM inversion has been widely implemented to retrieve leaf pigment content, including 

chlorophyll (Lu et al., 2021; Wang et al., 2023b; Poblete et al., 2025), carotenoids (Zarco-

Tejada et al., 2013e; Miraglio et al., 2020), leaf water content (Riano et al., 2005; Zhu et al., 

2019) and the canopy structural parameter LAI (Darvishzadeh et al., 2011; Miraglio et al., 

2020; Lu et al., 2021) from hyperspectral images. A higher retrieval accuracy is usually 

reported for LAI and leaf chlorophyll content than carotenoids, potentially due to the spectrally 

restricted carotenoid absorption feature and its overlap with other pigment absorption regions. 

To date, no existing RTMs enable the direct retrieval of leaf nutrient content through inversion, 

though the RTM-derived plant traits can be used as predictors for leaf nutrient status. In the 

context of leaf N estimation, two RTM-based strategies have been employed in previous studies: 

one relies on the N-chlorophyll linkage and the other on the N-protein linkage. With the focus 

on the VNIR region, the first strategy uses RTM-derived leaf chlorophyll and other biochemical 

constituents as inputs for ML models to predict leaf N concentration (Camino et al., 2018a; 

Belwalkar et al., 2022; Wang et al., 2022; Dehghan-Shoar et al., 2023). This strategy has also 

been successfully applied to detect biotic stress (Zarco-Tejada et al., 2018c; Zarco-Tejada et 

al., 2021b; Poblete et al., 2023). The second strategy requires coverage of the SWIR region to 

retrieve leaf protein content from advanced leaf optical models. Leaf or canopy N content is 

subsequently obtained based on an empirical nitrogen-protein converting factor (Verrelst et al., 

2021; Wang et al., 2023b). At present, these strategies have only been attempted for N status 

evaluation in relatively homogeneous crop and orchard canopies, while their performance for 

leaf P estimation has not been well understood, especially for highly heterogeneous coniferous 

canopies. 

Compared to empirical methods that depend on reflectance-based proxies, RTM inversion 

provides direct estimations of plant biophysical and biochemical parameters, thereby 

rewarding the latter with better physiological interpretability. It should be noted that RTM 

inversion does not necessarily produce significantly higher retrieval accuracy as compared to 

empirical methods, as shown in studies on leaf chlorophyll content (Wang et al., 2023b; Poblete 

et al., 2025) and LAI (Darvishzadeh et al., 2011) estimation. However, RTM-based methods 

demonstrate the advantages of higher transferability, whereas empirical methods require 

extensive field measurements for model calibration (Wang et al., 2023b). Cautions should be 

taken for RTM parameterization to achieve realistic retrievals of plant traits. Measures should 

be taken to alleviate the ill-posed inverse problem. 
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2.1.3 Solar-induced fluorescence 

The incident solar radiation can be reflected, transmitted, scattered, or absorbed by the 

vegetation. The absorbed photosynthetically active radiation (PAR) is partially used for 

photosynthesis, while the remaining is either dissipated as heat or emitted as chlorophyll a 

fluorescence (ChlF) by each photosystem (PSI and PSII) at longer wavelengths. This close 

linkage between ChlF and other radiation pathways makes ChlF a sensitive indicator of 

photosynthetic functioning. The spectral span of ChlF covers the red to near-infrared (NIR) 

region (650-800 nm), with two maxima in red (F685) and far-red regions (F740), respectively. 

ChlF emission in the red region is mainly ascribed to PSII, while both PSI and PSII emit 

fluorescence in the far-red region. 

ChlF can be measured by active or passive techniques. Active techniques use artificial light to 

excite ChlF emissions, such as the pulse-amplitude modulation (PAM) technique and the 

saturation pulse method (Schreiber, 2004). However, active techniques are usually restricted to 

leaf (e.g., handheld fluorometers) to plant scales (e.g. imaging fluorometers), making them 

infeasible for large-scale applications. On the other hand, passive techniques retrieve 

fluorescence parameters under natural solar irradiation conditions. Thus, the passively 

retrieved ChlF signal is also called solar-induced fluorescence (SIF). SIF can be retrieved using 

optical sensors deployed on various platforms, including ground-based, airborne, and 

spaceborne systems. This enables large-scale monitoring of SIF and facilitates the assessment 

of its spatial variability. 

The superimposition of SIF signals on the apparent vegetation reflectance at both leaf and 

canopy levels was first identified by Zarco-Tejada et al. (2000a) and Zarco-Tejada et al. 

(2000b), forming the basis of SIF quantification strategy at the TOC level, as expressed by Eq. 

2.1.  Assuming a Lambertian surface for the vegetation and neglecting the atmospheric effects, 

the apparent upwelling radiance L*(λ) signal recorded by a sensor is the combination of the 

SIF signal F(λ) and the solar radiation L(λ) of the vegetation: 

                                           𝐿𝐿∗(𝜆𝜆) = 𝐿𝐿(𝜆𝜆) + 𝐹𝐹(𝜆𝜆) = 𝑅𝑅(𝜆𝜆) 𝐸𝐸(𝜆𝜆)
𝜋𝜋

+  𝐹𝐹(𝜆𝜆)                              Eq. 2.1 

where λ is the wavelength, R is the pure vegetation reflectance, and E is the down-welling 

irradiance. 

However, SIF only account for a small portion of the total reflected radiation - less than 2% 

and 5.2% of the reflected radiance at 685 nm and 740 nm, respectively (Guanter et al., 2010), 
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rendering difficulties in decoupling these two signals from remotely sensed hyperspectral data. 

SIF retrieval methods can be categorized based on whether SIF is retrieved at specific 

absorption features or the full SIF emission spectrum is obtained. In the first category, telluric 

and solar absorption features are used to quantify SIF based on the in-filling principle: as the 

solar incident radiation is significantly attenuated at these narrow spectral regions due to either 

the telluric or solar atmospheric absorption, the relative contribution of SIF to the reflected 

radiation becomes more apparent. These absorption features are sometimes collectively 

referred to as Fraunhofer lines (FLs), although here we use FLs to represent solar absorption 

features, as opposed to the oxygen absorption features in the telluric atmosphere. The oxygen 

absorption bands in the telluric atmosphere are commonly used as they are broader and deeper 

than FLs. Even though the O2-B absorption band (687 nm) is closer to the SIF emission 

maximum in the red region (F685), most research utilized the O2-A band (760 nm) for SIF 

retrieval (F760) in the NIR region, due to the broader and deeper absorption feature.  

Algorithms to retrieve SIF at these absorption features include the Fraunhofer Line Depth (FLD) 

method (Plascyk and Gabriel, 1975; Damm et al., 2011), spectral fitting method (SFM) 

(Meroni et al., 2010; Cogliati et al., 2015) and singular value decomposition (SVD) algorithm 

(Guanter et al., 2013). FLD-based methods are the most extensively applied, due to their 

simplicity. In these methods, SIF is represented as the normalized difference between the 

absorption band depth of a non-fluorescent target and that of a fluorescent target. The 

absorption band depth is measured using the differential absorption technique, which requires 

calculating the ratio between bands within and outside the absorption feature. The major 

difference between the standard FLD (sFLD) and its variants, including 3FLD (Maier et al., 

2004) and improved FLD (iFLD) (Alonso et al., 2008). The sFLD algorithm requires 

measurements of the incident irradiance and target radiance of two bands, one reference band 

and the other within the absorption feature, assuming constant reflectance and fluorescence 

within the absorption feature. The 3FLD method assumes a linear variation of reflectance and 

fluorescence over the absorption window and implements linear interpolation using two 

reference bands, one on the left shoulder and the other on the right shoulder of the absorption 

window, respectively. However, the assumption of linearity does not technically hold for the 

spectral shapes of oxygen absorption features, especially for the O2-B band (Cendrero-Mateo 

et al., 2019). Further improvements were made for iFLD, which accounts for the non-linear 

variation within the considered absorption window. Damm et al. (2011) and Cendrero-Mateo 

et al. (2019) provided comprehensive assessments of FLD-based methods for SIF retrievals at 
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oxygen absorption features. Other techniques, such as SFM and SVD, exploit continuous 

spectral information by mathematically reconstructing the fluorescence and reflectance spectra 

within the absorption window, allowing a more realistic representation of the spectrally 

variable reflectance and fluorescence. However, these methods are more computationally 

demanding and require complex parametrization, as compared to FLD-based methods. 

Recent advances in RTM allow the retrieval of the full fluorescence spectrum from model 

inversion. Several studies employed the SCOPE  (Soil Canopy Observation, Photochemistry 

and Energy fluxes) model (Van der Tol et al., 2009) to study the relationship between SIF and 

photosynthesis (Zhang et al., 2014; Verrelst et al., 2016; Camino et al., 2019). To simulate TOC 

SIF, the Fluspect leaf model has been combined with a canopy RTM, such as DART (Regaieg 

et al., 2025) or FLIGHT (Hernández-Clemente et al., 2017a) model, to account for the canopy 

scattering and reabsorption effects, as well as the impacts of observation and illumination 

geometry on the SIF signals. RTM-based SIF full-spectrum retrieval faces the challenges of 

complex RTM parameterization and high computational load. Moreover, Mohammed et al. 

(2019) notes that spectral information in the visible to near-infrared is required for the canopy 

model inputs, though dedicated fluorescence sensors with sub-nanometer spectral resolution 

(i.e., FWHM < 1.0 nm) usually only cover the fluorescence spectral range. This leads to the 

complication of co-registration of two sensors, spectrally and spatially, if imaging 

spectrometers are used. 

The accurate estimation of SIF, especially from airborne sensors, faces multiple sources of 

uncertainty. The airborne sensor captures not only the reflected radiation from the ground target 

but also contributions from adjacent objects and path radiance, all of which are further attuned 

by atmospheric absorption and scattering before reaching the sensor. The impact of 

atmospheric absorption and scattering has been identified as the most influential factor on SIF 

retrieval accuracy (Guanter et al., 2010; Damm et al., 2014).  The atmospheric intervention 

adds noise to the ratio between the reflectance and fluorescence emission within the absorption 

features, which might be confused with the SIF in-filling effects, especially for oxygen 

absorption bands. FLs, by contrast, suffer from less atmospheric intervention, though an 

ultrafine spectral resolution is required to detect these absorption features. There are two groups 

of atmospheric correction approaches at the oxygen bands for airborne imagery. The first 

method is empirical, where SIF is normalised by a non-fluorescent target (i.e., a reference board 

in a bare soil scene) to account for atmospheric effects. The other group hinges on more realistic 

atmospheric radiative transfer modelling. Canopy structure influences the correct interpretation 
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of TOC SIF signals, as the emitted leaf fluorescence can be re-absorbed and scattered when 

escaping the canopy. The re-absorption is significantly stronger in the red SIF more due to its 

overlap with the chlorophyll absorption region. On the other hand, far-red SIF is scattered more 

than red SIF (Porcar-Castell et al., 2014). Previous studies (Yang and van der Tol, 2018; 

Dechant et al., 2020) have suggested that far-red SIF is mainly affected by canopy structure 

rather than leaf physiology. Malenovský et al. (2021a) have identified that the leaf clumping 

effect is the most influential factor in causing multi-angular anisotropy for both red and far-red 

SIF.  

SIF retrieval accuracy also highly depends on sensor characteristics. Simulation studies (Damm 

et al., 2011; Julitta et al., 2016) have shown that spectral resolution (SR) and signal-to-noise 

ratio (SNR) are the most influential factors in SIF retrievals at oxygen absorption features. 

Coarser spectral resolution and higher noise levels typically result in more erroneous SIF 

estimates. In particular, the decrease in SR leads to a decrease in the O2-A band depth and a 

spectral shift of the minimum radiance toward the longer wavelengths, subsequently, the 

overestimation of far-red SIF (Damm et al., 2011). The impacts of sensor characteristics and 

other influencing factors on SIF retrieval accuracy cannot be considered in isolation. Damm et 

al. (2011) evaluated the sensitivity of FLD-based far-red SIF retrievals to various sensor 

configurations. Their results showed that sFLD produced the least accurate retrievals compared 

to 3FLD and iFLD at low SR. Additionally, the iFLD method was most sensitive to high noise 

levels (i.e., low SNR). For FLD-based SIF retrievals, Julitta et al. (2016) recommend the use 

of sub-nanometer resolution (FWHM < 1.0 nm) for the absolute measurement of far-red SIF at 

O2-A band and ultrafine resolution (FWHM < 0.5 nm) for red SIF at O2-B band. However, 

previous field studies have successfully used narrow-band resolution to estimate SIF in the 

application of leaf N status evaluation (Camino et al., 2018a; Wang et al., 2022), water stress 

detection (Camino et al., 2018c) and biotic stress detection (Zarco-Tejada et al., 2018c; Poblete 

et al., 2020; Zarco-Tejada et al., 2021b). These results question the necessity of retrieving 

absolute SIF values at sub-nanometer resolution, given the associated large data volume and 

redundancy. 

During the past two decades, SIF has been widely studied as an indicator for vegetation 

photosynthetic functioning, and thus gross primary productivity and stress conditions. Multiple 

studies have used SIF retrieved from spaceborne platforms for GPP monitoring in the context 

of global carbon flux cycle modelling (Damm et al., 2010; Sun et al., 2018; Zuromski et al., 

2018; Gao et al., 2021). It has also been demonstrated that SIF is related to heat and water 
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stress (Song et al., 2018; Xu et al., 2021; Wang et al., 2023a).  Others have shown that SIF can 

be used to detect biotic stress (Calderón et al., 2013; Zarco-Tejada et al., 2021b). Recent studies 

have demonstrated the promising prospect of combining RTM-derived plant traits and SIF for 

leaf N estimation. Camino et al. (2018a) found that the incorporation of airborne far-red SIF 

improved the leaf N prediction accuracy in wheat (R2 = 0.92), compared with only using 

functional traits (i.e., leaf chlorophyll content, dry matter content, water content) estimated 

from the PROSPECT-SAILH model (R2 = 0.68-0.75). Similarly, Wang et al. (2022) assessed 

the leaf N status in the almond orchard. Their results showed that the model with the FluSAIL-

derived leaf chlorophyll content and airborne far-red SIF as inputs provided an improved leaf 

N predictive accuracy (R2 = 0.95), as compared to the model with only chlorophyll as predictors, 

which achieved moderate accuracy (R2 = 0.49). To further investigate the potential of SIF for 

leaf N estimation, Belwalkar et al. (2022) compared the contribution of airborne far-red SIF 

quantified at narrow-band (FWHM = 5.8 nm) and sub-nanometer (FWHM = 0.1-0.2 nm) 

resolutions for leaf N estimation in crop fields, when combined with the narrow-band-based 

PRO4SAIL-derived leaf chlorophyll content as model inputs. The authors reported an 

improvement in prediction when the sub-nanometer SIF was used (R2 = 0.93), though they 

contended that narrow-band resolution is sufficient (R2 = 0.87) in differentiating various 

nutrient levels in crops.  

The predictive power of the physically based modelling approach, which combines RTM-

derived plant traits and SIF, has so far been primarily evaluated for leaf N estimation. The 

reliability of this method for another critical macronutrient, P, has received little attention. 

Furthermore, this approach has mainly been applied to homogeneous canopies, such as crops 

and orchards, while its transferability to more heterogeneous coniferous canopies remains 

largely unevaluated.  Given the demonstrated importance of airborne SIF in leaf N monitoring, 

more attention should be directed toward assessing the accuracy of SIF retrievals, including 

the impact of sensor spectral resolution on SIF in the context of leaf N and P estimation. 

 

2.2 Challenges for needle N and P monitoring in coniferous canopy 

The correct interpretation of remotely sensed data over coniferous canopies is challenging, due 

to the unique shapes of needle leaves and the heterogeneous canopy structure. At the leaf level, 

needles exhibit different optical characteristics from broad leaves. Lukeš et al. (2013) assessed 

the optical properties of broadleaves (i.e., silver birch) and needles (i.e., scotch pine and 
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Norway spruce) from 300 to 2500 nm. The authors found that the needle transmittance of both 

coniferous species was lower than the reflectance, while transmittance and reflectance were 

similar for the broadleaf species. Furthermore, needles displayed significant discrepancies in 

albedo measured on exposed needles and shaded needles, which was not observed for broad 

leaves. At the canopy level, the incident radiation light interacts with shoots, bark and 

understory or soil background. Shoots are the structure formed by the spiral arrangements of 

needles. It is known that shoots have strong scattering in the backward direction, but little 

forward scattering in the visible region (Rautiainen et al., 2018).  

The specific spectral characteristics of coniferous species, related to the biochemical and 

physical properties of their needles and canopy, introduce complications into RTM inversion 

and SIF quantification, which in turn affects the estimation of needle N and P. Most RTMs were 

developed for broadleaf species, except for LIBERTY (Leaf Incorporating Biochemistry 

Exhibiting Reflectance and Transmittance Yields) (Dawson et al., 1998). LIBERTY simulates 

the spectral reflectance and transmittance of conifer shoots, though the model is less widely 

evaluated than the PROSPECT family, which is preferred for its simplicity and computational 

efficiency. Despite not being intended for needles, the PROSPECT family has been previously 

successfully applied to retrieve needle chlorophyll content in Jack pines (Zarco-Tejada et al., 

2004) and radiata pine seedlings (Poblete et al., 2025), indicating the potential of other 

PROSPECT variants for coniferous studies. The complexity of the coniferous canopy also 

interferes with the retrieval of top-of-canopy SIF signals, considering the fluorescence 

reabsorption and scattering within the canopy structure.  

 

2.3 From Hyperspectral to Multispectral 

2.3.1 The potential of multispectral bandsets for large-scale monitoring  

Despite the ability of airborne hyperspectral imagery to capture detailed spectral information 

with fine spatial resolution (e.g., ≤1 m), its application for frequent monitoring of leaf nutrient 

status at large scales is constrained by several factors. First, the cost of the hyperspectral 

imagers is relatively high, compared to multispectral sensors or RGB cameras. Second, not all 

hyperspectral imagers are compatible with unmanned airborne vehicles (UAVs) due to the 

limited UAV payload capacity (Nex et al., 2022). A manned aircraft is required to carry 

medium-to-heavy-weight hyperspectral imagers, which increases operational costs. There are 
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UAV-compatible lightweight options, but they are often limited to the VNIR spectral range and 

have lower radiometric quality and geometric accuracy. Lastly, the processing of large volumes 

of hyperspectral data requires expertise and significant computational capacity, making it less 

practical for non-scientific applications. On the other hand, multispectral cameras are more 

affordable, lightweight, and their data can be easily processed and interpreted. However, 

multispectral cameras capture less spectral information due to their limited spectral coverage 

and resolution, leading to concerns that they cannot track the subtle spectral changes associated 

with nutrient variations. 

Many studies have attempted to quantify this potential accuracy loss in plant biochemical and 

biophysical traits or leaf nutrient estimation when transitioning from hyperspectral to 

multispectral resolution. Navarro-Cerrillo et al. (2014) evaluated the RTM-simulated canopy 

reflectance spectra with different spectral resolution (Full Width Half Maximum [FWHM] = 

30 and 70 nm) for their ability to estimate needle chlorophyll a + b content in scotch pines 

(Pinus sylvestris L.). Their results from the index-based empirical models showed that coarser 

spectral resolution led to less accurate predictions (R2 ≥ 0.70 vs. R2 ≤ 0.55). Similarly, Zhou et 

al. (2022) simulated broad bands (FWHM = 10, 20 and 40 nm) from the obtained airborne 

narrow-band hyperspectral imagery (FWHM = 2.2 nm) covering the VNIR region and 

evaluated their performance in estimating leaf N content in potatoes with PLSR models. The 

authors reported a decreasing trend in model accuracy (i.e., NRMSE from 12.3% to 16.0%) as 

the bandwidth increases, indicating the need for high spectral resolution to capture N-

associated spectral fluctuations. They also evaluated the performance of the bandsets from 

three commercially available multispectral cameras with four or five bands using the synthetic 

data derived from the hyperspectral images. Their results demonstrated that the reduced 

spectral coverage had a significant impact on the model accuracy, with multispectral camera 

bandsets achieving NRMSE greater than 20%, compared to the 12.3% produced by the 

hyperspectral-based models. In a study on LAI mapping in a maize field (Guo et al., 2023), the 

authors collected both hyperspectral (ULTRIS X20 Plus) and multispectral (DJI Phantom 4 

UAV, 5 band) airborne imagery and adopted an RTM-based approach to assess the utility of 

both imagers for LAI estimation. A higher prediction accuracy (R2 = 0.86, NRMSE = 13.71 %) 

was yielded by the hyperspectral-based model than the multispectral-based one (R2 = 0.75, 

NRMSE = 10.61 %), highlighting the advantages of hyperspectral data. 

Other studies have suggested that hyperspectral data added only limited predictive power for 

various target parameters, despite its significantly higher computational cost. In their airborne-
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based study, Lu et al. (2019) compared a hyperspectral image, a simulated three-band image 

and a simulated five-band red-edge image in the context of canopy chlorophyll content 

estimation in mixed-species canopy through empirical modelling. Their results showed that the 

five-band image yielded comparable prediction performance with the hyperspectral image (R2 

= 0.80 vs. 0.81). Nevertheless, the modified three-band image resulted in decreased 

performance (R2 = 0.42).  A leaf-level study using RTMs, Croft et al. (2015) showed that the 

hyperspectral data does not substantially improve the accuracy of leaf chlorophyll content 

estimation, compared to the simulated Landsat 5 TM bandset (R2 = 0.77 and 0.75, respectively).  

Therefore, hyperspectral data does not have an absolute advantage over multispectral data, due 

to the great data redundancy and high noise levels of the former. The extent of potential 

performance loss associated with the transition from hyperspectral to multispectral resolutions 

depends on various factors, including the target variable of focus, the species under 

investigation, the configurations of both hyperspectral and multispectral sensors under 

evaluation, the modelling methods used and others. 

 

2.3.2 The selection of optimal bandsets  

Most commercially available multispectral cameras cover a few key spectral regions, including 

chlorophyll absorption, the red edge, and the near-infrared regions. These bandsets are versatile, 

as they generally allow the calculation of widely used indices such as NDVI. Nevertheless, 

these bandsets are not always optimized for the application of needle nutrient monitoring. 

Given the economic and environmental significance of vegetation nutrient monitoring, it is 

practically important to design a multispectral camera with optimized bandsets for this purpose. 

Numerous studies have focused on selecting optimal wavelengths for estimating plant 

biochemical and biophysical traits from hyperspectral data, with the primary motivation of 

preserving only informative bands and reducing the computational load for the following 

modelling process. Various supervised band selection (BS) algorithms have been evaluated on 

either original reflectance spectra or transformed spectra. For example, Li et al. (2018) assessed 

the performance of band selection on leaf N and P estimation in oilseed rape canopy using in 

situ hyperspectral data. The BS algorithm used was based on the variable importance in 

projection (VIP) scores embedded in PLSR model (Wold et al., 1993). The authors reported a 

validation accuracy (R2) of 0.85 and 0.78 from the optimized bandsets for leaf N and P, 

respectively, slightly lower than the accuracy provided by the full spectrum of hyperspectral 
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data (R2 = 0.89 and 0.83), demonstrating the capability of the optimized bandset with less than 

10 bands for comparable prediction accuracy and less computational demands than the full 

spectrum (400–1300 nm). Guo et al. (2018) evaluated the leaf P predictive performance of 

PLSR models built with the full spectrum (350-2500 nm) and those built with the BS-reduced 

bandset determined through the Monte Carlo-uninformative variable elimination (MC-UVE) 

algorithm in rubber trees. Their results showed the reduced bandset (493 bands, R2 = 0.47) 

outperformed the full spectrum (2150 bands, R2 = 0.25). Cao et al. (2021) investigated different 

combinations of BS algorithms and modelling algorithms for leaf N content estimation in 

summer maize. Their results suggest that the performance of the BS-reduced bandsets cannot 

be determined independently of the modelling algorithms. For instance, the optimized bandset 

determined by the successive projection algorithm (SPA) yielded an R2 of 0.53 when used as 

inputs for the multiple stepwise regression (MSR) model, but an R2 value of 0.90 was achieved 

when the PLSR model was adopted. 

Overall, the literature shows that BS-optimized bandsets can provide similar or even improved 

prediction accuracy for leaf nutrient status across species, compared to the full reflectance 

spectrum. This implies the effectiveness of BS algorithms in removing noise from 

hyperspectral data and retaining informative wavelengths. However, these commonly used 

supervised BS algorithms in regression studies cannot fulfil our requirements of selecting 

bandsets for future multispectral cameras. First, we should only select around 10 bands, as most 

multispectral cameras typically have 10 or fewer channels. Second, the selected multispectral 

bandsets should cover all key spectral regions so that they can be used for other tasks, such as 

index calculation, in addition to N and P estimation. Nevertheless, the sizes of the optimized 

bandsets produced by these supervised BS algorithms highly depend on both the input spectrum 

and the BS algorithms used. In other words, the number of bands in the reduced bandset cannot 

be defined by the user. Moreover, some BS algorithms tend to produce bandsets with clustering 

patterns in a certain region (Cao et al., 2021). 

Another technique for hyperspectral dimension reduction, band clustering, can provide the user 

with certain control over the size of the optimized bandset. The technique has been widely used 

in hyperspectral image classification studies (e.g. Martínez-Usó et al. (2007); Su et al. (2011); 

Wang et al. (2019); Wang et al. (2020)) to improve the computational efficiency, but has been 

rarely explored in a regression context.  In a nutshell, band clustering algorithms first group 

similar bands together to maximize the inter-cluster variance and minimize the intra-cluster 

variance. Then, one representative band is selected from each group/cluster to form the final 
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optimized bandset. Certain similarity measures must be chosen, such as Euclidean distance or 

information theory-based measures (Martínez-Usó et al., 2007). The representative band 

selection procedure is usually unsupervised. Either the cluster centres or the most informative 

band determined by information theory (Wang et al., 2018a) are chosen. The state-of-the-art 

clustering algorithm, the agglomerative clustering algorithm based on Ward’s linkage 

(Martínez-Usó et al., 2007), creates a tree structure by firstly treating each band as an individual 

cluster and then grouping the two most similar clusters together. The grouping is repeated until 

the dissimilarity threshold between two clusters is met. The user can control the final number 

of clusters by specifying the dissimilarity threshold. However, agglomerative clustering can 

produce discontinuous clusters, that is, bands within the same cluster are not spectrally adjacent 

to each other. More recent algorithms, such as the Fast Neighbourhood Grouping (FNG) (Wang 

et al., 2020) and Adaptive Subspace Partitioning Strategy (ASPS) (Wang et al., 2019), account 

for the spectral continuity by treating the spectral bands as ordered features and assuming 

adjacent bands have higher similarity. Both FNG and ASPS allow the user to pre-define the 

number of clusters, thus the size of the final bandset. Nevertheless, the unsupervised 

representative band selection embedded in most clustering-based algorithms does not 

guarantee that the most informative bands are retained for specific applications (e.g., leaf N 

and P estimation). 

The aforementioned band selection studies, whether supervised or clustering-based, focused 

on dimensionality reduction and noise removal of the hyperspectral data. No one has attempted 

to use hyperspectral data to guide the selection of an optimised multispectral bandset for next-

generation multispectral camera development. To achieve this specific goal, we intend to 

combine band clustering with supervised BS algorithms to identify the most informative bands 

for needle N and P estimation at a multispectral resolution. 

2.4 Research Gaps and Questions 

The following research gaps have been identified, and corresponding research questions have 

been formulated for the Ph.D. study. 

Research Gap 1: It has been demonstrated that plant biochemical traits retrieved from RTM 

inversion, solar-induced fluorescence (SIF) and specific narrow-band hyperspectral indices 

(NBHI) can provide satisfactory prediction accuracy for leaf N content in broadleaved species 

using airborne hyperspectral imagery. However, the assessment of this method for 

quantification of other critical nutrients, such as phosphorus (P), has not been well investigated, 
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especially for coniferous species, where high-level heterogeneity in canopy structures and the 

unique needle structure pose challenges to interpreting airborne hyperspectral data.  

Research Question 1: To assess the contribution of narrow-band solar-induced fluorescence 

(SIF) and plant functional traits derived from radiative transfer models (RTMs) for needle N 

and P estimation in radiata pine using airborne hyperspectral imagery. 

 

Research Gap 2:  It is known that the accuracy of SIF retrievals is affected by various factors, 

including spectral resolution. Previous studies have shown that sub-nanometer resolution 

(FWHM < 1 nm) is required to retrieve absolute SIF values from airborne platforms. However, 

high spectral resolution often leads to highly noisy data and heavy data volume. It has been 

demonstrated that airborne SIF can be quantified in a relative term from narrow-band resolution 

(FWHM = 5-7 nm), which is sufficient for differentiating various N levels in homogenous crop 

canopies. Despite this, the impact of the spectral resolution on the airborne SIF retrieval 

accuracy, particularly in the context of needle N and P estimation in heterogeneous coniferous 

canopy, remains unexplored. Given that canopy structural effects highly influence SIF retrieval 

accuracy, it is critical to evaluate whether sub-nanometer resolution is needed for airborne SIF 

retrievals to enhance the needle nutrient predictions in radiata pine. 

Research Question 2: To investigate and compare the impacts of SIF quantified with narrow-

band (FWHM = 5.8 nm) and sub-nanometer (FWHM = 0.1-0.2 nm) spectral resolutions for 

needle N and P prediction in radiata pine using airborne hyperspectral imagery.  

 

Research Gap 3: The high monetary and computational costs of hyperspectral data, as well as 

the expertise required for data processing, hinder its application in large-scale nutrient mapping. 

Multispectral cameras can be a more affordable alternative with higher practicality. However, 

this comes at the expense of reduced spectral resolution and limited spectral coverage, which 

may limit their ability to accurately capture subtle spectral changes induced by needle N and P 

variations. The hypothesis is that multispectral bandsets would result in a decrease in needle N 

and P estimation accuracy, as compared to hyperspectral-based models. Therefore, it is 

important to quantify the potential performance loss and determine whether the multispectral 

bandsets can still yield satisfactory needle nutrient estimation accuracy. 
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Research Question 3: To evaluate the performance of 1) a commercially available 

multispectral camera and 2) an optimized multispectral bandset for needle N and P estimation 

in radiata pine, benchmarked against predictive models developed using hyperspectral data. 
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Chapter 3  
Study site and field data analysis 
 

This chapter provides a description of the study site and the field data collection process. It 

also presents the analytical results of the field data. The subsequent chapters (Chapters 4, 5, 

and 6) draw upon the same field dataset, with each chapter focusing on the analysis of different 

airborne images. 

 

3.1 Study Site 

The study was conducted in a radiata pine plantation in Durham, Victoria, Australia 

(37°44'03''S, 143°55'39''E), with an elevation of around 420 m above sea level. This region has 

an oceanic climate type according to the Kӧppen classification, characterised by cool winters 

and warm summers. The mean annual temperature is 12.3 °C, and the mean annual rainfall of 

685.6 mm. The region typically has cool winters and warm summers. The dominant soil type, 

as indicated by the Australian soil classification map, is kurosols, characterised by a dark brown 

colour. Kurosols are characterised by contrasting textures, featuring a sandy topsoil and acidic 

clay-rich subsoil. Soil depth is typically between 0.75 m to 1 m at the study site, according to 

Soil and Landscape Grid of Australia (SLGA). 

A nutrient experiment trial covering 3.26 ha was established in 1993 (Fig. 3.1), covering 34 

plots in size from 770 m2 to 1,160 m2. Nine treatment groups (A, B, …, I) featuring various 

fertilization levels were replicated three or four times. Treatment A served as the control group, 

which received no fertilization. Treatments A to F were thinned in 2011, while Treatments G 

to I were thinned in 2019. Additionally, weed control measures were applied in Treatments B 

and D at planting. 

Phosphorus (P) fertilizer was initially applied to individual trees at varying rates. Two 

additional rounds of broadcast fertilization with nitrogen (N), phosphorus (P), and biosolids 

were applied between 1998 and 2019. Over the years, Treatments C and D received 90 kg/ha 

of N and 100 kg/ha of P. Treatments E, F, G, and H received 72 kg/ha of N and 80 kg/ha of P. 

Treatment I received N at a rate of 272 kg/ha and P at 157 kg/ha. Finally, 30 t/ha biosolids were 
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applied to Treatments E and H and 50 t/ha to Treatment F. See Table 3.1 for a summary of 

fertilization history. 

 

Fig. 3.1.  Overview of the study site in Durham, Victoria, Australia in the near-infrared 
composite. The image was acquired in October 2023 as part of an airborne campaign. 
Polygons indicate the plot boundaries. Letters A-I represent nutrient treatments. 

 

3.2 Field Data Collection and Analysis 

3.2.1 Field data collection 

Needle samples were collected from 19 plots in February 2021, and all 34 plots were sampled 

in October 2021, January 2023, and October 2023. Subsequently, laboratory analyses were 

conducted to determine needle N and P concentrations. The Dumas method was used for needle 

N determination (McGill and Figueiredo, 1993). Needle P concentration was measured with 

inductively coupled plasma optical emission spectroscopy (ICP-OES) on a nitric/hydrogen 

peroxide digest. One-way ANOVA was performed on ground-measured nutrient data to assess 

the effects of different treatments. Post-hoc analysis with Tukey's Honestly Significant 
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Difference at α < 0.05 was implemented to determine the pairwise differences among treatment 

groups. 

Table 3.1  Fertilization history for the nine treatment groups from 1993 to 2019. P 
fertilizers were applied to individual trees in 1993; N, P, and biosolids were applied in 
1998/1999 and 2019. 
Treatment  1993   1998/1999   2019 
  P (g/Tree)  N 

(kg/ha) 
P 
(kg/ha) 

 N 
(kg/ha) 

P 
(kg/ha) 

Biosolids 
(t/ha) 

A  0  0 0  0 0 0 
B  100  0 0  0 0 0 
C  23  90 100  0 0 0 
D  23  90 100  0 0 0 
E  22  72 80  0 0 30 
F  22  72 80  0 0 50 
G  22  72 80  0 0 0 
H  22  72 80  0 0 30 
I  22  72 80  200 77 0 

 

3.2.2 Field data analysis 

The ground-measured needle N and P concentration displayed different levels of variability 

across treatment groups and dates (Fig 3.2). Plots that received the same level of fertilization 

maintained a consistent nutrient concentration over the study period (p-value < 0.05 for within-

treatment ANOVA).  

Needle N concentration ranged from 9.02 to 12.05 g/kg across datasets (Table. 3.2). The highest 

mean level (13.24 g/kg) and the lowest variability (CV = 0.07) of needle N concentration were 

observed in the 2021-Feb dataset. The 2023-Oct dataset showed the highest variability (CV = 

0.12) and mean value (12.00 g/kg) in needle N observations among four datasets. Overall, 

needle P measurements displayed higher level of variability (CV = 0.26-0.33) than needle N 

(CV = 0.07-0.12). The highest mean value of needle N was observed in the 2023-Oct dataset 

(1.20 g/kg), while the lowest was in the 2021-Oct dataset (0.98 g/kg). Needle P measurements 

in the 2023-Jan dataset displayed the highest level of variability (CV = 0.33), followed by the 

2023-Oct dataset (CV = 0.29), and the two datasets in 2021 (CV = 0.26). 
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Fig 3.2. (a, b) Variability across dates and treatments for (a) needle N and (b) P 
concentrations (g/kg) for the four datasets. Over the years, Treatments C and D received 
90 kg/ha of N and 100 kg of P. Treatments E, F, G and H received 72 kg/ha of N and 80 
kg/ha of P. Treatment I received 272 kg/ha N and 157 kg/ha P. Biosolids were also applied 
at a rate of 30 t/ha to Treatments E and H and 50 t/ha to Treatment F.  

 

Within each dataset, needle N and P measurements showed significant differences (p-value < 

0.05) across treatment groups, reflecting the various fertilization levels. However, post-hoc 

analysis using Tukey's honestly significant difference procedure (See Appendix 3 Table A3.1 

and Table A3.2) revealed a lack of pairwise variability in needle N concentration in the 2023-

Jan and 2023-Oct datasets. Only one pair of treatments differed significantly from each other 

(p-value < 0.05) in N measurements for the 2023-Jan dataset, and two pairs for the 2023-Oct 

dataset. Therefore, the variability in N concentration in the remaining treatment groups in these 

two datasets was limited despite their different fertilization levels.  

 

 

 

 

(a) 

(b) 
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Table. 3.2 Summary of needle N and P measurements from four individual datasets and 
the combined dataset.  

Dataset Sample 
size n 

Needle N (g/kg) 
Mean Min. Max. Stda CVb 

2021-Feb 19 13.24 11.80 15.06 0.94 0.07 
2021-Oct 34 11.71 9.90 13.90 1.11 0.10 
2023-Jan 34 11.79 9.10 14.40 1.31 0.11 
2023-Oct 34 12.00 9.02 14.24 1.46 0.12 
All 119 12.05 9.02 15.06 1.34 0.11 
    Needle P (g/kg) 

  Mean Min. Max. Stda CVb 
2021-Feb 19 1.05 0.65 1.54 0.28 0.26 
2021-Oct 34 0.98 0.52 1.49 0.25 0.26 
2023-Jan 34 1.07 0.61 2.10 0.35 0.33 
2023-Oct 34 1.20 0.64 1.78 0.34 0.29 
All 119 1.08 0.52 2.10 0.32 0.30 

a The unit of standard deviation (Std) is (g/kg) 
 b The coefficient of variation (CV) is unitless 
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Chapter 4  
Distinct contribution of the blue 
spectral region and far-red solar-
induced fluorescence to needle nitrogen 
and phosphorus assessment in 
coniferous nutrient trials with 
hyperspectral imagery 
 

 

Highlights 

• SIF and RTM-derived traits effectively explained needle N and P variability across four 

independent datasets collected over three years. 

• SIF yielded the most critical contribution among traits to explain the variability in 

needle P. 

• RTM-derived Cab was the most important contributor when accounting for the 

variability in needle N. 

• The blue spectral region was revealed to be sensitive to variability in needle P but not 

N. 

 

Abstract 

Accurate monitoring of plant nutrient status, especially nitrogen (N) and phosphorus (P) 

content, via remote sensing can facilitate precision forestry, with environmental and 

management benefits. In previous studies, plant traits derived from hyperspectral data via 

radiative transfer models (RTMs) and solar-induced chlorophyll fluorescence (SIF) effectively 

explained the observed variability in leaf N concentrations in crops. However, their 

contribution to leaf P concentration is unknown. Furthermore, such an approach might not be 
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transferrable to coniferous stands, which are structurally complex and heterogeneous. We 

evaluated the potential of using physiological plant traits derived from airborne hyperspectral 

imagery to explain the observed variability in needle N and P concentrations in Pinus radiata 

D. Don (radiata pine) with four datasets collected over three years in established nutrient trials. 

RTM-derived data on pigment content in needles, including chlorophyll a+b (Cab), carotenoid 

(Car), and anthocyanin contents (Anth), as well as SIF quantified at the O2A absorption band 

(SIF760), explained variability in N (R2 = 0.67–0.97 and NRMSE = 0.07–0.30) and P 

concentrations (R2 = 0.60–0.95 and NRMSE = 0.09–0.27) in needles. Although Cab was the 

most important predictor of needle N concentration (ranking Cab > Anth > SIF760 > Car), SIF760 

contributed the most to explain the variability of needle P concentration (SIF760 > Anth > Cab > 

Car). Moreover, the blue spectral region was essential for assessing P but not for explaining N 

variability in needles. Among all reflectance-based indices and inverted traits evaluated, the 

blue indices best explained the variability in needle P concentration, followed by Cab, Car, and 

Anth. The study revealed the distinct contribution of far-red SIF vs. the blue spectral region for 

needle P compared to needle N, describing new insights for the physiological assessment of 

nutrient levels in forest stands using hyperspectral imagery. 

 

4.1 Introduction 

Pinus radiata D. Don (radiata pine) is the dominant softwood species in plantation forests of 

Australia and worldwide, accounting for 69% of the total area of softwood plantations in 

Australia (Legg et al., 2021a). Soil nitrogen (N) and phosphorus (P) concentration are key 

factors limiting radiata pine growth (Will and Hodgkiss, 1977; Watt et al., 2005b). N and P 

deficiencies lead to reduced wood production and thus economic losses. However, the 

excessive application of N and P fertilizers is costly and environmentally harmful (Fields, 2004; 

Chen et al., 2022). The timely and accurate monitoring of nutrient status in pine is vital for 

precision forestry and sustainability. Standard methods for assessing the nutritional status of 

pine trees rely on destructive sampling of needles and biochemical analysis in the laboratory, 

which is laborious and impractical for large-scale monitoring. Alternatively, advanced imaging 

spectroscopy provides non-destructive, efficient nutrient monitoring and mapping in forest 

stands (Wessman et al., 1988; Smith et al., 2002; Smith et al., 2003; Townsend et al., 2003; 

Martin et al., 2008; Sims et al., 2013).  
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Most spectral-based methods for leaf N estimation rely on chlorophyll-related indices, as N is 

a major component of chlorophyll protein complexes (Evans, 1989). Variations in chlorophyll 

levels can be captured based on fluctuations in its absorption features in the blue and red regions 

(McConnell et al., 2010). The red-edge region (~670–780 nm) has been widely exploited due 

to its high sensitivity to chlorophyll. For example, the optical index R750/R710 was proposed as 

an indicator of chlorophyll content that is robust in regard to the effects of canopy structure and 

shadows in forest stands (Zarco-Tejada et al., 2001). The chlorophyll red-edge index (CI) 

proposed by Gitelson et al. (2003) was subsequently shown to be insensitive to the effects of 

leaf thickness and closely related to leaf N status (Clevers and Gitelson, 2013b). Nevertheless, 

upscaling indices to the canopy level introduces complexities due to soil background effects, 

canopy structure, and non-vegetation components (Haboudane et al., 2002; Homolová et al., 

2013; Croft et al., 2014). Combined indices were therefore proposed to accommodate such 

factors by integrating physiological and structural indices, such as the Transformed 

Chlorophyll Absorption Index (TCARI) normalized by the Optimized Soil-Adjusted 

Vegetation Index (OSAVI) in the form of TCARI/OSAVI (Haboudane et al., 2002; Eitel et al., 

2008). However, the performance of such indices in estimating chlorophyll content is poorer 

in conifers than in broadleaf crop species due to the increased complexity and heterogeneity of 

the canopy structure and background effects in coniferous stands (Croft et al., 2014). Another 

limitation of using chlorophyll indicators to assess leaf N concentration is saturation that occurs 

at high chlorophyll and high LAI levels (Wu et al., 2008), hindering the accurate quantification 

of variations in chlorophyll content in well-managed crop and forest canopies.   

Radiative transfer modelling (RTM) provides a robust alternative to chlorophyll indices for leaf 

N assessment by quantifying several leaf and canopy traits concurrently, exploiting the full 

spectrum rather than individual spectral bands and indices (Ustin et al., 2009). RTMs can also 

account for the effects of canopy and soil background when interpreting top-of-canopy (TOC) 

reflectance (Meroni et al., 2004). Most recent studies have adopted a hybrid approach to leaf 

N assessment—using plant functional traits derived by RTM inversion, e.g., equivalent water 

thickness (Cw), dry matter content (Cm), chlorophyll a + b content (Cab), carotenoid content 

(Car), anthocyanin content (Anth), and leaf area index (LAI) to build models to predict leaf N 

through an empirically-based framework. Wang et al. (2018b) used leaf protein content derived 

from the coupled PROSPECT-5 (Feret et al., 2008b) and INFORM (Schlerf and Atzberger, 

2006) model to predict leaf N based on canopy reflectance, achieving a prediction accuracy 

(R2) of 0.64 in mixed-species forests. Camino et al. (2018b) demonstrated a strong relationship 
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between leaf N and functional traits retrieved from the coupled PROSPECT (Jacquemoud and 

Baret, 1990) and SAILH (Baret et al., 1992) models in wheat (Triticum aestivum), which 

yielded an R2 between 0.68 and 0.75. Although these results are promising, they are 

inconsistent across species regarding model choice and the selection of functional traits as 

indicators to explain the variability in leaf N concentration. Hence, whether this physical–

empirical hybrid modelling method could be used to estimate N concentration in the needles 

of coniferous species requires further study to evaluate its performance and the relative 

contributions of the traits to explaining the variability in N concentration. Increasing efforts 

have focused on developing advanced models for the early detection of stress before symptoms 

become visible (e.g., decreases in pigment content), in order to avoid further irreversible 

damages such as stunt growth and yield loss. These methods rely on detecting subtle changes 

in photosynthetic pigment concentrations and structures by tracking radiation pathways of 

vegetation–light interactions (i.e., photochemistry, chlorophyll fluorescence and heat 

dissipation) (Hernández-Clemente et al., 2019a). Even under unstressed conditions, plants 

absorb more radiation than they can utilize for photosynthetic activities. The excessive energy 

is dissipated through non-photochemical quenching (NPQ) (Müller et al., 2001) or re-emitted 

as solar-induced chlorophyll fluorescence (SIF) (Mohammed et al., 2019). When abiotic and 

biotic stress further restrict photosynthetic metabolism, the rates of NPQ or SIF emissions vary 

correspondingly, thus serving as indicators of disturbed photosynthetic activity (Müller et al., 

2001; Krause and Jahns, 2004).  In the context of needle nutrient assessment, given that N and 

P are both essential for photosynthesis (Evans, 1989; Carstensen et al., 2018), the nutrient 

deficiency would consequently disturb the partitioning of absorbed light energy and the light 

absorption process.  

The Photochemical Reflectance Index (PRI) (Gamon et al., 1992b; Gamon et al., 1997a) has a 

close linkage with the xanthophyll cycle, an NPQ mechanism activated in plants under stress 

(Demmig-Adams and Adams, 1996). The xanthophyll cycle involves the inter-conversion 

between violaxanthin and its de-expoxidized state: antheraxanthin and then zeaxanthin, which 

contributes to the heat disspation (i.e., NPQ). This inter-conversion process can be detected in 

reflectance at 531nm, which is used for PRI calculation (Gamon et al., 1997a). It has been 

proven that PRI is closely related to N and P status in the needles of radiata pine seedlings 

(Watt et al., 2020) and is sensitive to water-stress conditions in olive and peach (Suárez et al., 

2009b), grapevine (Zarco-Tejada et al., 2013d), and other crop species. However, PRI is 

sensitive to canopy structure, other leaf pigments, and illumination conditions (Peguero-Pina 
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et al., 2008; Suárez et al., 2008; Hernández-Clemente et al., 2011). To account for these effects, 

different variations of PRI indices were proposed. For instance, Garrity et al. (2011) multiplied 

PRI by the Chlorophyll Index (CI) (Gitelson et al., 2003) to cancel the effect of chlorophyll on 

PRI and obtained an accurate estimation of carotenoid content. With the aim of eliminating the 

canopy effects on PRI quantification, Hernández-Clemente et al. (2011) proposed various PRI 

modifications (PRIm) with different reference wavelengths. PRIm1 was found less sensitive to 

changes in canopy structure compared to PRI and highly related to water-stress indicators such 

as stomatal conductance. A normalized PRI (PRIn) was developed by Zarco-Tejada et al. 

(2013d) to account for both canopy and pigment effects simultaneously. The authors observed 

a strong relationship between PRIn and Crop Water Stress Index (CWSI) (Jackson et al., 1981), 

a thermal indicator of water stress. 

SIF has also been widely used as a pre-visual diagnostic tool for stress detection, as it competes 

with photosynthesis and NPQ for absorbed radiation (see Ač et al. (2015), Meroni et al. (2009), 

and Mohammed et al. (2019), for comprehensive reviews). SIF signals originating from 

chlorophyll a exhibit two peaks, in the red (685 nm) and far-red region (740 nm), respectively. 

Chlorophyll fluorescence can be used to track water stress (Pérez-Priego et al., 2005; Zarco-

Tejada et al., 2009; Zarco-Tejada et al., 2013b; Xu et al., 2021) and nutrient levels (Corp et al., 

2003; Sun et al., 2020). Airborne SIF improved the assessment accuracy of leaf N concentration 

in wheat (Camino et al., 2018b) and almond (Wang et al., 2022) when SIF was included along 

with RTM-based chlorophyll content in models that explain the observed variability in leaf N 

concentration. However, whether such methods can be used to estimate nutrient status in radiata 

pine in light of the multiple uncertainties faced with SIF quantification, especially the 

anisotropy of the canopy, has not been evaluated. Due to the overlap of the SIF emission 

spectrum with the chlorophyll absorption spectrum, the emitted fluorescence is re-absorbed 

and scattered by leaves (Porcar-Castell et al., 2014; Hernández-Clemente et al., 2017b). 

Malenovský et al. (2021b) used model simulations to investigate the impact of canopy structure 

on canopy SIF. They concluded that the multi-angular anisotropy of SIF in both red and far-

red regions was related to the leaf-clumping effect, canopy density, and non-wood parts in 

heterogeneous forest stands. Hence, canopy anisotropy should be accounted for to decouple 

SIF signals from the apparent reflectance spectrum, especially for heterogeneous canopies such 

as coniferous stands. 

Research on another important nutrient element, leaf P, using remotely sensed data is much 

more limited, although P plays a key role in plant growth (Will & Hodgkiss, 1977). The lack 
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of absorption features and the low levels of this nutrient lead to lower prediction accuracy (Watt 

et al., 2019). Most studies assessing leaf P concentration have relied on empirical methods in 

which reflectance data or its transformed forms are used as inputs for partial least-squares 

regression (PLSR) models (Pimstein et al., 2011; Ramoelo et al., 2013; Li et al., 2018), with 

neural networks (Mutanga and Kumar, 2007) yielding a moderate estimation accuracy (R2 of 

0.42 to 0.80). Despite the inconsistency in the reported spectral wavelengths for leaf P 

estimation and the different numbers of model inputs among these studies, red-edge, near-

infrared (NIR), and shortwave infrared (SWIR) regions are usually selected as potential 

indicators for leaf P. Nevertheless, these empirically-based nutrient modelling methods suffer 

from the lack of transferability to other datasets. In this study, we explored plant parameters 

retrieved from airborne hyperspectral imagery to explain the observed variability in needle N 

and P concentrations using four datasets collected across three years in radiata pine nutrient 

trials. We evaluated the contributions of functional traits, such as SIF emission and RTM-

derived biochemical constituents, for N and P assessment. We also quantified the contributions 

of spectral traits related to the blue spectral region (400 to 500 nm), revealing the different 

relative importance of blue-related traits and indices to explain the variability in needle N and 

P concentrations. 

Several studies have attempted to predict N and P using hyperspectral data (Mutanga and 

Kumar, 2007; Wu et al., 2008; Pimstein et al., 2011; Ramoelo et al., 2013; Abdel-Rahman et 

al., 2017; Li et al., 2018; Siedliska et al., 2021a; Liu et al., 2023). Nevertheless, the present 

study’s novelty lies in the application of RTM-derived functional traits combined with SIF for 

explaining the variability of needle N and P in a coniferous nutrient trial. Such an approach has 

been previously proven successful in agriculture for leaf N status assessment (Camino et al., 

2018b; Belwalkar et al., 2022; Wang et al., 2022) although the investigation of SIF and the 

blue region for needle P variability assessment has not been carried out. This is the first attempt 

to adopt such a physically based modelling approach to explain the variability of needle P in a 

nutrient trial across years, as the majority of studies on leaf P still rely on empirical modelling 

without a detailed assessment of the physiological traits that are more sensitive to needle P 

deficiency. 

 

4.2 Methods 

4.2.1 Airborne data collection and processing 
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Narrow-band hyperspectral images (Fig. 4.1a) were acquired concurrently with field sampling 

on February 2, 2021, October 27, 2021, January 11, 2023, and October 2, 2023 under clear sky 

at solar noon using a line-scanning hyperspectral sensor onboard the piloted Cessna-172 

aircraft operated by HyperSens Laboratory, the University of Melbourne's Airborne Remote 

Sensing Facility. The hyperspectral imager acquired 358 bands covering the 400–1000 nm 

spectral region with a full width at half-maximum (FWHM) of 5.8 nm and an angular field of 

view (FOV) of 66° (Headwall Photonics, Fitchburg, MA, USA). The images were collected at 

350 m above ground level (AGL), resulting in a spatial resolution of 0.2 m. Radiometric 

calibration was performed in an optics laboratory using a CSTM-USS-2000C integrating 

sphere (Labsphere, XTH2000C, Labsphere Inc., North Sutton, NH, USA) to convert digital 

numbers to radiance. We used the irradiance simulated by the SMARTS model (Gueymard, 

1995a) to perform the atmospheric correction on the radiometrically-calibrated imagery. The 

SMARTS model simulated the downwelling irradiance by simple transmittance 

parameterizations, accounting for various atmospheric extinction process, including Rayleigh 

scattering, aerosol extinction, the absorption by Ozone, Nitrogen dioxide, water vapor and 

mixed gas. The required meteorological inputs for the SMARTS model, including relative 

humidity and air temperature, were acquired from the nearest weather station. The aerosol 

optical depth at 550 nm was measured using a Microtops II Sunphotometer (Solar Light Co., 

Philadelphia, PA, USA) during the airborne campaigns.  Image orthorectification was carried 

out using PARGE software (ReSe Applications Schlapfe, Wil, Switzerland): the inputs were 

recorded by the onboard inertial measuring unit (VN-300-VectorNav Technologies LLC, 

Dallas, TX, USA) and synchronized with the hyperspectral imager.  

Image segmentation was applied to the reflectance imagery to identify pure vegetation pixels 

and to delineate individual tree crowns (Fig. 4.1b) using Fiji software (Abràmoff et al., 2004). 

Local thresholding algorithms were first applied to a NIR band (810 nm) and a structural index 

layer (NDVI > 0.6) in combination to separate the sunlit vegetation pixels from the soil 

background and within-crown shadows. The identified vegetation pixels were clustered to each 

object (i.e., individual tree crowns) using the watershed object-based approach with Euclidean 

distance (as in Zarco-Tejada et al. (2018a)). Delineated tree-crown polygons were then reduced 

by 75% to account for the high heterogeneity in the coniferous stands and the sensitivity of 

pigment and SIF to illumination conditions. In addition, spectral binning (binning factor = 3) 

and spectral smoothing with the Savitzky-Golay algorithm (Savitzky and Golay, 1964) were 

applied to the tree-crown reflectance to increase the signal-to-noise (SNR) ratio. The mean 
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reflectance and radiance of the tree-crown pixels belonging to the same plot were used to 

represent the plot-level spectral information. The segmentation results are illustrated in Fig. 

4.1c and Fig. 4.1d. 

 

 
Fig. 4.3. Overview of the study site in Durham, Victoria, Australia in the near-infrared 
composite. The image was acquired in October 2023 as part of an airborne campaign. 
Green polygons indicate the plot boundaries. Letters A-I represent nutrient treatments. 
(b) Example of segmented tree crowns. (c, d) The reflectance (c) and radiance spectra (d) 
of different scene components: soils (black dashed lines) and average vegetation spectra 
of the nine treatment groups (solid lines). 

 

4.2.2 Plant trait retrieval by PRO4SAIL2 model inversion 

(a) 

(b) (c) (d) 
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The two-layer RTM  PRO4SAIL2 model, which couples PROSPECT-D (Féret et al., 2017) and 

4SAIL2 (Verhoef and Bach, 2007), was employed to retrieve the biochemical and structural 

parameters of needles from pure tree crowns, including needle Cab, Car, and Anth and LAI. The 

choice of RTM was made based on two considerations: how realistic the model simulations 

represented the canopy architecture and whether the model could be efficiently inverted. 

Single-layer models like SAIL treat the canopy as homogeneous, which could not realistically 

represent coniferous canopies. Its updated version 4SAIL2 instead considers both the vertical 

and horizontal heterogeneity in the canopy. In a recent study conducted on radiata pines 

(Poblete et al., 2025), the authors compared the needle chlorophyll a + b retrieval accuracy 

from PRO4SAIL and PRO4SAIL2 inversion and concluded that the latter was more accurate 

due to the consideration of crown-level clumping effects in 4SAIL2 model. More complex 

three-dimensional models can provide more comprehensive descriptions of  forest canopies, 

such as the voxel-based Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-

Etchegorry et al., 2004) and the FLIGHT model (North, 1996) based on Monte Carlo 

simulation of photon transport. However, the parametrization and inversion of these three-

dimensional model could be rather difficult and computationally expensive. 

The selected 4SAIL2 model, which simulates the canopy as two separate layers, was initially 

designed to account for the vertical gradient in leaves (Verhoef and Bach, 2007). In the 

evergreen coniferous stands investigated in this study, the second layer represented the 

understory. Two parameters were varied to track the spectral effects of the understory layer: the 

fraction of brown leaf area (fb) and the layer dissociation factor (D). Additionally, the canopy 

clumping effects were accounted for by the vertical crown cover percentage (Cv) and tree shape 

factor (ξ). The former represented the vertically projected crown cover fraction, while the latter 

was defined as the ratio of crown diameter to the crown height at the crown's center above the 

ground. The soil background was considered a non-Lambertian surface in the integrated RTM. 

These clumping parameters were then used to modulate the optical quantities of the canopy 

layer so that they could approximate the heterogeneous canopy. Soil scattering effects were 

simulated by a Bidirectional Reflectance Distribution Function (BRDF) model. Additionally, 

the effect of soil moisture on soil reflectance was accounted for by the soil moisture parameter 

ranging between 0 and 1. The interaction between the soil background and the canopy layer 

was integrated using the four-stream adding method. In our study, we used the 4SAIL2-based 

soil reflectance and adjusted the value of the soil moisture parameter for each dataset. 
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PRO4SAIL2 was inverted using a look-up-table (LUT)-based approach in the wavelet domain 

(Suárez et al., 2021). For each dataset of plot-mean reflectance, a LUT with 500,000 

simulations was generated, where parameter values were randomly drawn from the uniform 

distribution within the pre-defined ranges. Parameter ranges (Table 4.1) were adjusted so that 

the simulated spectra enclosed the observed spectra and the median of simulated spectra was 

close to the median of observed spectra where the closeness was assessed based on RMSE 

values. Some parameter values were fixed to reduce the potential for multiple solutions. For 

example, Fig. 4.2 shows the agreement between simulated and observed reflectance spectra for 

the 2023-Oct dataset. Original simulated reflectance (400 to 2500 nm, FWHM = 1 nm) was 

then resampled to match the spectral characteristics of the hyperspectral imager (400–1000 nm, 

FWHM = 5.8 nm) using a Gaussian convolution method (Belwalkar et al., 2022).  

 

Fig. 4.4. Agreement between the median of the observed reflectance spectrum (orange 
line) and the median of the PRO4SAIL2 simulated spectrum (green line) for the 2023-
Oct dataset. The spectral ranges of 500,000 PRO4SAIL2 simulations are indicated by the 
shaded blue area. 

 

Continuous wavelet transform (CWT) (Strang and Nguyen, 1996) is an effective signal-

processing method that enables the decomposition of complex signals at various scales. In the 

context of plant trait retrieval using hyperspectral data, CWT helps decouple the overlapping 

absorption features and remove noises. After the transformation of original spectra, broad 

absorption features were captured at higher scales while the narrow features were made 

perceivable at lower scales, thus improving the estimation accuracy of target plant 
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trait(Blackburn, 2007; Rivard et al., 2008). Several studies have employed CWT on the leaf or 

canopy reflectance spectrum to identify effective spectral features in the wavelet domain for 

the estimation of leaf chlorophyll content (Blackburn and Ferwerda, 2008; Xiao et al., 2024), 

leaf water content (Cheng et al., 2011), leaf dry matter content and specific leaf area (Ali et al., 

2016). Recently, (Suárez et al., 2021) combined CWT with the inversion of the coupled 

Fluspect-Cx and 4AIL model to retrieve leaf pigments from airborne hyperspectral data 

collected over shiraz vineyards. The authors found strong relationships between the retrieved 

traits and their target variables related to grape aromatic components.  

Table 4.3 Ranges of PRO4SAIL2 input parameters for LUT generation for individual 
datasets. 

Parameter Unit 
Value/range 

2021-Feb 2021-Oct 2023-Jan 2023-Oct 

Leaf/needle parameters (Layer 1: green layer) 

Chlorophyll a+b content (Cab) µg/cm2 [20, 88] [15, 80] [25, 65] [20, 60] 

Carotenoid content (Car) µg/cm2 [5, 20] [5, 20] [1, 20] [1, 20] 

Anthocyanin content (Cbrown) µg/cm2 [1, 5] [1, 5] [1, 6] [1, 10] 

Brown pigment content (Anth) µg/cm2 0 

Dry matter content (Cm) g/cm2 [0.005, 
0.016] 

[0.012, 
0.027] 

[0.012, 
0.027] 

[0.011, 
0.020] 

Equivalent water thickness (Cw) g/cm2 0.08 0.08 0.08 0.09 

Mesophyll structure coefficient 
(Nstruct) - [1.8, 2.5] [1, 2.3] [1, 2] [1, 2.3] 

Leaf/needle parameters (Layer 2: brown layer) 

Chlorophyll a+b content 
(Cab_b) µg/cm2 20 22 28 20 

Carotenoid content (Car_b)  µg/cm2 6 10 15 12 

Anthocyanin content (Anth_b) µg/cm2 4 4 5 4 

Brown pigment content 
(Cbrown_b) µg/cm2 0 0.2 0.2 0.2 

Dry matter content (Cm_b) g/cm2 0.040 0.024 0.018 0.010 

Equivalent water thickness 
(Cw_b) g/cm2 0.080 0.070 0.030 0.060 

Mesophyll structure coefficient 
(Nstruct_b)  - 1.3 1.3 1.3 1.3 
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Parameter Unit 
Value/range 

2021-Feb 2021-Oct 2023-Jan 2023-Oct 

Canopy structural parameters 

Total crown leaf area index for 
clumped vegetation (LAI) m2/m2 [1.0, 6.8] [1.5, 6] [2.0, 6.4] [2.5, 6.5] 

Leaf inclination distribution 
function parameter a (LIDFa) - -0.35 

Leaf inclination distribution 
function parameter b (LIDFb) - -0.15 

Vertically projected crown 
cover fraction (Cv) - [0.87, 

0.97] 
[0.96, 
0.99] 

[0.48, 
0.76] 

[0.66, 
0.98] 

Tree shape factor (ξ)  - [0.50, 
0.60] 

[0.30, 
0.50] 

[0.60, 
0.80] 

[0.55, 
0.75] 

Fraction brown leaf area (fB)  - 0.15 [0.35, 
0.50] [0.45 0.55] [0.30, 

0.35] 

Layer dissociation factor (D) - 0.30 0.70 0.75 0.07 

Hot spot parameter (Hot) - 0.01 

Sun zenith angle (tts) deg. 52.73 42.79 71.77 51.74 

Observed angle (tto)  deg. 0 

Relative azimuth angle (psi)   deg. 0 

 

In this study, we applied CWT to both the observed plot-mean reflectance spectra and simulated 

section in LUTs. The second-derivative Gaussian wavelet was chosen as the kernel function, 

as it best described the shapes of absorption features in the canopy reflectance (le Maire et al., 

2004). CWT was implemented over six scales using the R package 'ifultools' (Constantine and 

Kaluzny, 2022), with the shift parameter set to 5. The accuracy of estimating N and P 

concentrations in needles retrieved at each wavelet scale was estimated via modelling, as 

described in Section 4.2.5. For each dataset, the wavelet scale at which the retrieved functional 

traits provided the best overall performance for predicting needle N or P concentrations was 

selected. The overall performance of a certain wavelet scale was represented by the average R2 

of needle N or P models with different combinations of functional traits as inputs.  

The RTM inversion was carried out in MATLAB (Statistics and Machine Learning toolbox; 

MathWorks Inc., Natick, MA, USA). Using the wavelet-transformed spectra for each dataset, 
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the LUT was queried to identify the closest 1% of simulations with each observed spectrum, 

where the RMSE represents the closeness between the simulation and observation (Eq. 4.1). 

RMSE =  �1
n
∑ (robsk − rsimk )n
k=1                                          Eq. 4.1 

where robsk  and rsimk   represent the observed and simulated reflectance at the kth band in the 

wavelet domain, respectively, and n is the total number of bands. The plant trait values of each 

observation were then calculated as the weighted average of plant functional traits in these 1% 

simulations (Eq. 4.2), where Y is the trait value for the observation; Wi is the weight of the ith 

simulation in the selected S LUT entries (i.e., 500); and Xi is the corresponding trait value of 

the ith simulation. 

𝑌𝑌 = ∑ (𝑊𝑊𝑖𝑖 × 𝑋𝑋𝑖𝑖)𝑆𝑆
𝑖𝑖=1 /∑ 𝑊𝑊𝑖𝑖

𝑆𝑆
𝑖𝑖=1                                             Eq. 4.2 

The weight of each simulation was determined by the RMSE value using Eq. 4.3. 

𝑊𝑊𝑖𝑖 = 1 − [((RMSE𝑖𝑖 − min(RMSE)) /(max(RMSE) − min(RMSE))]       Eq. 4.3 

This inversion strategy allowed all four target variables (i.e., Cab, Car, Anth, and LAI) to be 

retrieved simultaneously. 

Due to the lack of measurements of needle pigment concentration and LAI, the accuracy of 

retrieved plant traits based on PRO4SAIL2 inversion couldn’t be assessed. However, we 

applied the methodology to a synthetic dataset for a better understanding of the errors 

embedded in the designed retrieval method. A set of 1,000 simulations was extracted from the 

LUT with 500,000 entries. Another 100,000 simulations were extracted from the same LUT to 

create a small LUT. We then added 1% signal-dependent noise to the 1,000 simulations to 

represent the reflectance extracted from the image prone to noise related to atmospheric 

correction and other factors intrinsic to the sensors. Plant traits (i.e., C¬ab, Car, Anth and LAI) 

were retrieved from the small LUT for both the 1,000 simulations and those with noise. Results 

of the synthetic validation are presented in Fig. 4.3. 



45 
 

 

Fig. 4.5. Results of inverted plant traits using a synthetic dataset of 1000 simulations from 
the LUT (n = 100,000) without noise (orange) and with 1% random noise (blue). *p-
value<0.05; **p-value<0.01; ***p-value< 0.001; n.s.=not significant 

 

4.2.3 Calculation of narrow-band Hyperspectral indices (NBHIs)  

A selection of 66 NBHIs was quantified from the plot-mean reflectance (Table 4.2; see 

Appendix Table A4.1 for the comprehensive list). These NBHIs were used as indicators of 

canopy structure (e.g., Normalized Difference Vegetation Index [NDVI], Enhanced Vegetation 

Index [EVI], Optimized Soil-Adjusted Vegetation index [OSAVI]), chlorophyll content (e.g., 

TCARI/OSAVI, Modified Chlorophyll Absorption Index [MCARI]), xanthophyll content (e.g., 

Photochemical Reflectance Index [PRI] and its variations), and blue indices (e.g., BFx, NPQI). 

The multi-collinearity among plot-level NBHIs was then assessed using variance inflation 

factor (VIF) analysis (Gareth et al., 2013). Indices with VIF > 5 (Akinwande et al., 2015) were 

considered to be collinear and discarded. Only non-collinear NBHIs were used as predictors 

for needle N and P concentrations. 
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Table 4.4 Equations of narrow-band hyperspectral indices (NBHIs) presented in this 
study. Rλ represents the reflectance at λ nm wavelength. 

Index Equation Reference 
Structural indices  
NDVI (𝑅𝑅800 − 𝑅𝑅670)/(𝑅𝑅800 + 𝑅𝑅670)  Rouse et al. (1974b) 
EVI 2.5(𝑅𝑅800 − 𝑅𝑅670)/(𝑅𝑅800 + 6𝑅𝑅670 − 7.5𝑅𝑅400 +

1)  
Liu and Huete (1995) 

RDVI (𝑅𝑅800 − 𝑅𝑅670)/�(𝑅𝑅800 + 𝑅𝑅670)  Roujean and Breon (1995) 
OSAVI (1 + 0.16) × (𝑅𝑅800 − 𝑅𝑅670)/((𝑅𝑅800 + 𝑅𝑅670

+ 0.16) 
Rondeaux et al. (1996) 

MCARI [(𝑅𝑅700 − 𝑅𝑅670) − 0.2(𝑅𝑅700
− 𝑅𝑅550)] × (𝑅𝑅700 𝑅𝑅670)⁄  

Daughtry et al. (2000) 

MCARI1 1.2[2.5(𝑅𝑅800 − 𝑅𝑅670) − 1.3(𝑅𝑅800 − 𝑅𝑅550)]  Haboudane et al. (2004a) 
  
Chlorophyll a + b indices  
TCARI 3[(𝑅𝑅700 − 𝑅𝑅670) − 0.2(𝑅𝑅700

− 𝑅𝑅550) × (𝑅𝑅700 𝑅𝑅670)]⁄  
Haboudane et al. (2002) 

TCARI/ 
OSAVI  

3[(𝑅𝑅700−𝑅𝑅670)−0.2(𝑅𝑅700−𝑅𝑅550)×(𝑅𝑅700 𝑅𝑅670)]⁄
(1+0.16)(𝑅𝑅800−𝑅𝑅670)/(𝑅𝑅800+𝑅𝑅670+0.16)

  Haboudane et al. (2002) 

CTR1 𝑅𝑅695 𝑅𝑅420⁄   Carter (1994) 
SRPI 𝑅𝑅430 𝑅𝑅680⁄   Peñuelas et al. (1995b) 
PSSRa 𝑅𝑅800 𝑅𝑅675⁄   Blackburn (1998) 
PSSRb 𝑅𝑅800 𝑅𝑅635⁄   Blackburn (1998) 
PSSRc 𝑅𝑅800 𝑅𝑅470⁄   Blackburn (1998) 
PSNDc (𝑅𝑅800 − 𝑅𝑅470)/(𝑅𝑅800 + 𝑅𝑅470)  Blackburn (1998) 
NPCI (𝑅𝑅680 − 𝑅𝑅430)/(𝑅𝑅680 + 𝑅𝑅430) Peñuelas et al. (1994) 
DCabCxc 𝑅𝑅672/(𝑅𝑅550 × 3𝑅𝑅708) Datt (1998) 
DNCabCxc 𝑅𝑅860/(𝑅𝑅550 × 𝑅𝑅708)  
PSRI (𝑅𝑅680 − 𝑅𝑅500)/𝑅𝑅750 Merzlyak et al. (1999) 
VOG1 𝑅𝑅740 𝑅𝑅720⁄   Vogelmann et al. (1993) 
VOG2 (𝑅𝑅734 − 𝑅𝑅747)/(𝑅𝑅715 + 𝑅𝑅726)  Vogelmann et al. (1993) 
VOG3 (𝑅𝑅734 − 𝑅𝑅747)/(𝑅𝑅715 + 𝑅𝑅720) Vogelmann et al. (1993) 
CI 𝑅𝑅750 𝑅𝑅710⁄  Zarco-Tejada et al. (2001) 
  
PRI indices  
PRI (𝑅𝑅570 − 𝑅𝑅531)/(𝑅𝑅570 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRI515 (𝑅𝑅515 − 𝑅𝑅531)/(𝑅𝑅515 + 𝑅𝑅531)  Hernández-Clemente et 

al. (2011) 
PRIm1 (𝑅𝑅512 − 𝑅𝑅531)/(𝑅𝑅512 + 𝑅𝑅531)  Hernández-Clemente et 

al. (2011) 
PRIm2 (𝑅𝑅600 − 𝑅𝑅531)/(𝑅𝑅600 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRIm3 (𝑅𝑅670 − 𝑅𝑅531)/(𝑅𝑅670 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRIm4 (𝑅𝑅570 − 𝑅𝑅531 − 𝑅𝑅670)/(𝑅𝑅570 + 𝑅𝑅531 + 𝑅𝑅670)  Hernández-Clemente et 

al. (2011) 
PRIn PRI570/[RDVI × (𝑅𝑅700 𝑅𝑅670⁄ )]  Zarco-Tejada et al. 

(2013d) 
PRI·CI [(𝑅𝑅570 − 𝑅𝑅530)/(𝑅𝑅570 + 𝑅𝑅530)](𝑅𝑅760 𝑅𝑅700⁄ − 1)  Garrity et al. (2011) 
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Index Equation Reference 
Blue indices  
NPQI (𝑅𝑅415 − 𝑅𝑅435)/(𝑅𝑅415 + 𝑅𝑅435)  Peñuelas et al. (1995b) 
BF1 𝑅𝑅400 𝑅𝑅410⁄   Zarco-Tejada et al. 

(2018a) 
BF2 𝑅𝑅400 𝑅𝑅420⁄   Zarco-Tejada et al. 

(2018a) 
BF3 𝑅𝑅400 𝑅𝑅430⁄   Zarco-Tejada et al. 

(2018a) 
BF4 𝑅𝑅400 𝑅𝑅440⁄   Zarco-Tejada et al. 

(2018a) 
BF5 𝑅𝑅400 𝑅𝑅450⁄   Zarco-Tejada et al. 

(2018a) 
BRI1 𝑅𝑅400 𝑅𝑅690⁄   Zarco-Tejada et al. (2012) 
BRI2 𝑅𝑅450 𝑅𝑅690⁄   Zarco-Tejada et al. (2012) 

 

4.2.4 Quantification of solar-induced fluorescence  

Solar-induced fluorescence (SIF) was quantified using the Fraunhofer Line Depth (FLD) 

method (Plascyk and Gabriel, 1975), which is based on the SIF in-filling effects at narrow dark 

absorption bands where the solar irradiance is largely reduced, allowing the contribution of SIF 

to the apparent radiance to be more easily detected. SIF quantified through FLD methods at a 

moderate spectral resolution (> 1.0 nm FWHM) shows sensitivity to plant stress, including 

nutrient status (Camino et al., 2018b; Watt et al., 2020; Belwalkar et al., 2022; Raya-Sereno et 

al., 2022; Wang et al., 2022), water stress (Zarco-Tejada et al., 2012; Panigada et al., 2014), 

and biotic stress (Calderón et al., 2013; Zarco-Tejada et al., 2018a). 

The 3FLD method (Maier et al., 2004) was used to calculate far-red SIF at the O2-A absorption 

band (SIF760) from the radiance data at the plot level. This method requires irradiance (E) and 

radiance (L) spectra as inputs. E was simulated by the SMARTS model using meteorological 

inputs from weather stations near the study site and Microtops II Sunphotometer measurements 

(i.e., aerosol optical depth at 500 nm, angstrom wavelength exponent below 500 nm, and 

relative air mass). To implement the 3FLD method, E and L measurements at three bands were 

identified for each spectrum: one within the O2-A absorption window, and the other two 

reference bands located at the left and right shoulder of the absorption feature, respectively. 

For narrow-band hyperspectral imagery, the absorption band was located at 762 nm, 

corresponding to the E or L minimum in the absorption window (755–765 nm); the reference 

bands were located at the E or L minimum at 750–755 nm and 771–776 nm. An empirical 

rescaling approach using non-fluorescent targets (i.e., bare soil pixels in the scene) as 
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references was used to correct the negative raw airborne SIF values resulting from atmospheric 

effects and the calibration process (Bandopadhyay et al., 2019). 

 

4.2.5 Modelling methods to explain the variation in needle N and P concentrations  

Predictive models for needle N and P concentrations were built independently for the 2021-

Feb, 2021-Oct, 2023-Jan, and 2023-Oct datasets at the plot level. Each dataset contained the 

ground needle N and P measurements used for model training and validation and airborne-

derived parameters, including 1) four plant traits retrieved from PRO4SAIL2 (i.e., Cab, Car, Anth, 

and LAI); 2) SIF760; and 3) non-collinear NBHIs. The models were built using Gaussian 

regressors (GPR) (Rasmussen, 2004), with inputs selected from the predictor pool composed 

of airborne-based parameters. The hyperparameters of the GPR algorithm were automatically 

tuned in parallel for each target variable with the Bayesian optimizer in MATLAB (Statistics 

and Machine Learning toolbox; MathWorks Inc., Natick, MA, USA), over 120 iterations. A 

Leave-One-Out Validation (LOOV, 19 folds for 2021-Feb dataset, 33 folds for the others) 

scheme was adopted to quantify the model performance, with the normalized root mean 

squared error (NRMSE) and the coefficient of determination (R2) as the main metrics. NRMSE 

was calculated as the ratio between RMSE and the range of needle nutrient measurements. 

A two-stage feature selection process was used to identify the best input combination. In the 

first stage, an exhaustive feature selection procedure was implemented whereby the 

performances of all possible combinations of Predictor Pool 1 parameters (PRO4SAIL2-

derived plant traits and SIF760) for estimating target nutrient concentrations were evaluated 

when used as GPR model inputs. Subsequently, a set of plant traits that provided the best 

prediction accuracy for the target nutrient among all input combinations was retained for the 

next stage. In the second stage, Predictor Pool 2 comprised stage 1–retained plant traits and 

non-collinear NBHIs. The predictive performances of models whose inputs consist of stage 1–

retained parameters and any combinations of non-collinear NBHIs or NBHIs only were 

evaluated for N and P. The second stage of feature selection was performed to test if NBHIs 

could add more information to the explanation of the observed variability in the concentrations 

of the target nutrients, as the leaf RTM is not highly sensitive to subtle spectral changes in the 

blue and green regions induced by stress dynamics. Through the second stage of feature 

selection of non-collinear NBHIs, we intended to evaluate whether simple index-based models 
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could match the performance of more complex, plant trait-based models—potentially 

questioning the need for computationally intensive RTM inversion. 

After two-stage feature selection, the final set of parameters was selected to explain each 

dataset's observed variability in needle N and P concentrations. Finally, the contribution of each 

parameter to target nutrient estimation was quantified using the Out-Of-Bag (OOB) 

permutation score embedded in the Random Forest model (Liu and Zhao, 2017).  

The uncertainty in needle N and P predictions was quantified by GPR models. GPR model 

could provide the uncertainty estimation, thanks to its probabilistic nature (see Williams and 

Rasmussen (2006) for more details). During the LOOCV process, GPR model made the 

prediction on the left-out sample and provided the confidence interval of the prediction at 95% 

confidence level. The uncertainty of the prediction was represented by the margin of error, 

which was calculated as the confidence interval divided by two.   

The modelling methods were applied to the tree-crown reflectance and radiance to obtain the 

needle N and P predictions for each tree. The spatial interpolation algorithm kriging (Oliver 

and Webster, 1990) was then implemented to generate the airborne variability maps for the 

whole study site, using the SmartMap plugin in QGIS (Pereira et al., 2022). 

 

4.3 Results 

4.3.1 Relationships of narrow-band Hyperspectral indices (NBHIs) to needle N and P concentrations 

Hyperspectral indices derived from the airborne images at the treatment level were related to 

ground-measured needle N and P concentrations, with different levels of correlation (Fig. 4.4). 

Overall, there was a weak correlation between needle N concentration and the selected 

hyperspectral indices across dates, even for Cab-related indices used in previous studies as a 

proxy of N (Fig. 4.4a). For example, TCARI, TCARI/OSAVI, and CTR1 displayed significant 

correlations only with needle N in the 2021-Feb dataset (R2 of 0.79, 0.89, and 0.73, respectively, 

p-value < 0.05), with no significant relationships in the remaining datasets. Moreover, no strong 

correlation existed between needle N and structural indices. PRIs, which are used as proxies 

for xanthophyll content, showed strong relationships only with needle N in the 2023-Oct 

dataset. For instance, PRIm3 and PRIm4 yielded R2 > 0.9 (p-value < 0.001). PRI515, PRIm1, and 

PRIm2 displayed correlations (R2) of ~0.7 (p-value < 0.01). 
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Fig. 4.6. Coefficients of determination (R2) between hyperspectral indices of various 
categories (e.g. structural indices, chlorophyll a+b indices and PRI indices) and 
measurements of (a) needle N and (b) P concentrations (g/kg) at the treatment-mean level 
for the four datasets. *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05. 

 

By contrast, a strong relationship was observed between specific indices of all categories and 

needle P concentrations (Fig. 4.4b). Structural indices displayed consistent relationships with 

needle P concentrations across datasets, often with stronger correlations in the 2021-Feb and 

2023-Oct datasets. Specifically, needle P showed strong correlations with EVI, RDVI, OSAVI, 

and MCARI1 (0.82 ≤ R2 ≤ 0.94, p-value < 0.001) in 2021-Feb and 2023-Oct, while the 

relationships were less significant in the other two datasets (0.56 ≤ R2 ≤ 0.81, p-value < 0.01). 

Furthermore, chlorophyll indices, particularly PSSRa, PSSRb, PSSRc, and PSNDc, were 

significantly related to needle P concentrations in three out of the four datasets, with R2 > 0.69 

(p-value < 0.01). The red-edge Chlorophyll Index (CI) (Zarco-Tejada et al., 2001) also 

(a) (b) 
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exhibited strong relationships (R2 ≥ 0.59, p-value < 0.01) with needle P in the two 2021 datasets 

and the 2023-Jan dataset. Moreover, significant relationships (R2 ≥ 0.66, p-value < 0.01) were 

observed in the 2021-Oct and 2023-Jan datasets between needle P and VOG indices, which 

focused on the red-edge region. PRIs also showed variable relationships with needle P 

concentrations. For instance, PRIn was consistently correlated to P, with R2 ≥ 0.77 (p-value < 

0.01) for the 2021-Feb, 2021-Oct, and 2023-Jan datasets and R2 of 0.56 (p-value < 0.05) for 

the 2023-Oct dataset. PRI515, PRIm1, PRIm2, and PRIm3 showed more significant correlations 

with P in 2021 (0.59 ≤ R2 ≤ 0.86 for 2021-Feb, and 0.58 ≤ R2 ≤ 0.67 for 2021-Oct, p-value < 

0.05) than in the 2023 datasets.In general, NBHIs of all categories were more strongly 

correlated with needle P measurements, rather than N. 

 

4.3.2 Relationships with RTM-based plant traits and SIF760 

A summary of the relationships between ground-measured nutrient levels in needles and 

PRO4SAIL2-derived plant traits and SIF760 is provided in Fig. 4.5 at the treatment (n = 7 for 

2021-Feb, n = 9 for the others) and plot levels (n = 19 for 2021-Feb, n = 34 for the others). A 

significant correlation (p-value < 0.05) between Cab and needle N was consistently observed 

across years at the treatment level, with the highest R2 of 0.90 (p-value < 0.001) observed in 

the 2023-Oct dataset and the lowest R2 of 0.56 (p-value < 0.05) in 2023-Jan. The relationship 

became moderate at the plot level, where R2 ranged from 0.15 to 0.46 (p-value < 0.05). By 

contrast, SIF760 showed no significant correlation with needle N concentrations in any of the 

four datasets (p-value > 0.05). LAI only exhibited a significant relationship with N in the 2023-

Oct dataset (p-value < 0.001), with R2 increasing from 0.29 at the plot level to 0.85 at the 

treatment level. 

Conversely, needle P concentration showed no significant correlation (p-value > 0.05) with 

pigment content in any dataset except 2023-Oct. Specifically, Cab, Car, and Anth were slightly 

related to needle P in the 2023-Oct dataset at the plot level, with R2 ranging from 0.17 to 0.29 

(p-value < 0.05). The relationship between LAI and needle P was significant in both the 2021-

Feb and 2023-Jan datasets at both levels. Moreover, the relationships were stronger at the 

treatment level (R2 = 0.86 and 0.59, respectively, p-value < 0.05) than at the plot level (R2 = 

0.53 and 0.31, respectively, p-value < 0.001). SIF760 was consistently correlated with needle P 

concentration across the years. The relationship tended to be stronger at the treatment level (R2 

of 0.54 to 0.92, p-value < 0.05) than at the plot level (R2 of 0.29 to 0.58, p-value < 0.01) as 
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well. The significant correlation between PRO4SAIL2-derived Cab and needle N, and that 

between SIF760 and needle P, was also reflected in the following modelling results. 

 

Fig. 4.7. Coefficient of determination between PRO4SAIL2-derived plant functional 
traits and SIF and measured needle N and P concentrations at (a) plot level and (b) 
treatment level. n represents the sample size of each dataset. *p-value < 0.05, **p-value < 
0.01, ***p-value < 0.001. 

 

4.3.3 Contributions of RTM-derived plant traits and SIF760 to explaining variability in needle N and P 

concentrations 

We identified the RTM-derived biochemical constituents Cab, Car, Anth, and SIF760 as predictors 

sensitive to variability in both needle N and P concentrations, outperforming structural 

parameters such as LAI. We detected a non-significant relationship between N and this set of 

parameters in only one dataset (R2 = 0.25; p-value > 0.05 for 2023-Jan, Fig. 4.6a), which could 

be explained by the low variability in ground-measured needle N concentrations (see Chapter 

3 for more details on field data analysis). 

The GPR model built with these four input parameters, N = f(Cab, Car, Anth, SIF760), explained 

the variability in needle N concentrations, with an R2 of 0.27 to 0.76 (p-value < 0.001) and 

NRMSE of 0.14–0.22 at the plot level for four datasets. The aggregated treatment-level results 

(Fig. 4.6a) displayed higher model accuracy (R2 = 0.56-0.93, NRMSE = 0.08-0.25, p-value < 

0.05) for the two datasets in 2021 and the 2023-Oct dataset, as the aggregation process reduced 

within-treatment-group variance and the errors embedded in the needle nutrient measurements 

(a) (b) 
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However, the N modelling results for 2023-Oct lost significance (p-value > 0.05) when 

averaged to the treatment level. This could be explained by the lack of significant differences 

in needle N measurements between treatments in this specific dataset. 

Fig. 4.8. Relationships between measured nutrient concentrations in needles and 
concentrations predicted by the GPR models with inputs of PRO4SAIL2-derived Cab, Car, 
Anth, and SIF760 for (a) needle N and (b) P concentrations for the four datasets at the 
treatment level. Error bars represent standard errors (SE) within each treatment. *p-
value < 0.05, **p-value < 0.01, ***p-value < 0.001. 

 

(a) 

(b) 
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The model P = f(Cab, Car, Anth, SIF760) yielded prediction accuracy for needle P concentration 

with R2 of 0.24–0.95 and NRMSE of 0.13–0.27, p-value < 0.001 for four datasets at the plot 

level. Similarly, the treatment level results (Fig. 4.6b) have seen the improvement in needle P 

estimation accuracy (R2 of 0.66–0.94 and NRMSE of 0.09–0.27, p-value < 0.05). 

The uncertainty analysis (Fig. 4.7) revealed that the median margin of error of the model N = 

f(Cab, Car, Anth, SIF760) were around 1.7 – 2.5 g/kg for four datasets at the plot level, with 

predictions for 2021-Feb and 2023-Jan datasets displaying slightly higher margin of error 

(median value 2.18 and 2.01 g/kg, respectively) than the other two datasets. Needle P 

predictions by P = f(Cab, Car, Anth, SIF760) exhibited various levels of uncertainty for four 

datasets. The median values of values for 2021-Feb and 2023-Jan datasets were around 0.74 

and 0.90 g/kg, respectively, higher than those for 2021-Oct dataset (0.31 g/kg) and 2023-Oct 

dataset (0.24 g/kg). 

 

Fig. 4.9. Uncertainties in (a) needle N and (b) needle P predictions provided by GPR 
models with RTM-derived Cab, Car, Anth and SIF760 as inputs for four datasets at the plot 
level. n represents the sample size. Uncertainties (i.e., Margin of Error or MOE) were 
estimated by GPR models. 

 

We performed N and P model analysis with the focus on evaluating the relative contributions 

of the predictors to explaining the variability in N and P concentrations among trials, instead 

of optimizing the prediction accuracies of the models. A careful analysis of the importance of 

each parameter (Fig. 4.8) demonstrated the distinct contributions of pigments and SIF to N (Fig 

4.8a) vs. P concentrations in needles (Fig 4.8b). The estimated Cab content best explained the 

variability in needle N concentration across all datasets, with the highest relative importance 

(a) (b) 
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score (Fig 4.8a). Cab contributed at least 49% of the relative importance in the N model, with 

the highest value (78%) observed in the 2023-Oct dataset. Anth was ranked as the second most 

important parameter to explain the variability in needle N concentration for both datasets in 

2021, whereas SIF760 was the second most important parameter for the 2023 datasets. The 

contributions of the three pigments (Cab, Car, and Anth) varied depending on the dataset across 

all years, but the contribution of SIF760 was ~10% for all datasets. The most critical parameter 

for explaining the variability in needle P concentration was SIF760 (Fig 4.8b), with a relative 

contribution ranging from 55% to 68% across the four datasets. The remaining contribution 

was variably distributed across the three pigments. Anth made the second most important 

average relative contribution (6% to 28%), followed by Car (4% to 16%). Cab was the least 

important parameter for P in both the 2021-Feb and 2023-Jan datasets, with a relative 

contribution < 10%. These results demonstrated the potential of pigment content and SIF to 

assess needle N and P levels in radiata pine stands. Notably, PRO4SAIL2-derived Cab 

contributed the most to explaining viability in N levels, whereas SIF760 was the leading 

contributor to the assessment of P levels. 

 
Fig. 4.10.  Relative contributions of hyperspectral-derived Cab, Car, Anth, and SIF760 values 
to explaining the variability in needle (a) N and (b) P concentrations in the nutrient trials. 

(a) 

(b) 
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The interpolated maps based on airborne predictions for the 2023-Oct dataset from the model 

N = f(Cab, Car, Anth, SIF760) (Fig. 4.9b) and P = f(Cab, Car, Anth, SIF760) (Fig. 4.10b) revealed high 

spatial variabilities of needle N and P across the study site. The overall spatial patterns of the 

airborne predictions agreed with those observed in the field measurements for both needle N 

(Fig. 4.9a) and P (Fig. 4.10a), implying the potential of spatial mapping of needle nutrient 

content with our proposed models. 

Fig. 4.11.  Variability maps of needle N for the 2023-Oct dataset, where (a) is based on 
the field measurements of needle N, (b) is interpolated using needle N predictions from 
the model N = f(Cab, Car, Anth, SIF760). 

(a) 

(b) 
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Fig. 4.12.  Variability maps of needle P for the 2023-Oct dataset, where (a) is based on the 
field measurements of needle P, (b) is interpolated using needle P predictions from the 
model P = f(Cab, Car, Anth, SIF760). 

 

4.3.4 Contributions of the blue region to explain the variability in needle N and P concentrations 

We employed the GPR model using non-collinear (VIF < 5) NBHIs such as BF1, BRI1, and 

PSND as inputs, which provided comparable performance for explaining the variability in 

needle P concentrations to the model with plant functional traits described in the previous 

section, P = f(Cab, Car, Anth, SIF760). The model P = f(BF1, BRI1, PSNDc) yielded R2 of 0.86 for 

2021-Feb, 0.87 for 2021-Oct, 0.72 for 2023-Jan, and 0.64 for 2023-Oct (p-value < 0.01) at the 

(a) 

(b) 



58 
 

treatment level. At the plot level, R2 values of 0.53, 0.69, 0.45 and 0.49 (p-value < 0.001) were 

obtained for these four datasets, respectively. A careful assessment of these selected indices 

sensitive to the variability in needle P concentrations showed that they incorporated one or 

more bands from the blue spectral region. BF1 (Zarco-Tejada et al., 2018a) is calculated with 

bands R400 and R410, BRI1 (Zarco-Tejada et al., 2012) with bands R400 and R690, and PSNDc 

(Blackburn, 1998) with bands R470 and R800. This intriguing result encouraged us to perform a 

detailed assessment of the relative contributions of all blue-region-related indices (i.e., indices 

calculated with at least one wavelength in the blue spectral region) to explain the variability in 

needle N and P concentrations. 

 
Fig. 4.13. Coefficients of determination (R2) obtained between hyperspectral indices 
calculated in the blue spectral region and (a) needle N and (b) P concentrations (g/kg) at 
the treatment level for all datasets. 

 

Correlation analysis demonstrated that variability in needle N concentrations was barely 

explained by blue indices (Fig. 4.11a). Nevertheless, needle P concentrations consistently 

exhibited strong sensitivity to a few hyperspectral indices calculated in the blue region (Fig. 

4.11b). For instance, NPQI and needle P yielded R2 of 0.66–0.91 (p-value < 0.05). Needle P 

concentration in the 2023-Jan datasets exhibited a significant correlation with the BFx family 

(R2 of 0.81–0.92, p-value < 0.01). The significant relationships between needle P vs. BF3 and 

BF4 were consistent across the years, with R2 of 0.51–0.89 (p-value < 0.05). 

We compared the results of the analysis of the contributions of plant pigments, SIF760, and the 

blue indices to explain the variability in needle N and P concentrations (Fig. 4.12) against the 

(a) (b) 
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previous results from N or P = f(Cab, Car, Anth, SIF760). The blue indices and pigments together 

yielded comparable prediction accuracies for needle N concentration (NRMSE = 0.11 for 2021-

Feb, 0.17 for 2021-Oct, and 0.11 for 2023-Oct, p-value < 0.05). High prediction accuracy for 

needle N concentration always required plant pigments in the model inputs, especially for the 

2021-Feb and 2023-Oct datasets (Fig. 4.12a). 

 

Fig. 4.14. NRMSE between needle nutrient measurements and predictions by the GPR 
models with inputs of different categories at the treatment level. (a) Needle N and (b) 
needle P concentrations. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. Inputs 
were categorized as follows: Pigments include PRO4SAIL2-derived Cab, Car, Anth, SIF760; 
blue includes the selected blue indices of the BFx, BRIx, and PSIx groups. BFx represents 
the collection of BF1, BF2, BF3, BF4, and BF5; BRIx includes BRI1 and BRI2; PSIx includes 
PSSRa, PSSRb, PSSRc, and PSNDc. 

 

The consistently high prediction accuracy for needle P concentrations across datasets was 

associated with the incorporation of blue indices in the GPR model inputs (Fig. 13b). Plant 

pigments alone successfully explained the observed variability in needle P concentrations for 

the 2021-Oct and 2023-Oct datasets (NRMSE = 0.15 and 0.18, respectively, p-value < 0.001), 

but not for the 2021-Feb or 2023-Jan datasets (p-value > 0.05). SIF760 alone provided NRMSE 

of 0.17 to 0.24 (p-value < 0.01) for three out of four datasets, while the model performance for 

the 2023-Jan dataset was not significant (p-value > 0.05).  

Compared to the benchmark model P = f(Cab, Car, Anth, SIF760) (NRMSE of 0.08–0.20), the 

model built with plant pigments and the blue indices, P = f(Cab, Car, Anth, blue index), provided 

comparable overall performance (0.12 ≤ NRMSE ≤ 0.17). Specifically, there was a slight 

(a) (b) 
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increase in NRMSE (of 0.05) for the 2021-Oct and 0.04 for 2023-Oct datasets. Nevertheless, 

minor improvements were observed in the other two datasets, where NRMSE decreased by 

0.04 for 2021-Feb and 0.03 for 2023-Jan. Moreover, the quantification of blue indices is more 

straightforward and less computationally demanding than plant traits like SIF760, which further 

awards the model built with Cab, Car, Anth and blue index a greater computational advantage. 

When only blue indices were used to explain the variability in observed needle P concentration, 

the GPR model achieved an accuracy of 0.14 for 2021-Feb, 0.15 for 2021-Oct, 0.20 for 2023-

Jan, and 0.24 for 2023-Oct in terms of NRMSE (Fig. 4.12b). 

Analysis of the relative contributions of different parameters revealed the dynamic role of the 

blue region in explaining the variability in needle N and P concentrations in the nutrient trials 

(Fig. 4.13). The blue region, assessed by incorporating blue indices into the GPR model inputs, 

was the most crucial parameter for P for the two 2021 datasets and the 2023-Jan dataset, with 

a relative contribution >60% (Fig. 4.13b). Hyperspectral-derived plant pigments were highly 

important for evaluating needle N concentration, with a combined relative contribution of 70% 

in all datasets (Fig. 4.13a). In summary, the blue region was critical when explaining the 

observed variability in needle P but not N concentration. In fact, Cab was still the most important 

input for explaining the variability in needle N concentration among all three pigment 

parameters (Fig. 4.13a), with relative contributions ranging from 34% to 65%. Car and Anth 

were almost equally important for the 2021-Feb and 2023-Oct datasets. For 2021-Oct, Anth 

(14%) contributed more strongly to needle N concentration than Car (6%). For 2023-Jan, Car 

was the second most important plant pigment parameter (14%), followed by Anth (5%). 

Regarding P concentration, Cab was the pigment parameter that best explained the variability 

in needle P concentration for the 2023-Oct dataset, with a relative contribution of 40%, whereas 

Anth was the most important pigment to needle P variability for the other three datasets (Fig. 

4.13b). 

Our analysis revealed that the blue indices contributed to explaining the variability in needle P, 

implying the sensitivity of the blue spectral region to variations in P levels in radiata pine 

needles. 
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Fig. 4.15. Relative contributions of hyperspectral-derived Cab, Car, and Anth and the 
selected indices calculated in the blue region (BFx, BRIx, and PSIx) to the explained 
variability in needle (a) N and (b) P concentrations at the treatment level. BFx includes 
BF1, BF2, BF3, BF4, and BF5; BRIx includes BRI1 and BRI2; PSIx includes PSSRa, PSSRb, 
PSSRc, and PSNDc. 

 

4.4 Discussion 

We successfully used hyperspectral imagery and RTMs to analyze how physiological traits 

contribute to explaining the variability in N and P concentrations in radiata pine needles in 

long-term nutrient trials. We determined that hyperspectral-derived biochemical parameters are 

more sensitive to variations in needle N and P concentrations than the structural parameters 

(i.e., LAI) that are generally tracked by NDVI and other standard remote sensing methods 

(Fang et al., 2019). We found that LAI is weakly related to needle N and P variability, though 

it remains inconclusive whether LAI can potentially contribute to needle nutrient estimation, 

considering the retrieval performance using the proposed method. The synthetic validation 

results (Fig. 4.3) revealed that LAI was retrieved with lower accuracy (R2 = 0.67, p-value < 

0.001 without noise, R2 = 0.48, p-value < 0.001 with 1% noise) than the plant pigments. This 

could be caused by the small wavelet scale (i.e., 3 or 4) used for the retrieving process, which 

(a) 

(b) 
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failed to represent broader features like LAI, but also due to the structural characterization of 

the canopy by SAIL2. Moreover, LAI retrievals might not be representative enough for the 

canopy structure, as the parameter was retrieved from crown-level data, where the 

segmentation process likely reduced the variability in canopy structure. 

Despite the indirect link with LAI, needle P concentration displayed moderate relationships 

with structural indices such as EVI, RDVI, MCARI1, and OSAVI, and red-edge indices such 

as VOG indices and CI. Indeed, previous studies showed that the NIR  and the red-edge region 

are sensitive to leaf P concentration. For example, Mutanga and Kumar (2007) estimated leaf 

P concentration in grass with six predictors, including two red-edge bands  (710 and 742 nm), 

three bands in the SWIR region and the red edge position (REP). Their best model yielded an 

R2 of 0.63 for estimating leaf P concentration in grass. Similarly, among the set of wavelengths 

selected by Li et al. (2018) for predicting leaf P concentration in oilseed rape, five bands were 

located between 832 and 1267 nm, and the remaining band was in the red edge (755 nm). The 

authors reported an R2 of 0.78 for the leaf P predictive model. Among the 10 effective bands 

selected by (Lin et al., 2024) for leaf P concentration estimation (R2 = 0.70) in summer maize, 

two were located in the red edge (700 and 730 nm) and four in the NIR region (795, 838, 858, 

870nm). Overall, all three studies achieved a slightly lower prediction accuracy for leaf P 

concentration than our study (0.66 ≤ R2 ≤ 0.94). The widely observed  linkage between leaf or 

needle P concentrations and the red-edge region could be potentially related to the SIF signals, 

given that chlorophyll fluorescence effects were observed in the red-edge region of the leaf 

apparent reflectance spectrum, with two peaks around 690 and 750 nm, respectively (Zarco-

Tejada et al., 2000). These index- and band-level findings were aligned with our plant-trait 

level analysis below. 

RTM-inverted Cab and airborne narrow-band SIF760 were indicative of needle N and P 

concentrations, with Cab playing a more pronounced role in predicting N than P. Previous 

studies assessing leaf N concentrations in other species produced similar results. For instance, 

Camino et al. (2018b) determined that including SIF quantified at the O2A absorption band 

improved the prediction accuracy of leaf N levels to R2 of 0.92 compared with the model using 

only functional traits (Cab, Cm, and Cw) derived from PROSPECT-SAILH, with an R2 ≤ 0.77. 

Similarly, Wang et al. (2022) built predictive models for leaf N levels in almond trees over two 

years and achieved an accuracy of R2 of 0.95 with input parameters including narrow-band SIF 

and Cab concentration retrieved from the FluSAIL model. The predictive capacity of SIF and 

Cab for N status has a well-studied physiological basis. N deficiency affects plant 
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photosynthetic activities in various ways, such as by influencing the contents of chlorophyll, 

thylakoid proteins, and other components of the photosynthetic apparatus (Mu and Chen, 2021). 

As photosynthetic activities are reduced, plants also vary the partitioning of absorbed energy 

among other radiation pathways, such as chlorophyll fluorescence emission, along with 

adjusting the light absorption to maintain the balance of radiation utilization and absorption. 

The responses of Cab and SIF to needle P levels might be linked to the photosynthetic electron 

transport chain. Laboratory studies on chlorophyll fluorescence kinetics have revealed that P 

deficiency results in a reduction in ATP synthesis and lumen acidification in chloroplasts, 

thereby inhibiting electron transport to photosystem I (PSI) (Carstensen et al., 2018). Watt et 

al. (2020) detected a strong positive correlation between SIF and photosynthetic variables, such 

as the maximal rate of carboxylation (Vcmax) and electron transport (Jmax) in radiata pine 

seedlings under N- and P-stress conditions. These findings support the hypothesis that SIF 

reflects the impact of P on the photosynthetic electron transport chain and are aligned with our 

results that SIF has a pronounced effect in explaining variability in needle P concentration. 

Anthocyanins and carotenoids regulate plant responses to abiotic stress (such as nutrient 

deficiency) due to their photoprotective and antioxidant properties (Landi et al., 2015; Sachdev 

et al., 2021). Under stress conditions, the incident radiation energy exceeds the maximum that 

plants can use or dissipate, leading to the excessive production of reactive oxygen species 

(ROS). To prevent oxidative damage, plants activate anthocyanin biosynthesis to scavenge the 

excessive ROS induced by abiotic stress, thereby reducing cellular damage (Landi et al., 2015; 

Naing and Kim, 2021; Li and Ahammed, 2023). Besides anthocyanins, certain types of 

carotenoids, such as β-carotene, also detoxify ROS as a response to stress (Demmig-Adams, 

1990; Posch et al., 2008).  

Xanthophyll, another type of carotenoid, also plays a crucial photoprotective role in dissipating 

excess energy. In the xanthophyll cycle, violaxanthin is de-epoxidized into antheraxanthin and 

then zeaxanthin, contributing to heat dissipation (i.e., NPQ) (Demmig-Adams and Adams, 

1996). The Photochemical Reflectance Index (PRI) and its variants are thought to track the 

epoxidation state of the xanthophyll cycle, thus reflecting the stress level of the plant. For 

example, Suárez et al. (2009b) determined that PRI was effective for detecting water stress 

across species due to its significant correlation with canopy temperature (R2 ≥ 0.65), reflecting 

stomatal conductance. Shrestha et al. (2012) determined that the variation in PRI values could 

reflect the increase in xanthophyll cycle activity induced by N deficiency in rice (Oryza sativa) 
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leaves. However, in the current study, we observed no significant relationships between PRI or 

its variants and measured needle N concentrations, except for the 2023-Oct dataset. Needle P 

measurements only displayed consistent relationships with PRIn. The lack of correlation in our 

study could be related to the effects of canopy structure, illumination conditions, and viewing 

geometry, which affect the sensitivity of PRIs to the epoxidation state of xanthophyll 

(Hernández-Clemente et al., 2011). 

Our results reveal the importance of the blue spectral region, represented by indices with blue 

spectral wavelengths, in explaining the variability in needle P concentration in the nutrient 

trials. Three indices from the BFx, BRIx, and PSIx groups provided good prediction accuracy 

for needle P concentrations, with NRMSE of 0.14–0.24 at the plot level, and 0.13- 0.24 at the 

treatment level. Despite the slightly reduced performance for explaining variability in P levels, 

compared to the benchmark model P = f(Cab, Car, Anth, SIF760), these predictive models built 

with only indices as inputs have great computational advantages over those built with RTM-

based functional traits and/or SIF, suggesting that a multispectral sensor centred at bands in the 

blue and NIR spectral regions could be used for large-scale monitoring of P. Our findings at 

the index level comply with those from band-level predictions of leaf P concentrations. For 

instance, Guo et al. (2018) selected a set of hyperspectral bands for estimating leaf P levels in 

using the spectral measurements of leaf samples from rubber trees. Their empirical regression 

model achieved NRMSE ~0.08 using seven wavelengths as inputs (437, 713, 1144, 1405, 1686, 

2243, and 2249 nm). With the in-situ canopy reflectance measured over summer maize (Zea 

mays) canopies, Lin et al. (2024) built an empirical model to predict leaf P concentration that 

yielded an R2 of 0.70. Ten wavelengths were included in their model: four in the visible region 

(442, 479, 572, and 630 nm), two in the red-edge region (700 and 730nm) and four in the NIR 

region (795, 838, 858 and 870 nm). The blue indices used in our needle P assessment also 

utilize bands in the blue and NIR regions. To further illustrate the potential of blue indices for 

explaining variability in needle P, we evaluated another index-based model, with 

TCARI/OSAVI, PRI, NPQI and the curvature index (CUR) as inputs, in terms of their needle 

P prediction performance. These indices were chosen as they were proxies for the plant 

functional traits used in the benchmark model: TCARI/OSAVI, PRI, NPQI were indicators for 

needle pigment content, and CUR was a proxy for SIF. The results showed (see Appendix Table 

A4.2) the model P = f(TCARI/OSAVI, PRI, NPQI, CUR) failed to provide statistically 

significant predictions for the 2021-Feb and 2023-Oct datasets, and yielded lower accuracy for 

the remaining two datasets, compared to the blue-index-based model. Hence, the consistent 
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performance of blue indices in needle P estimation was unlikely to be incidental, and it implied 

the physical relationship between P and the blue spectral region, which has not been well 

understood but is noteworthy. 

The mechanism of the responses of the blue spectral region to variations in leaf P levels is not 

yet fully understood by the remote sensing community due to limited studies on this topic. 

Different hypotheses exist to explain how the blue spectral region responds to the variability 

in needle P concentration, one of which is related to blue fluorescence. When excited by UV 

light, green plants emit fluorescence not only in the red spectral region (i.e., chlorophyll 

fluorescence) but also in the blue-green region, with a blue maximum near 450 nm (BF) and a 

green shoulder around 530 nm (GF) (Chappelle et al., 1984; Lang and Lichtenthaler, 1991; 

Subhash et al., 1999). The blue fluorescence originates from cinnamic acids bound to the 

cellulosic cell walls (Harris and Hartley, 1976) and soluble substances bound to cell vacuoles, 

including cinnamic acids, flavones, and flavonols (Lichtenthaler and Miehé, 1997). 

Fluorescence ratios (e.g., BF/SIF, GF/SIF and BF/GF) are highly responsive to stresses, such 

as heat, nutrient deficiency, and pathogen infection (Lichtenthaler and Miehé, 1997; Subhash 

et al., 1999; Bürling et al., 2011). These observed stress responses at the leaf level might be 

related to the reduced reabsorption of blue fluorescence due to lower photosynthetic pigment 

concentration induced by long-term stress (Lichtenthaler and Miehé, 1997). An alternative 

hypothesis hinges on the degradation of chlorophyll into phaeophytin under stress conditions 

(Hörtensteiner, 2013). As a proxy for phaeophytin content, the Normalized Phaeophytinization 

Index (NPQI) (Barnes et al., 1992a; Peñuelas et al., 1995b) was proven to be sensitive to 

various stresses (Zarco-Tejada et al., 2018a; Zarco-Tejada et al., 2021a; Poblete et al., 2023). 

In the current study, NPQI, a blue-region-related index, also displayed significant relationships 

with needle P concentrations across dates. 

The uncertainties in the needle N and P prediction could be attributed to various sources. Firstly, 

the small sample size might result in uncertainties in parameter estimations of the GPR models. 

The limitation of small sample size was reflected in the relatively higher uncertainty in the 

2021-Feb dataset (n = 19), compared to the other three datasets (n = 34). Low level of variances 

in the needle nutrient measurements (See Chapter 3 Table 3.2) likely led to a restricted learning 

range for the GPR models during the training phase, and thus impaired the prediction accuracy 

on the "unseen" samples during the predicting phase. The low level of variability in needle N 

measurements (CV = 0.07-0.12), compared to those of needle P (CV = 0.26-0.33), partially 

explained the lower accuracy of needle N estimation than that of P by the benchmark model 
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N/P = f(Cab, Car, Anth, SIF760). Moreover, the uncertainties in needle N and P measurements 

could potentially undermine the reliability of the trained GPR model.  

The obtained SIF760 values (2.5-23.2 mW/m2/nm/sr. See Appendix Fig. 4.1), despite being 

higher than what is expected for healthy vegetation (0–3 mW/m2/nm/sr), succeeded in 

differentiating nutrient treatments. Thus, the quantified SIF760 should be regarded as relative 

values, rather than absolute values.  Several studies have also reported that airborne SIF values 

quantified from data with 3–7 nm FWHM were higher than the typical ranges (Zarco-Tejada 

et al., 2013b; Camino et al., 2018b; Belwalkar et al., 2022; Wang et al., 2022). Simulation 

studies using RTMs (Damm et al., 2011; Belwalkar et al., 2022) revealed that coarser spectral 

resolution (SR) led to overestimated far-red SIF values based on FLD principles. Belwalkar et 

al. (2022) also evaluated the suitability of airborne SIF quantified at 0.1-nm FWHM and that 

at 5.8-nm FWHM for monitoring crop leaf N status. They concluded that although sub-

nanometer resolution was necessary to retrieve SIF in absolute units, a coarser resolution was 

sufficient for detecting SIF differences in the context of vegetation stress detection. A potential 

focus of future research can be comparing airborne SIF quantified at sub-nanometer resolution 

(<1.0-nm FWHM) and moderate resolution (>1.0-nm FWHM) to decide whether the sub-

nanometer resolution is required for a more accurate assessment of needle nutrient content in 

coniferous forests. 

Similarly, the retrieved Cab, Car and Anth should be regarded as relative values, rather than 

absolute values of pigment content, as we lack the pigment measurements to validate the 

accuracy of the retrievals. The synthetic validation results indicated that pigment retrievals are 

more robust to noise than LAI.  A previous study by Poblete et al. (2025) also showed the high 

agreement between PRO4SAIL2-derived Cab content with the needle chlorophyll 

measurements for radiata pine (R2 = 0.80-0.89).  Similarly, Darvishzadeh et al. (2008)  found 

a strong relationship between PRO4SAIL-derived Cab content and the ground measurements 

(R2 = 0.70) in heterogeneous grassland. In the study conducted in almond orchards (Wang et 

al., 2022), a strong correlation between FluSAIL-derived Cab and their ground-measured 

counterparts (R2 = 0.66) was reported. Therefore, we believe that the RTM-based needle 

pigment retrievals, though they cannot represent the absolute levels of pigment content, are 

sufficient to differentiate plots/trees from different fertilization levels.  

Due to the lack of coverage in the SWIR region by the narrow-band hyperspectral imager used 

in this study, we only focused on the visible-near infrared (VNIR) region for needle nutrient 
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analysis. However, it should also be noted that chlorophyll only accounts for 1.7% of total leaf 

N (Kokaly et al., 2009a), while there are more predominant N-containing biochemical 

constituents, such as proteins. It has been shown that the shortwave infrared (SWIR) region, 

where the protein absorption is prominent, can be used for leaf N content. Previous studies 

have reported that leaf N concentration displayed a stronger relationship with NIR/SWIR-based 

indices than with VNIR indices in wheat (Camino et al., 2018b) and potato (Herrmann et al., 

2010). The advancement in RTM also enabled the retrieval of leaf protein content.  Wang et al. 

(2018b) investigated the potential of RTM-derived leaf protein content for assessing leaf and 

canopy N status in mixed temperate forests. The authors obtained a higher prediction accuracy 

for canopy N (R2 = 0.64) than for leaf N content (R2 = 0.46). Several studies also reported the 

importance of the SWIR region for leaf P assessment (Guo et al., 2018; Li et al., 2018; Gao et 

al., 2019). Future studies could extend our methodology to evaluate and compare the 

importance of VNIR-related plant traits (e.g., Cab, Car, Anth and SIF760) and SWIR-related traits 

(e.g., leaf protein content) for needle N and P prediction accuracy in radiata pine forests. 

Overall, our findings shed light on the importance of biochemical constituents, SIF, and the 

blue spectral region in explaining the variability in needle N and P concentrations. Distinct 

dynamics were observed for these two nutrients, whereby Cab best explained the variability in 

needle N concentration, whereas SIF and the blue spectral region played crucial roles in 

explaining the variability in needle P concentration.  

 

4.5 Conclusions 

Our study is the first to demonstrate that a physically based modelling approach—using plant 

functional traits, including biochemical constituents and solar-induced fluorescence (SIF)—

can be effectively applied to explain the observed variability in needle nitrogen (N) and 

phosphorus (P) concentration in coniferous forests. Moreover, as opposed to most studies 

relying on empirical methods (e.g., using spectral indices or spectral bands as PLSR model 

inputs), our physically based approach yielded a robust accuracy to explain needle P variability, 

with the advantage of improved model interpretability, which relied on physiological traits 

instead of vegetation indices without physical meaning. 

Using the four sets of airborne hyperspectral imagery and field data collected from radiata pine 

over three years of established nutrient trials, we demonstrated that RTM-derived needle 
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pigment content (i.e., Cab, Car, and Anth) and far-red SIF760 could be used to explain the observed 

variability in needle N concentration across years. Using GPR models, these four traits 

explained the variability in needle N (R2 = 0.67–0.97, NRMSE = 0.07–0.30) and needle P 

concentration (R2 = 0.60–0.95, NRMSE = 0.09–0.27). Cab played a critical role in explaining 

the observed variability in needle N concentration, whereas SIF760 was the main contributor to 

the explained variability in needle P concentration. Our analysis of the pool of hyperspectral 

indices and RTM-inverted traits revealed the essential contribution of the blue spectral region 

in explaining the variability in needle P but not needle N concentration. Blue indices (i.e., BFx, 

BRIx and PSIx), when combined with RTM-derived plant pigments (i.e., Cab, Car, and Anth) as 

inputs in the GPR models, improved the assessment of needle P in the nutrient trials. This new 

insight regarding the blue spectral region playing a major role in explaining the observed 

variability of needle P concentration opens new options for screening of nutrient trials, and it 

suggests the potential of using multispectral sensors with bands centred at the blue wavelengths 

to monitor needle P status at an operational scale. Further studies are required to evaluate 

different hypotheses to explain the divergent contributions of the blue region to needle N and 

P concentrations, such as the potential effects of blue fluorescence and the degradation of 

chlorophyll a + b into other compounds under nutrient-stress conditions. 
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Chapter 5  
Evaluation of solar-induced 
fluorescence using airborne narrow-
band and sub-nanometer imagery for 
needle nitrogen and phosphorus 
assessment in radiata pines 
 

Highlights 

• Sub-nanometer-based SIF687 was less effective than SIF760 for needle N and P 

estimation. 

• Far-red FLs contributed to needle N and P estimation more than red FLs and sub-

nanometer-based SIF did. 

• Further work is needed to understand the impact of sub-nanometer vs. narrow-band 

resolution for SIF760 quantification to assess needle N and P variability. 

 

Abstract 

Solar-induced chlorophyll fluorescence (SIF) is an early indicator of plant stress, as it is directly 

linked to photosynthetic activity. Its retrieval accuracy strongly depends on sensor 

characteristics, especially spectral resolution (SR). Simulation studies have shown that sub-

nanometer resolution (Full-Width at Half-Maximum [FWHM] < 1.0 nm) is required for the 

retrieval of SIF in the absolute term. Nevertheless, for large-scale monitoring on airborne 

platforms, sub-nanometer imagers inevitably lead to higher operational and computational cost, 

compared to narrow-band imagers (FWHM > 3 nm). This studyaims to investigate whether 

sub-nanometer resolution offers significant benefits for SIF applications in assessing needle 

nitrogen (N) and phosphorus (P) in radiata pine (Pinus radiata D. Don) canopies. We collected 

data on two dates using two  airborne hyperspectral imagers in tandem, with an FWHM of 5.8 

nm and less than 0.2 nm, respectively, we quantified far-red and red SIF (SIF687, SIF760, 
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respectively) as well as depths of Fraunhofer line (FL) features. We then evaluated the needle 

N and P prediction performance of Gaussian Process Regression (GPR) models built with 

inputs including SIF, FLs and narrow-band-based needle pigment content derived from 

radiative transfer models (RTMs). 

Contrary to our initial hypothesis, sub-nanometer resolution did not enhance the predictive 

capacity of SIF760 beyond that of the narrow-band benchmark model for either needle N or P. 

Potential uncertainties in SIF retrievals—such as atmospheric effects, canopy structure, and 

retrieval errors—could not be entirely attributed to in this study, leaving the quantification of 

SIF using FL inconclusive. The analysis of sub-nanometer data showed that SIF687 lack 

predictive capability for nutrient content, potentially due to stronger fluorescence re-absorption 

and scattering within the canopy in the red spectral region. However, sub-nanometer data 

enabled the exploration of 16 FLs across 670–780 nm, among which far-red FLs (particularly 

FL16 at 774.8990 nm) exhibited significant potential, yielding robust N predictions (R² = 0.62, 

p-value < 0.001, NRMSE = 0.17) and comparable P estimation performance to SIF-based 

models (R2 = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25). These findings highlight the 

potential of FLs, especially far-red FLs, obtained at the sub-nanometer resolution, for needle 

N and P estimations in coniferous canopies.  

 

5.1 Introduction 

Solar-induced chlorophyll fluorescence (SIF) has received growing attention over the past two 

decades as an indicator for plant photosynthesis and stress. When the incident solar radiation 

reaches the plant, it is either reflected, transmitted or absorbed by pigment systems. The 

absorbed photosynthetically active radiation (PAR) cannot be fully utilized for photochemistry. 

Consequently, plants need to dissipate the excitation energy through the other two pathways: 

thermal dissipation and chlorophyll fluorescence (ChlF). ChlF is the re-emission of absorbed 

energy by chlorophyll a at longer wavelengths, with the emission spectrum covering 650 to 

800 nm characterized by two peaks – one in the red region (F685) and the other in the far-red 

region (F740). Red fluorescence is primarily contributed by photosystem II (PSII), and the far-

red fluorescence emissions are ascribed to both PSI and PSII. Since both photosynthesis and 

chlorophyll fluorescence emission compete for PAR, ChlF can serve as a probe for the 

photosynthetic activities. The optical signal of ChlF can be remotely sensed under solar 

illumination (i.e., SIF), which is superimposed on the reflected radiation. However, SIF signals 
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only account for a small portion of the total reflected radiation - less than 2% and 5.2% of the 

reflected radiance at 685 nm and 740 nm, respectively (Guanter et al., 2010), rendering 

difficulties in decoupling these two signals from remotely sensed hyperspectral data. More 

comprehensive reviews on the fluorescence basics are available (Meroni et al., 2009; 

Frankenberg and Berry, 2017; Mohammed et al., 2019).  

The primary strategy of estimating SIF is associated with the SIF in-filling effect at strong 

absorption regions in the solar or telluric atmosphere. As the solar incident radiation is 

significantly attenuated in these narrow spectral regions, the relative contribution of SIF to the 

reflected radiation becomes more apparent. The widely investigated absorption features are the 

oxygen absorption bands in the terrestrial atmosphere, as they are broader and deeper than the 

solar absorption features or Fraunhofer lines (FLs). O2-A absorption band around 760 nm is 

used to estimate far-red SIF due to its proximity to the far-red SIF (SIF760), while the red SIF 

is retrieved from the O2-B absorption band at 687 nm (SIF687). Far-red SIF is more commonly 

retrieved than red SIF because the O2-A absorption band is relatively broad, requiring lower 

sensor spectral resolution (SR), whereas sub-nanometer resolution is needed to observe the 

much narrower O2-B band. On the other hand, FLs associated with solar atmospheric 

absorptions have not been comprehensively investigated, due to the requirement of ultra-high 

SR. However, SIF retrievals from FLs do not require complex atmospheric correction as the 

absorption happens in the solar atmosphere, unlike those from oxygen absorption bands in the 

terrestrial atmosphere, which is an important factor to consider in airborne or spaceborne 

applications. The most widely used algorithms to estimate SIF from restricted absorption 

features are based on the Fraunhofer Line Depth (FLD) principle (Plascyk and Gabriel, 1975), 

and its variants such as 3FLD (Maier et al., 2004) and iFLD (GomezChova et al., 2006). FLD-

based methods rely on the contrast between the radiance levels within and outside the 

absorption feature to quantify SIF. Meroni et al. (2009) and Damm et al. (2011) provided 

detailed explanations and analysis of FLD-based approaches. Another extensively evaluated 

alternative for SIF retrievals from absorption features is the spectral fitting method (SFM), 

which decouples the fluorescence from the reflected radiation through mathematical parametric 

regressions (e.g., Guanter et al. (2010); Cendrero-Mateo et al. (2019); Albert et al. (2023)). 

SFM allows a more realistic representation of the reflectance and fluorescence spectrum within 

the absorption window, compared to FLD-based approaches. It is also less sensitive to sensor 

noise as more bands are used. The advancement in radiative transfer modelling (RTM) enabled 

the incorporation of leaf fluorescence in the simulations. Particularly, the SCOPE (Soil Canopy 
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Observation, Photochemistry and Energy Fluxes) model proposed by Van der Tol et al. (2009), 

which simulates SIF in vertically heterogeneous canopies, has been widely used in studying 

the relationship between SIF and photosynthesis (Zhang et al., 2014; Verrelst et al., 2016; 

Camino et al., 2019). The leaf optical model Fluspect (Vilfan et al., 2016), when coupled with 

canopy models such as the 3-D model DART (Discrete Anisotropic Radiative Transfer) 

(Gastellu-Etchegorry et al., 2015), has also been used to study top-of-canopy (TOC) SIF 

(Regaieg et al., 2025). These models incorporate the effects of canopy structure, illumination 

and observation geometry, thus enabling accurate SIF interpretation. 

SIF retrieved from different platforms (e.g., ground, airborne and spaceborne) have been 

proven effective in detecting heat and water stress (Song et al., 2018; Xu et al., 2021; Wang et 

al., 2023a), biotic stress (Calderón et al., 2013; Zarco-Tejada et al., 2018b; Zarco-Tejada et al., 

2021b),  predicting leaf nutrient content (Camino et al., 2019; Jia et al., 2021; Wang et al., 

2022; Li et al., 2025), and gross primary productivity (GPP) (Bacour et al., 2019; Ma et al., 

2022; Pierrat et al., 2024). Airborne platforms offer opportunities for on-demand monitoring 

of SIF with a higher spatial resolution than spaceborne platforms, and a larger spatial coverage 

than ground-level systems. However, the accurate SIF estimates from airborne sensors are 

challenging due to multiple sources of uncertainty. In particular, reliable SIF retrievals at the 

oxygen absorption features require proper accounting for atmospheric scattering and 

absorption (Guanter et al., 2010; Damm et al., 2014), since the atmospheric intervention adds 

noise to the true ratio between the reflected radiation and fluorescence emission within the 

absorption features, which might be confused with the SIF in-filling effects. Damm et al. (2014) 

also emphasized that the characterisation of atmospheric effects is intertwined with 

observational and illumination geometries. Canopy structure plays a key role in the correct 

interpretation of TOC SIF signals (Dechant et al., 2020; Malenovský et al., 2021a), due to the 

re-absorption and scattering of emitted fluorescence within the canopy. Compared to far-red 

SIF, red SIF undergoes significantly stronger re-absorption because of its substantial spectral 

overlap with chlorophyll absorption regions. In their study covering ground, airborne and 

spaceborne analysis, Dechant et al. (2020) suggest that far-red SIF is mainly affected by canopy 

structure and radiation rather than leaf physiology. They proposed an approximation of far-red 

SIF as the product of fluorescence quantum yield and NIRvP, which is a parameter representing 

canopy effects and illumination conditions. NIRvP was found to be strongly related to SIF at 

different temporal and spatial scales, indicating that observed variability in far-red SIF resulted 

from changes in canopy structure and radiation levels.  Malenovský et al. (2021a) conducted 
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3-D model simulations for both crop and forest canopies. They found that the leaf clumping 

effect is the most influential factor in causing multi-angular anisotropy for both red and far-red 

SIF. They also highlighted the effects of non-photosynthetic woody material on forest canopy 

SIF due to the wood shadowing affecting the PAR absorption by leaves. 

Sensor cacharcteristics affect SIF retrieval accuracy, as proven by simulation studies (Damm 

et al., 2011; Julitta et al., 2016). In particular, spectral resolution (SR) and signal-to-noise ratio 

(SNR) are the most influential factors in SIF retrievals at oxygen absorption features. It is 

shown that coarser spectral resolution and higher noise levels usually lead to more erroneous 

SIF estimates. Julitta et al. (2016) recommended the use of sub-nanometer resolution (FWHM 

< 1.0 nm) for the absolute measurement of far-red SIF at O2-A band and ultrafine resolution 

(FWHM < 0.5 nm) for red SIF at O2-B band. Nevertheless, higher spectral resolution is usually 

accompanied by higher noise levels and data redundancy. In the context of leaf nutrient status 

monitoring, far-red SIF retrieved at narrow-band resolution has been successfully used to 

estimate leaf nitrogen (N) content, along with other RTM-derived leaf biochemical parameters, 

in both homogenous (Camino et al., 2019; Belwalkar et al., 2022) and heterogenous canopies 

(Wang et al., 2022; Li et al., 2025). Furthermore, Belwalkar et al. (2022) compared the 

performance of far-red SIF quantified at narrow-band (FHWM = 5.8 nm) and sub-nanometer 

(FWHM = 0.1-0.2 nm) airborne images to explain leaf N variability in crops. The authors 

reported an improvement in prediction accuracy (ΔR2 = 0.5, ΔRMSE = -0.03 %) for leaf N, 

ascribed to the sub-nanometer resolution, though they contended that narrow-band resolution 

is sufficient (R2 = 0.87, p-value < 0.001, RMSE = 0.12 %) to differentiate the relative leaf N 

level across the site. However, such a comparison study has not been performed in more 

complex canopies, such as forests, to help determine whether sub-nanometer resolution is 

necessary for vegetation nutrient monitoring. Li et al. (2025) have shown that SIF760 quantified 

from narrow-band airborne images (FWHM = 5.8 nm), when combined with RTM-derived 

needle pigment content  chlorophyll a + b, carotenoids and anthocyanins—yielded a prediction 

accuracy (R2) greater than 0.56 for needle N and 0.66 for needle P in radiata pine plantation. 

The authors also highlighted that far-red SIF was the most dominant contributor to needle P 

assessment through the variable importance analysis. Building on these previous findings, this 

study aims to evaluate and compare airborne far-red SIF quantified at the narrow-band 

resolution (FWHM = 5.8 nm) and that at the sub-nanometer resolution (FWHM = 0.1-0.2 nm) 

in terms of their contributions to explaining the variability in needle N and P content in radiata 

pines. We aim to determine if narrow-band resolution is sufficient for SIF760 quantification in 
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monitoring needle nutrient status. The hypothesis is that sub-nanometer-based SIF760 is more 

accurate and thus contributes more to nutrient estimation. Furthermore, we explore other 

absorption features related to solar-induced fluorescence, such as red SIF (SIF687) and solar 

FLs that are only apparent at the sub-nanometer resolution. 

 

5.2 Methods 

5.2.1 Airborne data collection and processing 

Two airborne campaigns were conducted over the radiata pine study site in Durham, Victoria, 

on October 27th, 2021, and January 11th, 2023, with two line scanning hyperspectral imaging 

spectrometers onboard a piloted aircraft Cessna-172 operated by the HyperSens Laboratory, 

University of Melbourne. The first hyperspectral sensor was a Hyperspec VNIR E-Series 

model (Headwall Photonics, Fitchburg, MA, USA) with narrow-band resolution, covering the 

400-1000 nm spectral region with a FWHM of 5.8 nm, with an FOV of 66°. The second 

hyperspectral sensor was a Solar-Induced Fluorescence imaging sensor (Headwall Photonics, 

Fitchburg, MA, USA), covering the SIF emission spectrum from 670-780 nm with an ultra-

high spectral resolution of 0.1-0.2 nm FWHM, with an FOV of 23.5°. The two spectrometers 

were hereafter referred to as  narrow-band imager and sub-nanometer sensors, respectively. 

More details of the spectral characteristics of the two hyperspectral imagers were summarised 

in Table 5.1. Narrow-band images and sub-nanometer images were collected at 350 m and 500 

m above ground levels, respectively, resulting in a spatial resolution of 0.2 m for both imagers. 

Radiometric calibrations were performed for both imagers in an optics laboratory using a 

CSTM-USS-2000C integrating sphere (Labsphere, XTH2000C, Labsphere Inc., North Sutton, 

NH, USA). Atmospheric correction was further applied to the radiometrically calibrated 

narrow-band images using the SMARTS model (Gueymard, 1995b) with the aerosol optical 

depth measured at 550 nm by a Microtops II Sunphotometer (Solar Light Co., Philadelphia, 

PA, USA) during the airborne campaigns. The output of this step was the narrow-band 

reflectance images. Image orthorectification was implemented on all images using PARGE 

software (ReSe Applications Schlapfe, Wil, Switzerland) with the inputs recorded by the 

onboard inertial measuring unit (VN-300-VectorNav Technologies LLC, Dallas, TX, USA) and 

synchronized with the hyperspectral imager. More details on the image pre-processing can be 

found in Chapter 4. Fig. 5.1 presents an overview of the study site and an example of the sub-

nanometer image. 
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Table 5.5 Spectral characteristics of the narrow-band and sub-nanometer sensors used in 
this study. *With spectral binning  

Headwall Hyperspec 
VNIR E-Series imager 
(Hyperspectral sensor) 

Headwall Solar-Induced 
Fluorescence Imaging Sensor 
(Sub-nanometer sensor) 

Spectral range 400-1000 nm 670-780 nm 

Number of bands 371 2160 

Spectral sampling interval 1.626 nm 0.051 nm 

FWHM 5.8 nm 0.1-0.2 nm 

Field of view 66° 23.5° 

Signal-to-Nose Ratio  > 300:1* > 300:1* 

Bit depth 16 16 
 

An object-based segmentation procedure was implemented on the narrow-band reflectance  

images image and radiance images from both narrow-band and sub-nanometer sensors using 

the Fiji software (Abràmoff et al., 2004) to extract pure tree crowns. Local thresholding 

algorithms were applied to an NIR band (810 nm) and a structural index layer (NDVI > 0.6) in 

combination to separate the sunlit vegetation pixels from the soil background and within-crown 

shadows. The watershed algorithm was then applied to extract tree crown polygons. Delineated 

tree-crown polygons were further restricted to the central 25% area, considering the sensitivity 

of SIF to the illumination conditions and canopy structure (Zarco-Tejada et al., 2013f; 

Malenovský et al., 2021a). Due to the spatial misalignment between the narrow-band and sub-

nanometer image, a manual selection process was then employed to identify and label trees 

that were visible in both images. This step ensured a fair comparison between narrow-band and 

sub-nanometer-based analysis. Eventually, 512 trees (n = 512) from 30 plots belonging to 9 

treatments were selected for the 2021-Oct dataset. 576 trees (n = 576) from 33 plots belonging 

to 9 treatments were selected for the 2023-Jan dataset.  The mean reflectance and radiance of 

the tree crowns in the same plot were used to represent the plot-level products. 
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Fig. 5.16. Overview of the study site as shown in the sub-nanometer radiance mosaic 
(composite: 760 (R), 710 (G) and 680 (B) nm) obtained on October 27th, 2021. Plot 
boundaries are green. Letters A-I represent the treatment group. See Chapter 3 for more 
information on the study site. 

 

5.2.2 SIF quantification 

We implemented FLD-based methods for SIF quantification, as they are computationally 

efficient and well-established. 3FLD was used to quantify SIF at the O2-A absorption feature 

(SIF760), as the retrieval accuracy for far-red SIF based on the 3FLD method was less affected 

by sensor characteristics compared to other FLD-based methods (Damm et al., 2011). While 

SIF760 was retrieved from both narrow-band and sub-nanometer data, SIF687 was only 

quantified at the sub-nanometer resolution, as the O2-B absorption feature was not evident at 

the narrow-band resolution (Fig. 5.1). SIF687 was retrieved through the sFLD method, as the 

assumption of linear spectral variations in 3FLD was invalid for the O2-B absorption region. It 

has also been found in the previous study that SIF687 retrieval errors through FLD-based 
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methods were highly dependent on the selection of absorption windows and reference 

shoulders, while sFLD was less affected than 3FLD (Cendrero-Mateo et al., 2019). 

 

Fig. 5.17. Comparison between narrow-band and sub-nanometer radiance spectra 
extracted from one of the plots in the (a) fluorescence spectral region and zoomed-in views 
for the (b) O2-B (685-690 nm) and (c) O2-A absorption region (750-780 nm). 

 

The general formulation of FLD-based chlorophyll fluorescence quantification can be 

expressed by: 

𝐹𝐹 =  
𝐿𝐿↑𝑖𝑖𝑖𝑖−

𝐸𝐸↓𝑖𝑖𝑖𝑖
𝐸𝐸↓𝑜𝑜𝑜𝑜𝑜𝑜

𝐿𝐿↑𝑜𝑜𝑜𝑜𝑜𝑜

1−
𝐸𝐸↓𝑖𝑖𝑖𝑖
𝐸𝐸↓𝑜𝑜𝑜𝑜𝑜𝑜

                                                    Eq. 5.1 

Where F is the chlorophyll fluorescence in units of radiance. 𝐿𝐿↑ and 𝐸𝐸↓ are upwelling radiance 

and downwelling irradiance, respectively. Suffix 𝑖𝑖𝑖𝑖  indicates the wavelength where the 

maximum absorption occurs in the absorption feature, while the suffix 𝑜𝑜𝑜𝑜𝑜𝑜 is the reference 

wavelength outside the absorption feature. One reference band at the left shoulder of the 

absorption feature is required by the sFLD method. For the 3FLD method, one band at the left 

shoulder and one at the right shoulder are used to obtain the virtual reference band through 

linear interpolation at the maximum absorption wavelength. 

The minimum radiance in the absorption window characterizes the maximum absorption 

wavelength. The reference band is determined by searching for the maximum radiance in the 

(a) 

(b) 

(c) 
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reference shoulder intervals (Table 5.2). Considering the noises present in the sub-nanometer 

data, the mean values of the bands within 1-nm distance from the determined shoulder 

maximum are used to represent 𝐿𝐿↑𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐸𝐸↓𝑜𝑜𝑜𝑜𝑜𝑜. The irradiance was recorded by the HR2000 

spectrometer (Ocean Optics, Dunedin, FL, USA) concurrently with the flights. An empirical 

correction method was then employed to account for the atmospheric effects, using the non-

fluorescent target (i.e., bare soil pixels) in the scene. 

We also quantified the absolute depth of O2-A and O2-B absorption features by taking the 

difference between the maximum radiance on the left shoulder and the minimum radiance 

within the absorption window. 

Table 5.6 Spectral intervals used to calculate SIF760 and SIF687 using FLD-based methods. 
 Method Left shoulder 

interval 
Absorption 
window 

Right shoulder 
interval 

SIF760 3FLD 750-755 nm 755-765 nm 771-776 nm 
SIF687 sFLD 684.5-685.5 nm 686-689 nm - 

 

5.2.3 Fraunhofer line identification and depth calculation 

A total of 16 Fraunhofer lines (FLs) were identified in the spectral range from 670-780 nm 

from the sub-nanometer data (Fig. 5.3), with spectral regions heavily affected by water vapour 

and oxygen absorption avoided during the selection (Albert et al., 2023; Belwalkar et al., 2023). 

The FLs were further categorized into red FLs and far-red FLs based on their spectral locations, 

resulting in 5 red FLs and 11 far-red FLs. The absolute FL depth was defined as the difference 

between the left shoulder maximum radiance and the minimum radiance within the FL 

absorption feature. The minimum radiance was found within the pre-defined spectral interval 

(Table 5.3) for each FL. The local maxima within the 1-nm range to the bottom of the FL 

absorption feature were used as the left shoulder radiance. 
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Fig. 5.18. Vegetation radiance spectrum (green lines) with sub-nanometer resolution 
(FWHM = 0.1-0.2 nm) overlaid with the selected 16 Fraunhofer lines (FLs) (blue shading), 
O2-B absorption feature (purple shading) and O2-A absorption feature (red shading) (a) 
across the 670-780 nm region; (b) zoomed-in view for five red FLs and O2-B region; (c, d) 
zoomed-in view for 11 far-red FLs and O2-A region. The width of the shaded area 
represents the spectral interval used to calculate depths of absorption features (FLs, O2-
A and O2-B), SIF760 and SIF687. 

 

5.2.4 Plant trait retrieval from PRO4SAIL2 inversion 

We retrieved leaf pigment content from the narrow-band reflectance data through the inversion 

of the RTM PRO4SAIL2 [PROSPECT-D + 4SAIL2] (Verhoef and Bach, 2007; Féret et al., 

2017) with a look-up-table (LUT) based approach. For each of the two narrow-band datasets 

of plot-mean reflectance, we generated a LUT with 500,000 simulations by running 

PRO4SAIL2 in the forward mode. To match the spectral characteristics of the narrow-band 

hyperspectral imager (400 – 1000 nm, FWHM = 5.8 nm), spectral convolution with a Gaussian 

function was then applied to the simulated spectra (400 – 2500 nm, FWHM = 1 nm). We also 

employed continuous wavelet transform (CWT) with the second-derivative Gaussian kernel to 

the simulated and observed spectra, as this method has been proven effective in decoupling 

overlapping absorption features such as leaf pigment. Inversion was then carried out on the 

transformed spectra by identifying the top 1% of simulated spectra that were most similar to 

the observations, as determined by the root mean square error (RMSE). From this process, we 

(a) (b)

(c) (d) 
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retrieved needle chlorophyll a + b (Cab), carotenoid (Car) and anthocyanins (Anth) content for 

both datasets. Further details of PRO4SAIL2 inversion are provided in Chapter 4 and Li et al. 

(2025). 

Table 5.7 Spectral intervals used to define FLs for the sub-nanometer data and the 
wavelength at the minimum radiance within the FL intervals. Note: the wavelength at the 
bottom of the FL is not fixed and may differ for different radiance spectra. The 
wavelengths listed in the table only represent the most frequently selected wavelengths in 
our datasets. 

 Spectral interval (nm) Wavelength at the minimum 
radiance (nm) 

Red FLs   
FL1 671.5-672.0 671.7770 
FL2 672.5-673.0 672.6404 
FL3 676.5-677.0 676.8390 
FL4 680.6-681.4 681.0820 
FL5 682.6-683.2 682.8702 
   
Far-red FLs   
FL6 744.2-745.0 744.6320 
FL7 746.0-746.5 746.2680 
FL8 749.0-750.0 749.5400 
FL9 750.8-751.5 751.1760 
FL10 752.0-752.5 752.3520 
FL11 753.0-753.5 753.1700 
FL12 755.2-756.0 755.6240 
FL13 756.5-757.3 756.9530 
FL14 772.5-773.0 772.8020 
FL15 774.0-774.5 774.3360 
FL16 774.5-775.2 774.8990 

 

5.2.5 Needle N and P modelling 

For each of the two datasets, Gaussian Process Regression (GPR) models (Rasmussen, 2004) 

were trained to predict concentrations of needle N and P at the plot level with various inputs. 

The benchmark model was selected based on results from Chapter 4, which included RTM-

derived needle pigment content (i.e., Cab, Car, Anth) and SIF760-narrow as inputs. With a further 

focus on SIF evaluation in the needle nutrient monitoring context, we then replaced SIF760-narrow 

in the benchmark inputs with 1) SIF760-subnano, 2) SIF687-subnano. We further incorporated FL 

depths into the GPR input sets to understand the distinct contribution of red and far-red FL  

depths, and thus photosystem I and photosystem II, to explain needle N and P variabilities in 

radiata pines. More specifically, we built GPR models with inputs consisting of RTM-derived 

needle pigment content (i.e., Cab, Car, Anth) and 1) one red FL depth at a time; 2) one far-red FL 

depth at a time; 3) O2-Asubnano depth or O2-Bsubnano depth; 4) any combination of one red FL and 
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one far-red FL depths; 4) SIF760-subnano and any of the 16 FL depths; and 5) SIF687 and any of 

the 16 FL depths.  

The hyperparameters of the GPR algorithm were automatically tuned for each target variable 

with the Bayesian optimizer in MATLAB using the parallel computing toolbox (Statistics and 

Machine Learning toolbox; MathWorks Inc., Natick, MA, USA). The model performance was 

determined through a Leave-One-Out Validation (LOOV) procedure. The normalized root 

mean squared error (NRMSE), and the coefficient of determination (R2) were used as the 

primary metrics for model prediction accuracy. NRMSE was calculated as the ratio between 

RMSE and the range of needle nutrient measurements of the dataset. 

 

5.3 Results 

5.3.1 SIF760 from narrow-band and sub-nanometer images 

The preliminary analysis of O2-A absorption band depths revealed a moderate relationship 

between two hyperspectral imagers for both datasets (R2 = 0.63 and 0.54 for 2021-Oct and 

2023-Jan datasets, respectively, p-value < 0.001) (Fig. 5.4a).  O2-Asubnano depth displayed a 

higher magnitude (58-106 mW/m2/nm/sr) than O2-Anarrow depth (24-57 mW/m2/nm/sr), as the 

O2-A absorption feature showed a shallower bottom at the narrow-band resolution than the sub-

nanometer resolution (Fig. 5.1). 

The narrow-band- and sub-nanometer-based SIF760 quantified through the 3FLD method were 

moderately correlated (Fig. 5.4b), with a higher R2 observed in the 2021-Oct dataset (0.63, p-

value < 0.001) than for the 2023-Jan dataset (0.51, p-value < 0.001). Notably, SIF760 quantified 

at the narrow-band resolution was significantly larger than their sub-nanometer counterparts: 

SIF760-narrow values were at least three times higher than SIF760-subnano values for the 2021-Oct 

dataset, and about two times higher for the 2023-Jan dataset. It should also be clarified that our 

retrievals of SIF760 from both hyperspectral imagers were higher than the expected values for 

healthy vegetation (0.5-3 mW/m2/nm/sr). 
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Fig. 5.19. Correlation (R2) between (a) O2-A absorption band depth and (b) SIF760 values 
from the narrow-band and sub-nanometer data for the 2021-Oct (green) and 2023-Jan 
(yellow) datasets at the plot level. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; 
ns: not significant.  

 

Regarding the O2-B absorption region (Fig. 5.5a), we noted a narrower range of the O2-B band 

depth in the 2023-Jan dataset (3.2-4.8 mW/m2/nm/sr) than the 2021-Oct dataset (1.2-3.4 

mW/m2/nm/sr). Due to the different image acquisition dates and thus the differences in the 

illumination conditions, the band depths are not directly comparable. SIF687 determined by the 

sFLD method (Fig. 5.5b) showed a lower magnitude and narrower ranges for the 2021-Oct 

dataset (0.3-1.1 mW/m2/nm/sr) than for the 2023-Jan dataset (2.2-3.2 mW/m2/nm/sr). 

Fig. 5.20. Pairwise correlation (R2) of sub-nanometer-based absorption features, 
including Fraunhofer line (FL) depths and O2 absorption feature depths for the (a) 2021-
Oct and (b) 2023-Jan datasets at the plot level. 

 

5.3.2 Fraunhofer line depth and SIF687 from sub-nanometer images 

(a) (b) 

(a) (b) 
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The assessment of pairwise correlation for the depths of absorption features obtained from the 

sub-nanometer data, including FLs and O2-A and O2-B regions, is presented in Fig. 5.6. The 

pattern of strong correlation between depths of far-red absorption features (i.e., far-red FLs and 

O2-A) were observed in both datasets, especially for features located between FL7 to O2-A 

region (746-760 nm) in the 2021-Oct dataset (Fig. 5.6a). By contrast, the pairwise comparison 

within the red spectral region (i.e., red FLs and O2-B depths) showed weaker correlation in 

both datasets, potentially due to the strong influence of re-absorption by pigment in this region 

and the intrinsic sensor noise effects on subtle red absorption features. Furthermore, depths of 

red absorption features were weakly correlated with those in the far-red region, which was 

more distinct in the 2023-Jan dataset (Fig. 5.6b). 

Fig. 5.21. Distributions of (a) O2-B absorption feature depth and (b) SIF687 values 
quantified from sub-nanometer data for the 2021-Oct and 2023-Jan datasets at the plot 
level. The sample sizes (n) are 30 and 33 for the 2021-Oct and 2023-Jan datasets, 
respectively.  

 

5.3.3 Model performance for needle N and P predictions 

The linear relationships between variables, including SIF and depths of absorption features, 

and measured needle N and P concentrations, were evaluated before the GPR modelling 

process. Overall, all variables of interest were better correlated with needle P measurements 

than needle N (Table 5.4). A weak linear relationship (R2 < 0.2) was consistently observed 

between needle N and all variables for both datasets, regardless of the spectral regions (i.e., red 

and far-red) or the spectral resolutions (i.e., narrow-band and sub-nanometer) from which those 

variables were derived. On the other hand, a stronger relationship was found between needle P 

measurements and SIF or band depths in the 2021-Oct dataset compared to the 2023-Jan dataset. 

Within each dataset, needle P was better related to far-red variables than the red variables 

(a) (b) 
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derived from the sub-nanometer data. For instance, SIF760-subnano presented an R2 of 0.52 and 

0.26 with needle P for the 2021-Oct and 2023-Jan datasets, respectively, while the correlation 

between SIF687-subnano and needle P was weaker (R2 = 0.01 for 2021-Oct, and 0.05 for 2023-

Jan). Similarly, the depth at the O2-A absorption feature was more closely related to needle P 

in both datasets (R2 = 0.36 and 0.19, respectively) than the O2-B absorption depth (R2 = 0.00 

and 0.15, respectively). 

Table 5.8 Correlation (R2) between measured needle N and P concentrations and variables 
quantified from the sub-nanometer data (i.e., 16 Fraunhofer line [FL] depths and O2-
Bsubnano absorption band depth, SIF687-subnano and SIF760-subnano) and variables quantified 
from the narrow-band data (i.e., O2-Anarrow absorption band depth and SIF760-narrow) for 
the 2021-Oct and 2023-Jan datasets at the plot level. The blue shading of the cell indicates 
the magnitude of R2, with a darker color representing stronger correlation. 

  Needle N (g/kg)   Needle P (g/kg) 
  2021-Oct 2023-Jan   2021-Oct 2023-Jan 
FL1 0.05 0.00  0.01 0.15 
FL2 0.00 0.08  0.01 0.08 
FL3 0.01 0.00  0.00 0.13 
FL4 0.00 0.01  0.03 0.06 
FL5 0.01 0.00  0.04 0.04 
O2-Bsubnano 0.09 0.09  0.00 0.15 
FL6 0.05 0.06  0.06 0.00 
FL7 0.07 0.10  0.19 0.00 
FL8 0.07 0.01  0.24 0.04 
FL9 0.05 0.03  0.29 0.06 
FL10 0.02 0.00  0.17 0.01 
FL11 0.04 0.02  0.28 0.12 
FL12 0.02 0.00  0.34 0.06 
FL13 0.04 0.01  0.23 0.08 
O2-Asubnano 0.08 0.02  0.36 0.19 
FL14 0.19 0.00  0.21 0.09 
FL15 0.03 0.01  0.19 0.25 
FL16 0.10 0.00  0.36 0.22 
SIF760-subnano 0.05 0.01  0.52 0.26 
SIF687-subnano 0.06 0.13  0.01 0.05 
SIF760-narrow 0.07 0.00  0.46 0.44 
O2-Anarrow 0.07 0.00   0.47 0.37 

 

Comparing variables obtained at different spectral resolutions, it is noticed that narrow-band-

based variables (i.e., SIF760-narrow and O2-Anarrow) generally had a stronger relationship with 

needle P than the sub-nanometer-based counterparts (i.e., SIF760-subnano and O2-Asubnano) in both 
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datasets, with the only exception of needle P with SIF760 relationship for the 2021-Oct dataset 

(R2 = 0.46 for SIF760-narrow vs 0.52 for SIF760-subnano). 

Needle N 

Benchmarking against the narrow-band-based model developed in Chapter 4, N = f(Cab, Car, 

Anth, SIF760-narrow), we evaluated whether sub-nanometer-based variables could further improve 

the needle N prediction accuracy by replacing the narrow-band-based SIF760 with SIF or 

absorption feature depths (i.e., FLs and O2) derived from the sub-nanometer data. The 

performance of GPR models for needle N predictions is summarized in Table 5.5. It is apparent 

that none of the evaluated models yielded statistically significant or accurate prediction results 

for needle N in the 2023-Jan dataset. The probable cause is the lack of significant differences 

between needle N concentration measurements from various fertilization treatments in the 

specific dataset. More details of field data analysis are available in Chapter 3. 

In the case of the 2021-Oct dataset, substituting the narrow-band-based SIF760 in the benchmark 

model [N = f(Cab, Car, Anth, SIF760-narrow)] with the sub-nano-based values [N = f(Cab, Car, Anth, 

SIF760-subnano)] did not significantly affect the prediction accuracy, with the NRMSE value of 

0.20 for both models. The focused analysis of sub-nanometer data showed that variables 

quantified from the red region contributed less to the needle N predictions than those from the 

far-red region. When red SIF (SIF687-subnano) was used in the GPR inputs, the prediction 

accuracy dropped dramatically (ΔR2 ≤ -0.19, ΔNRMSE = 0.04), as compared to the models 

built with far-red SIF (SIF760-subnano). Similarly, the model with O2-B band depth (R2 = 0.30, p-

value < 0.001, NRMSE = 0.25) was more erroneous than the one built with O2-A band depth 

(R2 = 0.47, p-value < 0.001, NRMSE = 0.22). Furthermore, the model with the best-performing 

red FL depth, N = f(Cab, Car, Anth, FL4), produced lower accuracy (R2 = 0.49, p-value < 0.001, 

NRMSE = 0.21) than N = f(Cab, Car, Anth, FL16), the model with the best performing far-red FL 

depth (R2 = 0.62, p-value < 0.001, NRMSE = 0.17). Notably, the latter was also the most 

accurate model among all for needle N predictions for the 2021-Oct dataset. It is also evident 

that all the models that outperformed the narrow-band-based benchmark for needle N 

predictions contained the depth of a far-red FL in the inputs. Moreover, the model with the 

best-performing combination of red and far-red FL depths, N = f(Cab, Car, Anth, FL1, FL16), 

showed a decrease in prediction accuracy due to the addition of the red FL1 (ΔR2 ≤ -0.04, 

ΔNRMSE = 0.02), implying the adverse effects of red FL depths in explaining needle N 

variabilities in this study. Finally, it is important to emphasize that our results on needle N 

analysis might not be conclusive due to the limited availability of effective datasets. 
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Table 5.9 Performance of GPR models for needle N predictions at the plot level for the 
2021-Oct and 2023-Jan datasets with inputs including PRO4SAIL2-derived needle 
pigment content (Cab, Car, Anth) from the narrow-band data; SIF760 and O2-A absorption 
band depth quantified from sub-nanometer (SIF760-subnano and O2-Asubnano) and narrow-
band (SIF760-narrow and O2-Anarrow) data; SIF687-subnano, depths of Fraunhofer lines (FLs) 
and O2-Bsubnano absorption feature calculated from the sub-nanometer data. n represents 
the sample size. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; ns: not significant.  

    2021-Oct (n = 30)   2023-Jan (n = 33) 
    R2 NRMSE   R2 NRMSE 
Narrow-band-based models           
N = f(Cab, Car, Anth, SIF760-narrow)  0.56*** 0.20  0.08ns 0.23 
N = f(Cab, Car, Anth, O2-Anarrow)  0.57*** 0.19  0.06ns 0.24 
       
Sub-nanometer-based models       
N = f(Cab, Car, Anth, SIF760-subnano)  0.50*** 0.20  0.03ns 0.25 
N = f(Cab, Car, Anth, SIF687-subnano)  0.31** 0.24  0.04ns 0.24 
N = f(Cab, Car, Anth, O2-Asubnano)  0.47*** 0.22  0.08ns 0.23 
N = f(Cab, Car, Anth, O2-Bsubnano)  0.30** 0.25  0.24** 0.22 
N = f(Cab, Car, Anth, FL4)  0.49*** 0.21  0.10ns 0.23 
N = f(Cab, Car, Anth, FL16)  0.62*** 0.17  0.16* 0.22 
N = f(Cab, Car, Anth, FL1, FL16)  0.58*** 0.19  0.13ns 0.22 
N = f(Cab, Car, Anth, SIF760-subnano, FL16) 0.57*** 0.19  0.11ns 0.23 
N = f(Cab, Car, Anth, SIF687-subnano, FL12) 0.49*** 0.20   0.01ns 0.25 

 

Needle P 

Overall, higher prediction accuracies were obtained for needle P predictions than for needle N 

for both datasets (Table 5.6). The narrow-band-based benchmark P = f(Cab, Car, Anth, SIF760-

narrow) showed a significant advantage over any of the sub-nanometer-based models for the 

2021-Oct datasets, with an R2 of 0.69 (p-value < 0.001) and a NRMSE value of 0.13. For the 

203-Jan dataset, the advantage of the benchmark model was less evident, as two sub-

nanometer-based models produced similar prediction accuracy (R2 = 0.49-0.50, p-value < 

0.001, NRMSE = 0.21-0.22): P = f(Cab, Car, Anth, O2-Asubnano) and P = f(Cab, Car, Anth, SIF760-

subnano, FL14). The replacement of narrow-band-based SIF760 with the sub-nanometer-based 

SIF760 in the GPR model inputs resulted in a reduction in needle P prediction accuracy for both 

datasets (ΔR2 = -0.20 and -0.14, ΔNRMSE = 0.04 and 0.03, for 2021-Oct and 2023-Jan, 

respectively). 
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Table 5.10 Performance of GPR models for needle P predictions at the plot level for the 
2021-Oct and 2023-Jan datasets with various inputs: PRO4SAIL2-derived needle 
pigment content (Cab, Car, Anth) from the narrow-band data; SIF760 and O2-A absorption 
band depth quantified from sub-nanometer (SIF760-subnano and O2-Asubnano) and narrow-
band (SIF760-narrow and O2-Anarrow) data; SIF687-subnano, depths of Fraunhofer lines (FLs) 
and O2-Bsubnano absorption feature calculated from the sub-nanometer data. n represents 
the sample size. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; ns: not significant.  

    2021-Oct (n = 30)   2023-Jan (n = 33) 
    R2 NRMSE   R2 NRMSE 
Narrow-band-based models           
P = f(Cab, Car, Anth, SIF760-narrow)  0.69*** 0.13  0.49*** 0.22 
P = f(Cab, Car, Anth, O2-Anarrow)  0.61*** 0.15  0.50*** 0.22 
       
Sub-nanometer-based models       
P = f(Cab, Car, Anth, SIF760-subnano)  0.49*** 0.17  0.35*** 0.25 
P = f(Cab, Car, Anth, SIF687-subnano)  0.19* 0.23  0.22** 0.27 
P = f(Cab, Car, Anth, O2-Asubnano)  0.49*** 0.18  0.50*** 0.21 
P = f(Cab, Car, Anth, O2-Bsubnano)  0.17* 0.22  0.33*** 0.25 
P = f(Cab, Car, Anth, FL1)  0.37*** 0.20  0.34*** 0.25 
P = f(Cab, Car, Anth, FL16)  0.51*** 0.17  0.36*** 0.25 
P = f(Cab, Car, Anth, FL3, FL16)  0.46*** 0.18  0.45*** 0.23 
P = f(Cab, Car, Anth, SIF760-subnano, FL14) 0.49*** 0.18  0.52*** 0.21 
P = f(Cab, Car, Anth, SIF687-subnano, FL12) 0.46*** 0.18   0.31*** 0.25 

 

Among the sub-nanometer-based models, the superiority of far-red variables over red variables 

for needle P predictions was observed. There was a decrease in needle P prediction accuracy 

when the red SIF (SIF687-subnano) was used alongside PRO4SAIL2-derived pigments as inputs 

for the GPR models (R2 = 0.19 and 0.22, NRMSE = 0.23 and 0.27, for 2021-Oct and 2023-Jan, 

respectively), as opposed to the case where the far-red SIF (SIF760-subnano) was added (R2 = 0.49 

and 0.35, NRMSE = 0.17 and 0.25). A similar level of discrepancy in needle P prediction 

performance was found between the model with O2-Bsubnano depth and the one with O2-Asubnano 

depth, with the latter showing higher accuracy for both datasets. Comparing the FL-involved 

models, the model with the best-performing red FL depth (i.e., FL1) yielded relatively poor 

accuracies for both datasets (R2 = 0.37 and 0.34, p-value < 0.001, NRMSE = 0.20 and 0.25 for 

2021-Oct and 2023-Jan, respectively). The model with the best-performing far-red FL depth 

(i.e., FL16) was the most accurate for the 2021-Oct dataset (R2 = 0.51, p-value < 0.001, NRMSE 

= 0.17). Moreover, when pigments and SIF (e.g., SIF687-subnano or SIF760-subnano) were fixed in 

the GPR inputs and one FL depth was added to the input set at a time, the best-performing FL 
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depths selected were both in the far-red region (e.g., FL12 and FL14), demonstrating the 

importance of far-red FL depths in needle P predictions over red FL depths. 

 

5.4 Discussion 

Our results based on two datasets suggest that the sub-nanometer-based SIF760 did not further 

contribute to the needle P prediction accuracy than the narrow-band-resolved SIF760 already 

did, when SIF760 was used as the input of GPR predictive models along with needle pigment 

content derived from PRO4SAIL2. It remains inconclusive whether the sub-nanometer 

resolution would contribute more compared with SIF760 as a predictor for needle N content, 

due to the limited availability of needle N measurements. These results on P estimations are 

against our hypothesis that SIF760 quantified at the sub-nanometer resolution can provide more 

information on needle nutrient status than that from the narrow-band resolution. The hypothesis 

is established on the findings from simulation studies (Damm et al., 2011; Belwalkar et al., 

2022) that finer spectral resolutions enable more accurate quantification of SIF at the O2-A 

absorption region through 3FLD methods. Our findings also contradict those of a previous 

study on the application of airborne SIF for leaf N assessment in crop canopies. Belwalkar et 

al. (2022) found that SIF760 quantified from sub-nanometer images (FWHM = 0.1-0.2 nm) 

contributed more than SIF760 from narrow-band images (FWHM = 5.8 nm) to the leaf N 

predictions, when used as machine learning regression model inputs along with RTM-derived 

leaf chlorophyll a + b content (R2 = 0.93 vs 0.87, RMSE = 0.09 vs 0.12). Additionally, we 

observed only moderate correlation (R2 = 0.51 and 0.63, for 2021-Oct and 2023-Jan datasets, 

respectively) between the narrow-band-based and sub-nanometer-based SIF760, lower than the 

correlation reported by Belwalkar et al. (2022). The reduced agreement in our study can be 

partially attributed to the segmentation process, which introduced spatial and spectral 

discrepancies in the tree crowns extracted from narrow-band and sub-nanometer images (e.g., 

pixel mixture and tree crown sizes), and the canopy complexities. 

The deviation of our results from the initial hypothesis or previous studies can be partially 

explained by the SIF760 retrieval accuracy from both imagers, which subsequently affected the 

needle nutrient predictions. The retrievals, either from narrow-band or sub-nanometer images, 

were beyond the expected ranges for far-red SIF (0.5-3 mW/m2/nm/sr). Higher values of SIF760 

were consistently obtained from narrow-band images, which can be explained by the coarser 

spectral resolution.  This is consistent with findings from previous studies (Damm et al., 2011; 
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Julitta et al., 2016; Cendrero-Mateo et al., 2019; Belwalkar et al., 2022) that narrow-band 

resolution (FWHM > 1 nm) results in overestimates of FLD-based SIF760 values. Therefore, 

SIF760 retrievals in this study can only be considered as relative indicators of plant 

physiological responses induced by various fertilization levels across the study site, instead of 

as absolute quantifications of SIF. In practice, absolute errors in airborne SIF estimates could 

hardly be quantified, unless sophisticated radiative transfer modelling is involved. Some 

airborne-based studies (Damm et al., 2014; Belwalkar et al., 2022) employed SIF quantified 

from ground-level TOC spectral measurements from handheld spectrometers as the baseline 

values, as they are free of errors related to atmospheric effects and observation geometry. This 

strategy is less practical in our case, given the heights and shape of radiata pine trees. Some 

studies also use steady-state chlorophyll fluorescence measured by active techniques (e.g., 

fluorometers) at the leaf level to compare with the canopy-level SIF retrievals (Zarco-Tejada 

et al., 2013a; Hernández-Clemente et al., 2017a; Wang et al., 2022). However, the leaf 

chlorophyll measurements do not always strongly correlate with the airborne TOC SIF due to 

the differences in active and passive measuring mechanisms and the scale mismatch (Cendrero-

Mateo et al., 2016). Additionally, the special circumstances of coniferous canopy restrain the 

implementation of in-situ steady-state fluorescence measurements, such as the canopy height 

and the small foliar surface area. The latter renders the use of leaf clips more challenging for 

fluorometer measurements. In summary, the comparison between airborne narrow-band- and 

sub-nanometer-based SIF760 lacks validity, as the accuracy of SIF760 estimates remains 

unknown. Future research could use drones to acquire low-altitude TOC spectral measurements 

as an alternative to validate SIF760 obtained by a piloted aircraft at a higher altitude. 

Airborne SIF retrieval accuracy at O2 absorption features is known to be susceptible to 

atmospheric effects. Non-fluorescent targets, such as bare soil pixels, have been used in the 

current and previous studies to account for the atmospheric effects and observational geometry, 

to correct the out-of-range SIF estimates (Damm et al., 2014; Belwalkar et al., 2022; Wang et 

al., 2022). However, our post-correction SIF values are still higher than expected, implying the 

insufficiency of such an empirical atmospheric correction method in our case. It is 

recommended that the reference soil target be in the vicinity of the plant target with a similar 

radiance level (Guanter et al., 2010; Damm et al., 2014). Both studies used a spatially 

interpolated soil layer as a reference to guarantee high spatial adjacency. However, the vicinity 

criterion was hardly met in our analysis since barely any clear soil targets were identified closer 

to the trees. Instead, they were located along the road as shown in the scene. We recommend 
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implementing radiative transfer modelling for comprehensive atmospheric correction for 

heterogeneous canopies in the future. 

We found SIF687-subnano was poorly related to needle N and P status in both datasets, compared 

to other sub-nanometer-derived variables. This aligns with the previous study by Belwalkar et 

al. (2023), where SIF687 contributed little to the leaf N estimations when used as GPR model 

inputs alongside RTM-derived leaf Cab content. The authors contend that the collinearity 

between SIF687 and Cab resulted in the low prediction accuracy. Nevertheless, we did not notice 

strong correlations between SIF687-subnano and any RTM-derived needle pigment in our datasets. 

Several factors could partially explain the limited contribution of SIF687 for needle nutrient 

assessment. First, the sFLD method used in this study did not account for canopy re-absorption 

and scattering effects on SIF687. It is known that leaf chlorophyll fluorescence emitted in the 

red spectral region suffers more from chlorophyll re-absorption, compared to fluorescence 

emitted in the far-red region. The coniferous canopy structure further complicates the 

interpretation of at-sensor SIF687 signals. Second, red SIF retrievals based on the FLD principle 

are prone to errors. Cendrero-Mateo et al. (2019) evaluated uncertainties in red SIF retrievals 

through various methods, including sFLD, 3FLD, iFLD and SFM, against model-simulated 

chlorophyll fluorescence at the red peak. Their results indicated that both sFLD and 3FLD 

methods produced less accurate red SIF retrievals than more advanced methods such as iFLD 

and SFM. The selection of shoulder wavelengths and the definition of absorption windows 

were identified as the major sources of errors in FLD-based retrievals. Given all these 

complexities, we suggest the use of advanced RTMs such as SCOPE, Fluspect coupled with 

canopy model (e.g., 4SAIL2 and FLIGHT) for SIF687 quantification in heterogeneous canopies 

in the future. 

FL absorption features, which are largely unaffected by atmospheric effects, provide an 

opportunity to track the response of chlorophyll fluorescence emissions to abiotic stressors 

without requiring complex atmospheric correction. Our results indicate that far-red FL depths 

contribute more to the needle N and P estimation than the depths of red FLs. The GPR model 

built with RTM-derived pigment (i.e., Cab, Car, and Anth) and FL16 (774.8990 nm) provided 

improved prediction accuracy for both needle N (R2 = 0.62, p-value < 0.001, NRMSE = 0.17) 

and P (R2 = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25), compared to the models with 

sub-nanometer-based SIF and red FL depths. This may be attributed to the generally deeper 

and wider absorption feature in the far-red region, making far-red FL depths less sensitive to 

noise and spectral shifting effects. From a physiological perspective, the stronger association 
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between far-red FL depths and needle nutrient status likely reflects the involvement of both 

photosystems in stress responses. While the fluorescence in the red region is primarily 

contributed by PSII, the far-red spectral region is influenced by chlorophyll fluorescence 

emissions from both PSI and PSII. In conclusion, these results indicate the potential of FL 

depths, especially far-red FLs, obtained at the sub-nanometer resolution, for needle N and P 

monitoring in coniferous canopies. Future research could more extensively evaluate various 

combinations of FL depths, with or without RTM-derived traits, in the context of needle N and 

P estimations. 

 

5.5 Conclusions 

Built upon previous findings that RTM-derived needle pigment content and far-red SIF (SIF760) 

quantified from airborne narrow-band (FWHM = 5.8 nm) images are effective predictors for 

needle N and P concentrations in radiata pines, this study focused on the comparison of SIF 

obtained from narrow-band and sub-nanometer (FWHM = 0.1-0.2 nm) images and their impact 

on needle N and P estimation, using two datasets. We also investigated the contribution of FLs 

that were only evident at sub-nanometer resolution to the assessment of needle N and P 

concentration. Our results showed that the sub-nanometer resolution did not further improve 

the contribution of SIF760 to needle N and P estimations, compared to the narrow-band-based 

benchmark model with RTM-derived pigment content and SIF760 as inputs. These findings 

contradicted our hypothesis that finer spectral resolution enables more accurate SIF760 

retrievals, which subsequently contribute more to the needle N and P estimation. However, as 

the uncertainties in the SIF760 retrievals from both imagers could not be quantified in this study, 

it remains inconclusive whether sub-nanometer resolution is superior to the narrow-band 

resolution for SIF760 application in needle N and P estimations. Potential sources of errors in 

SIF760 estimates include atmospheric effects, viewing geometry and errors related to the applied 

3FLD method. For future research in heterogeneous coniferous canopies, we recommend using 

SIF (red and far-red) retrieved from low-altitude drone-acquired sub-nanometer spectral 

measurements as the baseline to validate SIF estimates from higher altitudes. Atmospheric 

RTMs should be implemented to account for the atmospheric effects and viewing geometry 

properly. 

The sub-nanometer resolution provided the valuable opportunity to explore red SIF (SIF687) 

and FLs for needle nutrient assessment. We found that SIF687 was ineffective in explaining 
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needle N and P variabilities. This could be partially attributed to the canopy re-absorption and 

scattering effects for red fluorescence, as well as the retrieval errors embedded in the sFLD 

method, which collectively complicated the interpretation of at-sensor SIF687. It is suggested 

that advanced leaf-canopy RTMs should be employed in the future to obtain more reliable 

SIF687 estimates. The analysis of 16 FLs spanning between 670 and 780 nm revealed that far-

red FL depths contributed more than red FL depths to both needle N and P estimations. More 

specifically, when combined with narrow-band-based RTM-derived pigments as GPR model 

inputs,  the depth of FL16 (774.8990 nm) yielded the highest needle N prediction accuracy (R2 

= 0.62, p-value < 0.001, NRMSE = 0.17) for the 2021-Oct dataset, and provided needle P 

prediction accuracy that was comparable to the models with sub-nanometer-based far-red SIF 

for both datasets (R2 = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25). Overall, our results 

indicate the potential of FL depths, especially far-red FL depths, obtained at the sub-nanometer 

resolution, for needle N and P estimations in coniferous canopies.  
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Chapter 6  
Comparison of multispectral bandsets 
vs. hyperspectral data for needle 
nitrogen and phosphorus assessment in 
radiata pines 
 

Highlights 

• Hyperspectral-based models have demonstrated their superiority over multispectral-

based models for needle N and P monitoring. 

• Multispectral bandsets covering the VNIR range are better suited for needle P 

estimation than N. 

• We proposed a 12-band bandset with 10-nm FWHM for needle P assessment, which 

outperformed the 10-band commercial MicaSense RedEdge-MX Dual  camera bandset. 

 

Abstract 

Hyperspectral remote sensing provides rich information for assessing physiological changes 

experienced under needle nitrogen (N) and phosphorus (P) deficiency in radiata pine forests. 

However, the high monetary and computational costs of hyperspectral images prohibit their 

application in operational monitoring at large scales. Multispectral cameras could be a cost-

effective alternative for such purposes. Nevertheless, their coarser spectral resolution and 

limited number of bands restrict their capability to fully capture the subtle spectral features 

associated with needle nutrient variabilities. Therefore, optimal bandsets must be selected for 

specific objectives (i.e., estimation of needle N and P content in this case) to guide the bandset 

design and future development of multispectral cameras.  

In this study, we assessed the utility of multispectral data (Full Width at Half Maximum 

(FWHM) ≥ 10nm) for explaining needle N and P variability, against benchmark models built 

with narrow-band hyperspectral data (FWHM = 5.8 nm) covering the visible-near infrared 
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(VNIR) region. We investigated whether the commercially available 10-band multispectral 

camera Micasense Dual-MX System (FWHM = 10-54 nm) could be used for needle N and P 

assessment. Furthermore, we explored if other multispectral bandsets with 10-nm FWHM 

could yield higher accuracy for needle N and P estimation compared with the standard 

Micasense bandset, using the narrow-band-convolved FWHM-10nm data. Using four datasets 

collected over three years at a nutrient experiment site of radiata pines, we developed Gaussian 

Process Regression (GPR) algorithm to estimate needle N and P using multispectral reflectance 

as inputs. Three sources of multispectral data were investigated: 1) Micasense data with 10 

bands acquired during two airborne campaigns in 2023; 2) Simulated Micasense data derived 

through convolving narrow-band data collected over four airborne campaigns from 2021 to 

2023; 3) the proposed optimal multispectral bandsets with a 10-nm FWHM derived from the 

same four narrow-band datasets.  Optimal multispectral bandsets were selected through a 

clustering-based approach where the redundant bands were removed, and informative bands 

were retained for successfully explaining needle N and P variability. The N/P prediction 

performance of these multispectral-based models were compared with that of the 

hyperspectral-based benchmark models, of which the GPR inputs included four parameters 

retrieved from the narrow-band data: needle chlorophyll a + b, carotenoid and anthocyanin 

content derived from the radiative transfer model (RTM), PRO4SAIL2 applied to pure crown 

vegetation pixels, and far-red solar-induced fluorescence (SIF760) quantified through the 3FLD 

method.   

We found that narrow-band hyperspectral-based benchmark models built with physiological 

traits displayed a more consistent prediction performance for both needle N (R2 = 0.41-0.53, 

NRMSE = 0.20-0.24, p-value < 0.001) and P (R2 = 0.52-0.77, NRMSE = 0.12-0.21, p-value < 

0.001), compared with all multispectral-based models evaluated. We did not identify any 

multispectral-based model with robust prediction performance for needle N across datasets, 

with the best performance achieved by the model built with a proposed bandset (named as 

BS12N2) consisting of 12 bands at 10-nm FWHM (R2 = 0.17-0.53, NRMSE = 0.19-0.30, p-

value < 0.05). However, multispectral-based models were better suited for explaining the 

variability in needle P than needle N, in terms of the prediction robustness and accuracy across 

datasets. The newly proposed 12-band bandset BS12P (R2 = 0.37-0.72, NRMSE = 0.13-0.25, 

p-value < 0.01) outperformed the simulated 10-band Micasense bandset (R2 = 0.26-0.62, 

NRMSE = 0.15-0.27, p-value < 0.05) for needle P prediction for four datasets. These results 

suggest thatdespite the slight compromise in model accuracy compared to the hyperspectral-
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based benchmark, the proposed 12-band bandset with 10 nm FWHM, BS12P, could potentially 

be used for the development of a multispectral camera specifically for needle P estimation on 

an operational scale.  

 

6.1 Introduction 

Pinus radiata D. Don (radiata pines) is extensively planted as the main softwood species 

worldwide, as well as in Australia. The wood productivity is prone to the effects of nutrient 

deficiency, such as nitrogen (N) and phosphorus (P) (Turner and Lambert, 1986). More 

specifically, needle N status has been found closely related to wood density and latewood 

percentage (Beets et al., 2001a). Insufficient N and P supply results in premature shedding of 

needles, stunted stem growth, decreased branch production and thin crowns (Will and Hodgkiss, 

1977; Nambiar and Fife, 1987a). Precise and accurate monitoring of needle nutrient status, of 

N and P, is critical for optimising wood production of radiata pines.  

The advancement in hyperspectral remote sensing using narrow-band hyperspectral sensors 

(Full width at half maximum [FWHM] < 10 nm) has provided abundant and detailed spectral 

information on ground targets (e.g., plants), enabling the quantification of plant biophysical 

and biochemical parameters closely related to nutrient status. Recent studies have shown that 

leaf pigment content (e.g., chlorophyll a + b, carotenoid and anthocyanins) retrieved from 

radiative transfer model (RTM) inversion and far-red solar-induced fluorescence (SIF) derived 

from airborne hyperspectral data are informative indicators of leaf N or P status (Belwalkar et 

al., 2022; Wang et al., 2022; Li et al., 2024). However, several factors are hindering the 

application of hyperspectral imagery in the operational-scale monitoring of leaf nutrient status 

on a regular basis. First, the vast data volume imposes high computational costs and requires 

expertise and domain knowledge for data analysis and interpretation. Second, the higher cost 

of hyperspectral cameras contributes to their lower popularity in practical applications. 

Furthermore, the weights of hyperspectral cameras usually exceed the payloads of unmanned 

aerial vehicles (UAVs), restricting their suitability for UAV applications (Nex et al., 2022). 

Alternatively, multispectral cameras with usually 4 to 12 bands offer the advantages of 

affordability, lightweight and smaller data volume for processing. Nevertheless, these benefits 

inevitably come at the expense of information loss due to the coarser spectral resolution. 
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Multiple studies have thus focused on comparing the performance of multispectral and 

hyperspectral cameras for estimating plant biochemical and biophysical parameters. For 

instance,  Zhou et al. (2022) reported a more significant advantage of hyperspectral data (R2 = 

0.78) compared with the simulated data (R2 ≤ 0.35) of three commonly used five-band 

multispectral cameras (i.e., P4 Multispectral, Parrot Sequoia+ and MicaSense RedEdge MX) 

in the application of potato leaf N concentration estimation. Lee et al. (2004) evaluated AVIRIS 

hyperspectral data and AVIRIS-derived Landset ETM+ and MODIS data for leaf area index 

(LAI) retrievals in various biomes and concluded that hyperspectral AVIRIS data with selected 

wavelengths offered the best accuracy among all. Guo et al. (2023) demonstrated that the UAV-

acquired hyperspectral data yielded higher accuracy (ULTRIS X20 Plus, R2 = 0.86) than the 

acquired multispectral data (DJI Phantom 4, R2 = 0.75) for LAI estimation in maize. In some 

cases, multispectral data can provide comparable modelling performance to hyperspectral data, 

questioning the necessity of expensive hyperspectral imagery. Lu et al. (2019) simulated 

MicaSense RedEdge-MX image from hyperspectral data and found that the hyperspectral-

based model only achieved a marginally higher accuracy (R2 = 0.81) for leaf chlorophyll 

estimation than the model based on the simulated multispectral data (R2 = 0.80). Croft et al. 

(2015) reported similar accuracy for leaf chlorophyll content estimation from hyperspectral 

data and simulated Landsat 5 TM data (R2 = 0.77 and 0.75, respectively). It should be noted 

that, in most cases mentioned above, researchers used simulated multispectral images derived 

from the obtained hyperspectral data to avoid discrepancies caused by environmental and 

instrumental effects, thereby ensuring a fair comparison. In short, there is no universal answer 

to the question of whether hyperspectral cameras are superior to multispectral cameras for 

certain modelling purposes. The answer is specific to the modelling process, the target variable 

to be retrieved, the band center and width of multispectral bands of interest and the spectral 

coverage. In this study, we aim to evaluate the suitability of the recent MicaSense RedEdge-

MX Dual imaging system with 10 bands covering the visible to near infrared (VNIR) region 

for needle N and P estimation in a radiata pine plantation and compare its performance against 

the hyperspectral-based models which include plant functional traits as inputs. 

Hyperspectral data can be used not only to simulate and assess the performance of existing 

multispectral sensors for various modelling applications but also to identify the most 

informative spectral bands for specific target variables, thereby guiding the design and 

development of next-generation multispectral sensors. Numerous studies have focused on 

selecting informative bands from hyperspectral data in the context of regression applications, 
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with the primary motives of eliminating spectral noise, reducing computational load, and 

avoiding overfitting to achieve model transferability. Band selection (BS) algorithms are 

applied to the original reflectance spectrum (Guo et al., 2018; Li et al., 2018; Cao et al., 2021)  

or to the transformed spectrum (Mutanga and Kumar, 2007; Lin et al., 2024), where spectral 

transformation techniques (e.g., continuum removal, log transform, first-order derivative) are 

used to enhance the absorption feature and improve the signal-to-noise ratio. Mutanga and 

Kumar (2007) implemented forward feature selection with and Artificial Neural Network on 

the continuum-removed to extract a subset of 6 bands that are informative for leaf P content in 

savanna grass.  Guo et al. (2018) evaluated the effect of Monte Carlo-uninformative variable 

elimination (MC-UVE) combined with the successive projection algorithm (SPA) on leaf P 

predictions in rubber trees. The authors reported an improvement in estimation accuracy when 

the subset of optimal bands was used, compared to the full spectrum. Cao et al. (2021) 

compared multiple BS algorithms, including LASSO regression, Elastic net and SPA, in terms 

of their capability of leaf N estimation in summer maize. Another commonly used BS algorithm 

is based on the variable importance in projection (VIP) embedded in the partial least square 

regression (PLSR) models (Li et al., 2018; Lin et al., 2024). However, such BS algorithms 

might not be compatible with our objective of identifying multispectral bandsets for needle N 

and P assessment for a few reasons. First, bands selected through these BS techniques often 

tend to cluster in certain spectral regions, and the final number of selected bands varies 

depending on the BS technique and the criteria used. In contrast, we aim to select no more than 

15 bands with a relatively uniform distribution across the whole spectrum. The criterion of 

even coverage ensures that selected bandsets remain suitable for other tasks, such as spectral 

index calculation. Second, most studies select bands at narrow-band resolutions, without 

evaluating the impact of coarser spectral resolution on the modelling accuracy.  

On the other hand, clustering-based BS algorithms, despite their widespread popularity in 

hyperspectral image classification (Datta et al., 2015; Wang et al., 2019, 2021), are seldom 

used for regression tasks. One of the few exceptions is the study by Latorre-Carmona et al. 

(2013), which evaluated hierarchical clustering algorithms (Martínez-Usó et al., 2007) for leaf 

chlorophyll content estimation.  Band clustering algorithms typically involve two steps: first, 

bands with high similarity are grouped into the same clusters based on certain similarity 

measures; second, a representative band is selected from each cluster, forming the final 

selection of bands (see (Sun and Du, 2019) for a detailed review). Given that adjacent bands 

are similar among them, these clustering-based BS methods can produce a reduced subset of 
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bands with a relatively even coverage of the spectrum.  Nonetheless, the representative band 

selection is often an unsupervised process in most of the studies, which does not align with the 

objective of the current study to identify bandsets optimized for explaining the N and P 

variability. Therefore, in this study, we intend to explore the utility of band clustering 

algorithms combined with a supervised band selection process to identify the optimal bandsets 

for needle N and P assessment at a multispectral resolution. 

The overall objective of the current study is to evaluate multispectral bandsets for needle N and 

P assessment in radiata pine trees, as a more affordable alternative to hyperspectral narrow-

band imagery. Specifically, we compare the performance of a hyperspectral narrow-band 

benchmark model, which uses plant functional traits as predictors, with that of the bandset from 

a commercially available MicaSense RedEdge-MX Dual multispectral camera for N and P 

estimation. Furthermore, we aim to identify optimal bandsets, different from the Micasense 10 

bands, for needle N/P estimation through a clustering-based band selection with a 10 nm 

FWHM. 

 

6.2 Methods  

6.2.1 Airborne data collection and processing 

Four airborne campaigns were conducted on February 2, 2021, October 27, 2021, January 11, 

2023, and October 2, 2023, under clear sky conditions at solar noon, using the piloted Cessna 

172 aircraft operated by the HyperSens Laboratory, the University of Melbourne's Airborne 

Remote Sensing Facility. Narrow-band hyperspectral images were acquired during all four 

campaigns with the line-scanning Hyperspec VNIR E-Series sensor covering the 400–1000 nm 

spectral region with 358 bands at a full width at half-maximum (FWHM) of 5.8 nm and an 

angular field of view (FOV) of 66° (Headwall Photonics, Fitchburg, MA, USA). Multispectral 

images were collected during the 2023-Jan and 2023-Oct campaigns with the MicaSense 

RedEdge-MX Dual Camera Imaging System (MicaSense, Seattle, WA, USA), consisting of 10 

bands in the visible and near infrared (VNIR) region with FWHM from 10 to 54 nm (Table 6.1) 

and an angular FOV of 35.4°. Narrow-band and Micasense images were collected at 350 m and 

570 m above ground level (AGL), respectively, resulting in the same spatial resolution of 0.2 

m. The pre-processing of narrow-band and MicaSense images, including radiometric 
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calibration, atmospheric correction and orthorectification, can be found in Chapter 4, Section 

4.2. Fig. 6.1 presents an overview of the study site and an example of the sub-nanometer image. 

 

 

Fig. 6.22. Overview of the study site as shown in the MicaSense reflectance mosaic 
(infrared-colour composite) obtained on October 2nd, 2023. Plot boundaries are green. 
Letters A-I represent the treatment group. See Chapter 3 for more information on the 
study site. 

 

Tree crowns were delineated through a segmentation process on the narrow-band and 

MicaSense reflectance images, respectively. Automatic segmentations were performed on all 

narrow-band and Micasense images at first in the Fiji software (Abràmoff et al., 2004). Local 

thresholding algorithms were first applied to an NIR band (810 nm) and a structural index layer 

(NDVI > 0.6) in combination to separate the sunlit vegetation pixels from the soil background 

and within-crown shadows. The identified vegetation pixels were clustered to each object (i.e., 
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individual tree crowns) using the watershed object-based approach with Euclidean distance. 

Delineated tree-crown polygons were then reduced by 75% of the original area to account for 

the high heterogeneity in the coniferous stands and the sensitivity of pigment and SIF to 

illumination conditions. Given the spatial misalignment between Micasense and narrow-band 

images of the two datasets collected in 2023 and occasional image quality issues, automatically 

delineated tree crowns were further manually selected for these two datasets for a fair 

comparison in the following analysis. Eventually, 428 trees (n = 428) from 29 plots belonging 

to 9 treatments were selected for the 2023-Jan dataset. 575 trees (n = 575) from 30 plots 

belonging to 9 treatments were selected for the 2023-Oct dataset. For the other two datasets 

collected in 2021, the automatically delineated tree crowns cover the whole study sites of 34 

plots, with 1374 trees (n = 1374) from the 2021-Feb dataset, and 2047 trees (n = 2047) for the 

2023-Oct dataset, respectively. The mean reflectance and radiance of the tree crowns in the 

same plot were used to represent the plot-level spectral information.  

Table 6.11 Spectral characteristics of the hyperspectral and multispectral sensors used in 
this study. * With spectral binning.  

Headwall VNIR E-
Series Sensor 
(Hyperspectral 
sensor) 

MicaSense RedEdge-MX 
Dual imaging system  
(Multispectral sensor) 

Spectral range 400-1000 nm 444, 475, 531, 560, 650, 
668, 705, 717, 740, 842 nm 

Number of bands 371 10 

FWHM 5.8 nm 28, 32, 14, 27, 16, 14, 10, 
12, 18, 57 nm 

Field of view 66° 
 

Signal-to-Nose Ratio  > 300:1* > 300:1* 

Bit depth 16 12 
 

To compensate for the limited availability of MicaSense data, Gaussian spectral convolution 

was applied to the narrow-band reflectance data (FWHM = 5.8 nm) to match the MicaSense 

spectral characteristics, resulting in four simulated MicaSense datasets. Additionally, narrow-

band data were convolved to 10-nm FWHM with the bands centered at 405, 415, 425, …, 895 

nm. The resulting multispectral data with 10-nm FWHM were then used for the selection of 

optimal bandsets for needle N and P assessment. 
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6.2.2 Multispectral bandset selection 

We proposed a clustering-based band selection algorithm to identify the optimal multispectral 

wavelengths for needle N and P estimation. Band selection was performed on the simulated 10 

nm-FWHM reflectance data covering the 400 to 900 nm region obtained from the hyperspectral 

imagery. The process involved two main steps: 1) group similar bands together through the fast 

neighbourhood grouping (FNG) algorithm. Clustering was performed on tree-level reflectance 

spectra (n = 4424) from all four datasets, as it is an unsupervised process; 2) select one 

representative band from each cluster using PLS-VIP or the recursive feature selection 

algorithm with PLS regression (PLS-RFE). Plot-level reflectance spectra from four datasets (n 

= 112) were used for this step for the supervised selection. Detailed descriptions of the bandset 

selection process are provided below. 

Band clustering 

Fast neighbourhood grouping (FNG) algorithm (Wang et al., 2021) was chosen for two reasons: 

first, FNG considered the spectral bands as ordered, thus bands adjacent to each other are more 

similar, which ensures that bands in the same clusters are continuous; second, it allowed a 

predefined number of clusters, which was aligned with our objective to select 10 to 15 bands. 

FNG adopted a coarse-fine strategy to partition the spectrum into clusters. The whole spectrum 

was first divided into k even groups (i.e., coarse partition), where k was the user-defined 

number of clusters. Then, the initial clusters were repartitioned by adjusting the cluster label of 

bands based on their similarity to the two adjacent cluster centres, eventually resulting in 

ununiform clusters. The process aimed to maximize the inter-cluster variance while minimizing 

the intra-cluster variance.  

A distance-like similarity measure must be chosen for the clustering algorithm. We used a 

normalized mutual information (MI)-based distance-like similarity measure in this study as 

defined in (Martínez-Usó et al., 2007). Let vectors X1, X2, …, XL be the bands of a 

hyperspectral image. Assuming a hyperspectral image has L bands, vectors X1, X2, …, XL 

represent individual bands. The mutual information I between the ith and jth bands is expressed 

in terms of entropy H 

                                                𝐼𝐼�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝐻𝐻(𝑋𝑋𝑖𝑖) +  𝐻𝐻�𝑋𝑋𝑗𝑗� −  𝐻𝐻�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�                         Eq. 6.1  

                                                     𝐻𝐻(𝑋𝑋) =  −∑ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝(𝑥𝑥)𝑥𝑥∈Ω                                   Eq. 6.2 

Where p(x) is the probability of event x. 
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The mutual information was further normalized using Eq. 6.3. 

                                                          𝑁𝑁𝑁𝑁�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� =  2∙𝐼𝐼�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�
𝐻𝐻(𝑋𝑋𝑖𝑖)+ 𝐻𝐻�𝑋𝑋𝑗𝑗�

                                        Eq. 6.3 

As the clustering algorithm accept distance-like measure (i.e., larger values indicate lower 

similarity), the MI-based distance like similarity measure was finally defined as 

                                                   𝐷𝐷𝑁𝑁𝑁𝑁�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = �1 −  �𝑁𝑁𝑁𝑁�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗��
2

                               Eq. 6.4 

The pairwise MI-based distance at 10 nm FWHM is presented in Fig 6.2. The obtained DNI 

values were multiplied by 100 for better visualization in the figure. 

Fig 6.23. Pairwise normalized mutual information (MI) of simulated 10 nm-FWHM 
multispectral bands determined on tree-level reflectance spectra collected from four 
airborne campaigns (n = 4424). Lighter colors indicate lower similarity between 
corresponding band pairs. 

 

We investigated the clustering performance for 10 to 20 clusters and chose the optimal number 

of clusters based on two criteria. The first one was the quality of the clustering, which was 

indicated by the Silhouette score (Rousseeuw, 1987). Silhouette score measures how well a 

data point (i.e., band) belongs to its assigned cluster compared to the remaining clusters by 

accounting for the inter-cluster and intra-cluster distance.  

For each data point 𝑖𝑖, the silhouette score s(𝑖𝑖) is calculated as 

                                                          𝑠𝑠(𝑖𝑖) =  𝑏𝑏(𝑖𝑖)−𝑎𝑎(𝑖𝑖)
max [𝑎𝑎(𝑖𝑖),𝑏𝑏(𝑖𝑖)]

                                                 Eq. 6.5 
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Where a(𝑖𝑖) is the mean distance between 𝑖𝑖 and all other points in the same cluster; b(𝑖𝑖) is the 

smallest mean distance of 𝑖𝑖 to all the points in any other cluster. For special cases when there 

is only one data point in the cluster, s(𝑖𝑖) = 0. The mean silhouette score of all data points was 

used to represent the clustering quality. It ranged from -1 to 1, with a higher value indicating 

better quality. MI-based distance-like similarity measure was used to calculate the Silhouette 

score in our case. 

The second criteria was the stability of the clustering algorithm. Stability is an important 

property of band selection algorithms and represents the robustness of the algorithm to 

perturbations in the training dataset (Kalousis et al., 2007). Here, we adapted the concept of 

stability to evaluate the clustering algorithm. We assumed that a stable algorithm would be able 

to produce the same clustering results (i.e., same cluster partitioning points) despite the changes 

in the training dataset. Jaccard index was chosen as the stability metric (Jaccard, 1901; Liu et 

al., 2017). Let 𝑆𝑆𝑖𝑖 and  𝑆𝑆𝑗𝑗 be two vectors representing the partitioning points of the same length. 

Jaccard index is defined as: 

                                                                  𝐽𝐽�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗� =  �𝑆𝑆𝑖𝑖∩ 𝑆𝑆𝑗𝑗�
�𝑆𝑆𝑖𝑖∪ 𝑆𝑆𝑗𝑗�

                                           Eq. 6.6 

A Jaccard index closer to 1 implies that two vectors are identical, while 0 indicates complete 

dissimilarity. We performed a 10-fold evaluation and computed the mean of pairwise Jaccard 

index values to measure the clustering algorithm stability.  

Representative band selection 

We implemented two PLS-based supervised feature selection algorithms to identify the 

representative band from each cluster. PLS was chosen as it was widely used for high-

dimensional data analysis and could handle the multicollinearity by transforming the spectrum 

into uncorrelated latent variables (Wold, 1966).  

The first band selection algorithm employed was PLS-based Recursive Feature Elimination 

with cross-validation (PLS-RFE). Initially, all bands within the same cluster were included as 

inputs to the PLS model. The importance of each band was assessed based on its impact on the 

mean squared error (MSE) in a five-fold cross-validation. One band was removed at a time, 

and a new PLS model was built using the remaining bands. The change in MSE resulting from 

the removal indicated the importance of the excluded band. After each iteration, the least 

essential band—i.e., the one whose removal caused the largest absolute change in MSE—was 

eliminated. This process was repeated until only a single band remained. 
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The second was a ranking-based selection method where the Variable Importance in Projection 

(VIP) scores obtained from the PLS model were utilized (PLS-VIP) (Wold et al., 1993). Bands 

within the same cluster were used to build a PLS model. VIP scores for each band were then 

computed according to Eq. 6.7. The band with the highest VIP scores was retained.  

                                                          𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 = �𝑝𝑝 ⋅
∑ �𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎⋅�

𝑤𝑤𝑗𝑗𝑗𝑗
‖𝑤𝑤𝑎𝑎‖

�
2
�𝐴𝐴

𝑎𝑎=1

∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝐴𝐴
𝑎𝑎=1

                                   Eq. 6.7 

Where 𝑗𝑗 represents the 𝑗𝑗𝑡𝑡ℎ band; 𝑝𝑝 is the number of bands; 𝐴𝐴 is the number of latent variables 

(LVs) in the PLS model; 𝑤𝑤𝑗𝑗𝑗𝑗 is the weight of band 𝑗𝑗 on LV; ‖𝑤𝑤𝑎𝑎‖ is the norm of the weight 

vector for LV 𝑎𝑎; 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 represents the amount of variance in the response variable explained by 

LV 𝑎𝑎 as defined by Eq. 6.8. 

                                                               𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 =  ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ⋅ 𝑦𝑦𝑦𝑦𝑎𝑎)2𝑛𝑛
𝑖𝑖=1                                   Eq. 6.8 

Where 𝑛𝑛  is the number of samples; 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  is the score of the 𝑖𝑖𝑡𝑡ℎ  sample on LV 𝑎𝑎 ; 𝑦𝑦𝑦𝑦𝑎𝑎  is the 

loading for the response variable on LV 𝑎𝑎. 

The optimal number of LVs was determined through the leave-one-out cross-validation process 

for all the PLS models mentioned above. The stability of the two band selection algorithms 

was evaluated using a 15-fold cross-validation, with stability measured by the Jaccard index. 

Within each cluster, the bands most frequently selected across the 15 folds were retained as the 

cluster representatives. 

 

6.2.3 Multispectral-based modelling for needle N and P 

Gaussian process regression (GPR) algorithm (Rasmussen, 2004) was used to predict needle 

N and P concentrations for each plot with multispectral bands as inputs for individual datasets. 

Four sources of multispectral data were used to build GPR models separately: 1) measured 

MicaSense data for 2023-Jan and 2023-Oct datasets; 2) simulated MicaSense data for all four 

datasets (2021-Feb, 2021-Oct, 2023-Jan and 2023-Oct) from narrow-band hyperspectral 

imagery; 3) the multispectral bandset with 10-nm FWHM selected by PLS-RFE algorithm for 

needle N/P for all four datasets; 4) the multispectral bandset with 10-nm FWHM selected by 

PLS-VIP algorithm for needle N/P for all four datasets. The hyperparameters of the GPR 

algorithm were automatically tuned in parallel for each target variable with the Bayesian 

optimizer in MATLAB (Statistics and Machine Learning toolbox; MathWorks Inc., Natick, 
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MA, USA). A Leave-One-Out Validation (LOOV) scheme was adopted to quantify the model 

performance, with the normalized root mean squared error (NRMSE) and the coefficient of 

determination (R2) as the main metrics. NRMSE was calculated as the ratio between RMSE 

and the range of needle nutrient measurements. 

We further quantified the relative contribution of individual bands to the explanation of needle 

N/P variabilities using the PLS-based VIP scores. PLS models were built with all the bands in 

the bandset as inputs and needle N/P concentration as the response variable. The number of 

LVs in PLS models was determined through a leave-one-out validation process. 

 

6.2.4 Hyperspectral-based benchmark modelling for needle N and P 

GPR models built with inputs derived from the narrow-band hyperspectral data were used as 

the benchmark for plot-level needle N and P estimation. The training process of GPR models 

was the same as described in Section 6.2.3. Narrow-band-based inputs were plant functional 

traits, including needle chlorophyll a + b (Cab), carotenoid (Car), anthocyanins (Anth), retrieved 

from the inversion of the PRO4SAIL2 model [PROSEPCT-D (Féret et al., 2017) + 4SAIL2 

(Verhoef and Bach, 2007)], and solar-induced fluorescence quantified at O2-A absorption 

feature (SIF760) The hyperspectral-based benchmark model was denoted by N/P = f(Cab, ,Car,  

Anth, SIF760) hereafter.  

PRO4SAIL2 was inverted through a look-up-table (LUT) based approach with RMSE as the 

cost function. For each of the four datasets of plot-mean reflectance, a LUT with 500,000 

simulations was generated by running PRO4SAIL2 in the forward mode. The simulated spectra 

(400 – 2500 nm, FWHM = 1 nm) were then convolved to match the spectral characteristics of 

the narrow-band hyperspectral imager (400 – 1000 nm, FWHM = 5.8 nm). We also employed 

continuous wavelet transform (CWT) with the second-derivative Gaussian kernel to the 

simulated and observed spectra. Then, the inversion was performed on the transformed spectra. 

SIF760 was retrieved from the plot-level hyperspectral radiance data using the Fraunhofer Line 

Depth (FLD) method (Plascyk and Gabriel, 1975) with two reference bands outside the 

absorption feature at O2-A (Maier et al., 2004). The relative contribution of these obtained 

functional traits to needle P and N estimation was quantified by the out-of-bag (OOB) 

permutation scores in random forest (RF) (Liu and Zhao, 2017). The details of PRO4SAIL2 

inversion, SIF760 retrieval and parameter importance evaluation via RF-OOB were described 

in Chapter 4.  
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The proposed data analysis workflow for this study is illustrated in Fig. 6.3. We did not retrieve 

plant functional traits from multispectral data due to its limited spectral coverage. Given the 

absence of ground-truth measurements for functional traits such as needle pigment content, 

retrieving these traits from datasets with varying spectral resolutions could further complicate 

the interpretation of needle nutrient estimation results. 

 

 

Fig. 6.24. Illustrative diagram of the proposed data analysis process 

 

 

6.3 Results 

6.3.1 Agreement between measured and simulated MicaSense data 
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Varying levels of agreement were observed between the measured and simulated MicaSense 

reflectance data across the plots. At the tree crown level, the measured and simulated 

reflectance displayed similar magnitude and variations in some plots, such as Example Plot A 

(Fig. 6.4). In other cases, the overlaps between the measurements and simulations were limited, 

such as Example Plot B (Fig. 6.4). Additionally, tree-level comparisons across the 10 

MicaSense spectral bands (Appendix 6 Fig. A6.1) showed a moderate positive relationship at 

all wavelengths, with higher levels of agreement observed in the 2023-Oct dataset (R2 = 0.47-

0.59, p-value < 0.001) than the 2023-Jan dataset (R2 = 0.40-0.55, p-value < 0.001). A consistent 

pattern was observed across both datasets, that the agreement was generally lower for 

MicaSense bands in the far-red and NIR regions than for those in the visible regions. 

 

Fig. 6.25 Comparison between measured and simulated MicaSense reflectance spectra 
for two example plots (A and B) from the 2023-Oct dataset. The dashed blue lines indicate 
the mean hyperspectral reflectance of all the trees within the plot, while the shaded blue 
areas represent the range of tree-level hyperspectral reflectance. Simulated MicaSense 
reflectance spectra (orange lines) were derived by convolving hyperspectral data to 
match the spectral characteristics of the MicaSense sensor; the horizontal extent of each 
segment corresponds to the bandwidth (FWHM) of the respective band. The green lines 
represent the mean of the measured tree-level MicaSense reflectance spectra, with green 
shading representing the tree-level variation within each plot. RMSE values quantify the 
spectral agreement between the measured and simulated MicaSense reflectance at the 
plot level. 

 

At the plot level, the agreement between the measured and simulated MicaSense reflectance 

was higher for the 2023-Oct dataset (RMSE = 0.0071 to 0.0189, with the median of 0.0107 and 

the mean of 0.0113) than for the 2023-Jan dataset (RMSE = 0.0115 to 0.0210, with the median 

and also the mean equal to 0.0135). Overall, the comparison between the measured and the 
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simulated MicaSense data showed that the simulations were reliable proxies for the measured 

MicaSense data to some extent. 

 

6.3.2 Selected multispectral bandsets for needle N and P 

The quality and stability of the clustering algorithm FNG-MI, for the cluster number from 10 

to 20, were indicated by the Silhouette score and Jaccard index (J), respectively (Fig. 6.5a).  A 

Silhouette score closer to one implies better separation (i.e., how well each band suits within 

its assigned cluster). In general, a Silhouette score above 0.5 is considered indicative of good 

clustering quality. However, due to the contiguous nature and high collinearity inherent in 

spectral data, the obtained Silhouette scores were expectedly low (~0.20 – 0.28). A Jaccard 

index closer to one reflects high stability – that is, the algorithm performance was robust against 

data perturbation and noise.  Based on the cross-validation results, the clustering quality and 

stability were the best when 12 clusters were used. Therefore, the spectrum from 400 to 900 

nm at 10nm FWHM was divided into 12 clusters (Fig. 6.5b). 

Fig. 6.26. (a) Mean Silhouette scores of FNG-MI clustering algorithm from 10-fold 
evaluation, applied to the 10nm-FWHM tree reflectance (n = 4424), for cluster numbers 
ranging from 10 to 20. J denotes the mean Jaccard index across 10 folds. (b) Clustering 
results using the FNG-MI algorithm with 12 clusters, illustrated with example vegetation 
reflectance spectrum from 400-900 nm. 

Following the clustering process, which grouped the spectrum into 12 clusters, two supervised 

band selection algorithms were implemented to select the representative bands from each 

cluster. The stability analysis of the two algorithms (Fig. 6.6), as indicated by Jaccard index (J), 

showed that both algorithms displayed higher stability for P bandset selection than N. PLS-

RFE had lower uncertainties for N bandset selection than PLS-VIP, while PLS-VIP was more 

stable for P bandset selection than N. The final bandsets selected via these two algorithms for 

needle N and P estimation were summarised in Table 6.2 and illustrated in Fig. 6.7. 

(a) (b) 
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Table 6.12 Center wavelengths of multispectral bandsets (FWHM = 10 nm) selected via 
two band selection algorithms (PLS-RFE and PLS-VIP) for needle N and P estimation. 
BS12N and BS12P denote the needle N and P bandsets with 12 bands selected for needle 
N and P via PLS-RFE algorithm. BS12N2 and BS12P2 are the 12-band bandsets selected 
via PLS-VIP algorithm for needle N and P, respectively. 

Needle N bandsets 

PLS-RFE 435,475,495,555,595,645,655,715,745,765,815,895 nm BS12N 

PLS-VIP 435,485,495,555,575,645,665,705,745,765,815,865 nm BS12N2 

Needle P bandsets 

PLS-RFE 435,475,515,545,575,605,655,705,745,775,835,865 nm BS12P 

PLS-VIP 435,485,505,545,575,635,675,715,735,755,815,865 nm BS12P2 

 
 

Fig. 6.27. Jaccard index of two band selection algorithms (PLS-RFE and PLS-VIP) for 
needle N and P estimation. Stability was evaluated across 15 folds using the 10-nm 
FWHM plot-mean reflectance spectra (n = 112).  The central line of the box represents 
the median; the upper and lower bounds of the box indicate the interquartile range (IQR); 
whiskers extend to 1.5×IQR; notches represent the 95% confidence interval of the median 
and circles represent outliers. 

 

6.3.3 Model performance for needle N and P estimation 

Needle N 

The comparison between needle N prediction accuracy from hyperspectral-based benchmark 

models and that from multispectral-based models is summarised in Fig. 6.8. It should be noted 

that the interpretation of model accuracy solely based on the coefficient of determination (R2) 

was misleading in the case of the 2023-Jan dataset. Despite BS12N- and BS12N2-based models 

yielded higher values of R2 (0.24 and 0.29, respectively, p-value < 0.01) than the benchmark 

model (R2 = 0.08, p-value > 0.5), the NRMSE values of the BS12N- and BS12N2-based models 
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(0.26 and 0.25, respectively) were higher than that of the benchmark model (NRMSE = 0.23). 

The poor predictive performance for needle N in the 2023-Jan and 2023-Oct datasets can be 

primarily attributed to the lack of statistically significant differences between treatments in 

terms of needle N concentration measurements in both datasets. See Chapter 3 for more details 

on field data analysis. 

 

Fig. 6.28.  Illustration of distribution of MicaSense bandsets and the proposed 
multispectral bandsets (FWHM = 10 nm) along the 400 to 900 nm region. BS12N and 
BS12P denote the needle N and P bandsets with 12 bands selected for needle N and P via 
PLS-RFE algorithm. BS12N2 and BS12P2 are the 12-band bandsets selected via PLS-
VIP algorithm for needle N and P, respectively. The green line represents an example 
vegetation reflectance spectrum. 

 

The performance of models built with MicaSense bandsets, and the simulated MicaSense 

bandsets, achieved similar results for the 2023-Jan and 2023-Oct datasets, implying that the 

simulated data was representative of the MicaSense sensor obtained data to some extent. 

MicaSense bandsets produced R2 of 0.037 and 0.017 (p-value > 0.05) and NRMSE values of 

0.24 and 0.33, respectively. An R2 of 0.08 was obtained for both datasets (p-value > 0.05), with 

NRMSE of 0.25 and 0.30 by simulated MicaSense-based models for the 2023-Jan and 2023-

Oct datasets, respectively.  
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Fig. 6.29. Needle N prediction accuracy by GPR models for needle N estimation with 
various sources of inputs. (a) coefficient of determination (R2). (b) Normalized root mean 
squared error (NRMSE). The hyperspectral-based benchmark model includes plant 
functional traits as inputs N = f(Cab, Car, Anth, SIF760).  Multispectral-based models have 
reflectance bands as inputs. BS12N and BS12N2 denote the needle N bandsets with 12 
bands selected via PLS-RFE and PLS-VIP algorithm respectively. ***p-value < 0.001; 
**p-value < 0.01; *p-value < 0.05; n.s. = not significant.  

 

For all four datasets, the newly proposed two bandsets, BS12N and BS12N2, explained the 

variability in needle N more accurately than the simulated MicaSense bandsets. BS12N2-based 

models outperformed BS12N-based models for three datasets with an increase in R2 between 

0.01 and 0.04 and a decrease in NRMSE of around 0.02, except for the 2021-Feb dataset (R2 = 

0.53 vs. 0.05, p-value < 0.001, NRMSE = 0.195 vs. 0.189). Hence, the BS12N2 bandset 

(a) 

(b) 
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selected through the PLS-RFE algorithm was determined to be the final selection of optimal 

bandsets for needle N estimation at 10-nm FWHM. 

BS12N2-based models achieved comparable N prediction accuracy to the hyperspectral-based 

benchmark models for the 2021-Feb (R2 ≈ 0.53, p-value < 0.001, NRSME ≈ 0.19) and 2021-

Oct datasets (R2 ≈ 0.40, p-value < 0.001, NRSME ≈ 0.21). Nonetheless, BS12N2 provided low 

accuracy for the 2023-Oct datasets (R2 = 0.17, p-value < 0.05, NRMSE = 0.30), while the 

benchmark still achieved an R2 of 0.41 (p-value < 0.001) with NRMSE of 0.30. Therefore, the 

hyperspectral-based benchmark model still demonstrated the advantage of consistent 

performance (R2 = 0.47-0.53, p-value < 0.005, NRMSE = 0.20-0.24 for three datasets) for 

needle N estimation over the best multispectral-based models. 

Needle P 

The performance of hyperspectral-based benchmark models and multispectral-based models 

for needle P concentration is shown in Fig. 6.9. The simulated MicaSense data produced results 

comparable to the measured MicaSense data for both 2023-Jan (R2 = 0.34 vs. 0.28, p-value < 

0.01, NRSME = 0.20 vs. 0.26) and 2023-Oct (R2 = 0.47 vs. 0.53, p-value < 0.001, NRSME = 

0.23 vs. 0.20) datasets, supporting the use of simulated data as reliable proxies for actual 

MicaSense observations. 

The proposed bandsets BS12P and BS12P2 provided similar performance for needle P 

estimation in all datasets, though BS12P displayed a stronger advantage in the 2021-Oct dataset 

(R2 = 0.72, p-value < 0.001, NRMSE = 0.14) over BS12P2 (R2 = 0.57, p-value < 0.001, 

NRMSE = 0.17). Hence, the BS12P bandset determined by the PLS-VIP algorithm was chosen 

as the final selection bandset for needle P estimation at 10-nm FWHM. BS12P-based models 

(R2 = 0.38-0.72, p-value < 0.01, NRMSE = 0.14-0.25) also outperformed the simulated 

MicaSense-based models for all datasets (R2 = 0.26-0.62, p-value < 0.01, NRMSE = 0.16-0.26). 

The highest prediction accuracy for needle P concentration was achieved by the hyperspectral-

based benchmark models for all datasets (R2 = 0.52-0.77, p-value < 0.001, NRMSE = 0.12-

0.21). The benchmark model displayed more significant advantages over multispectral-based 

models in the 2021-Feb dataset (R2 = 0.55 vs. R2 ≤ 0.43, p-value < 0.05, NRSME = 0.21 vs. 

NRMSE ≥ 0.24). Nevertheless, multispectral-based using the proposed BS12P bandset, were 

able to achieve moderate to high accuracy for needle P estimation (R2 = 0.37-0.72, p-value < 
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0.01, NRMSE = 0.14-0.25) with the advantage of greater simplicity in the modelling process, 

compared to the hyperspectral-based benchmark models. 

Fig. 6.30. Needle P prediction accuracy by GPR models for needle P estimation with 
various sources of inputs. (a) coefficient of determination (R2). (b) Normalized root mean 
squared error (NRMSE). The hyperspectral-based benchmark model includes plant 
functional traits as inputs P = f(Cab, Car, Anth, SIF760).  Multispectral-based models have 
reflectance bands as inputs. BS12P and BS12P2 denote the needle P bandsets with 12 
bands selected via PLS-RFE and PLS-VIP algorithm, respectively. ***p-value < 0.001; 
**p-value < 0.01; *p-value < 0.05; n.s. = not significant.  

 

6.3.4 Multispectral band contribution to needle N and P estimation 

(a) 

(b)
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We further evaluated the contribution of individual bands in the proposed bandsets BS12N2 

(Fig. 6.10a) and BS12P (Fig. 6.10b) to understand the informative wavelengths for needle N 

and P estimation.  It was observed that two bands centred at 555 nm and 575 nm, located within 

the green absorption region, consistently showed high contribution to needle N estimation 

across four datasets (Fig. 6.10a). Moreover, the band centered at 705 nm, falling within the red 

edge region, displayed relatively high VIP scores in the three datasets, except for 2023-Oct. 

There also existed the pattern of strong contribution from the band located at 435 nm in the 

blue region in all four datasets. The primary contributors for needle P estimation were in the 

red edge and NIR region, including bands centred at 745, 775, 835 and 865 nm (Fig. 6.10b). In 

the visible region, the band centred at 655 nm also exhibited higher VIP scores than other bands 

in all four datasets, especially the 2021-Feb, 2021-Oct and 2023-Jan datasets. 

Fig. 6.31. VIP scores of (a) the selected BS12N2 bandset (FWHM = 10 nm) for estimating 
needle N concentration and (b) the selected BS12P bandset (FWHM = 10 nm) for 
estimating needle P concentration for four datasets. Higher VIP scores indicate greater 
contribution of corresponding wavelengths to the model performance. 

 

6.4 Discussion 

Our results confirmed, as expected, the superior performance of hyperspectral-based models 

for needle N and P prediction in radiata pine plantations over any multispectral-based models 

evaluated in this study. The hyperspectral-based benchmark models with plant functional traits 

(i.e., PRO4SAIL2-derived needle Cab, Car, Anth content and SIF760) were able to produce 

comparable estimation accuracy across datasets for both needle N (R2 = 0.47-0.53, p-value < 

0.005,  NRMSE = 0.20-0.24 for three datasets) and P concentration (R2 = 0.52-0.77, p-value < 

(a) (b) 
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0.001, NRMSE = 0.12-0.21). Overall, lower accuracy was obtained for needle N estimation 

than for needle P, regardless of whether hyperspectral-based or multispectral-based models are 

used. This potentially resulted from the low level of variance in needle N measurements, posing 

challenges for the GPR models to learn the pattern.  

Multispectral-based models performed poorly for needle N estimation, especially those based 

on MicaSense bandsets, compared to the hyperspectral-based benchmarks. It is known that the 

prediction of leaf N using the VNIR region primarily relies on chlorophyll content due to the 

biochemical composition of chlorophyll a + b pigments, which contain N (Evans, 1989). The 

analysis of the benchmark model showed that PRO4SAIL2-derived needle Cab content was the 

most important contributor to needle N estimation. Together, the three PRO4SAIL2-derived 

pigments (i.e., Cab, Car, Anth) accounted for more than 80% of the contribution to estimating 

needle N concentration (See Chapter 4 and (Li et al., 2025)). However, multispectral-based 

models might not capture the variations in pigment changes due to the limited spectral 

information in the pigment absorption region (~400-680 nm), subsequently affecting the 

nutrient estimation accuracy. Previous studies have also demonstrated the impact of spectral 

resolution and the number of bands for leaf chlorophyll estimation. Wei et al. (2025), found 

that the index-based retrievals of leaf chlorophyll content were sensitive to the spectral 

resolution based on their simulation study. Zhou et al. (2022) evaluated the impact of spectral 

resolution on the leaf N estimation by the PLS model. The authors reported an increase in 

NRMSE by 0.037 from 2.2-nm FWHM to 40-nm FWHM. Apart from the spectral resolution, 

the band placement was also crucial for needle N assessment. The proposed bandsets BS12N2 

with 10-nm FWHM outperformed MicaSense bandsets for several probable reasons, including 

two more bands and finer spectral resolution, as well as the band placement. Our results showed 

that the three bands centred at 435, 555 and 575 nm had a significant contribution to needle N 

estimations in the BS12N2-based models. By contrast, MicaSense covered these regions with 

one band at 444 nm (FWHM = 28 nm) and the other at 560 nm (FWHM = 27 nm). It has been 

found that the 550-560 nm region is sensitive to changes in pigment content (Gitelson and 

Merzlyak, 1994), likely related to anthocyanin content. Moreover, 435 nm was closer to the 

absorption peak of chlorophyll a in the blue region (~430 nm). Therefore, it is suggested that 

higher spectral resolutions in the pigment absorption region can help with needle N estimation 

by multispectral-based models. Nevertheless, to ensure consistent and reliable predictions 

across diverse datasets, the use of hyperspectral data is recommended. 
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Our results indicate the potential of the proposed multispectral bandset BS12P to explain 

variabilities in needle P concentration in radiata pines. The BS12P-based models offered 

moderate to high accuracy (R2 = 0.38-0.72, p-value < 0.01, NRMSE = 0.14-0.25) across four 

datasets. The slight compromise in prediction accuracy, compared to hyperspectral-based 

benchmark models, brought benefits such as reduced data volume and a simplified modelling 

process, in favour of operational-scale monitoring.  In the hyperspectral-based P model, SIF760 

played a key role in needle P estimation, contributing to more than 50% among all four inputs 

(i.e., RTM-derived Cab, Car, Anth and SIF760) (See Chapter 4 and (Li et al., 2025)). Due to the 

coarse spectral resolution, multispectral data could not capture the subtle SIF signals. The band 

importance analysis for multispectral-based models revealed the pronounced contributions of 

the red-edge (745 nm) and NIR region (775, 835 and 865 nm) for needle P prediction using the 

BS12P bandset. These findings were in congruence with previous studies focusing on effective 

hyperspectral bands selection for leaf P estimation. Siedliska et al. (2021b) assessed the 

effective wavelengths for leaf P estimation for strawberries, celery and sugar beet and identified 

the NIR (650-900 nm) region as the common effective region for distinguishing various P 

fertilisation rates in all three species. Specifically, the authors argued that the red to far-red 

region was related to leaf P levels through chlorophyll, as they detected variabilities in the 

measured leaf total chlorophyll content as responses to the different P rates applied during the 

nutrient experiments. Lin et al. (2024) also identified eight effective wavelengths (442, 479, 

572, 630, 740, 795, 838 and 858 nm) within the VNIR region for leaf P estimation in potatoes. 

Li et al. (2018) selected six informative wavelengths from 400-1300 nm, with four located in 

the NIR region (755, 832, 891 and 999 nm) and two in the SWIR region (1196 and 1267 nm). 

Both studies evaluated the importance of various spectral regions using VIP scores with PLS 

models, and there was a shared pattern of higher VIP scores in the NIR region than the visible 

region, consistent with our findings. It is known that the red edge region is sensitive to 

chlorophyll concentrations. In turn, P could be related to leaf chlorophyll content in multiple 

ways. First, P is a component of chloroplast membrane phospholipids. Meanwhile, P 

participates in the photosynthetic electron transport chains, which in turn affects the ATP 

synthase activity (Carstensen et al., 2018).  It is widely accepted that the canopy reflectance in 

the NIR region is indirectly linked to leaf P levels, as the disruption in photosynthetic activities 

by P deficiency eventually leads to changes in biomass and thus canopy structure. 

Commercially available multispectral cameras rarely cover the SWIR region (Nex et al., 2022; 

Zhou et al., 2022). However, given the proven importance of this region for leaf N and P 



117 
 

estimations, it is suggested that the SWIR region could be evaluated in future research using 

the proposed band selection framework in this study.  Mutanga and Kumar (2007) reported 

improved estimation accuracy (ΔNRMSE = 0.3) for leaf P concentration in savanna grass, 

when SWIR features were added into the inputs of neural network models, along with VNIR 

features. Effective wavelengths were widely identified in the SWIR region for leaf N and P 

status estimations in hyperspectral-based studies (Ramoelo et al., 2013; Camino et al., 2018a; 

Li et al., 2018; Fan et al., 2019; Lin et al., 2024). The plant reflectance characteristic in SWIR 

region was sensitive leaf water content and leaf dry matter content, with main components of 

proteins, starch, cellulose and lignin etc. It is known that chlorophyll only accounts for 1.7% 

of the total leaf N, while proteins are one of the primary N-containing biochemical constituents, 

which have strong absorption features in the SWIR region (Kokaly et al., 2009a). P deficiency 

was found related to starch accumulation in leaves and stems (Qiu and Israel, 1992).  

The discrepancy between measured MicaSense and simulated MicaSense data in terms of 

spectral agreement and performance for needle nutrient estimation was confounded by multiple 

factors. First, the segmentation was performed on the multispectral MicaSense images and 

narrow-band hyperspectral and the multispectral images independently. The image distortion 

and geometric misalignment caused by two sensors made it impossible to identify the same 

target trees, despite our efforts to manually match individual tree crowns in each hyperspectral-

multispectral image pair. Usually, the pushbroom hyperspectral sensors display more complex 

geometric distortions than the frame-based multispectral cameras (Akhoundi Khezrabad et al., 

2022). Second, the mechanical differences between the two sensors led to the difference in the 

radiometric qualities (e.g., bit depth, signal-to-noise ratio etc.). Third, as the spectral response 

functions of the MicaSense camera were not publicly available, we used Gaussian convolution 

to simulate MicaSense data from hyperspectral data, further contributing to the discrepancy 

between measured and simulated MicaSense data. 

Future research can focus on improving the stability and reliability of the proposed band 

selection methodology. It has been found that image denoising could significantly affect the 

band selection outcomes. For example, Latorre-Carmona et al. (2013) investigated the impact 

of hyperspectral image denoising on six unsupervised band selection algorithms, including a 

clustering-based method, in the context of regression tasks. Their results for both simulated 

and real hyperspectral data showed that denoising significantly improved the accuracy for leaf 

chlorophyll content estimation. Similarly, Rivera-Caicedo et al. (2017) also found that noises 

in the hyperspectral data adversely affect the performance of various dimensionality reduction 
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methods in terms of LAI retrieval. Thus, it is suggested that integrating a hyperspectral image 

denoising step prior to band selection could help achieve more robust band selection results in 

the future. Additionally, the PLS-based band selection algorithms employed in this study, 

despite being widely used and well established, were limited to only capturing the linear 

relationship between features and the target variable. Other non-linear variations could be 

explored, such as kernel PLS (Rivera-Caicedo et al., 2017) and non-linear PLS (Ramoelo et 

al., 2013). 

 

6.5 Conclusions 

This study evaluated the suitability of multispectral bandsets for explaining the variability of 

needle nitrogen (N) and phosphorus (P) concentrations in radiata pine plantations, as well as 

the performance of a commercially available multispectral camera, MicaSense RedEdge-MX 

Dual. The goal was to assess the potential of multispectral cameras for operational-scale 

nutrient monitoring in comparison to hyperspectral-based (FWHM = 5.8 nm) benchmark 

models. Additionally, hyperspectral data were used to guide the selection of optimal 

multispectral bandsets (FWHM = 10 nm) for N and P estimation through a clustering-based 

band selection approach. We obtained a bandset with 12 bands for needle N and P estimation, 

respectively. 

Results from four datasets collected over three years confirmed the superior performance of 

hyperspectral data for both N and P estimation. Moreover, it was suggested that multispectral 

data in the VNIR range were insufficient for accurately estimating needle N concentrations. 

However, a proposed bandset with 12 bands at 10-nm FWHM was proven moderately effective 

for estimating needle P concentrations, with greater modelling simplicity compared to 

hyperspectral data. Furthermore, the proposed optimal bandset outperformed the MicaSense 

bands in explaining needle P variability, highlighting its potential for informing the design of 

next-generation multispectral sensors optimized for leaf nutrient assessment. 

Future research should explore the integration of the shortwave infrared (SWIR) region into 

this methodology, given its known importance in leaf nutrient estimation. Additionally, the 

impact of hyperspectral image denoising on the performance of the proposed band selection 

method should be comprehensively assessed. Other band selection algorithms could also be 

explored within the proposed framework. 
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Chapter 7  
Synthetic discussion and conclusions 
 

This chapter synthesizes the main findings of the Ph.D. study, highlighting its contributions to 

precision forestry through airborne hyperspectral remote sensing and physically based 

modelling of needle nitrogen (N) and phosphorus (P). It also considers limitations of the study 

and proposes directions for future research. 

 

7.1 Research Contributions 

7.1.1 Robust needle N and P estimation through physically based modelling 

Remote sensing technology enables the non-destructive monitoring of leaf N and P status at 

field scales. Conventional methods rely on empirical relationships between spectral indices or 

spectral bands and leaf nutrient concentrations, which lack the physiological interpretability 

and transferability since factors including canopy structure, soil background and observation 

geometry are usually not thoroughly accounted for. These constraints can be resolved by the 

physical models based on radiative transfer modelling. Previous studies on broadleaf crop 

species have shown that plant functional traits derived from radiative transfer models (RTMs) 

and far-red solar-induced fluorescence (SIF760) quantified from airborne narrow-band imagery 

(FWHM = 5.8 nm) are effective indicators for leaf N concentrations (Camino et al., 2018a; 

Wang et al., 2022). However, these studies are restricted to relatively homogenous canopies, 

where the interpretation of remotely sensed top-of-canopy (TOC) signals is less challenging 

than in highly heterogeneous coniferous canopies. Furthermore, such a physically based 

modelling approach has not yet been applied for phosphorus assessment, whereas most studies 

on leaf P estimations still rely on empirical methods. 

Using four datasets collected at the nutrient experiment site of radiata pines, we demonstrated 

the robustness of the physically based modelling method for both needle N and P estimation. 

Specifically, we identified four informative predictors derived from airborne narrow-band 

imagery, for needle N and P: PRO4SAIL2-derived needle chlorophyll a + b (Cab), carotenoid 

(Car), anthocyanin (Anth) and SIF760. When used as inputs for Gaussian Process Regression 
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(GPR) models, these four parameters together yielded high predictive accuracy for needle N 

(R2 = 0.67-0.97 and NRMSE = 0.07-0.30) and P (R2 = 0.60-0.95 and NRMSE = 0.09-0.27) at 

the treatment level. GPR models built with various combinations of narrow-band hyperspectral 

indices (NBHIs) could not match such consistent performances. 

The use of plant functional traits as predictors rewarded the advantage of higher interpretability 

of the plant physiological responses to nutrient variations. Predictor importance analysis further 

revealed that PRO4SAIL2-derived Cab consistently contributed the most to explaining the 

observed variability in needle N, which was aligned with the known physiological knowledge 

that N is present in chlorophyll molecules (Evans, 1989). On the other hand, SIF760 was the 

most prominent contributor to needle P estimation in all four datasets. The SIF response to P 

variations might be related to the role of P in photosynthetic activities, including energy supply 

and membrane solubility. This P-photosynthesis linkage has been previously reported in the 

laboratory study on chlorophyll fluorescence kinetics (Carstensen et al., 2018), as well as the 

greenhouse ground-level hyperspectral studies on radiata pine seedlings (Watt et al., 2020). 

Our results implied that airborne SIF could track the P-related influence on photosynthetic 

functioning. 

Overall, building on previous studies in other species, Chapter 4 demonstrated the 

generalizability of the physically based modelling method for leaf N estimations to coniferous 

species, and further extended its application to leaf P assessment. Unlike conventional index-

based empirical models, which typically lack consistency in predictive performance across 

datasets, RTM-derived pigments and SIF are more reliable and physiologically meaningful 

indicators for needle N and P status. 

 

7.1.2 Potential of the blue spectral region for needle P estimation 

Chapter 4 sheds light on the potential of remotely sensed signals in the blue spectral region for 

estimating needle P concentrations. Our analysis of narrow-band hyperspectral indices (NBHIs) 

showed that GPR models with blue indices and PRO4SAIL2-derived needle pigments (i.e., Cab, 

Car, Anth) as inputs produced comparable estimation accuracy for needle P concentrations to 

those built with PRO4SAIL2-derived pigments and SIF760 (NRMSE = 0.12-0.17 vs. 0.08-0.20 

for four datasets), though blue-index-based models performed poorly for needle N estimation. 

Despite the slight compromise in the prediction accuracy for P, blue indices offered the 



121 
 

advantage of modelling simplicity. Further analysis of predictor importance revealed that blue 

indices are the primary contributors to the prediction accuracy of needle P concentrations.  

The consistency of these results across four datasets suggests a physiological linkage between 

the blue region and needle P level. Nevertheless, the mechanism of the blue-P linkage is not 

well understood. We proposed two hypotheses to explain the response of the blue spectral 

region to P variations: one was associated with the potential blue fluorescence emission 

(Chappelle et al., 1984), and the other was based on the chlorophyll degradation into 

phaeophytin (Barnes et al., 1992b; Peñuelas et al., 1995a; Hörtensteiner, 2013). This study is 

among the first to report such a P-blue region relationship, highlighting the previously 

underexplored blue spectral region for phosphorus monitoring in radiata pines. Future research 

can focus on evaluating the proposed hypotheses and understanding the physiological basis of 

the relationship, which can guide the evolution of hyperspectral-based nutrient monitoring 

strategies 

 

7.1.3 Role of red and far-red Fraunhofer line depths for needle P estimation 

It has been proven in simulation studies that the accuracy of SIF retrievals based on the FLD 

principle at oxygen absorption features is susceptible to sensor specifications, especially 

spectral resolution (SR) and the signal to noise ratio (SNR) (Damm et al., 2011; Julitta et al., 

2016). A sub-nanometer resolution (FWHM < 1.0 nm) is recommended for SIF760 estimates at 

the O2-A band and an ultrafine resolution (FWHM < 0.5 nm) for red SIF (SIF687) at the O2-B 

band. However, finer spectral resolution causes larger data volumes and higher spectral noise 

levels, challenging the data processing. Considering previous studies have shown that SIF760 

quantified in a relative term from the narrow-band resolution (FWHM = 3-7 nm) is sufficient 

for differentiating various leaf nitrogen levels in homogenous canopies (Belwalkar et al., 2022; 

Wang et al., 2022), it questions the necessity of sub-nanometer resolution for SIF application 

in needle N and P estimation in heterogeneous coniferous canopies. 

Based on the narrow-band analysis in Chapter 4, Chapter 5 first evaluated the role of SIF760 

quantified from the narrow-band (FWHM = 5.8 nm) and sub-nanometer imagery (FWHM = 

0.1-0.2 nm) for needle N and P estimation, when SIF760 and narrow-band-based needle 

pigments derived from PRO4SAIL2 were used as GPR model inputs. Our results based on two 

datasets showed that sub-nanometer resolution did not make a significant contribution to SIF760 

in the context of needle N and P assessment under the current modelling framework. However, 
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further work is required to determine whether the sub-nanometer resolution provides more 

accurate SIF retrievals than the narrow-band resolution, due to the lack of validity of SIF, which 

is discussed in Section 7.2.2. 

Chapter 5 further explored the Fraunhofer line (FL) depths, SIF indicators that are only evident 

under sub-nanometer resolution, for needle N and P status monitoring. FLs are largely 

unaffected by the atmospheric absorption and scattering effects, which are among the most 

influential factors for accurate SIF retrievals at oxygen absorption features. However, FL 

absorption features are less evaluated than oxygen absorption bands in airborne applications, 

due to the requirement of high spectral resolution. Chapter 5 is one of the few to evaluate FL 

depths for needle nutrient monitoring purposes. The results highlighted that the depths of far-

red FLs were more effective indicators for needle N and P status than those of red FLs. More 

specifically, the far-red FL located at 774.9 nm, together with narrow-band-based PRO4SAIL2-

derived pigment (i.e., Cab, Car, and Anth) as inputs for GPR models, provided improved 

prediction accuracy for both needle N (R2 = 0.62 and NRMSE = 0.17) and P (R2 = 0.36-0.51 

and  NRMSE = 0.17-0.25), as opposed to the model built with narrow-band-based pigments 

and sub-nanometer-based SIF.  

These results highlighted the advantages of using sub-nanometer-resolved far-red FL depths as 

SIF indicators for needle N and P assessment in airborne applications. Future research could 

refine SIF retrievals from FLs and assess their contributions to needle nutrient estimations. 

 

7.1.4 Optimized multispectral bandsets for large-scale needle P monitoring  

The application of airborne hyperspectral imagery for frequent needle nutrient monitoring at 

an operational scale faces several constraints, including high monetary and computational costs, 

as well as the expertise required for hyperspectral data processing. Multispectral cameras are 

more affordable and accessible alternatives, though they may not be able to capture vegetation 

spectral changes associated with plant physiological responses due to their coarse spectral 

resolution and limited spectral coverage. Therefore, it is essential to evaluate the performance 

of any commercially available multispectral camera in terms of its suitability for predicting 

needle N and P concentrations. In addition, given that the bandsets of most multispectral 

cameras are not designed to capture N- or P-sensitive wavelengths, an optimised multispectral 

bandset can guide future camera designs for this specific monitoring purpose. 
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In Chapter 6, the performance of the set of 10 bands from the commercially available 

multispectral camera MicaSense RedEdge-MX for needle N and P estimation was first 

evaluated and compared to the narrow-band-based benchmark model developed in Chapter 4, 

where PRO4SAIL2-derived pigments and SIF were used as GPR inputs. In addition, a novel 

approach was adopted to identify informative bandsets for needle nutrient concentrations by 

combining band clustering with supervised band selection algorithms. The predictive power of 

the newly proposed bandsets was then evaluated. 

Our results showed that the narrow-band-based models outperformed all the multispectral-

based models for both needle N and P estimation in terms of accuracy and consistency (R2 = 

0.47-0.53 and NRMSE = 0.20-0.24 for N; R2 = 0.52-0.77 and NRMSE = 0.12-0.21 for P). 

Despite that none of the multispectral-based models yielded satisfactory N estimates across 

datasets, the potential of using multispectral bandsets for needle P estimation is promising. 

Specifically, the newly proposed optimised bandsets for P, with 12 bands (R2 = 0.37-0.72 and 

NRMSE = 0.14-0.25), produced higher accuracy than the MicaSense bandsets (R2 = 0.26-0.62 

and NRMSE = 0.16-0.26). Although the optimized 12-band-based models yielded slightly less 

accurate yet still consistent performance, compared to the narrow-band-based model, the 

former exhibited a greater advantage of computational simplicity. A closer analysis of the 

proposed 12 bands revealed that the NIR and red-edge regions were critical for estimating 

needle P concentrations, which was in congruence with other studies on optimal P wavelength 

selection. 

This study provided an opportunity to design next-generation multispectral cameras dedicated 

to needle nutrient monitoring. We recommend VNIR cameras to adopt the bandset consisting 

of 12 bands entered at 435, 475, 515, 545, 575, 605, 655, 705, 745, 775, 835, and 865 nm with 

a 10-nm FWHM. Such a camera can facilitate the cost-effective monitoring of needle P status 

in radiata pine plantations, thus supporting the timely horticultural interventions and precision 

forestry practices. 

 

7.2 Research Limitations 

7.2.1 Validity of RTM-derived plant traits 

We shall clarify that the PRO4SAIL2-derived plant traits in Chapters 4,5, and 6 can only be 

considered as relative values. Due to the lack of needle measurements of pigment content (i.e., 
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Cab, Car, Anth) and the in-situ measurements of the structural parameter LAI, we could not 

determine the accuracy of the RTM-based retrievals. Nevertheless, we contend that our 

PRO4SAIL2-derived parameter values reflect the relative distribution of the parameter among 

plots, which is sufficient for the differentiation of various fertilization levels. The synthetic 

validation test in Chapter 4 also supports this claim.  

However, it is recommended that leaf measurements be taken in future research for two reasons. 

First, these measurements can be used to regularize LUT generation, a measure to alleviate the 

ill-posed inverse problem. Second, it enables the retrieval of plant biochemical and biophysical 

properties in absolute terms. This, in turn, enables N and P modelling using mixed datasets, 

which increases the training data size for the GPR algorithm and likely improves model 

performance. It also opens the possibility of time series analysis of needle nutrient 

concentrations. 

 

7.2.2 Accuracy of SIF retrievals 

Similar to RTM-derived traits, our SIF retrievals from either narrow-band or sub-nanometer 

images are relative values only, as their accuracy cannot be validated. Consequently, we cannot 

draw any conclusions from Chapter 5 on whether the narrow-band or the sub-nanometer images 

yielded more reliable SIF estimates. 

The common practice for verifying airborne SIF retrievals relies on in-situ radiance and 

irradiance measurements taken just above the canopy, typically using a handheld 

spectroradiometer. SIF retrieved from the ground-level measurements is considered free of 

atmospheric interference, thus serving as a baseline for airborne retrievals. However, it is 

impractical to do so in radiata pine forests due to the height of the trees. We suggest that future 

research utilise drones to acquire low-altitude TOC radiance and irradiance measurements for 

baseline SIF, which can then be used for the validation of SIF obtained by a piloted aircraft at 

a higher altitude. Moreover, given the sensitivity of SIF to atmospheric absorption and 

scattering (Guanter et al., 2010), it is recommended that comprehensive atmospheric correction 

based on radiative transfer models be implemented to acquire TOC spectral signals, as opposed 

to the currently applied empirical correction method. 
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7.2.3 Sample size and generalizability  

The labelled samples (i.e., measurements of needle N and P concentrations) were very limited 

in this study (n = 19 or 34), as the measurements were averaged to the plot level. The small 

sample size may have limited the training of the GPR models and the predictive accuracy for 

needle N and P concentrations. More importantly, GPR models trained on small datasets cannot 

be readily used for predictions on an independent dataset due to their limited generalizability. 

Consequently, when applied to the tree crown-level information, the trained GPR model likely 

generated less reliable nutrient variability maps for the study site due to the extrapolation.  

The small sample size also affects the representativeness of the optimized bandsets in Chapter 

6, where supervised selection algorithms were involved. Although the band selection was 

implemented on the combined dataset (n = 119), the reliability of the band selection algorithm 

can be improved by a larger sample size. 

It is suggested that extensive sampling, despite being time-consuming and laborious, should be 

conducted to determine needle N and P concentrations at the tree level, thereby enhancing the 

generalizability of the models and the reliability of the optimised bandsets. 

 

7.3 Future Research Directions 

7.3.1 Exploring the SWIR region 

This study focused on VNIR data analysis, although it is known that the SWIR region contains 

valuable information for leaf N and P estimations. The analysis of N in the VNIR region mainly 

relies on the N-chlorophyll linkage. However, it should be noted that chlorophyll only accounts 

for 1.7 % of total leaf N (Kokaly et al., 2009a), while there are more predominant N-containing 

biochemical constituents that have strong absorptions in the SWIR region, such as proteins. 

Studies on leaf P estimations using hyperspectral reflectance spectra often report SWIR 

wavelengths as more effective indicators than other spectral regions, due to the physiological 

linkage between P and leaf dry matter content, such as cellulose, lignin and starch (Qiu and 

Israel, 1992), which can be detected in the SWIR region. 

The evaluation of SWIR can be incorporated into the methodological framework of Chapters 

4 and 6. For instance, more advanced leaf RTM (e.g., PROSPECT-PRO (Féret et al., 2021)) 

can be applied to the narrow-band reflectance to retrieve protein content as nitrogen indicators, 
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and other carbon-based constituents as phosphorus predictors. In addition, the VNIR-SWIR 

coverage enables the RTM inversion from the optimized multispectral bandsets as well, 

whereas the current VNIR coverage is not suitable for such tasks. Previous studies have shown 

that leaf biochemical constituents can be reliably retrieved from VNIR-SWIR multispectral 

data through RTM inversion (Quan et al., 2017; Wang et al., 2025). The discrete spectrum and 

coarse spectral resolution of multispectral data limit RTM-based retrieval to only broad 

absorption features such as chlorophyll, LAI and dry matter content, among which VNIR only 

covers the full absorption region of chlorophyll. Therefore, the incorporation of SWIR will 

allow the physically based modelling to be applied to the optimized multispectral bandsets for 

needle N and P assessment. 

 

7.3.2 Exploring the blue spectral region 

Our findings on the contribution of blue indices to needle P levels highlight the underexplored 

blue spectral region. We recommend that future research focus on testing the two proposed 

hypotheses regarding the linkage between phosphorus and the blue spectral region to deepen 

the understanding of plant physiological responses to P variations.  

In the first theory, it is hypothesized that phosphorus variations are related to the blue-green 

fluorescence emission, which exhibits two emission peaks around 450 and 530 nm, respectively. 

Different from red fluorescence, which is emitted by chlorophyll, blue-green fluorescence 

originates from cinnamic acids bound to the cellulosic cell walls (Harris and Hartley, 1976)  

and soluble substances bound to cell vacuoles (Lichtenthaler and Miehé, 1997). Previous 

laboratory studies have pointed out that fluorescence ratios are associated with various stress 

conditions  (Lichtenthaler and Miehé, 1997; Subhash et al., 1999; Bürling et al., 2011). Further 

analysis is needed to understand the relationship between phosphorus levels and fluorescence 

ratios. 

The alternative hypothesis is that the blue spectral response is a result of chlorophyll 

degradation into phaeophytin under P deficiency. Phaeophytin has strong absorption in the blue 

region, which can be approximated by the index NPQI  (Harris and Hartley, 1976; Peñuelas et 

al., 1995a; Hörtensteiner, 2013). We observed a strong relationship between needle P 

measurements and NPQI across datasets. Further research should be undertaken to measure 

phaeophytin content and confirm its relationship with needle P concentrations. 
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7.3.3 Improving the reliability of band selection 

Since the purpose of the optimized multispectral bandsets is to guide the design of next-

generation multispectral cameras, the reliability and representativeness of the selected bandsets 

are critical.  The transferability of the selected bandsets should be tested on different study sites 

or even different species for monitoring leaf N and P. 

Apart from increasing the sample size (see Section 7.2.3), we suggest two other measures for 

future research to enhance the reliability of the band selection algorithm as proposed in Chapter 

6. First, the hyperspectral image should be denoised before the subsequent data extraction. 

Research has shown that the denoising process affects the results of band selection algorithms 

(Latorre-Carmona et al., 2013; Rivera-Caicedo et al., 2017). Second, Chapter 6 only 

implemented PLS-based selection algorithms, which cannot account for non-linear 

relationships between spectral bands. Other non-linear variations could be explored, such as 

kernel PLS (Rivera-Caicedo et al., 2017) and non-linear PLS (Ramoelo et al., 2013). 

 

7.4 General Conclusions 

This Ph.D. study was established in the broad context of precision forestry, where remote 

sensing has provided the opportunity for non-destructive vegetation monitoring at a large scale. 

With a focus on Pinus radiata D. Don (radiata pine), the overall objective was to evaluate 

needle N and P status using airborne hyperspectral imagery, thereby guiding the 

implementation of fertilization interventions and avoiding wood production loss. The three 

research questions (Chapters 4-6) addressed different aspects of the overarching goal, with 

Chapters 4-5 emphasizing the physiological understanding of the plant response to nutrient 

variations, and Chapter 6 considering the practical application of operational scale monitoring.  

Chapter 4 evaluated whether the physically based modelling approach, which had been 

successfully applied for leaf N assessment in crop and orchard species, could be used for needle 

N and P estimations in coniferous species, where the distinct needle shape and heterogeneous 

canopy structure presented challenges to the interpretation of remotely sensed signals. 

Importantly, Chapter 4 is the first study to evaluate needle/leaf P status using a physically based 

model, while most studies implemented empirical methods for P estimations. We achieved high 

prediction accuracy for both nutrients, demonstrating the robustness of the physically based 

modelling approach, which utilised RTM-based plant traits and SIF derived from narrow-band 
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images as needle nutrient predictors. More specifically, four parameters were identified as 

effective predictors for both N and P: PRO4SAIL2-derived Cab, Car, Anth content and SIF760. 

Among them, Cab contributed the most to explaining the observed variability in needle N, while 

SIF played a critical role in P estimations. In addition, we discovered that blue indices were 

associated with needle P levels, leading to the proposal of two hypotheses on the mechanisms 

of blue responses to P variations. This novel finding opened a new avenue for future research 

on needle phosphorus monitoring.  

Given that SIF760 displayed great importance for needle N and P assessment in Chapter 4, 

Chapter 5 drew closer attention to SIF quantification, examining the impact of sensor spectral 

resolution on SIF retrieval accuracy. Based on the previous simulation studies, we hypothesized 

that sub-nanometer resolution (FWHM = 0.1-0.2 nm) could provide more accurate SIF 

retrievals at oxygen absorption features than the narrow-band resolution (FWHM = 5.8 nm), 

thereby improving the contribution of SIF to needle N and P estimations.  Our analytical results 

contradict the hypothesis: sub-nanometer resolved SIF760 underperformed its narrow-band 

resolved counterparts in terms of needle N and P estimation accuracy. However, it remains 

inconclusive whether sub-nanometer SIF760 was more accurate than the narrow-band SIF760, 

due to the lack of validity for airborne SIF retrievals. It is suggested that comprehensive 

atmospheric correction and the acquisition of baseline SIF retrievals from low-altitude drone-

obtained radiance measurements are needed for a firm conclusion on the question. Nevertheless, 

the analysis of FLs identified in the sub-nanometer radiance spectra showed that the depths of 

far-red FLs were more effective indicators for needle N and P status than those of red FLs. 

Chapter 5 is one of the few to evaluate FL depths for needle nutrient monitoring purposes. 

Future research can focus on SIF quantification from FLs, which does not require complex 

atmospheric correction, and evaluate their contributions to needle nutrient estimations. 

Recognizing the limitations of large-scale needle nutrient monitoring with airborne 

hyperspectral imagery (FWHM = 5.8 nm), including high financial and computational costs as 

well as the expertise required for data processing, Chapter 6 shifted the focus to evaluating 

multispectral bandsets as a more affordable and accessible alternative. We first evaluated the 

commercially available MicaSense RedEdge-MX multispectral camera for its N and P 

prediction capability. Then we adopted a novel approach combining band clustering with 

supervised band selection algorithms to identify informative bandsets for needle N and P 

concentrations, and evaluated the predictive performance of N and P. Our comparison between 

multispectral and narrow-band-based models (Chapter 4) demonstrated the robustness of the 
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latter for consistent estimation accuracy across datasets. Although multispectral bandsets in the 

VNIR regions were found to be insufficient for explaining the observed variability in needle 

N, they hold promise in providing satisfactory estimation accuracy for needle P, with the 

advantage of computational simplicity. Moreover, our newly proposed optimized bandsets 

(FWHM = 10 nm) with 12 bands outperformed the MicaSense 10 bands for needle P 

estimations. The design of next-generation cameras that focus on phosphorus monitoring can 

consider adopting the proposed bandsets. 

Our research has important implications for facilitating precision forestry practices in radiata 

pine plantations, which hold enormous economic importance in Australia. While certain 

limitations remain, particularly in the validation of RTM-derived traits and SIF retrievals, this 

Ph.D. study advanced the understanding of plant physiological responses to nitrogen and 

phosphorus variations and demonstrated the advantage of hyperspectral remote sensing for 

nutrient monitoring in coniferous species.   
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Appendix for Chapter 3 
Table A3.1 Results of post-hoc pairwise comparisons using Tukey's honestly significant difference procedure for needle N measurements 
(g/kg) at the plot level for four datasets. n is the sample size. Statistically significant results are highlighted in red. n.s.: not significant. NA: 
Not applicable if no plots in that treatment were sampled. 

  2021-Feb (n = 19)   2021-Oct (n = 34)   2023-Jan (n = 34)   2023-Oct (n = 34) 

Comparison 
Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value 

A vs. B NA NA  1.80 < 0.05  0.48 n.s.  1.18 n.s. 
A vs. C NA NA  1.13 n.s.  1.28 n.s.  2.00 n.s. 
A vs. D 1.36 n.s.  0.88 n.s.  2.10 n.s.  2.10 n.s. 
A vs. E 0.42 n.s.  -0.75 n.s.  -0.07 n.s.  -1.16 n.s. 
A vs. F -1.36 n.s.  -1.40 < 0.05  -0.23 n.s.  -0.47 n.s. 
A vs. H 0.78 n.s.  0.20 n.s.  1.51 n.s.  -0.18 n.s. 
A vs. G 0.37 n.s.  0.50 n.s.  0.95 n.s.  -0.41 n.s. 
A vs. I 1.02 n.s.  1.40 n.s.  2.58 n.s.  0.47 n.s. 
B vs. C NA NA  -0.67 n.s.  0.80 n.s.  0.82 n.s. 
B vs. D NA NA  -0.92 n.s.  1.63 n.s.  0.92 n.s. 
B vs. E NA NA  -2.55 < 0.05  -0.55 n.s.  -2.34 n.s. 
B vs. F NA NA  -3.20 < 0.05  -0.70 n.s.  -1.65 n.s. 
B vs. H NA NA  -1.60 < 0.05  1.03 n.s.  -1.36 n.s. 
B vs. G NA NA  -1.30 n.s.  0.48 n.s.  -1.60 n.s. 
B vs. I NA NA  -0.40 n.s.  2.10 n.s.  -0.72 n.s. 
C vs. D NA NA  -0.25 n.s.  0.83 n.s.  0.10 n.s. 
C vs. E NA NA  -1.88 < 0.05  -1.35 n.s.  -3.16 < 0.05 
C vs. F NA NA  -2.53 < 0.05  -1.50 n.s.  -2.47 n.s. 
C vs. H NA NA  -0.93 n.s.  0.23 n.s.  -2.18 n.s. 
C vs. G NA NA  -0.63 n.s.  -0.32 n.s.  -2.42 n.s. 
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  2021-Feb (n = 19)   2021-Oct (n = 34)   2023-Jan (n = 34)   2023-Oct (n = 34) 

Comparison 
Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value 

C vs. I NA NA  0.28 n.s.  1.30 n.s.  -1.54 n.s. 
D vs. E -0.93 n.s.  -1.63 < 0.05  -2.18 n.s.  -3.26 < 0.05 
D vs. F -2.71 < 0.05  -2.28 < 0.05  -2.33 n.s.  -2.57 n.s. 
D vs. H -0.58 n.s.  -0.68 n.s.  -0.59 n.s.  -2.28 n.s. 
D vs. G -0.98 n.s.  -0.38 n.s.  -1.15 n.s.  -2.52 n.s. 
D vs. I -0.34 n.s.  0.53 n.s.  0.48 n.s.  -1.63 n.s. 
E vs. F -1.78 n.s.  -0.65 n.s.  -0.15 n.s.  0.69 n.s. 
E vs. H 0.36 n.s.  0.95 n.s.  1.58 n.s.  0.98 n.s. 
E vs. G -0.05 n.s.  1.25 n.s.  1.03 n.s.  0.74 n.s. 
E vs. I 0.59 n.s.  2.15 < 0.05  2.65 n.s.  1.62 n.s. 
F vs. H 2.14 < 0.05  1.60 < 0.05  1.73 n.s.  0.29 n.s. 
F vs. G 1.73 n.s.  1.90 < 0.05  1.18 n.s.  0.05 n.s. 
F vs. I 2.37 < 0.05  2.80 < 0.05  2.80 < 0.05  0.93 n.s. 
H vs. G -0.41 n.s.  0.30 n.s.  -0.56 n.s.  -0.24 n.s. 
H vs. I 0.24 n.s.  1.20 n.s.  1.07 n.s.  0.64 n.s. 
G vs. I 0.64 n.s.   0.90 n.s.   1.63 n.s.   0.88 n.s. 
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Table A3.2 Results of post-hoc pairwise comparisons using Tukey's honestly significant difference procedure for needle P measurements 
(g/kg) at the plot level for four datasets. n is the sample size. Statistically significant results are highlighted in red. n.s.: not significant. NA: 
Not applicable if no plots in that treatment were sampled. 
  2021-Feb (n = 19)   2021-Oct (n = 34)   2023-Jan (n = 34)   2023-Oct (n = 34) 

Comparison 
Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value 

A vs. B NA NA  -0.31 < 0.05  -0.15 n.s.  -0.45 < 0.05 
A vs. C NA NA  -0.41 < 0.05  -0.25 n.s.  -0.39 n.s. 
A vs. D -0.31 n.s.  -0.36 < 0.05  -0.23 n.s.  -0.40 n.s. 
A vs. E -0.55 < 0.05  -0.60 < 0.05  -0.74 < 0.05  -0.90 < 0.05 
A vs. F -0.51 < 0.05  -0.58 < 0.05  -0.81 < 0.05  -0.86 < 0.05 
A vs. H -0.48 < 0.05  -0.75 < 0.05  -0.60 < 0.05  -0.81 < 0.05 
A vs. G -0.09 n.s.  -0.07 n.s.  0.05 n.s.  -0.21 n.s. 
A vs. I -0.73 < 0.05  -0.64 < 0.05  -0.46 n.s.  -0.80 < 0.05 
B vs. C NA NA  -0.10 n.s.  -0.10 n.s.  0.06 n.s. 
B vs. D NA NA  -0.04 n.s.  -0.08 n.s.  0.05 n.s. 
B vs. E NA NA  -0.28 < 0.05  -0.59 < 0.05  -0.45 < 0.05 
B vs. F NA NA  -0.27 < 0.05  -0.66 < 0.05  -0.41 n.s. 
B vs. H NA NA  -0.44 < 0.05  -0.45 n.s.  -0.36 n.s. 
B vs. G NA NA  0.24 < 0.05  0.20 n.s.  0.24 n.s. 
B vs. I NA NA  -0.33 < 0.05  -0.31 n.s.  -0.35 n.s. 
C vs. D NA NA  0.05 n.s.  0.02 n.s.  -0.01 n.s. 
C vs. E NA NA  -0.19 n.s.  -0.49 n.s.  -0.51 < 0.05 
C vs. F NA NA  -0.17 n.s.  -0.57 < 0.05  -0.47 < 0.05 
C vs. H NA NA  -0.34 < 0.05  -0.36 n.s.  -0.42 n.s. 
C vs. G NA NA  0.34 < 0.05  0.30 n.s.  0.18 n.s. 
C vs. I NA NA  -0.23 < 0.05  -0.22 n.s.  -0.41 n.s. 
D vs. E -0.23 n.s.  -0.24 < 0.05  -0.51 < 0.05  -0.50 < 0.05 
D vs. F -0.19 n.s.  -0.23 < 0.05  -0.58 < 0.05  -0.46 < 0.05 
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  2021-Feb (n = 19)   2021-Oct (n = 34)   2023-Jan (n = 34)   2023-Oct (n = 34) 

Comparison 
Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value  

Mean 
difference p-value 

D vs. H -0.17 n.s.  -0.40 < 0.05  -0.37 n.s.  -0.40 n.s. 
D vs. G 0.23 n.s.  0.29 < 0.05  0.28 n.s.  0.19 n.s. 
D vs. I -0.42 < 0.05  -0.28 < 0.05  -0.23 n.s.  -0.40 n.s. 
E vs. F 0.04 n.s.  0.01 n.s.  -0.07 n.s.  0.03 n.s. 
E vs. H 0.07 n.s.  -0.16 n.s.  0.13 n.s.  0.09 n.s. 
E vs. G 0.46 < 0.05  0.53 < 0.05  0.79 < 0.05  0.69 < 0.05 
E vs. I -0.19 n.s.  -0.04 n.s.  0.27 n.s.  0.10 n.s. 
F vs. H 0.03 n.s.  -0.17 n.s.  0.21 n.s.  0.06 n.s. 
F vs. G 0.42 < 0.05  0.51 < 0.05  0.86 < 0.05  0.65 < 0.05 
F vs. I -0.22 n.s.  -0.05 n.s.  0.35 n.s.  0.06 n.s. 
H vs. G 0.40 < 0.05  0.68 < 0.05  0.65 < 0.05  0.60 < 0.05 
H vs. I -0.25 n.s.  0.11 n.s.  0.14 n.s.  0.00 n.s. 
G vs. I -0.65 < 0.05   -0.57 < 0.05   -0.51 n.s.   -0.59 < 0.05 
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Appendix for Chapter 4 
Table A4.1 Equations of narrow-band hyperspectral indices (NBHIs). Rλ represents the 
reflectance at λ nm wavelength. 
Index Equation Reference 
Structural indices  
NDVI (𝑅𝑅800 − 𝑅𝑅670)/(𝑅𝑅800 + 𝑅𝑅670)  Rouse et al. (1974b) 
EVI 2.5(𝑅𝑅800 − 𝑅𝑅670)/(𝑅𝑅800 + 6𝑅𝑅670 −

7.5𝑅𝑅400 + 1)  
Liu and Huete (1995) 

RDVI (𝑅𝑅800 − 𝑅𝑅670)/�(𝑅𝑅800 + 𝑅𝑅670)  Roujean and Breon (1995) 
OSAVI (1 + 0.16) × (𝑅𝑅800 − 𝑅𝑅670)/((𝑅𝑅800 + 𝑅𝑅670

+ 0.16) 
Rondeaux et al. (1996) 

MSAVI [2𝑅𝑅800 + 1
−�(2𝑅𝑅800 + 1)2 − 8(𝑅𝑅800 − 𝑅𝑅670)]/2 

Qi et al. (1994) 

TVI 0.5[120(𝑅𝑅750 − 𝑅𝑅550) − 2(𝑅𝑅670 − 𝑅𝑅550)] Broge and Leblanc (2001) 
MTVI1 1.2[1.2(𝑅𝑅800 − 𝑅𝑅550) − 2.5(𝑅𝑅670 − 𝑅𝑅550)] Haboudane et al. (2004a) 
MTVI2 1.5[1.2(𝑅𝑅800 − 𝑅𝑅550) − 2.5(𝑅𝑅670 − 𝑅𝑅550)]

�(2𝑅𝑅800 + 1)2 − �6𝑅𝑅800 − 5�𝑅𝑅670� − 0.5
 

Haboudane et al. (2004a) 

MCARI [(𝑅𝑅700 − 𝑅𝑅670) − 0.2(𝑅𝑅700
− 𝑅𝑅550)] × (𝑅𝑅700 𝑅𝑅670)⁄  

Daughtry et al. (2000) 

MCARI1 1.2[2.5(𝑅𝑅800 − 𝑅𝑅670) − 1.3(𝑅𝑅800 − 𝑅𝑅550)]  Haboudane et al. (2004a) 
SR 𝑅𝑅800 𝑅𝑅670⁄   Jordan (1969) 
MSR [𝑅𝑅800 𝑅𝑅670⁄ − 1]/[(𝑅𝑅800 𝑅𝑅670⁄  )0.5 + 1] Chen (1996) 
  
Chlorophyll a + b indices  
TCARI 3[(𝑅𝑅700 − 𝑅𝑅670) − 0.2(𝑅𝑅700

− 𝑅𝑅550) × (𝑅𝑅700 𝑅𝑅670)]⁄  
Haboudane et al. (2002) 

TCARI/ 
OSAVI  

3[(𝑅𝑅700−𝑅𝑅670)−0.2(𝑅𝑅700−𝑅𝑅550)×(𝑅𝑅700 𝑅𝑅670)]⁄
(1+0.16)(𝑅𝑅800−𝑅𝑅670)/(𝑅𝑅800+𝑅𝑅670+0.16)

  Haboudane et al. (2002) 

CTR1 𝑅𝑅695 𝑅𝑅420⁄   Carter (1994) 
CAR 𝑅𝑅515 𝑅𝑅570⁄   Hernández-Clemente et al. 

(2012) 
SRPI 𝑅𝑅430 𝑅𝑅680⁄   Peñuelas et al. (1995b) 
PSSRa 𝑅𝑅800 𝑅𝑅675⁄   Blackburn (1998) 
PSSRb 𝑅𝑅800 𝑅𝑅635⁄   Blackburn (1998) 
PSSRc 𝑅𝑅800 𝑅𝑅470⁄   Blackburn (1998) 
PSNDc (𝑅𝑅800 − 𝑅𝑅470)/(𝑅𝑅800 + 𝑅𝑅470)  Blackburn (1998) 
NPCI (𝑅𝑅680 − 𝑅𝑅430)/(𝑅𝑅680 + 𝑅𝑅430) Peñuelas et al. (1994) 
DCabDxc 𝑅𝑅672/(𝑅𝑅550 × 3𝑅𝑅708) Datt (1998) 
DNCabCxc 𝑅𝑅860/(𝑅𝑅550 × 𝑅𝑅708) Datt (1998) 
PSRI (𝑅𝑅680 − 𝑅𝑅500)/𝑅𝑅750 Merzlyak et al. (1999) 
VOG1 𝑅𝑅740 𝑅𝑅720⁄   Vogelmann et al. (1993) 
VOG2 (𝑅𝑅734 − 𝑅𝑅747)/(𝑅𝑅715 + 𝑅𝑅726)  Vogelmann et al. (1993) 
VOG3 (𝑅𝑅734 − 𝑅𝑅747)/(𝑅𝑅715 + 𝑅𝑅720) Vogelmann et al. (1993) 
GM1 𝑅𝑅750 𝑅𝑅550⁄  Gitelson and Merzlyak 

(1997) 
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Index Equation Reference 
GM2 𝑅𝑅750 𝑅𝑅700⁄  Gitelson and Merzlyak 

(1997) 
CI 𝑅𝑅750 𝑅𝑅710⁄  Zarco-Tejada et al. (2001) 
SIPI (𝑅𝑅800 − 𝑅𝑅445)/(𝑅𝑅800 + 𝑅𝑅680) Penuelas et al. (1995) 
CRI550 (1/𝑅𝑅510 ) − (1/𝑅𝑅550 ) Gitelson et al. (2002) 
CRI700 (1/𝑅𝑅510 ) − (1/𝑅𝑅700 ) Gitelson et al. (2002) 
CRI550m (1/𝑅𝑅515 ) − (1/𝑅𝑅550 ) Gitelson et al. (2006) 
CRI700m (1/𝑅𝑅515 ) − (1/𝑅𝑅700 ) Gitelson et al. (2006) 
RNIR·CRI550 (1/𝑅𝑅510 ) − (1/𝑅𝑅550 ) × 𝑅𝑅770 Gitelson et al. (2006) 
RNIR·CRI700 (1/𝑅𝑅510 ) − (1/𝑅𝑅700 ) × 𝑅𝑅770 Gitelson et al. (2006) 
  
PRI indices  
PRI (𝑅𝑅570 − 𝑅𝑅531)/(𝑅𝑅570 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRI515 (𝑅𝑅515 − 𝑅𝑅531)/(𝑅𝑅515 + 𝑅𝑅531)  Hernández-Clemente et al. 

(2011) 
PRIm1 (𝑅𝑅512 − 𝑅𝑅531)/(𝑅𝑅512 + 𝑅𝑅531)  Hernández-Clemente et al. 

(2011) 
PRIm2 (𝑅𝑅600 − 𝑅𝑅531)/(𝑅𝑅600 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRIm3 (𝑅𝑅670 − 𝑅𝑅531)/(𝑅𝑅670 + 𝑅𝑅531)  Gamon et al. (1992b) 
PRIm4 (𝑅𝑅570 − 𝑅𝑅531 − 𝑅𝑅670)/(𝑅𝑅570 + 𝑅𝑅531 +

𝑅𝑅670)  
Hernández-Clemente et al. 
(2011) 

PRIn PRI570/[RDVI × (𝑅𝑅700 𝑅𝑅670⁄ )]  Zarco-Tejada et al. (2013d) 
PRI·CI [(𝑅𝑅570 − 𝑅𝑅530)/(𝑅𝑅570 +

𝑅𝑅530)](𝑅𝑅760 𝑅𝑅700⁄ − 1)  
Garrity et al. (2011) 

  
Blue indices  
NPQI (𝑅𝑅415 − 𝑅𝑅435)/(𝑅𝑅415 + 𝑅𝑅435)  Peñuelas et al. (1995b) 
B 𝑅𝑅450 𝑅𝑅490⁄  Calderón et al. (2013) 
BF1 𝑅𝑅400 𝑅𝑅410⁄   Zarco-Tejada et al. (2018a) 
BF2 𝑅𝑅400 𝑅𝑅420⁄   Zarco-Tejada et al. (2018a) 
BF3 𝑅𝑅400 𝑅𝑅430⁄   Zarco-Tejada et al. (2018a) 
BF4 𝑅𝑅400 𝑅𝑅440⁄   Zarco-Tejada et al. (2018a) 
BF5 𝑅𝑅400 𝑅𝑅450⁄   Zarco-Tejada et al. (2018a) 
BRI1 𝑅𝑅400 𝑅𝑅690⁄   Zarco-Tejada et al. (2012) 
BRI2 𝑅𝑅450 𝑅𝑅690⁄   Zarco-Tejada et al. (2012) 
   
RGB indices   
R 𝑅𝑅700 𝑅𝑅670⁄   Gitelson et al. (2000) 
G 𝑅𝑅570 𝑅𝑅670⁄   Calderón et al. (2013) 
BGI1 𝑅𝑅400 𝑅𝑅550⁄   Zarco-Tejada et al. (2005) 
BGI2 𝑅𝑅450 𝑅𝑅550⁄  Zarco-Tejada et al. (2005) 
RGI 𝑅𝑅690 𝑅𝑅550⁄  Zarco-Tejada et al. (2005) 
RARS 𝑅𝑅746 𝑅𝑅513⁄  Chappelle et al. (1992) 
LIC1 (𝑅𝑅800 − 𝑅𝑅680)/(𝑅𝑅800 + 𝑅𝑅680) Lichtenthaler (1996) 
LIC2 𝑅𝑅440/𝑅𝑅690 Lichtenthaler (1996) 
LIC3 𝑅𝑅440/𝑅𝑅740 Lichtenthaler (1996) 
   
Chlorophyll fluorescence  
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Index Equation Reference 
CUR (𝑅𝑅675 × 𝑅𝑅690)/𝑅𝑅6832  Zarco-Tejada et al. (2000) 
   
Plant disease index  
HI 𝑅𝑅534 − 𝑅𝑅698

𝑅𝑅534 + 𝑅𝑅698
− 0.5𝑅𝑅704 

Mahlein et al. (2013) 
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Fig. A4.1. Variability in calibrated SIF760 quantified through 3FLD method at the 
treatment level for four dates.  
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Table A4.2 Needle N and P estimation performance of GPR models with inputs including 
TCARI/OSAVI (T/O), PRI, NPQI and CUR at plot level and treatment level. 

Dataset 
N = f(T/O, PRI, NPQI, CUR)   P = f(T/O, PRI, NPQI, CUR) 

R2 NRMSE   R2 NRMSE 

Plot level      

2021-Feb (n = 19) 0.66*** 0.17   0.15ns 0.30 

2021-Oct (n = 34) 0.54*** 0.19  0.50*** 0.19 

2023-Jan (n = 34) 0.01ns 0.26  0.34*** 0.25 

2023-Oct (n = 34) 0.10ns 0.31   0.12ns 0.30 

Treatment level      

2021-Feb (n = 7) 0.86** 0.11   0.46ns 0..25 

2021-Oct (n = 9) 0.88*** 0.12  0.87*** 0.15 

2023-Jan (n = 9) 0.01ns 0.34  0.82*** 0.18 

2023-Oct (n = 9) 0.46* 0.24   0.55* 0.24 
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Appendix for Chapter 6 

 

Fig. A6.1. Tree-level comparison of reflectance values between measured and simulated 
MicaSense data across 10 MicaSense spectral bands for the (top) 2023-Jan and (bottom) 
2023-Oct datasets.  ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; n.s. = not 
significant.  
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