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Abstract

Timely and precise detection of nutrient deficiencies in needles, especially nitrogen (N) and
phosphorus (P), can facilitate sustainable forestry in Pinus radiata D. Don (radiata pines),
where the goal is to guarantee sufficient nutrient supply for tree growth and wood production,
as well as to avoid detrimental environmental impacts from over-fertilization. Airborne
hyperspectral remote sensing provides detailed spectral information of vegetation targets,

enabling non-destructive and on-demand monitoring.

Previous studies using airborne narrow-band hyperspectral imagery have shown that plant traits
derived from radiative transfer models (RTMs) and far-red solar-induced chlorophyll
fluorescence (SIF760) effectively explain the observed variability in leaf N concentrations in
crops. However, their contribution to leaf P concentration has not been explored. In Chapter 4,
we evaluated the potential of using physiological plant traits derived from airborne narrow-
band hyperspectral imagery (Full-Width at Half-Maximum [FWHM] = 5.8 nm) to estimate
needle N and P concentrations in radiata pines nutrient trials. We identified four predictors,
including needle pigments derived from the RTM, PRO4SAIL2-derived [i.e., chlorophyll a +
b (Cab), carotenoid (Car), and anthocyanin contents (Ant)], as well as SIF760, as most effective
predictors both N and P when used as inputs for Gaussian Process Regression (GPR) models,
demonstrating the robustness of the physically based modelling approach. Moreover, we
observed consistent contributions of the blue spectral region to P estimations but not to N.
Chapter 4 revealed the distinct contribution of far-red SIF and the blue spectral region for
needle P compared to needle N, opening a new avenue for the physiological assessment of

nutrient levels in forest stands using hyperspectral imagery.

Motivated by the findings from Chapter 4, Chapter 5 drew closer attention to SIF evaluation in
their contribution to needle nutrient assessment, specifically on the impact of sensor spectral
resolution (SR) on the accuracy of airborne SIF retrievals at oxygen absorption features. We
evaluated whether sub-nanometer resolution offered significant benefits for SIF applications in
needle N and P estimations in radiata pines. The results showed that sub-nanometer resolution
did not enhance the predictive contribution of SIF760 beyond what its narrow-band counterpart
already did for either needle N or P. Uncertainties in SIF retrievals and the lack of validity
prevented the assessment of the SIF retrieval accuracy. The further focused analysis of red SIF
(SIF6s7) at the O2-B band and depths of Fraunhofer lines (FLs), which were only observable

under the sub-nanometer resolutions, showed that SIFes7 lack predictive capability for nutrient
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content. Additionally, the depths of far-red FLs contributed more to needle N and P assessment
than red FLs. These findings highlight the potential of far-red FLs, which are less affected by

atmospheric effects than oxygen absorption bands, as predictors for needle P status.

The application of narrow-band hyperspectral images in operational monitoring is restrained
by their high monetary and computational costs, as well as the expertise required for data
processing. Multispectral cameras can be a cost-effective alternative for such purposes, though
their coarser spectral resolutions and limited spectral coverage restrict their capability to fully
capture the subtle spectral changes related to needle nutrient levels. Therefore, it is crucial to
select optimized bandsets for the specific objectives. Chapter 6 investigated whether the
commercially available 10-band multispectral camera MicaSense Dual System (FWHM = 10-
54 nm) was suitable for needle N and P assessment. Furthermore, we adopted a novel
clustering-based supervised band selection algorithm to identify optimized bandsets for needle
N and P at a 10 nm FWHM. Our results suggest that the narrow-band-based models developed
in Chapter 4 consistently outperformed all multispectral-based models. Although no
multispectral bandsets could effectively explain the observed variabilities in N, multispectral-
based models were better suited for needle P assessment. The newly proposed 12-band bandset,
BS12P, outperformed the 10-band bandset of MicaSense for needle P prediction across four
datasets, suggesting the potential of the optimised BS12P bandset for developing next-

generation multispectral cameras for P assessment.

Overall, this Ph.D. study advanced the physiological interpretation of radiata pine responses to
nitrogen and phosphorus variations and demonstrated the effectiveness of hyperspectral remote
sensing for nutrient monitoring in coniferous species. The findings contributed to the
development of precision forestry in radiata pine plantations, which holds economic

significance in Australia and worldwide.
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Chapter 1
Introduction

1.1 Nitrogen and Phosphorus Deficiency in Radiata Pine

Pinus radiata D. Don (radiata pine), native to North America, is now widely planted in the
southern hemisphere, including Australia, New Zealand and Chile, as the primary softwood
plantation species. In Australia alone, radiata pine plantations cover around 707,000 ha,
accounting for almost 70% of the national softwood plantation area and 40% of the total
plantation area (Legg et al., 2021b). Radiata pine is a fast-growing species, with a rotation
period typically between 30 and 35 years (Forestry Corporation of NSW, 2016). In commercial
plantations, radiata pines can grow up to 30 to 45 m high with an annual increment in volume
between 16 and 21 m?*/ha per year (Legg et al., 2021b). Its timber has versatile applications,
such as construction, furniture making, paper and packaging. In 2023, the total volume of
plantation softwood harvested reached 13,740,000 m® in Australia, with an estimated gross
value of around 1,372 million Australian dollars (ABARES, 2024). Given its significant value
as the predominant softwood plantation species, it is critical to properly apply silvicultural

practices to maximize the radiata pine wood production.

Radiata pine is a nutrient-demanding species, and its growth is strongly influenced by soil
nutrient storage, especially nitrogen and phosphorus (Watt et al., 2005a; Turner and Lambert,
2011; Turner and Lambert, 2017). Studies have shown that the peak nutrient demand of a
radiata pine stand can reach 130 and 12 kg/ha per year for nitrogen (N) and phosphorus (P),
respectively (Lambert and Turner, 1988). The response of radiata pines to N and P fertilization
and other growth-influencing environmental factors has been studied over the past few decades.
It has been shown that N fertilization results in an increase of needle number and size, shoot
production rate, tree biomass accumulation and stem growth (Nambiar and Fife, 1987b).
Furthermore, N and P stress limit the branch growth more than the stem or height growth of
radiata pines (Will and Hodgkiss, 1977). Benson et al. (1992) also demonstrated that N and
water availability were intertwined in facilitating stem growth. Common symptoms of N

deficiency include a high root-to-shoot ratio, yellow short needles, shedding of older needles



and thin branching and crowns, while P-deficient trees display similar visual symptoms but are

typically characterized by dull green color (Will and Hodgkiss, 1977; Mead, 2013).

However, overfertilization can be detrimental to the environment and counterproductive to the
goal of maximizing wood production in radiata pine plantation management. It has been found
that increased N supply, and thus leaf N concentrations, is associated with decreased wood
density and a lower latewood percentage of radiata pine (Beets et al., 2001b), potentially
impacting the quality and value of the wood. There is also the risk of excessive fertilizer runoff,
such as nitrate (NO3") and phosphate, into waterways, causing eutrophication (Johnston et al.,
2014). Hence, it is critical to detect the needle N and P stress in radiata plantations in a timely
and accurate manner and apply fertilizers precisely, for the benefits of wood production and

environmental protection.

1.2 Leaf Nutrient Monitoring with Hyperspectral Remote Sensing

Traditional diagnostic approaches for N and P deficiencies usually involve intensive field
sampling and laboratory testing for foliage chemistry and pigment contents. Initially proposed
by Ulrich and Hills (1967), the critical level method is one of the main diagnostic tools used in
forestry. By comparing the measurements against the critical values, the deficiency status could
thus be detected. It is critical to follow the standardized sampling procedures for proper
comparison with the critical values, which differ for regions. However, the critical value
method has major drawbacks, inhibiting large-scale monitoring. First, the representativeness
of this method is limited when scaling up to the canopy level or extrapolating to other stands
with different ages and conditions (Gregoire and Fisher, 2004; Watt et al., 2019). Second, the

sampling and laboratory testing procedure can be laborious and costly.

Conversely, remote sensing technology provides a non-destructive alternative for monitoring
leaf nutrients at the operational scale. In particular, hyperspectral remote sensing has gained
more attention due to its ability to capture detailed spectral information of the ground target.
Hyperspectral imaging spectrometers typically have hundreds of spectral bands with a spectral
resolution of less than 10 nm. Several spaceborne hyperspectral imaging spectrometers are in
operation to date, such as the dedicated Earth observation satellites EnMAP (Guanter ef al.,
2015), PRISMA (Cogliati et al., 2021), HySIS (Mahalingam et al., 2019), and DESIS onboard
the International Space Station (ISS) (Krutz et al., 2019). However, spaceborne hyperspectral



remote sensing faces limitations, including coarse spatial resolution (usually 10 to 30 m),
dependency on revisit frequency, and atmospheric inferences. On the other hand, airborne
hyperspectral imagers onboard manned or unpiloted aircraft present the advantages of on-
demand flexible image acquisition and sub-meter spatial resolution, which is crucial for

vegetation monitoring in heterogeneous canopies.

The basis of using spectroscopy to assess leaf nutrient status lies in how plants utilize the
absorbed light energy. When the incident solar radiation reaches the plant, it is either reflected,
transmitted or absorbed by pigment systems. Even under unstressed conditions, plants cannot
fully utilize the absorbed light energy for photochemistry. As a result, plants need to dissipate
the excitation energy through two other pathways: thermal dissipation (i.e., constitutive or
regulated) and chlorophyll fluorescence (ChlF). All three pathways compete for the absorbed
photosynthetic active radiation (PAR), thus the disturbance in one would affect the others. In
literature and the following chapters of the thesis, the term “non-photochemical quenching
(NPQ)” is used to refer to the regulated thermal dissipation process that involves photosystems.
The term “quenching” represents all the processes that reduce fluorescence emissions (Krause
and Weis, 1991; Mohammed ef al., 2019). The remote sensing of leaf N status predominantly
relies on the fact that the biochemical composition of chlorophyll a + b molecules contains N
(Evans, 1989). N deficiency thus affects the chlorophyll content, subsequently the
photosynthetic activities, ChlF emission and NPQ. These physiological responses can be
reflected by the variations of reflected radiation of plants in specific wavelengths, such as
chlorophyll absorption features in the visible to near infrared (VNIR) regions. P, as an essential
macronutrient, participates in the formation of starch, cellulose and lignin, which impact the
shortwave infrared region (SWIR) of the vegetation spectrum. It has been proven that P
deficiency leads to the accumulation of starch in leaves and stems (Qiu and Israel, 1992).
However, as these SWIR absorption features are not as apparent and as well studied as the
chlorophyll absorption features, the study of leaf P using remote sensing is relatively limited
as opposed to N. In the VNIR region, P is indirectly associated with photosynthesis. On one
hand, P is a component of chloroplast membrane phospholipids. On the other hand, P plays a
role in the photosynthetic electron transport to photosystem I (PSI) as it affects the ATP
(adenosine triphosphate) synthase activity (Carstensen et al., 2018).

Remotely sensed hyperspectral data have been widely explored to track leaf N status through
either empirical or physically based models. Empirical methods exploit relevant absorption

features using either reflectance bands or spectral indices. The most widely used vegetation
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index, the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974a), has been
broadly applied to represent the green biomass of the canopy, thus reflecting on the chlorophyll
content. Nevertheless, this index is not a direct proxy for the chlorophyll content, and it is well
known that the index saturates at high chlorophyll concentration. Moreover, the interpretation
of the index is also confounded by the canopy structural effects and other pigments. Recently,
more chlorophyll indices have focused on the red edge region (~670—780 nm) due to its high
sensitivity to chlorophyll content. For example, the reflectance ratio between 750 and 710 nm
was proposed to approximate chlorophyll content in forest stands and was found to be
insensitive to canopy structural and shadow effects (Zarco-Tejada et al., 2002). The chlorophyll
red-edge index (CI) was subsequently shown to be insensitive to the effects of leaf thickness
and closely related to leaf N status (Clevers and Gitelson, 2013a). Other non-chlorophyll
indices have also been applied as stress indicators, including N deficiency. The Photochemical
Reflectance Index (PRI) (Gamon et al., 1992a; Gamon et al., 1997b), calculated as the
normalized reflectance difference at 531 and 570 nm, has been widely used to monitor plant
photosynthetic activities and nutrient levels due to its close linkage with the xanthophyll cycle,
an NPQ mechanism activated in plants under stress (Demmig-Adams and Adams III, 1996).
Several studies have reported associations between PRI and water stress (Suérez et al., 2009a;
Zarco-Tejada et al., 2013c), and leaf nitrogen status (Shrestha et al., 2012; Watt et al., 2020).
However, these empirical relationships based on indices may be unreliable for three main
reasons. First, indices do not explicitly account for the effects of canopy structure, understory
and soil background, and illumination conditions at the time of image acquisition, resulting in
potentially unstable prediction performance and limited transferability when applied to other
sites and species (Hernandez-Clemente et al., 2019b). Second, indices that use only two or
three bands are unlikely to capture all the spectral information of the target variable, which
may be nonlinearly related to the reflectance spectrum to some extent (Berger et al., 2018).
Furthermore, the observed changes in the reflectance signals might be related to multiple
properties and confounding factors (e.g., combined pigment and structure), consequently

obscuring the true relationship between nutrient status and plant physiological responses.

On the other hand, the physically based approach relying on radiative transfer theory provides
more accurate and consistent estimates of the leaf properties that are more closely related to
nutrient status than simple spectral signals. Vegetation radiative transfer models (RTMs)
simulate light interactions with leaves and canopies. Leaf RTMs describe the optical properties

of a single leaf by considering the scattering related to leaf physical properties and absorption



by biochemical content (e.g., pigment, dry matter and water). Canopy RTMs describe
directional scattering and absorptions that are related to canopy architecture (e.g., leaf area
index [LAI]) and illumination geometry (e.g., solar zenith angle) (Ustin et al., 2009). The
coupled leaf-canopy RTMs have been used to interpret top-of-canopy (TOC) signals and to
retrieve leaf biochemical properties or canopy structural parameters. As RTMs originally take
leaf and canopy parameter values as inputs and output canopy reflectance, the retrieval of
parameters such as the leaf chlorophyll content requires the inversion of the model. Previous
studies have demonstrated the reliability of RTM-derived leaf chlorophyll content across
species. Poblete et al. (2025) implemented the inversion of the model PRO4SAIL?2 to retrieve
needle chlorophyll for radiata pines from airborne hyperspectral images and achieved an
estimation accuracy (R?) of 0.82 when compared to needle chlorophyll measurements in
heterogeneous grassland. Similarly, Wang et al. (2022) reported a strong correlation between
FluSAIL-derived leaf chlorophyll content and their ground-measured counterparts (R? = 0.66)
in almond orchards. Despite all the promising prospects, retrieving leaf biochemical and
biophysical parameters from RTMs faces a few challenges. First, the implementation of RTM
is computationally expensive. Complex models can provide a more realistic representation of
the canopy reflectance, though it is more computationally demanding to invert them. Second,
the ill-posed problem of RTM inversion is well known; that is, different combinations of RTM
input variables can lead to the same reflectance response (Zurita-Milla ef al., 2015). Therefore,
it is crucial to choose an RTM that balances the trade-off between canopy representativeness

and computational load, and also applies measures to regularise the ill-posed inversion problem.

During the past few decades, Solar-induced Chlorophyll Fluorescence (SIF), which is
chlorophyll fluorescence measured under solar illumination, has been widely investigated as
an indicator for vegetation photosynthetic functioning and early stress before changes in
chlorophyll content or stress-induced symptoms occur. As mentioned previously,
photochemistry, NPQ, and ChIF compete for the PAR. This close physiological linkage allows
the use of fluorescence to assess photosynthetic activities and to serve as an early indicator of
stress. The spectral span of SIF covers the red to near-infrared (NIR) region (650-800 nm), with
two maxima in red (F685) and far-red regions (F740), respectively. SIF emission in the red
region is mainly attributable to PSII, while both PSI and PSII emit fluorescence in the far-red
region. SIF signals superimpose on the reflected radiation, providing an opportunity to retrieve
SIF from remotely sensed vegetation spectra. However, SIF retrieval is not trivial. Due to its

small signals, the quantification of SIF is sensitive to various factors including atmospheric



interference, illumination conditions, canopy structural effects and sensor characterization. SIF
retrieved from different platforms (e.g., ground, airborne and spaceborne) have been proven
effective in detecting heat and water stress (Song et al., 2018; Xu et al., 2021; Wang et al.,
2023a), biotic stress (Calderén et al., 2013; Zarco-Tejada et al., 2018b; Zarco-Tejada et al.,
2021b), predicting leaf nutrient content (Camino et al., 2018a; Camino et al., 2019; Jia et al.,
2021; Wang et al., 2022), and gross primary productivity (GPP) (Bacour et al., 2019; Ma et al.,
2022; Pierrat et al., 2024). To date, the application of airborne SIF in leaf P assessment has not
been extensively investigated, particularly in coniferous species, where the complexity of the

canopy structure poses challenges in interpreting the subtle SIF signals.

The promising potential of the combined use of plant functional traits retrieved from RTM,
along with innovative indicators such as SIF for leaf N estimation, has been demonstrated in
recent studies. Camino ef al. (2018a) found that the incorporation of SIF improved the leaf N
prediction accuracy in wheat, compared with only using functional traits estimated from the
model PROSPECT-SAILH. The results from a study in the almond orchard by Wang et al.
(2022) also showed that the FluSAIL-derived leaf chlorophyll content and airborne far-red SIF
as inputs provided an improved leaf N predictive accuracy (R? = 0.95), as compared to the
performance of the model with only leaf chlorophyll as predictors (R* = 0.49). As airborne SIF
retrieve accuracy is known to be sensitive to spectral resolution, Belwalkar et al. (2022) built
leaf N predictive models for crop canopies with PRO4SAIL-derived leaf chlorophyll content
and airborne SIF quantified either from narrow-band (FWHM = 5.8 nm) or sub-nanometer
resolution (FWHM = 0.1-0.2 nm). The authors reported a slight improvement in prediction
accuracy (AR? = 0.05, ARMSE = -0.03 %) for leaf N when the sub-nanometer SIF was used,
though they contended that narrow-band resolution is sufficient (R> = 0.87, p-value < 0.001,
RMSE = 0.12 %) to differentiate the relative leaf N level across the site. This physically based
modelling approach, which involves plant traits obtained from RTM inversion and SIF as leaf
N predictors, has not been evaluated in coniferous species, where the unique and highly
heterogeneous canopy structure heavily affects the choice of RTM and SIF retrieval accuracy.
Furthermore, despite its importance in plant growth, leaf P estimation has not been investigated

using the physically based approach.

From an operational perspective, airborne hyperspectral remote sensing may not be suitable
for frequent needle nutrient status monitoring at large scales due to the high monetary and
computational costs. Multispectral cameras could be a cost-effective alternative for such

purposes. However, the coarser spectral resolution and limited spectral coverage of
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multispectral cameras restrict their capability to capture the subtle spectral features induced by
nutrient deficiency fully. Therefore, we intend to evaluate whether the commercially available
multispectral cameras can provide reasonable needle N and P estimation accuracy, as compared
to the hyperspectral-based results. Moreover, we aim to utilize our hyperspectral-based analysis
to inform the selection of optimal multispectral bandsets and, consequently, the design of next-
generation multispectral cameras, with the specific objective of assessing needle N and P

content.

1.3 Motivations and Scope

The broad motivation of this study lies in facilitating sustainable forestry in radiata pine
plantations by improving the monitoring of leaf N and P status using airborne hyperspectral
remote sensing. We intend to use physically based models to assess the needle N and P
variabilities, which could provide a deeper understanding of plant physiology as opposed to
empirical approaches based on spectral indices. Utilizing the valuable sub-nanometer
hyperspectral imager, we further investigate sub-nanometer SIF and other fluorescence
indicators in terms of their contribution to explaining needle N and P variability, as opposed to
narrow-band-based SIF products. In addition, considering the need for cost-effective
monitoring at operational scales, we explore the potential of multispectral bandsets for
estimating needle N and P concentrations, benchmarking against the hyperspectral-based

predictive models.
The scope of the Ph.D. study considers the following aspects:

e Nutrient focus: the analysis is restricted to needle N and P assessment. Other macro- and
micronutrients are not considered.

e Study area and species: the research is exclusively conducted on a radiata pine nutrient trial
located in Durham, Victoria, Australia (see Chapter 3 for more information on the study
site). The transferability of the developed models and methodology to other species and
locations is beyond the scope of the study.

e Spectral range: The study is focused on the VNIR spectral range (400 — 1000 nm), which
reflects the spectral coverage of the hyperspectral and multispectral sensors used. The

SWIR region is not considered.



e Platforms: The study focuses on airborne hyperspectral imagery. Applications of ground-

based and spaceborne platforms are not addressed.

1.4 Thesis Overview

This Ph.D. thesis comprises seven chapters. Chapter 1 introduces the background, motivations,
and scope of the study, providing an overview of the thesis structure. Chapter 2 presents a
literature review of current remote sensing approaches for estimating leaf nitrogen and
phosphorus concentrations, from which research gaps are identified and research questions are
formulated. Chapter 3 describes the study site and presents the field data collection and analysis
of needle nitrogen and phosphorus measurements. These field data underpin the analysis of the
following three main chapters. Chapters 4, 5 and 6 address the three identified research gaps
correspondingly. Finally, Chapter 7 is a synthetic discussion of the major findings, highlighting
the contributions, identifying the limitations, and providing recommendations for future

research.



Chapter 2
Literature Review

This chapter reviews current hyperspectral remote sensing-based approaches for estimating
leaf nitrogen (N) and phosphorus (P) status, including empirical methods and more advanced
methods based on radiative transfer modelling (RTM) and solar-induced fluorescence (SIF). It
discusses the strengths and limitations of these methods, with a focus on airborne applications
and the specific challenges associated with complex coniferous canopies. In addition, it
examines the potential of airborne multispectral bandsets for large-scale nutrient monitoring
and evaluates strategies for selecting optimal bandsets for needle N and P assessment. The
purpose of the review is to identify key research gaps and guide the formulation of the research

questions for the Ph.D. study.
2.1 Methods for Leaf N and P Estimation using Hyperspectral data

2.1.1  Empirical methods

Empirical methods rely on assessing reflectance signals (e.g., single spectral bands or spectral
indices) as proxies for plant physiological properties, based on their direct relationships with
specific physiological parameters. For instance, chlorophyll content can be estimated from
reflectance data by exploiting its characteristic absorption features. Given the strong
physiological linkage between nitrogen (N) and chlorophyll, chlorophyll indices have been
extensively investigated as indicators of leaf nitrogen content in remote sensing applications.
Many index designs have taken soil background, shadows and canopy structure into account
to improve the chlorophyll estimation accuracy. For instance, the Transformed Chlorophyll
Absorption in Reflectance Index normalized by the Optimized Soil-Adjusted Vegetation Index
(TCARI/OSAVI) (Haboudane et al., 2004b) combines the chlorophyll index TCARI with the
structural index OSAVI. TCARI/OSAVI has been found resilient to disturbance from soil,
shadow and non-synthetic woody parts, capable of producing accurate chlorophyll estimation
across species (Wu et al., 2008; Poblete et al., 2025). The red-edge region (~670—-780 nm) has
been found highly sensitive to chlorophyll variations, leading to the development of a few
indices in this spectral region. For example, the reflectance ratio between 750 and 710 nm can

approximate chlorophyll content in forests with low sensitivity to canopy structural and shadow



effects (Zarco-Tejada et al., 2002). The chlorophyll red-edge index (CI) was subsequently
shown to be insensitive to the effects of leaf thickness and closely related to leaf N status

(Clevers and Gitelson, 2013a).

As changes in leaf biochemical content usually occur at a later stage of the stress development
(Hernandez-Clemente et al., 2019b), the use of chlorophyll indices to monitor leaf N status
might not be timely enough for the implementation of corrective horticultural measures. In that
regard, the Photochemical Reflectance Index (PRI) (Gamon et al., 1992a; Gamon et al., 1997b)
tracks the spectral variations around 531 nm, which is associated with the xanthophyll cycle,
an NPQ mechanism activated in plants under stress (Demmig-Adams and Adams III, 1996).
The xanthophyll cycle involves the de-epoxidation of violaxanthin into antheraxanthin and then
zeaxanthin, which contributes to the heat dissipation (i.e., NPQ). The inter-conversion process
can be detected in reflectance at 531nm. PRI is related to N and P status in the needles of radiata
pine seedlings (Watt et al., 2020) and water-stress conditions in various species (Suarez et al.,
2009a; Zarco-Tejada et al., 2013c). The Normalized Phaeophytinization Index (NPQI) (Barnes
et al., 1992b; Penuelas and Filella, 1998) utilizes bands in the blue spectral region to track the
changes in phaeophytin content, a product of chlorophyll degradation that happens during plant
senescence and under stress conditions. Previous studies have shown the sensitivity of NPQI
to biotic stresses across species (Zarco-Tejada et al., 2018c; Zarco-Tejada et al., 2021b; Poblete

etal.,2023).

Other empirical methods use reflectance signals or their transformed formats as predictors for
leaf nutrient concentrations, including N and P (Mutanga and Kumar, 2007; Ramoelo et al.,
2013; Guo et al., 2018; Ye et al., 2020; Lin et al., 2024). Spectral transformation techniques,
such as logarithmic transform, first derivative, among others, are applied to improve the signal-
to-noise ratio (Li et al., 2018) of the hyperspectral data. In these spectrum-based methods, a
band selection strategy is often performed to reduce data redundancy and to retain the bands
that are closely related to the target variable (See section 2.2.2 for more details on band
selection). The selected set of informative wavelengths is then used as inputs for regression
models like Partial Least Squared regression (PLSR) (Ramoelo et al., 2013; Li et al., 2018; Lin
et al., 2024), Multivariate Linear Regression (MLR) (Ye et al., 2020), or machine learning
(MLs) algorithms (Mutanga and Kumar, 2007; Guo et al., 2018) to predict leaf nutrient
concentrations. The spectrum-based empirical modelling approach is often more frequently
used when working with the shortwave infrared (SWIR) region than the visible—near-infrared

(VNIR) region. This is because the SWIR absorption features associated with protein, starch,
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lignin etc, are less characterized than pigment absorption features in VNIR. However, several
studies have shown that the significant contribution of SWIR region to leaf N and P estimations
(Mutanga and Kumar, 2007; Mahajan et al., 2014; Camino et al., 2018a; Guo et al., 2018; Li
etal.,2018). SWIR relates to N as proteins are one of the dominant N-containing constituents,
while chlorophyll only accounts for 1.7% of total leaf N (Kokaly et al., 2009b). P is essential
for the formation of starch, cellulose and lignin, which affect SWIR spectral responses (Qiu

and Israel, 1992).

These index- or spectrum-based empirical methods for leaf N and P monitoring, although
computationally efficient, present a few drawbacks. First, they do not explicitly account for the
effects of canopy structure, understory and soil background, and illumination conditions at the
time of image acquisition, resulting in potentially unstable model performance and limited
transferability when applied to other sites. Additionally, spectral indices only use two or three
bands, leaving the rest of the spectrum unevaluated. Furthermore, the observed variations in
reflectance spectrum represent a combined response to multiple factors (e.g. physiological and

structural), which simple empirical methods cannot detangle.

2.1.2  Radiative transfer modelling

Radiative transfer models (RTMs) simulate the interaction between solar radiation and the
vegetation target, including absorption, scattering and reflection. Leaf RTMs take the leaf
internal structure and biochemical composition into account and generate leaf reflectance and
transmittance spectra. Canopy RTMs describe the interaction between vegetation canopy
elements and solar radiation, with emphasis on the directional scattering and absorption. Leaf
and canopy RTMs can be coupled together for the interpretation of remotely sensed top-of-

canopy (TOC) reflectance data at both leaf and canopy levels.

The most extensively evaluated leaf RTM is PROSPECT, developed by Jacquemoud and Baret
(1990). PROSPECT uses four inputs to simulate leaf reflectance in the 400 to 2500 nm spectral
range: chlorophyll a + b content (Cab), equivalent water thickness (Cw), dry matter content (Cm)
and the leaf mesophyll parameter (Nmes). The later version PROSPECT-4 (Feret et al., 2008a)
incorporates carotenoid content (Car). Anthocyanin content (Anh) was introduced in
PROSPECT-D (Féret et al., 2017). A more recent version of PROSPECT-PRO (Féret et al.,
2021) further breaks down leaf dry matter content into proteins and carbon-based constituents.

Another variation, Fluspect (Vilfan et al., 2016), further incorporates the simulation of
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chlorophyll fluorescence. Fluspect is further extended to simulate spectral changes associated
with xanthophyll cycle, forming Fluspect-Cx (Vilfan et al., 2018). PROSPECT family was
initially developed for broad leaves, though recent studies have demonstrated its applicability

to coniferous species (Zarco-Tejada ef al., 2004; Wang et al., 2018c; Poblete et al., 2025).

One of the most widely used canopy RTM, 4SAIL (Verhoef et al., 2007), simulates the
bidirectional canopy reflectance based on the four-stream radiative transfer theory, assuming a
homogeneous canopy layer. The model requires inputs of canopy structural parameters (i.e.,
leaf area index, leaf inclination distribution function), parameters related to viewing geometry,
and leaf reflectance and transmittance used as an input from the leaf RTM. The assumption of
a uniform canopy makes 4SAIL not suitable for a heterogeneous forest canopy. A later
extension 4SAIL2 (Verhoef and Bach, 2007) relaxed this assumption by considering both
vertical and horizontal heterogeneity in canopy structures. 4SAIL2 is a two-layer model that
treats the canopy as two separate layers to track the vertical gradient in leaves: the green-leaf
layer and the brown leaf layer. Two parameters control the spectral effects of the brown layer:
the fraction of brown leaf area (fb) and the layer dissociation factor (D). 4SAIL2 also accounts
for the canopy by the vertical crown cover percentage (Cv) and tree shape factor (§). The former
represented the vertically projected crown cover fraction, while the latter was defined as the
ratio of crown diameter to the crown height at the crown's center above the ground. Another
model, INFORM (Invertible Forest Reflectance Model) (Atzberger, 2000) was initially
designed to simulate reflectance at both the leaf and canopy levels. The canopy representation
in INFORM requires more detailed inputs, including crown shape, radiance, density and tree
height, making the model parameterization challenging. More complex three-dimensional
models were developed, such as the voxel-based Discrete Anisotropic Radiative Transfer
(DART) model (Gastellu-Etchegorry ef al., 2015) and the FLIGHT model (North, 2002), which
relies on Monte Carlo simulation of photon transport. These models can provide a realistic
representation of the forest canopy, albeit at the expense of high computational cost. In all, the
choice of RTM should consider the representativeness of the model to the species under

investigation and whether the model can be effectively inverted.

To determine the unknown biochemical and biophysical parameters from reflectance measured
by remote sensing platforms, the RTM needs to be inverted (i.e., RTM inversion), to link the
observed spectra with the biochemical and structural parameters. There are three commonly
used RTM inversion techniques. The first approach is iterative numerical optimisation, where

the observed spectrum is iteratively compared to various RTM simulations to minimise the
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discrepancy between the two based on certain cost functions. Parameter values of the
simulation where the minimum is found are used to represent the retrieved parameters of the
observation. Optimization techniques are involved to find the minimum, such as the genetic
algorithm (Fang et al., 2003) and the Quasi-Newton algorithm (Jacquemoud et al., 2000). This
method is computationally intensive and is likely to converge at a local minimum depending
on the optimization algorithm and the convergence criteria used. The second inversion
technique is based on look-up tables (LUTs) (Darvishzadeh et al., 2008; Rivera et al., 2013;
Duan et al., 2014). RTMs are executed in the forward mode with various combinations of
parameters to generate simulated reflectance spectra on a large scale (usually more than 10,000
simulations). Then the inversion is performed by querying the pre-computed LUT to find the
simulation that is closest to the observed spectrum based on a cost function, such as root mean
squared error (RMSE) between the simulated and observed spectrum. The LUT-based approach
is relatively efficient compared to the iterative optimization technique, as the computationally
heavy task of LUT generation is completed before the inversion process. However, the retrieval
accuracy is shown to be affected by the choice of cost functions (Rivera et al., 2013) and the
coverage of the LUT. The third inversion technique combines LUT and machine learning (ML)
algorithms, such as Artificial Neural Network (ANN) (Yang ef al., 2010; Wang et al., 2022),
Support Vector Machines (SVM) (Belwalkar et al., 2022; Poblete et al., 2025) and Gaussian
Process Regression (GPR) (Berger et al., 2020; Farmonov et al., 2025). Precomputed LUTs
are used to train ML algorithms that take simulated reflectance as inputs and output the
biochemical and biophysical parameters. The trained ML models can then be applied to the
observed spectrum to retrieve corresponding parameters. Depending on the ML algorithms
used, one or more parameters can be retrieved simultaneously. The primary advantage of this
LUT-ML hybrid technique is that the trained model can be applied to a different dataset,
provided the training LUTs are representative enough. However, the hybrid method highly
relies on the training LUT, though larger LUT sizes lead to higher training cost. Regardless of
the inversion techniques, RTM inversion is known to be prone to the ill-posed problem, where
several different combinations of RTM biochemical and biophysical parameters lead to the
same spectral response. In other words, the inversion result is not unique. Different strategies
have been proposed to relieve the ill-posed issue. For example, prior knowledge obtained from
experiments and literature can be used to constrain the solution. Ecological constraints can be
applied to filter out unrealistic solutions (Darvishzadeh ef al., 2011; Quan et al., 2017; Wang
etal.,2018c). Baret and Buis (2008) provided a detailed review of the regularization techniques

for RTM inversion.
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RTM inversion has been widely implemented to retrieve leaf pigment content, including
chlorophyll (Lu et al., 2021; Wang et al., 2023b; Poblete et al., 2025), carotenoids (Zarco-
Tejada et al., 2013e; Miraglio et al., 2020), leaf water content (Riano et al., 2005; Zhu et al.,
2019) and the canopy structural parameter LAI (Darvishzadeh et al., 2011; Miraglio et al.,
2020; Lu et al, 2021) from hyperspectral images. A higher retrieval accuracy is usually
reported for LAI and leaf chlorophyll content than carotenoids, potentially due to the spectrally
restricted carotenoid absorption feature and its overlap with other pigment absorption regions.
To date, no existing RTMs enable the direct retrieval of leaf nutrient content through inversion,
though the RTM-derived plant traits can be used as predictors for leaf nutrient status. In the
context of leaf N estimation, two RTM-based strategies have been employed in previous studies:
one relies on the N-chlorophyll linkage and the other on the N-protein linkage. With the focus
on the VNIR region, the first strategy uses RTM-derived leaf chlorophyll and other biochemical
constituents as inputs for ML models to predict leaf N concentration (Camino et al., 2018a;
Belwalkar et al., 2022; Wang et al., 2022; Dehghan-Shoar et al., 2023). This strategy has also
been successfully applied to detect biotic stress (Zarco-Tejada et al., 2018c; Zarco-Tejada et
al.,2021b; Poblete et al., 2023). The second strategy requires coverage of the SWIR region to
retrieve leaf protein content from advanced leaf optical models. Leaf or canopy N content is
subsequently obtained based on an empirical nitrogen-protein converting factor (Verrelst ez al.,
2021; Wang et al., 2023b). At present, these strategies have only been attempted for N status
evaluation in relatively homogeneous crop and orchard canopies, while their performance for
leaf P estimation has not been well understood, especially for highly heterogeneous coniferous

canopies.

Compared to empirical methods that depend on reflectance-based proxies, RTM inversion
provides direct estimations of plant biophysical and biochemical parameters, thereby
rewarding the latter with better physiological interpretability. It should be noted that RTM
inversion does not necessarily produce significantly higher retrieval accuracy as compared to
empirical methods, as shown in studies on leaf chlorophyll content (Wang et al., 2023b; Poblete
et al., 2025) and LAI (Darvishzadeh et al., 2011) estimation. However, RTM-based methods
demonstrate the advantages of higher transferability, whereas empirical methods require
extensive field measurements for model calibration (Wang et al., 2023b). Cautions should be
taken for RTM parameterization to achieve realistic retrievals of plant traits. Measures should

be taken to alleviate the ill-posed inverse problem.
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2.1.3  Solar-induced fluorescence

The incident solar radiation can be reflected, transmitted, scattered, or absorbed by the
vegetation. The absorbed photosynthetically active radiation (PAR) is partially used for
photosynthesis, while the remaining is either dissipated as heat or emitted as chlorophyll a
fluorescence (ChlF) by each photosystem (PSI and PSII) at longer wavelengths. This close
linkage between ChIF and other radiation pathways makes ChIF a sensitive indicator of
photosynthetic functioning. The spectral span of ChlF covers the red to near-infrared (NIR)
region (650-800 nm), with two maxima in red (Fess) and far-red regions (F740), respectively.
ChIF emission in the red region is mainly ascribed to PSII, while both PSI and PSII emit

fluorescence in the far-red region.

ChIF can be measured by active or passive techniques. Active techniques use artificial light to
excite ChIF emissions, such as the pulse-amplitude modulation (PAM) technique and the
saturation pulse method (Schreiber, 2004). However, active techniques are usually restricted to
leaf (e.g., handheld fluorometers) to plant scales (e.g. imaging fluorometers), making them
infeasible for large-scale applications. On the other hand, passive techniques retrieve
fluorescence parameters under natural solar irradiation conditions. Thus, the passively
retrieved ChlF signal is also called solar-induced fluorescence (SIF). SIF can be retrieved using
optical sensors deployed on various platforms, including ground-based, airborne, and
spaceborne systems. This enables large-scale monitoring of SIF and facilitates the assessment

of its spatial variability.

The superimposition of SIF signals on the apparent vegetation reflectance at both leaf and
canopy levels was first identified by Zarco-Tejada et al. (2000a) and Zarco-Tejada et al.
(2000b), forming the basis of SIF quantification strategy at the TOC level, as expressed by Eq.
2.1. Assuming a Lambertian surface for the vegetation and neglecting the atmospheric effects,
the apparent upwelling radiance L*(A) signal recorded by a sensor is the combination of the

SIF signal F(A) and the solar radiation L()A) of the vegetation:

(D) =LA + FQA) = w + F(D) Eq.2.1

where A is the wavelength, R is the pure vegetation reflectance, and E is the down-welling

irradiance.

However, SIF only account for a small portion of the total reflected radiation - less than 2%

and 5.2% of the reflected radiance at 685 nm and 740 nm, respectively (Guanter ef al., 2010),
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rendering difficulties in decoupling these two signals from remotely sensed hyperspectral data.
SIF retrieval methods can be categorized based on whether SIF is retrieved at specific
absorption features or the full SIF emission spectrum is obtained. In the first category, telluric
and solar absorption features are used to quantify SIF based on the in-filling principle: as the
solar incident radiation is significantly attenuated at these narrow spectral regions due to either
the telluric or solar atmospheric absorption, the relative contribution of SIF to the reflected
radiation becomes more apparent. These absorption features are sometimes collectively
referred to as Fraunhofer lines (FLs), although here we use FLs to represent solar absorption
features, as opposed to the oxygen absorption features in the telluric atmosphere. The oxygen
absorption bands in the telluric atmosphere are commonly used as they are broader and deeper
than FLs. Even though the O2-B absorption band (687 nm) is closer to the SIF emission
maximum in the red region (Fess), most research utilized the O2-A band (760 nm) for SIF

retrieval (F760) in the NIR region, due to the broader and deeper absorption feature.

Algorithms to retrieve SIF at these absorption features include the Fraunhofer Line Depth (FLD)
method (Plascyk and Gabriel, 1975; Damm et al., 2011), spectral fitting method (SFM)
(Meroni et al., 2010; Cogliati ef al., 2015) and singular value decomposition (SVD) algorithm
(Guanter et al., 2013). FLD-based methods are the most extensively applied, due to their
simplicity. In these methods, SIF is represented as the normalized difference between the
absorption band depth of a non-fluorescent target and that of a fluorescent target. The
absorption band depth is measured using the differential absorption technique, which requires
calculating the ratio between bands within and outside the absorption feature. The major
difference between the standard FLD (sFLD) and its variants, including 3FLD (Maier et al.,
2004) and improved FLD (iFLD) (Alonso et al., 2008). The sFLD algorithm requires
measurements of the incident irradiance and target radiance of two bands, one reference band
and the other within the absorption feature, assuming constant reflectance and fluorescence
within the absorption feature. The 3FLD method assumes a linear variation of reflectance and
fluorescence over the absorption window and implements linear interpolation using two
reference bands, one on the left shoulder and the other on the right shoulder of the absorption
window, respectively. However, the assumption of linearity does not technically hold for the
spectral shapes of oxygen absorption features, especially for the O2-B band (Cendrero-Mateo
et al., 2019). Further improvements were made for iFLD, which accounts for the non-linear
variation within the considered absorption window. Damm et al. (2011) and Cendrero-Mateo

et al. (2019) provided comprehensive assessments of FLD-based methods for SIF retrievals at
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oxygen absorption features. Other techniques, such as SFM and SVD, exploit continuous
spectral information by mathematically reconstructing the fluorescence and reflectance spectra
within the absorption window, allowing a more realistic representation of the spectrally
variable reflectance and fluorescence. However, these methods are more computationally

demanding and require complex parametrization, as compared to FLD-based methods.

Recent advances in RTM allow the retrieval of the full fluorescence spectrum from model
inversion. Several studies employed the SCOPE (Soil Canopy Observation, Photochemistry
and Energy fluxes) model (Van der Tol et al., 2009) to study the relationship between SIF and
photosynthesis (Zhang et al., 2014; Verrelst et al., 2016; Camino et al., 2019). To simulate TOC
SIF, the Fluspect leaf model has been combined with a canopy RTM, such as DART (Regaieg
et al., 2025) or FLIGHT (Hernandez-Clemente ef al., 2017a) model, to account for the canopy
scattering and reabsorption effects, as well as the impacts of observation and illumination
geometry on the SIF signals. RTM-based SIF full-spectrum retrieval faces the challenges of
complex RTM parameterization and high computational load. Moreover, Mohammed e? al.
(2019) notes that spectral information in the visible to near-infrared is required for the canopy
model inputs, though dedicated fluorescence sensors with sub-nanometer spectral resolution
(i.e., FWHM < 1.0 nm) usually only cover the fluorescence spectral range. This leads to the
complication of co-registration of two sensors, spectrally and spatially, if imaging

spectrometers are used.

The accurate estimation of SIF, especially from airborne sensors, faces multiple sources of
uncertainty. The airborne sensor captures not only the reflected radiation from the ground target
but also contributions from adjacent objects and path radiance, all of which are further attuned
by atmospheric absorption and scattering before reaching the sensor. The impact of
atmospheric absorption and scattering has been identified as the most influential factor on SIF
retrieval accuracy (Guanter et al., 2010; Damm et al., 2014). The atmospheric intervention
adds noise to the ratio between the reflectance and fluorescence emission within the absorption
features, which might be confused with the SIF in-filling effects, especially for oxygen
absorption bands. FLs, by contrast, suffer from less atmospheric intervention, though an
ultrafine spectral resolution is required to detect these absorption features. There are two groups
of atmospheric correction approaches at the oxygen bands for airborne imagery. The first
method is empirical, where SIF is normalised by a non-fluorescent target (i.e., a reference board
in a bare soil scene) to account for atmospheric effects. The other group hinges on more realistic

atmospheric radiative transfer modelling. Canopy structure influences the correct interpretation
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of TOC SIF signals, as the emitted leaf fluorescence can be re-absorbed and scattered when
escaping the canopy. The re-absorption is significantly stronger in the red SIF more due to its
overlap with the chlorophyll absorption region. On the other hand, far-red SIF is scattered more
than red SIF (Porcar-Castell et al., 2014). Previous studies (Yang and van der Tol, 2018;
Dechant et al., 2020) have suggested that far-red SIF is mainly affected by canopy structure
rather than leaf physiology. Malenovsky et al. (2021a) have identified that the leaf clumping
effect is the most influential factor in causing multi-angular anisotropy for both red and far-red

SIF.

SIF retrieval accuracy also highly depends on sensor characteristics. Simulation studies (Damm
et al., 2011; Julitta et al., 2016) have shown that spectral resolution (SR) and signal-to-noise
ratio (SNR) are the most influential factors in SIF retrievals at oxygen absorption features.
Coarser spectral resolution and higher noise levels typically result in more erroneous SIF
estimates. In particular, the decrease in SR leads to a decrease in the O2-A band depth and a
spectral shift of the minimum radiance toward the longer wavelengths, subsequently, the
overestimation of far-red SIF (Damm et al., 2011). The impacts of sensor characteristics and
other influencing factors on SIF retrieval accuracy cannot be considered in isolation. Damm e?
al. (2011) evaluated the sensitivity of FLD-based far-red SIF retrievals to various sensor
configurations. Their results showed that sSFLD produced the least accurate retrievals compared
to 3FLD and iFLD at low SR. Additionally, the iIFLD method was most sensitive to high noise
levels (i.e., low SNR). For FLD-based SIF retrievals, Julitta ef al. (2016) recommend the use
of sub-nanometer resolution (FWHM < 1.0 nm) for the absolute measurement of far-red SIF at
02-A band and ultrafine resolution (FWHM < 0.5 nm) for red SIF at O2-B band. However,
previous field studies have successfully used narrow-band resolution to estimate SIF in the
application of leaf N status evaluation (Camino et al., 2018a; Wang et al., 2022), water stress
detection (Camino et al., 2018c) and biotic stress detection (Zarco-Tejada et al., 2018c; Poblete
et al., 2020; Zarco-Tejada et al., 2021b). These results question the necessity of retrieving
absolute SIF values at sub-nanometer resolution, given the associated large data volume and

redundancy.

During the past two decades, SIF has been widely studied as an indicator for vegetation
photosynthetic functioning, and thus gross primary productivity and stress conditions. Multiple
studies have used SIF retrieved from spaceborne platforms for GPP monitoring in the context
of global carbon flux cycle modelling (Damm et al., 2010; Sun et al., 2018; Zuromski et al.,
2018; Gao et al., 2021). It has also been demonstrated that SIF is related to heat and water

18



stress (Song et al., 2018; Xu et al., 2021; Wang et al., 2023a). Others have shown that SIF can
be used to detect biotic stress (Calderdn et al., 2013; Zarco-Tejada et al., 2021b). Recent studies
have demonstrated the promising prospect of combining RTM-derived plant traits and SIF for
leaf N estimation. Camino et al. (2018a) found that the incorporation of airborne far-red SIF
improved the leaf N prediction accuracy in wheat (R? = 0.92), compared with only using
functional traits (i.e., leaf chlorophyll content, dry matter content, water content) estimated
from the PROSPECT-SAILH model (R? = 0.68-0.75). Similarly, Wang et al. (2022) assessed
the leaf N status in the almond orchard. Their results showed that the model with the FluSAIL-
derived leaf chlorophyll content and airborne far-red SIF as inputs provided an improved leaf
N predictive accuracy (R?=0.95), as compared to the model with only chlorophyll as predictors,
which achieved moderate accuracy (R? = 0.49). To further investigate the potential of SIF for
leaf N estimation, Belwalkar et al. (2022) compared the contribution of airborne far-red SIF
quantified at narrow-band (FWHM = 5.8 nm) and sub-nanometer (FWHM = 0.1-0.2 nm)
resolutions for leaf N estimation in crop fields, when combined with the narrow-band-based
PROA4SAIL-derived leaf chlorophyll content as model inputs. The authors reported an
improvement in prediction when the sub-nanometer SIF was used (R? = 0.93), though they
contended that narrow-band resolution is sufficient (R> = 0.87) in differentiating various

nutrient levels in crops.

The predictive power of the physically based modelling approach, which combines RTM-
derived plant traits and SIF, has so far been primarily evaluated for leaf N estimation. The
reliability of this method for another critical macronutrient, P, has received little attention.
Furthermore, this approach has mainly been applied to homogeneous canopies, such as crops
and orchards, while its transferability to more heterogeneous coniferous canopies remains
largely unevaluated. Given the demonstrated importance of airborne SIF in leaf N monitoring,
more attention should be directed toward assessing the accuracy of SIF retrievals, including

the impact of sensor spectral resolution on SIF in the context of leaf N and P estimation.

2.2 Challenges for needle N and P monitoring in coniferous canopy

The correct interpretation of remotely sensed data over coniferous canopies is challenging, due
to the unique shapes of needle leaves and the heterogeneous canopy structure. At the leaf level,
needles exhibit different optical characteristics from broad leaves. Lukes ef al. (2013) assessed

the optical properties of broadleaves (i.e., silver birch) and needles (i.e., scotch pine and
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Norway spruce) from 300 to 2500 nm. The authors found that the needle transmittance of both
coniferous species was lower than the reflectance, while transmittance and reflectance were
similar for the broadleaf species. Furthermore, needles displayed significant discrepancies in
albedo measured on exposed needles and shaded needles, which was not observed for broad
leaves. At the canopy level, the incident radiation light interacts with shoots, bark and
understory or soil background. Shoots are the structure formed by the spiral arrangements of
needles. It is known that shoots have strong scattering in the backward direction, but little

forward scattering in the visible region (Rautiainen et al., 2018).

The specific spectral characteristics of coniferous species, related to the biochemical and
physical properties of their needles and canopy, introduce complications into RTM inversion
and SIF quantification, which in turn affects the estimation of needle N and P. Most RTMs were
developed for broadleaf species, except for LIBERTY (Leaf Incorporating Biochemistry
Exhibiting Reflectance and Transmittance Yields) (Dawson et al., 1998). LIBERTY simulates
the spectral reflectance and transmittance of conifer shoots, though the model is less widely
evaluated than the PROSPECT family, which is preferred for its simplicity and computational
efficiency. Despite not being intended for needles, the PROSPECT family has been previously
successfully applied to retrieve needle chlorophyll content in Jack pines (Zarco-Tejada et al.,
2004) and radiata pine seedlings (Poblete et al., 2025), indicating the potential of other
PROSPECT variants for coniferous studies. The complexity of the coniferous canopy also
interferes with the retrieval of top-of-canopy SIF signals, considering the fluorescence

reabsorption and scattering within the canopy structure.

2.3 From Hyperspectral to Multispectral

2.3.1  The potential of multispectral bandsets for large-scale monitoring

Despite the ability of airborne hyperspectral imagery to capture detailed spectral information

with fine spatial resolution (e.g., <1 m), its application for frequent monitoring of leaf nutrient

status at large scales is constrained by several factors. First, the cost of the hyperspectral
imagers is relatively high, compared to multispectral sensors or RGB cameras. Second, not all
hyperspectral imagers are compatible with unmanned airborne vehicles (UAVs) due to the
limited UAV payload capacity (Nex et al., 2022). A manned aircraft is required to carry

medium-to-heavy-weight hyperspectral imagers, which increases operational costs. There are
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UAV-compatible lightweight options, but they are often limited to the VNIR spectral range and
have lower radiometric quality and geometric accuracy. Lastly, the processing of large volumes
of hyperspectral data requires expertise and significant computational capacity, making it less
practical for non-scientific applications. On the other hand, multispectral cameras are more
affordable, lightweight, and their data can be easily processed and interpreted. However,
multispectral cameras capture less spectral information due to their limited spectral coverage
and resolution, leading to concerns that they cannot track the subtle spectral changes associated

with nutrient variations.

Many studies have attempted to quantify this potential accuracy loss in plant biochemical and
biophysical traits or leaf nutrient estimation when transitioning from hyperspectral to
multispectral resolution. Navarro-Cerrillo ef al. (2014) evaluated the RTM-simulated canopy
reflectance spectra with different spectral resolution (Full Width Half Maximum [FWHM] =
30 and 70 nm) for their ability to estimate needle chlorophyll a + b content in scotch pines
(Pinus sylvestris L.). Their results from the index-based empirical models showed that coarser
spectral resolution led to less accurate predictions (R? > 0.70 vs. R? < 0.55). Similarly, Zhou et
al. (2022) simulated broad bands (FWHM = 10, 20 and 40 nm) from the obtained airborne
narrow-band hyperspectral imagery (FWHM = 2.2 nm) covering the VNIR region and
evaluated their performance in estimating leaf N content in potatoes with PLSR models. The
authors reported a decreasing trend in model accuracy (i.e., NRMSE from 12.3% to 16.0%) as
the bandwidth increases, indicating the need for high spectral resolution to capture N-
associated spectral fluctuations. They also evaluated the performance of the bandsets from
three commercially available multispectral cameras with four or five bands using the synthetic
data derived from the hyperspectral images. Their results demonstrated that the reduced
spectral coverage had a significant impact on the model accuracy, with multispectral camera
bandsets achieving NRMSE greater than 20%, compared to the 12.3% produced by the
hyperspectral-based models. In a study on LAI mapping in a maize field (Guo et al., 2023), the
authors collected both hyperspectral (ULTRIS X20 Plus) and multispectral (DJI Phantom 4
UAY, 5 band) airborne imagery and adopted an RTM-based approach to assess the utility of
both imagers for LAI estimation. A higher prediction accuracy (R?=0.86, NRMSE = 13.71 %)
was yielded by the hyperspectral-based model than the multispectral-based one (R* = 0.75,
NRMSE = 10.61 %), highlighting the advantages of hyperspectral data.

Other studies have suggested that hyperspectral data added only limited predictive power for

various target parameters, despite its significantly higher computational cost. In their airborne-
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based study, Lu et al. (2019) compared a hyperspectral image, a simulated three-band image
and a simulated five-band red-edge image in the context of canopy chlorophyll content
estimation in mixed-species canopy through empirical modelling. Their results showed that the
five-band image yielded comparable prediction performance with the hyperspectral image (R?
= 0.80 vs. 0.81). Nevertheless, the modified three-band image resulted in decreased
performance (R? = 0.42). A leaf-level study using RTMs, Croft et al. (2015) showed that the
hyperspectral data does not substantially improve the accuracy of leaf chlorophyll content

estimation, compared to the simulated Landsat 5 TM bandset (R?=0.77 and 0.75, respectively).

Therefore, hyperspectral data does not have an absolute advantage over multispectral data, due
to the great data redundancy and high noise levels of the former. The extent of potential
performance loss associated with the transition from hyperspectral to multispectral resolutions
depends on various factors, including the target variable of focus, the species under
investigation, the configurations of both hyperspectral and multispectral sensors under

evaluation, the modelling methods used and others.

2.3.2  The selection of optimal bandsets

Most commercially available multispectral cameras cover a few key spectral regions, including
chlorophyll absorption, the red edge, and the near-infrared regions. These bandsets are versatile,
as they generally allow the calculation of widely used indices such as NDVI. Nevertheless,
these bandsets are not always optimized for the application of needle nutrient monitoring.
Given the economic and environmental significance of vegetation nutrient monitoring, it is

practically important to design a multispectral camera with optimized bandsets for this purpose.

Numerous studies have focused on selecting optimal wavelengths for estimating plant
biochemical and biophysical traits from hyperspectral data, with the primary motivation of
preserving only informative bands and reducing the computational load for the following
modelling process. Various supervised band selection (BS) algorithms have been evaluated on
either original reflectance spectra or transformed spectra. For example, Li et al. (2018) assessed
the performance of band selection on leaf N and P estimation in oilseed rape canopy using in
situ hyperspectral data. The BS algorithm used was based on the variable importance in
projection (VIP) scores embedded in PLSR model (Wold ef al., 1993). The authors reported a
validation accuracy (R?) of 0.85 and 0.78 from the optimized bandsets for leaf N and P,
respectively, slightly lower than the accuracy provided by the full spectrum of hyperspectral
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data (R? = 0.89 and 0.83), demonstrating the capability of the optimized bandset with less than
10 bands for comparable prediction accuracy and less computational demands than the full
spectrum (400—-1300 nm). Guo et al. (2018) evaluated the leaf P predictive performance of
PLSR models built with the full spectrum (350-2500 nm) and those built with the BS-reduced
bandset determined through the Monte Carlo-uninformative variable elimination (MC-UVE)
algorithm in rubber trees. Their results showed the reduced bandset (493 bands, R? = 0.47)
outperformed the full spectrum (2150 bands, R? =0.25). Cao et al. (2021) investigated different
combinations of BS algorithms and modelling algorithms for leaf N content estimation in
summer maize. Their results suggest that the performance of the BS-reduced bandsets cannot
be determined independently of the modelling algorithms. For instance, the optimized bandset
determined by the successive projection algorithm (SPA) yielded an R? of 0.53 when used as
inputs for the multiple stepwise regression (MSR) model, but an R? value of 0.90 was achieved

when the PLSR model was adopted.

Overall, the literature shows that BS-optimized bandsets can provide similar or even improved
prediction accuracy for leaf nutrient status across species, compared to the full reflectance
spectrum. This implies the effectiveness of BS algorithms in removing noise from
hyperspectral data and retaining informative wavelengths. However, these commonly used
supervised BS algorithms in regression studies cannot fulfil our requirements of selecting
bandsets for future multispectral cameras. First, we should only select around 10 bands, as most
multispectral cameras typically have 10 or fewer channels. Second, the selected multispectral
bandsets should cover all key spectral regions so that they can be used for other tasks, such as
index calculation, in addition to N and P estimation. Nevertheless, the sizes of the optimized
bandsets produced by these supervised BS algorithms highly depend on both the input spectrum
and the BS algorithms used. In other words, the number of bands in the reduced bandset cannot
be defined by the user. Moreover, some BS algorithms tend to produce bandsets with clustering

patterns in a certain region (Cao ef al., 2021).

Another technique for hyperspectral dimension reduction, band clustering, can provide the user
with certain control over the size of the optimized bandset. The technique has been widely used
in hyperspectral image classification studies (e.g. Martinez-Uso et al. (2007); Su et al. (2011);
Wang et al. (2019); Wang et al. (2020)) to improve the computational efficiency, but has been
rarely explored in a regression context. In a nutshell, band clustering algorithms first group
similar bands together to maximize the inter-cluster variance and minimize the intra-cluster

variance. Then, one representative band is selected from each group/cluster to form the final
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optimized bandset. Certain similarity measures must be chosen, such as Euclidean distance or
information theory-based measures (Martinez-Us6 et al., 2007). The representative band
selection procedure is usually unsupervised. Either the cluster centres or the most informative
band determined by information theory (Wang et al., 2018a) are chosen. The state-of-the-art
clustering algorithm, the agglomerative clustering algorithm based on Ward’s linkage
(Martinez-Uso et al., 2007), creates a tree structure by firstly treating each band as an individual
cluster and then grouping the two most similar clusters together. The grouping is repeated until
the dissimilarity threshold between two clusters is met. The user can control the final number
of clusters by specifying the dissimilarity threshold. However, agglomerative clustering can
produce discontinuous clusters, that is, bands within the same cluster are not spectrally adjacent
to each other. More recent algorithms, such as the Fast Neighbourhood Grouping (FNG) (Wang
et al., 2020) and Adaptive Subspace Partitioning Strategy (ASPS) (Wang et al., 2019), account
for the spectral continuity by treating the spectral bands as ordered features and assuming
adjacent bands have higher similarity. Both FNG and ASPS allow the user to pre-define the
number of clusters, thus the size of the final bandset. Nevertheless, the unsupervised
representative band selection embedded in most clustering-based algorithms does not
guarantee that the most informative bands are retained for specific applications (e.g., leaf N

and P estimation).

The aforementioned band selection studies, whether supervised or clustering-based, focused
on dimensionality reduction and noise removal of the hyperspectral data. No one has attempted
to use hyperspectral data to guide the selection of an optimised multispectral bandset for next-
generation multispectral camera development. To achieve this specific goal, we intend to
combine band clustering with supervised BS algorithms to identify the most informative bands

for needle N and P estimation at a multispectral resolution.
2.4 Research Gaps and Questions

The following research gaps have been identified, and corresponding research questions have

been formulated for the Ph.D. study.

Research Gap 1: It has been demonstrated that plant biochemical traits retrieved from RTM
inversion, solar-induced fluorescence (SIF) and specific narrow-band hyperspectral indices
(NBHI) can provide satisfactory prediction accuracy for leaf N content in broadleaved species
using airborne hyperspectral imagery. However, the assessment of this method for

quantification of other critical nutrients, such as phosphorus (P), has not been well investigated,
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especially for coniferous species, where high-level heterogeneity in canopy structures and the

unique needle structure pose challenges to interpreting airborne hyperspectral data.

Research Question 1: To assess the contribution of narrow-band solar-induced fluorescence
(SIF) and plant functional traits derived from radiative transfer models (RTMs) for needle N

and P estimation in radiata pine using airborne hyperspectral imagery.

Research Gap 2: It is known that the accuracy of SIF retrievals is affected by various factors,
including spectral resolution. Previous studies have shown that sub-nanometer resolution
(FWHM < 1 nm) is required to retrieve absolute SIF values from airborne platforms. However,
high spectral resolution often leads to highly noisy data and heavy data volume. It has been
demonstrated that airborne SIF can be quantified in a relative term from narrow-band resolution
(FWHM = 5-7 nm), which is sufficient for differentiating various N levels in homogenous crop
canopies. Despite this, the impact of the spectral resolution on the airborne SIF retrieval
accuracy, particularly in the context of needle N and P estimation in heterogeneous coniferous
canopy, remains unexplored. Given that canopy structural effects highly influence SIF retrieval
accuracy, it is critical to evaluate whether sub-nanometer resolution is needed for airborne SIF

retrievals to enhance the needle nutrient predictions in radiata pine.

Research Question 2: To investigate and compare the impacts of SIF quantified with narrow-
band (FWHM = 5.8 nm) and sub-nanometer (FWHM = 0.1-0.2 nm) spectral resolutions for

needle N and P prediction in radiata pine using airborne hyperspectral imagery.

Research Gap 3: The high monetary and computational costs of hyperspectral data, as well as
the expertise required for data processing, hinder its application in large-scale nutrient mapping.
Multispectral cameras can be a more affordable alternative with higher practicality. However,
this comes at the expense of reduced spectral resolution and limited spectral coverage, which
may limit their ability to accurately capture subtle spectral changes induced by needle N and P
variations. The hypothesis is that multispectral bandsets would result in a decrease in needle N
and P estimation accuracy, as compared to hyperspectral-based models. Therefore, it is
important to quantify the potential performance loss and determine whether the multispectral

bandsets can still yield satisfactory needle nutrient estimation accuracy.
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Research Question 3: To evaluate the performance of 1) a commercially available
multispectral camera and 2) an optimized multispectral bandset for needle N and P estimation

in radiata pine, benchmarked against predictive models developed using hyperspectral data.
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Chapter 3
Study site and field data analysis

This chapter provides a description of the study site and the field data collection process. It
also presents the analytical results of the field data. The subsequent chapters (Chapters 4, 5,
and 6) draw upon the same field dataset, with each chapter focusing on the analysis of different

airborne images.

3.1 Study Site

The study was conducted in a radiata pine plantation in Durham, Victoria, Australia
(37°44'03"S, 143°55'39"E), with an elevation of around 420 m above sea level. This region has
an oceanic climate type according to the Koppen classification, characterised by cool winters
and warm summers. The mean annual temperature is 12.3 °C, and the mean annual rainfall of
685.6 mm. The region typically has cool winters and warm summers. The dominant soil type,
as indicated by the Australian soil classification map, is kurosols, characterised by a dark brown
colour. Kurosols are characterised by contrasting textures, featuring a sandy topsoil and acidic
clay-rich subsoil. Soil depth is typically between 0.75 m to 1 m at the study site, according to
Soil and Landscape Grid of Australia (SLGA).

A nutrient experiment trial covering 3.26 ha was established in 1993 (Fig. 3.1), covering 34
plots in size from 770 m? to 1,160 m?. Nine treatment groups (A, B, ..., I) featuring various
fertilization levels were replicated three or four times. Treatment A served as the control group,
which received no fertilization. Treatments A to F were thinned in 2011, while Treatments G
to I were thinned in 2019. Additionally, weed control measures were applied in Treatments B

and D at planting.

Phosphorus (P) fertilizer was initially applied to individual trees at varying rates. Two
additional rounds of broadcast fertilization with nitrogen (N), phosphorus (P), and biosolids
were applied between 1998 and 2019. Over the years, Treatments C and D received 90 kg/ha
of N and 100 kg/ha of P. Treatments E, F, G, and H received 72 kg/ha of N and 80 kg/ha of P.
Treatment [ received N at a rate of 272 kg/ha and P at 157 kg/ha. Finally, 30 t/ha biosolids were
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applied to Treatments E and H and 50 t/ha to Treatment F. See Table 3.1 for a summary of
fertilization history.

100 m

Fig. 3.1. Overview of the study site in Durham, Victoria, Australia in the near-infrared
composite. The image was acquired in October 2023 as part of an airborne campaign.
Polygons indicate the plot boundaries. Letters A-I represent nutrient treatments.

3.2 Field Data Collection and Analysis

3.2.1 Field data collection

Needle samples were collected from 19 plots in February 2021, and all 34 plots were sampled
in October 2021, January 2023, and October 2023. Subsequently, laboratory analyses were
conducted to determine needle N and P concentrations. The Dumas method was used for needle
N determination (McGill and Figueiredo, 1993). Needle P concentration was measured with
inductively coupled plasma optical emission spectroscopy (ICP-OES) on a nitric/hydrogen
peroxide digest. One-way ANOVA was performed on ground-measured nutrient data to assess

the effects of different treatments. Post-hoc analysis with Tukey's Honestly Significant
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Difference at o <0.05 was implemented to determine the pairwise differences among treatment

groups.

Table 3.1 Fertilization history for the nine treatment groups from 1993 to 2019. P
fertilizers were applied to individual trees in 1993; N, P, and biosolids were applied in
1998/1999 and 2019.

Treatment 1993 1998/1999 2019
P (¢/Tree) N P N P Biosolids
(kg/ha)  (kg/ha) (kg/ha)  (kg/ha)  (t/ha)

A 0 0 0 0 0 0

B 100 0 0 0 0 0

C 23 90 100 0 0 0

D 23 90 100 0 0 0

E 22 72 80 0 0 30

F 22 72 80 0 0 50

G 22 72 80 0 0 0

H 22 72 80 0 0 30

I 22 72 80 200 77 0

3.2.2  Field data analysis

The ground-measured needle N and P concentration displayed different levels of variability
across treatment groups and dates (Fig 3.2). Plots that received the same level of fertilization
maintained a consistent nutrient concentration over the study period (p-value < 0.05 for within-

treatment ANOVA).

Needle N concentration ranged from 9.02 to 12.05 g/kg across datasets (Table. 3.2). The highest
mean level (13.24 g/kg) and the lowest variability (CV = 0.07) of needle N concentration were
observed in the 2021-Feb dataset. The 2023-Oct dataset showed the highest variability (CV =
0.12) and mean value (12.00 g/kg) in needle N observations among four datasets. Overall,
needle P measurements displayed higher level of variability (CV = 0.26-0.33) than needle N
(CV =0.07-0.12). The highest mean value of needle N was observed in the 2023-Oct dataset
(1.20 g/kg), while the lowest was in the 2021-Oct dataset (0.98 g/kg). Needle P measurements
in the 2023-Jan dataset displayed the highest level of variability (CV = 0.33), followed by the
2023-Oct dataset (CV = 0.29), and the two datasets in 2021 (CV = 0.26).
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Fig 3.2. (a, b) Variability across dates and treatments for (a) needle N and (b) P
concentrations (g/kg) for the four datasets. Over the years, Treatments C and D received
90 kg/ha of N and 100 kg of P. Treatments E, F, G and H received 72 kg/ha of N and 80

kg/ha of P. Treatment I received 272 kg/ha N and 157 kg/ha P. Biosolids were also applied
at a rate of 30 t/ha to Treatments E and H and 50 t/ha to Treatment F.

Within each dataset, needle N and P measurements showed significant differences (p-value <
0.05) across treatment groups, reflecting the various fertilization levels. However, post-hoc
analysis using Tukey's honestly significant difference procedure (See Appendix 3 Table A3.1
and Table A3.2) revealed a lack of pairwise variability in needle N concentration in the 2023-
Jan and 2023-Oct datasets. Only one pair of treatments differed significantly from each other
(p-value < 0.05) in N measurements for the 2023-Jan dataset, and two pairs for the 2023-Oct
dataset. Therefore, the variability in N concentration in the remaining treatment groups in these

two datasets was limited despite their different fertilization levels.
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Table. 3.2 Summary of needle N and P measurements from four individual datasets and
the combined dataset.

Sample _Needle N (g/kg)

Dataset .
S1ZE n Mean Min. Max. Std® CVP®
2021-Feb 19 13.24 11.80 15.06 0.94 0.07
2021-Oct 34 11.71 9.90 13.90 1.11 0.10
2023-Jan 34 11.79 9.10 14.40 1.31 0.11
2023-Oct 34 12.00 9.02 14.24 1.46 0.12
All 119 12.05 9.02 15.06 1.34 0.11
Needle P (g/kg)
Mean Min. Max. Std* CVP®
2021-Feb 19 1.05 0.65 1.54 0.28 0.26
2021-Oct 34 0.98 0.52 1.49 0.25 0.26
2023-Jan 34 1.07 0.61 2.10 0.35 0.33
2023-Oct 34 1.20 0.64 1.78 0.34 0.29
All 119 1.08 0.52 2.10 0.32 0.30

2The unit of standard deviation (Std) is (g/kg)
b The coefficient of variation (CV) is unitless
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Chapter 4

Distinct contribution of the blue
spectral region and far-red solar-
induced fluorescence to needle nitrogen
and phosphorus assessment in
coniferous nutrient trials with
hyperspectral imagery

Highlights

e SIF and RTM-derived traits effectively explained needle N and P variability across four
independent datasets collected over three years.

e SIF yielded the most critical contribution among traits to explain the variability in
needle P.

e RTM-derived Cab was the most important contributor when accounting for the
variability in needle N.

e The blue spectral region was revealed to be sensitive to variability in needle P but not

N.

Abstract

Accurate monitoring of plant nutrient status, especially nitrogen (N) and phosphorus (P)
content, via remote sensing can facilitate precision forestry, with environmental and
management benefits. In previous studies, plant traits derived from hyperspectral data via
radiative transfer models (RTMs) and solar-induced chlorophyll fluorescence (SIF) effectively
explained the observed variability in leaf N concentrations in crops. However, their

contribution to leaf P concentration is unknown. Furthermore, such an approach might not be

32



transferrable to coniferous stands, which are structurally complex and heterogeneous. We
evaluated the potential of using physiological plant traits derived from airborne hyperspectral
imagery to explain the observed variability in needle N and P concentrations in Pinus radiata
D. Don (radiata pine) with four datasets collected over three years in established nutrient trials.
RTM-derived data on pigment content in needles, including chlorophyll a+b (Cab), carotenoid
(Car), and anthocyanin contents (Ann), as well as SIF quantified at the O2A absorption band
(SIF760), explained variability in N (R* = 0.67-0.97 and NRMSE = 0.07-0.30) and P
concentrations (R?= 0.60-0.95 and NRMSE = 0.09-0.27) in needles. Although Ca was the
most important predictor of needle N concentration (ranking Cab > Anth > SIF760 > Car), SIF760
contributed the most to explain the variability of needle P concentration (SIF760 > Anth > Cab >
Car). Moreover, the blue spectral region was essential for assessing P but not for explaining N
variability in needles. Among all reflectance-based indices and inverted traits evaluated, the
blue indices best explained the variability in needle P concentration, followed by Cab, Car, and
Anth. The study revealed the distinct contribution of far-red SIF vs. the blue spectral region for
needle P compared to needle N, describing new insights for the physiological assessment of

nutrient levels in forest stands using hyperspectral imagery.

4.1 Introduction

Pinus radiata D. Don (radiata pine) is the dominant softwood species in plantation forests of
Australia and worldwide, accounting for 69% of the total area of softwood plantations in
Australia (Legg et al., 2021a). Soil nitrogen (N) and phosphorus (P) concentration are key
factors limiting radiata pine growth (Will and Hodgkiss, 1977; Watt et al., 2005b). N and P
deficiencies lead to reduced wood production and thus economic losses. However, the
excessive application of N and P fertilizers is costly and environmentally harmful (Fields, 2004;
Chen et al., 2022). The timely and accurate monitoring of nutrient status in pine is vital for
precision forestry and sustainability. Standard methods for assessing the nutritional status of
pine trees rely on destructive sampling of needles and biochemical analysis in the laboratory,
which is laborious and impractical for large-scale monitoring. Alternatively, advanced imaging
spectroscopy provides non-destructive, efficient nutrient monitoring and mapping in forest
stands (Wessman et al., 1988; Smith et al., 2002; Smith et al., 2003; Townsend et al., 2003;
Martin et al., 2008; Sims et al., 2013).
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Most spectral-based methods for leaf N estimation rely on chlorophyll-related indices, as N is
a major component of chlorophyll protein complexes (Evans, 1989). Variations in chlorophyll
levels can be captured based on fluctuations in its absorption features in the blue and red regions
(McConnell ef al., 2010). The red-edge region (~670—780 nm) has been widely exploited due
to its high sensitivity to chlorophyll. For example, the optical index R7s50/R710 was proposed as
an indicator of chlorophyll content that is robust in regard to the effects of canopy structure and
shadows in forest stands (Zarco-Tejada et al., 2001). The chlorophyll red-edge index (CI)
proposed by Gitelson et al. (2003) was subsequently shown to be insensitive to the effects of
leaf thickness and closely related to leaf N status (Clevers and Gitelson, 2013b). Nevertheless,
upscaling indices to the canopy level introduces complexities due to soil background effects,
canopy structure, and non-vegetation components (Haboudane et al., 2002; Homolova et al.,
2013; Croft et al., 2014). Combined indices were therefore proposed to accommodate such
factors by integrating physiological and structural indices, such as the Transformed
Chlorophyll Absorption Index (TCARI) normalized by the Optimized Soil-Adjusted
Vegetation Index (OSAVI) in the form of TCARI/OSAVI (Haboudane et al., 2002; Eitel et al.,
2008). However, the performance of such indices in estimating chlorophyll content is poorer
in conifers than in broadleaf crop species due to the increased complexity and heterogeneity of
the canopy structure and background effects in coniferous stands (Croft ez al., 2014). Another
limitation of using chlorophyll indicators to assess leaf N concentration is saturation that occurs
at high chlorophyll and high LAI levels (Wu et al., 2008), hindering the accurate quantification

of variations in chlorophyll content in well-managed crop and forest canopies.

Radiative transfer modelling (RTM) provides a robust alternative to chlorophyll indices for leaf
N assessment by quantifying several leaf and canopy traits concurrently, exploiting the full
spectrum rather than individual spectral bands and indices (Ustin et al., 2009). RTMs can also
account for the effects of canopy and soil background when interpreting top-of-canopy (TOC)
reflectance (Meroni et al., 2004). Most recent studies have adopted a hybrid approach to leaf
N assessment—using plant functional traits derived by RTM inversion, e.g., equivalent water
thickness (Cw), dry matter content (Cm), chlorophyll a + b content (Cab), carotenoid content
(Car), anthocyanin content (Anm), and leaf area index (LAI) to build models to predict leaf N
through an empirically-based framework. Wang et al. (2018b) used leaf protein content derived
from the coupled PROSPECT-5 (Feret et al., 2008b) and INFORM (Schlerf and Atzberger,
2006) model to predict leaf N based on canopy reflectance, achieving a prediction accuracy

(R?) of 0.64 in mixed-species forests. Camino et al. (2018b) demonstrated a strong relationship
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between leaf N and functional traits retrieved from the coupled PROSPECT (Jacquemoud and
Baret, 1990) and SAILH (Baret et al., 1992) models in wheat (Triticum aestivum), which
yielded an R? between 0.68 and 0.75. Although these results are promising, they are
inconsistent across species regarding model choice and the selection of functional traits as
indicators to explain the variability in leaf N concentration. Hence, whether this physical—
empirical hybrid modelling method could be used to estimate N concentration in the needles
of coniferous species requires further study to evaluate its performance and the relative
contributions of the traits to explaining the variability in N concentration. Increasing efforts
have focused on developing advanced models for the early detection of stress before symptoms
become visible (e.g., decreases in pigment content), in order to avoid further irreversible
damages such as stunt growth and yield loss. These methods rely on detecting subtle changes
in photosynthetic pigment concentrations and structures by tracking radiation pathways of
vegetation—light interactions (i.e., photochemistry, chlorophyll fluorescence and heat
dissipation) (Herndndez-Clemente et al., 2019a). Even under unstressed conditions, plants
absorb more radiation than they can utilize for photosynthetic activities. The excessive energy
is dissipated through non-photochemical quenching (NPQ) (Miiller et al., 2001) or re-emitted
as solar-induced chlorophyll fluorescence (SIF) (Mohammed et al., 2019). When abiotic and
biotic stress further restrict photosynthetic metabolism, the rates of NPQ or SIF emissions vary
correspondingly, thus serving as indicators of disturbed photosynthetic activity (Miiller et al.,
2001; Krause and Jahns, 2004). In the context of needle nutrient assessment, given that N and
P are both essential for photosynthesis (Evans, 1989; Carstensen et al., 2018), the nutrient
deficiency would consequently disturb the partitioning of absorbed light energy and the light

absorption process.

The Photochemical Reflectance Index (PRI) (Gamon ef al., 1992b; Gamon et al., 1997a) has a
close linkage with the xanthophyll cycle, an NPQ mechanism activated in plants under stress
(Demmig-Adams and Adams, 1996). The xanthophyll cycle involves the inter-conversion
between violaxanthin and its de-expoxidized state: antheraxanthin and then zeaxanthin, which
contributes to the heat disspation (i.e., NPQ). This inter-conversion process can be detected in
reflectance at 531nm, which is used for PRI calculation (Gamon et al., 1997a). It has been
proven that PRI is closely related to N and P status in the needles of radiata pine seedlings
(Watt et al., 2020) and is sensitive to water-stress conditions in olive and peach (Suérez et al.,
2009b), grapevine (Zarco-Tejada et al., 2013d), and other crop species. However, PRI is

sensitive to canopy structure, other leaf pigments, and illumination conditions (Peguero-Pina
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et al., 2008; Suarez et al., 2008; Hernandez-Clemente et al., 2011). To account for these effects,
different variations of PRI indices were proposed. For instance, Garrity ef al. (2011) multiplied
PRI by the Chlorophyll Index (CI) (Gitelson et al., 2003) to cancel the effect of chlorophyll on
PRI and obtained an accurate estimation of carotenoid content. With the aim of eliminating the
canopy effects on PRI quantification, Hernandez-Clemente ef al. (2011) proposed various PRI
modifications (PRIm) with different reference wavelengths. PRImi was found less sensitive to
changes in canopy structure compared to PRI and highly related to water-stress indicators such
as stomatal conductance. A normalized PRI (PRIn) was developed by Zarco-Tejada et al.
(2013d) to account for both canopy and pigment effects simultaneously. The authors observed
a strong relationship between PRI» and Crop Water Stress Index (CWSI) (Jackson et al., 1981),

a thermal indicator of water stress.

SIF has also been widely used as a pre-visual diagnostic tool for stress detection, as it competes
with photosynthesis and NPQ for absorbed radiation (see A€ et al. (2015), Meroni et al. (2009),
and Mohammed et al. (2019), for comprehensive reviews). SIF signals originating from
chlorophyll a exhibit two peaks, in the red (685 nm) and far-red region (740 nm), respectively.
Chlorophyll fluorescence can be used to track water stress (Pérez-Priego et al., 2005; Zarco-
Tejada et al., 2009; Zarco-Tejada et al., 2013b; Xu et al., 2021) and nutrient levels (Corp et al.,
2003; Sun et al., 2020). Airborne SIF improved the assessment accuracy of leaf N concentration
in wheat (Camino et al., 2018b) and almond (Wang et al., 2022) when SIF was included along
with RTM-based chlorophyll content in models that explain the observed variability in leaf N
concentration. However, whether such methods can be used to estimate nutrient status in radiata
pine in light of the multiple uncertainties faced with SIF quantification, especially the
anisotropy of the canopy, has not been evaluated. Due to the overlap of the SIF emission
spectrum with the chlorophyll absorption spectrum, the emitted fluorescence is re-absorbed
and scattered by leaves (Porcar-Castell et al., 2014; Herndndez-Clemente et al., 2017b).
Malenovsky et al. (2021b) used model simulations to investigate the impact of canopy structure
on canopy SIF. They concluded that the multi-angular anisotropy of SIF in both red and far-
red regions was related to the leaf-clumping effect, canopy density, and non-wood parts in
heterogeneous forest stands. Hence, canopy anisotropy should be accounted for to decouple
SIF signals from the apparent reflectance spectrum, especially for heterogeneous canopies such

as coniferous stands.

Research on another important nutrient element, leaf P, using remotely sensed data is much

more limited, although P plays a key role in plant growth (Will & Hodgkiss, 1977). The lack
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of absorption features and the low levels of this nutrient lead to lower prediction accuracy (Watt
et al., 2019). Most studies assessing leaf P concentration have relied on empirical methods in
which reflectance data or its transformed forms are used as inputs for partial least-squares
regression (PLSR) models (Pimstein ef al., 2011; Ramoelo et al., 2013; Li et al., 2018), with
neural networks (Mutanga and Kumar, 2007) yielding a moderate estimation accuracy (R? of
0.42 to 0.80). Despite the inconsistency in the reported spectral wavelengths for leaf P
estimation and the different numbers of model inputs among these studies, red-edge, near-
infrared (NIR), and shortwave infrared (SWIR) regions are usually selected as potential
indicators for leaf P. Nevertheless, these empirically-based nutrient modelling methods suffer
from the lack of transferability to other datasets. In this study, we explored plant parameters
retrieved from airborne hyperspectral imagery to explain the observed variability in needle N
and P concentrations using four datasets collected across three years in radiata pine nutrient
trials. We evaluated the contributions of functional traits, such as SIF emission and RTM-
derived biochemical constituents, for N and P assessment. We also quantified the contributions
of spectral traits related to the blue spectral region (400 to 500 nm), revealing the different
relative importance of blue-related traits and indices to explain the variability in needle N and

P concentrations.

Several studies have attempted to predict N and P using hyperspectral data (Mutanga and
Kumar, 2007; Wu et al., 2008; Pimstein et al., 2011; Ramoelo et al., 2013; Abdel-Rahman et
al., 2017; Li et al., 2018; Siedliska ef al., 2021a; Liu et al., 2023). Nevertheless, the present
study’s novelty lies in the application of RTM-derived functional traits combined with SIF for
explaining the variability of needle N and P in a coniferous nutrient trial. Such an approach has
been previously proven successful in agriculture for leaf N status assessment (Camino et al.,
2018b; Belwalkar ef al., 2022; Wang et al., 2022) although the investigation of SIF and the
blue region for needle P variability assessment has not been carried out. This is the first attempt
to adopt such a physically based modelling approach to explain the variability of needle P in a
nutrient trial across years, as the majority of studies on leaf P still rely on empirical modelling
without a detailed assessment of the physiological traits that are more sensitive to needle P

deficiency.

42 Methods

4.2.1  Airborne data collection and processing
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Narrow-band hyperspectral images (Fig. 4.1a) were acquired concurrently with field sampling
on February 2, 2021, October 27, 2021, January 11, 2023, and October 2, 2023 under clear sky
at solar noon using a line-scanning hyperspectral sensor onboard the piloted Cessna-172
aircraft operated by HyperSens Laboratory, the University of Melbourne's Airborne Remote
Sensing Facility. The hyperspectral imager acquired 358 bands covering the 400-1000 nm
spectral region with a full width at half-maximum (FWHM) of 5.8 nm and an angular field of
view (FOV) of 66° (Headwall Photonics, Fitchburg, MA, USA). The images were collected at
350 m above ground level (AGL), resulting in a spatial resolution of 0.2 m. Radiometric
calibration was performed in an optics laboratory using a CSTM-USS-2000C integrating
sphere (Labsphere, XTH2000C, Labsphere Inc., North Sutton, NH, USA) to convert digital
numbers to radiance. We used the irradiance simulated by the SMARTS model (Gueymard,
1995a) to perform the atmospheric correction on the radiometrically-calibrated imagery. The
SMARTS model simulated the downwelling irradiance by simple transmittance
parameterizations, accounting for various atmospheric extinction process, including Rayleigh
scattering, aerosol extinction, the absorption by Ozone, Nitrogen dioxide, water vapor and
mixed gas. The required meteorological inputs for the SMARTS model, including relative
humidity and air temperature, were acquired from the nearest weather station. The aerosol
optical depth at 550 nm was measured using a Microtops II Sunphotometer (Solar Light Co.,
Philadelphia, PA, USA) during the airborne campaigns. Image orthorectification was carried
out using PARGE software (ReSe Applications Schlapfe, Wil, Switzerland): the inputs were
recorded by the onboard inertial measuring unit (VN-300-VectorNav Technologies LLC,
Dallas, TX, USA) and synchronized with the hyperspectral imager.

Image segmentation was applied to the reflectance imagery to identify pure vegetation pixels
and to delineate individual tree crowns (Fig. 4.1b) using Fiji software (Abramoft et al., 2004).
Local thresholding algorithms were first applied to a NIR band (810 nm) and a structural index
layer (NDVI > 0.6) in combination to separate the sunlit vegetation pixels from the soil
background and within-crown shadows. The identified vegetation pixels were clustered to each
object (i.e., individual tree crowns) using the watershed object-based approach with Euclidean
distance (as in Zarco-Tejada et al. (2018a)). Delineated tree-crown polygons were then reduced
by 75% to account for the high heterogeneity in the coniferous stands and the sensitivity of
pigment and SIF to illumination conditions. In addition, spectral binning (binning factor = 3)
and spectral smoothing with the Savitzky-Golay algorithm (Savitzky and Golay, 1964) were

applied to the tree-crown reflectance to increase the signal-to-noise (SNR) ratio. The mean
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reflectance and radiance of the tree-crown pixels belonging to the same plot were used to
represent the plot-level spectral information. The segmentation results are illustrated in Fig.

4.1c and Fig. 4.1d.

Radiance (th'mzt‘nmt‘sr)
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Fig. 4.3. Overview of the study site in Durham, Victoria, Australia in the near-infrared
composite. The image was acquired in October 2023 as part of an airborne campaign.
Green polygons indicate the plot boundaries. Letters A-I represent nutrient treatments.
(b) Example of segmented tree crowns. (¢, d) The reflectance (c) and radiance spectra (d)
of different scene components: soils (black dashed lines) and average vegetation spectra
of the nine treatment groups (solid lines).

4.2.2  Plant trait retrieval by PRO4SAIL2 model inversion
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The two-layer R-TM PRO4SAIL2 model, which couples PROSPECT-D (Féret et al., 2017) and
4SAIL2 (Verhoef and Bach, 2007), was employed to retrieve the biochemical and structural
parameters of needles from pure tree crowns, including needle Cab, Car, and Anth and LAIL The
choice of RTM was made based on two considerations: how realistic the model simulations
represented the canopy architecture and whether the model could be efficiently inverted.
Single-layer models like SAIL treat the canopy as homogeneous, which could not realistically
represent coniferous canopies. Its updated version 4SAIL2 instead considers both the vertical
and horizontal heterogeneity in the canopy. In a recent study conducted on radiata pines
(Poblete et al., 2025), the authors compared the needle chlorophyll a + b retrieval accuracy
from PRO4SAIL and PRO4SAIL2 inversion and concluded that the latter was more accurate
due to the consideration of crown-level clumping effects in 4SAIL2 model. More complex
three-dimensional models can provide more comprehensive descriptions of forest canopies,
such as the voxel-based Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-
Etchegorry et al., 2004) and the FLIGHT model (North, 1996) based on Monte Carlo
simulation of photon transport. However, the parametrization and inversion of these three-

dimensional model could be rather difficult and computationally expensive.

The selected 4SAIL2 model, which simulates the canopy as two separate layers, was initially
designed to account for the vertical gradient in leaves (Verhoef and Bach, 2007). In the
evergreen coniferous stands investigated in this study, the second layer represented the
understory. Two parameters were varied to track the spectral effects of the understory layer: the
fraction of brown leaf area (fv) and the layer dissociation factor (D). Additionally, the canopy
clumping effects were accounted for by the vertical crown cover percentage (Cv) and tree shape
factor (§). The former represented the vertically projected crown cover fraction, while the latter
was defined as the ratio of crown diameter to the crown height at the crown's center above the
ground. The soil background was considered a non-Lambertian surface in the integrated RTM.
These clumping parameters were then used to modulate the optical quantities of the canopy
layer so that they could approximate the heterogeneous canopy. Soil scattering effects were
simulated by a Bidirectional Reflectance Distribution Function (BRDF) model. Additionally,
the effect of soil moisture on soil reflectance was accounted for by the soil moisture parameter
ranging between 0 and 1. The interaction between the soil background and the canopy layer
was integrated using the four-stream adding method. In our study, we used the 4SAIL2-based

soil reflectance and adjusted the value of the soil moisture parameter for each dataset.
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PROA4SAIL?2 was inverted using a look-up-table (LUT)-based approach in the wavelet domain
(Suérez et al, 2021). For each dataset of plot-mean reflectance, a LUT with 500,000
simulations was generated, where parameter values were randomly drawn from the uniform
distribution within the pre-defined ranges. Parameter ranges (Table 4.1) were adjusted so that
the simulated spectra enclosed the observed spectra and the median of simulated spectra was
close to the median of observed spectra where the closeness was assessed based on RMSE
values. Some parameter values were fixed to reduce the potential for multiple solutions. For
example, Fig. 4.2 shows the agreement between simulated and observed reflectance spectra for
the 2023-Oct dataset. Original simulated reflectance (400 to 2500 nm, FWHM = 1 nm) was
then resampled to match the spectral characteristics of the hyperspectral imager (400—1000 nm,

FWHM = 5.8 nm) using a Gaussian convolution method (Belwalkar et al., 2022).
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Fig. 4.4. Agreement between the median of the observed reflectance spectrum (orange
line) and the median of the PRO4SAIL2 simulated spectrum (green line) for the 2023-
Oct dataset. The spectral ranges of 500,000 PRO4SAIL?2 simulations are indicated by the
shaded blue area.

Continuous wavelet transform (CWT) (Strang and Nguyen, 1996) is an effective signal-
processing method that enables the decomposition of complex signals at various scales. In the
context of plant trait retrieval using hyperspectral data, CWT helps decouple the overlapping
absorption features and remove noises. After the transformation of original spectra, broad
absorption features were captured at higher scales while the narrow features were made

perceivable at lower scales, thus improving the estimation accuracy of target plant
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trait(Blackburn, 2007; Rivard et al., 2008). Several studies have employed CWT on the leaf or

canopy reflectance spectrum to identify effective spectral features in the wavelet domain for

the estimation of leaf chlorophyll content (Blackburn and Ferwerda, 2008; Xiao et al., 2024),

leaf water content (Cheng et al., 2011), leaf dry matter content and specific leaf area (Ali et al.,

2016). Recently, (Suarez et al., 2021) combined CWT with the inversion of the coupled

Fluspect-Cx and 4AIL model to retrieve leaf pigments from airborne hyperspectral data

collected over shiraz vineyards. The authors found strong relationships between the retrieved

traits and their target variables related to grape aromatic components.

Table 4.3 Ranges of PRO4SAIL2 input parameters for LUT generation for individual

datasets.
Value/range
Parameter Unit
2021-Feb  2021-Oct 2023-Jan  2023-Oct

Leaf/needle parameters (Layer 1: green layer)
Chlorophyll a+b content (Cab)  pg/cm?  [20, 88] [15, 80] [25, 65] [20, 60]
Carotenoid content (Car) pg/cm?  [5,20] [5, 20] [1,20] [1,20]
Anthocyanin content (Cbrown) pg/cm? [, 5] [1, 5] [1, 6] [1, 10]
Brown pigment content (Anth)  pg/cm® 0

,  [0.005, [0.012, [0.012, [0.011,
Dry matter content (Cm) g/cm 0.016] 0.027] 0.027] 0.020]
Equivalent water thickness (Cw) g/cm®  0.08 0.08 0.08 0.09
Mesophyll structure coefficient [1.8.2.5] [1,2.3] 1.2 [1,2.3]
(Nstruct)
Leaf/needle parameters (Layer 2: brown layer)
Chlorophyll )
(Cab_b) pg/cm® 20 22 28 20
Carotenoid content (Car_b) ug/cm? 6 10 15 12
Anthocyanin content (Ann_b)  pg/cm® 4 4 5 4
Brown pigment ’
(Chrown ) pg/cm” 0 0.2 0.2 0.2
Dry matter content (Cm_b) g/em?  0.040 0.024 0.018 0.010
Equivalent g/em®  0.080 0.070 0.030 0.060
(Cw_b)
Mesophyll structure coefficient 13 13 13 13

(Nstruct_b)
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Value/range

2021-Feb  2021-Oct 2023-Jan  2023-Oct

Parameter Unit

Canopy structural parameters

Total crown leaf area index for

2 2
clumped vegetation (LAI) m¥m?  [1.0,6.8] [1.5,6] [2.0,64] [2.5,6.5]

Leaf inclination distribution

function parameter a (LIDFa) i -0.35

Leaf ‘ inclination  distribution 0.15

function parameter b (LIDFb)

Vertically ~ projected  crown [0.87, [0.96, [0.48, [0.66,
cover fraction (Cv) 0.97] 0.99] 0.76] 0.98]
ST N -
Fraction brown leaf area (fB) - 0.15 505%:;’ [0.45 0.55] 50335?’
Layer dissociation factor (D) - 0.30 0.70 0.75 0.07
Hot spot parameter (Hot) - 0.01

Sun zenith angle (tts) deg. 52.73 42.79 71.77 51.74
Observed angle (tto) deg. 0

Relative azimuth angle (psi) deg. 0

In this study, we applied CWT to both the observed plot-mean reflectance spectra and simulated
section in LUTs. The second-derivative Gaussian wavelet was chosen as the kernel function,
as it best described the shapes of absorption features in the canopy reflectance (le Maire et al.,
2004). CWT was implemented over six scales using the R package 'ifultools' (Constantine and
Kaluzny, 2022), with the shift parameter set to 5. The accuracy of estimating N and P
concentrations in needles retrieved at each wavelet scale was estimated via modelling, as
described in Section 4.2.5. For each dataset, the wavelet scale at which the retrieved functional
traits provided the best overall performance for predicting needle N or P concentrations was
selected. The overall performance of a certain wavelet scale was represented by the average R?

of needle N or P models with different combinations of functional traits as inputs.

The RTM inversion was carried out in MATLAB (Statistics and Machine Learning toolbox;
MathWorks Inc., Natick, MA, USA). Using the wavelet-transformed spectra for each dataset,
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the LUT was queried to identify the closest 1% of simulations with each observed spectrum,

where the RMSE represents the closeness between the simulation and observation (Eq. 4.1).

1
RMSE = \/;z{;ﬂ(rlgbs —r&.) Eq. 4.1

k
obs

and rX  represent the observed and simulated reflectance at the k™ band in the

where r
wavelet domain, respectively, and n is the total number of bands. The plant trait values of each
observation were then calculated as the weighted average of plant functional traits in these 1%
simulations (Eq. 4.2), where Y is the trait value for the observation; Wi is the weight of the i
simulation in the selected S LUT entries (i.e., 500); and Xi is the corresponding trait value of

the i simulation.
Y =N (W X X)) [ X W, Eq. 4.2
The weight of each simulation was determined by the RMSE value using Eq. 4.3.
W; =1 — [((RMSE; — min(RMSE)) /(max(RMSE) — min(RMSE))]  Eq. 4.3

This inversion strategy allowed all four target variables (i.e., Cab, Car, Anth, and LAI) to be

retrieved simultaneously.

Due to the lack of measurements of needle pigment concentration and LAI, the accuracy of
retrieved plant traits based on PRO4SAIL2 inversion couldn’t be assessed. However, we
applied the methodology to a synthetic dataset for a better understanding of the errors
embedded in the designed retrieval method. A set of 1,000 simulations was extracted from the
LUT with 500,000 entries. Another 100,000 simulations were extracted from the same LUT to
create a small LUT. We then added 1% signal-dependent noise to the 1,000 simulations to
represent the reflectance extracted from the image prone to noise related to atmospheric
correction and other factors intrinsic to the sensors. Plant traits (i.e., C-ab, Car, Anth and LAI)
were retrieved from the small LUT for both the 1,000 simulations and those with noise. Results

of the synthetic validation are presented in Fig. 4.3.

44



70

20

R? = 0.99***

Inverted C
ab
Inverted C

50 ; ; ; . : : L
20 30 40 50 60 70 0 5 10 15 20
Simulated CElb Simulated CE|r

Inverted Anth
Inverted LAl

1 2 3 4 5 6
Simulated Amh Simulated LA

| O 1% noise  © Noise-free|

Fig. 4.5. Results of inverted plant traits using a synthetic dataset of 1000 simulations from
the LUT (n = 100,000) without noise (orange) and with 1% random noise (blue). *p-
value<0.05; **p-value<0.01; ***p-value< 0.001; n.s.=not significant

4.2.3  Calculation of narrow-band Hyperspectral indices (NBHIs)

A selection of 66 NBHIs was quantified from the plot-mean reflectance (Table 4.2; see
Appendix Table A4.1 for the comprehensive list). These NBHIs were used as indicators of
canopy structure (e.g., Normalized Difference Vegetation Index [NDVI], Enhanced Vegetation
Index [EVI], Optimized Soil-Adjusted Vegetation index [OSAVI]), chlorophyll content (e.g.,
TCARI/OSAVI, Modified Chlorophyll Absorption Index [MCARI]), xanthophyll content (e.g.,
Photochemical Reflectance Index [PRI] and its variations), and blue indices (e.g., BFx, NPQI).
The multi-collinearity among plot-level NBHIs was then assessed using variance inflation
factor (VIF) analysis (Gareth et al., 2013). Indices with VIF > 5 (Akinwande et al., 2015) were
considered to be collinear and discarded. Only non-collinear NBHIs were used as predictors

for needle N and P concentrations.
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Table 4.4 Equations of narrow-band hyperspectral indices (NBHIs) presented in this
study. R, represents the reflectance at A nm wavelength.

Index

Equation

Reference

Structural indices

NDVI
EVI

RDVI
OSAVI

MCARI

MCARI

(Rgoo — Re70)/(Rgo0 + Re70)
i-)S(Rsoo — Re70)/(Rgoo + 6R670 — 7-5R400 +
(Rgoo — Re70)/+/ (Rgoo + Re70)
(1+0.16) X (Rgoo — Re70)/((Rgoo + Re70
+ 0.16)
[(R700 — Re70) — 0.2(R700

— Rs50)] X (R700/Ré70)
1.2[2.5(Rgo0 — Re70) — 1.3(Rgoo — Rss50)]

Chlorophyll a + b indices

Rouse et al. (1974b)
Liu and Huete (1995)

Roujean and Breon (1995)
Rondeaux et al. (1996)

Daughtry et al. (2000)

Haboudane et al. (2004a)

TCARI 3[(R700 — Rg70) — 0.2(R7¢0 Haboudane et al. (2002)
— Rss0) X (R700/Re70)]

TCARI/ 3[(R700—R670)—0-2(R700—R550) X (R700/R670)] Haboudane et al. (2002)

OSAVI (1+0.16)(Rgo0—Res70)/(Rgoo+Re70+0.16)

CTR Reos/Razo Carter (1994)

SRPI R430/Reso Penuelas et al. (1995b)

PSSRa Rgoo/Re7s Blackburn (1998)

PSSRo Rgo0/Re3s Blackburn (1998)

PSSRc Rgoo/Ra70 Blackburn (1998)

PSND. (Rgoo — R470)/(Rgoo + Ra70) Blackburn (1998)

NPCI (Rego — R430)/(Rego + Razo) Pefiuelas et al. (1994)

DCabCixe Re72/(Rsso X 3R703) Datt (1998)

DNCabCxe  Rgeo/(Rss0 X R70g)

PSRI (Reso — Rs00)/R7s0 Merzlyak et al. (1999)

VOG R740/R720 Vogelmann et al. (1993)

VOG2 (Ry34 — R747)/(R715 + R726) Vogelmann et al. (1993)

VOGs (R734 — R747)/(R715 + Ry50) Vogelmann et al. (1993)

CI R;s0/R710 Zarco-Tejada et al. (2001)

PRI indices

PRI (Rs70 — Rs31)/(Rs79 + Rs31) Gamon et al. (1992b)

PRIsis (Rs15 — Rs31)/(R515 + Rs31) Hernéndez-Clemente et
al. (2011)

PRImi (Rs12 — Rs31)/(R512 + Rs31) Hernéndez-Clemente et
al. (2011)

PRIm2 (Rgoo — Rs31)/(Rgoo + Rs31) Gamon et al. (1992b)

PRIm3 (Re70 — Rs31)/(Rg70 + Rs31) Gamon ef al. (1992b)

PRIm4 (Rs70 — Rs31 — Rg70)/(Rs70 + Rs31 + Rg70) Hernandez-Clemente et
al. (2011)

PRI, PRIs;o/[RDVI X (R700/Re70)] Zarco-Tejada et al.
(2013d)

PRI-CI [(Rs70 — Rs30)/(Rs70 + Rs30)1(R760/R700 — 1)  Garrity ez al. (2011)
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Index Equation Reference
Blue indices

NPQI (Ra15 — R435)/(R415 + Ry3s) Pefiuelas et al. (1995b)

BF1 R400/Ra10 Zarco-Tejada et al.
(2018a)

BF> R400/Razo Zarco-Tejada et al.
(2018a)

BF3 R400/Razo Zarco-Tejada et al.
(2018a)

BF4 R400/Raao Zarco-Tejada et al.
(2018a)

BFs R400/Raso Zarco-Tejada et al.
(2018a)

BRI R400/Re90 Zarco-Tejada et al. (2012)

BRI2 R,s0/Req0 Zarco-Tejada et al. (2012)

4.24  Quantification of solar-induced fluorescence

Solar-induced fluorescence (SIF) was quantified using the Fraunhofer Line Depth (FLD)
method (Plascyk and Gabriel, 1975), which is based on the SIF in-filling effects at narrow dark
absorption bands where the solar irradiance is largely reduced, allowing the contribution of SIF
to the apparent radiance to be more easily detected. SIF quantified through FLD methods at a
moderate spectral resolution (> 1.0 nm FWHM) shows sensitivity to plant stress, including
nutrient status (Camino et al., 2018b; Watt et al., 2020; Belwalkar et al., 2022; Raya-Sereno et
al., 2022; Wang et al., 2022), water stress (Zarco-Tejada et al., 2012; Panigada et al., 2014),
and biotic stress (Calderdn et al., 2013; Zarco-Tejada et al., 2018a).

The 3FLD method (Maier et al., 2004) was used to calculate far-red SIF at the O2-A absorption
band (SIF760) from the radiance data at the plot level. This method requires irradiance (E) and
radiance (L) spectra as inputs. E was simulated by the SMARTS model using meteorological
inputs from weather stations near the study site and Microtops II Sunphotometer measurements
(i.e., aerosol optical depth at 500 nm, angstrom wavelength exponent below 500 nm, and
relative air mass). To implement the 3FLD method, E and L measurements at three bands were
identified for each spectrum: one within the O2-A absorption window, and the other two
reference bands located at the left and right shoulder of the absorption feature, respectively.
For narrow-band hyperspectral imagery, the absorption band was located at 762 nm,
corresponding to the E or L minimum in the absorption window (755—765 nm); the reference
bands were located at the E or L minimum at 750-755 nm and 771-776 nm. An empirical

rescaling approach using non-fluorescent targets (i.e., bare soil pixels in the scene) as
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references was used to correct the negative raw airborne SIF values resulting from atmospheric

effects and the calibration process (Bandopadhyay et al., 2019).

4.2.5  Modelling methods to explain the variation in needle N and P concentrations

Predictive models for needle N and P concentrations were built independently for the 2021-
Feb, 2021-Oct, 2023-Jan, and 2023-Oct datasets at the plot level. Each dataset contained the
ground needle N and P measurements used for model training and validation and airborne-
derived parameters, including 1) four plant traits retrieved from PRO4SAIL2 (i.e., Cab, Car, Anth,
and LAI); 2) SIF70; and 3) non-collinear NBHIs. The models were built using Gaussian
regressors (GPR) (Rasmussen, 2004), with inputs selected from the predictor pool composed
of airborne-based parameters. The hyperparameters of the GPR algorithm were automatically
tuned in parallel for each target variable with the Bayesian optimizer in MATLAB (Statistics
and Machine Learning toolbox; MathWorks Inc., Natick, MA, USA), over 120 iterations. A
Leave-One-Out Validation (LOOV, 19 folds for 2021-Feb dataset, 33 folds for the others)
scheme was adopted to quantify the model performance, with the normalized root mean
squared error (NRMSE) and the coefficient of determination (R?) as the main metrics. NRMSE

was calculated as the ratio between RMSE and the range of needle nutrient measurements.

A two-stage feature selection process was used to identify the best input combination. In the
first stage, an exhaustive feature selection procedure was implemented whereby the
performances of all possible combinations of Predictor Pool 1 parameters (PRO4SAIL2-
derived plant traits and SIF760) for estimating target nutrient concentrations were evaluated
when used as GPR model inputs. Subsequently, a set of plant traits that provided the best
prediction accuracy for the target nutrient among all input combinations was retained for the
next stage. In the second stage, Predictor Pool 2 comprised stage 1-retained plant traits and
non-collinear NBHIs. The predictive performances of models whose inputs consist of stage 1—
retained parameters and any combinations of non-collinear NBHIs or NBHIs only were
evaluated for N and P. The second stage of feature selection was performed to test if NBHIs
could add more information to the explanation of the observed variability in the concentrations
of the target nutrients, as the leaf RTM is not highly sensitive to subtle spectral changes in the
blue and green regions induced by stress dynamics. Through the second stage of feature

selection of non-collinear NBHIs, we intended to evaluate whether simple index-based models
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could match the performance of more complex, plant trait-based models—potentially

questioning the need for computationally intensive RTM inversion.

After two-stage feature selection, the final set of parameters was selected to explain each
dataset's observed variability in needle N and P concentrations. Finally, the contribution of each
parameter to target nutrient estimation was quantified using the Out-Of-Bag (OOB)

permutation score embedded in the Random Forest model (Liu and Zhao, 2017).

The uncertainty in needle N and P predictions was quantified by GPR models. GPR model
could provide the uncertainty estimation, thanks to its probabilistic nature (see Williams and
Rasmussen (2006) for more details). During the LOOCV process, GPR model made the
prediction on the left-out sample and provided the confidence interval of the prediction at 95%
confidence level. The uncertainty of the prediction was represented by the margin of error,

which was calculated as the confidence interval divided by two.

The modelling methods were applied to the tree-crown reflectance and radiance to obtain the
needle N and P predictions for each tree. The spatial interpolation algorithm kriging (Oliver
and Webster, 1990) was then implemented to generate the airborne variability maps for the

whole study site, using the SmartMap plugin in QGIS (Pereira et al., 2022).

43 Results

4.3.1  Relationships of narrow-band Hyperspectral indices (NBHIs) to needle N and P concentrations

Hyperspectral indices derived from the airborne images at the treatment level were related to
ground-measured needle N and P concentrations, with different levels of correlation (Fig. 4.4).
Overall, there was a weak correlation between needle N concentration and the selected
hyperspectral indices across dates, even for Cab-related indices used in previous studies as a
proxy of N (Fig. 4.4a). For example, TCARI, TCARI/OSAVI, and CTR; displayed significant
correlations only with needle N in the 2021-Feb dataset (R? 0f0.79, 0.89, and 0.73, respectively,
p-value <0.05), with no significant relationships in the remaining datasets. Moreover, no strong
correlation existed between needle N and structural indices. PRIs, which are used as proxies
for xanthophyll content, showed strong relationships only with needle N in the 2023-Oct
dataset. For instance, PRIm3 and PRIms yielded R? > 0.9 (p-value < 0.001). PRIsis, PRImi, and
PRIm displayed correlations (R?) of ~0.7 (p-value < 0.01).
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Fig. 4.6. Coefficients of determination (R?) between hyperspectral indices of various
categories (e.g. structural indices, chlorophyll a+b indices and PRI indices) and
measurements of (a) needle N and (b) P concentrations (g/kg) at the treatment-mean level
for the four datasets. *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05.

By contrast, a strong relationship was observed between specific indices of all categories and
needle P concentrations (Fig. 4.4b). Structural indices displayed consistent relationships with
needle P concentrations across datasets, often with stronger correlations in the 2021-Feb and
2023-Oct datasets. Specifically, needle P showed strong correlations with EVI, RDVI, OSAVI,
and MCARI; (0.82 < R? < 0.94, p-value < 0.001) in 2021-Feb and 2023-Oct, while the
relationships were less significant in the other two datasets (0.56 < R? < 0.81, p-value < 0.01).
Furthermore, chlorophyll indices, particularly PSSRa, PSSRb, PSSR¢, and PSND., were
significantly related to needle P concentrations in three out of the four datasets, with R > 0.69

(p-value < 0.01). The red-edge Chlorophyll Index (CI) (Zarco-Tejada et al., 2001) also
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exhibited strong relationships (R?> 0.59, p-value < 0.01) with needle P in the two 2021 datasets
and the 2023-Jan dataset. Moreover, significant relationships (R? > 0.66, p-value < 0.01) were
observed in the 2021-Oct and 2023-Jan datasets between needle P and VOG indices, which
focused on the red-edge region. PRIs also showed variable relationships with needle P
concentrations. For instance, PRI, was consistently correlated to P, with R* > 0.77 (p-value <
0.01) for the 2021-Feb, 2021-Oct, and 2023-Jan datasets and R? of 0.56 (p-value < 0.05) for
the 2023-Oct dataset. PRIsis, PRImi, PRIm2, and PRIm3 showed more significant correlations
with P in 2021 (0.59 < R? < 0.86 for 2021-Feb, and 0.58 < R? < 0.67 for 2021-Oct, p-value <
0.05) than in the 2023 datasets.In general, NBHIs of all categories were more strongly

correlated with needle P measurements, rather than N.

4.3.2  Relationships with RTM-based plant traits and SIF 760

A summary of the relationships between ground-measured nutrient levels in needles and
PROA4SAIL2-derived plant traits and SIF760 is provided in Fig. 4.5 at the treatment (n = 7 for
2021-Feb, n =9 for the others) and plot levels (n = 19 for 2021-Feb, n = 34 for the others). A
significant correlation (p-value < 0.05) between Cab and needle N was consistently observed
across years at the treatment level, with the highest R? of 0.90 (p-value < 0.001) observed in
the 2023-Oct dataset and the lowest R? of 0.56 (p-value < 0.05) in 2023-Jan. The relationship
became moderate at the plot level, where R? ranged from 0.15 to 0.46 (p-value < 0.05). By
contrast, SIF760 showed no significant correlation with needle N concentrations in any of the
four datasets (p-value > 0.05). LAI only exhibited a significant relationship with N in the 2023-
Oct dataset (p-value < 0.001), with R? increasing from 0.29 at the plot level to 0.85 at the

treatment level.

Conversely, needle P concentration showed no significant correlation (p-value > 0.05) with
pigment content in any dataset except 2023-Oct. Specifically, Cab, Car, and Ant were slightly
related to needle P in the 2023-Oct dataset at the plot level, with R? ranging from 0.17 to 0.29
(p-value < 0.05). The relationship between LAI and needle P was significant in both the 2021-
Feb and 2023-Jan datasets at both levels. Moreover, the relationships were stronger at the
treatment level (R*> = 0.86 and 0.59, respectively, p-value < 0.05) than at the plot level (R* =
0.53 and 0.31, respectively, p-value < 0.001). SIF760 was consistently correlated with needle P
concentration across the years. The relationship tended to be stronger at the treatment level (R?

of 0.54 to 0.92, p-value < 0.05) than at the plot level (R? of 0.29 to 0.58, p-value < 0.01) as
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well. The significant correlation between PRO4SAIL2-derived Cab and needle N, and that

between SIF760 and needle P, was also reflected in the following modelling results.
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Fig. 4.7. Coefficient of determination between PRO4SAIL2-derived plant functional
traits and SIF and measured needle N and P concentrations at (a) plot level and (b)

treatment level. n represents the sample size of each dataset. *p-value < 0.05, **p-value <
0.01, ***p-value < 0.001.

4.3.3  Contributions of RTM-derived plant traits and SIF7s0 to explaining variability in needle N and P

concentrations

We identified the RTM-derived biochemical constituents Cab, Car, Anth, and SIF760 as predictors
sensitive to variability in both needle N and P concentrations, outperforming structural
parameters such as LAI. We detected a non-significant relationship between N and this set of
parameters in only one dataset (R*> = 0.25; p-value > 0.05 for 2023-Jan, Fig. 4.6a), which could
be explained by the low variability in ground-measured needle N concentrations (see Chapter

3 for more details on field data analysis).

The GPR model built with these four input parameters, N = f{Cab, Car, Anth, SIF760), explained
the variability in needle N concentrations, with an R2 of 0.27 to 0.76 (p-value < 0.001) and
NRMSE of 0.14-0.22 at the plot level for four datasets. The aggregated treatment-level results
(Fig. 4.6a) displayed higher model accuracy (R? = 0.56-0.93, NRMSE = 0.08-0.25, p-value <
0.05) for the two datasets in 2021 and the 2023-Oct dataset, as the aggregation process reduced

within-treatment-group variance and the errors embedded in the needle nutrient measurements
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However, the N modelling results for 2023-Oct lost significance (p-value > 0.05) when

averaged to the treatment level. This could be explained by the lack of significant differences

in needle N measurements between treatments in this specific dataset.
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Fig. 4.8. Relationships between measured nutrient concentrations in needles and
concentrations predicted by the GPR models with inputs of PRO4SAIL2-derived Cap, Car,
Anth, and SIF760 for (a) needle N and (b) P concentrations for the four datasets at the
treatment level. Error bars represent standard errors (SE) within each treatment. *p-
value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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The model P = f{Cab, Car, Anth, SIF760) yielded prediction accuracy for needle P concentration
with R? of 0.24-0.95 and NRMSE of 0.13-0.27, p-value < 0.001 for four datasets at the plot
level. Similarly, the treatment level results (Fig. 4.6b) have seen the improvement in needle P

estimation accuracy (R? of 0.66—0.94 and NRMSE of 0.09-0.27, p-value < 0.05).

The uncertainty analysis (Fig. 4.7) revealed that the median margin of error of the model N =
f(Cab, Car, Anth, SIF760) were around 1.7 — 2.5 g/kg for four datasets at the plot level, with
predictions for 2021-Feb and 2023-Jan datasets displaying slightly higher margin of error
(median value 2.18 and 2.01 g/kg, respectively) than the other two datasets. Needle P
predictions by P = f{Cab, Car, Anth, SIF760) exhibited various levels of uncertainty for four
datasets. The median values of values for 2021-Feb and 2023-Jan datasets were around 0.74
and 0.90 g/kg, respectively, higher than those for 2021-Oct dataset (0.31 g/kg) and 2023-Oct
dataset (0.24 g/kg).
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Fig. 4.9. Uncertainties in (a) needle N and (b) needle P predictions provided by GPR
models with RTM-derived Cap, Car, Antn and SIF760 as inputs for four datasets at the plot
level. n represents the sample size. Uncertainties (i.e., Margin of Error or MOE) were
estimated by GPR models.

We performed N and P model analysis with the focus on evaluating the relative contributions
of the predictors to explaining the variability in N and P concentrations among trials, instead
of optimizing the prediction accuracies of the models. A careful analysis of the importance of
each parameter (Fig. 4.8) demonstrated the distinct contributions of pigments and SIF to N (Fig
4.8a) vs. P concentrations in needles (Fig 4.8b). The estimated Cab content best explained the

variability in needle N concentration across all datasets, with the highest relative importance
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score (Fig 4.8a). Cab contributed at least 49% of the relative importance in the N model, with
the highest value (78%) observed in the 2023-Oct dataset. Anth was ranked as the second most
important parameter to explain the variability in needle N concentration for both datasets in
2021, whereas SIF760 was the second most important parameter for the 2023 datasets. The
contributions of the three pigments (Cab, Car, and Anm) varied depending on the dataset across
all years, but the contribution of SIF760 was ~10% for all datasets. The most critical parameter
for explaining the variability in needle P concentration was SIF760 (Fig 4.8b), with a relative
contribution ranging from 55% to 68% across the four datasets. The remaining contribution
was variably distributed across the three pigments. Anh made the second most important
average relative contribution (6% to 28%), followed by Car (4% to 16%). Cab was the least
important parameter for P in both the 2021-Feb and 2023-Jan datasets, with a relative
contribution < 10%. These results demonstrated the potential of pigment content and SIF to
assess needle N and P levels in radiata pine stands. Notably, PRO4SAIL2-derived Cab
contributed the most to explaining viability in N levels, whereas SIF760 was the leading

contributor to the assessment of P levels.
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Fig. 4.10. Relative contributions of hyperspectral-derived Cap, Car, Anth, and SIF760 values
to explaining the variability in needle (a) N and (b) P concentrations in the nutrient trials.

55



The interpolated maps based on airborne predictions for the 2023-Oct dataset from the model
N = f(Cab, Car, Anth, SIF760) (Fig. 4.9b) and P = f{Cab, Car, Anth, SIF760) (Fig. 4.10b) revealed high
spatial variabilities of needle N and P across the study site. The overall spatial patterns of the
airborne predictions agreed with those observed in the field measurements for both needle N
(Fig. 4.9a) and P (Fig. 4.10a), implying the potential of spatial mapping of needle nutrient

content with our proposed models.

ey
7 % L% ; if "k "o 50 i
Fig. 4.11. Variability maps of needle N for the 2023-Oct dataset, where (a) is based on

the field measurements of needle N, (b) is interpolated using needle N predictions from
the model N =f(cab, Car, Anth, SIF760)-
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Fig. 4.12. Variability maps of needle P for the 2023-Oct dataset, where (a) is based on the

field measurements of needle P, (b) is interpolated using needle P predictions from the
model P = f(Cap, Car, Anth, SIF760).

4.3.4  Contributions of the blue region to explain the variability in needle N and P concentrations

We employed the GPR model using non-collinear (VIF < 5) NBHIs such as BFi, BRIi, and
PSND as inputs, which provided comparable performance for explaining the variability in
needle P concentrations to the model with plant functional traits described in the previous
section, P = f{Cab, Car, Anth, SIF760). The model P = f{BF1, BRI, PSNDc) yielded R? of 0.86 for
2021-Feb, 0.87 for 2021-Oct, 0.72 for 2023-Jan, and 0.64 for 2023-Oct (p-value < 0.01) at the
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treatment level. At the plot level, R? values of 0.53, 0.69, 0.45 and 0.49 (p-value < 0.001) were
obtained for these four datasets, respectively. A careful assessment of these selected indices
sensitive to the variability in needle P concentrations showed that they incorporated one or
more bands from the blue spectral region. BF1 (Zarco-Tejada et al., 2018a) is calculated with
bands Ra400 and Ra10, BRIi (Zarco-Tejada et al., 2012) with bands R4o0 and Reso, and PSND.
(Blackburn, 1998) with bands R470 and Rsoo. This intriguing result encouraged us to perform a
detailed assessment of the relative contributions of all blue-region-related indices (i.e., indices
calculated with at least one wavelength in the blue spectral region) to explain the variability in

needle N and P concentrations.
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Fig. 4.13. Coefficients of determination (R?) obtained between hyperspectral indices
calculated in the blue spectral region and (a) needle N and (b) P concentrations (g/kg) at
the treatment level for all datasets.

Correlation analysis demonstrated that variability in needle N concentrations was barely
explained by blue indices (Fig. 4.11a). Nevertheless, needle P concentrations consistently
exhibited strong sensitivity to a few hyperspectral indices calculated in the blue region (Fig.
4.11b). For instance, NPQI and needle P yielded R? of 0.66-0.91 (p-value < 0.05). Needle P
concentration in the 2023-Jan datasets exhibited a significant correlation with the BFx family
(R? of 0.81-0.92, p-value < 0.01). The significant relationships between needle P vs. BF3 and
BF4 were consistent across the years, with R? of 0.51-0.89 (p-value < 0.05).

We compared the results of the analysis of the contributions of plant pigments, SIF760, and the

blue indices to explain the variability in needle N and P concentrations (Fig. 4.12) against the
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previous results from N or P = f{Cab, Car, Anth, SIF760). The blue indices and pigments together
yielded comparable prediction accuracies for needle N concentration (NRMSE =0.11 for 2021-
Feb, 0.17 for 2021-Oct, and 0.11 for 2023-Oct, p-value < 0.05). High prediction accuracy for
needle N concentration always required plant pigments in the model inputs, especially for the

2021-Feb and 2023-Oct datasets (Fig. 4.12a).
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Fig. 4.14. NRMSE between needle nutrient measurements and predictions by the GPR
models with inputs of different categories at the treatment level. (a) Needle N and (b)
needle P concentrations. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001. Inputs
were categorized as follows: Pigments include PRO4SAIL2-derived Cap, Car, Anth, SIF7605
blue includes the selected blue indices of the BFy, BRIy, and PSIx groups. BFx represents
the collection of BF;, BF2, BF3, BF4, and BFs; BRI, includes BRI; and BRI;; PSIx includes
PSSR,, PSSRy, PSSR, and PSND..

The consistently high prediction accuracy for needle P concentrations across datasets was
associated with the incorporation of blue indices in the GPR model inputs (Fig. 13b). Plant
pigments alone successfully explained the observed variability in needle P concentrations for
the 2021-Oct and 2023-Oct datasets (NRMSE = 0.15 and 0.18, respectively, p-value < 0.001),
but not for the 2021-Feb or 2023-Jan datasets (p-value > 0.05). SIF760 alone provided NRMSE
0f 0.17 to 0.24 (p-value < 0.01) for three out of four datasets, while the model performance for
the 2023-Jan dataset was not significant (p-value > 0.05).

Compared to the benchmark model P = f{Cab, Car, Anth, SIF760) (NRMSE of 0.08-0.20), the
model built with plant pigments and the blue indices, P = f{Cab, Car, Anth, blue index), provided
comparable overall performance (0.12 < NRMSE < 0.17). Specifically, there was a slight
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increase in NRMSE (of 0.05) for the 2021-Oct and 0.04 for 2023-Oct datasets. Nevertheless,
minor improvements were observed in the other two datasets, where NRMSE decreased by
0.04 for 2021-Feb and 0.03 for 2023-Jan. Moreover, the quantification of blue indices is more
straightforward and less computationally demanding than plant traits like SIF760, which further
awards the model built with Cab, Car, Anth and blue index a greater computational advantage.
When only blue indices were used to explain the variability in observed needle P concentration,
the GPR model achieved an accuracy of 0.14 for 2021-Feb, 0.15 for 2021-Oct, 0.20 for 2023-
Jan, and 0.24 for 2023-Oct in terms of NRMSE (Fig. 4.12b).

Analysis of the relative contributions of different parameters revealed the dynamic role of the
blue region in explaining the variability in needle N and P concentrations in the nutrient trials
(Fig. 4.13). The blue region, assessed by incorporating blue indices into the GPR model inputs,
was the most crucial parameter for P for the two 2021 datasets and the 2023-Jan dataset, with
a relative contribution >60% (Fig. 4.13b). Hyperspectral-derived plant pigments were highly
important for evaluating needle N concentration, with a combined relative contribution of 70%
in all datasets (Fig. 4.13a). In summary, the blue region was critical when explaining the
observed variability in needle P but not N concentration. In fact, Cab was still the most important
input for explaining the variability in needle N concentration among all three pigment
parameters (Fig. 4.13a), with relative contributions ranging from 34% to 65%. Car and Anth
were almost equally important for the 2021-Feb and 2023-Oct datasets. For 2021-Oct, Anth
(14%) contributed more strongly to needle N concentration than Car (6%). For 2023-Jan, Car
was the second most important plant pigment parameter (14%), followed by Antn (5%).
Regarding P concentration, Cab was the pigment parameter that best explained the variability
in needle P concentration for the 2023-Oct dataset, with a relative contribution of 40%, whereas
Anth was the most important pigment to needle P variability for the other three datasets (Fig.

4.13b).

Our analysis revealed that the blue indices contributed to explaining the variability in needle P,
implying the sensitivity of the blue spectral region to variations in P levels in radiata pine

needles.
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Fig. 4.15. Relative contributions of hyperspectral-derived Cap, Car, and Aym and the
selected indices calculated in the blue region (BFx, BRIx, and PSIy) to the explained
variability in needle (a) N and (b) P concentrations at the treatment level. BFyx includes
BF1, BF2, BF3, BF4, and BFs; BRI, includes BRI; and BRIz; PSIx includes PSSR,, PSSRy,
PSSR, and PSND..

4.4 Discussion

We successfully used hyperspectral imagery and RTMs to analyze how physiological traits
contribute to explaining the variability in N and P concentrations in radiata pine needles in
long-term nutrient trials. We determined that hyperspectral-derived biochemical parameters are
more sensitive to variations in needle N and P concentrations than the structural parameters
(i.e., LAI) that are generally tracked by NDVI and other standard remote sensing methods
(Fang et al., 2019). We found that LAI is weakly related to needle N and P variability, though
it remains inconclusive whether LAI can potentially contribute to needle nutrient estimation,
considering the retrieval performance using the proposed method. The synthetic validation
results (Fig. 4.3) revealed that LAI was retrieved with lower accuracy (R? = 0.67, p-value <
0.001 without noise, R*= 0.48, p-value < 0.001 with 1% noise) than the plant pigments. This

could be caused by the small wavelet scale (i.e., 3 or 4) used for the retrieving process, which
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failed to represent broader features like LAI, but also due to the structural characterization of
the canopy by SAIL2. Moreover, LAI retrievals might not be representative enough for the
canopy structure, as the parameter was retrieved from crown-level data, where the

segmentation process likely reduced the variability in canopy structure.

Despite the indirect link with LAI, needle P concentration displayed moderate relationships
with structural indices such as EVI, RDVI, MCARI1, and OSAVI, and red-edge indices such
as VOG indices and CI. Indeed, previous studies showed that the NIR and the red-edge region
are sensitive to leaf P concentration. For example, Mutanga and Kumar (2007) estimated leaf
P concentration in grass with six predictors, including two red-edge bands (710 and 742 nm),
three bands in the SWIR region and the red edge position (REP). Their best model yielded an
R? of 0.63 for estimating leaf P concentration in grass. Similarly, among the set of wavelengths
selected by Li ef al. (2018) for predicting leaf P concentration in oilseed rape, five bands were
located between 832 and 1267 nm, and the remaining band was in the red edge (755 nm). The
authors reported an R? of 0.78 for the leaf P predictive model. Among the 10 effective bands
selected by (Lin et al., 2024) for leaf P concentration estimation (R? = 0.70) in summer maize,
two were located in the red edge (700 and 730 nm) and four in the NIR region (795, 838, 858,
870nm). Overall, all three studies achieved a slightly lower prediction accuracy for leaf P
concentration than our study (0.66 < R? < 0.94). The widely observed linkage between leaf or
needle P concentrations and the red-edge region could be potentially related to the SIF signals,
given that chlorophyll fluorescence effects were observed in the red-edge region of the leaf
apparent reflectance spectrum, with two peaks around 690 and 750 nm, respectively (Zarco-
Tejada et al., 2000). These index- and band-level findings were aligned with our plant-trait

level analysis below.

RTM-inverted Cab and airborne narrow-band SIF760 were indicative of needle N and P
concentrations, with Cab playing a more pronounced role in predicting N than P. Previous
studies assessing leaf N concentrations in other species produced similar results. For instance,
Camino et al. (2018b) determined that including SIF quantified at the O2A absorption band
improved the prediction accuracy of leaf N levels to R? of 0.92 compared with the model using
only functional traits (Cab, Cm, and Cw) derived from PROSPECT-SAILH, with an R? < 0.77.
Similarly, Wang et al. (2022) built predictive models for leaf N levels in almond trees over two
years and achieved an accuracy of R? of 0.95 with input parameters including narrow-band SIF
and Cab concentration retrieved from the FIuSAIL model. The predictive capacity of SIF and

Ca for N status has a well-studied physiological basis. N deficiency affects plant
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photosynthetic activities in various ways, such as by influencing the contents of chlorophyll,
thylakoid proteins, and other components of the photosynthetic apparatus (Mu and Chen, 2021).
As photosynthetic activities are reduced, plants also vary the partitioning of absorbed energy
among other radiation pathways, such as chlorophyll fluorescence emission, along with

adjusting the light absorption to maintain the balance of radiation utilization and absorption.

The responses of Cab and SIF to needle P levels might be linked to the photosynthetic electron
transport chain. Laboratory studies on chlorophyll fluorescence kinetics have revealed that P
deficiency results in a reduction in ATP synthesis and lumen acidification in chloroplasts,
thereby inhibiting electron transport to photosystem I (PSI) (Carstensen et al., 2018). Watt et
al. (2020) detected a strong positive correlation between SIF and photosynthetic variables, such
as the maximal rate of carboxylation (Vemax) and electron transport (Jmax) in radiata pine
seedlings under N- and P-stress conditions. These findings support the hypothesis that SIF
reflects the impact of P on the photosynthetic electron transport chain and are aligned with our

results that SIF has a pronounced effect in explaining variability in needle P concentration.

Anthocyanins and carotenoids regulate plant responses to abiotic stress (such as nutrient
deficiency) due to their photoprotective and antioxidant properties (Landi et al., 2015; Sachdev
et al., 2021). Under stress conditions, the incident radiation energy exceeds the maximum that
plants can use or dissipate, leading to the excessive production of reactive oxygen species
(ROS). To prevent oxidative damage, plants activate anthocyanin biosynthesis to scavenge the
excessive ROS induced by abiotic stress, thereby reducing cellular damage (Landi et al., 2015;
Naing and Kim, 2021; Li and Ahammed, 2023). Besides anthocyanins, certain types of
carotenoids, such as B-carotene, also detoxify ROS as a response to stress (Demmig-Adams,

1990; Posch et al., 2008).

Xanthophyll, another type of carotenoid, also plays a crucial photoprotective role in dissipating
excess energy. In the xanthophyll cycle, violaxanthin is de-epoxidized into antheraxanthin and
then zeaxanthin, contributing to heat dissipation (i.e., NPQ) (Demmig-Adams and Adams,
1996). The Photochemical Reflectance Index (PRI) and its variants are thought to track the
epoxidation state of the xanthophyll cycle, thus reflecting the stress level of the plant. For
example, Suarez et al. (2009b) determined that PRI was effective for detecting water stress
across species due to its significant correlation with canopy temperature (R? > 0.65), reflecting
stomatal conductance. Shrestha et al. (2012) determined that the variation in PRI values could

reflect the increase in xanthophyll cycle activity induced by N deficiency in rice (Oryza sativa)
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leaves. However, in the current study, we observed no significant relationships between PRI or
its variants and measured needle N concentrations, except for the 2023-Oct dataset. Needle P
measurements only displayed consistent relationships with PRIn. The lack of correlation in our
study could be related to the effects of canopy structure, illumination conditions, and viewing
geometry, which affect the sensitivity of PRIs to the epoxidation state of xanthophyll

(Hernandez-Clemente ef al., 2011).

Our results reveal the importance of the blue spectral region, represented by indices with blue
spectral wavelengths, in explaining the variability in needle P concentration in the nutrient
trials. Three indices from the BFx, BRIx, and PSIx groups provided good prediction accuracy
for needle P concentrations, with NRMSE of 0.14-0.24 at the plot level, and 0.13- 0.24 at the
treatment level. Despite the slightly reduced performance for explaining variability in P levels,
compared to the benchmark model P = f{Cab, Car, Anth, SIF760), these predictive models built
with only indices as inputs have great computational advantages over those built with RTM-
based functional traits and/or SIF, suggesting that a multispectral sensor centred at bands in the
blue and NIR spectral regions could be used for large-scale monitoring of P. Our findings at
the index level comply with those from band-level predictions of leaf P concentrations. For
instance, Guo et al. (2018) selected a set of hyperspectral bands for estimating leaf P levels in
using the spectral measurements of leaf samples from rubber trees. Their empirical regression
model achieved NRMSE ~0.08 using seven wavelengths as inputs (437, 713, 1144, 1405, 1686,
2243, and 2249 nm). With the in-situ canopy reflectance measured over summer maize (Zea
mays) canopies, Lin et al. (2024) built an empirical model to predict leaf P concentration that
yielded an R? of 0.70. Ten wavelengths were included in their model: four in the visible region
(442, 479, 572, and 630 nm), two in the red-edge region (700 and 730nm) and four in the NIR
region (795, 838, 858 and 870 nm). The blue indices used in our needle P assessment also
utilize bands in the blue and NIR regions. To further illustrate the potential of blue indices for
explaining variability in needle P, we evaluated another index-based model, with
TCARI/OSAVI, PRI, NPQI and the curvature index (CUR) as inputs, in terms of their needle
P prediction performance. These indices were chosen as they were proxies for the plant
functional traits used in the benchmark model: TCARI/OSAVI, PRI, NPQI were indicators for
needle pigment content, and CUR was a proxy for SIF. The results showed (see Appendix Table
A4.2) the model P = TCARI/OSAVI, PRI, NPQI, CUR) failed to provide statistically
significant predictions for the 2021-Feb and 2023-Oct datasets, and yielded lower accuracy for

the remaining two datasets, compared to the blue-index-based model. Hence, the consistent
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performance of blue indices in needle P estimation was unlikely to be incidental, and it implied
the physical relationship between P and the blue spectral region, which has not been well

understood but is noteworthy.

The mechanism of the responses of the blue spectral region to variations in leaf P levels is not
yet fully understood by the remote sensing community due to limited studies on this topic.
Different hypotheses exist to explain how the blue spectral region responds to the variability
in needle P concentration, one of which is related to blue fluorescence. When excited by UV
light, green plants emit fluorescence not only in the red spectral region (i.e., chlorophyll
fluorescence) but also in the blue-green region, with a blue maximum near 450 nm (BF) and a
green shoulder around 530 nm (GF) (Chappelle ef al., 1984; Lang and Lichtenthaler, 1991;
Subhash et al., 1999). The blue fluorescence originates from cinnamic acids bound to the
cellulosic cell walls (Harris and Hartley, 1976) and soluble substances bound to cell vacuoles,
including cinnamic acids, flavones, and flavonols (Lichtenthaler and Miehé, 1997).
Fluorescence ratios (e.g., BF/SIF, GF/SIF and BF/GF) are highly responsive to stresses, such
as heat, nutrient deficiency, and pathogen infection (Lichtenthaler and Miehé, 1997; Subhash
et al., 1999; Biirling et al., 2011). These observed stress responses at the leaf level might be
related to the reduced reabsorption of blue fluorescence due to lower photosynthetic pigment
concentration induced by long-term stress (Lichtenthaler and Mieh¢, 1997). An alternative
hypothesis hinges on the degradation of chlorophyll into phaeophytin under stress conditions
(Hortensteiner, 2013). As a proxy for phaeophytin content, the Normalized Phaeophytinization
Index (NPQI) (Barnes et al., 1992a; Pefiuelas et al., 1995b) was proven to be sensitive to
various stresses (Zarco-Tejada et al., 2018a; Zarco-Tejada et al., 2021a; Poblete et al., 2023).
In the current study, NPQI, a blue-region-related index, also displayed significant relationships

with needle P concentrations across dates.

The uncertainties in the needle N and P prediction could be attributed to various sources. Firstly,
the small sample size might result in uncertainties in parameter estimations of the GPR models.
The limitation of small sample size was reflected in the relatively higher uncertainty in the
2021-Feb dataset (n = 19), compared to the other three datasets (n = 34). Low level of variances
in the needle nutrient measurements (See Chapter 3 Table 3.2) likely led to a restricted learning
range for the GPR models during the training phase, and thus impaired the prediction accuracy
on the "unseen" samples during the predicting phase. The low level of variability in needle N
measurements (CV = 0.07-0.12), compared to those of needle P (CV = 0.26-0.33), partially

explained the lower accuracy of needle N estimation than that of P by the benchmark model
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N/P = f(Cab, Car, Anth, SIF760). Moreover, the uncertainties in needle N and P measurements

could potentially undermine the reliability of the trained GPR model.

The obtained SIF760 values (2.5-23.2 mW/m?/nm/sr. See Appendix Fig. 4.1), despite being
higher than what is expected for healthy vegetation (0-3 mW/m*nm/sr), succeeded in
differentiating nutrient treatments. Thus, the quantified SIF760 should be regarded as relative
values, rather than absolute values. Several studies have also reported that airborne SIF values
quantified from data with 3—7 nm FWHM were higher than the typical ranges (Zarco-Tejada
et al., 2013b; Camino et al., 2018b; Belwalkar ef al., 2022; Wang et al., 2022). Simulation
studies using RTMs (Damm et al., 2011; Belwalkar et al., 2022) revealed that coarser spectral
resolution (SR) led to overestimated far-red SIF values based on FLD principles. Belwalkar et
al. (2022) also evaluated the suitability of airborne SIF quantified at 0.1-nm FWHM and that
at 5.8-nm FWHM for monitoring crop leaf N status. They concluded that although sub-
nanometer resolution was necessary to retrieve SIF in absolute units, a coarser resolution was
sufficient for detecting SIF differences in the context of vegetation stress detection. A potential
focus of future research can be comparing airborne SIF quantified at sub-nanometer resolution
(<1.0-nm FWHM) and moderate resolution (>1.0-nm FWHM) to decide whether the sub-
nanometer resolution is required for a more accurate assessment of needle nutrient content in

coniferous forests.

Similarly, the retrieved Cab, Car and Ant should be regarded as relative values, rather than
absolute values of pigment content, as we lack the pigment measurements to validate the
accuracy of the retrievals. The synthetic validation results indicated that pigment retrievals are
more robust to noise than LAI. A previous study by Poblete et al. (2025) also showed the high
agreement between PROA4SAIL2-derived Cab content with the needle chlorophyll
measurements for radiata pine (R*> = 0.80-0.89). Similarly, Darvishzadeh et al. (2008) found
a strong relationship between PRO4SAIL-derived Cab content and the ground measurements
(R? = 0.70) in heterogeneous grassland. In the study conducted in almond orchards (Wang et
al., 2022), a strong correlation between FIuSAIL-derived Cab and their ground-measured
counterparts (R?> = 0.66) was reported. Therefore, we believe that the RTM-based needle
pigment retrievals, though they cannot represent the absolute levels of pigment content, are

sufficient to differentiate plots/trees from different fertilization levels.

Due to the lack of coverage in the SWIR region by the narrow-band hyperspectral imager used

in this study, we only focused on the visible-near infrared (VNIR) region for needle nutrient

66



analysis. However, it should also be noted that chlorophyll only accounts for 1.7% of total leaf
N (Kokaly et al, 2009a), while there are more predominant N-containing biochemical
constituents, such as proteins. It has been shown that the shortwave infrared (SWIR) region,
where the protein absorption is prominent, can be used for leaf N content. Previous studies
have reported that leaf N concentration displayed a stronger relationship with NIR/SWIR-based
indices than with VNIR indices in wheat (Camino ef al., 2018b) and potato (Herrmann et al.,
2010). The advancement in RTM also enabled the retrieval of leaf protein content. Wang et al.
(2018b) investigated the potential of RTM-derived leaf protein content for assessing leaf and
canopy N status in mixed temperate forests. The authors obtained a higher prediction accuracy
for canopy N (R? = 0.64) than for leaf N content (R? = 0.46). Several studies also reported the
importance of the SWIR region for leaf P assessment (Guo et al., 2018; Li et al., 2018; Gao et
al., 2019). Future studies could extend our methodology to evaluate and compare the
importance of VNIR-related plant traits (e.g., Cab, Car, Anth and SIF760) and SWIR-related traits

(e.g., leaf protein content) for needle N and P prediction accuracy in radiata pine forests.

Overall, our findings shed light on the importance of biochemical constituents, SIF, and the
blue spectral region in explaining the variability in needle N and P concentrations. Distinct
dynamics were observed for these two nutrients, whereby Cab best explained the variability in
needle N concentration, whereas SIF and the blue spectral region played crucial roles in

explaining the variability in needle P concentration.

4.5 Conclusions

Our study is the first to demonstrate that a physically based modelling approach—using plant
functional traits, including biochemical constituents and solar-induced fluorescence (SIF)—
can be effectively applied to explain the observed variability in needle nitrogen (N) and
phosphorus (P) concentration in coniferous forests. Moreover, as opposed to most studies
relying on empirical methods (e.g., using spectral indices or spectral bands as PLSR model
inputs), our physically based approach yielded a robust accuracy to explain needle P variability,
with the advantage of improved model interpretability, which relied on physiological traits

instead of vegetation indices without physical meaning.

Using the four sets of airborne hyperspectral imagery and field data collected from radiata pine

over three years of established nutrient trials, we demonstrated that RTM-derived needle
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pigment content (i.e., Cab, Car, and Anth) and far-red SIF760 could be used to explain the observed
variability in needle N concentration across years. Using GPR models, these four traits
explained the variability in needle N (R*= 0.67-0.97, NRMSE = 0.07-0.30) and needle P
concentration (R?= 0.60-0.95, NRMSE = 0.09-0.27). Cab played a critical role in explaining
the observed variability in needle N concentration, whereas SIF760 was the main contributor to
the explained variability in needle P concentration. Our analysis of the pool of hyperspectral
indices and RTM-inverted traits revealed the essential contribution of the blue spectral region
in explaining the variability in needle P but not needle N concentration. Blue indices (i.e., BFx,
BRIx and PSIx), when combined with RTM-derived plant pigments (i.e., Cab, Car, and Antn) as
inputs in the GPR models, improved the assessment of needle P in the nutrient trials. This new
insight regarding the blue spectral region playing a major role in explaining the observed
variability of needle P concentration opens new options for screening of nutrient trials, and it
suggests the potential of using multispectral sensors with bands centred at the blue wavelengths
to monitor needle P status at an operational scale. Further studies are required to evaluate
different hypotheses to explain the divergent contributions of the blue region to needle N and
P concentrations, such as the potential effects of blue fluorescence and the degradation of

chlorophyll a + b into other compounds under nutrient-stress conditions.
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Chapter 5

Evaluation of solar-induced
fluorescence using airborne narrow-
band and sub-nanometer imagery for
needle nitrogen and phosphorus
assessment 1n radiata pines

Highlights

e Sub-nanometer-based SIFes7 was less effective than SIF70 for needle N and P
estimation.

e Far-red FLs contributed to needle N and P estimation more than red FLs and sub-
nanometer-based SIF did.

e Further work is needed to understand the impact of sub-nanometer vs. narrow-band

resolution for SIF760 quantification to assess needle N and P variability.

Abstract

Solar-induced chlorophyll fluorescence (SIF) is an early indicator of plant stress, as it is directly
linked to photosynthetic activity. Its retrieval accuracy strongly depends on sensor
characteristics, especially spectral resolution (SR). Simulation studies have shown that sub-
nanometer resolution (Full-Width at Half-Maximum [FWHM] < 1.0 nm) is required for the
retrieval of SIF in the absolute term. Nevertheless, for large-scale monitoring on airborne
platforms, sub-nanometer imagers inevitably lead to higher operational and computational cost,
compared to narrow-band imagers (FWHM > 3 nm). This studyaims to investigate whether
sub-nanometer resolution offers significant benefits for SIF applications in assessing needle
nitrogen (N) and phosphorus (P) in radiata pine (Pinus radiata D. Don) canopies. We collected
data on two dates using two airborne hyperspectral imagers in tandem, with an FWHM of 5.8

nm and less than 0.2 nm, respectively, we quantified far-red and red SIF (SIFes7, SIF760,
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respectively) as well as depths of Fraunhofer line (FL) features. We then evaluated the needle
N and P prediction performance of Gaussian Process Regression (GPR) models built with
inputs including SIF, FLs and narrow-band-based needle pigment content derived from

radiative transfer models (RTMs).

Contrary to our initial hypothesis, sub-nanometer resolution did not enhance the predictive
capacity of SIF760 beyond that of the narrow-band benchmark model for either needle N or P.
Potential uncertainties in SIF retrievals—such as atmospheric effects, canopy structure, and
retrieval errors—could not be entirely attributed to in this study, leaving the quantification of
SIF using FL inconclusive. The analysis of sub-nanometer data showed that SIFes7 lack
predictive capability for nutrient content, potentially due to stronger fluorescence re-absorption
and scattering within the canopy in the red spectral region. However, sub-nanometer data
enabled the exploration of 16 FLs across 670—780 nm, among which far-red FLs (particularly
FLi6 at 774.8990 nm) exhibited significant potential, yielding robust N predictions (R? =0.62,
p-value < 0.001, NRMSE = 0.17) and comparable P estimation performance to SIF-based
models (R? = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25). These findings highlight the
potential of FLs, especially far-red FLs, obtained at the sub-nanometer resolution, for needle

N and P estimations in coniferous canopies.

5.1 Introduction

Solar-induced chlorophyll fluorescence (SIF) has received growing attention over the past two
decades as an indicator for plant photosynthesis and stress. When the incident solar radiation
reaches the plant, it is either reflected, transmitted or absorbed by pigment systems. The
absorbed photosynthetically active radiation (PAR) cannot be fully utilized for photochemistry.
Consequently, plants need to dissipate the excitation energy through the other two pathways:
thermal dissipation and chlorophyll fluorescence (ChlF). ChlIF is the re-emission of absorbed
energy by chlorophyll a at longer wavelengths, with the emission spectrum covering 650 to
800 nm characterized by two peaks — one in the red region (Fess) and the other in the far-red
region (F740). Red fluorescence is primarily contributed by photosystem II (PSII), and the far-
red fluorescence emissions are ascribed to both PSI and PSII. Since both photosynthesis and
chlorophyll fluorescence emission compete for PAR, ChlF can serve as a probe for the
photosynthetic activities. The optical signal of ChlF can be remotely sensed under solar

illumination (i.e., SIF), which is superimposed on the reflected radiation. However, SIF signals
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only account for a small portion of the total reflected radiation - less than 2% and 5.2% of the
reflected radiance at 685 nm and 740 nm, respectively (Guanter et al., 2010), rendering
difficulties in decoupling these two signals from remotely sensed hyperspectral data. More
comprehensive reviews on the fluorescence basics are available (Meroni et al., 2009;

Frankenberg and Berry, 2017; Mohammed et al., 2019).

The primary strategy of estimating SIF is associated with the SIF in-filling effect at strong
absorption regions in the solar or telluric atmosphere. As the solar incident radiation is
significantly attenuated in these narrow spectral regions, the relative contribution of SIF to the
reflected radiation becomes more apparent. The widely investigated absorption features are the
oxygen absorption bands in the terrestrial atmosphere, as they are broader and deeper than the
solar absorption features or Fraunhofer lines (FLs). O2-A absorption band around 760 nm is
used to estimate far-red SIF due to its proximity to the far-red SIF (SIF760), while the red SIF
is retrieved from the O2-B absorption band at 687 nm (SIFes7). Far-red SIF is more commonly
retrieved than red SIF because the O2-A absorption band is relatively broad, requiring lower
sensor spectral resolution (SR), whereas sub-nanometer resolution is needed to observe the
much narrower O2-B band. On the other hand, FLs associated with solar atmospheric
absorptions have not been comprehensively investigated, due to the requirement of ultra-high
SR. However, SIF retrievals from FLs do not require complex atmospheric correction as the
absorption happens in the solar atmosphere, unlike those from oxygen absorption bands in the
terrestrial atmosphere, which is an important factor to consider in airborne or spaceborne
applications. The most widely used algorithms to estimate SIF from restricted absorption
features are based on the Fraunhofer Line Depth (FLD) principle (Plascyk and Gabriel, 1975),
and its variants such as 3FLD (Maier et al., 2004) and iFLD (GomezChova ef al., 2006). FLD-
based methods rely on the contrast between the radiance levels within and outside the
absorption feature to quantify SIF. Meroni ef al. (2009) and Damm et al. (2011) provided
detailed explanations and analysis of FLD-based approaches. Another extensively evaluated
alternative for SIF retrievals from absorption features is the spectral fitting method (SFM),
which decouples the fluorescence from the reflected radiation through mathematical parametric
regressions (e.g., Guanter et al. (2010); Cendrero-Mateo et al. (2019); Albert et al. (2023)).
SFM allows a more realistic representation of the reflectance and fluorescence spectrum within
the absorption window, compared to FLD-based approaches. It is also less sensitive to sensor
noise as more bands are used. The advancement in radiative transfer modelling (RTM) enabled

the incorporation of leaf fluorescence in the simulations. Particularly, the SCOPE (Soil Canopy
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Observation, Photochemistry and Energy Fluxes) model proposed by Van der Tol et al. (2009),
which simulates SIF in vertically heterogeneous canopies, has been widely used in studying
the relationship between SIF and photosynthesis (Zhang et al., 2014; Verrelst et al., 2016;
Camino et al., 2019). The leaf optical model Fluspect (Vilfan et al., 2016), when coupled with
canopy models such as the 3-D model DART (Discrete Anisotropic Radiative Transfer)
(Gastellu-Etchegorry et al., 2015), has also been used to study top-of-canopy (TOC) SIF
(Regaieg et al., 2025). These models incorporate the effects of canopy structure, illumination

and observation geometry, thus enabling accurate SIF interpretation.

SIF retrieved from different platforms (e.g., ground, airborne and spaceborne) have been
proven effective in detecting heat and water stress (Song et al., 2018; Xu et al., 2021; Wang et
al., 2023a), biotic stress (Calderon et al., 2013; Zarco-Tejada et al., 2018b; Zarco-Tejada et al.,
2021b), predicting leaf nutrient content (Camino et al., 2019; Jia et al., 2021; Wang et al.,
2022; Li et al., 2025), and gross primary productivity (GPP) (Bacour et al., 2019; Ma et al.,
2022; Pierrat et al., 2024). Airborne platforms offer opportunities for on-demand monitoring
of SIF with a higher spatial resolution than spaceborne platforms, and a larger spatial coverage
than ground-level systems. However, the accurate SIF estimates from airborne sensors are
challenging due to multiple sources of uncertainty. In particular, reliable SIF retrievals at the
oxygen absorption features require proper accounting for atmospheric scattering and
absorption (Guanter et al., 2010; Damm et al., 2014), since the atmospheric intervention adds
noise to the true ratio between the reflected radiation and fluorescence emission within the
absorption features, which might be confused with the SIF in-filling effects. Damm et al. (2014)
also emphasized that the characterisation of atmospheric effects is intertwined with
observational and illumination geometries. Canopy structure plays a key role in the correct
interpretation of TOC SIF signals (Dechant et al., 2020; Malenovsky et al., 2021a), due to the
re-absorption and scattering of emitted fluorescence within the canopy. Compared to far-red
SIF, red SIF undergoes significantly stronger re-absorption because of its substantial spectral
overlap with chlorophyll absorption regions. In their study covering ground, airborne and
spaceborne analysis, Dechant et al. (2020) suggest that far-red SIF is mainly affected by canopy
structure and radiation rather than leaf physiology. They proposed an approximation of far-red
SIF as the product of fluorescence quantum yield and NIRvP, which is a parameter representing
canopy effects and illumination conditions. NIRvP was found to be strongly related to SIF at
different temporal and spatial scales, indicating that observed variability in far-red SIF resulted

from changes in canopy structure and radiation levels. Malenovsky et al. (2021a) conducted
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3-D model simulations for both crop and forest canopies. They found that the leaf clumping
effect is the most influential factor in causing multi-angular anisotropy for both red and far-red
SIF. They also highlighted the effects of non-photosynthetic woody material on forest canopy
SIF due to the wood shadowing affecting the PAR absorption by leaves.

Sensor cacharcteristics affect SIF retrieval accuracy, as proven by simulation studies (Damm
et al.,2011; Julitta et al., 2016). In particular, spectral resolution (SR) and signal-to-noise ratio
(SNR) are the most influential factors in SIF retrievals at oxygen absorption features. It is
shown that coarser spectral resolution and higher noise levels usually lead to more erroneous
SIF estimates. Julitta et al. (2016) recommended the use of sub-nanometer resolution (FWHM
< 1.0 nm) for the absolute measurement of far-red SIF at O2-A band and ultrafine resolution
(FWHM < 0.5 nm) for red SIF at O2-B band. Nevertheless, higher spectral resolution is usually
accompanied by higher noise levels and data redundancy. In the context of leaf nutrient status
monitoring, far-red SIF retrieved at narrow-band resolution has been successfully used to
estimate leaf nitrogen (N) content, along with other RTM-derived leaf biochemical parameters,
in both homogenous (Camino et al., 2019; Belwalkar et al., 2022) and heterogenous canopies
(Wang et al., 2022; Li et al., 2025). Furthermore, Belwalkar et al. (2022) compared the
performance of far-red SIF quantified at narrow-band (FHWM = 5.8 nm) and sub-nanometer
(FWHM = 0.1-0.2 nm) airborne images to explain leaf N variability in crops. The authors
reported an improvement in prediction accuracy (AR? = 0.5, ARMSE = -0.03 %) for leaf N,
ascribed to the sub-nanometer resolution, though they contended that narrow-band resolution
is sufficient (R? = 0.87, p-value < 0.001, RMSE = 0.12 %) to differentiate the relative leaf N
level across the site. However, such a comparison study has not been performed in more
complex canopies, such as forests, to help determine whether sub-nanometer resolution is
necessary for vegetation nutrient monitoring. Li et al. (2025) have shown that SIF760 quantified
from narrow-band airborne images (FWHM = 5.8 nm), when combined with RTM-derived
needle pigment content chlorophyll a + b, carotenoids and anthocyanins—yielded a prediction
accuracy (R?) greater than 0.56 for needle N and 0.66 for needle P in radiata pine plantation.
The authors also highlighted that far-red SIF was the most dominant contributor to needle P
assessment through the variable importance analysis. Building on these previous findings, this
study aims to evaluate and compare airborne far-red SIF quantified at the narrow-band
resolution (FWHM = 5.8 nm) and that at the sub-nanometer resolution (FWHM = 0.1-0.2 nm)
in terms of their contributions to explaining the variability in needle N and P content in radiata

pines. We aim to determine if narrow-band resolution is sufficient for SIF760 quantification in
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monitoring needle nutrient status. The hypothesis is that sub-nanometer-based SIF760 is more
accurate and thus contributes more to nutrient estimation. Furthermore, we explore other
absorption features related to solar-induced fluorescence, such as red SIF (SIFes7) and solar

FLs that are only apparent at the sub-nanometer resolution.

5.2 Methods

5.2.1  Airborne data collection and processing

Two airborne campaigns were conducted over the radiata pine study site in Durham, Victoria,
on October 27%, 2021, and January 11™, 2023, with two line scanning hyperspectral imaging
spectrometers onboard a piloted aircraft Cessna-172 operated by the HyperSens Laboratory,
University of Melbourne. The first hyperspectral sensor was a Hyperspec VNIR E-Series
model (Headwall Photonics, Fitchburg, MA, USA) with narrow-band resolution, covering the
400-1000 nm spectral region with a FWHM of 5.8 nm, with an FOV of 66°. The second
hyperspectral sensor was a Solar-Induced Fluorescence imaging sensor (Headwall Photonics,
Fitchburg, MA, USA), covering the SIF emission spectrum from 670-780 nm with an ultra-
high spectral resolution of 0.1-0.2 nm FWHM, with an FOV of 23.5°. The two spectrometers
were hereafter referred to as narrow-band imager and sub-nanometer sensors, respectively.
More details of the spectral characteristics of the two hyperspectral imagers were summarised
in Table 5.1. Narrow-band images and sub-nanometer images were collected at 350 m and 500
m above ground levels, respectively, resulting in a spatial resolution of 0.2 m for both imagers.
Radiometric calibrations were performed for both imagers in an optics laboratory using a
CSTM-USS-2000C integrating sphere (Labsphere, XTH2000C, Labsphere Inc., North Sutton,
NH, USA). Atmospheric correction was further applied to the radiometrically calibrated
narrow-band images using the SMARTS model (Gueymard, 1995b) with the aerosol optical
depth measured at 550 nm by a Microtops II Sunphotometer (Solar Light Co., Philadelphia,
PA, USA) during the airborne campaigns. The output of this step was the narrow-band
reflectance images. Image orthorectification was implemented on all images using PARGE
software (ReSe Applications Schlapfe, Wil, Switzerland) with the inputs recorded by the
onboard inertial measuring unit (VN-300-VectorNav Technologies LLC, Dallas, TX, USA) and
synchronized with the hyperspectral imager. More details on the image pre-processing can be
found in Chapter 4. Fig. 5.1 presents an overview of the study site and an example of the sub-

nanometer image.
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Table 5.5 Spectral characteristics of the narrow-band and sub-nanometer sensors used in
this study. *With spectral binning

Headwall Hyperspec Headwall Solar-Induced
VNIR E-Series imager  Fluorescence Imaging Sensor
(Hyperspectral sensor)  (Sub-nanometer sensor)

Spectral range 400-1000 nm 670-780 nm
Number of bands 371 2160
Spectral sampling interval ~ 1.626 nm 0.051 nm
FWHM 5.8 nm 0.1-0.2 nm
Field of view 66° 23.5°
Signal-to-Nose Ratio >300:1%* >300:1*
Bit depth 16 16

An object-based segmentation procedure was implemented on the narrow-band reflectance
images image and radiance images from both narrow-band and sub-nanometer sensors using
the Fiji software (Abramoft et al., 2004) to extract pure tree crowns. Local thresholding
algorithms were applied to an NIR band (810 nm) and a structural index layer (NDVI > 0.6) in
combination to separate the sunlit vegetation pixels from the soil background and within-crown
shadows. The watershed algorithm was then applied to extract tree crown polygons. Delineated
tree-crown polygons were further restricted to the central 25% area, considering the sensitivity
of SIF to the illumination conditions and canopy structure (Zarco-Tejada et al., 2013f;
Malenovsky et al., 2021a). Due to the spatial misalignment between the narrow-band and sub-
nanometer image, a manual selection process was then employed to identify and label trees
that were visible in both images. This step ensured a fair comparison between narrow-band and
sub-nanometer-based analysis. Eventually, 512 trees (n = 512) from 30 plots belonging to 9
treatments were selected for the 2021-Oct dataset. 576 trees (n = 576) from 33 plots belonging
to 9 treatments were selected for the 2023-Jan dataset. The mean reflectance and radiance of

the tree crowns in the same plot were used to represent the plot-level products.
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Fig. 5.16. Overview of the study site as shown in the sub-nanometer radiance mosaic
(composite: 760 (R), 710 (G) and 680 (B) nm) obtained on October 27", 2021. Plot
boundaries are green. Letters A-I represent the treatment group. See Chapter 3 for more
information on the study site.

5.2.2  SIF quantification

We implemented FLD-based methods for SIF quantification, as they are computationally
efficient and well-established. 3FLD was used to quantify SIF at the O2-A absorption feature
(SIF760), as the retrieval accuracy for far-red SIF based on the 3FLD method was less affected
by sensor characteristics compared to other FLD-based methods (Damm et al., 2011). While
SIF760 was retrieved from both narrow-band and sub-nanometer data, SIFes7 was only
quantified at the sub-nanometer resolution, as the O2-B absorption feature was not evident at
the narrow-band resolution (Fig. 5.1). SIFes7 was retrieved through the sFLD method, as the
assumption of linear spectral variations in 3FLD was invalid for the O2-B absorption region. It

has also been found in the previous study that SIFes7 retrieval errors through FLD-based
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methods were highly dependent on the selection of absorption windows and reference

shoulders, while SFLD was less affected than 3FLD (Cendrero-Mateo et al., 2019).
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Fig. 5.17. Comparison between narrow-band and sub-nanometer radiance spectra
extracted from one of the plots in the (a) fluorescence spectral region and zoomed-in views
for the (b) O2-B (685-690 nm) and (c¢) O2-A absorption region (750-780 nm).

The general formulation of FLD-based chlorophyll fluorescence quantification can be

expressed by:

F=— Fou ™ Eq. 5.1

Where F is the chlorophyll fluorescence in units of radiance. L' and E* are upwelling radiance
and downwelling irradiance, respectively. Suffix in indicates the wavelength where the
maximum absorption occurs in the absorption feature, while the suffix out is the reference
wavelength outside the absorption feature. One reference band at the left shoulder of the
absorption feature is required by the sFLD method. For the 3FLD method, one band at the left
shoulder and one at the right shoulder are used to obtain the virtual reference band through

linear interpolation at the maximum absorption wavelength.

The minimum radiance in the absorption window characterizes the maximum absorption

wavelength. The reference band is determined by searching for the maximum radiance in the
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reference shoulder intervals (Table 5.2). Considering the noises present in the sub-nanometer
data, the mean values of the bands within 1-nm distance from the determined shoulder
maximum are used to represent L', and E*,,,;. The irradiance was recorded by the HR2000
spectrometer (Ocean Optics, Dunedin, FL, USA) concurrently with the flights. An empirical
correction method was then employed to account for the atmospheric effects, using the non-

fluorescent target (i.e., bare soil pixels) in the scene.

We also quantified the absolute depth of O2-A and O:2-B absorption features by taking the
difference between the maximum radiance on the left shoulder and the minimum radiance

within the absorption window.

Table 5.6 Spectral intervals used to calculate SIF760 and SIF¢s7 using FLD-based methods.

Method  Left shoulder Absorption Right shoulder
interval window interval
SIF760  3FLD 750-755 nm 755-765 nm 771-776 nm

SIFes7  sFLD 684.5-685.5 nm 686-689 nm -

5.2.3  Fraunhofer line identification and depth calculation

A total of 16 Fraunhofer lines (FLs) were identified in the spectral range from 670-780 nm
from the sub-nanometer data (Fig. 5.3), with spectral regions heavily affected by water vapour
and oxygen absorption avoided during the selection (Albert ef al., 2023; Belwalkar et al., 2023).
The FLs were further categorized into red FLs and far-red FLs based on their spectral locations,
resulting in 5 red FLs and 11 far-red FLs. The absolute FL depth was defined as the difference
between the left shoulder maximum radiance and the minimum radiance within the FL
absorption feature. The minimum radiance was found within the pre-defined spectral interval
(Table 5.3) for each FL. The local maxima within the 1-nm range to the bottom of the FL

absorption feature were used as the left shoulder radiance.
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Fig. 5.18. Vegetation radiance spectrum (green lines) with sub-nanometer resolution
(FWHM =0.1-0.2 nm) overlaid with the selected 16 Fraunhofer lines (FLs) (blue shading),
0O:-B absorption feature (purple shading) and O2-A absorption feature (red shading) (a)
across the 670-780 nm region; (b) zoomed-in view for five red FLs and O:-B region; (c, d)
zoomed-in view for 11 far-red FLs and O:-A region. The width of the shaded area
represents the spectral interval used to calculate depths of absorption features (FLs, O»-
A and O:-B), SIF760 and SIFes7.

5.24  Plant trait retrieval from PRO4SAIL2 inversion

We retrieved leaf pigment content from the narrow-band reflectance data through the inversion
of the RTM PRO4SAIL2 [PROSPECT-D + 4SAIL2] (Verhoef and Bach, 2007; Féret et al.,
2017) with a look-up-table (LUT) based approach. For each of the two narrow-band datasets
of plot-mean reflectance, we generated a LUT with 500,000 simulations by running
PROA4SAIL?2 in the forward mode. To match the spectral characteristics of the narrow-band
hyperspectral imager (400 — 1000 nm, FWHM = 5.8 nm), spectral convolution with a Gaussian
function was then applied to the simulated spectra (400 — 2500 nm, FWHM = 1 nm). We also
employed continuous wavelet transform (CWT) with the second-derivative Gaussian kernel to
the simulated and observed spectra, as this method has been proven effective in decoupling
overlapping absorption features such as leaf pigment. Inversion was then carried out on the
transformed spectra by identifying the top 1% of simulated spectra that were most similar to

the observations, as determined by the root mean square error (RMSE). From this process, we
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retrieved needle chlorophyll a + b (Cab), carotenoid (Car) and anthocyanins (Anth) content for
both datasets. Further details of PRO4SAIL2 inversion are provided in Chapter 4 and Li ef al.
(2025).

Table 5.7 Spectral intervals used to define FLs for the sub-nanometer data and the
wavelength at the minimum radiance within the FL intervals. Note: the wavelength at the
bottom of the FL is not fixed and may differ for different radiance spectra. The
wavelengths listed in the table only represent the most frequently selected wavelengths in
our datasets.

Spectral interval (nm) Wavelength at the minimum
radiance (nm)

Red FLs

FL, 671.5-672.0 671.7770
FL, 672.5-673.0 672.6404
FL; 676.5-677.0 676.8390
FL4 680.6-681.4 681.0820
FLs 682.6-683.2 682.8702
Far-red FLs

FLs 744.2-745.0 744.6320
FL, 746.0-746.5 746.2680
FLg 749.0-750.0 749.5400
FLy 750.8-751.5 751.1760
FLyo 752.0-752.5 752.3520
FLi 753.0-753.5 753.1700
FL» 755.2-756.0 755.6240
FL13 756.5-757.3 756.9530
FL14 772.5-773.0 772.8020
FLis 774.0-774.5 774.3360
FL6 774.5-775.2 774.8990

5.2.5  Needle N and P modelling

For each of the two datasets, Gaussian Process Regression (GPR) models (Rasmussen, 2004)
were trained to predict concentrations of needle N and P at the plot level with various inputs.
The benchmark model was selected based on results from Chapter 4, which included RTM-
derived needle pigment content (i.e., Cab, Car, Anth) and SIF760-narrow as inputs. With a further
focus on SIF evaluation in the needle nutrient monitoring context, we then replaced SIF760-narrow
in the benchmark inputs with 1) SIF760-subnano, 2) SIFe687-subnano. We further incorporated FL
depths into the GPR input sets to understand the distinct contribution of red and far-red FL
depths, and thus photosystem I and photosystem II, to explain needle N and P variabilities in
radiata pines. More specifically, we built GPR models with inputs consisting of RTM-derived
needle pigment content (i.e., Cab, Car, Anth) and 1) one red FL depth at a time; 2) one far-red FL
depth at a time; 3) O2-Asubnano depth or O2-Bsubnano depth; 4) any combination of one red FL and
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one far-red FL depths; 4) SIF760-subnano and any of the 16 FL depths; and 5) SIFes7 and any of
the 16 FL depths.

The hyperparameters of the GPR algorithm were automatically tuned for each target variable
with the Bayesian optimizer in MATLAB using the parallel computing toolbox (Statistics and
Machine Learning toolbox; MathWorks Inc., Natick, MA, USA). The model performance was
determined through a Leave-One-Out Validation (LOOV) procedure. The normalized root
mean squared error (NRMSE), and the coefficient of determination (R?) were used as the
primary metrics for model prediction accuracy. NRMSE was calculated as the ratio between

RMSE and the range of needle nutrient measurements of the dataset.

5.3 Results

5.3.1  SIF7e0 from narrow-band and sub-nanometer images

The preliminary analysis of O2-A absorption band depths revealed a moderate relationship
between two hyperspectral imagers for both datasets (R?> = 0.63 and 0.54 for 2021-Oct and
2023-Jan datasets, respectively, p-value < 0.001) (Fig. 5.4a). O2-Asubnano depth displayed a
higher magnitude (58-106 mW/m?/nm/sr) than O2-Anarrow depth (24-57 mW/m?/nm/sr), as the
O2-A absorption feature showed a shallower bottom at the narrow-band resolution than the sub-

nanometer resolution (Fig. 5.1).

The narrow-band- and sub-nanometer-based SIF760 quantified through the 3FLD method were
moderately correlated (Fig. 5.4b), with a higher R? observed in the 2021-Oct dataset (0.63, p-
value < 0.001) than for the 2023-Jan dataset (0.51, p-value < 0.001). Notably, SIF760 quantified
at the narrow-band resolution was significantly larger than their sub-nanometer counterparts:
SIF760-narrow values were at least three times higher than SIF760-subnano Values for the 2021-Oct
dataset, and about two times higher for the 2023-Jan dataset. It should also be clarified that our
retrievals of SIF760 from both hyperspectral imagers were higher than the expected values for

healthy vegetation (0.5-3 mW/m?/nm/sr).
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Fig. 5.19. Correlation (R?) between (a) Oz-A absorption band depth and (b) SIF76 values
from the narrow-band and sub-nanometer data for the 2021-Oct (green) and 2023-Jan
(yellow) datasets at the plot level. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05;
ns: not significant.
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Regarding the O2-B absorption region (Fig. 5.5a), we noted a narrower range of the O2-B band
depth in the 2023-Jan dataset (3.2-4.8 mW/m?/nm/sr) than the 2021-Oct dataset (1.2-3.4
mW/m?/nm/sr). Due to the different image acquisition dates and thus the differences in the
illumination conditions, the band depths are not directly comparable. SIF¢s7 determined by the
sFLD method (Fig. 5.5b) showed a lower magnitude and narrower ranges for the 2021-Oct
dataset (0.3-1.1 mW/m?/nm/sr) than for the 2023-Jan dataset (2.2-3.2 mW/m?/nm/sr).
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Fig. 5.20. Pairwise correlation (R?) of sub-nanometer-based absorption features,
including Fraunhofer line (FL) depths and O, absorption feature depths for the (a) 2021-
Oct and (b) 2023-Jan datasets at the plot level.

5.3.2  Fraunhofer line depth and SIFss7 from sub-nanometer images
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The assessment of pairwise correlation for the depths of absorption features obtained from the
sub-nanometer data, including FLs and O2-A and O2-B regions, is presented in Fig. 5.6. The
pattern of strong correlation between depths of far-red absorption features (i.e., far-red FLs and
02-A) were observed in both datasets, especially for features located between FL7 to O2-A
region (746-760 nm) in the 2021-Oct dataset (Fig. 5.6a). By contrast, the pairwise comparison
within the red spectral region (i.e., red FLs and O2-B depths) showed weaker correlation in
both datasets, potentially due to the strong influence of re-absorption by pigment in this region
and the intrinsic sensor noise effects on subtle red absorption features. Furthermore, depths of
red absorption features were weakly correlated with those in the far-red region, which was

more distinct in the 2023-Jan dataset (Fig. 5.6b).

2021.0ct (a) 2023-Jan (b)
||

1.00

0.80

0.80

0.70

0.60

0.50

0.40

10.30

(M) uopeUILLSIBP JO JuUBDIE0

(4

m m T
i N e W
a2 N W B oo

Fig. 5.21. Distributions of (a) O:-B absorption feature depth and (b) SIFes7 values
quantified from sub-nanometer data for the 2021-Oct and 2023-Jan datasets at the plot
level. The sample sizes (n) are 30 and 33 for the 2021-Oct and 2023-Jan datasets,
respectively.

5.3.3  Model performance for needle N and P predictions

The linear relationships between variables, including SIF and depths of absorption features,
and measured needle N and P concentrations, were evaluated before the GPR modelling
process. Overall, all variables of interest were better correlated with needle P measurements
than needle N (Table 5.4). A weak linear relationship (R?> < 0.2) was consistently observed
between needle N and all variables for both datasets, regardless of the spectral regions (i.e., red
and far-red) or the spectral resolutions (i.e., narrow-band and sub-nanometer) from which those
variables were derived. On the other hand, a stronger relationship was found between needle P
measurements and SIF or band depths in the 2021-Oct dataset compared to the 2023-Jan dataset.

Within each dataset, needle P was better related to far-red variables than the red variables
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derived from the sub-nanometer data. For instance, SIF760-subnano presented an R? of 0.52 and
0.26 with needle P for the 2021-Oct and 2023-Jan datasets, respectively, while the correlation
between SIFes7-subnano and needle P was weaker (R? = 0.01 for 2021-Oct, and 0.05 for 2023-
Jan). Similarly, the depth at the O2-A absorption feature was more closely related to needle P
in both datasets (R? = 0.36 and 0.19, respectively) than the O2-B absorption depth (R? = 0.00
and 0.15, respectively).

Table 5.8 Correlation (R?) between measured needle N and P concentrations and variables
quantified from the sub-nanometer data (i.e., 16 Fraunhofer line [FL] depths and O»-
Bsubnano absorption band depth, SIFeg7-subnano and SIF760-subnano) and variables quantified
from the narrow-band data (i.e., O2-Aparrow absorption band depth and SIF760-narrow) for
the 2021-Oct and 2023-Jan datasets at the plot level. The blue shading of the cell indicates
the magnitude of R?, with a darker color representing stronger correlation.

Needle N (g/kg) Needle P (g/kg)

2021-Oct 2023-Jan 2021-Oct  2023-Jan
FL: 0.05 0.00 0.01 0.15
FL» 0.00 0.08 0.01 0.08
FL3 0.01 0.00 0.00 0.13
FL4 0.00 0.01 0.03 0.06
FLs 0.01 0.00 0.04 0.04
O2-Bsubnano 0.09 0.09 0.00 0.15
FLe 0.05 0.06 0.06 0.00
FL~7 0.07 0.10 0.19 0.00
FLsg 0.07 0.01 0.24 0.04
FLo 0.05 0.03 0.29 0.06
FL1o 0.02 0.00 0.17 0.01
FLu 0.04 0.02 0.28 0.12
FL12 0.02 0.00 0.34 0.06
FLi3 0.04 0.01 0.23 0.08
O2-Asubnano 0.08 0.02 0.36 0.19
FL14 0.19 0.00 0.21 0.09
FLis 0.03 0.01 0.19 0.25
FLis6 0.10 0.00 0.36 0.22
SIF760-subnano 0.05 0.01 0.52 0.26
SIF687-subnano 0.06 0.13 0.01 0.05
SIF760-narrow 0.07 0.00 0.46 0.44
O2-Anarrow 0.07 0.00 0.47 0.37

Comparing variables obtained at different spectral resolutions, it is noticed that narrow-band-
based variables (i.e., SIF760-narrow and O2-Anarrow) generally had a stronger relationship with

needle P than the sub-nanometer-based counterparts (i.e., SIF760-subnano and O2-Asubnano) in both
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datasets, with the only exception of needle P with SIF760 relationship for the 2021-Oct dataset
(R2 = (.46 for SIF760-narr0w vs 0.52 for SIF760-subnan0).

Needle N

Benchmarking against the narrow-band-based model developed in Chapter 4, N = f{Cab, Car,
Anth, SIF760-narrow), we evaluated whether sub-nanometer-based variables could further improve
the needle N prediction accuracy by replacing the narrow-band-based SIF70 with SIF or
absorption feature depths (i.e., FLs and O2) derived from the sub-nanometer data. The
performance of GPR models for needle N predictions is summarized in Table 5.5. It is apparent
that none of the evaluated models yielded statistically significant or accurate prediction results
for needle N in the 2023-Jan dataset. The probable cause is the lack of significant differences
between needle N concentration measurements from various fertilization treatments in the

specific dataset. More details of field data analysis are available in Chapter 3.

In the case of the 2021-Oct dataset, substituting the narrow-band-based SIF760 in the benchmark
model [N = f(Cab, Car, Anth, SIF760-narrow)] With the sub-nano-based values [N = f{Cab, Car, Anth,
STF760-subnano)] did not significantly affect the prediction accuracy, with the NRMSE value of
0.20 for both models. The focused analysis of sub-nanometer data showed that variables
quantified from the red region contributed less to the needle N predictions than those from the
far-red region. When red SIF (SIFes7-subnano) was used in the GPR inputs, the prediction
accuracy dropped dramatically (AR* < -0.19, ANRMSE = 0.04), as compared to the models
built with far-red SIF (SIF760-subnano). Similarly, the model with O2-B band depth (R? = 0.30, p-
value < 0.001, NRMSE = 0.25) was more erroneous than the one built with O2-A band depth
(R?=0.47, p-value < 0.001, NRMSE = 0.22). Furthermore, the model with the best-performing
red FL depth, N = f{Cab, Car, Anth, FL4), produced lower accuracy (R? = 0.49, p-value < 0.001,
NRMSE = 0.21) than N = f{Cab, Car, Anth, FL16), the model with the best performing far-red FL
depth (R? = 0.62, p-value < 0.001, NRMSE = 0.17). Notably, the latter was also the most
accurate model among all for needle N predictions for the 2021-Oct dataset. It is also evident
that all the models that outperformed the narrow-band-based benchmark for needle N
predictions contained the depth of a far-red FL in the inputs. Moreover, the model with the
best-performing combination of red and far-red FL depths, N = f{Cab, Car, Anth, FL1, FLi6),
showed a decrease in prediction accuracy due to the addition of the red FLi (AR? < -0.04,
ANRMSE = 0.02), implying the adverse effects of red FL depths in explaining needle N
variabilities in this study. Finally, it is important to emphasize that our results on needle N

analysis might not be conclusive due to the limited availability of effective datasets.
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Table 5.9 Performance of GPR models for needle N predictions at the plot level for the
2021-Oct and 2023-Jan datasets with inputs including PRO4SAIL2-derived needle
pigment content (Cab, Car, Anm) from the narrow-band data; SIF76 and O2-A absorption
band depth quantified from sub-nanometer (SIF760-subnano and O2-Asubnano) and narrow-
band (SIF760-narrow and O2-Anarrow) data; SIFeg7-subnano, depths of Fraunhofer lines (FLs)
and O2-Bsubnano absorption feature calculated from the sub-nanometer data. n represents
the sample size. ***p-value < 0.001; **p-value < 0.01; *p-value < (0.05; ns: not significant.

2021-Oct (n=30)  2023-Jan (n = 33)

R? NRMSE R? NRMSE

Narrow-band-based models

N = f{Cab, Car, Anth, STF760-narrow) 0.56*** (.20 0.08"  0.23
N = f{Cab, Car, Anth, O2-Anarrow) 0.57*** 0.19 0.06™  0.24
Sub-nanometer-based models

N = f{Cab, Car, Anth, SIF760-subnano) 0.50*** 0.20 0.03"  0.25
N = f{Cab, Car, Anth, SIF687-subnano) 0.31** 0.24 0.04™  0.24
N = f{Cab, Car, Anth, O2-Asubnano) 0.47*** (0.22 0.08"  0.23
N = f{Cab, Car, Anth, O2-Bsubnano) 0.30**  0.25 0.24** 0.22
N = f{Cab, Car, Anth, FL4) 0.49*** (.21 0.10"  0.23
N = f{Cab, Car, Anth, FL16) 0.62*** (.17 0.16* 0.22
N = f{Cab, Car, Anth, FL1, FL16) 0.58*** (.19 0.13" 0.22
N = f(Cab, Car, Anth, SIF760-subnano, FL16) 0.57*** 0.19 0.11™  0.23
N = f{Cab, Car, Anth, SIF687-subnano, FL12) 0.49*** 0.20 0.01™  0.25

Needle P

Overall, higher prediction accuracies were obtained for needle P predictions than for needle N
for both datasets (Table 5.6). The narrow-band-based benchmark P = f{Cab, Car, Anth, STF760-
narrow) showed a significant advantage over any of the sub-nanometer-based models for the
2021-Oct datasets, with an R? of 0.69 (p-value < 0.001) and a NRMSE value of 0.13. For the
203-Jan dataset, the advantage of the benchmark model was less evident, as two sub-
nanometer-based models produced similar prediction accuracy (R? = 0.49-0.50, p-value <
0.001, NRMSE = 0.21-0.22): P = f{Cab, Car, Anth, O2-Asubnano) and P = f{Cab, Car, Anth, SIF760-
subnano, FL14). The replacement of narrow-band-based SIF760 with the sub-nanometer-based
SIF760 in the GPR model inputs resulted in a reduction in needle P prediction accuracy for both
datasets (AR? = -0.20 and -0.14, ANRMSE = 0.04 and 0.03, for 2021-Oct and 2023-Jan,

respectively).
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Table 5.10 Performance of GPR models for needle P predictions at the plot level for the
2021-Oct and 2023-Jan datasets with various inputs: PRO4SAIL2-derived needle
pigment content (Cab, Car, Anm) from the narrow-band data; SIF76 and O2-A absorption
band depth quantified from sub-nanometer (SIF760-subnano and O2-Asubnano) and narrow-
band (SIF760-narrow and O2-Anarrow) data; SIFeg7-subnano, depths of Fraunhofer lines (FLs)
and O2-Bsubnano absorption feature calculated from the sub-nanometer data. n represents
the sample size. ***p-value < 0.001; **p-value < 0.01; *p-value < (0.05; ns: not significant.

2021-Oct (n = 30) 2023-Jan (n = 33)

R? NRMSE R? NRMSE

Narrow-band-based models

P = f(Cab, Car, Anth, SIF760-narrow) 0.69*** (.13 0.49%** (.22
P = f(Cab, Car, Anth, O2-Anarrow) 0.61*** (.15 0.50*** (.22
Sub-nanometer-based models

P = f{Cab, Car, Anth, SIF760-subnano) 0.49*** (.17 0.35*** (.25
P = f{Cab, Car, Anth, SIF687-subnano) 0.19* 0.23 0.22**  0.27
P = f(Cab, Car, Anth, O2-Asubnano) 0.49*** (.18 0.50*%** (.21
P = f(Cab, Car, Anth, O2-Bsubnano) 0.17* 0.22 0.33*** (.25
P = f(Cab, Car, Anth, FL1) 0.37*** 0.20 0.34*** (.25
P = f{Cab, Car, Anth, FL16) 0.51*** 0.17 0.36*** 0.25
P = f(Cab, Car, Anth, FL3, FL16) 0.46*** (.18 0.45%** (.23
P = f{Cab, Car, Anth, SIF760-subnano, FL14) 0.49*** (.18 0.52%** (.21
P = f{Cab, Car, Anth, SIF687-subnano, FL12) 0.46*** (.18 0.31*** (.25

Among the sub-nanometer-based models, the superiority of far-red variables over red variables
for needle P predictions was observed. There was a decrease in needle P prediction accuracy
when the red SIF (SIFeg7-subnano) was used alongside PRO4SAIL2-derived pigments as inputs
for the GPR models (R>=0.19 and 0.22, NRMSE = 0.23 and 0.27, for 2021-Oct and 2023-Jan,
respectively), as opposed to the case where the far-red SIF (SIF760-subnano) was added (R? = 0.49
and 0.35, NRMSE = 0.17 and 0.25). A similar level of discrepancy in needle P prediction
performance was found between the model with O2-Bsubnano depth and the one with O2-Asubnano
depth, with the latter showing higher accuracy for both datasets. Comparing the FL-involved
models, the model with the best-performing red FL depth (i.e., FL1) yielded relatively poor
accuracies for both datasets (R> = 0.37 and 0.34, p-value < 0.001, NRMSE = 0.20 and 0.25 for
2021-Oct and 2023-Jan, respectively). The model with the best-performing far-red FL depth
(i.e., FL16) was the most accurate for the 2021-Oct dataset (R = 0.51, p-value < 0.001, NRMSE
= 0.17). Moreover, when pigments and SIF (e.g., SIF¢87-subnano 0r SIF760-subnano) Were fixed in

the GPR inputs and one FL depth was added to the input set at a time, the best-performing FL

87



depths selected were both in the far-red region (e.g., FLi2 and FLi4), demonstrating the
importance of far-red FL depths in needle P predictions over red FL depths.

5.4 Discussion

Our results based on two datasets suggest that the sub-nanometer-based SIF760 did not further
contribute to the needle P prediction accuracy than the narrow-band-resolved SIF760 already
did, when SIF760 was used as the input of GPR predictive models along with needle pigment
content derived from PRO4SAIL2. It remains inconclusive whether the sub-nanometer
resolution would contribute more compared with SIF760 as a predictor for needle N content,
due to the limited availability of needle N measurements. These results on P estimations are
against our hypothesis that SIF7c0 quantified at the sub-nanometer resolution can provide more
information on needle nutrient status than that from the narrow-band resolution. The hypothesis
is established on the findings from simulation studies (Damm et al., 2011; Belwalkar et al.,
2022) that finer spectral resolutions enable more accurate quantification of SIF at the O2-A
absorption region through 3FLD methods. Our findings also contradict those of a previous
study on the application of airborne SIF for leaf N assessment in crop canopies. Belwalkar et
al. (2022) found that SIF760 quantified from sub-nanometer images (FWHM = 0.1-0.2 nm)
contributed more than SIF760 from narrow-band images (FWHM = 5.8 nm) to the leaf N
predictions, when used as machine learning regression model inputs along with RTM-derived
leaf chlorophyll a + b content (R? = 0.93 vs 0.87, RMSE = 0.09 vs 0.12). Additionally, we
observed only moderate correlation (R? = 0.51 and 0.63, for 2021-Oct and 2023-Jan datasets,
respectively) between the narrow-band-based and sub-nanometer-based SIF760, lower than the
correlation reported by Belwalkar ef al. (2022). The reduced agreement in our study can be
partially attributed to the segmentation process, which introduced spatial and spectral
discrepancies in the tree crowns extracted from narrow-band and sub-nanometer images (e.g.,

pixel mixture and tree crown sizes), and the canopy complexities.

The deviation of our results from the initial hypothesis or previous studies can be partially
explained by the SIF760 retrieval accuracy from both imagers, which subsequently affected the
needle nutrient predictions. The retrievals, either from narrow-band or sub-nanometer images,
were beyond the expected ranges for far-red SIF (0.5-3 mW/m?/nm/sr). Higher values of SIF760
were consistently obtained from narrow-band images, which can be explained by the coarser

spectral resolution. This is consistent with findings from previous studies (Damm et al., 2011;
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Julitta et al., 2016; Cendrero-Mateo et al., 2019; Belwalkar et al., 2022) that narrow-band
resolution (FWHM > 1 nm) results in overestimates of FLD-based SIF760 values. Therefore,
SIF760 retrievals in this study can only be considered as relative indicators of plant
physiological responses induced by various fertilization levels across the study site, instead of
as absolute quantifications of SIF. In practice, absolute errors in airborne SIF estimates could
hardly be quantified, unless sophisticated radiative transfer modelling is involved. Some
airborne-based studies (Damm et al., 2014; Belwalkar et al., 2022) employed SIF quantified
from ground-level TOC spectral measurements from handheld spectrometers as the baseline
values, as they are free of errors related to atmospheric effects and observation geometry. This
strategy is less practical in our case, given the heights and shape of radiata pine trees. Some
studies also use steady-state chlorophyll fluorescence measured by active techniques (e.g.,
fluorometers) at the leaf level to compare with the canopy-level SIF retrievals (Zarco-Tejada
et al., 2013a; Hernandez-Clemente et al., 2017a; Wang et al., 2022). However, the leaf
chlorophyll measurements do not always strongly correlate with the airborne TOC SIF due to
the differences in active and passive measuring mechanisms and the scale mismatch (Cendrero-
Mateo et al., 2016). Additionally, the special circumstances of coniferous canopy restrain the
implementation of in-situ steady-state fluorescence measurements, such as the canopy height
and the small foliar surface area. The latter renders the use of leaf clips more challenging for
fluorometer measurements. In summary, the comparison between airborne narrow-band- and
sub-nanometer-based SIF760 lacks validity, as the accuracy of SIF760 estimates remains
unknown. Future research could use drones to acquire low-altitude TOC spectral measurements

as an alternative to validate SIF760 obtained by a piloted aircraft at a higher altitude.

Airborne SIF retrieval accuracy at O absorption features is known to be susceptible to
atmospheric effects. Non-fluorescent targets, such as bare soil pixels, have been used in the
current and previous studies to account for the atmospheric effects and observational geometry,
to correct the out-of-range SIF estimates (Damm et al., 2014; Belwalkar et al., 2022; Wang et
al.,2022). However, our post-correction SIF values are still higher than expected, implying the
insufficiency of such an empirical atmospheric correction method in our case. It is
recommended that the reference soil target be in the vicinity of the plant target with a similar
radiance level (Guanter et al., 2010; Damm et al., 2014). Both studies used a spatially
interpolated soil layer as a reference to guarantee high spatial adjacency. However, the vicinity
criterion was hardly met in our analysis since barely any clear soil targets were identified closer

to the trees. Instead, they were located along the road as shown in the scene. We recommend

89



implementing radiative transfer modelling for comprehensive atmospheric correction for

heterogeneous canopies in the future.

We found SIFs6s7-subnano Was poorly related to needle N and P status in both datasets, compared
to other sub-nanometer-derived variables. This aligns with the previous study by Belwalkar et
al. (2023), where SIFes7 contributed little to the leaf N estimations when used as GPR model
inputs alongside RTM-derived leaf Cab content. The authors contend that the collinearity
between SIFes7 and Cab resulted in the low prediction accuracy. Nevertheless, we did not notice
strong correlations between SIFes7-subnano and any RTM-derived needle pigment in our datasets.
Several factors could partially explain the limited contribution of SIFes7 for needle nutrient
assessment. First, the sSFLD method used in this study did not account for canopy re-absorption
and scattering effects on SIFes7. It is known that leaf chlorophyll fluorescence emitted in the
red spectral region suffers more from chlorophyll re-absorption, compared to fluorescence
emitted in the far-red region. The coniferous canopy structure further complicates the
interpretation of at-sensor SIFes7 signals. Second, red SIF retrievals based on the FLD principle
are prone to errors. Cendrero-Mateo et al. (2019) evaluated uncertainties in red SIF retrievals
through various methods, including sFLD, 3FLD, iFLD and SFM, against model-simulated
chlorophyll fluorescence at the red peak. Their results indicated that both sFLD and 3FLD
methods produced less accurate red SIF retrievals than more advanced methods such as iFLD
and SFM. The selection of shoulder wavelengths and the definition of absorption windows
were identified as the major sources of errors in FLD-based retrievals. Given all these
complexities, we suggest the use of advanced RTMs such as SCOPE, Fluspect coupled with
canopy model (e.g., 4SAIL2 and FLIGHT) for SIFses7 quantification in heterogeneous canopies

in the future.

FL absorption features, which are largely unaffected by atmospheric effects, provide an
opportunity to track the response of chlorophyll fluorescence emissions to abiotic stressors
without requiring complex atmospheric correction. Our results indicate that far-red FL depths
contribute more to the needle N and P estimation than the depths of red FLs. The GPR model
built with RTM-derived pigment (i.e., Cab, Car, and Ant) and FLi6 (774.8990 nm) provided
improved prediction accuracy for both needle N (R? = 0.62, p-value < 0.001, NRMSE = 0.17)
and P (R? = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25), compared to the models with
sub-nanometer-based SIF and red FL depths. This may be attributed to the generally deeper
and wider absorption feature in the far-red region, making far-red FL depths less sensitive to

noise and spectral shifting effects. From a physiological perspective, the stronger association
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between far-red FL depths and needle nutrient status likely reflects the involvement of both
photosystems in stress responses. While the fluorescence in the red region is primarily
contributed by PSII, the far-red spectral region is influenced by chlorophyll fluorescence
emissions from both PSI and PSII. In conclusion, these results indicate the potential of FL
depths, especially far-red FLs, obtained at the sub-nanometer resolution, for needle N and P
monitoring in coniferous canopies. Future research could more extensively evaluate various
combinations of FL depths, with or without RTM-derived traits, in the context of needle N and

P estimations.

5.5 Conclusions

Built upon previous findings that RTM-derived needle pigment content and far-red SIF (SIF760)
quantified from airborne narrow-band (FWHM = 5.8 nm) images are effective predictors for
needle N and P concentrations in radiata pines, this study focused on the comparison of SIF
obtained from narrow-band and sub-nanometer (FWHM = 0.1-0.2 nm) images and their impact
on needle N and P estimation, using two datasets. We also investigated the contribution of FLs
that were only evident at sub-nanometer resolution to the assessment of needle N and P
concentration. Our results showed that the sub-nanometer resolution did not further improve
the contribution of SIF760 to needle N and P estimations, compared to the narrow-band-based
benchmark model with RTM-derived pigment content and SIF760 as inputs. These findings
contradicted our hypothesis that finer spectral resolution enables more accurate SIF76o
retrievals, which subsequently contribute more to the needle N and P estimation. However, as
the uncertainties in the SIF760 retrievals from both imagers could not be quantified in this study,
it remains inconclusive whether sub-nanometer resolution is superior to the narrow-band
resolution for SIF760 application in needle N and P estimations. Potential sources of errors in
SIF760 estimates include atmospheric effects, viewing geometry and errors related to the applied
3FLD method. For future research in heterogeneous coniferous canopies, we recommend using
SIF (red and far-red) retrieved from low-altitude drone-acquired sub-nanometer spectral
measurements as the baseline to validate SIF estimates from higher altitudes. Atmospheric

RTMs should be implemented to account for the atmospheric effects and viewing geometry

properly.

The sub-nanometer resolution provided the valuable opportunity to explore red SIF (SIFes7)

and FLs for needle nutrient assessment. We found that SIFes7 was ineffective in explaining
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needle N and P variabilities. This could be partially attributed to the canopy re-absorption and
scattering effects for red fluorescence, as well as the retrieval errors embedded in the sFLLD
method, which collectively complicated the interpretation of at-sensor SIFes7. It is suggested
that advanced leaf-canopy RTMs should be employed in the future to obtain more reliable
SIFes7 estimates. The analysis of 16 FLs spanning between 670 and 780 nm revealed that far-
red FL depths contributed more than red FL depths to both needle N and P estimations. More
specifically, when combined with narrow-band-based RTM-derived pigments as GPR model
inputs, the depth of FL16 (774.8990 nm) yielded the highest needle N prediction accuracy (R?
= 0.62, p-value < 0.001, NRMSE = 0.17) for the 2021-Oct dataset, and provided needle P
prediction accuracy that was comparable to the models with sub-nanometer-based far-red SIF
for both datasets (R = 0.36-0.51, p-value < 0.001, NRMSE = 0.17-0.25). Overall, our results
indicate the potential of FL depths, especially far-red FL depths, obtained at the sub-nanometer

resolution, for needle N and P estimations in coniferous canopies.
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Chapter 6

Comparison of multispectral bandsets
vs. hyperspectral data for needle
nitrogen and phosphorus assessment 1n
radiata pines

Highlights

e Hyperspectral-based models have demonstrated their superiority over multispectral-
based models for needle N and P monitoring.

e Multispectral bandsets covering the VNIR range are better suited for needle P
estimation than N.

e We proposed a 12-band bandset with 10-nm FWHM for needle P assessment, which

outperformed the 10-band commercial MicaSense RedEdge-MX Dual camera bandset.

Abstract

Hyperspectral remote sensing provides rich information for assessing physiological changes
experienced under needle nitrogen (N) and phosphorus (P) deficiency in radiata pine forests.
However, the high monetary and computational costs of hyperspectral images prohibit their
application in operational monitoring at large scales. Multispectral cameras could be a cost-
effective alternative for such purposes. Nevertheless, their coarser spectral resolution and
limited number of bands restrict their capability to fully capture the subtle spectral features
associated with needle nutrient variabilities. Therefore, optimal bandsets must be selected for
specific objectives (i.e., estimation of needle N and P content in this case) to guide the bandset

design and future development of multispectral cameras.

In this study, we assessed the utility of multispectral data (Full Width at Half Maximum
(FWHM) > 10nm) for explaining needle N and P variability, against benchmark models built

with narrow-band hyperspectral data (FWHM = 5.8 nm) covering the visible-near infrared
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(VNIR) region. We investigated whether the commercially available 10-band multispectral
camera Micasense Dual-MX System (FWHM = 10-54 nm) could be used for needle N and P
assessment. Furthermore, we explored if other multispectral bandsets with 10-nm FWHM
could yield higher accuracy for needle N and P estimation compared with the standard
Micasense bandset, using the narrow-band-convolved FWHM-10nm data. Using four datasets
collected over three years at a nutrient experiment site of radiata pines, we developed Gaussian
Process Regression (GPR) algorithm to estimate needle N and P using multispectral reflectance
as inputs. Three sources of multispectral data were investigated: 1) Micasense data with 10
bands acquired during two airborne campaigns in 2023; 2) Simulated Micasense data derived
through convolving narrow-band data collected over four airborne campaigns from 2021 to
2023; 3) the proposed optimal multispectral bandsets with a 10-nm FWHM derived from the
same four narrow-band datasets. Optimal multispectral bandsets were selected through a
clustering-based approach where the redundant bands were removed, and informative bands
were retained for successfully explaining needle N and P variability. The N/P prediction
performance of these multispectral-based models were compared with that of the
hyperspectral-based benchmark models, of which the GPR inputs included four parameters
retrieved from the narrow-band data: needle chlorophyll a + b, carotenoid and anthocyanin
content derived from the radiative transfer model (RTM), PRO4SAIL2 applied to pure crown
vegetation pixels, and far-red solar-induced fluorescence (SIF760) quantified through the 3FLD

method.

We found that narrow-band hyperspectral-based benchmark models built with physiological
traits displayed a more consistent prediction performance for both needle N (R? = 0.41-0.53,
NRMSE = 0.20-0.24, p-value < 0.001) and P (R*> = 0.52-0.77, NRMSE = 0.12-0.21, p-value <
0.001), compared with all multispectral-based models evaluated. We did not identify any
multispectral-based model with robust prediction performance for needle N across datasets,
with the best performance achieved by the model built with a proposed bandset (named as
BS12N2) consisting of 12 bands at 10-nm FWHM (R? = 0.17-0.53, NRMSE = 0.19-0.30, p-
value < 0.05). However, multispectral-based models were better suited for explaining the
variability in needle P than needle N, in terms of the prediction robustness and accuracy across
datasets. The newly proposed 12-band bandset BS12P (R? = 0.37-0.72, NRMSE = 0.13-0.25,
p-value < 0.01) outperformed the simulated 10-band Micasense bandset (R? = 0.26-0.62,
NRMSE = 0.15-0.27, p-value < 0.05) for needle P prediction for four datasets. These results

suggest thatdespite the slight compromise in model accuracy compared to the hyperspectral-
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based benchmark, the proposed 12-band bandset with 10 nm FWHM, BS12P, could potentially
be used for the development of a multispectral camera specifically for needle P estimation on

an operational scale.

6.1 Introduction

Pinus radiata D. Don (radiata pines) is extensively planted as the main softwood species
worldwide, as well as in Australia. The wood productivity is prone to the effects of nutrient
deficiency, such as nitrogen (N) and phosphorus (P) (Turner and Lambert, 1986). More
specifically, needle N status has been found closely related to wood density and latewood
percentage (Beets ef al., 2001a). Insufficient N and P supply results in premature shedding of
needles, stunted stem growth, decreased branch production and thin crowns (Will and Hodgkiss,
1977; Nambiar and Fife, 1987a). Precise and accurate monitoring of needle nutrient status, of

N and P, is critical for optimising wood production of radiata pines.

The advancement in hyperspectral remote sensing using narrow-band hyperspectral sensors
(Full width at half maximum [FWHM] < 10 nm) has provided abundant and detailed spectral
information on ground targets (e.g., plants), enabling the quantification of plant biophysical
and biochemical parameters closely related to nutrient status. Recent studies have shown that
leaf pigment content (e.g., chlorophyll a + b, carotenoid and anthocyanins) retrieved from
radiative transfer model (RTM) inversion and far-red solar-induced fluorescence (SIF) derived
from airborne hyperspectral data are informative indicators of leaf N or P status (Belwalkar et
al., 2022; Wang et al., 2022; Li et al., 2024). However, several factors are hindering the
application of hyperspectral imagery in the operational-scale monitoring of leaf nutrient status
on a regular basis. First, the vast data volume imposes high computational costs and requires
expertise and domain knowledge for data analysis and interpretation. Second, the higher cost
of hyperspectral cameras contributes to their lower popularity in practical applications.
Furthermore, the weights of hyperspectral cameras usually exceed the payloads of unmanned
aerial vehicles (UAVs), restricting their suitability for UAV applications (Nex et al., 2022).
Alternatively, multispectral cameras with usually 4 to 12 bands offer the advantages of
affordability, lightweight and smaller data volume for processing. Nevertheless, these benefits

inevitably come at the expense of information loss due to the coarser spectral resolution.
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Multiple studies have thus focused on comparing the performance of multispectral and
hyperspectral cameras for estimating plant biochemical and biophysical parameters. For
instance, Zhou et al. (2022) reported a more significant advantage of hyperspectral data (R* =
0.78) compared with the simulated data (R?> < 0.35) of three commonly used five-band
multispectral cameras (i.e., P4 Multispectral, Parrot Sequoia+ and MicaSense RedEdge MX)
in the application of potato leaf N concentration estimation. Lee et al. (2004) evaluated AVIRIS
hyperspectral data and AVIRIS-derived Landset ETM+ and MODIS data for leaf area index
(LAI) retrievals in various biomes and concluded that hyperspectral AVIRIS data with selected
wavelengths offered the best accuracy among all. Guo et al. (2023) demonstrated that the UAV-
acquired hyperspectral data yielded higher accuracy (ULTRIS X20 Plus, R? = 0.86) than the
acquired multispectral data (DJI Phantom 4, R? = 0.75) for LAI estimation in maize. In some
cases, multispectral data can provide comparable modelling performance to hyperspectral data,
questioning the necessity of expensive hyperspectral imagery. Lu et al. (2019) simulated
MicaSense RedEdge-MX image from hyperspectral data and found that the hyperspectral-
based model only achieved a marginally higher accuracy (R*> = 0.81) for leaf chlorophyll
estimation than the model based on the simulated multispectral data (R? = 0.80). Croft et al.
(2015) reported similar accuracy for leaf chlorophyll content estimation from hyperspectral
data and simulated Landsat 5 TM data (R?> = 0.77 and 0.75, respectively). It should be noted
that, in most cases mentioned above, researchers used simulated multispectral images derived
from the obtained hyperspectral data to avoid discrepancies caused by environmental and
instrumental effects, thereby ensuring a fair comparison. In short, there is no universal answer
to the question of whether hyperspectral cameras are superior to multispectral cameras for
certain modelling purposes. The answer is specific to the modelling process, the target variable
to be retrieved, the band center and width of multispectral bands of interest and the spectral
coverage. In this study, we aim to evaluate the suitability of the recent MicaSense RedEdge-
MX Dual imaging system with 10 bands covering the visible to near infrared (VNIR) region
for needle N and P estimation in a radiata pine plantation and compare its performance against

the hyperspectral-based models which include plant functional traits as inputs.

Hyperspectral data can be used not only to simulate and assess the performance of existing
multispectral sensors for various modelling applications but also to identify the most
informative spectral bands for specific target variables, thereby guiding the design and
development of next-generation multispectral sensors. Numerous studies have focused on

selecting informative bands from hyperspectral data in the context of regression applications,
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with the primary motives of eliminating spectral noise, reducing computational load, and
avoiding overfitting to achieve model transferability. Band selection (BS) algorithms are
applied to the original reflectance spectrum (Guo et al., 2018; Li et al., 2018; Cao et al., 2021)
or to the transformed spectrum (Mutanga and Kumar, 2007; Lin et al., 2024), where spectral
transformation techniques (e.g., continuum removal, log transform, first-order derivative) are
used to enhance the absorption feature and improve the signal-to-noise ratio. Mutanga and
Kumar (2007) implemented forward feature selection with and Artificial Neural Network on
the continuum-removed to extract a subset of 6 bands that are informative for leaf P content in
savanna grass. Guo et al. (2018) evaluated the effect of Monte Carlo-uninformative variable
elimination (MC-UVE) combined with the successive projection algorithm (SPA) on leaf P
predictions in rubber trees. The authors reported an improvement in estimation accuracy when
the subset of optimal bands was used, compared to the full spectrum. Cao et al. (2021)
compared multiple BS algorithms, including LASSO regression, Elastic net and SPA, in terms
of their capability of leaf N estimation in summer maize. Another commonly used BS algorithm
is based on the variable importance in projection (VIP) embedded in the partial least square
regression (PLSR) models (Li ef al., 2018; Lin et al., 2024). However, such BS algorithms
might not be compatible with our objective of identifying multispectral bandsets for needle N
and P assessment for a few reasons. First, bands selected through these BS techniques often
tend to cluster in certain spectral regions, and the final number of selected bands varies
depending on the BS technique and the criteria used. In contrast, we aim to select no more than
15 bands with a relatively uniform distribution across the whole spectrum. The criterion of
even coverage ensures that selected bandsets remain suitable for other tasks, such as spectral
index calculation. Second, most studies select bands at narrow-band resolutions, without

evaluating the impact of coarser spectral resolution on the modelling accuracy.

On the other hand, clustering-based BS algorithms, despite their widespread popularity in
hyperspectral image classification (Datta et al., 2015; Wang et al., 2019, 2021), are seldom
used for regression tasks. One of the few exceptions is the study by Latorre-Carmona et al.
(2013), which evaluated hierarchical clustering algorithms (Martinez-Uso et al., 2007) for leaf
chlorophyll content estimation. Band clustering algorithms typically involve two steps: first,
bands with high similarity are grouped into the same clusters based on certain similarity
measures; second, a representative band is selected from each cluster, forming the final
selection of bands (see (Sun and Du, 2019) for a detailed review). Given that adjacent bands

are similar among them, these clustering-based BS methods can produce a reduced subset of
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bands with a relatively even coverage of the spectrum. Nonetheless, the representative band
selection is often an unsupervised process in most of the studies, which does not align with the
objective of the current study to identify bandsets optimized for explaining the N and P
variability. Therefore, in this study, we intend to explore the utility of band clustering
algorithms combined with a supervised band selection process to identify the optimal bandsets

for needle N and P assessment at a multispectral resolution.

The overall objective of the current study is to evaluate multispectral bandsets for needle N and
P assessment in radiata pine trees, as a more affordable alternative to hyperspectral narrow-
band imagery. Specifically, we compare the performance of a hyperspectral narrow-band
benchmark model, which uses plant functional traits as predictors, with that of the bandset from
a commercially available MicaSense RedEdge-MX Dual multispectral camera for N and P
estimation. Furthermore, we aim to identify optimal bandsets, different from the Micasense 10
bands, for needle N/P estimation through a clustering-based band selection with a 10 nm

FWHM.

6.2 Methods

6.2.1  Airborne data collection and processing

Four airborne campaigns were conducted on February 2, 2021, October 27, 2021, January 11,
2023, and October 2, 2023, under clear sky conditions at solar noon, using the piloted Cessna
172 aircraft operated by the HyperSens Laboratory, the University of Melbourne's Airborne
Remote Sensing Facility. Narrow-band hyperspectral images were acquired during all four
campaigns with the line-scanning Hyperspec VNIR E-Series sensor covering the 400—1000 nm
spectral region with 358 bands at a full width at half-maximum (FWHM) of 5.8 nm and an
angular field of view (FOV) of 66° (Headwall Photonics, Fitchburg, MA, USA). Multispectral
images were collected during the 2023-Jan and 2023-Oct campaigns with the MicaSense
RedEdge-MX Dual Camera Imaging System (MicaSense, Seattle, WA, USA), consisting of 10
bands in the visible and near infrared (VNIR) region with FWHM from 10 to 54 nm (Table 6.1)
and an angular FOV of 35.4°. Narrow-band and Micasense images were collected at 350 m and
570 m above ground level (AGL), respectively, resulting in the same spatial resolution of 0.2

m. The pre-processing of narrow-band and MicaSense images, including radiometric
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calibration, atmospheric correction and orthorectification, can be found in Chapter 4, Section

4.2. Fig. 6.1 presents an overview of the study site and an example of the sub-nanometer image.

Fig. 6.22. Overview of the study site as shown in the MicaSense reflectance mosaic
(infrared-colour composite) obtained on October 2", 2023. Plot boundaries are green.
Letters A-I represent the treatment group. See Chapter 3 for more information on the
study site.

Tree crowns were delineated through a segmentation process on the narrow-band and
MicaSense reflectance images, respectively. Automatic segmentations were performed on all
narrow-band and Micasense images at first in the Fiji software (Abramoft et al., 2004). Local
thresholding algorithms were first applied to an NIR band (810 nm) and a structural index layer
(NDVI > 0.6) in combination to separate the sunlit vegetation pixels from the soil background

and within-crown shadows. The identified vegetation pixels were clustered to each object (i.e.,
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individual tree crowns) using the watershed object-based approach with Euclidean distance.
Delineated tree-crown polygons were then reduced by 75% of the original area to account for
the high heterogeneity in the coniferous stands and the sensitivity of pigment and SIF to
illumination conditions. Given the spatial misalignment between Micasense and narrow-band
images of the two datasets collected in 2023 and occasional image quality issues, automatically
delineated tree crowns were further manually selected for these two datasets for a fair
comparison in the following analysis. Eventually, 428 trees (n = 428) from 29 plots belonging
to 9 treatments were selected for the 2023-Jan dataset. 575 trees (n = 575) from 30 plots
belonging to 9 treatments were selected for the 2023-Oct dataset. For the other two datasets
collected in 2021, the automatically delineated tree crowns cover the whole study sites of 34
plots, with 1374 trees (n = 1374) from the 2021-Feb dataset, and 2047 trees (n = 2047) for the
2023-Oct dataset, respectively. The mean reflectance and radiance of the tree crowns in the

same plot were used to represent the plot-level spectral information.

Table 6.11 Spectral characteristics of the hyperspectral and multispectral sensors used in
this study. * With spectral binning.

Headwall VNIR E- MicaSense RedEdge-MX

Series Sensor Dual imaging system
(Hyperspectral (Multispectral sensor)
sensor)
Spectral range 400-1000 nm 444, 475, 531, 560, 650,
668, 705, 717, 740, 842 nm
Number of bands 371 10
FWHM 5.8 nm 28, 32, 14, 27, 16, 14, 10,
12,18, 57 nm
Field of view 66°
Signal-to-Nose Ratio > 300:1* >300:1*
Bit depth 16 12

To compensate for the limited availability of MicaSense data, Gaussian spectral convolution
was applied to the narrow-band reflectance data (FWHM = 5.8 nm) to match the MicaSense
spectral characteristics, resulting in four simulated MicaSense datasets. Additionally, narrow-
band data were convolved to 10-nm FWHM with the bands centered at 405, 415, 425, ..., 895
nm. The resulting multispectral data with 10-nm FWHM were then used for the selection of

optimal bandsets for needle N and P assessment.
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6.2.2  Multispectral bandset selection

We proposed a clustering-based band selection algorithm to identify the optimal multispectral
wavelengths for needle N and P estimation. Band selection was performed on the simulated 10
nm-FWHM reflectance data covering the 400 to 900 nm region obtained from the hyperspectral
imagery. The process involved two main steps: 1) group similar bands together through the fast
neighbourhood grouping (FNG) algorithm. Clustering was performed on tree-level reflectance
spectra (n = 4424) from all four datasets, as it is an unsupervised process; 2) select one
representative band from each cluster using PLS-VIP or the recursive feature selection
algorithm with PLS regression (PLS-RFE). Plot-level reflectance spectra from four datasets (n
= 112) were used for this step for the supervised selection. Detailed descriptions of the bandset

selection process are provided below.

Band clustering

Fast neighbourhood grouping (FNG) algorithm (Wang et al., 2021) was chosen for two reasons:
first, FNG considered the spectral bands as ordered, thus bands adjacent to each other are more
similar, which ensures that bands in the same clusters are continuous; second, it allowed a
predefined number of clusters, which was aligned with our objective to select 10 to 15 bands.
FNG adopted a coarse-fine strategy to partition the spectrum into clusters. The whole spectrum
was first divided into k£ even groups (i.e., coarse partition), where k& was the user-defined
number of clusters. Then, the initial clusters were repartitioned by adjusting the cluster label of
bands based on their similarity to the two adjacent cluster centres, eventually resulting in
ununiform clusters. The process aimed to maximize the inter-cluster variance while minimizing

the intra-cluster variance.

A distance-like similarity measure must be chosen for the clustering algorithm. We used a
normalized mutual information (MI)-based distance-like similarity measure in this study as
defined in (Martinez-Uso et al., 2007). Let vectors Xi, X2, ..., XL be the bands of a
hyperspectral image. Assuming a hyperspectral image has L bands, vectors Xi, X, ..., XL
represent individual bands. The mutual information I between the i and j* bands is expressed

in terms of entropy H
1(X,X;)) =HX) + H(X;) — H(X., X)) Eq. 6.1
HX) = = Xxeap(x) log; p(x) Eq. 6.2
Where p(x) is the probability of event x.
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The mutual information was further normalized using Eq. 6.3.

_2I(XpXj)

NI(Xu 1) H(X)+H(X;)

Eq. 6.3

As the clustering algorithm accept distance-like measure (i.e., larger values indicate lower

similarity), the MI-based distance like similarity measure was finally defined as

2
Dy;(X1, X)) = ( NI(X;, ])> Eq. 6.4

The pairwise Ml-based distance at 10 nm FWHM is presented in Fig 6.2. The obtained Dni

values were multiplied by 100 for better visualization in the figure.
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Fig 6.23. Pairwise normalized mutual information (MI) of simulated 10 nm-FWHM
multispectral bands determined on tree-level reflectance spectra collected from four
airborne campaigns (n = 4424). Lighter colors indicate lower similarity between
corresponding band pairs.

We investigated the clustering performance for 10 to 20 clusters and chose the optimal number
of clusters based on two criteria. The first one was the quality of the clustering, which was
indicated by the Silhouette score (Rousseeuw, 1987). Silhouette score measures how well a
data point (i.e., band) belongs to its assigned cluster compared to the remaining clusters by

accounting for the inter-cluster and intra-cluster distance.

For each data point i, the silhouette score s(i) is calculated as

N bD-a(®)
s() = max [a(i),b(i)] Eq. 6.5

102



Where a(i) is the mean distance between i and all other points in the same cluster; b(i) is the
smallest mean distance of i to all the points in any other cluster. For special cases when there
is only one data point in the cluster, s(i) = 0. The mean silhouette score of all data points was
used to represent the clustering quality. It ranged from -1 to 1, with a higher value indicating
better quality. MI-based distance-like similarity measure was used to calculate the Silhouette

score 1n our case.

The second criteria was the stability of the clustering algorithm. Stability is an important
property of band selection algorithms and represents the robustness of the algorithm to
perturbations in the training dataset (Kalousis et al., 2007). Here, we adapted the concept of
stability to evaluate the clustering algorithm. We assumed that a stable algorithm would be able
to produce the same clustering results (i.e., same cluster partitioning points) despite the changes
in the training dataset. Jaccard index was chosen as the stability metric (Jaccard, 1901; Liu et
al.,2017). Let S; and S; be two vectors representing the partitioning points of the same length.
Jaccard index is defined as:

|Siﬂ Sjl
|SiU Sjl

J(S.,S;) = Eq. 6.6

A Jaccard index closer to 1 implies that two vectors are identical, while 0 indicates complete
dissimilarity. We performed a 10-fold evaluation and computed the mean of pairwise Jaccard

index values to measure the clustering algorithm stability.

Representative band selection

We implemented two PLS-based supervised feature selection algorithms to identify the
representative band from each cluster. PLS was chosen as it was widely used for high-
dimensional data analysis and could handle the multicollinearity by transforming the spectrum

into uncorrelated latent variables (Wold, 1966).

The first band selection algorithm employed was PLS-based Recursive Feature Elimination
with cross-validation (PLS-RFE). Initially, all bands within the same cluster were included as
inputs to the PLS model. The importance of each band was assessed based on its impact on the
mean squared error (MSE) in a five-fold cross-validation. One band was removed at a time,
and a new PLS model was built using the remaining bands. The change in MSE resulting from
the removal indicated the importance of the excluded band. After each iteration, the least
essential band—i.e., the one whose removal caused the largest absolute change in MSE—was

eliminated. This process was repeated until only a single band remained.
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The second was a ranking-based selection method where the Variable Importance in Projection
(VIP) scores obtained from the PLS model were utilized (PLS-VIP) (Wold et al., 1993). Bands
within the same cluster were used to build a PLS model. VIP scores for each band were then

computed according to Eq. 6.7. The band with the highest VIP scores was retained.

Wja 2
Ta=1 55Ya'(||w—a”) ]
VIP; = |[p- YA S5y, Eq. 6.7

Where j represents the jt" band; p is the number of bands; A is the number of latent variables

(LVs) in the PLS model; wj, is the weight of band j on LV; |lw,|| is the norm of the weight

vector for LV a; SSY, represents the amount of variance in the response variable explained by

LV a as defined by Eq. 6.8.
SSY, = Y (xsiq - V1g)? Eq. 6.8

Where n is the number of samples; xs;, is the score of the i*" sample on LV a; yl, is the

loading for the response variable on LV a.

The optimal number of LVs was determined through the leave-one-out cross-validation process
for all the PLS models mentioned above. The stability of the two band selection algorithms
was evaluated using a 15-fold cross-validation, with stability measured by the Jaccard index.
Within each cluster, the bands most frequently selected across the 15 folds were retained as the

cluster representatives.

6.2.3  Multispectral-based modelling for needle N and P

Gaussian process regression (GPR) algorithm (Rasmussen, 2004) was used to predict needle
N and P concentrations for each plot with multispectral bands as inputs for individual datasets.
Four sources of multispectral data were used to build GPR models separately: 1) measured
MicaSense data for 2023-Jan and 2023-Oct datasets; 2) simulated MicaSense data for all four
datasets (2021-Feb, 2021-Oct, 2023-Jan and 2023-Oct) from narrow-band hyperspectral
imagery; 3) the multispectral bandset with 10-nm FWHM selected by PLS-RFE algorithm for
needle N/P for all four datasets; 4) the multispectral bandset with 10-nm FWHM selected by
PLS-VIP algorithm for needle N/P for all four datasets. The hyperparameters of the GPR
algorithm were automatically tuned in parallel for each target variable with the Bayesian

optimizer in MATLAB (Statistics and Machine Learning toolbox; MathWorks Inc., Natick,
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MA, USA). A Leave-One-Out Validation (LOOV) scheme was adopted to quantify the model
performance, with the normalized root mean squared error (NRMSE) and the coefficient of
determination (R?) as the main metrics. NRMSE was calculated as the ratio between RMSE

and the range of needle nutrient measurements.

We further quantified the relative contribution of individual bands to the explanation of needle
N/P variabilities using the PLS-based VIP scores. PLS models were built with all the bands in
the bandset as inputs and needle N/P concentration as the response variable. The number of

LVs in PLS models was determined through a leave-one-out validation process.

6.2.4  Hyperspectral-based benchmark modelling for needle N and P

GPR models built with inputs derived from the narrow-band hyperspectral data were used as
the benchmark for plot-level needle N and P estimation. The training process of GPR models
was the same as described in Section 6.2.3. Narrow-band-based inputs were plant functional
traits, including needle chlorophyll @ + b (Cab), carotenoid (Car), anthocyanins (Anw), retrieved
from the inversion of the PRO4SAIL2 model [PROSEPCT-D (Féret et al., 2017) + 4SAIL2
(Verhoef and Bach, 2007)], and solar-induced fluorescence quantified at O2-A absorption
feature (SIF760) The hyperspectral-based benchmark model was denoted by N/P = f(Cab, ,Car,
Anth, SIF760) hereafter.

PROA4SAIL2 was inverted through a look-up-table (LUT) based approach with RMSE as the
cost function. For each of the four datasets of plot-mean reflectance, a LUT with 500,000
simulations was generated by running PRO4SAIL?2 in the forward mode. The simulated spectra
(400 — 2500 nm, FWHM = 1 nm) were then convolved to match the spectral characteristics of
the narrow-band hyperspectral imager (400 — 1000 nm, FWHM = 5.8 nm). We also employed
continuous wavelet transform (CWT) with the second-derivative Gaussian kernel to the
simulated and observed spectra. Then, the inversion was performed on the transformed spectra.
SIF760 was retrieved from the plot-level hyperspectral radiance data using the Fraunhofer Line
Depth (FLD) method (Plascyk and Gabriel, 1975) with two reference bands outside the
absorption feature at O2-A (Maier ef al., 2004). The relative contribution of these obtained
functional traits to needle P and N estimation was quantified by the out-of-bag (OOB)
permutation scores in random forest (RF) (Liu and Zhao, 2017). The details of PRO4SAIL2
inversion, SIF7eo retrieval and parameter importance evaluation via RF-OOB were described

in Chapter 4.
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The proposed data analysis workflow for this study is illustrated in Fig. 6.3. We did not retrieve
plant functional traits from multispectral data due to its limited spectral coverage. Given the
absence of ground-truth measurements for functional traits such as needle pigment content,
retrieving these traits from datasets with varying spectral resolutions could further complicate

the interpretation of needle nutrient estimation results.
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Varying levels of agreement were observed between the measured and simulated MicaSense
reflectance data across the plots. At the tree crown level, the measured and simulated
reflectance displayed similar magnitude and variations in some plots, such as Example Plot A
(Fig. 6.4). In other cases, the overlaps between the measurements and simulations were limited,
such as Example Plot B (Fig. 6.4). Additionally, tree-level comparisons across the 10
MicaSense spectral bands (Appendix 6 Fig. A6.1) showed a moderate positive relationship at
all wavelengths, with higher levels of agreement observed in the 2023-Oct dataset (R? = 0.47-
0.59, p-value < 0.001) than the 2023-Jan dataset (R? = 0.40-0.55, p-value < 0.001). A consistent
pattern was observed across both datasets, that the agreement was generally lower for

MicaSense bands in the far-red and NIR regions than for those in the visible regions.
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Fig. 6.25 Comparison between measured and simulated MicaSense reflectance spectra
for two example plots (A and B) from the 2023-Oct dataset. The dashed blue lines indicate
the mean hyperspectral reflectance of all the trees within the plot, while the shaded blue
areas represent the range of tree-level hyperspectral reflectance. Simulated MicaSense
reflectance spectra (orange lines) were derived by convolving hyperspectral data to
match the spectral characteristics of the MicaSense sensor; the horizontal extent of each
segment corresponds to the bandwidth (FWHM) of the respective band. The green lines
represent the mean of the measured tree-level MicaSense reflectance spectra, with green
shading representing the tree-level variation within each plot. RMSE values quantify the
spectral agreement between the measured and simulated MicaSense reflectance at the

plot level.

At the plot level, the agreement between the measured and simulated MicaSense reflectance
was higher for the 2023-Oct dataset (RMSE = 0.0071 to 0.0189, with the median of 0.0107 and
the mean of 0.0113) than for the 2023-Jan dataset (RMSE = 0.0115 to 0.0210, with the median

and also the mean equal to 0.0135). Overall, the comparison between the measured and the
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simulated MicaSense data showed that the simulations were reliable proxies for the measured

MicaSense data to some extent.

6.3.2  Selected multispectral bandsets for needle N and P

The quality and stability of the clustering algorithm FNG-MI, for the cluster number from 10
to 20, were indicated by the Silhouette score and Jaccard index (J), respectively (Fig. 6.5a). A
Silhouette score closer to one implies better separation (i.e., how well each band suits within
its assigned cluster). In general, a Silhouette score above 0.5 is considered indicative of good
clustering quality. However, due to the contiguous nature and high collinearity inherent in
spectral data, the obtained Silhouette scores were expectedly low (~0.20 — 0.28). A Jaccard
index closer to one reflects high stability — that is, the algorithm performance was robust against
data perturbation and noise. Based on the cross-validation results, the clustering quality and
stability were the best when 12 clusters were used. Therefore, the spectrum from 400 to 900

nm at 10nm FWHM was divided into 12 clusters (Fig. 6.5b).
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Fig. 6.26. (a) Mean Silhouette scores of FNG-MI clustering algorithm from 10-fold
evaluation, applied to the 10nm-FWHM tree reflectance (n = 4424), for cluster numbers
ranging from 10 to 20. J denotes the mean Jaccard index across 10 folds. (b) Clustering
results using the FNG-MI algorithm with 12 clusters, illustrated with example vegetation
reflectance spectrum from 400-900 nm.

Following the clustering process, which grouped the spectrum into 12 clusters, two supervised
band selection algorithms were implemented to select the representative bands from each
cluster. The stability analysis of the two algorithms (Fig. 6.6), as indicated by Jaccard index (J),
showed that both algorithms displayed higher stability for P bandset selection than N. PLS-
RFE had lower uncertainties for N bandset selection than PLS-VIP, while PLS-VIP was more
stable for P bandset selection than N. The final bandsets selected via these two algorithms for

needle N and P estimation were summarised in Table 6.2 and illustrated in Fig. 6.7.
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Table 6.12 Center wavelengths of multispectral bandsets (FWHM = 10 nm) selected via
two band selection algorithms (PLS-RFE and PLS-VIP) for needle N and P estimation.
BS12N and BS12P denote the needle N and P bandsets with 12 bands selected for needle
N and P via PLS-RFE algorithm. BS12N2 and BS12P2 are the 12-band bandsets selected
via PLS-VIP algorithm for needle N and P, respectively.

Needle N bandsets
PLS-RFE 435,475,495,555,595,645,655,715,745,765,815,895 nm BSI12N
PLS-VIP 435,485,495,555,575,645,665,705,745,765,815,865 nm BS12N2
Needle P bandsets
PLS-RFE 435,475,515,545,575,605,655,705,745,775,835,865 nm BS12P
PLS-VIP 435,485,505,545,575,635,675,715,735,755,815,865 nm BS12P2
Needle N Needle P
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Fig. 6.27. Jaccard index of two band selection algorithms (PLS-RFE and PLS-VIP) for
needle N and P estimation. Stability was evaluated across 15 folds using the 10-nm
FWHM plot-mean reflectance spectra (n = 112). The central line of the box represents
the median; the upper and lower bounds of the box indicate the interquartile range (IQR);
whiskers extend to 1.5XIQR; notches represent the 95% confidence interval of the median
and circles represent outliers.

6.3.3  Model performance for needle N and P estimation

Needle N

The comparison between needle N prediction accuracy from hyperspectral-based benchmark
models and that from multispectral-based models is summarised in Fig. 6.8. It should be noted
that the interpretation of model accuracy solely based on the coefficient of determination (R2)
was misleading in the case of the 2023-Jan dataset. Despite BS12N- and BS12N2-based models
yielded higher values of R? (0.24 and 0.29, respectively, p-value < 0.01) than the benchmark
model (R?>=0.08, p-value > 0.5), the NRMSE values of the BS12N- and BS12N2-based models

109



(0.26 and 0.25, respectively) were higher than that of the benchmark model (NRMSE = 0.23).
The poor predictive performance for needle N in the 2023-Jan and 2023-Oct datasets can be
primarily attributed to the lack of statistically significant differences between treatments in
terms of needle N concentration measurements in both datasets. See Chapter 3 for more details

on field data analysis.
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Fig. 6.28. Illustration of distribution of MicaSense bandsets and the proposed
multispectral bandsets (FWHM = 10 nm) along the 400 to 900 nm region. BS12N and
BS12P denote the needle N and P bandsets with 12 bands selected for needle N and P via
PLS-RFE algorithm. BS12N2 and BS12P2 are the 12-band bandsets selected via PLS-
VIP algorithm for needle N and P, respectively. The green line represents an example
vegetation reflectance spectrum.

The performance of models built with MicaSense bandsets, and the simulated MicaSense
bandsets, achieved similar results for the 2023-Jan and 2023-Oct datasets, implying that the
simulated data was representative of the MicaSense sensor obtained data to some extent.
MicaSense bandsets produced R? of 0.037 and 0.017 (p-value > 0.05) and NRMSE values of
0.24 and 0.33, respectively. An R? of 0.08 was obtained for both datasets (p-value > 0.05), with
NRMSE of 0.25 and 0.30 by simulated MicaSense-based models for the 2023-Jan and 2023-

Oct datasets, respectively.
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Fig. 6.29. Needle N prediction accuracy by GPR models for needle N estimation with
various sources of inputs. (a) coefficient of determination (R?). (b) Normalized root mean
squared error (NRMSE). The hyperspectral-based benchmark model includes plant
functional traits as inputs N = f{Cap, Car, Anth, SIF760). Multispectral-based models have
reflectance bands as inputs. BS12N and BS12N2 denote the needle N bandsets with 12
bands selected via PLS-RFE and PLS-VIP algorithm respectively. ***p-value < 0.001;
**p-value < 0.01; *p-value < 0.05; n.s. = not significant.

For all four datasets, the newly proposed two bandsets, BS12N and BS12N2, explained the
variability in needle N more accurately than the simulated MicaSense bandsets. BS12N2-based
models outperformed BS12N-based models for three datasets with an increase in R? between
0.01 and 0.04 and a decrease in NRMSE of around 0.02, except for the 2021-Feb dataset (R? =
0.53 vs. 0.05, p-value < 0.001, NRMSE = 0.195 vs. 0.189). Hence, the BS12N2 bandset
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selected through the PLS-RFE algorithm was determined to be the final selection of optimal
bandsets for needle N estimation at 10-nm FWHM.

BS12N2-based models achieved comparable N prediction accuracy to the hyperspectral-based
benchmark models for the 2021-Feb (R? = 0.53, p-value < 0.001, NRSME = 0.19) and 2021-
Oct datasets (R = 0.40, p-value < 0.001, NRSME = 0.21). Nonetheless, BS12N2 provided low
accuracy for the 2023-Oct datasets (R?> = 0.17, p-value < 0.05, NRMSE = 0.30), while the
benchmark still achieved an R? of 0.41 (p-value < 0.001) with NRMSE of 0.30. Therefore, the
hyperspectral-based benchmark model still demonstrated the advantage of consistent
performance (R? = 0.47-0.53, p-value < 0.005, NRMSE = 0.20-0.24 for three datasets) for

needle N estimation over the best multispectral-based models.

Needle P

The performance of hyperspectral-based benchmark models and multispectral-based models
for needle P concentration is shown in Fig. 6.9. The simulated MicaSense data produced results
comparable to the measured MicaSense data for both 2023-Jan (R? = 0.34 vs. 0.28, p-value <
0.01, NRSME = 0.20 vs. 0.26) and 2023-Oct (R*> = 0.47 vs. 0.53, p-value < 0.001, NRSME =
0.23 vs. 0.20) datasets, supporting the use of simulated data as reliable proxies for actual

MicaSense observations.

The proposed bandsets BS12P and BS12P2 provided similar performance for needle P
estimation in all datasets, though BS12P displayed a stronger advantage in the 2021-Oct dataset
(R? = 0.72, p-value < 0.001, NRMSE = 0.14) over BS12P2 (R? = 0.57, p-value < 0.001,
NRMSE = 0.17). Hence, the BS12P bandset determined by the PLS-VIP algorithm was chosen
as the final selection bandset for needle P estimation at 10-nm FWHM. BS12P-based models
(R? = 0.38-0.72, p-value < 0.01, NRMSE = 0.14-0.25) also outperformed the simulated
MicaSense-based models for all datasets (R? = 0.26-0.62, p-value < 0.01, NRMSE = 0.16-0.26).

The highest prediction accuracy for needle P concentration was achieved by the hyperspectral-
based benchmark models for all datasets (R?> = 0.52-0.77, p-value < 0.001, NRMSE = 0.12-
0.21). The benchmark model displayed more significant advantages over multispectral-based
models in the 2021-Feb dataset (R? = 0.55 vs. R? < 0.43, p-value < 0.05, NRSME = 0.21 vs.
NRMSE > 0.24). Nevertheless, multispectral-based using the proposed BS12P bandset, were

able to achieve moderate to high accuracy for needle P estimation (R? = 0.37-0.72, p-value <
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0.01, NRMSE = 0.14-0.25) with the advantage of greater simplicity in the modelling process,

compared to the hyperspectral-based benchmark models.
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Fig. 6.30. Needle P prediction accuracy by GPR models for needle P estimation with
various sources of inputs. (a) coefficient of determination (R?). (b) Normalized root mean
squared error (NRMSE). The hyperspectral-based benchmark model includes plant
functional traits as inputs P = f{Cap, Car, Antn, SIF760). Multispectral-based models have
reflectance bands as inputs. BS12P and BS12P2 denote the needle P bandsets with 12
bands selected via PLS-RFE and PLS-VIP algorithm, respectively. ***p-value < 0.001;
**p-value < 0.01; *p-value < 0.05; n.s. = not significant.

6.3.4  Multispectral band contribution to needle N and P estimation
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We further evaluated the contribution of individual bands in the proposed bandsets BS12N2
(Fig. 6.10a) and BS12P (Fig. 6.10b) to understand the informative wavelengths for needle N
and P estimation. It was observed that two bands centred at 555 nm and 575 nm, located within
the green absorption region, consistently showed high contribution to needle N estimation
across four datasets (Fig. 6.10a). Moreover, the band centered at 705 nm, falling within the red
edge region, displayed relatively high VIP scores in the three datasets, except for 2023-Oct.
There also existed the pattern of strong contribution from the band located at 435 nm in the
blue region in all four datasets. The primary contributors for needle P estimation were in the
red edge and NIR region, including bands centred at 745, 775, 835 and 865 nm (Fig. 6.10b). In
the visible region, the band centred at 655 nm also exhibited higher VIP scores than other bands
in all four datasets, especially the 2021-Feb, 2021-Oct and 2023-Jan datasets.
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Fig. 6.31. VIP scores of (a) the selected BS12N2 bandset (FWHM = 10 nm) for estimating
needle N concentration and (b) the selected BS12P bandset (FWHM = 10 nm) for
estimating needle P concentration for four datasets. Higher VIP scores indicate greater
contribution of corresponding wavelengths to the model performance.

6.4 Discussion

Our results confirmed, as expected, the superior performance of hyperspectral-based models
for needle N and P prediction in radiata pine plantations over any multispectral-based models
evaluated in this study. The hyperspectral-based benchmark models with plant functional traits
(i.e., PRO4SAIL2-derived needle Cab, Car, Anth content and SIF760) were able to produce
comparable estimation accuracy across datasets for both needle N (R? = 0.47-0.53, p-value <

0.005, NRMSE = 0.20-0.24 for three datasets) and P concentration (R? = 0.52-0.77, p-value <
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0.001, NRMSE = 0.12-0.21). Overall, lower accuracy was obtained for needle N estimation
than for needle P, regardless of whether hyperspectral-based or multispectral-based models are
used. This potentially resulted from the low level of variance in needle N measurements, posing

challenges for the GPR models to learn the pattern.

Multispectral-based models performed poorly for needle N estimation, especially those based
on MicaSense bandsets, compared to the hyperspectral-based benchmarks. It is known that the
prediction of leaf N using the VNIR region primarily relies on chlorophyll content due to the
biochemical composition of chlorophyll a + b pigments, which contain N (Evans, 1989). The
analysis of the benchmark model showed that PRO4SAIL2-derived needle Cab content was the
most important contributor to needle N estimation. Together, the three PRO4SAIL2-derived
pigments (i.e., Cab, Car, Anth) accounted for more than 80% of the contribution to estimating
needle N concentration (See Chapter 4 and (Li ef al., 2025)). However, multispectral-based
models might not capture the variations in pigment changes due to the limited spectral
information in the pigment absorption region (~400-680 nm), subsequently affecting the
nutrient estimation accuracy. Previous studies have also demonstrated the impact of spectral
resolution and the number of bands for leaf chlorophyll estimation. Wei et al. (2025), found
that the index-based retrievals of leaf chlorophyll content were sensitive to the spectral
resolution based on their simulation study. Zhou et al. (2022) evaluated the impact of spectral
resolution on the leaf N estimation by the PLS model. The authors reported an increase in
NRMSE by 0.037 from 2.2-nm FWHM to 40-nm FWHM. Apart from the spectral resolution,
the band placement was also crucial for needle N assessment. The proposed bandsets BS12N2
with 10-nm FWHM outperformed MicaSense bandsets for several probable reasons, including
two more bands and finer spectral resolution, as well as the band placement. Our results showed
that the three bands centred at 435, 555 and 575 nm had a significant contribution to needle N
estimations in the BS12N2-based models. By contrast, MicaSense covered these regions with
one band at 444 nm (FWHM = 28 nm) and the other at 560 nm (FWHM = 27 nm). It has been
found that the 550-560 nm region is sensitive to changes in pigment content (Gitelson and
Merzlyak, 1994), likely related to anthocyanin content. Moreover, 435 nm was closer to the
absorption peak of chlorophyll a in the blue region (~430 nm). Therefore, it is suggested that
higher spectral resolutions in the pigment absorption region can help with needle N estimation
by multispectral-based models. Nevertheless, to ensure consistent and reliable predictions

across diverse datasets, the use of hyperspectral data is recommended.
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Our results indicate the potential of the proposed multispectral bandset BS12P to explain
variabilities in needle P concentration in radiata pines. The BS12P-based models offered
moderate to high accuracy (R? = 0.38-0.72, p-value < 0.01, NRMSE = 0.14-0.25) across four
datasets. The slight compromise in prediction accuracy, compared to hyperspectral-based
benchmark models, brought benefits such as reduced data volume and a simplified modelling
process, in favour of operational-scale monitoring. In the hyperspectral-based P model, SIF760
played a key role in needle P estimation, contributing to more than 50% among all four inputs
(i.e., RTM-derived Cab, Car, Anth and SIF760) (See Chapter 4 and (Li ef al., 2025)). Due to the
coarse spectral resolution, multispectral data could not capture the subtle SIF signals. The band
importance analysis for multispectral-based models revealed the pronounced contributions of
the red-edge (745 nm) and NIR region (775, 835 and 865 nm) for needle P prediction using the
BS12P bandset. These findings were in congruence with previous studies focusing on effective
hyperspectral bands selection for leaf P estimation. Siedliska ef al. (2021b) assessed the
effective wavelengths for leaf P estimation for strawberries, celery and sugar beet and identified
the NIR (650-900 nm) region as the common effective region for distinguishing various P
fertilisation rates in all three species. Specifically, the authors argued that the red to far-red
region was related to leaf P levels through chlorophyll, as they detected variabilities in the
measured leaf total chlorophyll content as responses to the different P rates applied during the
nutrient experiments. Lin et al. (2024) also identified eight effective wavelengths (442, 479,
572, 630, 740, 795, 838 and 858 nm) within the VNIR region for leaf P estimation in potatoes.
Li et al. (2018) selected six informative wavelengths from 400-1300 nm, with four located in
the NIR region (755, 832, 891 and 999 nm) and two in the SWIR region (1196 and 1267 nm).
Both studies evaluated the importance of various spectral regions using VIP scores with PLS
models, and there was a shared pattern of higher VIP scores in the NIR region than the visible
region, consistent with our findings. It is known that the red edge region is sensitive to
chlorophyll concentrations. In turn, P could be related to leaf chlorophyll content in multiple
ways. First, P is a component of chloroplast membrane phospholipids. Meanwhile, P
participates in the photosynthetic electron transport chains, which in turn affects the ATP
synthase activity (Carstensen et al., 2018). It is widely accepted that the canopy reflectance in
the NIR region is indirectly linked to leaf P levels, as the disruption in photosynthetic activities

by P deficiency eventually leads to changes in biomass and thus canopy structure.

Commercially available multispectral cameras rarely cover the SWIR region (Nex et al., 2022;

Zhou et al., 2022). However, given the proven importance of this region for leaf N and P
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estimations, it is suggested that the SWIR region could be evaluated in future research using
the proposed band selection framework in this study. Mutanga and Kumar (2007) reported
improved estimation accuracy (ANRMSE = 0.3) for leaf P concentration in savanna grass,
when SWIR features were added into the inputs of neural network models, along with VNIR
features. Effective wavelengths were widely identified in the SWIR region for leaf N and P
status estimations in hyperspectral-based studies (Ramoelo et al., 2013; Camino et al., 2018a;
Lietal, 2018; Fan et al., 2019; Lin et al., 2024). The plant reflectance characteristic in SWIR
region was sensitive leaf water content and leaf dry matter content, with main components of
proteins, starch, cellulose and lignin etc. It is known that chlorophyll only accounts for 1.7%
of the total leaf N, while proteins are one of the primary N-containing biochemical constituents,
which have strong absorption features in the SWIR region (Kokaly et al., 2009a). P deficiency

was found related to starch accumulation in leaves and stems (Qiu and Israel, 1992).

The discrepancy between measured MicaSense and simulated MicaSense data in terms of
spectral agreement and performance for needle nutrient estimation was confounded by multiple
factors. First, the segmentation was performed on the multispectral MicaSense images and
narrow-band hyperspectral and the multispectral images independently. The image distortion
and geometric misalignment caused by two sensors made it impossible to identify the same
target trees, despite our efforts to manually match individual tree crowns in each hyperspectral-
multispectral image pair. Usually, the pushbroom hyperspectral sensors display more complex
geometric distortions than the frame-based multispectral cameras (Akhoundi Khezrabad ef al.,
2022). Second, the mechanical differences between the two sensors led to the difference in the
radiometric qualities (e.g., bit depth, signal-to-noise ratio etc.). Third, as the spectral response
functions of the MicaSense camera were not publicly available, we used Gaussian convolution
to simulate MicaSense data from hyperspectral data, further contributing to the discrepancy

between measured and simulated MicaSense data.

Future research can focus on improving the stability and reliability of the proposed band
selection methodology. It has been found that image denoising could significantly affect the
band selection outcomes. For example, Latorre-Carmona et al. (2013) investigated the impact
of hyperspectral image denoising on six unsupervised band selection algorithms, including a
clustering-based method, in the context of regression tasks. Their results for both simulated
and real hyperspectral data showed that denoising significantly improved the accuracy for leaf
chlorophyll content estimation. Similarly, Rivera-Caicedo ef al. (2017) also found that noises

in the hyperspectral data adversely affect the performance of various dimensionality reduction
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methods in terms of LAI retrieval. Thus, it is suggested that integrating a hyperspectral image
denoising step prior to band selection could help achieve more robust band selection results in
the future. Additionally, the PLS-based band selection algorithms employed in this study,
despite being widely used and well established, were limited to only capturing the linear
relationship between features and the target variable. Other non-linear variations could be
explored, such as kernel PLS (Rivera-Caicedo et al., 2017) and non-linear PLS (Ramoelo et
al.,2013).

6.5 Conclusions

This study evaluated the suitability of multispectral bandsets for explaining the variability of
needle nitrogen (N) and phosphorus (P) concentrations in radiata pine plantations, as well as
the performance of a commercially available multispectral camera, MicaSense RedEdge-MX
Dual. The goal was to assess the potential of multispectral cameras for operational-scale
nutrient monitoring in comparison to hyperspectral-based (FWHM = 5.8 nm) benchmark
models. Additionally, hyperspectral data were used to guide the selection of optimal
multispectral bandsets (FWHM = 10 nm) for N and P estimation through a clustering-based
band selection approach. We obtained a bandset with 12 bands for needle N and P estimation,

respectively.

Results from four datasets collected over three years confirmed the superior performance of
hyperspectral data for both N and P estimation. Moreover, it was suggested that multispectral
data in the VNIR range were insufficient for accurately estimating needle N concentrations.
However, a proposed bandset with 12 bands at 10-nm FWHM was proven moderately effective
for estimating needle P concentrations, with greater modelling simplicity compared to
hyperspectral data. Furthermore, the proposed optimal bandset outperformed the MicaSense
bands in explaining needle P variability, highlighting its potential for informing the design of

next-generation multispectral sensors optimized for leaf nutrient assessment.

Future research should explore the integration of the shortwave infrared (SWIR) region into
this methodology, given its known importance in leaf nutrient estimation. Additionally, the
impact of hyperspectral image denoising on the performance of the proposed band selection
method should be comprehensively assessed. Other band selection algorithms could also be

explored within the proposed framework.
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Chapter 7
Synthetic discussion and conclusions

This chapter synthesizes the main findings of the Ph.D. study, highlighting its contributions to
precision forestry through airborne hyperspectral remote sensing and physically based
modelling of needle nitrogen (N) and phosphorus (P). It also considers limitations of the study

and proposes directions for future research.

7.1 Research Contributions

7.1.1  Robust needle N and P estimation through physically based modelling

Remote sensing technology enables the non-destructive monitoring of leaf N and P status at
field scales. Conventional methods rely on empirical relationships between spectral indices or
spectral bands and leaf nutrient concentrations, which lack the physiological interpretability
and transferability since factors including canopy structure, soil background and observation
geometry are usually not thoroughly accounted for. These constraints can be resolved by the
physical models based on radiative transfer modelling. Previous studies on broadleaf crop
species have shown that plant functional traits derived from radiative transfer models (RTMs)
and far-red solar-induced fluorescence (SIF760) quantified from airborne narrow-band imagery
(FWHM = 5.8 nm) are effective indicators for leaf N concentrations (Camino ef al., 2018a;
Wang et al., 2022). However, these studies are restricted to relatively homogenous canopies,
where the interpretation of remotely sensed top-of-canopy (TOC) signals is less challenging
than in highly heterogeneous coniferous canopies. Furthermore, such a physically based
modelling approach has not yet been applied for phosphorus assessment, whereas most studies

on leaf P estimations still rely on empirical methods.

Using four datasets collected at the nutrient experiment site of radiata pines, we demonstrated
the robustness of the physically based modelling method for both needle N and P estimation.
Specifically, we identified four informative predictors derived from airborne narrow-band
imagery, for needle N and P: PRO4SAIL2-derived needle chlorophyll a + b (Cab), carotenoid

(Car), anthocyanin (Anth) and SIF760. When used as inputs for Gaussian Process Regression
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(GPR) models, these four parameters together yielded high predictive accuracy for needle N
(R?=0.67-0.97 and NRMSE = 0.07-0.30) and P (R* = 0.60-0.95 and NRMSE = 0.09-0.27) at
the treatment level. GPR models built with various combinations of narrow-band hyperspectral

indices (NBHIs) could not match such consistent performances.

The use of plant functional traits as predictors rewarded the advantage of higher interpretability
of the plant physiological responses to nutrient variations. Predictor importance analysis further
revealed that PRO4SAIL2-derived Cab consistently contributed the most to explaining the
observed variability in needle N, which was aligned with the known physiological knowledge
that N is present in chlorophyll molecules (Evans, 1989). On the other hand, SIF760 was the
most prominent contributor to needle P estimation in all four datasets. The SIF response to P
variations might be related to the role of P in photosynthetic activities, including energy supply
and membrane solubility. This P-photosynthesis linkage has been previously reported in the
laboratory study on chlorophyll fluorescence kinetics (Carstensen et al., 2018), as well as the
greenhouse ground-level hyperspectral studies on radiata pine seedlings (Watt et al., 2020).
Our results implied that airborne SIF could track the P-related influence on photosynthetic

functioning.

Overall, building on previous studies in other species, Chapter 4 demonstrated the
generalizability of the physically based modelling method for leaf N estimations to coniferous
species, and further extended its application to leaf P assessment. Unlike conventional index-
based empirical models, which typically lack consistency in predictive performance across
datasets, RTM-derived pigments and SIF are more reliable and physiologically meaningful

indicators for needle N and P status.

7.1.2  Potential of the blue spectral region for needle P estimation

Chapter 4 sheds light on the potential of remotely sensed signals in the blue spectral region for
estimating needle P concentrations. Our analysis of narrow-band hyperspectral indices (NBHIs)
showed that GPR models with blue indices and PRO4SAIL2-derived needle pigments (i.e., Cab,
Car, Anth) as inputs produced comparable estimation accuracy for needle P concentrations to
those built with PRO4SAIL2-derived pigments and SIF760 (NRMSE = 0.12-0.17 vs. 0.08-0.20
for four datasets), though blue-index-based models performed poorly for needle N estimation.

Despite the slight compromise in the prediction accuracy for P, blue indices offered the
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advantage of modelling simplicity. Further analysis of predictor importance revealed that blue

indices are the primary contributors to the prediction accuracy of needle P concentrations.

The consistency of these results across four datasets suggests a physiological linkage between
the blue region and needle P level. Nevertheless, the mechanism of the blue-P linkage is not
well understood. We proposed two hypotheses to explain the response of the blue spectral
region to P variations: one was associated with the potential blue fluorescence emission
(Chappelle et al., 1984), and the other was based on the chlorophyll degradation into
phaeophytin (Barnes ef al., 1992b; Pefiuelas et al., 1995a; Hortensteiner, 2013). This study is
among the first to report such a P-blue region relationship, highlighting the previously
underexplored blue spectral region for phosphorus monitoring in radiata pines. Future research
can focus on evaluating the proposed hypotheses and understanding the physiological basis of
the relationship, which can guide the evolution of hyperspectral-based nutrient monitoring

strategies

7.1.3  Role of red and far-red Fraunhofer line depths for needle P estimation

It has been proven in simulation studies that the accuracy of SIF retrievals based on the FLD
principle at oxygen absorption features is susceptible to sensor specifications, especially
spectral resolution (SR) and the signal to noise ratio (SNR) (Damm et al., 2011; Julitta et al.,
2016). A sub-nanometer resolution (FWHM < 1.0 nm) is recommended for SIF760 estimates at
the O2-A band and an ultrafine resolution (FWHM < 0.5 nm) for red SIF (SIF¢s7) at the O2-B
band. However, finer spectral resolution causes larger data volumes and higher spectral noise
levels, challenging the data processing. Considering previous studies have shown that SIF760
quantified in a relative term from the narrow-band resolution (FWHM = 3-7 nm) is sufficient
for differentiating various leaf nitrogen levels in homogenous canopies (Belwalkar et al., 2022;
Wang et al., 2022), it questions the necessity of sub-nanometer resolution for SIF application

in needle N and P estimation in heterogeneous coniferous canopies.

Based on the narrow-band analysis in Chapter 4, Chapter 5 first evaluated the role of SIF760
quantified from the narrow-band (FWHM = 5.8 nm) and sub-nanometer imagery (FWHM =
0.1-0.2 nm) for needle N and P estimation, when SIF760 and narrow-band-based needle
pigments derived from PRO4SAIL2 were used as GPR model inputs. Our results based on two
datasets showed that sub-nanometer resolution did not make a significant contribution to SIF760

in the context of needle N and P assessment under the current modelling framework. However,
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further work is required to determine whether the sub-nanometer resolution provides more
accurate SIF retrievals than the narrow-band resolution, due to the lack of validity of SIF, which

is discussed in Section 7.2.2.

Chapter 5 further explored the Fraunhofer line (FL) depths, SIF indicators that are only evident
under sub-nanometer resolution, for needle N and P status monitoring. FLs are largely
unaffected by the atmospheric absorption and scattering effects, which are among the most
influential factors for accurate SIF retrievals at oxygen absorption features. However, FL
absorption features are less evaluated than oxygen absorption bands in airborne applications,
due to the requirement of high spectral resolution. Chapter 5 is one of the few to evaluate FL
depths for needle nutrient monitoring purposes. The results highlighted that the depths of far-
red FLs were more effective indicators for needle N and P status than those of red FLs. More
specifically, the far-red FL located at 774.9 nm, together with narrow-band-based PRO4SAIL2-
derived pigment (i.e., Cab, Car, and Anw) as inputs for GPR models, provided improved
prediction accuracy for both needle N (R? = 0.62 and NRMSE = 0.17) and P (R? = 0.36-0.51
and NRMSE = 0.17-0.25), as opposed to the model built with narrow-band-based pigments

and sub-nanometer-based SIF.

These results highlighted the advantages of using sub-nanometer-resolved far-red FL depths as
SIF indicators for needle N and P assessment in airborne applications. Future research could

refine SIF retrievals from FLs and assess their contributions to needle nutrient estimations.

7.1.4  Optimized multispectral bandsets for large-scale needle P monitoring

The application of airborne hyperspectral imagery for frequent needle nutrient monitoring at
an operational scale faces several constraints, including high monetary and computational costs,
as well as the expertise required for hyperspectral data processing. Multispectral cameras are
more affordable and accessible alternatives, though they may not be able to capture vegetation
spectral changes associated with plant physiological responses due to their coarse spectral
resolution and limited spectral coverage. Therefore, it is essential to evaluate the performance
of any commercially available multispectral camera in terms of its suitability for predicting
needle N and P concentrations. In addition, given that the bandsets of most multispectral
cameras are not designed to capture N- or P-sensitive wavelengths, an optimised multispectral

bandset can guide future camera designs for this specific monitoring purpose.
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In Chapter 6, the performance of the set of 10 bands from the commercially available
multispectral camera MicaSense RedEdge-MX for needle N and P estimation was first
evaluated and compared to the narrow-band-based benchmark model developed in Chapter 4,
where PRO4SAIL2-derived pigments and SIF were used as GPR inputs. In addition, a novel
approach was adopted to identify informative bandsets for needle nutrient concentrations by
combining band clustering with supervised band selection algorithms. The predictive power of

the newly proposed bandsets was then evaluated.

Our results showed that the narrow-band-based models outperformed all the multispectral-
based models for both needle N and P estimation in terms of accuracy and consistency (R? =
0.47-0.53 and NRMSE = 0.20-0.24 for N; R?> = 0.52-0.77 and NRMSE = 0.12-0.21 for P).
Despite that none of the multispectral-based models yielded satisfactory N estimates across
datasets, the potential of using multispectral bandsets for needle P estimation is promising.
Specifically, the newly proposed optimised bandsets for P, with 12 bands (R2 = 0.37-0.72 and
NRMSE = 0.14-0.25), produced higher accuracy than the MicaSense bandsets (R2 = 0.26-0.62
and NRMSE = 0.16-0.26). Although the optimized 12-band-based models yielded slightly less
accurate yet still consistent performance, compared to the narrow-band-based model, the
former exhibited a greater advantage of computational simplicity. A closer analysis of the
proposed 12 bands revealed that the NIR and red-edge regions were critical for estimating
needle P concentrations, which was in congruence with other studies on optimal P wavelength

selection.

This study provided an opportunity to design next-generation multispectral cameras dedicated
to needle nutrient monitoring. We recommend VNIR cameras to adopt the bandset consisting
of 12 bands entered at 435, 475, 515, 545, 575, 605, 655, 705, 745, 775, 835, and 865 nm with
a 10-nm FWHM. Such a camera can facilitate the cost-effective monitoring of needle P status
in radiata pine plantations, thus supporting the timely horticultural interventions and precision

forestry practices.

7.2 Research Limitations

7.2.1  Validity of RTM-derived plant traits

We shall clarify that the PRO4SAIL2-derived plant traits in Chapters 4,5, and 6 can only be

considered as relative values. Due to the lack of needle measurements of pigment content (i.e.,
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Cab, Car, Anth) and the in-situ measurements of the structural parameter LAI, we could not
determine the accuracy of the RTM-based retrievals. Nevertheless, we contend that our
PROA4SAIL2-derived parameter values reflect the relative distribution of the parameter among
plots, which is sufficient for the differentiation of various fertilization levels. The synthetic

validation test in Chapter 4 also supports this claim.

However, it is recommended that leaf measurements be taken in future research for two reasons.
First, these measurements can be used to regularize LUT generation, a measure to alleviate the
ill-posed inverse problem. Second, it enables the retrieval of plant biochemical and biophysical
properties in absolute terms. This, in turn, enables N and P modelling using mixed datasets,
which increases the training data size for the GPR algorithm and likely improves model
performance. It also opens the possibility of time series analysis of needle nutrient

concentrations.

7.2.2  Accuracy of SIF retrievals

Similar to RTM-derived traits, our SIF retrievals from either narrow-band or sub-nanometer
images are relative values only, as their accuracy cannot be validated. Consequently, we cannot
draw any conclusions from Chapter 5 on whether the narrow-band or the sub-nanometer images

yielded more reliable SIF estimates.

The common practice for verifying airborne SIF retrievals relies on in-situ radiance and
irradiance measurements taken just above the canopy, typically using a handheld
spectroradiometer. SIF retrieved from the ground-level measurements is considered free of
atmospheric interference, thus serving as a baseline for airborne retrievals. However, it is
impractical to do so in radiata pine forests due to the height of the trees. We suggest that future
research utilise drones to acquire low-altitude TOC radiance and irradiance measurements for
baseline SIF, which can then be used for the validation of SIF obtained by a piloted aircraft at
a higher altitude. Moreover, given the sensitivity of SIF to atmospheric absorption and
scattering (Guanter et al., 2010), it is recommended that comprehensive atmospheric correction
based on radiative transfer models be implemented to acquire TOC spectral signals, as opposed

to the currently applied empirical correction method.
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7.2.3  Sample size and generalizability

The labelled samples (i.e., measurements of needle N and P concentrations) were very limited
in this study (n = 19 or 34), as the measurements were averaged to the plot level. The small
sample size may have limited the training of the GPR models and the predictive accuracy for
needle N and P concentrations. More importantly, GPR models trained on small datasets cannot
be readily used for predictions on an independent dataset due to their limited generalizability.
Consequently, when applied to the tree crown-level information, the trained GPR model likely

generated less reliable nutrient variability maps for the study site due to the extrapolation.

The small sample size also affects the representativeness of the optimized bandsets in Chapter
6, where supervised selection algorithms were involved. Although the band selection was
implemented on the combined dataset (n = 119), the reliability of the band selection algorithm

can be improved by a larger sample size.

It is suggested that extensive sampling, despite being time-consuming and laborious, should be
conducted to determine needle N and P concentrations at the tree level, thereby enhancing the

generalizability of the models and the reliability of the optimised bandsets.

7.3  Future Research Directions

7.3.1  Exploring the SWIR region

This study focused on VNIR data analysis, although it is known that the SWIR region contains
valuable information for leaf N and P estimations. The analysis of N in the VNIR region mainly
relies on the N-chlorophyll linkage. However, it should be noted that chlorophyll only accounts
for 1.7 % of total leaf N (Kokaly et al., 2009a), while there are more predominant N-containing
biochemical constituents that have strong absorptions in the SWIR region, such as proteins.
Studies on leaf P estimations using hyperspectral reflectance spectra often report SWIR
wavelengths as more effective indicators than other spectral regions, due to the physiological
linkage between P and leaf dry matter content, such as cellulose, lignin and starch (Qiu and

Israel, 1992), which can be detected in the SWIR region.

The evaluation of SWIR can be incorporated into the methodological framework of Chapters
4 and 6. For instance, more advanced leaf RTM (e.g., PROSPECT-PRO (Féret et al., 2021))

can be applied to the narrow-band reflectance to retrieve protein content as nitrogen indicators,
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and other carbon-based constituents as phosphorus predictors. In addition, the VNIR-SWIR
coverage enables the RTM inversion from the optimized multispectral bandsets as well,
whereas the current VNIR coverage is not suitable for such tasks. Previous studies have shown
that leaf biochemical constituents can be reliably retrieved from VNIR-SWIR multispectral
data through RTM inversion (Quan ef al., 2017; Wang et al., 2025). The discrete spectrum and
coarse spectral resolution of multispectral data limit RTM-based retrieval to only broad
absorption features such as chlorophyll, LAI and dry matter content, among which VNIR only
covers the full absorption region of chlorophyll. Therefore, the incorporation of SWIR will
allow the physically based modelling to be applied to the optimized multispectral bandsets for

needle N and P assessment.

7.3.2  Exploring the blue spectral region

Our findings on the contribution of blue indices to needle P levels highlight the underexplored
blue spectral region. We recommend that future research focus on testing the two proposed
hypotheses regarding the linkage between phosphorus and the blue spectral region to deepen

the understanding of plant physiological responses to P variations.

In the first theory, it is hypothesized that phosphorus variations are related to the blue-green
fluorescence emission, which exhibits two emission peaks around 450 and 530 nm, respectively.
Different from red fluorescence, which is emitted by chlorophyll, blue-green fluorescence
originates from cinnamic acids bound to the cellulosic cell walls (Harris and Hartley, 1976)
and soluble substances bound to cell vacuoles (Lichtenthaler and Miehé, 1997). Previous
laboratory studies have pointed out that fluorescence ratios are associated with various stress
conditions (Lichtenthaler and Miehé, 1997; Subhash et al., 1999; Biirling et al., 2011). Further
analysis is needed to understand the relationship between phosphorus levels and fluorescence

ratios.

The alternative hypothesis is that the blue spectral response is a result of chlorophyll
degradation into phaeophytin under P deficiency. Phaeophytin has strong absorption in the blue
region, which can be approximated by the index NPQI (Harris and Hartley, 1976; Pefiuelas et
al., 1995a; Hortensteiner, 2013). We observed a strong relationship between needle P
measurements and NPQI across datasets. Further research should be undertaken to measure

phaeophytin content and confirm its relationship with needle P concentrations.
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7.3.3  Improving the reliability of band selection

Since the purpose of the optimized multispectral bandsets is to guide the design of next-
generation multispectral cameras, the reliability and representativeness of the selected bandsets
are critical. The transferability of the selected bandsets should be tested on different study sites

or even different species for monitoring leaf N and P.

Apart from increasing the sample size (see Section 7.2.3), we suggest two other measures for
future research to enhance the reliability of the band selection algorithm as proposed in Chapter
6. First, the hyperspectral image should be denoised before the subsequent data extraction.
Research has shown that the denoising process affects the results of band selection algorithms
(Latorre-Carmona et al., 2013; Rivera-Caicedo et al., 2017). Second, Chapter 6 only
implemented PLS-based selection algorithms, which cannot account for non-linear
relationships between spectral bands. Other non-linear variations could be explored, such as

kernel PLS (Rivera-Caicedo ef al., 2017) and non-linear PLS (Ramoelo et al., 2013).

74  General Conclusions

This Ph.D. study was established in the broad context of precision forestry, where remote
sensing has provided the opportunity for non-destructive vegetation monitoring at a large scale.
With a focus on Pinus radiata D. Don (radiata pine), the overall objective was to evaluate
needle N and P status using airborne hyperspectral imagery, thereby guiding the
implementation of fertilization interventions and avoiding wood production loss. The three
research questions (Chapters 4-6) addressed different aspects of the overarching goal, with
Chapters 4-5 emphasizing the physiological understanding of the plant response to nutrient

variations, and Chapter 6 considering the practical application of operational scale monitoring.

Chapter 4 evaluated whether the physically based modelling approach, which had been
successfully applied for leaf N assessment in crop and orchard species, could be used for needle
N and P estimations in coniferous species, where the distinct needle shape and heterogeneous
canopy structure presented challenges to the interpretation of remotely sensed signals.
Importantly, Chapter 4 is the first study to evaluate needle/leaf P status using a physically based
model, while most studies implemented empirical methods for P estimations. We achieved high
prediction accuracy for both nutrients, demonstrating the robustness of the physically based

modelling approach, which utilised RTM-based plant traits and SIF derived from narrow-band
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images as needle nutrient predictors. More specifically, four parameters were identified as
effective predictors for both N and P: PRO4SAIL2-derived Cab, Car, Anth content and SIF760.
Among them, Cab contributed the most to explaining the observed variability in needle N, while
SIF played a critical role in P estimations. In addition, we discovered that blue indices were
associated with needle P levels, leading to the proposal of two hypotheses on the mechanisms
of blue responses to P variations. This novel finding opened a new avenue for future research

on needle phosphorus monitoring.

Given that SIF760 displayed great importance for needle N and P assessment in Chapter 4,
Chapter 5 drew closer attention to SIF quantification, examining the impact of sensor spectral
resolution on SIF retrieval accuracy. Based on the previous simulation studies, we hypothesized
that sub-nanometer resolution (FWHM = 0.1-0.2 nm) could provide more accurate SIF
retrievals at oxygen absorption features than the narrow-band resolution (FWHM = 5.8 nm),
thereby improving the contribution of SIF to needle N and P estimations. Our analytical results
contradict the hypothesis: sub-nanometer resolved SIF760 underperformed its narrow-band
resolved counterparts in terms of needle N and P estimation accuracy. However, it remains
inconclusive whether sub-nanometer SIF760 was more accurate than the narrow-band SIF7eo,
due to the lack of validity for airborne SIF retrievals. It is suggested that comprehensive
atmospheric correction and the acquisition of baseline SIF retrievals from low-altitude drone-
obtained radiance measurements are needed for a firm conclusion on the question. Nevertheless,
the analysis of FLs identified in the sub-nanometer radiance spectra showed that the depths of
far-red FLs were more effective indicators for needle N and P status than those of red FLs.
Chapter 5 is one of the few to evaluate FL depths for needle nutrient monitoring purposes.
Future research can focus on SIF quantification from FLs, which does not require complex

atmospheric correction, and evaluate their contributions to needle nutrient estimations.

Recognizing the limitations of large-scale needle nutrient monitoring with airborne
hyperspectral imagery (FWHM = 5.8 nm), including high financial and computational costs as
well as the expertise required for data processing, Chapter 6 shifted the focus to evaluating
multispectral bandsets as a more affordable and accessible alternative. We first evaluated the
commercially available MicaSense RedEdge-MX multispectral camera for its N and P
prediction capability. Then we adopted a novel approach combining band clustering with
supervised band selection algorithms to identify informative bandsets for needle N and P
concentrations, and evaluated the predictive performance of N and P. Our comparison between

multispectral and narrow-band-based models (Chapter 4) demonstrated the robustness of the
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latter for consistent estimation accuracy across datasets. Although multispectral bandsets in the
VNIR regions were found to be insufficient for explaining the observed variability in needle
N, they hold promise in providing satisfactory estimation accuracy for needle P, with the
advantage of computational simplicity. Moreover, our newly proposed optimized bandsets
(FWHM = 10 nm) with 12 bands outperformed the MicaSense 10 bands for needle P
estimations. The design of next-generation cameras that focus on phosphorus monitoring can

consider adopting the proposed bandsets.

Our research has important implications for facilitating precision forestry practices in radiata
pine plantations, which hold enormous economic importance in Australia. While certain
limitations remain, particularly in the validation of RTM-derived traits and SIF retrievals, this
Ph.D. study advanced the understanding of plant physiological responses to nitrogen and
phosphorus variations and demonstrated the advantage of hyperspectral remote sensing for

nutrient monitoring in coniferous species.
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Appendix for Chapter 3

Table A3.1 Results of post-hoc pairwise comparisons using Tukey's honestly significant difference procedure for needle N measurements
(g/kg) at the plot level for four datasets. n is the sample size. Statistically significant results are highlighted in red. n.s.: not significant. NA:
Not applicable if no plots in that treatment were sampled.

2021-Feb (n=19) 2021-Oct (n = 34) 2023-Jan (n = 34) 2023-Oct (n = 34)

Mean Mean Mean Mean
Comparison difference  p-value difference  p-value difference  p-value difference  p-value
Avs.B NA NA 1.80 <0.05 0.48 n.s. 1.18 n.s.
Avs. C NA NA 1.13 n.s. 1.28 n.s. 2.00 n.s.
Avs.D 1.36 n.s. 0.88 n.s. 2.10 n.s. 2.10 n.s.
Avs. E 0.42 n.s. -0.75 n.s. -0.07 n.s. -1.16 n.s.
Avs. F -1.36 n.s. -1.40 <0.05 -0.23 n.s. -0.47 n.s.
Avs. H 0.78 n.s. 0.20 n.s. 1.51 n.s. -0.18 n.s.
Avs. G 0.37 n.s. 0.50 n.s. 0.95 n.s. -0.41 n.s.
Avs. 1 1.02 n.s. 1.40 n.s. 2.58 n.s. 0.47 n.s.
Bvs.C NA NA -0.67 n.s. 0.80 n.s. 0.82 n.s.
Bvs.D NA NA -0.92 n.s. 1.63 n.s. 0.92 n.s.
Bvs. E NA NA -2.55 <0.05 -0.55 n.s. -2.34 n.s.
Bvs. F NA NA -3.20 <0.05 -0.70 n.s. -1.65 n.s.
Bvs. H NA NA -1.60 <0.05 1.03 n.s. -1.36 n.s.
Bvs. G NA NA -1.30 n.s. 0.48 n.s. -1.60 n.s.
Bvs. 1 NA NA -0.40 n.s. 2.10 n.s. -0.72 n.s.
Cvs.D NA NA -0.25 n.s. 0.83 n.s. 0.10 n.s.
Cvs. E NA NA -1.88 <0.05 -1.35 n.s. -3.16 <0.05
Cvs. F NA NA -2.53 <0.05 -1.50 n.s. -2.47 n.s.
Cvs.H NA NA -0.93 n.s. 0.23 n.s. -2.18 n.s.
Cvs. G NA NA -0.63 n.s. -0.32 n.s. -2.42 n.s.
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2021-Feb (n = 19)

2021-Oct (n = 34)

2023-Jan (n = 34)

2023-Oct (n = 34)

Mean Mean Mean Mean

Comparison difference  p-value difference  p-value difference  p-value difference  p-value
Cuvs. 1 NA NA 0.28 n.s. 1.30 n.s. -1.54 n.s.
Dvs. E -0.93 n.s. -1.63 <0.05 -2.18 n.s. -3.26 <0.05
Dvs. F -2.71 <0.05 -2.28 <0.05 -2.33 n.s. -2.57 n.s.

D vs. H -0.58 n.s. -0.68 n.s. -0.59 n.s. -2.28 n.s.
Dvs. G -0.98 n.s. -0.38 n.s. -1.15 n.s. -2.52 n.s.
Dvs. 1 -0.34 n.s. 0.53 n.s. 0.48 n.s. -1.63 n.s.
Evs. F -1.78 n.s. -0.65 n.s. -0.15 n.s. 0.69 n.s.
Evs.H 0.36 n.s. 0.95 n.s. 1.58 n.s. 0.98 n.s.
Evs. G -0.05 n.s. 1.25 n.s. 1.03 n.s. 0.74 n.s.
Evs. 1 0.59 n.s. 2.15 <0.05 2.65 n.s. 1.62 n.s.

F vs. H 2.14 <0.05 1.60 <0.05 1.73 n.s. 0.29 n.s.
Fvs. G 1.73 n.s. 1.90 <0.05 1.18 n.s. 0.05 n.s.
Fvs. 1 2.37 <0.05 2.80 <0.05 2.80 <0.05 0.93 n.s.
Hvs. G -0.41 n.s. 0.30 n.s. -0.56 n.s. -0.24 n.s.
Huvs. 1 0.24 n.s. 1.20 n.s. 1.07 n.s. 0.64 n.s.
Guvs. I 0.64 n.s. 0.90 n.s. 1.63 n.s. 0.88 n.s.
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Table A3.2 Results of post-hoc pairwise comparisons using Tukey's honestly significant difference procedure for needle P measurements
(g/kg) at the plot level for four datasets. n is the sample size. Statistically significant results are highlighted in red. n.s.: not significant. NA:
Not applicable if no plots in that treatment were sampled.

2021-Feb (n =19) 2021-Oct (n=34) 2023-Jan (n = 34) 2023-Oct (n = 34)

Mean Mean Mean Mean
Comparison difference p-value difference p-value difference p-value difference p-value
Avs.B NA NA -0.31 <0.05 -0.15 n.s. -0.45 <0.05
Avs. C NA NA -0.41 <0.05 -0.25 n.s. -0.39 n.s.
Avs.D -0.31 n.s. -0.36 <0.05 -0.23 n.s. -0.40 n.s.
Avs. E -0.55 <0.05 -0.60 <0.05 -0.74 <0.05 -0.90 <0.05
Avs. F -0.51 <0.05 -0.58 <0.05 -0.81 <0.05 -0.86 <0.05
Avs. H -0.48 <0.05 -0.75 <0.05 -0.60 <0.05 -0.81 <0.05
Avs. G -0.09 n.s. -0.07 n.s. 0.05 n.s. -0.21 n.s.
Avs. 1 -0.73 <0.05 -0.64 <0.05 -0.46 n.s. -0.80 <0.05
Bvs.C NA NA -0.10 n.s. -0.10 n.s. 0.06 n.s.
Bvs.D NA NA -0.04 n.s. -0.08 n.s. 0.05 n.s.
Bvs. E NA NA -0.28 <0.05 -0.59 <0.05 -0.45 <0.05
Bvs. F NA NA -0.27 <0.05 -0.66 <0.05 -0.41 n.s.
Bvs. H NA NA -0.44 <0.05 -0.45 n.s. -0.36 n.s.
Bvs. G NA NA 0.24 <0.05 0.20 n.s. 0.24 n.s.
Bvs. 1 NA NA -0.33 <0.05 -0.31 n.s. -0.35 n.s.
Cvs.D NA NA 0.05 n.s. 0.02 n.s. -0.01 n.s.
Cvs. E NA NA -0.19 n.s. -0.49 n.s. -0.51 <0.05
Cvs. F NA NA -0.17 n.s. -0.57 <0.05 -0.47 <0.05
Cvs.H NA NA -0.34 <0.05 -0.36 n.s. -0.42 n.s.
Cvs. G NA NA 0.34 <0.05 0.30 n.s. 0.18 n.s.
Cuvs. 1 NA NA -0.23 <0.05 -0.22 n.s. -0.41 n.s.
Dvs. E -0.23 n.s. -0.24 <0.05 -0.51 <0.05 -0.50 <0.05
Dvs. F -0.19 n.s. -0.23 <0.05 -0.58 <0.05 -0.46 <0.05
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2021-Feb (1 = 19)

2021-Oct (1 = 34)

2023-Jan (n = 34)

2023-Oct (n = 34)

Mean Mean Mean Mean
Comparison difference p-value difference p-value difference p-value difference p-value
Dvs. H -0.17 n.s. -0.40 <0.05 -0.37 n.s. -0.40 n.s.
Dvs. G 0.23 n.s. 0.29 <0.05 0.28 n.s. 0.19 n.s.
Dvs. 1 -0.42 <0.05 -0.28 <0.05 -0.23 n.s. -0.40 n.s.
Evs. F 0.04 n.s. 0.01 n.s. -0.07 n.s. 0.03 n.s.
Evs. H 0.07 n.s. -0.16 n.s. 0.13 n.s. 0.09 n.s.
Evs. G 0.46 <0.05 0.53 <0.05 0.79 <0.05 0.69 <0.05
E vs. 1 -0.19 n.s. -0.04 n.s. 0.27 n.s. 0.10 n.s.
Fvs.H 0.03 n.s. -0.17 n.s. 0.21 n.s. 0.06 n.s.
Fvs. G 0.42 <0.05 0.51 <0.05 0.86 <0.05 0.65 <0.05
Fvs. 1 -0.22 n.s. -0.05 n.s. 0.35 n.s. 0.06 n.s.
Hvs. G 0.40 <0.05 0.68 <0.05 0.65 <0.05 0.60 <0.05
Hvs. I -0.25 n.s. 0.11 n.s. 0.14 n.s. 0.00 n.s.
Guvs. | -0.65 <0.05 -0.57 <0.05 -0.51 n.s. -0.59 <0.05
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Appendix for Chapter 4

Table A4.1 Equations of narrow-band hyperspectral indices (NBHIs). R, represents the
reflectance at A nm wavelength.

Index

Equation

Reference

Structural indices

NDVI
EVI

RDVI
OSAVI

MSAVI

TVI
MTVL
MTVI

MCARI

MCARIL
SR
MSR

(Rgoo — Re70)/(Rgoo + Re70)

2.5(Rgoo — Re70)/(Rgoo + 6Rg70 —

(Rgoo — Re70)/+/ (Rgoo + Re70)
(1+40.16) X (Rgoo — Re70)/((Rgoo + Re70
+0.16)

[2Rgpo + 1

- \/(2R800 + 1)2 — 8(Rgoo — Re70)]/2
0.5[120(R750 — Rs50) — 2(Re70 — Rs50)]
1.2[1.2(Rgoo — Rss50) — 2.5(Rg70 — Rs50)]
1.5[1.2(Rggpp — Rss50) — 2.5(Rg70 — Rs50)]

J(ZRSOO +1)% - (6R800 — 5y R670) —05

[(R7OO - R670) - 0'2(R700

— Rs50)] X (R700/Ré70)
1.2[2.5(Rgo0 — Re70) — 1.3(Rgoo — Rss0)]

Rgoo/Re70
[Reoo/Re70 — 11/[(Rgo0/Re70)°> + 1]

Chlorophyll a + b indices

Rouse ef al. (1974b)
Liu and Huete (1995)

Roujean and Breon (1995)
Rondeaux et al. (1996)

Qi et al. (1994)

Broge and Leblanc (2001)
Haboudane et al. (2004a)
Haboudane et al. (2004a)

Daughtry et al. (2000)

Haboudane et al. (2004a)
Jordan (1969)
Chen (1996)

TCARI 3[(R700 — Rg70) — 0.2(R700 Haboudane et al. (2002)
— Rss50) X (R700/Re70)]

TCARI/ 3[(R700—Re70)—0-2(R700—Rs50) X (R700/R670)] Haboudane et al. (2002)

OSAVI (1+0.16)(Rgo0—Re70)/(Rgoo+Re70+0.16)

CTR: Reos/ R4z Carter (1994)

CAR Rs15/Rs70 Hernandez-Clemente et al.
(2012)

SRPI R430/Reso Pefiuelas et al. (1995b)

PSSRa Rgoo/Re7s Blackburn (1998)

PSSRo Rgoo/Ré3s Blackburn (1998)

PSSR. Rgo0/R470 Blackburn (1998)

PSND. (Rgoo — Ra70)/(Rgoo + Ra70) Blackburn (1998)

NPCI (Rego — Ra30)/(Rego + Razo) Pefiuelas et al. (1994)

DCabDxc Re72/(Rsso X 3R7035) Datt (1998)

DNCabCxe Rgeo/(Rss0 X R708) Datt (1998)

PSRI (Rggo — Rs00)/R750 Merzlyak et al. (1999)

VOGi R540/R720 Vogelmann et al. (1993)

VOG2 (Ry34 — R747)/(R715 + Ry26) Vogelmann et al. (1993)

VOGs (Ry34 — R747)/(R715 + Ry50) Vogelmann et al. (1993)

GM; R;s0/Rss0 Gitelson and Merzlyak
(1997)
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Index Equation Reference

GM:2 R750/R700 Gitelson and Merzlyak
(1997)

CI R;s0/R710 Zarco-Tejada et al. (2001)

SIPI (Rgoo — R4a5)/(Rgoo + Resgo) Penuelas et al. (1995)

CRlIsso (1/Rs10) — (1/Rs50 ) Gitelson et al. (2002)

CRI700 (1/Rs10) — (1/R700) Gitelson et al. (2002)

CRIss50m (1/R515 ) - (1/R550 ) Gitelson et al. (2006)

CRI700m (1/Rs15) — (1/R700 ) Gitelson et al. (2006)

RNIR-CRIsso  (1/Rs19) — (1/Rss50 ) X Ry79 Gitelson et al. (2006)

RNIR-CRI700

(1/Rs10) — (1/R700 ) X R77¢0

Gitelson et al. (2006)

PRI indices

PRI (Rs79 — Rs31)/(Rs70 + Rs31) Gamon et al. (1992b)

PRIsis (Rs15 — Rs31)/(R515 + Rs31) Hernandez-Clemente et al.
(2011)

PRImi (Rs12 — Rs31)/(R512 + Rs31) Hernandez-Clemente et al.
(2011)

PRIm2 (Reoo — Rs31)/(Repo + Rs31) Gamon et al. (1992b)

PRIm3 (Re70 — Rs31)/(Rg70 + Rs31) Gamon et al. (1992b)

PRIm4 (Rs70 — Rs31 — Rg70)/(R579 + Rs31 + Hernandez-Clemente et al.

Rez0) (2011)
PRIx PRI5;o/[RDVI X (R700/Re70)] Zarco-Tejada et al. (2013d)
PRI-CI [(R570 — Rs30)/(R570 + Garrity et al. (2011)

Blue indices

Rs30)1(R760/R700 — 1)

NPQI (Razs — Ryzs)/(Razs + Raze) Pefiuelas ef al. (1995b)

B R4s0/Ragg Calderodn et al. (2013)

BF: Ri00/Ra10 Zarco-Tejada et al. (2018a)
BF R400/Raz0 Zarco-Tejada et al. (2018a)
BF3 R400/R430 Zarco-Tejada et al. (2018a)
BF4 R400/ Raso Zarco-Tejada et al. (2018a)
BFs R400/Raso Zarco-Tejada et al. (2018a)
BRI R400/Reg0 Zarco-Tejada et al. (2012)
BRI2 Rus0/Reo0 Zarco-Tejada et al. (2012)
RGB indices

R R500/Re70 Gitelson et al. (2000)

G Rs70/Re70 Calderodn et al. (2013)
BGI R400/Rss0 Zarco-Tejada et al. (2005)
BGI:2 R4s0/Rss0 Zarco-Tejada et al. (2005)
RGI Reo0/Rs50 Zarco-Tejada et al. (2005)
RARS R;46/Rs13 Chappelle et al. (1992)
LIC: (Rgoo — Res0)/(Rgoo + Resgo) Lichtenthaler (1996)

LIC: R440/Re90 Lichtenthaler (1996)

LICs Ry40/R740 Lichtenthaler (1996)

Chlorophyll fluorescence
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Index Equation

Reference

CUR (Re75 X Rego)/Rig3

Plant disease index

Zarco-Tejada et al. (2000)

HI Rs34 — Rgog

— 0.5R
Rs34 + Reog 7o

Mahlein et al. (2013)
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Fig. A4.1. Variability in calibrated SIF7 quantified through 3FLD method at the
treatment level for four dates.
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Table A4.2 Needle N and P estimation performance of GPR models with inputs including
TCARI/OSAVI (T/0), PRI, NPQI and CUR at plot level and treatment level.

N =AT/O, PRI, NPQI, CUR) P =£T/O, PRI, NPQI, CUR)
Dataset
R? NRMSE R? NRMSE

Plot level

2021-Feb (n=19)  0.66*** 0.17 0.15" 0.30
2021-Oct (n=34)  0.54%** 0.19 0.50%** 0.19
2023-Jan (n = 34) 0.01"™ 0.26 (0.34 7% 0.25
2023-Oct (n=34)  0.10™ 0.31 0.12" 0.30
Treatment level

2021-Feb (n=7) 0.86** 0.11 0.46™ 0..25
2021-Oct (n=9) 0.88%** 0.12 0.87%** 0.15
2023-Jan (n=9) 0.01"™ 0.34 0.827%** 0.18
2023-Oct (n=9) 0.46* 0.24 0.55%* 0.24
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Appendix for

Chapter 6
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Fig. A6.1. Tree-level comparison of reflectance values between measured and simulated
MicaSense data across 10 MicaSense spectral bands for the (top) 2023-Jan and (bottom)

2023-Oct datasets.
significant.

***p-value < 0.001; **p-value < 0.01; *p-value < 0.05; n.
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