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Abstract 

Wheat (Triticum spp.) is crucial to food security. The source of a major proportion of 

humans’ total dietary carbohydrates and protein, it is among the world’s most widely grown 

crops and receives concomitantly large quantities of nitrogen (N) fertiliser. Wheat grain 

protein content (GPC; %) is a key to food quality, determining the baking quality of bread, 

the cooking quality of pasta, and the nutritional value of food products. For these reasons, 

wheat is classified and growers are typically paid predominantly on the basis of GPC, setting 

its farm income value. Global population growth encourages a justified focus on increasing 

yields. However, because grain proteins are diluted by carbohydrate (CHO) additions in the 

latter part of growing seasons, GPC is in an inverse relationship with yield: Improved yields 

are attended by the risk of reducing GPC. Moreover, GPC is influenced by interacting genetic 

and agronomic factors, soil properties and weather conditions that affect crops’ physiological 

status and stress levels and can therefore exhibit great spatial variability.  

Of the vast quantities of nitrogen (N) applied to wheat crops, a variable but substantial 

proportion is lost, inducing environmental damage and financial costs, which should be 

averted. Accurate GPC prediction could reduce N losses, assist in crop management 

decisions, and improve farm incomes. Nitrogen is central to proteins and can be strategically 

supplied to crops in order to achieve GPC benchmarks a precision agriculture (PA) approach. 

In such scenarios, estimates of GPC potential in advance of harvest could guide fertiliser 

dosing, improving fertiliser efficiency and potentially reducing costs. In contrast, where 

strategic fertiliser applications are not favoured, crop management could benefit from prior 

knowledge through strategic harvesting aimed at maximising payments per unit of grain at 

receival. 
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However, GPC is a complex variable, influenced by multiple plant traits, themselves affected 

by soil and moisture conditions and whose effects change through the growing season. While 

remote sensing (RS) is likely the only practicable method of estimating GPC during seasons, 

and shows potential, prediction is complex and success has been limited. To make progress, it 

is necessary to more robustly identify imaging spectroscopy-based physiological traits closely 

associated with GPC. 

Traits with known physiological links to GPC, and which can be retrieved from imaging 

spectroscopy, include leaf area index (LAI) and chlorophyll (Ca+b). Further inspection of 

these and other RS traits may advance research relevant to PA. The inverse relationship of 

GPC to CHO assimilation permits the hypothesis that indicators of plant stress can improve 

GPC estimation. Such stress indicators, including the pigments anthocyanins and carotenoids, 

can be accurately retrieved along with other biophysical and biochemical quantities from 

hyperspectral (HS) remote sensing but their relationship to GPC had yet to be tested. Solar-

induced fluorescence (SIF), emitted from the photosystems in proportion to instantaneous 

photosynthetic rate, was also untested as a GPC predictor. Moreover, in addition to the traits 

themselves, retrieval of plant traits by inversion of radiative transfer models (RTM) also 

remained untried for GPC estimation. Finally, the crop water stress indicator (CWSI), a proxy 

for evapotranspiration and hence carbon assimilation, should also show an association with 

GPC.  

Because a large majority of GPC studies have been conducted exclusively in the context of 

experimental plots, it is appropriate to extend research into the commercial cropping domain, 

populated to date by only two previous studies. This expansion is facilitated by the recent 

advent of spatially explicit GPC monitoring during crop harvests. While lacking the ultra-

high spectral and spatial resolution of airborne HS sensing, satellite RS, in particular the 

Sentinel-2 (S2) platforms, possess advantages with respect to broadacre PA. These include a 
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focus on reflectance bands adapted to vegetation sensing, appropriate spatial resolution, and 

frequent return times. 

This thesis presents results from piloted HS flights and ground campaigns at two dryland 

field experiments with divergent water supply and wide-ranging N fertiliser treatments, and 

from HS flights over 17 commercial fields planted to either bread (T. aestivum L.) or durum 

(T. turgidum subsp. durum (Desf.) Husn.) wheat, across two years in the southern Australian 

wheat belt. Imagery was acquired with airborne hyperspectral and thermal sensors, with 

spatial resolutions of approx. 0.3 m and 0.5 m for experimental plots and 1 m / 1.7 m in 

commercial fields. Leaf clip measurements, leaf and grain samples were collected from plots 

and through a transect in one field. In commercial fields, ~40,000 records obtained from 

harvester-mounted protein monitors. CWSI, SIF, vegetation indices and PRO4SAIL RTM 

inverted parameters were retrieved for each plot and GPC record location. Sentinel-2 (S2) 

timeseries (TS) were subsequently acquired for > 6,000 ha of commercial dryland wheat 

fields, inclusive of those included in HS campaigns, also in south-east Australia and through 

two consecutive years of dissimilar rainfall. In this case, growers provided ~92,000 GPC data 

points from harvester-mounted protein monitors. For each, Ca+b, leaf dry matter, leaf water 

content (Cw) and LAI were retrieved from the S2 images by radiative transfer model 

inversion. A gradient boosted machine learning algorithm was applied to analyse these traits’ 

importance to GPC and to predict GPC in 30% of samples unseen by the algorithm in 

training. 

From HS analyses, the photochemical reflectance index (PRI) related to xanthophyll 

pigments was consistently associated with GPC at both leaf and canopy scale in the plots and 

transect. In the commercial crops, a gradient boosted machine learning algorithm (GBM) 

ranked CWSI as the strongest indicator of GPC under severe water stress, while SIF, PRI and 

inverted biochemical constituents anthocyanins and carotenoids were consistently important 
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under more moderate growing conditions. Structural parameters inverted from HS were not 

prominent except under severe drought when CWSI was omitted from models. Statistically 

significant results were obtained for GPC estimation in unseen samples, with best 

relationships between predicted and observed GPC of R2 = 0.80 and RMSE = 0.62 % GPC in 

a model built with thermal and physiological traits obtained from HS and thermal imagery. 

Trait importance in S2 analyses was consistent with that seen from HS, in that the rankings of 

physiological, structural and water stress indicators were aligned: severe drought increased 

the importance of water stress measures relative to other traits, but in milder conditions 

physiological traits were emphasised. Airborne SIF added substantially to model skill from 

single-image S2, particularly in moderate conditions. While coefficients of determination 

varied substantially according to water stress, error metrics invariably sat within a tight range, 

under 1 % GPC. Overall, these predictive modelling results, obtained at within-field scale and 

in challenging conditions, place the current study among others in the same research domain, 

most of which consider either plot or regional scales. The strongest relationships between 

predicted and observed GPC (R2 = 0.86, RMSE = 0.56 %), in a model built from five S2 

images across a season, were better than those from single-date hyperspectral (HS). In severe 

water stress, LAI was the main predictor of GPC early in the season, but this switched to Cw 

later. In milder conditions, importance was more evenly distributed both through the years 

and between traits, and predictive skill was lower. S2 TS had a clear accuracy advantage over 

single-date S2, and approached that of HS, especially in benign conditions, emphasising its 

previously unexplored potential for large-scale GPC monitoring. The methods developed are 

a novel contribution and can be proposed as a useful basis for future research. 
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Thesis structure 

This thesis comprises the following chapters: 

Chapter 1: Introduction, background, motivations, objectives and significance of the PhD 

research. 

Chapter 2: Literature review of methods of estimating GPC and physiologically linked 

plant/canopy traits from remotely sensed data 

Chapter 3: Methods 

Chapter 4: Results 

Chapter 5: Discussion 

Chapter 6: Conclusions, findings of the project, its limitations and scientific contribution, 

and proposals for future research. 

Appendix A: Tables of all vegetation indices considered in analyses  

Appendix B: Associated publication 1 

Appendix C: Associated publication 2 
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1. Introduction 

This chapter contains included material from: 

Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop 

traits retrieved from airborne hyperspectral and thermal remote sensing imagery to predict 

wheat grain protein content. ISPRS Journal of Photogrammetry and Remote Sensing 193, 

284–298. https://doi.org/10.1016/j.isprsjprs.2022.09.015 

Longmire, A.R., Poblete, T., Hornero, A., Chen, D., Zarco-Tejada, P.J., (accepted 2023-10-27). 

Estimation of grain protein content in commercial bread and durum wheat fields via traits 

inverted by radiative transfer modelling from Sentinel-2 timeseries. ISPRS Journal of 

Photogrammetry and Remote Sensing. 

― 

1.1. Research background 

Wheat (Triticum spp.) has played a prominent role in human history. Since it was 

domesticated in the Fertile Crescent around 10,000 years BP, wheat has grown to occupy 

more of the world’s arable lands than any other single crop (Preece et al., 2017; Shewry, 

2009). Globally, more than 240 million hectares (Mha) are currently under wheat cultivation, 

from 67° north to 45° south, and over 900 Tg (1012 g; = megatonne (Mt)) of grain was 

produced in 2021 (FAO, 2022). Wheat is the most traded cereal in the world, with ~ 200 Tg, 

worth USD55 billion, shipped internationally in 2021. This constitutes approximately 22 % 

of total annual production. The economic importance of wheat is also linked to its crucial role 

in our diets and cultures. More than 20 % of humans’ intake of both carbohydrates (CHO) 

and protein come from a combination of bread (T. aestivum L.) and durum (Triticum 

turgidum subsp. durum (Desf.) Husn.) cultivars (FAO, 2022; Shiferaw et al., 2013). In 

confirmation of its centrality to human life, wheat also imprints cultural and faith traditions, 

representing sacred entities or practices in major religions (Shewry, 2009). 



2 
 

Aside from its role as a nutritional mainstay, wheat protein determines the baking quality of 

flour and hence, the rheological properties of leavened bread, and the cooking quality of pasta 

products (Cubadda et al., 2007; Panozzo et al., 2014). Therefore, grain protein content 

(GPC; %) is critically important to both the nutritional value of one of Homo sapiens’ staple 

crops and to our experience of food. Commensurately, GPC determines the final purpose of 

wheat and higher protein content yields higher unit prices at grain receival (Apan et al., 

2006). Protein content varies according to cultivar and growing conditions and can vary from 

7—22 % but in commercial cultivation is usually between 10—15 % (Shewry, 2009); among 

the many threats to agriculture from climate change, the net influence of atmospheric CO2 

enrichment on GPC is likely to be negative (Högy and Fangmeier, 2008). 

Global population growth has increased wheat demand, causing concerns over food security 

and equity of economic access to food. To address food demand, and growing economic 

pressure on farms and primary producers, much effort has been invested in increasing wheat 

yields. Such efforts have led to a 38 % increase in global wheat production volumes since the 

1990s, with no increase in the area sown to wheat (Erenstein et al., 2022). While the focus on 

yield is justified, the inverse correlation of yield to GPC means that any action taken to 

increase one, can have the opposite effect on the other (Barraclough et al., 2010; Bogard et 

al., 2010; Zörb et al., 2018). Thus, as grain yields increase, we must also ensure that quality 

is maintained, given the importance of wheat protein. 

Nitrogen (N) is a central component of amino acids, and hence also of proteins and 

chlorophyll. After carbon (C), hydrogen, and oxygen, N is the most abundant element in 

plants but is frequently also in limited supply. With insufficient N, crop growth is constrained 

because less chlorophyll can be synthesised, limiting crops’ capacity to harvest sunlight for 

further growth. N limitation also restricts root development and hence plants’ capacity to 

forage for water and nutrients, and promotes early senescence (Kant et al., 2011; Paul and 
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Driscoll, 1997). Within plants and crops, GPC is influenced by interacting genetic, edaphic, 

agronomic, and meteorological factors, which control N uptake and partitioning, protein 

translocation and dilution. The amount of protein ultimately accumulated in wheat grains is 

influenced primarily by the quantity of N in the plant at anthesis (Zadoks (Z) growth stage 

Z65; Giuliani et al., 2011; Lopez-Bellido et al., 2004; Masoni et al., 2007; Zadoks et al., 

1974), and the amount of N plants can extract from the soil during grain filling (Gooding et 

al., 2007; Jamieson and Semenov, 2000; Ottman et al., 2000; Taulemesse et al., 2016). As 

such, soil properties exert considerable influence over GPC and can result in great GPC 

variability over short distances, most significantly due to differential moisture availability. 

Also closely tied to soil moisture, the rate and duration of photosynthesis during grain filling 

(Z70—79) determines how much protein is diluted by new assimilates. Grain yield increases 

with greater assimilation, but this results in lower GPC as a proportion of grain mass. This 

long-recognised inverse yield~GPC relationship reflects the association of plant stress with 

GPC (McNeal et al., 1978; Terman, 1979). Hence factors which promote profitability via 

increased production volumes have the opposite effect through quality. Adding complexity in 

water-limited cropping, early-season N supply bears strongly upon moisture conservation: 

sufficient N to achieve quick canopy closure can limit soil drying, but overapplication risks 

driving excessive early vigour, depleting moisture, and exacerbating later water stress. This 

effect, known in Australia as ‘haying off’ (Angus and Fischer, 1991; van Herwaarden et al., 

1998), has strong negative yield effects, including the potential for total crop loss. Aversion 

to such effects deters growers from N applications sufficient to prevent mining (Angus and 

Grace, 2017).  

In our quest to produce sufficient volumes of nutritious food, humans encounter two urgent 

but sharply contrasting environmental issues in which N plays a central role. Soils in many 

low-input agricultural systems are affected by N mining (Chen et al., 2016; Novelli et al., 
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2023), wherein removals in harvested products exceed inputs over a sustained period, 

resulting in soil N depletion. This is problematic because soil N is crucial not only to crop 

plants, but also to soil microbiota and the overall health, C content, water holding and 

productivity of soils; each of these is reduced with soil N depletion. Conversely, in high-input 

agricultural systems, the overapplication of N fertilisers and the failure of crops to remove 

them from the soil in commensurate quantities, allows large amounts of reactive nitrogen 

(Nr) to be released to the environment, causing a cascade of impacts as outlined below (e.g. 

Andrews and Lea, 2013; Fowler et al., 2015; Galloway et al., 2003; Vitousek et al., 1997). 

Given these conflicting yet intertwined problems, the indispensability of fertilisers to food 

production, and the unlimited amount it is possible to fix as plant-available, reactive forms, 

the N dilemma can be counted among the ‘wicked problems’ facing humankind in the early- 

to mid- 21st century.  

An estimated 8 % of all N removed from soil by global wheat crops is mined from soils 

(Ladha et al., 2016); because of the astronomical quantities of wheat grown and the spatial 

extent of cultivation, this is problematic. Due to historic and ongoing land use and 

management choices, which promoted both bulk soil loss and degradation (Koch et al., 

2015), soil N depletion is widespread in Australia, and many soils will need higher N inputs 

to maintain their productivity in the medium term (Angus and Grace, 2017; Chen et al., 

2016). Many Australian soils were mined of N through continuous cropping or crop-fallow 

rotations from the time of their conversion until the 1950s, when the use of legumes to fix N 

in bioavailable forms in ley pastures began (Henzell, 2007, p. 19). Overall, 20—25% of the N 

present in Australian soils at the time of colonisation has been mined or otherwise lost 

(Angus and Grace, 2017), and this is ongoing across large areas (Harries et al., 2021). By a 

separate measure, which also attests to declining soil quality, Sanderman et al. (2010) 

estimated that 40—60 % of pre-colonisation soil C has been lost where and since agriculture 
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was imposed upon Australian soils. Indirectly, this loss of C also implies large losses of N 

(Murty et al., 2002).  

Before synthetic fertiliser became widely available, farmers often simply moved on to new 

areas when native soil N was exhausted. For many decades prior to the introduction of any 

system to manage N, increases in production relied on ‘new’ land being brought under 

cultivation in this way (Henzell, 2007, p. 14). Thus were large areas of Australia colonised, 

and some subsequently abandoned, when cereal yields declined. This pattern was repeated 

globally (Scholes and Scholes, 2013): long-term soil N mining due to wheat production is 

reported in North America (Rasmussen and Parton 1994), Africa (Ntinyari et al., 2022; 

Sanchez, 2002) and South America (Novelli et al., 2023). In Australia and elsewhere, the 

challenge of soil mining remains, and requires a strong focus on N management to prevent 

further declines in the ability of soils to sustain crops and life (Liang et al., 2022). 

So, because cropping depletes soil N, the human response is to add it back; both as synthetic 

fertiliser and through cultivated biological fixation (BNF), in which legumes are included in 

crop rotations. Synthetic fertiliser now contributes half of the Nr in human diets (Liang et al., 

2021), and more than 80 % of fertiliser N (Galloway et al., 2017; Ladha et al., 2016). 

Globally, 17 % of all N fertiliser is applied to wheat (Heffer and Prud’homme, 2020), much 

of it as urea. Our collective Nr production doubled between 1980 and 2010 (Fowler et al., 

2015) and we have infinite capacity to produce more, simply by invoking the Haber-Bosch 

process, which fixes atmospheric N as Nr and has operated at industrial scale since 1913. 

However, of all N supplied to crops, around 50 % is lost as environmental pollution 

(Andrews and Lea, 2013) and as little as 12 % is ultimately consumed by humans (Smil, 

2002). In Australia, only around 40 % of the fertiliser N applied to wheat is assimilated into 

crops in the year of application and the rest is susceptible to loss, largely through ammonia 



6 
 

volatilization and denitrification, which cause combined losses equivalent to harvest 

removals (Angus and Grace, 2017; Chen et al., 2008). 

The term ‘reactive nitrogen’ (Nr) captures any nitrogenous compound except dinitrogen (N2): 

the plant-available nitrates (NO3
-) and ammonium (NH4

+); nitrites (NO2
-) and ammonia gas 

(NH3), which are not generally available to plants but are large contributors to pollution; 

oxides of nitrogen (NOx), and the potent greenhouse gas (GHG) nitrous oxide (N2O; (Stein 

and Klotz, 2016). Nr species accumulate in the environment because the rate of 

anthropogenic additions far exceeds that of their removal in crops and through denitrification, 

and are unique as environmental pollutants because their high mobility and reactivity enable 

movement between ecosphere domains (Fowler et al., 2015; Galloway et al., 2017). In this 

‘nitrogen cascade’ (Galloway et al., 2003), Nr pollutants in one domain are transformed and 

transported, and their damage multiplied in another. Stemming from our overuse of Nr and 

assisted by this cascade, humanity has overstepped the ‘safe operating space’ for Nr releases, 

by a factor of two (Steffen et al., 2015).  

The effects of excessive N use are numerous and costly: Nr species contribute to stratospheric 

ozone depletion and increase tropospheric smog, with direct damage to human health through 

PM2.5 pollution, closely linked to NH3 emissions. Nitrous oxide (N2O) is a greenhouse gas 

with global warming potential ~ 300 times greater than that of CO2 and of which 50% of 

emissions come from agricultural N use (Shcherbak et al., 2014). In the hydrosphere, Nr from 

agriculture causes eutrophication, algal blooms, hypoxia and biodiversity at extreme scales in 

marine and aquatic environments, for example in the Gulf of Mexico (McLellan et al., 2018), 

on Australia’s Great Barrier Reef (De’ath et al., 2012), in almost all major Chinese lakes 

(Gao and Zhang, 2010), and as nitrate pollution in ground- and drinking water (Ju and Zhang, 

2017). In terrestrial ecosystems, Nr is implicated in soil acidification, especially in 

agricultural soils, native grassland and forest dieback, and biodiversity loss (Liang et al., 
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2021). Environmental damage arising from fertiliser supply chains further emphasises the 

need to reduce waste (Galloway et al., 2017; Van Grinsven et al., 2013); GHG emissions 

from fertiliser production doubles those from its application (Chen et al., 2014) and N 

fertiliser can contribute half of all energy inputs in conventional wheat cropping (Colaço et 

al., 2012). 

‘Leaky’ systems of crop nutrition contribute to annual global wastage of 18 Tg Nr, worth 

USD200 billion (Sutton et al., 2020). The net cost to society of lost Nr in Europe is more than 

twice the fertilisers’ contributions via farm incomes (Sutton et al., 2011), because of Nr-

related costs to human health, the wider environment and the feedbacks to agriculture. The 

2008 cost of fertiliser overuse to the European Union was estimated at EUR230—485 billion 

(USD338—712 billion), of which approximately half came from agriculture (Van Grinsven 

et al., 2013). Nitrogen is also the costliest input for many crops worldwide (Xu et al., 2012) 

and in Australia, is the highest variable cost for grain growers. Given its low use efficiency 

here, annual losses may total AUD500 million (USD 425 M), a significant sunk cost at farm 

and broader levels (Monjardino et al., 2015, 2013) and a large, risky investment for farmers 

already operating under difficult and variable climatic and economic conditions. Furthermore, 

in the two years to April 2022, the global urea price increased four-fold (Baffes and Koh, 

2022) and given increasing fertiliser demand and likely tightening supplies (Cross and 

Gruère, 2022), significant long-term price relief is unlikely. These dynamics directly increase 

crop production costs. 

Nitrogen use efficiency (NUE) is a key concept with many definitions, emphases and 

purposes, recently surveyed by Congreves et al. (2021). Here, NUE is taken to mean 

harvested N divided by total N input; the latter includes native or residual soil N plus 

fertiliser inputs (Gu et al. 2023). NUE and GPC are inextricably linked, as most of the N 

ultimately removed in a crop – the numerator of the NUE equation – resides in proteins. But 
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while high GPC demonstrates – among other factors – crop N recovery, NUE is highly 

dependent on its denominator, of which in turn only fertiliser applications can be estimated 

with any accuracy, and even then, not always. 

Crop NUE is low for reasons including the dynamic nature and multiple loss pathways of Nr 

species and a failure to match the spatial and temporal variability of soil N, including 

fertiliser, against crop needs. Low NUE is implicated in both soil mining and elevated Nr 

emissions, but much can be done to improve NUE through nutrient management (e.g. Chen et 

al., 2014, 2011). In low-input cropping systems, common in Australia, underuse of fertiliser 

N is the general case: here, selectively increasing in-season applications may offer NUE, soil 

health and/or profit advantages (Angus and Grace, 2017; Monjardino et al., 2015, 2013). 

While there is great variability between countries, regions and crop types, recent studies 

estimate current global NUE at around 0.35, and propose that this figure would need to rise to 

around 0.77 to return humanity within a safe range (Omara et al., 2019; Schulte-Uebbing et 

al., 2022). 

Nitrogen fertiliser rate decisions are “a multivariate, and often complex, optimization 

problem, with weather and soil properties as critical regulators” (Colaço et al., 2021), made 

in the context of economic risk assessments (Monjardino et al., 2013). Weather varies in time 

while soil properties vary across space, but the two also interact; both under- and 

overapplication of N are responses to incomplete knowledge of these dynamics, the resultant 

variability in crop performance and the fate of applied N. Currently, due to the methods on 

which they commonly rely, decision support systems (DSS) to assist farmers with rate 

decisions fail to improve NUE and suffer from poor rates of uptake (Schwenke et al., 2019).  

Preseason soil N measurements are slow, labour-intensive, relatively expensive and provide 

limited actionable information, yet remain a standard method of assessing fertiliser needs 
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(Schwenke et al., 2019). Further, the information they supply is commonly extrapolated 

across large spatial extents from a few points, causing further error, and testing frequency is 

low, even among the ~ 25 % of adopters (Lobry de Bruyn and Andrews, 2016). Methods 

common in high-input systems are also criticised because they are often associated with a 

single heavy fertiliser application in the preseason, and later, lighter applications. This either 

ignores temporal variability in crop N uptake or presumes N will remain in the soil profile, 

and worsens asynchrony between uptake and availability, missing an opportunity to improve 

NUE (Raun et al., 2002; Schwenke et al., 2019; Shanahan et al., 2008). Moreover, these 

methods also generally fail to account for in-season mineralisation, disregarding a potentially 

substantial source of plant-available N (Shanahan et al., 2008). Despite progress, such 

imprecise methods remain common because the issues at hand are complex and alternatives 

are seen as equally so, expensive and often unproven. 

The recognition that uniform N treatments on spatially variable soils contribute to low NUE 

encouraged the development of precision agriculture (PA) techniques including variable rate 

technologies (VRT), and of many sensor-based approaches for N status assessment 

(Adamchuk, 2013). These efforts generally focus on reducing the amount of N applied, acting 

therefore on the denominator of the NUE equation. On-combine yield and/or protein monitor 

data, farmer knowledge, soil data from spatially sparse or dense sources, information from 

optical sensors and an increasing range of other origins can be used individually or in various 

combinations to delineate soil management zones used to guide fertiliser VRT. However 

yield and protein maps are necessarily produced post hoc and currently available N 

prescription maps are unresponsive to rainfall variability (Shanahan et al., 2008).  

Sensor-guided VRT have been associated with NUE improvements without negative yield 

effects, but a profit advantage remains to be sufficiently demonstrated (Cassman et al., 2002; 

Colaço and Bramley, 2018). This detracts from their appeal, and the adoption of VRT, 
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whether guided by sensors or not, is patchy at best: Barnes et al. (2019) report that the 

proportion of wheat growers who use it for fertiliser ranges from 2—47 % among selected 

European countries, while the United States’ equivalent is 11 % (Lowenberg-DeBoer and 

Erickson, 2019). Across all crop types, approximately 20 % of Australian farmers had 

adopted VRT for N by 2018, an increase from approximately 15 % in 2012 (Colaço and 

Bramley, 2018; Llewellyn and Ouzman, 2014), although Schwenke et al. (2019) reported that 

well less than 10 % of eastern-Australian grain farmers used any kind of in-season sensing. 

While the economic advantages of VRT will grow as fertiliser costs rise and could compound 

by reducing energy inputs per unit of yield by up to 20 % (Colaço et al., 2012), a solid 

demonstration of in-season GPC estimation and its applicability on farms would be a 

valuable contribution. 

An opportunity exists to advance the development of VRT to better respond to both spatial 

and temporal variations in crop performance. In-season N applications at the right time can 

elicit positive GPC responses, without negative effects on yield (Giordano et al., 2023; 

Zebarth et al., 2007; Zhang et al., 2022). Early GPC estimation, based on crop traits observed 

in-season, could permit VRT fertiliser applications, potentially improving GPC and reducing 

the risk of waste. This approach may best apply where late-season N applications already 

occur, as these rely on field trafficability and the likelihood of fertiliser wash-in, so are 

region- and weather dependent. However, GPC predictions could also guide strategic 

harvesting or product blending for better access to premium grain prices (Apan et al., 2006; 

Sowers et al., 1994; Zhao et al., 2005), perhaps most relevantly in low-input systems. It is 

necessary to test the capacity of recent advances in remote sensing to address these aims. 

Due to the many factors that influence protein sink and source sizes, translocation and 

dilution, GPC estimation from RS data is more complex than yield estimation, and success in 

GPC estimation has been limited (Freeman et al., 2003; Rodrigues et al., 2018; Zhao et al., 
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2019). Moreover, relationships between plant traits and GPC may be indirect, vary with 

phenology and interact. Substantial research details the retrieval of other traits linked to GPC, 

including leaf and canopy chlorophyll (Ca+b) and N content, leaf area index (LAI), biomass 

and water stress. Efforts to estimate GPC via these physiological precursors or directly, 

employing traditional empirical methods or complex statistical / machine learning techniques 

designed to elucidate complex non-linear relationships are surveyed in the literature review 

below.  

Most work on GPC estimation to date has relied on vegetation indices (VI) which, though 

they may accurately indicate individual plant traits, lack robustness across agronomic 

settings, seasons and locations (Clevers and Kooistra, 2012; Jacquemoud et al., 1995). Such 

inaccuracy should be excluded if robust GPC estimation methods are to be developed for 

application in wide-ranging conditions. To this end, plant trait retrieval by radiative transfer 

models (RTM) are an alternative, elucidating plant traits from reflectance spectra in their 

real-world units with good accuracy (e.g. Bacour et al., 2002; Féret et al., 2008; Jacquemoud 

et al., 2009, 1995; Li et al., 2015). Such methods may improve understanding of mechanistic 

linkages between precursor traits and GPC which otherwise remain obscure. Further, 

notwithstanding the strong physiological link, through reduced CHO assimilation during 

grain filling, between stress and GPC, consideration of this link is to date sparse in published 

works.  

Contemporaneously, the multitude of plant traits that can be estimated from HS data permits 

new approaches by which to investigate spatially variable plant stress and photosynthetic 

rate, hence carbon assimilation, across plant canopies. While mild or temporary plant 

stresses, which nevertheless have cumulative effects on GPC, are often poorly detectable 

through estimates of state variables including Ca+b, LAI, and their proxies, other RS 

spectroscopic quantities do provide insight into such short-term and/or mild stress. Solar 
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induced fluorescence (SIF) fluctuates in parallel with instantaneous photosynthetic rate 

(Flexas et al., 2002; Hikosaka and Noda, 2019; Zarco-Tejada et al., 2013a) and offers a more 

direct method of estimating actual photosynthesis, as compared to pigment quantities (Grace 

et al., 2007). The inclusion of SIF with other RS plant traits has strongly improved Ca+b and 

N estimation in wheat leaves and canopies (Camino et al., 2018; Jia et al., 2021), and has 

allowed accurate estimation of assimilation rates across N- and water stress levels, also in 

wheat (Camino et al., 2019). Despite these successes in other aspects of wheat performance, 

to date the SIF contribution to GPC represents a knowledge gap. 

To date, all other studies of GPC have relied on experimental plots, limited layouts or 

sampling within commercial fields or regional crop statistics at far coarser scales than the 

fields in which wheat is actually grown. While GPC estimation at plot scale has sometimes 

seen moderate success, its application to commercial production scales is problematic. 

Likewise, in studies based on regional statistics, the sparsity of ground-truth observations 

impedes downscaling. Though this did not appear to be the intention of those studies, it is a 

crucial step toward finding practical solutions. Also, despite the many factors involved with 

GPC physiology, research focused on the comparative magnitude of plant trait contributions, 

and the temporal dynamics of such relationships is lacking; to advance, knowledge of what 

matters, when, to wheat GPC should be investigated. Finally, studies demonstrating wheat 

GPC estimation from image timeseries remain exceedingly rare, and the publications to date 

show low estimation accuracy (Rodrigues et al., 2018; Wang et al., 2014). Each of these 

studies uses reflectance indices, which impedes the transferability of their methods across 

agronomic settings. There is potential that methods based on RTM inversion, image 

timeseries, or both, will allow progress in estimation of the spatial patterns of GPC and 

permit improvement of N fertiliser DSS; such approaches should be tested. 
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Many authors assert that responsive calibration of the location, amount and timing of 

fertiliser applications, aided by sensor-based technologies, has great potential to improve N 

management (e.g. Gebbers and Adamchuk, 2010). By implication, this group includes the 

many researchers engaged in the refinement of sensor-based methods related to crop N status, 

GPC estimation and yield prediction, whose publications reflect a vast research effort in the 

nexus between food security and N stewardship. Nevertheless, the practical and financial 

benefits of such approaches remain to be sufficiently proven, even where PA adoption is 

relatively widespread (Colaço and Bramley, 2018; Robertson et al., 2012), and the 

application of RS/PA methods to GPC specifically are as yet immature. 

Just as the problems caused by inappropriate N management vary, so must responses be 

defined according to heterogeneity of impacts, agricultural systems and economic 

development: while large NUE improvements are needed in some regions, others still 

substantially lack access to N (Schulte-Uebbing et al., 2022). Some authors warn that 

agricultural technology may provide a “false sense of security” against unsustainable soil 

quality decline, particularly nutrient mining (Scholes and Scholes, 2013). Such misgivings 

are justified, particularly where N is underapplied and this situation contributes to food 

shortages, for example in sub-Saharan Africa (Xia and Yan, 2023), and in Australia where 

historic and ongoing soil mining are problematic (Liang et al., 2022). To avoid further N 

mining while increasing food production in less developed countries, access to N fertiliser 

and N management methods must improve in parallel. Others assert that tech-heavy, sensor-

based PA, is ill-adapted to use in developing countries (Chen et al., 2014). While this also 

appears reasonable, on a presumed basis of restricted access to improved technology and 

practices, the geographical origin and focus of much current research is in precisely those 

places where N applications are instead excessive. On smallholder farms in China and India, 

for example, better stewardship can achieve large N efficiency gains (Gu et al., 2023; Xia et 
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al., 2017). Countries further along the development continuum have witnessed the damage 

caused by poor N husbandry and have relatively easy access to advanced technologies and 

methods, although implementation challenges remain. It is crucial that we continue to pursue 

and share such approaches so that the damage caused by poor N husbandry can be repaired at 

home and avoided in developed countries. In countries where agriculture is already highly 

mechanised and technological, we need to improve our engagement with N to maintaining 

food quality and keep cropping financially viable.  

Given the depth and urgency of the soil N mining, Nr, and food security problems, it is 

prudent to assess a range of approaches. Much of the very substantial research effort detailed 

in the attached literature review demonstrates both the intent and the achievements of the 

international RS community in developing remote sensing and PA tools applicable in this 

domain. It is hoped that this thesis can contribute to rapid and cost-effective GPC detection, 

and that this may in turn contribute to improving the conversion of N into grain protein. 

1.2. Research motivations 

The central contention of this thesis is that robust identification of plant traits which are 

influential on wheat GPC, and retrievable from imaging spectroscopy, is incomplete. This 

situation impedes the improvement of RS-based GPC estimation; considering the potential of 

RS-based PA methods to contribute to N fertiliser optimisation, this is a substantial 

knowledge gap. Reliable GPC estimation prior to harvest could improve farmers’ ability to 

increase fertiliser use efficiency, and to attain grain quality benchmarks; each of these would 

assist in maintaining the profitability of wheat cropping. To advance GPC estimation from 

RS, it is important to know which plant traits, retrievable from airborne hyperspectral and 

satellite multispectral RS, are most informative for GPC estimation. Given the association of 

wheat GPC with stress, this should include robust inspection of imaging spectroscopy-based 

physiological traits. The stability of traits’ importance to GPC estimation, and their influence 
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on prediction accuracy, should be tested across experimental and commercial contexts and in 

diverse conditions. 

To advance precision agriculture, then, there is a need to improve RS-based GPC prediction 

within fields but across large extents. In a novel approach, this research links GPC data 

collected at high spatial resolution by on-combine GPC monitors during commercial harvests 

with techniques from airborne hyperspectral, thermal and satellite multispectral RS. The 

component studies extract the reflectance spectra associated with tens of thousands of 

commercial GPC points, and with experimental plots, then use both empirical techniques and 

physiologically based mechanistic methods to retrieve the underlying plant traits. Using 

equivalent methods, a carefully chosen machine learning algorithm is applied to traits 

retrieved from both airborne and S2 satellite images. This allows transparent analysis of the 

links between crop traits and GPC and permits evaluation of the degree to which S2 trait 

importances align with those from hyperspectral. Because crop performance varies across 

time and space, the relative influence of plant traits on GPC is also assessed between seasons 

and across timeseries within seasons. In each analysis, the algorithm’s ability to predict GPC 

is tested; these metrics are also compared between data sources and agronomic contexts. 
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1.3. Research questions 

Given the research motivations, and after an extensive and critical literature review, presented 

in Chapter 2, the following research questions were defined: 

1) Which imaging spectroscopy-based plant physiological traits, retrievable from 

hyperspectral and thermal airborne remote sensing, are most closely associated with 

GPC? 

2) Are these traits stable across experimental and commercial contexts, different locations 

and contrasting seasonal weather conditions? 

3) Do plant traits retrieved from Sentinel-2 satellite images show similarities to those from 

hyperspectral images as predictors of GPC? 

The application of equivalent methods to Sentinel-2 satellite data allows further inquiry: 

4) What is the effect on model predictive skill of bandset reduction from hyperspectral to 

Sentinel-2 when traits from similar time points in each season are retrieved from the 

respective datasets? 

5) Crop water stress index is a proxy for transpiration and therefore atmospheric gas 

exchange, while SIF is proportional to photosynthetic rate. Each should therefore add 

predictive power for GPC estimation via the carbohydrate dilution principle, but neither is 

available from Sentinel-2. What are the contributions of CWSI and/or SIF to model 

predictive skill when added to S2 traits? 

And using plant traits retrieved from Sentinel-2 timeseries images: 

6) What plant trait dynamics are evident within and across seasons? 

7) What is the effect on model predictive skill of including TS elements in predictive 

models? 
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2. Literature review 

This literature review considers, first, the environmental and agronomic factors that influence 

wheat GPC, and the physiological mechanisms involved. This necessarily involves some 

discussion of yield because of its intimate links with GPC, and because of the far stronger 

focus in the literature on yield than GPC. A brief discussion of precision agriculture (PA) is 

offered, to locate the current work at the nexus of RS and PA in the commercial cropping 

context. On-combine monitors are concisely introduced, as they are the basis of ground-level 

data collection for most of the project. RS data sources relevant to the project are surveyed: 

passive sensing, hyperspectral, Sentinel-2 multispectral, and thermal; proximal sensing is 

largely avoided. Methods of retrieving plant traits from these sources are then discussed, first 

in broad terms then with specific reference to GPC-linked structural and physiological traits, 

particularly related to plant stress, and water stress itself. Examples of the application of these 

sources and techniques for GPC estimation are presented. In its latter subsections, this 

chapter covers other material central to the thesis project: machine learning, narrowing to a 

focus on gradient boosting; and the treatment of multicollinearity. Finally, current challenges 

and research gaps are identified through a detailed survey of previous work. A strong focus 

on wheat is prioritised throughout; minor exceptions to this are clearly stated. 

2.1. Physiological and agronomic influences on GPC 

Wheat growers often target GPC to reach a class associated with higher unit price, while also 

optimising yield. Yield is usually negatively correlated with GPC, in a relationship 

characterised by dilution: the amount of protein in grains is established at flowering but 

reduces as a proportion of grain mass as new carbohydrates are assimilated or translocated 

from other tissues. Hence when photosynthesis and / or solute transport are constrained 

during grain filling, limited dilution results in lower yield but higher protein. The dilution 

principle, its physiological basis and relationship to abiotic factors are borne out in many 
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studies of wheat and wheat products (Brooks et al., 1982; Flagella et al., 2010; Gooding et 

al., 2003; Ozturk and Aydin, 2004; Zhao et al., 2005, 2022). With a principal focus on water, 

N, and ambient temperature (Tamb) stresses, these are surveyed in the following paragraphs. 

Yield and GPC are influenced by interacting genetic, environmental and management factors, 

often characterised as G * E * M (Hatfield and Walthall, 2015; Russell et al., 2017). Plant 

genetics – the cultivar sown – are uniform within fields, chosen by managers in consideration 

of operational needs; the reliance of the Yield~GPC relationship on genetics is contested 

(Kibite and Evans, 1984; Lollato et al., 2021). Environmental factors are disaggregated, for 

the current analysis, into weather and soil. Seasonal precipitation can be presumed uniform 

within fields, and although some aspects of weather, such as frost severity, may vary within 

fields, neither can be influenced in dryland cropping. Soil properties can also vary greatly 

within fields and, through their effect on water and N availability, exert strong control over 

yield and GPC. Site-specific management (SSM), a component of PA, attempts to 

compensate for the differential effects of soil conditions. 

The soils of the Wimmera and Mallee regions of the southern Australian wheatbelt, where 

this study was undertaken, often show marked variability over short distances. The dominant 

Wimmera soils are vertosols, but both sodosols and chromosols are also common; these may 

occur interspersed with each other, and each is commonly affected by subsoil alkalinity, 

sodicity, salinity and boron (B; Nuttall and Armstrong, 2010; Weiss et al., 2022). In the 

Mallee, cropping fields were laid out on former dune fields. In these systems, inter-dune 

(swale) soils are typically shallow and clay rich. Their often shallow, rocky hardpan and B 

toxicity impede wheat root growth and penetration, and while they can hold substantial 

amounts of water and native N, this may be unavailable to plants because of soil texture and 

osmotic effects (Hoffmann et al., 2016; Kirkegaard and Lilley, 2007; Nuttall et al., 2003). 

Dune crests, by contrast, have deep, loose sand and clay aggregates, low organic matter and 
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hence native N, few impediments to root penetration, and allow rainwater to percolate to 

depth, where it is protected from evaporation and accessible to roots (Kirkegaard and Lilley, 

2007; Llewellyn et al., 2008). These dynamics are known to affect wheat yields, which can 

be highly variable within fields and across seasons and will similarly disrupt GPC. The 

Wimmera and Mallee regions are referred to in the experimental chapters below as cropping 

zones (CZ) 1 and 2, respectively.  

2.1.1. Water / N stress 

The effects of water and N stress can be difficult to separate, and in arid and semiarid regions 

such as those considered here, wheat production may be co-limited by N and water stress 

(WS) (Pancorbo et al., 2021; Sadras, 2004). Soil moisture management is by definition 

unavailable in dryland agriculture, and therefore has limited relevance to the current work. 

However, apart from their direct effects on plant performance, soil moisture and WS affect N 

uptake: solid N fertiliser must be dissolved and washed into the root zone; moisture sufficient 

for stomatal opening is needed for nutrient transport into roots and within the plant. The 

amount of N plants can extract from soil during grain filling is a strong influence on GPC, 

(Gooding et al., 2007; Jamieson and Semenov, 2000; Ottman et al., 2000). Moreover, any 

WS-induced reduction in growth rate also lowers crop N demand (Gonzalez-Dugo et al., 

2015). The effects of water and N stress on GPC can be substantial and take various 

pathways; their timing matters to harvest outcomes, but in general, an increase in either stress 

increases GPC (Daniel and Triboı̈, 2002; Zhao et al., 2005). Overall, GPC is positively 

correlated with N supply, and this association is modified by WS (Campbell et al., 1981). 

Like the factors that determine their status within plants, the relative contributions to GPC of 

water- and N stress interact and vary through seasons. Late season WS shortens grain filling 

and promotes premature senescence; these effects reduce CHO accumulation and hence GPC 
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dilution (Brooks et al., 1982; Gooding et al., 2003). While full-season WS had a very strong 

positive effect on GPC, the effect of deficits was far stronger later than early in the season 

(Ozturk and Aydin, 2004); the positive effect of WS on protein is also noted in wheat 

products (Flagella et al., 2010; Guttieri et al., 2000; Saint Pierre et al., 2008). Each of water- 

and N stress has increased GPC, with interaction such that GPC augmentation from WS was 

greater under supplementary N (Klem et al., 2018). Similarly, Raya-Sereno et al. (2021) 

found higher GPC under WS, that the magnitude of this effect depended on the amount of 

supplementary N and that the effect of N supplements was consistent only when water was 

sufficient. However, nor is the link between crop N status and GPC direct: correlations 

between anthesis leaf N content (LNC) and GPC have been found to be weak, though 

significant, and show the reliance of the LNC~GPC link on both efficient protein 

translocation and CHO assimilation late in seasons (Zhao et al., 2005, 2019). Indeed, WS can 

disrupt the translocation of both proteins and CHO (Gooding et al., 2007), and is a strong 

determinant of the fate of N (Klem et al., 2018). 

Water and N stresses induce changes that can be detected by remote sensing, including 

reduced leaf or canopy chlorophyll content (Angus and Fischer, 1991), and reduced biomass, 

often synonymous with LAI. These effects of these compound, further reducing light 

interception and growth potential as well as total CHO and protein stores. Plants under 

photooxidative, water and heat stress also increase their production of the stress response 

pigments Anthocyanins (Anth) and carotenoids ( Cx+c; Chalker-Scott, 1999; Groth et al., 

2020; Janeczko et al., 2018; Naing and Kim, 2021). Sensitive to Cx+c, the photochemical 

reflectance index (PRI; (Gamon et al., 1992)) reacts to water stress changes and serves as a 

proxy for photosynthetic rate (Feng et al., 2017; Magney et al., 2016b). PRI is proposed as an 

alternative to thermal RS for water stress detection (Kohzuma et al., 2021; Suárez et al., 

2008) and through this has improved wheat yield estimates (Feng et al., 2017; Magney et al., 
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2014). Photosynthesis reductions caused by N stress are also detectable via reduced 

chlorophyll fluorescence (Camino et al., 2018; Jia et al., 2021). Water stress, though not 

directly N status, can be detected through RS as low leaf water content, decreased 

transpiration and increased leaf and canopy temperature; these are covered below. 

2.1.2. N management 

The responses of yield and GPC to increasing soil N availability can typically be broken into 

two phases along a N continuum. In the first phase, consistent with low N, yield responds 

strongly to extra N while GPC may decline, especially if N supply remains below demand. In 

the second phase, at higher N, the yield response flattens as it approaches its water-limited 

maximum, while the GPC curve approaches exponentiality. This phenomenon is long 

recognised and response curves resembling Fig. 2.1 appear widely in the literature (Fischer et 

al., 1993; Fowler, 2003; Pan et al., 2020; Pancorbo et al., 2023; Russell, 1963; Wright et al., 

2004; Zebarth et al., 2007).  
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Fig. 2.1. Generalised yield and grain protein responses to additional nitrogen 
availability. 

 

With regard to N management then, the so-called ‘sweet spot’ is where additional N does not 

increase yield but augments GPC and does not flow to the environment as waste. In general, 

for a given water supply, the relationship between yield, GPC and N follows a limited range 

of agronomically relevant patterns: low yield and low protein indicate limiting N; high yield, 

low protein may indicate that N was sufficient early, e.g., for tillering, but later became 

deficient; high yield with GPC in the target range indicate that a crop approached its 

potential. However, low yield with high protein can indicate either that growth was N-limited 

prior to stem elongation, limiting tillers and heads, hence GN, and thus irreversibly 

preventing both high yields and high canopy N and CHO content. Alternatively, excess N 

early can lead to excessive biomass, exhausting soil moisture and constraining grain filling; 
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this also produces high GPC and low yield (van Herwaarden et al., 1998). In severe cases, 

such ‘haying off,’ where late assimilation is restricted so much that grains finish with a 

characteristic ‘pinched’ shape because they fail to fill with CHO, can result in the complete 

loss of a grain crop, whereby as the name suggests it is cut for hay, but where less severe, 

grain could simply end up with high protein. 

The timing of N fertilisation is also important. For example, in experimental conditions, N 

fertiliser applied after early stem elongation (Z30) was associated with increased GPC, while 

earlier applications elicited a strong yield response but no change to GPC (Fischer et al., 

1993). 1993. Likewise in both bread (Lollato et al., 2021) and durum wheat (Ottman et al., 

2000) GPC response to supplementary N was stronger late in seasons, although this has not 

been universal (Garrido-Lestache et al., 2005). A further proviso to this recipe is that 

supplementary N applied in solid form late in seasons needs to be washed into the root zone; 

this is not always operationally possible. Foliar applications of N, as liquid urea or 

ammonium nitrate may be made to lessen reliance on wash-in and circumvent uptake 

problems from dry, late-season soil. These can elicit GPC improvements far greater than 

broadcast fertiliser (Gooding and Davies, 1992) or earlier foliar applications (Bly and 

Woodard, 2003). However, Garrido-Lestache et al. (2005) noted only a minor, though 

statistically significant, GPC increase when foliar urea was applied at ear emergence; 

nevertheless, these findings support the notion that strategic fertiliser applications can affect 

the market value of grain. 

2.1.3. Temperature stress 

Like water stress, heat and cold can affect both yield and GPC. Exposure effects accumulate 

across seasons, but short periods of extreme ambient temperatures (Tamb) at crucial times can 

also cause severe damage. According to the dilution principle, such yield moderation should 
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increase GPC, but in the case of temperature extremes this is not universal. For example, 

even small Tamb increases can substantially increase respiration rates, promoting the loss of 

assimilated C (Heskel et al., 2016); this may reduce yields more than heat-inhibited 

photosynthesis (Li et al., 2021). Moreover, because of plants’ reduced ability to cool 

themselves by evapotranspiration, heat damage is expected to be worse where soil moisture is 

low. Given the complex and interacting physiological pathways involved, it may be difficult 

to maintain cereal protein under increasingly variable temperature extremes (Kawasaki and 

Uchida, 2016).  

Higher average Tamb accelerates phenology, shortening the time available for biomass 

accumulation in all vegetative growth phases (Altenbach et al., 2003; Dupont et al., 2006; 

Zhao et al., 2022), but particularly strongly during grain filling (Gooding et al., 2003). This 

has been demonstrated in bread and durum wheat, and in various experimental contexts. 

Phenological compression has compounding modes of action, some common to water / N 

limitation: lower aggregate CHO accumulation for later translocation; less biomass available 

for partitioning to photosynthetic structures, further reducing overall photosynthetic capacity, 

and lower root biomass, hence capacity to forage for water, N, and other nutrients. There is 

also a strong relationship between the stem elongation rate and grain N, as this phase is 

critical for accumulating canopy N, the majority of which is later transferred to the grain 

(Chapin and Wardlaw, 1988; Magney et al., 2016a; Miller et al., 1993). Moreover, slowed 

grain filling has been recorded at both low and high Tamb (Zhao et al., 2022).  

As also found by Rharrabti et al. (2003), Flagella et al. (2010) saw higher GPC in durum 

when Tamb was elevated throughout the season, attributing this to lower total assimilation and 

hence dilution. Likewise, Dupont et al. (2006) saw higher bread wheat GPC, and reduced 

effect of N supplements on GPC, under elevated daytime Tamb of 37 °C applied throughout 

the season to irrigated wheat, also attributing the changes to accelerated phenology. These 
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findings are in common with Rao et al. (1993). High Tamb can also directly reduce both total 

protein accumulation and affect partitioning by protein type, affecting food quality (Panozzo 

et al., 2001; Triboï et al., 2003). For example, Flagella et al. (2010) observed increased 

gluten content correlated with the number of days > 30 °C during grain filling. The Tamb 

considered in the named studies are not unexpected for late-season winter wheat in Australian 

and other Mediterranean climes, and indeed are becoming more common (Asseng et al., 

2015, 2011).  

Extremes of Tamb around anthesis can strongly reduce grain number (GN) through damage to 

reproductive structures and kernel abortion (Fischer, 2011; Hays et al., 2007; Thakur et al., 

2010); GN is the aspect of wheat plant development most susceptible to abiotic damage 

(Dolferus et al., 2011). Low spikelet counts (hence GN) have been observed at both high and 

low Tamb, and, at high Tamb, attributed to phenological compression (Halse and Weir, 1974; 

Rahman and Wilson, 1978). More recent work confirmed this mechanism and attribution, 

wherein GN-related yield reduction was proportional to a nocturnal-only Tamb increase 

(García et al., 2015). Although Ugarte et al. (2007) found that GN was restricted more by 

high Tamb during stem elongation than later, regardless of its cause and timing, GN shows a 

strong, positive association with yield via the overall CHO sink size (Dolferus et al., 2011; 

García et al., 2015; Thorne and Wood, 1987). However, the sink size effect is stronger on 

CHO than on proteins (Borghi et al., 1986), potentially exaggerating the inverse GN~GPC 

relationship.  

Based on metabolic rates, cold stress should depress yield via a generalised reduction 

assimilation; this was supported in recent meta-analyses of the individual and combined 

effects of cold and drought on wheat (Ejaz et al., 2023) and by others (X. Li et al., 2015; 

Thakur et al., 2010). While early-season chilling can cause irreversible damage (Subedi et al., 

1998), later cold stress can reduce GN through abortion or deformation of fruiting bodies, 
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impair pollen viability, decrease translocation and grain filling rates for both CHO and 

proteins, slow phenological progression (Subedi et al., 1998; Thakur et al., 2010; Zhao et al., 

2022). Zhao et al. (2022) tested this experimentally in wheat, showing that cold stress during 

grain fill increased GPC compared with a control, but had a weaker effect than heat stress. 

Labuschagne et al. (2009) found similarly: flour protein increased under severe cold but this 

was cultivar-dependent, and the protein response to heat was stronger. However, others have 

found, despite lower CHO deposition in grains, no GPC difference between cold-treated and 

control wheat plots (X. Li et al., 2015). Cooling sufficient to damage plant tissues can vary 

spatially within fields because cold air pools in topographic depressions, effects relevant 

where this study was conducted. 

2.2. Precision agriculture and on-combine monitors 

To improve N efficiency and maximise returns on their cropping investments regarding GPC 

within seasons, dryland wheat growers can undertake site-specific nutrient management 

(SSNM) and / or strategic harvesting. In attempting to account for soil variability and 

variations in crop N demand, and to optimise GPC, SSNM has to account for both rainfall 

and phenology, and therefore has a temporal dimension. This fits within the ‘4R’ principles 

of PA, which attempts to guide fertiliser application to the right time, place, type and amount 

(Gebbers and Adamchuk, 2010; Johnston and Bruulsema, 2014). To this end, RS-based GPC 

estimates could be used as a tool for targeting SSNM and/or for harvest planning. More 

comprehensive coverage of PA principles is beyond the scope of this thesis, but recent 

reviews cover numerous RS-relevant foci: thermal RS (Khanal et al., 2017); updated RS 

platforms, techniques, and applications, including big data and machine learning (ML; 

Sishodia et al., 2020); and Sentinel-2 (S2; Segarra et al., 2020). 

Harvester-mounted devices capable of recording location-specific readings of yield and GPC 

have added to the data sources available for analysis but are also applied by growers pursuing 
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practical PA. Yield monitors have undergone substantial scientific research (Ping and 

Dobermann, 2005; Whelan and McBratney, 2003), including many studies integrating RS 

data (Campos et al., 2019; Dobermann and Ping, 2004; Stoy et al., 2022; Vallentin et al., 

2020). Yield and GPC monitors are usually used in tandem; by combining their outputs, N 

harvest offtake can be mapped, encouraging engagement with N dynamics and loss pathways. 

Such mapping could be used to investigate N and moisture supply issues or identify 

underperforming areas that may be either remediable or more profitably used for other 

purposes (Whelan, 2019). However, while post hoc analyses improve knowledge of high- and 

low-performing areas of paddocks and farms and assists planning for PA in the following 

season, it cannot assist within seasons (Moffitt, 2020). Apart from Whelan et al. (2009) and 

Stoy et al. (2022), there is little reference to RS data used with on-combine GPC monitors in 

the peer-reviewed literature.  

The monitor devices leveraged in the current studies temporarily remove grain samples from 

the combine's clean grain elevator approximately every 10 s (frequency of 0.1 Hz) during 

harvest operations and estimate GPC by NIR spectroscopy (720—1100 nm), with accurate 

geolocation by real-time kinetic GPS. The fidelity of similar units was good (R2 = 0.86) when 

compared in field conditions against bench-top analysis equivalent to those used for grain 

pricing at receival (Long et al., 2005). Moreover, the devices are designed to satisfy statutory 

accuracy ± 0.4 % GPC mandated in Australia and the United States (Clancy and Heiken, 

n.d.). 

2.3. Remote sensing data sources and retrieval methods 

Remote sensing (RS) is a suite of methods used to obtain plant canopy information and 

investigate plant function from global to molecular scales, on the basis of radiation emitted 

from the surface under observation. For optical RS, this consists of the interactions of light 

with vegetated surfaces, which we observe as reflectance in the visible wavelengths, while 
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thermal RS relies on infrared emissions. It is well established that the biochemical and 

biophysical characteristics of the wheat crop canopy affect the associated reflectance spectra.  

Nitrogen atoms are central to all amino acids and hence to the light harvesting protein 

complexes that contain Ca+b, Cx+c, and non-pigment polypeptides; thus, most of the N in 

leaves is associated with Ca+b and incorporated in such structures, themselves in the 

chloroplasts (Bassi et al., 1987; Yoder and Pettigrew-Crosby, 1995). Leaves, and 

collectively, canopies, are the site of most of the photosynthesis occurring in a wheat plant, 

and N and Ca+b are strongly and positively correlated at both leaf and canopy levels, (Evans, 

1989), Plants with better access to N typically have higher concentrations of leaf N and Ca+b, 

and the reverse is also true (Feng et al., 2014; Xue et al., 2007; Zhao et al., 2005). Under 

severe N deficiency, chlorosis, the visible yellowing of leaves, becomes discernible; thus, the 

hue of reflected sunlight has long been used to assess N sufficiency in plants. However, less 

extreme N stress can also be detected by RS spectroscopy, many such methods have been 

developed and are surveyed below (§2.5.1). However, the strong N~Ca+b association has been 

shown to weaken at high N levels (Evans, 1983), many widely used N and/or Ca+b estimation 

methods also weaken at high N/Ca+b (Clevers and Kooistra, 2012; Flowers et al., 2003; Nguy-

Robertson et al., 2012). 

Through its centrality to proteins in leaf and grain, and its links to light harvesting and plant 

performance, then, N is a central theme of this work. However, because N atoms do not 

interact with light, they have no direct effect on reflectance and cannot be directly observed. 

As well as via Ca+b content, methods of N estimation therefore rely on other indicators of 

plant performance less directly related to N sufficiency, including biomass, light interception 

and the overall greenness of target areas. Nor is N the only, nor even the most influential 

plant trait in relation to wheat GPC; indeed, the relative importance of plant traits to GPC is 

dynamic across agronomic situations and seasons. As surveyed below, decades of research 
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have developed and refined methods of obtaining, through RS, insights into ever more 

complex aspects of plant performance, many of which are linked to GPC. These efforts take 

into consideration the contemporaneous advance of sensor technologies, from broadband 

through multispectral to hyperspectral. 

Many VIs have been developed; their performance and specialisation have increased across 

decades of use and alongside increased sensor development; a class of VI, the narrow-band 

hyperspectral index (NBHI), has arisen to take advantage of ever-increasing sensor 

resolution. Many of these specialisations have been aimed at quantifying Ca+b, N or related 

vegetation traits, as surveyed in §0. However, VIs/NBHIs remain by definition empirical 

estimates of plant traits, in itself a deficit, and are often poorly adaptable across growing 

situations. Following, but now in parallel with VIs, the development of radiative transfer 

models (RTMs) has been based on mechanistic understandings of light~vegetation 

interactions: RTMs estimate the probabilistic fate of photons meeting a vegetated surface. 

Such models, often reported as more robust and flexible than indices (Jacquemoud and Baret, 

1990; Wang et al., 2015), are also covered below (§2.3.5), but it is useful to briefly 

encapsulate here their relevance to the current work. As described, N does not directly 

interact with incident radiation. However, many aspects of plant performance related to N- 

and water sufficiency, including LAI, dry matter, Ca+b and leaf water content, can be retrieved 

from multispectral data by RTM inversion (e.g. Baret et al., 2007; Delloye et al., 2018; Wang 

et al., 2022). Inversions have been instrumental in estimating specifically N-related 

parameters in higher plants (e.g. Wang et al., 2015; Zarco-Tejada et al., 2004) and in wheat 

(e.g. Camino et al., 2018; Raya-Sereno et al., 2022). Still more parameters can be inverted 

from HS reflectance, in particular given their potential relevance to GPC, the stress-

associated auxiliary pigments Anth and Cx+c.  
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The current section presents retrieval methods relevant to the current PhD project without 

extended discussion of specific traits; these are treated in dedicated eponymous subsections in 

§2.4 and §2.5. Surveys of airborne HS and thermal, and Sentinel-2 (S2) multispectral RS, and 

their relative advantages and disadvantages are prioritised, as these are most relevant to the 

study. Broadband and active sensors, and retrieval methods relevant only to these, are 

avoided, as are references to proximal sensing, where sensors are hand-held or mounted on 

vehicles or towers. A focus on wheat, GPC, N, and plant stress is maintained. Estimation of 

biophysical variables from reflectance spectra generally takes one of four main approaches: 

1) parametric regression; 2) nonparametric regression; 3) physically based, i.e., RTM 

inversion; and 4) hybrid methods in which elements of RTM inversion are combined with 

ML (Verrelst et al., 2015a). In this project, parametric regression was applied via vegetation 

indices (§0). Hybrid RTM inversion was also applied and is described in §2.3.5. 

Nonparametric methods were not used in this project for retrieval of plant biophysical traits, 

so are not further specifically considered. 

2.3.1. Hyperspectral remote sensing 

Specialised HS sensors typically record canopy radiance in the visual and near infrared 

(VNIR; 400 – 1000 nm) and near infrared (NIR; 800 – 1700 nm) domains. Spectral resolution 

< 10 nm is now typical for airborne HS instruments, and specialised nano-hyperspectral 

sensors have extended this into the sub-nanometre range (Belwalkar et al., 2022). This 

resolution provides very large amounts of information useful for assessing crop performance. 

In addition, HS data are often collected at very high spatial and radiometric resolution, while 

temporal resolution can be adjusted according to operational requirements or constraints. 

Piloted aircraft can carry multiple sensors concurrently and therefore allow deployment of HS 

and thermal sensors in equivalent light conditions. This allows efficient data collection over 

large extents, up to thousands of hectares on a single day as is demonstrated below (Longmire 
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et al., 2022). This extends the feasibility of airborne RS in large and spatially distributed 

study units, relevant to broadacre crops. Compared to piloted aircraft, unmanned aerial 

vehicle (UAV / drone) payloads and flight times are as yet insufficient for operations at such 

scales (e.g. Kanning et al., 2018). Such platforms may also be inherently unable to carry 

multiple instruments and are legally limited to operation within visual line-of-sight. While 

hand-held and vehicle-mounted HS instruments are also available and feature strongly in the 

literature, these are largely inappropriate to operations at commercial scale. Spaceborne HS 

sensors likewise played no role in this project. 

2.3.2. Satellite multispectral remote sensing 

While satellite platforms record data at lower spectral and spatial resolution than airborne 

sensors, for crop monitoring, they have an important advantage: repeated coverage of large 

areas. The studies below leverage data from the European Space Agency’s Sentinel-2 (S2) 

satellites, whose frequent return times allow for timeseries observations, and whose images 

are cost-free. Like most satellites relevant to PA at within-field spatial scales, the S2 satellites 

are in polar orbits, meaning that they observe a swath that runs diagonally SW—NE across 

the earth’s surface. A sun-synchronous orbit provides constant viewing conditions, and the 

paired platforms revisit any given location in the mid-latitudes at a delay of around < days. 

The multispectral instruments (MSI) aboard the S2 platforms capture a 290 km swath with 13 

bands in the visible, red edge and near-infrared domains (Drusch et al., 2012). This strong red 

edge focus, where three bands are recorded, is conceived for observing vegetation, 

particularly Ca+b, N content and LAI estimation (Frampton et al., 2013; Herrmann et al., 

2011). The MSI measure reflectance in 13 spectral bands from visible and near-infrared 

(VNIR) to short-wave infrared (SWIR), with 12-bit radiometric resolution and a spatial 

resolution of 10—60 m ( 
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Table 2.1). The spatial resolution, or ground sampling distance (GSD) is on the order of 10 m 

for the bands most relevant to vegetation, which also approximately coincides with that of 

GPC monitor data. For comparison, the contemporary iteration of Landsat, launched in 2013, 

offers nine bands in the visual, NIR and SWIR, with GSD = 30 m. 

Table 2.1. Sentinel-2 band specifications. 

Band number Central wavelength (nm) Band width (nm) GSD (m) 
1 443 20 60 
2 490 65 10 
3 560 35 10 
4 665 30 10 
5 705 15 20 
6 740 15 20 
7 783 20 20 
8 842 115 10 
8b 865 20 20 
9 945 20 60 
10 1380 30 60 
11 1610 90 20 
12 2190 180 20 

 

The frequent S2 overpasses and its collection of multispectral data offer opportunities to 

monitor intra- inter-seasonal variation in leaf and canopy traits related to GPC, without the 

expense of piloted aircraft. However, the timing of satellite overpasses is inflexible and 

cannot account for cloud cover; while a substantial proportion of days are expected to be 

cloudy across a winter wheat growing season in southern Australia, in practice sufficient 

images were obtained to form adequate timeseries. 

2.3.3. Thermal remote sensing 

Thermal RS imaging, or infrared thermography, utilises passively recorded emissions in the 

thermal infrared domain (8—15 μm), exploiting the fact that all non-black body objects with 

temperature > 0 K emit radiation in this range. Airborne or satellite thermal RS may 

complement optical or other forms of RS. The thermal properties of plant leaves depend to a 
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large extent on their water content and capacity to release water to the atmosphere; when 

water is available, evapotranspiration cools plant surfaces and when it is not, plants 

accumulate heat. Stomatal closure is initiated when plant water potential Ψ reaches a critical 

level. This controls water loss but also restricts CO2 diffusion into leaves, reducing the CO2 

concentration in leaf mesophyll and hence the substrate available for photosynthesis; it is one 

of plants’ principal responses to low humidity, droughting and high temperature among other 

stimuli (Farquhar and Sharkey, 1982; von Caemmerer et al., 2004). Hence low stomatal 

conductance is associated with both increased leaf temperature and reduced photosynthetic 

rate; in dryland agriculture, these are often induced by water stress. 

The physiological effects of heat accumulation, as relevant to GPC, were discussed in §2.1.3, 

while methods of assessing water stress from RS are detailed in §2.6. Thermal data can detect 

or assist in the detection of water deficits and are applied for irrigation scheduling, assessing 

PAWC variability, soil salinity and other osmotic constraints, phenotyping, pathogen 

detection and diagnosis of infestation or disease severity. Combined with hyperspectral 

indices, thermal information improved estimation of wheat N status (Pancorbo et al., 2021). 

Khanal et al. (2017) review the use of thermal RS in PA. 
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2.3.4. Reflectance indices 

Vegetation indices (VIs) combine reflectance at two or more bands by arithmetical 

operations, transformation, or both, to enhance the influence of a desired plant trait, diminish 

the influence other plant traits, unwanted components such as soil, shadow, observational or 

atmospheric effects, or combinations of these (Fang and Liang, 2014, p. 2143). In general, 

VIs offer computational simplicity and efficiency, and have been refined over decades 

(Berger et al., 2018). The normalised difference VI (NDVI; (Rouse et al., 1974)), a structural 

index sensitive to green cover, remains common in agriculture (Herrmann et al., 2010), 

continues in use (e.g., Stoy et al., 2022; C.-W. Tan et al., 2020), and its basic form has been 

adopted by many other indices. NDVI correlates with wheat yield, especially at coarse spatial 

scales (e.g. Becker-Reshef et al., 2010; Dempewolf et al., 2014; Lai et al., 2018; Toscano et 

al., 2019), although correlations with yield are growth stage-dependent and reduce after 

anthesis (Magney et al., 2016a). NDVI and its variants also saturate at high biomass, which 

can blunt estimation of even fundamental measures of crop performance; for example, the 

green NDVI, (gNDVI; Gitelson et al. (1996)) can saturate as low as LAI ≤ 2.5 (Nguy-

Robertson et al., 2014). As they do not explicitly account for observer viewing angle, solar 

zenith and azimuth angles, soil reflectance and other components, VIs in effect discard some 

of the information available in spectroscopic data (Bacour et al., 2006). This limits their 

transferability between locations, times and agronomic situations (Baret and Guyot, 1991; 

Eitel et al., 2008; Zarco-Tejada et al., 2005). Moreover, VIs provide only an empirical 

estimate of plant traits, as they are unitless, they can lack interpretability. 

Sensor development from broadband through multi- and hyperspectral sensors has allowed 

the construction of many new indices with better sensitivity and specificity to an expanding 

range of detectable plant traits. Indices now account better for confounding from 

observational artifacts, overlapping absorbance among plant pigments, differing water 
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content, or differences in canopy structure. There has been much progress, and many VIs 

developed, since the NDVI. Broadband indices and early development were reviewed by 

Bannari et al. (1995), and later broadband and early hyperspectral progress by Dorigo et al. 

(2007). Hyperspectral VIs were evaluated by Li et al. (2010) with specific reference to wheat 

N status, and NBHIs were covered more recently by Camino et al. (2018) and Liang et al. 

(2018). All vegetation indices considered in the current  thesis are detailed in Table A1 

andTable A2, in Appendix A. 

2.3.5. Radiative transfer models and their inversion 

Radiative transfer models (RTMs) approximate the behaviour of photons incident on 

vegetation, modelling the complex physical interaction of solar radiation with leaves and 

canopies. They generate synthetic reflectance spectra based on the combined optical 

properties of leaf and canopy biochemical and biophysical variables, and observational 

factors. As detailed below, these variables include plant traits Ca+b and other pigment 

concentrations, leaf structural and moisture components, and LAI. However, environmental 

factors including observer- and sun angles and soil reflectance are also specifically 

enumerated in RTMs, meaning that their effect on plant trait estimation is considered. This 

specific inclusion of components which are either not captured or are discarded by empirical 

models makes physically-based RTMs more transferable across time, location, crop types, 

phenological stages and agronomic situations than the empirical models (Clevers and 

Kooistra, 2012; Dorigo et al., 2007; Jacquemoud et al., 1995). In further contrasts to 

empirical methods, field observations are used to validate RTM outputs, rather than for 

establishing relationships, and untransformed spectral data from the observing sensor are 

used to directly estimate plant parameters in their biologically relevant units. Inversion of 

RTMs allows accurate estimation of both structural and physiological traits at leaf and 

canopy levels from observed spectra (Bacour et al., 2002; Féret et al., 2008; Jacquemoud et 
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al., 2009, 1995; Z. Li et al., 2015). Concurrent retrieval of multiple traits is common (Camino 

et al., 2018; Poblete et al., 2020a; Zarco-Tejada et al., 2018). However, Schiefer et al. (2021) 

warn of that phenology-related effects on RTM retrievals; although they did not include 

wheat in their work, they caution that LAI and Cw are best estimated early in seasons, and 

Ca+b/Cx+c are best later. 

Many RTMs have been developed since their initial inception in the 1960s (Allen et al., 

1969; Duncan et al., 1967). This project employs the coupled models PROSPECT and SAIL, 

often referred to as PROSAIL, which are briefly described immediately below and dominate 

references to RTMs in this literature review. The coupled use of these models was 

comprehensively reviewed by Jacquemoud et al. (2009) and more recently, with a focus on 

their use with hyperspectral data, by Berger et al. (2018), who also provide a comprehensive 

overview of each model’s input parameters. Verrelst et al. (2019) also thoroughly cover 

inversion and look-up table (LUT) methods. 

The earliest version of the PROSPECT model of leaf optical properties accounted for 

reflectance and transmittance, between 400—2500 nm, as a function of three properties: 

absorption of light by Ca+b and water content (equivalent water thickness; Cw) as well as light 

scattering by refraction and leaf mesophyll structure (N), characterised as the number of 

tissue/air interfaces in leaf mesophyll (Jacquemoud and Baret 1990). Later incarnations 

included more leaf traits: PROSPECT 4-5 (Féret et al., 2008) added carotenoid pigments 

(Cx+c) and dry matter content (Cm), improving Ca+b estimation. The PROSPECT-D version 

(Féret et al., 2017a) improved the representation of seasonal dynamics by estimating 

anthocyanins (Anth). This improved pigment discrimination allows quantification of these 

auxiliary pigments and improves the retrieval of other parameters. The latest addition to the 

family, PROSPECT-PRO includes proteinaceous components and therefore improves 

retrieval of leaf biomass per unit area (Féret et al., 2021).  
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The Scattering by Arbitrarily Inclined Leaves (SAIL) canopy-level RTM is a representation 

of canopy reflectance as a function of canopy structural traits LAI and leaf inclination 

distribution function (LIDFa) to model light interception and scattering (Verhoef, 1984). 

SAIL has since been modified to include a hotspot parameter (Kuusk, 1991) and, as 4SAIL, 

extended into the thermal domain (Verhoef et al., 2007) and has inspired several other 

models (Jacquemoud et al., 2009). The contributions to reflectance of viewing geometry – 

azimuth, solar and observer zenith angles – are considered in SAIL, as are the proportion of 

diffuse radiation and soil reflectance. In the commonly used PROSAIL, SAIL adopts leaf 

reflectance and transmittance from the PROSPECT model; by linking the models, 

biochemical and biophysical characteristics at leaf and canopy levels are estimated 

concurrently. This reduces the number of unparametrised variables, facilitating model 

inversion, and improves retrievals, as the spectral signature of each component is accounted 

for in estimation of the others (Blackburn, 2007; Jacquemoud et al., 2009). PROSAIL is well 

suited to the relatively homogeneous canopies of agricultural crops, but is also applied in 

horticultural and forest contexts (Jacquemoud et al. 2009). 

Although the PROSAIL models are used in forward mode, for example to identify and 

optimise reflectance bands for VI development (Cheng et al., 2014; Haboudane et al., 2002), 

most users invert RTMs in order to quantify plant traits listed among their input parameters 

(Berger et al., 2018; Jacquemoud et al., 2009). Since early demonstrations (e.g. Baret et al. 

(1992)), inversions have been widely implemented and good retrieval accuracies shown for 

inversions of PROSPECT, SAIL and their variants (Bacour et al., 2002; Féret et al., 2008; 

Jacquemoud et al., 1995; Z. Li et al., 2015; Ustin et al., 2009; Zarco-Tejada et al., 2021, 

2018).  

In RTM inversions, the models are run for permutations of vegetation attributes sampled 

from their biologically feasible ranges, while artefactual parameters such as azimuth, solar 
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angle, viewing angle and other physical characteristics at the time of image acquisition can be 

held at their measured value or similarly sampled. Thus, a database, or look-up table (LUT), 

typically of 100,000—200,000 simulations, is constructed wherein synthetic spectra are 

stored in association with the attributes used to generate them. In this way single or multiple 

plant attributes are commonly inverted from observed reflectance (Camino et al., 2018; 

Locherer et al., 2015). Observed reflectance spectra are then matched against the 

synthetically generated spectra, and the underlying variables of the best-fitting synthetic 

spectrum are assumed to represent the relevant leaf/canopy characteristics for the real canopy 

(Locherer et al., 2015). 

Model inversion problems are ill-posed, meaning solutions are not unique and uncertainty in 

measured or modelled quantities can change the output (Combal et al., 2003; Verrelst et al., 

2019). In RTM inversion, this means that the same or very similar spectra can be generated 

by different plausible combinations of biophysical parameters (Combal et al., 2003; Dorigo et 

al., 2007). Nevertheless, there are ways to limit the effects of the ill-posed problem. Prior 

knowledge of agronomic parameters or measured quantities can be used to reduce 

dimensionality, as widely described and implemented (e.g., Combal et al., 2003; Z. Li et al., 

2015). Indeed, this approach is usual and is an extension of the logic that all canopy 

biophysical variables to be estimated should be constrained to their biologically realistic 

ranges. To further reduce the ill-posed problem, Wang et al. (2015) and Camino et al. (2018) 

each conducted stepwise inversions whereby specific input parameters were derived using the 

spectral domain in which they most affect light dynamics, and ordered by the effects’ size. 

Each subsequent parameter was retrieved using as inputs the values of those established 

previously; such stepwise procedures can be better than inversions with concurrent estimation 

of several parameters (Camino et al., 2018). As detailed below, in sections named for each 
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parameter, PROSAIL inversion has often retrieved structural and physiological variables in 

wheat. 

Hybrid inversion techniques have been shown effective (Verrelst et al., 2015a) and, due to 

shorter processing times, able to handle large volumes of data (Gómez-Dans et al., 2016). 

This can become important when multiple traits are retrieved, pixel-wise and/or timeseries 

retrievals are required or when these are combined, as is done in the current work. Several 

ML algorithms have been assessed, and performed well; the general approach is that RTM 

output spectra are used – as ML inputs – to train an algorithm, which is implemented to 

compare these with observed spectra; many such retrievals have been done (Verrelst et al., 

2015a). In the component studies of this PhD project (Longmire et al., 2022), LUTs are 

interrogated by support vector machine (SVM), after the procedures of Poblete et al. (2021). 

2.4. Retrieval of GPC-linked structural traits 

Leaf area index (LAI) is the ratio of total upward-facing green leaf to ground surface area, so 

indicates the number of leaf layers between soil and sky, as m2.m-2. It is therefore a purely 

structural parameter that indicates canopy development and biomass and represents the 

surface available for sunlight capture and the exchange of mass and energy with the 

atmosphere. LAI is closely related to photosynthesis (Liu et al., 2006) and evapotranspiration 

(Nearing et al., 2012) and often linearly associated with N demand (Lemaire et al., 2008). As 

such, LAI is closely related to yield and, less directly, to GPC in wheat (Kanning et al., 2018; 

Liu et al., 2006). Through its correlation with biomass, LAI is a reliable indicator of crop 

CHO and protein sink sizes. For wheat, LAI as a function of days after sowing (DAS) 

generally follows an approximately symmetric curve, peaking before anthesis with maximum 

of 2—6 (Baret and Guyot, 1991; Waldner et al., 2019; Zhang et al., 2007) but may be as high 

as 8 (C.-W. Tan et al., 2020).  
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Despite the ubiquity of LAI in vegetation remote sensing, it is useful to define similar 

parameters. Green LAI is a refinement of LAI, measuring the leaf area involved in 

photosynthesis (Daughtry et al., 1992). The fraction of absorbed photosynthetically active 

radiation (fAPAR) quantifies the proportion of incident sunlight (400—700 nm) absorbed by 

a canopy, while fractional cover (fCover) gives the fraction of ground surface obscured by 

plant matter in the sensor’s nadir view; as such, fCover saturates relatively early in seasons so 

is useful mainly for assessments of early vigour (Bacour et al. 2006). Like LAI, measures of 

leaf angle and orientation, such as leaf inclination distribution function (LIDFa) affect light 

distribution and use efficiency, affecting photosynthesis and reflectance. 

The similar effects of LAI and Ca+b content on canopy reflectance complicated their 

separation in index-based retrieval from RS images, until the sensitivity of Ca+b retrieval to 

LAI (Haboudane et al., 2002), and vice-versa (Haboudane et al., 2004) were reduced, 

improving the estimation of each from hyperspectral data, including in wheat. LAI is highly 

correlated with leaf-level Ca+b and N, and can be used to estimate them at canopy level 

(Houborg and Boegh, 2008); the three quantities can also be retrieved together, for example, 

in wheat, by Kanning et al. (2018) and Li et al. (2015). Using VIs and nonparametric 

regression to estimate LAI from S2 data, predictors which include RE components have been 

shown best, although many VIs have been shown as broadly similar in accuracy, and few 

have maintained this accuracy along seasons (Herrmann et al., 2011; Kamenova and 

Dimitrov, 2021). 

Wheat LAI retrievals by RTM inversion have also obtained moderate results from airborne 

hyperspectral (Z. Li et al., 2015; Richter et al., 2011) and good results from S2 data (Upreti et 

al., 2019), although saturation at high LAI values may remain problematic (Lunagaria and 

Patel, 2019; Weiss and Baret, 1999). PROSAIL LAI retrieval within commercial fields was 

recently demonstrated across diverse wheat cropping operations in Italy and China, with 
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strong correlation (R2 = 0.78) and low error (RMSE ≈ 0.69) as validated by ground 

measurements propagating into good estimations of CCC also (Upreti et al., 2019). This 

work, which used a range of ML-assisted hybrid retrieval approaches to estimate crop traits 

from S2 images, reported that a least-squares linear regression also overcame the tendency of 

LAI estimates to saturate at high values. Likewise, Jiao et al. (2022) used prior knowledge of 

average leaf angle to improve LAI and Ca+b retrieval by PROSAIL-D, and showed 

moderately good CCC estimations. Pan et al. (2019) also retrieved LAI and Cw from S2 by 

PROSAIL and were able to show LAI progression and later decline through a season, also 

with low error, in commercial wheat fields although with a relatively low sampling density. 

2.5. Retrieval of GPC-linked physiological traits 

Chlorophylls a and b (Ca+b) influence GPC because they are both a substantial proportion of 

plant N stores, and an indication of photosynthetic capacity. However, pigments other than 

Ca+b also offer potential as diagnostic of GPC, given their links with stress; anthocyanins 

(Anth) and carotenoids Cx+c are the accessory pigments considered below. Solar induced 

fluorescence (SIF) is an indicator of photosynthetic rate, hence both early-season plant vigour 

and later protein dilution, and indirectly of Ca+b concentration and abiotic stress. The 

subsections immediately below summarise retrievals of these quantities from RS through 

both VIs and RTM inversions. 

2.5.1. Chlorophyll and N content 

Concentrations of Ca+b and N in leaves are closely correlated (Evans, 1983) because N atoms 

make up ~ 6% by mass of Ca+b, and most leaf N is contained in Ca+b molecules (Yoder and 

Pettigrew-Crosby, 1995); moreover, a large majority of plant N is contained in chloroplasts. 

Canopy N is strongly correlated with GPC (Feng et al., 2014; Xue et al., 2007; Zhao et al., 

2005). VIs, many designed specifically for Ca+b or N content retrieval, have disentangled 
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canopy biochemistry from structural factors. Chlorophyll a absorbance peaks at 430 and 662 

nm and chlorophyll b at 453 and 642 nm. The red edge (RE), a domain of distinct reflectance 

increase where pigments’ influence on canopy reflectance weakens and that of cell walls, 

mesophyll and water strengthens (Hatfield et al., 2008), and therefore gives insight into both 

pigments and structure. The RE lies between 680 and 750 nm, in the NIR, and shows a close 

relationship to Ca+b concentration as well as LAI and water status (Filella and Peñuelas, 1994; 

Horler et al., 1983). Because it involves a relatively narrow range, RE analysis required the 

development of narrow-band sensors; thenceforth many VIs exploit the links between the RE 

and Ca+b to retrieve this or N at leaf or canopy level (Clevers and Gitelson, 2013; Haboudane 

et al., 2008; Prey and Schmidhalter, 2019). For example, the normalised difference red edge 

index (NDRE) was devised to monitor and separate N from water status effects, by 

comparing a RE band (R720) with a reference in the NIR (R790; Barnes et al., 2000), and was 

used to retrieve Ca+b in wheat (Z. Li et al., 2015). Also relying on the RE, the Modified 

Chlorophyll Absorption in Reflectance Index (MCARI; Daughtry et al., 2000) comprises Ca+b 

absorption at 670 nm with bands at 550 nm 700 nm, and is sensitive to Ca+b. Combined with 

the second Modified Triangular Vegetation Index as MCARI/MTVI2, this approach has 

retrieved wheat canopy N from proximal sensing, robust to LAI variations, in the original 

work (Eitel et al., 2007) and subsequently (Eitel et al., 2008; Z. Li et al., 2018), and from RS 

(Li et al., 2019). Other NBHIs of relevance below, and which leverage Ca+b~RE relationship, 

are the Zarco-Tejada and Miller index (ZMI; R750/R710), Vogelmann index 1 (R740/R720) and 

the RE chlorophyll index (CIre; (R750/R700)-1) (Gitelson et al., 2003; Vogelmann et al., 1993; 

P.J. Zarco-Tejada et al., 2001). By contrast, the Normalized Pigment Chlorophyll ratio Index 

(NPCI; Peñuelas et al., 1994), calculated as (R680 - R430) / (R680 + R430), was conceived to 

describe the ratio of Cx+c to Ca+b and is now categorised among Ca+b indices. 
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Other approaches to Ca+b estimation combine multiple VIs: The Transformed Chlorophyll 

Absorption in Reflectance Index (TCARI; Haboudane et al., 2002) and Optimized Soil-

Adjusted Vegetation Index (OSAVI; Rondeaux et al., 1996), combined as TCARI/OSAVI 

are sensitive to Ca+b despite LAI variability, soil background and shadow effects (Haboudane 

et al. 2002). Further, the canopy chlorophyll content index (CCCI; Barnes et al. 2000), 

derived by plotting NDRE as a function of NDVI, was used to detect wheat N deficiency 

(Rodriguez et al., 2006), then adapted to estimate canopy N under field conditions in the 

Wimmera (Cammarano et al., 2011); each of these studies found good results before Z35, 

emphasising their potential for practical implementation. In a further example, of 14 standard 

structural and chlorophyll VIs recently tested in Australian commercial wheat fields, the best 

yield predictions were obtained from seasonal peaks of CIre and NDRE, while NDVI and 

OSAVI were the best structural VIs (Zhao et al., 2020). TCARI/OSAVI have been widely 

applied in wheat, estimating, for example, Ca+b (Gonzalez-Dugo et al., 2015) and total N 

(Klem et al., 2018). 

Among those described here and other indices, Chen et al. (2010) found that VIs 

incorporating hyperspectral reflectance at three or more wavelengths, including their own 

double-peak canopy N index (DCNI) were generally better than those relying on two bands, a 

conclusion supported by Wang et al. (2012). Li et al. (2014) also reported that no two-band 

VI offered transferability between locations, phenological stages and soil conditions for 

wheat canopy N estimation, attributing this to confounding by canopy structural components. 

This confounding, likely arising from saturation at high biomass was, however, not 

problematic for more complex VIs. 

Reliable retrieval of wheat Ca+b by RTM inversion is well demonstrated. From airborne RS in 

experimental plots, Camino et al. (2018) found PROSAIL Ca+b was strongly correlated with 

leaf-level Ca+b from spectroscopy (R2 = 0.81), canopy N from destructive sampling (R2 = 
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0.71), and with CHO assimilation (R2 = 0.59). In commercial wheat crops, both Delloye et al. 

(2018) and Upreti et al. (2019) recently retrieved leaf and canopy Ca+b content (CCC; LAI (or 

GAI) x Ca+b; Clevers et al., 2017; Houlès et al., 2007) from S2 data by PROSAIL inversion. 

Delloye et al. (2018) argued that the relatively low accuracy of their leaf Ca+b estimate related 

to the vertical pigment distribution gradient in the plant, but showed a substantially more 

accurate CCC estimate, particularly when this was based solely on the S2 RE bands. Upreti et 

al. (2019) also had better results for at canopy than leaf level; each of these studies had R2 for 

wheat CCC in the range 0.6—0.7, as did Jiao et al. (2022), also from S2 and PROSAIL. Such 

differentials in estimation accuracy may arise from inhibited propagation of the reflectance 

signal from leaf to canopy scale (Asner, 1998), but such an effect is not always evident: 

Sehgal et al. (2016) achieved lower error, assessed by nRMSE, for Ca+b than for CCC from 

multispectral satellite RS by PROSAIL. Despite differences in absolute fidelity as described, 

PROSAIL inversion is hence sensitive to Ca+b variability across wheat canopies in both 

experimental and commercial contexts, so offers potential as a predictor of GPC. 

2.5.2. Carotenoids 

The carotenoids (Cx+c), comprising carotenes and xanthophylls, are substantial contributors to 

the red-yellows of nature (Cazzonelli and Pogson, 2010); these pigments are an important 

aspect of grain quality, especially in durum wheat (Ficco et al., 2014). The Cx+c are auxiliary 

photosynthetic pigments, extending plants’ ability to absorb energy across the EM spectrum; 

β-carotene has absorbance peaks at 451 and 470 nm. By dissipating excess radiation and 

scavenging ROS, they moderate damage from heat and photooxidative stress (Demmig-

Adams and Adams, 2006; Strzałka et al., 2003); moreover, compounds produced in the 

ensuing reversible oxidation of Cx+c to xanthophylls promote stress-adaptive responses 

(Havaux, 2014). Carotenoids are upregulated under photooxidative, water, frost and heat 

stress in wheat (Borrelli et al., 2011; Fratianni et al., 2013; Groth et al., 2020; Janeczko et al., 
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2018), and in response to higher N availability (Shah et al., 2017). Increases in the ratio of 

Cx+c to Ca+b are related to reduced photosynthetic activity (Fréchette et al., 2016; Sonobe et 

al., 2018). 

Although the overlap between Cx+c, and Ca+b absorbance made Cx+c estimation challenging, 

many index-based methods have been developed since the advent of hyperspectral sensing 

(Blackburn, 1998; Chappelle et al., 1992; Féret et al., 2011; Hernández-Clemente et al., 

2012; Ustin et al., 2009). Of the NBHIs developed for Cx+c estimation, most are based on 

reflectance in the green at 470–530 nm (Blackburn, 1998; Chappelle et al., 1992; Fassnacht 

et al., 2015; Gitelson et al., 2002b, 2006; Hernández-Clemente et al., 2012; Sonobe and 

Wang, 2018). In addition, NBHI have been developed to assess the epoxidation state of 

xanthophylls, including the photochemical reflectance index (PRI; Gamon et al., 1992), 

several modifications of the PRI which better account for canopy structure, stomatal 

conductance and other factors (Hernández-Clemente et al., 2011). The changing ratio of Cx+c 

to Ca+b is the basis of the carotenoid/chlorophyll index (CCI), which can be used to track 

photosynthesis in evergreen plants (Gamon et al., 2016), and the carotenoid/chlorophyll ratio 

index (CCRI), calculated as their own carotenoid index (CARI; Zhou et al., 2017) divided by 

CIre. The CCRI has delivered moderately good estimates of the Cx+c : Ca+b in wheat canopies 

(Zhou et al., 2019). Also sensitive to Cx+c, the photochemical reflectance index (PRI; (Gamon 

et al., 1992)) indicates instantaneous changes in water stress and photosynthetic rate (Feng et 

al., 2017; Magney et al., 2016b). The PRI is related to the Cx+c/Ca+b ratio, and hence to 

photosynthetic efficiency (Filella et al., 2009; Sims and Gamon, 2002), and has been shown 

to indicate wheat plant performance related to WS and N supply (Magney et al., 2016b). 

Characterised as the chlorophyll/carotenoid index (CCI), this ratio indicates photosynthetic 

activity (Gamon et al., 2016); PRI and CCI have been used to track gross primary 

productivity (GPP), and hence phenology, in evergreen forests (Wong et al., 2022). The 
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hyperspectral carotenoid index (CAR; Zarco-Tejada et al., 2013b) has shown moderate, 

significant relationships with yield in rainfed and irrigated bread and durum wheat, as did the 

PRI (Gonzalez-Dugo et al., 2015). 

Féret et al. (2008) specifically included Cx+c as an input to PROSPECT-5, meaning they can 

also be estimated by inversion of this and later PROSPECT variants. However while RTM 

inversions have been conducted specifically for Cx+c retrieval in wine grapes (Vitis vinifera 

L.; (Zarco-Tejada et al., 2013b), tea (Camellia sinensis (L.) Kuntze; Sonobe et al., 2018) and 

savanna woodlands (Miraglio et al., 2020), so far as the current thesis could establish, they 

have not in wheat. Findings that leaf Cx+c concentrations correlate inversely with 

photosynthesis, and that they respond to stress in wheat, allow the hypothesis of their 

association with GPC via reduced assimilation. This hypothesis is supported by findings of 

positive correlations between genes associated with Cx+c production and GPC in durum wheat 

(Colasuonno et al., 2019). Nevertheless, publications linking Cx+c or PRI in the living wheat 

plant with GPC appear absent. 

2.5.3. Anthocyanins 

Anthocyanins (Anth) are water-soluble pink, purple, and red non-photosynthetic cytoplasmic 

pigments with many roles in the leaf and broader plant structures; they number over 500 

(Féret et al., 2017a). Showing osmoregulatory function, they are involved in protection 

against water stress (Chalker-Scott, 1999; Naing and Kim, 2021; Shoeva et al., 2017), and by 

scavenging free radicals and reactive oxygen species (ROS), they reduce photooxidation 

under excessive light (Gould, 2004). They play defensive roles against biotic stresses 

including pathogen attack and herbivory (Gould, 2004) and contribute to tolerance of both 

cold and heat in developing wheat plants (Calderon Flores et al., 2021). Anth accumulate in 

stressed plants (Chalker-Scott, 2002, 1999; Naing and Kim, 2021) and senescing leaves 
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(Sims and Gamon, 2002), and water stress in post-anthesis growth phases increases their 

concentration in wheat grains (X. Li et al., 2018). In rice (Oryza sativa L.), increased leaf, but 

not grain Anth concentration has also been observed in response to increased N availability 

(Yamuangmorn et al., 2018). 

As they convey useful information about plants’ physiological status, Anth have been 

targeted for RS stress detection; due to their strong absorbance in the green, retrieval methods 

have commonly included spectral components around 550 nm (Féret et al., 2017a; A. A. 

Gitelson et al., 2001; Gitelson et al., 2006, 2009). While their overlapping absorption features 

made difficult the separation of Anth, Ca+b and Cx+c with index-based methods, particularly at 

canopy scale, this has improved with increasing spectral resolution of sensors (Gitelson et al., 

2006; Ustin et al., 2009) and more recently with the development of the PROSPECT-D 

RTM, conceived particularly to follow the evolution of foliar pigments across plant 

phenological advance (Féret et al., 2017a). In ML-based studies, and concordant with 

Gitelson et al. (2006) for maize (Zea mays L.) and soy (Glycine max (L.) Merr.) crops, Shah 

et al. (2019) and Odilbekov et al. (2018) each found that Anth concentration was strongly 

predictive of wheat leaf Ca+b; like Cx+c and PRI, though, investigations of links between Anth 

and GPC are lacking from the literature. 

2.5.4. SIF 

Solar induced fluorescence (SIF) is emitted from the photosystems at 1—5% of incident 

radiation and in proportion to instantaneous photosynthetic rate; despite its relatively small 

flux from the canopy, its origin within the photosynthetic apparatus and close links to 

physiological processes make SIF highly relevant to remote sensing (Damm et al., 2014; 

Verrelst et al., 2015b). SIF is dependent on leaf Ca+b concentration (Houborg et al., 2013; 

Walker et al., 2014), indicates plants’ general functional status (Meroni et al., 2009) and is a 
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proxy for carbon assimilation (Genty et al., 1989; Mohammed et al., 2019; Porcar-Castell et 

al., 2014).  

A broadband emission from 650—800 nm, SIF has maxima at 690 nm and, more strongly, at 

740 nm (Meroni et al., 2009; Verrelst et al., 2015b). Because of absorption by atmospheric 

O2 molecules, solar radiation at ground level is attenuated by up to 90 %, compared with top-

of-atmosphere (TOA) irradiance, in the telluric O2 absorption (O2-A) bands (Meroni et al., 

2009). This allows passive SIF quantification by Fraunhofer line depth (FLD) methods, 

usually focused on the 740 nm peak, which overlaps the O2-A line centred at 760.4 nm 

(Verrelst et al., 2015b; Zarco-Tejada et al., 2016, 2013a). The contribution of SIF to total 

radiance is estimated by comparing irradiance (E) and radiance (L) measured within the 

Fraunhofer line with E and L measured at a close wavelength or wavelengths outside the line 

(Plascyk, 1975; Plascyk and Gabriel, 1975). 

In agriculture, spaceborne SIF has been shown to improve crop productivity monitoring on 

regional to global scales (Guan et al., 2016; Guanter et al., 2014; Miao et al., 2018; Y. Zhang 

et al., 2018), and yield estimation in maize and soy (Peng et al., 2020). By detecting the 

depression of SIF emissions associated with accumulated heat stress, Song et al. (2020) 

improved regional scale wheat yield prediction, demonstrating also the usefulness of SIF in 

heat stress monitoring. However, SIF is also less effective as a yield predictor during 

heatwaves (Wohlfahrt et al., 2018); this is likely attributable either to lower net assimilation 

when respiratory loads are high (Heskel et al., 2016), heat damage to reproductive organs, 

undetected by RS (Sloat et al., 2021), or a combination of these. However, spaceborne SIF 

products have had mixed outcomes in crop assessments. For example, 

SCIAMACHY/GOME-2 SIF products were no better than the structural enhanced VI (EVI) 

in estimates of Australian wheat yield at regional scale, due to the SIF products’ low 

spatiotemporal resolution and relatively poor signal-to-noise ratio (SNR; Cai et al., 2019). 
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Similarly, SIF from the higher-resolution OCO-2 and TROPOMI sensors was inferior to both 

VI-based and NIR reflectance methods for maize and soy yield estimation (Peng et al., 2020). 

Although recent sensors have improved results at regional scales (Sloat et al., 2021), access 

to spaceborne SIF at higher spatial resolution resides in the future, and the benefits of using it 

for predicting harvest variables remain unclear (Peng et al., 2020). On smaller spatial scales, 

by contrast, airborne SIF has contributed to WS, nutrient deficiency and biotic stress 

diagnoses (Poblete et al., 2020a; Zarco-Tejada et al., 2018), including in wheat (Camino et 

al., 2019, 2018). In wheat, airborne SIF strongly improved leaf N estimation over Ca+b alone, 

providing far more information than Cm or Cw (Camino et al., 2018), and was sensitive to 

small differences in soil N sufficiency and Ca+b (Raya-Sereno et al., 2022). From proximal 

sensing, within-field SIF variability has been associated with GPC, albeit relatively weakly 

(Song et al., 2017); SIF~GPC correlations were negative, and at their weakest, until heading, 

then consistently positive.  

Based on the principles laid out above, SIF could influence GPC through various pathways. 

Spatial variability in SIF should reflect the relative availability of new assimilates, at least 

during grain filling and under WS, as follows: low SIF > low dilution > higher GPC. Absent 

abiotic stress, high SIF may imply more N / protein for translocation via the relationship of 

SIF with Ca+b; this may be more subtle. Apart from work associated with this thesis 

(Longmire et al. 2022), that of Song et al. (2017) appears to be the only research into the 

SIF~GPC relationship within fields.  

2.6. Retrieval of water stress indicators 

Under water stress, stomatal gas exchange is reduced to limit leaf water loss. Low stomatal 

conductance in turn reduces evaporative cooling of the leaf surface, allowing heat to 

accumulate, while the photosynthetic apparatus is starved of atmospheric CO2, constraining 

photosynthesis. This means that thermal data can be used to detect WS (Grant et al., 2007; 
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Idso, 1982), and because of the effect of stress on assimilation, assist GPC estimation (Zhao 

et al., 2005).  

2.6.1. Water stress indicators – thermal 

In the crop water stress index (CWSI), which estimates instantaneous evapotranspiration 

against its minimum and maximum potential rates, the difference between canopy 

temperature (Tc) and air temperature (Ta) is normalised against the vapour pressure deficit 

multiplied by a crop-specific factor which represent a non-water stressed baseline. As they 

are inversely proportional to stomatal conductance, CWSI and the normalised relative canopy 

temperature (NRCT) can be used to diagnose sub-optimal performance (Gonzalez-Dugo et 

al., 2015; Idso, 1982; Jackson et al., 1981), although both require knowledge of Tc. Added to 

multivariate regressions, CWSI has consistently improved wheat yield estimates (Gonzalez-

Dugo et al., 2015; Klem et al., 2018); the fate of N in the wheat shoot, and whether it is 

translocated to the grain as protein, has also been linked to CWSI (Klem et al., 2018). 

However, thermal data are not always available; nor is it possible to accurately derive CWSI 

in canopies with substantially incomplete canopy closure, because of the often large 

difference between the thermal emissions of foliage and bare soil, which can exaggerate Tc in 

mixed vegetation/soil pixels (Jackson et al., 1981). 

2.6.2. Water stress indicators – non-thermal 

Some limitations of CWSI were alleviated by Moran et. al (1994), whose water deficit index 

(WDI) does not require measurement of Tc and instead uses a VI/temperature trapezoid in 

which fractional vegetation cover is estimated with the soil-adjusted VI (SAVI; Huete, 1988). 

Included with the CCCI (Fitzgerald et al., 2010) in multivariate regressions, the WDI has 

been used to overcome confounding of N- and water stress in wheat (Pancorbo et al., 2021), 

but it was also shown to correlate less well with yield than CWSI (Gonzalez-Dugo et al., 
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2015). The normalised difference water index (NDWI; Gao, 1996), which estimates canopy 

water content based on NIR reflectance, consistently improved wheat leaf Ca+b estimation 

(Shah et al., 2019); Wolanin et al. (2020) found similarly for several ML models predicting 

wheat yield. Nevertheless, the NDWI has also shown only a moderate, though significant, 

relationship with wheat yield and very weak correlation with GPC (Liu et al., 2006). Yield 

estimates have also been improved by including CWSI alternatives, measures of relative 

canopy temperature which do not require measurement of Tamb (Elsayed et al., 2017). By 

including an evapotranspiration index modelled from met statistics (Fitzpatrick and Nix, 

1969), Zhao et al. (2020) substantially improved their field-level predictions; this method of 

incorporating WS improved on the use of Landsat thermal data at far higher spatial 

resolution.  

The PRI, discussed above as an estimator of Cx+c, also indicates pre-visual water stress and 

recovery therefrom, hence and is proposed as an alternative to thermal RS for water stress 

detection (Kohzuma et al., 2021; Suárez et al., 2008; Thenot et al., 2002). Indeed, the PRI 

has been shown to correlate with leaf stomatal conductance and Tc-Ta (Calderón et al., 2013). 

In wheat, PRI has been shown to improve yield estimation and to improve discrimination 

between water and disease stresses (Feng et al., 2017; Magney et al., 2014) but prior to the 

studies comprising this thesis, no reference was made to PRI-assisted GPC estimation. RTM 

inversions have shown strong correlations between the PROSAIL Cw parameter and NDWI 

in wheat, somewhat better at leaf than canopy level but susceptible to saturation at high Cw 

(C. Zhang et al., 2018). These authors also showed a moderately strong relationship of yield 

to Cw at jointing but did not consider GPC.  

2.7. Grain protein content from remote sensing 

The focus on GPC estimation in published works has been relatively minor compared with 

that on yield but has nevertheless advanced in recent years. The following emphasises GPC 
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estimates in commercial settings, especially from S2 data. Because it lacks sensitivity to 

Ca+b/N content, NDVI alone is a relatively poor predictor of GPC (Bonfil, 2017; Magney et 

al., 2016a; Wang et al., 2004). Despite this, Feng et al. (2014) estimated GPC in commercial 

dryland wheat, by combining satellite NDVI from two growth stages (R2 = 0.567—0.632, 

rRMSE = 0.141—0.144), albeit at field level and hence not applicable to PA approaches. 

Wright et al. (2004) estimated leaf N and GPC in irrigated wheat crops, finding the gNDVI 

(Gitelson and Merzlyak, 1998) best for GPC, airborne more accurate than satellite and 

acceptable results for both (airborne R2
 = 0.53, satellite R2 = 0.48). Recently, this link with 

gNDVI was confirmed by Pancorbo et al. (2023), who used it in multivariate linear 

regressions with a Ca+b-sensitive hyperspectral VI and SWIR information to estimate GPC in 

plots with R2 = 0.73. The same study estimated GPC from S2 data by similar means with 

R2 = 0.69. From Landsat, Zhao et al., (2005) reported relationships between the VIgreen 

(Gitelson et al., 2002a) and GPC (R2 = 0.46).  

While interest in direct estimation of GPC has accelerated, small number of studies focused 

on commercial fields remains small; in these, more specialised VIs have shown success. For 

example, Raya-Sereno et al., (2021) found that RE indices consistently correlated better with 

GPC than did other VIs, and that the NDRE was a relatively stable indicator of GNC over 

four years. Li et al. (2020) obtained the best of their moderate results with the RE-focused 

DCNI and CI, and Rodrigues et al. (2018) found combinations of green- and RE bands most 

effective for GPC estimation. By contrast, greater importance was attributed to the red and 

NIR domains, than to the RE for GPC estimation from airborne multispectral data (Zhou et 

al., 2021). While the relevance of the RE is driven by Ca+b, perhaps weighted toward its 

influence on the overall N/protein source size, the NIR remains in focus because of its 

relationship with water content and therefore the duration and extent of photosynthesis. 

Moreover, N uptake, translocation and utilisation for GPC is strongly dependent on water 
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stress (Klem et al., 2018). Ma et al. (2022) review the use of hyperspectral RS for GPC 

estimation in wheat but substantially omit RTM inversion; this is justified by the fact that no 

prior work appears to have directly investigated GPC estimation using RTM-inverted 

parameters. This is despite quantities directly associated with GPC, including Ca+b, LAI, and 

others that respond instantaneously to changes in stress such as Anth and Cx+c, and are hence 

likely to influence GPC, having been widely quantified by RTM inversion. Moreover, while 

PROSAIL-inverted Cw was used by C. Zhang et al. (2018) to refine wheat yield estimates, 

and should be directly related to GPC via photosynthetic rate to date its use for GPC 

estimation appears lacking from the literature. 

Wheat GPC is a complex trait which has proven difficult to predict in field conditions (Zhao 

et al., 2019). For example, while Zhou et al. (2021) found mostly moderately strong 

relationships (R2 = 0.50—0.62) between predicted and observed yield across linear 

regressions based on single VIs, metrics for GPC prediction with equivalent methods were far 

weaker (R2 = 0.12—0.34); in each case, the EVI performed best. However, the same study 

found that GPC prediction metrics (R2 = 0.55—0.63) were similar to those for yield (R2 = 

0.56—0.62) across several ML-based models, emphasising the appropriateness of analysis by 

ML to the complex physiology of GPC; such matters are considered below. 

2.7.1. Timeseries remote sensing for GPC estimation 

In general, estimates of wheat GPC, and the specific predictors most suited to doing so, have 

lacked consistency, but many studies have noted stages ≥ Z65 as best for estimating yield 

(e.g. Gómez et al., 2021; Liao et al., 2022), GPC (e.g. Apan et al., 2006; Zhao et al., 2005, 

2019), or both (e.g., Jensen et al., 2007; Liu et al., 2006; Lopez-Bellido et al., 2004; Magney 

et al., 2016a; Raya-Sereno et al., 2021; Sun et al., 2022; Wang et al., 2014). Estimating 

wheat yield from S2, Hunt et al. (2019) saw a large improvement on adding a second image, 
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diminishing returns for further images but better performance closer to harvest, as did 

(Wolanin et al., 2020). In a novel use of NDVI, using daily observations to define the 

duration of phenological stages, Magney et al. (2016a) improved GPC prediction vastly over 

raw NDVI, showing that faster heading and slower ripening phases each had moderately 

strong associations with higher GPC. 

While additive use of timeseries VIs from proximal sensing, including ratio vegetation index 

(RVI), NDVI, and gNDVI brought substantial improvement to yield estimates over single-

epoch use, the same was not seen for GPC estimation (Xue et al., 2007). These authors 

attributed the difference between results for yield and GPC to a failure of their methods to 

account for protein translocation, which indeed seems a likely difficulty given the range of 

VIs employed. A similar deficit with respect to GPC was also seen by Rodrigues et al. 

(2018), based on airborne hyperspectral imagery. By contrast, Wang et al. (2014) reported 

that stacked TS images were best for GPC modelling from satellite RS via standard VIs, 

despite poor correlations early in seasons, improving later. Performance improvements with 

TS data integration were seen for both yield and GPC by Sun et al. (2022), who demonstrated 

a DL-based method of estimating the harvest parameters concurrently, albeit from proximal 

sensing. The best successes in the studies cited here, which as far as could be ascertained 

covers all publications concerning GPC estimation from TS imaging, arise from proximal 

sensing. While such methods are poorly applicable in commercial contexts, they suggest that 

TS analysis of airborne and satellite RS images could be fruitful. 

2.8. Use of machine learning algorithms in RS 

Machine learning regression algorithms (MLRAs) find wide application in analysis of RS 

data in studies of cereal phenotype, yield, and quality, and are generally suited to crop trait 

prediction because of their capacity to identify latent relationships between observed and 

target variables, and hence build effective predictive models in large datasets (Ma et al., 
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2019; van Klompenburg et al., 2020). In agriculture and other land use analyses, MLRAs are 

applied to both classification (e.g. Abdi, 2020; Poblete et al., 2021) and regression tasks (e.g. 

Wolanin et al., 2020). Techniques include partial least squares regression (PLSR) and its 

derivatives (Hansen et al., 2002; Jin et al., 2014; Kanning et al., 2018; Øvergaard et al., 

2013; Yendrek et al., 2017), artificial, convolutional and recurrent neural networks (ANN, 

CNN, RNN; Atzberger, 2010; Wolanin et al., 2020, 2019; Yao et al., 2015), support vector 

machines / regression (SVM/R; Poblete et al., 2020; Rivera-Caicedo et al., 2014; Yao et al., 

2015) and random forests (RF; Liang et al., 2018; Shah et al., 2019). MLRAs have been used 

to retrieve traits directly from hyperspectral reflectance spectra (Shah et al., 2019; Yao et al., 

2015), via NBHIs (Hansen et al., 2002; Yang et al., 2021), RTM inversions (Atzberger, 

2010; Liang et al., 2016; Zhang et al., 2013) and as part of hybrid retrieval techniques 

(§2.3.5). Alongside these more traditional, study-scale applications of ML, the prodigious 

amounts of inhomogeneous RS data now collected puts out of reach analysis by humans 

alone (Chlingaryan et al., 2018), and ML is applied ever more often. As such, recent reviews 

have considered its use for classification tasks with RS (Maxwell et al., 2018), RS for yield 

and N status prediction in PA (Chlingaryan et al., 2018), and yield prediction with ML and 

deep learning (van Klompenburg et al., 2020).  

Recently, data from diverse sources including socio-economic, meteorological and crop 

records have been analysed through ML for their influence on grain yield and quality (Cao et 

al., 2020; Gómez et al., 2021; Li et al., 2020; Wolanin et al., 2020). From airborne 

hyperspectral images, Kanning et al. (2018) first derived LAI and leaf Ca+b by PLSR, then 

predicted wheat yield within paddocks with good accuracy, proposing that such mapping 

could be used to reduce N applications. From S2 data, and via PROSAIL inversion, LAI and 

CCC were estimated in wheat (Upreti et al., 2019). Zhou et al. (2021), instead showed RF as 

marginally better than SVR, and ANNs and linear models in both yield and GPC prediction 
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from multispectral images across two years in commercial wheat fields. Despite this 

increasing use, several authors point out that while ML approaches are well-suited, they are 

underutilised for the investigation of N-related plant traits, including GPC (Prey and 

Schmidhalter, 2019; Raya-Sereno et al., 2021). 

Successes demonstrate the potential of MLRAs in elucidating real-world variables from large 

and complex datasets, and suggest they are well suited to the complex and nonlinear 

relationships between canopy traits and GPC (Zhou et al., 2021). However, MLRAs also 

require caution and do not always bring a distinct advantage. For example, while both Zhou 

et al. (2021) and Gómez et al. (2021) reported superior results from ML as compared with the 

linear regression techniques they tested, the gap was sometimes small, while in contrast 

Upreti et al. (2019) reported better performance from least squares and PLSR methods than 

from boosting- and RF-based algorithms. Pancorbo et al. (2023) also obtained better wheat 

GPC estimates from multiple linear regressions than from ML applications, across both 

airborne HS and S2 analyses. Yao et al. (2015) also showed that ANN and SVM were subject 

to overfitting in wheat canopy N estimation, and MLRAs are criticised as lacking 

transparency, either because information is commonly reduced to latent variables or because 

relationships of interest are obscured behind complex functions (Wolanin et al. 2020). This 

interpretability issue leaves a small subset of candidate MLRAs capable of providing insight 

into relative input feature importance while also coping with large datasets.  

2.8.1. Gradient boosting 

Gradient boosting/boosted machines (GBM) are a MLRA from work by Friedman (2001), 

owing heritage to (Freund and Schapire, 1997). Boosting is an “… effective method of 

producing a very accurate prediction rule by combining rough and moderately inaccurate 

rules of thumb…” (Freund and Schapire, 1999). Hence many sub-models, each with weak 
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predictive skill but better than chance, are added sequentially, incrementally ‘boosting’ 

estimates of the response variable. Thus, later trees learn from their predecessors through the 

weighting of observations based on their error, the difference between observed and predicted 

values for the target variable. Observations with higher error are hence more likely to appear 

in later iterations, and each subsequent iteration trains a new model with respect to the error 

of the ensemble of previous trees. As GBMs use decision trees as sub-models, or base 

learners, they are also known as ‘boosted regression trees’, ‘gradient boosting decision tree 

regression’ and similar names.  

Like other regression models, GBMs are explicitly unable to extrapolate beyond the limits of 

observed data when predicting but offer good predictive skill and can efficiently deal with 

large numbers of both input features and observations, but also work well with smaller sets 

(Ruan et al., 2022). GBMs are able to handle explicitly NA values in features, while NAs in 

the response simply mean that nothing is learned from that observation. GBMs can handle 

both continuous and categorical input data and have been reported as relatively unaffected by 

feature reduction. Moreover, inputs can be strongly collinear, up to perfect correlation, 

without affecting predictive skill (Elith et al., 2008; Gómez et al., 2021), although such 

multicollinearity will affect analyses of feature importance. Finally, GBM input features do 

not require scaling or normalisation, which improves the interpretability of model outputs.  

Many GBM hyperparameters can be tuned; those relevant to the current studies, and their 

effects, are summarised in Table 3.8. Overfitting is limited through direct control of model 

complexity, via the maximum tree depth, minimum node size and γ hyperparameters; and via 

stochastic gradient descent (SGD). In SGD, a randomly-sampled subset of the training set is 

passed forward as the training data in each epoch (Friedman, 2002). This can be done 

column- or row-wise, adding randomness to improve robustness to noise, and can allow the 

algorithm to avoid local minima in the loss function gradient. However, because removal of 
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columns causes gain redistribution, SGD should be used with caution where feature 

importance is a focus. The learning rate, also known as step size or shrinkage, by which 

residuals are multiplied at each iteration, scaling the contribution of each tree, can also be 

adjusted. Lower learning rates mean that smaller steps are taken towards the optimal solution 

and may increase the required number of trees (Elith et al., 2008). In addition, k-fold cross-

validation (CV) can be applied, in which folds are randomised so as not to reflect any 

systematic ordering and should remain representative of the whole dataset. Predictions are 

made against these CV samples, and error is assessed; in the current studies, by minimising 

the root mean square error (RMSE) of cross validation (RMSEcv). 

Until recently, GBMs have had relatively little use in agriculture (van Klompenburg et al., 

2020), perhaps because of the good reportability of, and hence strong focus on, good 

predictive results. Indeed, GBMs have been shown among the most accurate algorithms in 

agricultural and land use contexts (Abdi, 2020; Ruan et al., 2022; Zhang et al., 2020). In the 

works of Ruan et al. (2022), GBMs were a top performer among 11 algorithms tested in 

wheat yield prediction based on proximal sensing and met data and offered a large reduction 

in computational overhead relative RF, while Gómez et al. (2021) likewise ranked the GBM 

highly. For leaf N estimation in wheat, gradient boosting again outperformed other 

algorithms (Yang et al., 2021). Nevertheless, GPC estimation with GBM has to date been 

based only on genotype data, where it also outperformed other algorithms especially in more 

complex situations (Grinberg et al., 2020). However, like RFs, GBMs assess the relative 

contribution of input features to target variable estimation, termed importance or gain, and 

this is encouraging uptake (Abdi, 2020; Grinberg et al., 2020; Hunt et al., 2019). Recent 

GBM use with RS includes regional yield estimation in wheat, where feature importance was 

a strong focus (Cao et al., 2020; Gómez et al., 2021; Ruan et al., 2022). This interpretability 

is a major asset to the current study, which seeks to identify traits linked to GPC. 
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2.9. Multicollinearity reduction 

Multicollinearity describes a situation in which two or more input features (explanatory 

variables) are linearly associated between themselves and with the response variable 

(Akinwande et al., 2015). Such highly-correlated predictors supply the model with redundant 

information, so their removal does not make a large impact on predictive skill (Akinwande et 

al., 2015). For prediction purposes, tree-based ML algorithms including random forests and 

gradient boosting are generally robust to collinearity among input features (Elith et al., 2008; 

Gómez et al., 2021). However, a substantial focus of this project is to quantify the relative 

importance to GPC estimation of input features; indeed, this is one of the reasons for 

choosing a GBM. This objective parallels fundamental early applications of RTMs to identify 

and optimise reflectance bands for VI development (e.g. Dorigo et al., 2007; Haboudane et 

al., 2002). Because gain assessment is crucial to the greater project, it was important in this 

case to exclude multicollinear input features to prevent gain leakage between them. 

Variance inflation factor (VIF) analysis is a method of identifying collinear coefficients in a 

multiple regression dataset; as an example, at VIF = 10, the variance of a coefficient i is ten 

times higher than it would be if the ith independent variable were linearly independent of 

other variables (Dormann et al., 2013; O’Brien, 2007). VIF functions, therefore, as an 

effective, data-driven dimensionality reduction method, which also shows the relative 

magnitude of collinearity (Poblete et al., 2021). Learned opinion contends that there is no 

definitive VIF threshold above which multicollinearity is excessive, and that, while it should 

be given to readers, the threshold depends on the user’s objective (Craney and Surles, 2002). 

For example, while O’Brien (2007) argues that there is no definitive VIF value at which a 

variable must be excluded, Dormann et al. (2013) consider VIF = 10 to be a critical value. 

Magney et al. (2016a) use VIF = 10, as do Zarco-Tejada et al. (2018), while Akinwande et 
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al. (2015) and Poblete et al. (2021) adopt VIF = 5. For the reasons laid out above, this project 

adopts these latter, lower values. 

2.10. Summary of knowledge gaps 

Most studies estimating GPC from RS spectroscopy have used plot experiments (e.g. 

Pancorbo et al., 2023; Raya-Sereno et al., 2021; Walsh et al., 2023; Wang et al., 2004; Zhao 

et al., 2005, 2019). Overall, analyses that include commercial growing conditions, and 

airborne or satellite images, are both relatively few and are mostly conducted at the scale of 

whole fields (e.g. C. Tan et al., 2020; Wang et al., 2014; Zhao et al., 2019). Research works 

at within-field scales in commercial crops appear to be limited to Rodrigues et al. (2018) and 

Stoy et al., (2022); GPC variability driven by natural soil variability under normal farming 

conditions has thus had scant attention. This gap should be addressed because it is at this 

scale that practical GPC-oriented PA interventions would be applied, and incomplete 

knowledge currently impedes progress. While Rodrigues et al. (2018) and Stoy et al., (2022) 

do consider soil variability in real crops, only the latter base their work on on-combine GPC 

monitor data. 

Moreover, according to comprehensive searches of the academic databases for this PhD 

project, and as cited in the current literature review, works published to date linking RS with 

GPC appear exclusively to have used VIs, with no reference to RTM inversions. This 

research gap also demands attention, because of the poor consistency among VIs revealed 

herein and noted by Raya-Sereno et al. (2021), and because the potential contribution of 

RTM-inverted parameters to GPC estimation itself merits thorough investigation.  

Although TS have been investigated for yield estimation, their additive use for GPC 

estimation is far more limited. This work has seen limited success and, due to its exclusive 

reliance on VIs, is likely poorly transferable between agronomic situations; indeed this 
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reliance is identified as a potential source of inconsistency across TS within such studies 

(Feng et al., 2014; Rodrigues et al., 2018; Xue et al., 2007). Notwithstanding their occasional 

instability at extreme values, RTM-inverted parameters have potential to improve both 

overall predictive skill in models based on them, and such models’ interpretability along TS. 

Yet another knowledge gap occurs in relation to the plant traits used for GPC estimation. 

Most work has focused on the obvious physiological precursors N and Ca+b, and on water 

stress; this is reasonable given the direct and unambiguous relationships of these quantities 

with GPC. However, as discussed above, GPC is strongly mediated by plant stress, and the 

detection of pre-visual stress is relatively little covered in the existing literature. Despite their 

proven physiological links to such stress, and some investigation of their association with 

wheat yield, Anth, Cx+c, and PRI have not been directly tested as GPC predictors.  

Finally, apart from Stoy et al., (2022), few recent studies leverage on-combine GPC data as a 

source of ground truth for RS studies, so there has been scant testing of the potentially 

substantial scientific value of these data. This is important because such instruments are 

becoming more common in farm operations; moreover, they are equivalent to those used to 

grade wheat and set its price at receival depots. To gain traction, any proposed PA solution 

should be based on technology and methods already used in industry. 
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3. Materials and Methods 

This chapter contains included material from: 

Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop 

traits retrieved from airborne hyperspectral and thermal remote sensing imagery to predict 

wheat grain protein content. ISPRS Journal of Photogrammetry and Remote Sensing 193, 

284–298. https://doi.org/10.1016/j.isprsjprs.2022.09.015 

Longmire, A.R., Poblete, T., Hornero, A., Chen, D., Zarco-Tejada, P.J., (accepted 2023-10-27). 

Estimation of grain protein content in commercial bread and durum wheat fields via traits 

inverted by radiative transfer modelling from Sentinel-2 timeseries. ISPRS Journal of 

Photogrammetry and Remote Sensing. 

― 

To robustly characterise plant traits that are both retrievable from airborne hyperspectral RS 

data, and closely associated with GPC, it was necessary to consider wheat grown under semi-

controlled conditions in which soil N supply could be manipulated and data collected at 

ground level, but under open skies, and preferably with divergent soil and/or rainfall 

conditions. I therefore struck collaborations with two agricultural research and extension 

organisations with the capacity to establish plot trials in 2019. The recent advent of on-

combine GPC monitor data collected during harvests, and a desire to test its scientific value, 

motivated me to include commercial crops in the project. The use of airborne hyperspectral 

and thermal sensors mounted in tandem on a piloted aircraft allowed data capture in light and 

meteorological conditions identical between the sensors and permitted several thousand 

hectares’ data to be acquired in a single day, contingent on just two factors: cloud-free 

conditions over the target, and feasible flying distance from the aircraft’s home base. The 

selection of both plot and commercial sites satisfied these conditions while also providing for 

wide soil variability both between sites and across small spatial scales within them. Further, 

the scale of dryland wheat cropping is appropriate to the areal coverage and regular return 

time of spaceborne sensors and offers an opportunity both to test the utility of plant traits 
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retrieved from satellite data and to assess the contribution of image timeseries. Lastly, to 

more fully assess traits’ and indices’ relationship with GPC, it was desirable to analyse data 

from at least two years. 

3.1. Study sites 

3.1.1. Plot experiments 

This study considers both experimental plots and commercial crops, grown in rainfed 

conditions across two meteorologically diverse seasons and in contrasting soils at four 

locations in the southern Australian wheat belt. The plot trials were located at Birchip 

(experimental site 1 (ES1); average annual rainfall (AAR) = 353 mm) and Yarrawonga 

(experimental site 2 (ES2); AAR = 470 mm; Fig. 3.1) in the southern Australian wheatbelt. 

Each plot layout was planted in a randomised complete block design with hard white bread 

wheat (cv. Scepter) for N fertiliser treatment trials in 2019. Site ES1 takes the Köppen-Geiger 

climate classification Bsk (arid, dry summer, cold) and ES2, Cfa (temperate, without dry 

season, hot summer; Peel et al., 2007). In the Australian Soil Classification (ASC; Isbell, 

(2002)), soils at ES1 are classified as calcarosols, while sodosols predominate at ES2. Pre-

season soil mineral N was equivalent at the two sites. 

The ES1 plots were sown on 2019-05-16 and fertiliser was applied on 2019-08-10 (Zadoks 

growth stage Z31). N application rates at ES1 only were adjusted according to season-to-date 

rainfall accumulation, targeting yield decile predictions modelled with the Yield Prophet® 

fertiliser decision support tool (Hochman et al., 2009; Hunt et al., 2006), plus rates based on 

grower advice, the maximum yield formulae of French and Schultz (1984) and those of 

Sadras and Angus (2006). Some of these N rate increments were grouped for analysis ( 
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Table 3.1). ES2 was sown on 2019-05-09 and fertiliser was applied in equally split doses at 

tillering (Z23; 2019-06-22) and at stem elongation (Z31; 2019-08-06), producing five N 

treatment levels. Plots at both sites were approximately 12 x 2 m, treatments were replicated 

four times and agronomic procedures were equivalent. Each layout was located within fields 

regularly used for commercial cropping and with zero slope. As per normal cropping 

practices for Australian wheat, no irrigation was applied.  



65 
 

Table 3.1 Location and fertiliser N applied to plots sown to wheat (cv. Scepter) at ES1 
(Birchip) and ES2 (Yarrawonga). Pre-sowing soil N to 120 cm (ES1) and 100 cm (ES2). 

Location 
details 

Soil N 
(mg kg-1) 

Total fertiliser 
(kg N ha-1) 

Treatment 
(aggregated) 

Plots (n) 

Site ES1 46.8 0 B0 4 
Birchip  30 

B1 8 35.969° S  37 
142.822° E  98 

B2 8 102 m ASL  104 
   162 

B3 12   167 
  171 
Site ES2 46.1 0 Y1 

4 

Yarrawonga  46 Y2 
36.050° S  92 Y3 
145.983° E  138 Y4 
129 m ASL  184 Y5 

 

 
Fig. 3.1. Experimental site 2 (ES2; a); ES2 layout on false colour hyperspectral image 
(R = 749 m, G = 710 nm, B = 678 nm; b); ES2 (c) and ES1 (d) plots with treatment levels 
(kg.N/ha): Y0 = 0, Y1 = 46, Y2 = 92, Y3 = 138, Y4 = 184; B0 = 0, B1 = 30 – 37, B2 = 98 – 
104, B3 = 162 – 171. 
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3.1.2. Field transect 

In 2020 only, a transect was laid out in one field (M01; 36.30° S 141.35° E), part of 

commercial cropping zone 1 (CZ1), described below. To facilitate later spatial joining of 

transect waypoints to GPC and airborne data the transect, comprising 20 points 

approximately 50 m apart, was laid out parallel to the direction of travel for combine 

harvesters. The points were GPS marked at the time of field work / hyperspectral data 

collection, 2020-10-28. 

3.1.3. Commercial crops hyperspectral 

This study considers 6355 ha of rainfed commercial hard white bread and durum wheat crops 

grown in two areas of the southern Australian wheat belt. In CZ1, around Kaniva (36.37° S, 

141.24° E; altitude 142 m; AAR = 451 mm; Fig. 3.2a); the subject bread and durum crops 

were spread across 30 km of latitude and 15 km of longitude. For CZ1, growers supplied on-

combine protein monitor data from 662 ha (seven paddocks) for the 2019 harvest and 858 ha 

(10 fields) in 2020. Bread wheat only was sown around Manangatang (CZ2; 35.05° S, 

142.88° E; altitude 55 m; AAR = 316 mm; Fig. 3.2b). For CZ2, data were available from 12 

fields in 2019 and 26 in 2020, totalling > 2000 ha in each year and distributed across a similar 

extent as at CZ1. In each location, these winter crops were sown between 2019-05-15—2019-

06-03 and 2020-05-12—2020-06-05. Fertiliser was applied as urea 1—3 times each season, 

according to commercial priorities and on growers’ assessment of likely yield. The Köppen-

Geiger classification for CZ1 is Cfb, indicating a temperate climate, without dry season, and 

with a warm summer, while CZ2, like ES2, is classified Bsk. Location and rainfall details are 

provided in Table 3.2. 
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Fig. 3.2. Commercial cropping zones 1 (CZ1; a) and 2 (CZ2; b) regions, Victoria, 
Australia, with Australian Soil Classification to soil type and wheat fields for which 
grain protein content observations were available in 2019 and 2020. 

The dominant cropping soils in CZ1 are vertosols; the equivalent in the World reference base 

for soil resources (WRB) are vertisols; (FAO, 2015), but both sodosols (WRB: solonetz / 

abruptic luvisols / planosols) and chromosols (abruptic luvisols / lixisols) are also common. 

Landforms are typically level to gently undulating. In CZ2 calcarosols (calcisols) 

predominate, while vertosols and sodosols are also present. The remnant dune fields, on 

which agricultural fields in CZ2 are overlaid, formed through aeolian deposition of 

extensively re-worked material of marine origin (Pell et al., 2001; Sadras et al., 2002). The 

dunes are 2–6 m high and 200–1200 m apart, an amplitude less than the dimensions of most 

of the fields considered, so the dune-swale morphology induces great within-field soil 

variability. Due to their effects on plant-available water content (PAWC), differences in soil 

and subsoil properties at sub-paddock scale may drive yield variability as much as inter-

annual rainfall differentials (Whitbread et al., 2008). Dunes are composed predominantly of 
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deep, loose sand and aggregates in which rainfall infiltrates to a depth where it is protected 

from evaporation and contributes to PAWC (Llewellyn et al., 2008; Sadras et al., 2002). 

Swale soils are heavier, their shallow hardpans may limit infiltration, and boron toxicity may 

reduce root penetration (Nuttall et al., 2003). Sodicity and higher salt loads also reduce 

PAWC, through their osmotic effects, in swale soils. 

Table 3.2. Location, rainfall, climate zone and total cropped areas included for CZ1 
(Kaniva) and CZ2 (Manangatang), 2019–2020.  

Zone Lat. Lon. 
Alt. 
(m) 

AAR* 
(mm) 

Clim. 
zone† 

Year 
Rain* 
(mm) 

GSR* 
(mm) 

Area (Ha) 

CZ1 -36.37° 141.24° 142 449 Cfb 
2019 288 238 662 
2020 444 291 858 

CZ2 -35.05° 142.88° 55 316 Bsk 
2019 194 135 2341 
2020 342 277 2494 

*AAR = long term average annual rainfall; GSR = growing season rainfall (Apr – Oct); rain = annual total. 

Rainfall data are from the nearest Bureau of Meteorology station with complete records for the year in question: 

CZ1 Nhill Aerodrome (#78015), CZ2 Ouyen (#076047). † Climate zone as per Köppen-Geiger climate 

classification (Peel et al., 2007). 

3.2. On-ground and lab processes 

To validate estimates of plant variables obtained through remote sensing and image analysis, 

data were collected by three general methods in the plot experiments and field transect:  

 Destructive sampling, where removal of plant and / or soil material and laboratory 

assays produced ‘ground truth’ data; 

 Leaf level spectroscopy, where non-destructive, optical leaf-clip instruments were 

used to estimate pigments and other quantities; and 

 Canopy level work, where NBHIs and inverted parameters were retrieved from 

airborne hyperspectral and thermal images 

3.2.1. Plot experiments 
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Leaf measurement and tissue sampling at each experimental site targeted the adaxial surface 

of uppermost sun-adapted leaves central in plots and were conducted quasi-concurrently with 

hyperspectral flight campaigns, in equivalent light and meteorological conditions. Ten leaf 

measurements in each plot were taken with Dualex (FORCE-A, Orsay, France) and 

SpectraPen (PSI, Drasov, Czech Republic). Approximately 80 g of entire flag or other upper, 

sun-exposed leaves were cut from the central rows of plots, sealed in plastic, refrigerated in 

transit then kept at -20 °C until processing. Ten subsamples were taken from the central area 

of each cut leaf with punches of known diameter for calculation of areal N content; these 

discs were weighed before and after drying. Leaf tissue was dried at 65 °C for 48 h, then 

ground to a uniform powder in a ball mill and analysed by Dumas combustion for total N 

(mass %). Plots were machine harvested and the grain assessed for protein content by near 

infrared (NIR) spectroscopy (CropScan 3000B Grain Analyser, Next Instruments, Sydney 

Australia). Ambient temperature, barometric pressure and incoming shortwave and longwave 

radiation were recorded on the ground using a portable weather station (model WXT510, 

Vaisala, Helsinki, Finland).  

3.2.2. Field transect 

Dualex and SpectraPen measurements were also made during the transect of field M01 at 

Miram. Further, three soil samples were taken with a hand auger from the top 15 cm and 

mixed (total approx. 50 g) to represent each waypoint, which was marked with a hand-held 

GPS (Garmin, Olathe, Kansas, USA). Leaf and soil samples were oven-dried at 65 °C for 

48 h and mineral N extracted as per Rayment and Lyons (2010) on a Skalar San++ SFA 

(FlowAccess V 3.2). Absent differential fertiliser treatments in the crops by which to group 

observations for analysis, K-means clustering (Hartigan and Wong, 1979) was used to divide 

the transect data into three levels by GPC. 
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3.2.3. Protein monitor data 

Data analysis for commercial fields was based on GPC records collected during harvest. 

These data were collected with NIR spectrometers (CropScan 3000/3300H, Next Instruments, 

Sydney Australia) mounted on the clean grain elevator of combine harvesters with 

geolocation from real-time kinetic GPS receivers at positional accuracy of ± 1 cm. GPC point 

data was first cleaned according to principles detailed for yield data by Ping and Dobermann, 

(2005): those with outlier GPC values, in slivers or isolated from neighbouring observations, 

within 30 m of perimeter fences or headlands and within 20 m of trees, dams, fences and, or 

in other harvester turn zones were discarded. By buffering the point location of each 

remaining GPC record to a 5 m radius in a GIS, then drawing bounding geometries for these 

new circular polygons, square 100 m2 regions of interest (ROI) were established (Fig. 3.3). 

The 5 m radius was chosen so that ROI width was less than typical harvester swath width (12 

m). Each ROI had a GPC point as its centroid and took the associated grain protein value. 

Where overlap between ROIs occurred, sufficient of them were removed to ensure spatial 

independence. Finally, areas of hyperspectral and satellite image rasters affected by cloud 

shadow were identified, then intersecting ROIs again removed to exclude erroneous 

reflectance spectra.  
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Fig. 3.3. Detail of commercial wheat field showing regions of interest (ROI) established 
with grain protein observation points as their centroids, buffering of field boundaries 
and non-crop vegetation excluded from analyses.  

A Wilcoxon test (Bauer, 1972) was applied a) across zones within year / wheat type 

permutations and b) across wheat types within zone / year permutations to test the 

significance and effect size of differences in median GPC.  

3.3. Remote-sensed data: acquisition and pre-processing 

3.3.1. Airborne data 

In each year, logistical constraints dictated a later start to remote sensing campaigns than 

desired. Nevertheless, airborne hyperspectral and thermal images were collected by sensors 

flown in tandem on a Cessna-172 light aircraft operated by the Hypersens Laboratory, 

University of Melbourne. Missions were flown over plots at site 1 on 2019-10-03 (1409 

growing degree days after sowing (GDDAS)), site ES2 on 2019-10-09 (1559 GDDAS), and 
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commercial fields near Kaniva (CZ1) on 2019-10-22 (bread wheat 1514 GDDAS, durum 

1736 GDDAS) and 2020-10-28 (bread 1592 GDDAS, durum 1742 GDDAS). Thermal time 

calculations, after Baskerville and Emin (1969), were based on data from the Australian 

Bureau of Meteorology’s station #78015 (Bureau of Meteorology, 2021). Flights at 350 m 

and 400 m above ground level (AGL) gave ground sampling distances (GSD) of 0.15 m 

(hyperspectral) and 0.25 m (thermal) at experimental site ES1 and GSD ≈ 0.2 m 

(hyperspectral) and 0.35 m (thermal) at site ES2, respectively, while flights over commercial 

fields at ≈ 2000 m AGL yielded GSD ≈ 1.0 m (hyperspectral) and GSD ≈ 1.7 m (thermal).  

Hyperspectral radiance data were collected in the visible and near infrared (VNIR) domains 

with a hyperspectral VNIR sensor (VNIR E-Series model; Headwall Photonics, Fitchburg, 

MA, USA), capturing 371 bands from 400-1001 nm at 8 nm per pixel, yielding 7 nm FWHM 

with a 25 µm slit. At 12-bit radiometric resolution, storage rate was 50 frames per second 

with exposure time of 18 ms and an 8 mm focal length. Radiometric and spectral calibration 

was completed in the laboratory prior to flights: The hyperspectral imager was calibrated 

using an integrating sphere (Labsphere XTH2000C, Labsphere Inc., North Sutton, NH, 

USA), deriving coefficients at four illumination levels. Atmospheric correction of radiance 

was applied with the Simple Model of Atmospheric Radiative Transfer of Sunshine 

(SMARTS) model (Gueymard, 1995), using aerosol optical depth (AOD) observed at 550 nm 

at the time of flight with a Micro-Tops II sunphotometer (Solar LIGHT Co., Philadelphia, 

PA, USA). This method has previously been used for hyperspectral data (Calderón et al., 

2015; Poblete et al., 2020a; Zarco-Tejada et al., 2018). Thermal images were collected in the 

7.5—14 µm region with an A655c camera (FLIR systems, Wilsonville, Oregon, USA), a 

scientific-grade instrument radiometrically calibrated by the manufacturer; nevertheless, a 

further indirect calibration was carried out during flights using ground observations from a 

handheld infrared thermometer (LaserSight from Optris GmbH, Berlin, Germany), after 
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Calderón et al. (2015). Orthorectification was performed using Parametric Geocoding and 

Orthorectification for Airborne Optical Scanner Data (PARGE; ReSe applications GmbH, 

Wil, Switzerland) using an inertial measurement unit and GPS data from a VN-300 

(VectorNav Technologies LLC, Dallas, TX, USA). These methods follow the detailed 

proposals in Zarco-Tejada et al., (2016). The bandset was convolved to 79 bands on 

conversion to reflectance. 

3.3.2. Spaceborne data 

A multi-temporal dataset of Sentinel-2 rasters, orthorectified and expressed in top-of-

atmosphere reflectance (Level-1C product) was downloaded from the Copernicus Open 

Access Hub (https://scihub.copernicus.eu/). The target areas during the 2019 and 2020 

growing seasons intersected with tiles 54HWE (CZ1), 54HXG and 54HYG (CZ2). 

Correction for atmospheric effects, converting images from Level-1C to Level-2A surface 

reflectance was done using Sen2Cor (version 2.3.1). All images between 1 July and 31 

October in each season were visually assessed, and those in which any subject field was 

cloud affected were discarded. This left 23 images in which all fields were cloud free, five or 

six in each combination of year and zone (Table 3.3). Bands of GSD = 20 m were resampled 

to 10 m prior to stacking as a multiband raster. 

  



74 
 

 

Table 3.3. Cloud-free Sentinel-2 images available in CZ1 and CZ2, 2019–2020 with 
associated growing degree days after sowing (GDDAS; °C day) and Zadoks (Z) 
stage/name. Bold entries are images from which traits were retrieved for comparison 
against indicators from airborne hyperspectral analysis. 

 Image Bread Durum 

Zone Year Date GDDAS Z stage Z name GDDAS Z stage Z name 
1 2019 

18-Jul 481 15 

seedling 

684 16 
seedling 

23-Jul 537 15 739 17 

17-Aug 770 17 972 31 
stem elong. 

11-Sep 1008 32 stem elong. 1211 37 

1-Oct 1237 43 booting 1439 52 ear emerg. 

21-Oct 1508 69 anthesis 1710 74 grain fill 
2020 

17-Jul 452 14 
seedling 

560 15 
seedling 

1-Aug 581 15 689 17 

26-Aug 803 31 
stem elong. 

910 31 
stem elong. 

10-Sep 979 32 1087 33 

10-Oct 1375 51 ear emerg. 1483 67 anthesis 
2 2019 

17-Jul 904 17 seedling    

28-Jul 1028 31 

stem elong. 

   

12-Aug 1169 31    

17-Aug 1220 32    

27-Aug 1325 32    

1-Oct 1778 54 ear emerg.    
2020 

17-Jul 719 17 
seedling    

27-Jul 803 17    

26-Aug 1099 32 

stem elong. 
   

31-Aug 1161 32    

10-Sep 1307 34    

15-Sep 1385 42 booting    
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3.3.3. Modelling of phenological advance 

To facilitate comparison across years, zones and crop types, we calculated growing degree days 

after sowing (GDDAS; Asseng et al. (2010)), based on daily temperatures for each cropping 

zone taken from the SILO dataset (“https://www.longpaddock.qld.gov.au/,” n.d.). To allow for 

potential differences in rates of phenological advance among zones and cultivars, phenology 

in Zadoks stages was modelled in the Agricultural Production Systems sIMulator (APSIM) 

Next Generation (Holzworth et al., 2018) biophysical systems model (wheat module;  Brown 

et al., 2014), using the same SILO temperature data.  

3.3.4. Extraction of raster values to study units 

Radiance (L), reflectance (R) and canopy temperature (Tc; e.g. Fig. 3.6c) values contained in 

hyperspectral and thermal rasters were aggregated to mean pixel value per plot and ROI. 

After exclusion of edges and end zones, and areas where whole shoot biomass cuts had been 

taken, plots contained 100—250 pure vegetation pixels each, from which mean reflectance 

spectra and canopy temperature (Tc) were calculated. Commercial crop ROIs contained for L 

and R, n ≈ 100 pixels, and for Tc n ≈ 36 pixels. Mean hyperspectral L and R spectra by 

fertiliser treatment are shown for both experimental sites (Fig. 3.4). 
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Fig. 3.4. Airborne hyperspectral radiance (W/m2/sr/nm) and reflectance spectra 
captured at ES1 (a, b) and ES2 (c, d). Plot-wise mean by treatment. 

Pixel values of stacked S2 band rasters were extracted to corresponding GPC points. Spatial 

analyses were done in QGIS (QGIS Development Team, 2020) and R (R Core Team, 2020). 

3.4. Data processing – spectroscopic data 

Vegetation indices and inverted leaf and canopy traits were retrieved from both airborne 

hyperspectral and S2 multispectral data. Solar-induced fluorescence (SIF), from 

hyperspectral L and R, and the crop water stress index (CWSI), from thermal Tc data, were 

also retrieved for the plots at both experimental sites and for ROIs in CZ1. Narrow-band 
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hyperspectral indices were also calculated from SpectraPen reflectance at plot and transect 

scales. Dualex observations ≥ 2 standard deviations from the plot or waypoint mean, and 

erroneous SpectraPen spectra were removed, then the clean data were aggregated to mean 

values and spectra per plot or transect waypoint. Where transect waypoints intersected with 

ROIs, variables retrieved from airborne data and associated with the ROI, plus GPC values, 

were assigned to waypoints by spatial joining. Data collection, extraction, handling and 

filtering processes are summarised in Fig. 3.5.  

 

Fig. 3.5. Schematic summary of data handling and machine learning processes for 
estimation of wheat grain protein content in commercial crops from plant traits 
retrieved from airborne hyperspectral and thermal and Sentinel-2 multispectral remote 
sensed images. 
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3.4.1. Radiative transfer modelling 

Leaf and canopy variables were retrieved with the PRO4SAIL radiative transfer model 

(RTM), which comprises PROSPECT-D (Féret et al., 2017b) and 4SAILH (Verhoef et al., 

2007). The PROSPECT-D component was used to retrieve leaf traits including the pigments 

xanthophylls / carotene (Cx+c), Ca+b and anthocyanins (Anth), plus leaf dry matter (Cm) and 

water content (Cw) from hyperspectral data, while canopy structural traits leaf area index 

(LAI) and leaf angle distribution function (LIDFa) were estimated with the coupled 4SAILH 

were outputs of the 4SAIL component. From multispectral S2 data, only Ca+b, Cm, Cw and 

LAI were retrieved through a similar PRO4SAIL inversion procedure wherein simulated 

reflectance was convolved to S2 specifications and solar zenith angle was varied to account 

for changing image dates.  

In each such hybrid procedure, after Xu et al. (2019), separate look-up tables (LUT), each of 

200,000 simulated reflectance spectra with their associated leaf and canopy values, were 

generated for hyperspectral and multispectral data. This number of permutations, and the 

associated procedures have previously been shown sufficient (Poblete et al., 2021; Xu et al., 

2019; Zarco-Tejada et al., 2018). To build each LUT, model parameters were randomly 

sampled from uniform distributions in the ranges given in Table 3.4. To compare synthetic 

spectra against those observed in the study units, the LUTs were interrogated using a support 

vector machine (SVM) machine learning algorithm (MATLAB; Statistics and Machine 

Learning, Deep Learning and Parallel Computing toolboxes; Mathworks Inc., Natick, MA, 

USA), with simulated reflectance spectra as model inputs and plant/canopy traits as outputs 

to retrieve each trait independently. The SVM algorithm applied a radial basis function and 

hyperparameters were optimised for each target variable during training. Hybrid retrieval 

methods of this type effectively address the ill-posed problem (Verrelst et al., 2015a). For S2 

timeseries, inversions were conducted for each separate image date in each location. 
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Table 3.4. Values and ranges of leaf and canopy traits used to invert the PRO4SAIL 
radiative transfer model inversion to retrieve plant and canopy traits from 
hyperspectral data only and from both hyperspectral and Sentinel-2 data (italics).  

Parameter Abbreviation Value/range 
Anthocyanin content [μg/cm2] Anth 1–10 

Carotenoid content [μg/cm2] Cx+c 1–20 

Chlorophyll a + b content [μg/cm2] Ca+b 3–70 

Dry matter content [g/cm2] Cm 0.001–0.035 
Hot spot parameter h 0.01 
Leaf area index [m2/m2] LAI 1–5 

Leaf Inclination Dist. Func. [°] LIDFa 0–90 
Mesophyll struct. Coef. N 0.5–3.0 
Observer angle [deg.] tto 0 
Relative azimuth angle [deg.] ψ 0 
Sun zenith angle [deg.] tts 47.7 

Water content [g/cm2] Cw 0.001–0.035 
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3.4.2. Reflectance indices 

In total, 88 NBHIs were calculated from hyperspectral reflectance for each study unit; those 

relevant (section 3.4.5) to later procedures are detailed in Table 3.5, while a full list appears 

in Table A1, Appendix A.  

Table 3.5. Selected narrow-band hyperspectral indices, calculated from SpectraPen leaf 
clip spectra in plots at ES1 and ES2 (2019), in a field transect (2020), and from airborne 
hyperspectral imagery captured over the same plots and commercial wheat fields in 
CZ1, relevant to downstream processes. 

Type Name Formula Reference 
Chlorophyll 
a+b 

Red edge 
chlorophyll index 

CI = (R750/R700)-1 Gitelson et al. 
(2003) 

Normalised 
Pigments Index 

NPCI = (R680− R430)/(R680+ R430) Peñuelas et al., 
(1994) 

Zarco-Tejada and 
Miller index 

ZMI = R750 / R710 Zarco-Tejada et al. 
(2001) 

Vogelmann index 1 VOG1 = R740/R720 Vogelmann et al. 
(1993) 

Other 
pigments 

Photochemical 
Refectance Index 

PRI = (R531− R570)/(R531+ R570) Gamon et al. 
(1992) 

Photochemical 
Refl.Index (670) 

PRIm3 = (R670− R531)/(R670+R531) Hernández-
Clemente et al. 
(2011) 

Photochemical 
Refl.Index (670 and 
570) 

PRIm4 = 
(R570−R531−R670)/(R570+R531+R67

0) 

Hernández-
Clemente et al. 
(2011) 

Structure Enhanced VI (NIR) EVINIR = 2.5*(R800-
R670)/(R800+6*R670-7.5*R800) 

Longmire et al., 
(2022)  

Normalised 
Difference VI 

NDVI = (R840−R670)/(R840+R670) Rouse et al., (1974) 

Structure / 
water 

R920/R729 R920/R729 L. Suárez (personal 
communication) 
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From each image in the multispectral satellite timeseries, 38 VIs compatible with the S2 

spectral specifications and associated with canopy structure or pigment concentration were 

calculated for each GPC point in the commercial cropping zones. Indices found relevant (§ 

3.5) to downstream processes are given in Table 3.6, while a complete list is in Table A2, 

Appendix A. 

 

Table 3.6. Selected vegetation indices calculated from Sentinel-2 (S2) reflectance 
observed over commercial wheat fields in CZ1 and CZ2, and found to be linearly 
independent of S2 inverted parameters from the same data. 

Name Formula Reference 
Global Environment 
Monitoring Index 

GEMI = (n(1−0.25n)−RED−0.125/1−RED) where 
n = (2 * (NIR2 - RED2) + 1.5 * NIR + 0.5 * RED) 
/ (NIR + RED + 0.5) 

Pinty and Verstraete 
1992 

Maccioni Index Macc = (R780-R710)/(R780-R680) Maccioni et al. 2001 

MERIS Terrestrial 
Chlorophyll Index 

MTCI = (R754−R709)/(R709−R681) Dash and Curran 2007 

TCARI/OSAVI 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼 = 
3·[(𝑅700−𝑅670)−0.2·(𝑅700−𝑅550)·(𝑅700/𝑅670)]/((1+0.1
6)·(𝑅800−𝑅670)/(𝑅800+𝑅670+0.16)) 

Haboudane et al. 
(2002)   

Transformed 
Chlorophyll Absorption 
in Reflectance Index 
1610 

𝑇𝐶𝐴𝑅𝐼1510 = 
3·[(𝑅700−𝑅1510)−0.2·(𝑅700−𝑅550)·(𝑅700/𝑅1510)] 

Herrmann et al. 2010 
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3.4.3. Solar induced fluorescence 

From plot- and ROI mean R and L values, Fluorescence was retrieved using bands inside and 

outside of the telluric O2-A Fraunhofer line (FLD2; Plascyk and Gabriel, 1975) and on the 

basis of radiance estimated with the SMARTS model (Gueymard, 1995) then convolved to 

the FWHM and spectral sampling interval (SSI) of the hyperspectral sensor. The band inside 

the Fraunhofer line corresponds to the local minimum incoming irradiance (E) at the relevant 

SSI (λin; 762 nm) while the outside band (λout; 750 nm) is on the shoulder of the O2-A line at 

a shorter wavelength. SIF was calculated for each plot and ROI for that study unit’s mean L 

and R, derived as above, according to: 

Eqn. 1 

 𝑆𝐼𝐹 = 𝑑 − 𝑅𝑏 

where 

𝑅 =
(𝑐 − 𝑑) 

(𝑎 − 𝑏) 
 

and 

a = E750, b = E762, c = L750, d = L762 
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3.4.4. Crop water stress index 

Using the mean Tc for each study unit, the crop water stress index (CWSI) was calculated 

after the proposal of Idso et al. (1981), which normalises Tc with Ta and vapour pressure 

deficit (VPD). Air temperatures and relative humidity were from portable weather stations at 

the plot sites and from BoM recording station 78015 (Nhill Airport) for CZ1 at the time of 

flights (Bureau of Meteorology, 2021).  

Eqn. 2 

 
𝐶𝑊𝑆𝐼 =

(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)௅௅

(𝑇𝑐 − 𝑇𝑎)௎௅ − (𝑇𝑐 − 𝑇𝑎)௅௅
  

The canopy / air temperature differential in a canopy transpiring at its maximum rate for a 

given VPD is given by the lower limit (𝑇𝑐 − 𝑇𝑎)LL, whereas the upper limit (𝑇𝑐 − 𝑇𝑎)𝑈𝐿 

represents the same for a canopy where transpiration is zero. Here I adopted (𝑇𝑐 − 𝑇𝑎)LL 

defined by Idso (1982) and used by Gonzalez-Dugo et al. (2015) in studies of wheat in arid 

conditions. 

Eqn. 3 

 (Tc − Ta)LL = −3.25·VPD + 3.38  
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Fig. 3.6. Wheat fields in CZ1, 2019–2020, with soil types a), false-colour hyperspectral 
image (R = 775 nm, G = 710 nm, B = 678 nm; b), canopy temperature in Kelvin (c) and 
fields showing regions of interest (ROI) and areas excluded from analyses (d). 

3.4.5. Performance metrics 

Coefficient of determination (R2) and root mean square error (RMSE) were used as primary 

model performance metrics. R2 expresses the proportion of change in one variable is 

explained by change in another; a measure of correlation, in the current case between 

predicted and observed values of GPC. RMSE, a measure of model error, was calculated 

according to equation 4: 

𝑅𝑀𝑆𝐸 = ඨ
∑(𝑃௜ − 𝑂௜)

𝑛
  

where Pi is the predicted value of the ith observation and Oi is the observed value for the ith 

observation. Both were calculated using the package caret (Kuhn, 2020) in R (R Core Team, 

2020), and RMSE was used to tune ML models. Relative RMSE (rRMSE) is also given for 
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GPC estimates and was calculated by dividing the RMSE by the range of the target variable. 

However, RMSE is chosen for emphasis below; this facilitates comparison with other studies 

because RMSE is in the units of the target variable, and because with respect to GPC, these 

are the units used by growers and at grain receival depots. Where ‘model skill’ is referred to 

below, this is considered to summarise both R2 and RMSE. 

3.5. Variance inflation factor analysis 

To exclude collinearity between potential machine learning (ML) model inputs and to reduce 

data dimensionality, each year’s airborne hyperspectral data were assessed by variance 

inflation factor analysis (VIF; R package fmsb; (Nakazawa, 2022)). Like other recent work, 

this study used VIF thresholds (t) of 5—10 (Akinwande et al., 2015; Magney et al., 2016a; 

Poblete et al., 2021; Zarco-Tejada et al., 2018). Multicollinear features were first excluded 

among the 88 NBHIs; those surviving (VIF < 5) then underwent a second VIF analysis, again 

at t = 5, in which all the inverted parameters Anth, Ca+b, Cx+c, Cm, Cw, LAI and LIDFa, plus 

CWSI and SIF, were forced inclusions. Indices retained after these analyses were then tested 

for their contribution to the ML model; those which did not improve GPC prediction in a 

small number of testing runs were discarded, and only EVINIR (hereafter ‘EVI’) and PRI were 

retained. These final, linearly independent features were categorised into ML input layers: 

physiological (Anth, Ca+b, Cx+c, SIF, PRI); structural (LAI, LIDFa); and thermal (CWSI). 

The 38 VIs calculated from S2 reflectance were also subjected to VIF analysis. Initially 

considering only data from the last image in each timeseries for each permutation of site, year 

and wheat type, VIF was applied first among all VIs, then with forced inclusion of inverted 

parameters plus, for CZ1 only where these were available, CWSI and SIF. No VI was kept at 

t = 5 in the second step; those kept at t = 10 ( 
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Table 3.6) were added stepwise as ML input features, to test for model skill improvements 

against otherwise equivalent models built only with inverted parameters. After this step, all 

S2 VIs were discarded because none substantially improved performance (R2 contributions of 

≤ 0.03 units). CWSI was excluded as collinear with the inverted parameter Cw. In contrast, 

SIF (CZ1 only) was independent of the inverted parameters and improved prediction, so was 

included. Inverted parameters only were then tested for multicollinearity among themselves, 

both along the timeseries and between features within dates. Minor collinearity was observed 

at t = 5 between like inverted traits from images captured less than 14 days apart but was 

allowed to persist so that feature importance dynamics along timeseries could be assessed. 

3.6. Machine learning procedures 

The gradient boosted machine (GBM) algorithm is asserted in the literature to accurately 

model complex, nonlinear relationships between numerous input features and a single target 

variable, notably with regard to wheat yield (Cao et al., 2020; Cheng et al., 2022; Ruan et al., 

2022) but also in other fields of research. To test such claims in the current context, the GBM 

was assessed for its performance estimating GPC from plant traits: 12 different MLRAs were 

tested in parallel using the R package tidymodels (Kuhn and Wickham, 2020). For these tests, 

a diverse range of ML techniques (Table 3.7) was applied to subsets of GPC observations 

from commercial crops.  
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Table 3.7. Machine learning regression algorithms tested to establish relative 
performance in estimation of grain protein content from airborne hyperspectral and 
thermal plant traits in bread wheat crops in CZ1, 2020. 

algorithm name abbreviation 
gain 

assessment 
R 

package 
reference 

artificial neural network ANN no nnet Ripley (2023) 

classification and regression trees CART no 
rpart 

Therneau and Atkinson 
(2023) 

bagged classification and regression trees CART (bagged) no 

cubist cubist no Cubist Kuhn et al. (2023) 

gradient boosting machine GBM yes xgboost Chen et al. (2021) 

K nearest neighbours KNN no 
kknn Schliep et al. (2016) 

full quadratic K nearest neighbours quad. KNN no 

quadratic linear regression model quad. LM no glmnet Friedman et al. (2010) 

multivariate adaptive regression splines MARS no earth Milborrow (2023) 

random forest RF yes ranger 
Wright and Ziegler 
(2017) 

polynomial support vector machine SVM (poly) no 
kernlab Karatzoglou et al. (2004) 

radial support vector machine SVM (radial) no 

 

Hyperspectral and thermal traits found through VIF analysis to be both linearly independent 

and robust across years were used as input features. The GBM was found to be consistently 

among the top-performing candidate algorithms as assessed by R2 and RMSE (Fig. 3.7). 

Overall, its performance across combinations site, year and wheat types was stable and 

sufficient to justify its choice as the single MLRA on which to focus.  
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Fig. 3.7. Performance of machine learning algorithms in estimation of grain protein 
content from airborne hyperspectral and thermal plant traits in bread wheat crops at 
CZ1 in 2020. Several lower-performing algorithms are removed to allow zooming to 
more relevant ones, and to distinguish between the gradient boosting machine 
(“boosting”) and RF. 

In view of these results, and the capacity of the GBM to estimate the model gain 

contributions of its input features, this algorithm was applied to estimate, through supervised 

learning, relationships between leaf and canopy traits retrieved from hyperspectral and 

multispectral reflectance and the target variable, GPC. The primary focus was to assess input 

features’ relative importance in GPC prediction (Chen and Guestrin, 2016), and secondarily 

to assess prediction accuracy in samples unseen during algorithm training. For the latter 

purpose, data were randomly split 70:30 into training and test sets for each run (Hunt et al., 

2019; Wu et al., 2021). 
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Stochastic gradient descent (SGD) reduces the likelihood of overfitting by training models on 

random subsets of observations, introducing noise (Friedman, 2002). Here, SGD was 

implemented by training models on either 65% or 85% of rows, whereas all columns were 

considered in every run to prevent gain leakage. In addition to SGD, learning rate, tree depth 

and minimum node size were varied, with full factorial hyperparameter searching. 

Randomised K-fold cross-validation (K = 5) was also implemented as further protection 

against overfitting. In the tuning phase, the hyperparameter combination that minimised 

RMSE of prediction was adopted as the top model for each training set, then applied to 

predict test set GPC one final time. Data analysis and ML were done in R (R Core Team, 

2020) using the xgboost (Chen et al., 2021) and caret (Kuhn, 2020) packages for gradient 

boosting and model tuning. 

Table 3.8. xgboost hyperparameters (Chen et al., 2021) and values used to model grain 
protein content from canopy traits retrieved from hyperspectral and Sentinel-2 imagery 
in a gradient boosted machine. Values in italics were used for tuning and testing only.  

hyperparameter Name Description/behaviour Values used 
eta  learning rate 

/ shrinkage 
Lower values increase robustness, increase 
run time 

0.01, 0.025, 0.1, 0.25 

max_depth maximum 
tree depth 

Higher values increase tree complexity, the 
likelihood of overfitting, and the run time 

3, 4, 5, 6 

min_child_weight minimum 
child weight 
/ node size 

Minimum sum of observation weights in a 
child. Lower values produce leaf nodes with 
fewer children; higher values reduce 
overfitting and increase run time but can also 
cause underfitting if too high. 

1, 3, 5, 7 

subsample subsample 
ratio of 
instances 

Proportion of training data (observations) 
sampled. Lower values reduce model 
complexity and introduce stochastic 
variability, reducing the risk of overfitting. 

0.65, 0.8, 1 

colsample_bytree subsample 
ratio of 
columns 

Proportion of training data (features) included. 
Lower values reduce model complexity and 
introduce stochastic variability but can affect 
feature importances. 

0.8, 0.9, 1 

 

Within each of hyperspectral and S2 datasets, the algorithm was run for each combination of 

zone, year and wheat type. The three hyperspectral models, comprising physiological + 
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structural + thermal (Model 1); physiological + structural (Model 2); and physiological inputs 

only (Model 3) were assessed separately for each of these combinations.  

Regarding S2 traits, the GBM was first run for each site/year/product combination, using as 

inputs only the plant traits inverted from the image closest to the hyperspectral flight date, in 

each case the last of the timeseries. In the case of CZ1, airborne SIF was available for the end 

of the season and was added facultatively to assess its potential to improve model 

performance. Next, traits from each image capture date were analysed in turn, whereby the 

input feature set contained only Ca+b, Cm, Cw and LAI retrieved from the single relevant 

image. Finally, we combined the timeseries such that each permutation of inverted parameter 

and image date was used as an individual input feature, disregarding minor collinearity in the 

temporal dimension between inverted parameters. Thus, trait importance dynamics and skill 

were comprehensively assessed through seasons, first with TS elements as separate models, 

then additively stacking them within site-years to form single predictive models. 
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4. Results 

This chapter contains included material from: 

Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop 

traits retrieved from airborne hyperspectral and thermal remote sensing imagery to predict 

wheat grain protein content. ISPRS Journal of Photogrammetry and Remote Sensing 193, 

284–298. https://doi.org/10.1016/j.isprsjprs.2022.09.015 

Longmire, A.R., Poblete, T., Hornero, A., Chen, D., Zarco-Tejada, P.J., (accepted 2023-10-27). 

Estimation of grain protein content in commercial bread and durum wheat fields via traits 

inverted by radiative transfer modelling from Sentinel-2 timeseries. ISPRS Journal of 

Photogrammetry and Remote Sensing. 

― 

4.1. Plot experiments 

Both experimental sites had rainfall substantially below average in 2019, and this was seen in 

crop performance and GPC. Although growing season rainfall (GSR) was only 65% of long-

term AAR at experimental site 1 (ES1), these plots started with good soil moisture remaining 

from heavy falls in the summer of 2018-2019 and were in good condition at the time of 

concurrent field work and remote sensing. Experimental site 2 (ES2) was more severely 

droughted: GSR was only 54% of AAR and starting soil moisture was very low. By the time 

of data collection, ES2 plots were under severe water stress, with visible signs of premature 

senescence. Combined with soil moisture conditions, the treatments applied at the two 

experimental sites produced strong GPC gradients, parallel with fertiliser dosing. The two 

sites were sown to the same cultivar, but GPC was in a higher range at ES2, reaching 14.9 % 

while the maximum at ES1 was < 12 % (Fig. 4.1, Fig. 4.2c-f). The ES2 GPC response also 

saturated at heavy N applications, and at the highest level of 184 kg.N ha-1 was lower than the 

next highest N treatment (Fig. 4.1, Fig. 4.2c, f).  
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Fig. 4.1. Plots at ES1 (a) and ES2 (b) with treatment (left of plots) and GPC (%, in 
italics; right of plots) over false-colour hyperspectral image (R = 749 nm, G = 710 nm, 
B = 678 nm. Colours represent treatments (kg.N/ ha): B0 = 0, B1 = 30 – 37, B2 = 98 – 
104, B3 = 162 – 171; Y0 = 0, Y1 = 46, Y2 = 92, Y3 = 138, Y4 = 184. 

 

The leaf-level reflectance indices NPCI, VOG1, ZMI, R920/R729 and PRIm3 increased with 

fertiliser N availability at both sites (Fig. 4.2a, d). This trend, parallel with GPC, was distinct 

at ES1 but was less distinct and showed saturation at ES2. Indices derived from airborne 

images also showed strong responses to fertiliser rate at ES1, but weaker responses at the 

water stressed ES2 (Fig. 4.2b, e). The CI, PRIm4 and, as at leaf level, R920/R729 responded 

to fertiliser N more strongly at the unstressed ES1. The responses of structural indices NDVI 
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and EVI also followed the N gradient but saturated after the first treatment level at ES2 and 

after the second at ES1. Dualex Ca+b and Nitrogen Balance Index (NBI) were similar between 

ES1 and ES2, though with higher absolute readings at ES1. In each case, these were 

positively associated with GPC; Dualex Anth was instead inverted against GPC. Leaf N from 

Dumas combustion generally increased parallel with N treatment at both sites but, in contrast 

to Ca+b and NBI at the same site, declined in treatments Y4 and Y5. Across sites and 

observation levels, there was close agreement between leaf level PRIm3 and canopy PRIm4, 

with leaf level readings lower at both sites (Fig. 4.2a, d.). Such similarities were also seen 

between leaf- and canopy levels, and across sites, in R920/R729. Each version of the PRIm* 

followed GPC and leaf N from both optical and destructive methods. 
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Fig. 4.2. Vegetation indices at leaf (a, d) and canopy level (b, e) and ground-truth 
indicators (c, f) by treatment at ES1 (upper) and ES2 (lower). At ES1, n = 20 for ground 
observations (a) and n = 36 for airborne indices (c); at ES2, n = 19. Anth, Ca+b and NBI 
in Dualex proprietary units; leaf N in mg.N/cm2. 
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Parameters retrieved by PRO4SAIL inversion from airborne HS data were generally aligned 

with those from proximal spectroscopy and destructive sampling (Fig. 4.3). Increases along 

the nutrient gradient in inverted HS Ca+b aligned with those seen in Dualex Ca+b, and these 

two measures were significantly correlated (R2 = 0.61, p < 0.0001). Ca+b from both sources 

was also parallel with GPC across both sites, though with some saturation at higher N rates at 

ES2, where Ca+b concentrations were also in a lower range (Fig. 4.3a, b). Despite saturating 

after one treatment level, Cx+c also followed N rate, parallel to GPC at ES2 but not at ES1. 

Airborne inverted Anth trended higher with N treatment only at ES1, where they were also in 

higher concentration overall, but like Dualex Anth at both sites (Fig. 4.2c, f), the Anth~GPC 

relationship was reversed at ES2. Inverted LAI was similar to inverted Anth, in that it 

increased with N treatment at ES1, but declined at ES2, where LAI values were also very 

high and showed saturation. This very high foliage density was also visually evident. No 

treatment response was evident in SIF at ES1, while at ES2 SIF reduced, against GPC, with 

higher N. The range of CWSI was higher at the severely stressed ES2 site. At ES1, the 

following relationships were statistically significant: Anth (R = 0.61, p < 0.01), Ca+b (R = 

0.63, p < 0.01) and CWSI (R = -0.52, p < 0.05). At ES2 these were: Anth (R = -0.62, p < 

0.01) and LAI (R = -0.55, p < 0.05). 
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Fig. 4.3. Chlorophyll, Carotenes, Anthocyanins and LAI (Ca+b, Cx+c, Anth; μg/cm2, LAI; 
m2/m2), retrieved by radiative transfer model inversion, plus solar-induced fluorescence 
(SIF; mW/m2/ sr/nm) and crop water stress index (CWSI) from airborne hyperspectral 
and thermal data at ES1 (a; n = 36) ES2 (b; n = 19). 

  



97 
 

4.2. Field transect 

The M01 crop retained soil moisture during RS campaigns, conducted 1592 GDDAS, but 

despite this later time in the crop cycle, plants had not senesced as much as those in the ES2 

plots (images captured 1409 GDDAS at ES1 and 1559 GDDAS at ES2). GPC at the transect 

was in a range intermediate between ES1 and ES2, and K-means clustering (K = 3) based on 

GPC produced class separation adequate for analysis of relationships between retrieved leaf 

and canopy quantities (Fig. 4.4). Dualex NBI showed a markedly similar trend to GPC, as did 

soil mineral N from Dumas combustion of sampled topsoil (Fig. 4.4d). At leaf level, VOG1, 

ZMI, R920/R729 and PRIm3 trended with GPC, showing some saturation, while NPCI showed 

little association (Fig. 4.4a). Canopy level NDVI, EVI, CI, R920/R729 and PRIm4 calculated 

from airborne data all trended with GPC (Fig. 4.4b). As in the plot studies, the two PRIm* 

versions agreed across observational scales, while the structural NDVI and EVI were also 

aligned with GPC. Regarding terminal drought, conditions in the sample field appeared 

intermediate between the plot sites, and this was confirmed by Cw and CWSI values. Among 

parameters inverted from airborne HS data, Ca+b were negatively associated with GPC, while 

Cx+c and Anth had positive relationships with GPC (Fig. 4.4c). In common with plot studies, 

CWSI, Cw and SIF (not shown) showed no relationship with GPC, but the ranges of both 

CWSI and Cw were intermediate between the plot sites. 
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Fig. 4.4. Leaf-level (a) and airborne (b) reflectance indices; Chlorophyll, Carotenes, and 
Anthocyanins (Ca+b, Cx+c, Anth; μg/cm2), retrieved by radiative transfer model inversion 
(c) and ground-truth indicators Dualex Nitrogen Balance Index (NBI), soil N (mg/kg; 
d), and grain protein content (GPC; %; d) by GPC-based k-means clusters in a transect 
of commercial wheat field M01 (n = 20). 
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4.3. Commercial crops 

4.3.1. Growing conditions and GPC 

In copping zone 1 (CZ1), this study incorporates both durum and bread wheat cultivars, while 

only bread wheat was sown in CZ2 during the period of study. Hyperspectral data were 

collected in CZ1 only. Growing conditions differed substantially between the two years, 

strongly affecting the commercial crops at both locations. Both total and growing season 

rainfall were extremely low in 2019, in CZ1-19, in the lowest decile of long-term AAR 

records (280 mm) while CZ1-20 was at the long-term average (444 mm) and GSR reached 

almost 300 mm. Moreover, rainfall accumulated in the relevant pre-season (December 

2018—May 2019 was also low (87 mm) compared to the subsequent equivalent period (164 

mm) in CZ1. In CZ2 also, both total and growing season rainfall were extremely low in 2019 

while in 2020 they were close to long-term averages ( 

Table 2.1). Hyperspectral RS campaigns took place 1514 GDDAS (bread wheat) and 1736 

GDDAS (durum) in 2019 when crops were under severe terminal water stress. In 2020, HS 

data capture was done 1592 GDDAS (bread wheat) and 1742 GDDAS (durum). Around 

anthesis 2019 in CZ1, conditions changed suddenly: frost (≈˗ 4 °C) was observed on 9 

October, and maxima of > 35°C were recorded on several days later in the same month. As 

detailed in the theoretical basis to this work, such a contrast in moisture conditions can have 

large and varied effects on grain protein. Descriptive statistics for GPC across all 

combinations of years, zones and wheat types are given in Table 4.1. 

  



100 
 

 

Table 4.1. Statistical summary of commercial zone / year / wheat type combinations. 

   GPC 

Zone Year Wheat type Obs (n) Mean SD Median IQR 
1 2019 bread 7114 11.63 1.52 11.20 2.66 

durum 5013 11.85 1.18 11.84 1.46 
2020 bread 8075 11.90 0.97 11.91 1.26 

durum 9541 12.81 0.93 12.84 1.22 
2 2020 bread 13976 10.59 2.49 10.70 3.67 

bread 18650 11.54 1.05 11.46 1.27 

 

Wilcoxon tests (Bauer, 1972) showed differences in GPC between all zone/year/product 

combinations; while at the scale of cropping zones, effect sizes were small to moderate, 

differences were highly statistically significant (Table 4.2). Significant differences were also 

seen when wheat products were compared between seasons. Bread wheat GPC was higher in 

2019 (mean = 11.6, SD = 1.52) than 2020 (mean = 11.3, SD = 1.05; Wilcoxon’s p < 0.0001, 

effect size r = 0.489). Mean durum wheat GPC was higher in 2020 (mean = 12.7, SD = 0.94) 

than in 2019 (mean = 11.9, SD = 1.18; Wilcoxon’s p < 0.0001, r = 0.360). GPC was 

significantly higher in durum than bread wheat in each year also (2019: p < 0.0001, r = 0.112; 

2020: p < 0.0001, r = 0.564). In a subset of the data, hyperspectral PRO4SAIL Ca+b and CI 

were strongly and significantly correlated (R2 = 0.86, p < 0.0001). 

Table 4.2. Wilcoxon test statistics for all commercial zone / year / wheat type 
combinations. 

comparator 1   comparator 2   effect 

zone year wheat 
obs 
(n) 

 zone year wheat 
obs 
(n) 

 size desc. p-value sig. 

1 2019 bread 7114 
 

1 2019 durum 5013  0.111 small 1.19E-34 ****  
2020 bread 8075  0.136 small 1.76E-63 ****  

2 2019 13976  0.200 small 2.22E-185 ****  
2020 18650  0.021 small 6.01E-04 *** 

durum 5013  
1 2020 durum 9541 

 
0.406 mod. 0 **** 

2020 bread 8075 
  

0.438 mod. 0 ****  
2 2019 bread 13976  0.289 small 0 ****  

2020 18650 
 

0.183 small 1.56E-197 **** 

2 2019 bread 13976     0.207 small 1.28E-305 **** 



101 
 

Substantial differences in GPC were also seen both within and between fields for each site, 

zone and wheat type, often over short distances (Fig. 4.5, Fig. 4.6). Dune-swale morphology 

in CZ2 is also evident in the Sentinel-2 RGB sections of Fig. 4.6b. 

 
Fig. 4.5 Spatial variability in grain protein content (GPC; %) in bread (a—c) and 
durum wheat (d—f) fields in CZ1, 2020. 
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Fig. 4.6. Spatial variability in grain protein content (GPC; %) in wheat fields in CZ1 (a) 
and CZ2 (b) displayed on Sentinel-2 images (R = band 2, G = band 3, B = band 4). 

 

4.3.2. Variance inflation factor analysis 

Of the 88 HS reflectance indices tested, only EVI and PRI were selected after VIF and 

proved robust across both years of the study; they were therefore retained as ML input 

features. EVI and PRI were both also correlated with GPC at plot scale. When VIF was 

applied to S2 features, within the respective single final image capture dates and with 

inverted parameters forcibly retained, all 38 VIs were excluded in every site/year/wheat type 

permutation, either because of multicollinearity with at least one inverted parameter or 

because they did not add model skill. VIF, therefore, removed only redundant features and 

with only minor effects on model performance; Sentinel-2 VIs were hence not further 

considered in analyses. Neither CWSI nor SIF can be calculated from S2 data; for CZ1 these 

were taken from airborne RS. CWSI was also excluded, but SIF retained, at VIF threshold 
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t = 10, so was included in later analyses. Regarding timeseries, S2 inverted plant traits from 

each date per season were treated as separate entities, and the entire set subjected to 

independent VIF tests in two modes: i) across traits, within dates and ii) across dates, within 

traits. In these analyses, no feature was removed by test ii) that wasn’t also removed by test 

i), so test 1 outputs were retained. Minor multicollinearity (t = 10) between like plant traits in 

consecutive images was tolerated in order to inspect trait dynamics through time. 

4.3.3. Crop-scale airborne hyperspectral indices, CWSI and SIF 

Thermal and HS traits estimated on a single date for each GPC point demonstrated distinct 

and sometimes wide variability at within-field scale for both bread and durum wheat, spatial 

associations between traits, and variability in these spatial associations. Two study fields 

from images captured in CZ1-19 are shown in Fig. 4.7. In bread wheat, high Anth, SIF, Cx+c 

and, to a lesser extent, PRI were associated with relatively low CWSI, while Ca+b appeared 

relatively weakly associated with areas of greatest stress (Fig. 4.7a). Durum wheat underwent 

less severe water stress; higher Cx+c, PRI and SIF were associated with areas of low water 

stress, while Anth and Ca+b showed a positive spatial association with stress; again, the 

Ca+b~CWSI association was relatively weak (Fig. 4.7b). 
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Fig. 4.7. Spatial variability in anthocyanins (Anth), chlorophyll (Ca+b), carotenes (Cx+c), 
crop water stress index (CWSI), photochemical reflectance index (PRI), and solar-
induced fluorescence (SIF) retrieved from hyperspectral and thermal images captured 
over fields sown to bread (a; n = 2242) and durum (b; n = 2017) wheat in CZ1, 2019. 

Trait density distributions (Fig. 4.8) further clarify the differences in water stress undergone 

at the same two fields, one bread and one durum wheat, in the same year (2019) and despite 

their proximity (~10 km) and similar planting dates. Bimodal distributions were common in 

retrieved hyperspectral traits across the study and were seen in CWSI for bread wheat and in 

Cx+c and PRI for durum wheat in the current example (Fig. 4.8).  
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Fig. 4.8. Frequency distribution of anthocyanins (Anth), chlorophyll (Ca+b), carotenes 
(Cx+c), crop water stress index (CWSI), photochemical reflectance index (PRI), and 
solar-induced fluorescence (SIF) retrieved from hyperspectral and thermal images 
captured over example fields sown to bread (n = 2242) and durum (n = 2017) wheat in 
CZ1, 2019. Violin plots show data distribution, white circle = mean, red cross = median. 
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4.3.4. Crop-scale Sentinel-2 radiative transfer modelling 

Trait estimations for each GPC point across seasonal timeseries showed seasonal progression 

and spatial heterogeneity across site/year/wheat type combinations. Example fields from 

CZ1-19 are plotted to map traits over time for bread wheat (Fig. 4.9) and to show progression 

with phenological advance, relationships between traits and density distributions within trait 

and stage combinations in durum (Fig. 4.10). 

 

Fig. 4.9. Spatial variability in chlorophyll (Ca+b; μg/cm2; a), leaf dry matter (Cm; g/cm2; 
b), leaf water content (Cw; g/cm2; c) and leaf area index (LAI; m2/m2; d) retrieved by 
radiative transfer model inversion from Sentinel-2 image timeseries captured over a 
field sown to bread wheat in CZ1, 2019 (n = 4897). Plots arranged by Zadoks (Z) 
growth stage from top down. 
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Fig. 4.10. Frequency distribution of chlorophyll (Ca+b), leaf dry matter (Cm), leaf water 
content (Cw) and leaf area index (LAI) retrieved by radiative transfer model inversion 
from Sentinel-2 image timeseries captured over a field sown to durum wheat in CZ1, 
2019 (n = 782). Violin plots show data distribution within Zadoks (Z) growth stage; 
white circle = mean, red cross = median. 

 

4.3.5. Hyperspectral feature importance 

The relative importance to GPC estimation of plant traits retrieved from airborne HS data was 

quantified for input layers comprising: (i) physiological indicators Anth, Ca+b and Cx+c from 
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model inversion, SIF and the photochemical reflectance index (PRI); (ii) structural indicators 

EVI, LAI and LIDFa; and (iii) the thermal-based CWSI. These inputs were supplied to the 

GBM algorithm as separate models: physiological + structural + CWSI (Model 1); 

physiological + structural (Model 2); physiological (Model 3). 

The thermal CWSI contributed 69% of total information to model 1 in moisture-stressed 

bread wheat in 2019. The structural reflectance index EVI contributed 13% and the rest was 

split among other physiological and structural features. Chlorophyll was of minor importance 

(Fig. 4.11a). In unstressed 2020 bread wheat crops, the same model showed more even gain 

distribution, in which carotenoids (Cx+c) brought > 20% of total gain and CWSI was second 

but contributed only marginally more than any other single component. In the stressed 2019 

bread crops, LAI then Cx+c contributed most to model 2, which lacked CWSI, while Cx+c 

maintained high importance in model 3, below Ca+b under stress but substantially more 

important in milder conditions. In bread wheat, 2020, Cx+c was the most important 

component regardless of model, accumulating proportional importance as thermal then 

structural features were removed (Fig. 4.11a-c). Anth were not prominent components of 

model 1 but were grouped with the remaining physiological features in both wheat types. 

Where model 1 was used for durum wheat GPC, CWSI was consistently important across the 

two study years, although all nine inputs shared importance in a range closely clustered 

around 9—14 % (Fig. 4.11d). Also in durum, SIF ranked highly in both years and all models 

and where CWSI was absent, SIF was the largest contributor while all components were 

again in a tight range. In 2020 durum, SIF was quasi-equivalent to PRI and Cx+c and was top 

ranked in durum models 2 and 3. The structural EVI, LAI and LIDFa were grouped in the 

lower ranks of importance to 2019 durum. In model 2, importance was evenly distributed and 

ordinal rankings were largely stable across inputs and years (Fig. 4.11e): SIF consistently 

contributed the most gain and the structural components lowest. Anth and Ca+b ranked highly 
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in 2019 but somewhat lower in 2020, when PRI and Cx+c were relatively higher; nevertheless, 

these physiological elements remained closely grouped in all models (Fig. 4.11d-f).  

 

Fig. 4.11. Relative importance (proportion) of input features to a gradient boosting 
machine estimating grain protein content in commercial bread (a, b, c) and durum 
wheat (d, e, f) fields in CZ1, 2019–2020. Three models are shown: physiological + 
structural + CWSI (model 1; a, d); physiological + structural (model 2; b, e); 
physiological (model 3; c, f). Each sub-figure represents 2019 (left; bread n = 7213, 
durum n = 5030) and 2020 (right; bread n = 11060, durum n = 17310). Error bars show 
standard deviation of the mean proportional importance over 80 runs. 
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4.3.6. Sentinel-2 feature importance 

Sentinel-2 plant trait importance results are presented in separate sections, first with a survey 

of S2 traits and comparisons against hyperspectral traits, then models constructed with plant 

traits from individual timeseries images, and finally models containing traits from the entire 

TS. Models were first built with traits from single cloud-free S2 images acquired on dates as 

close as possible to the airborne HS missions; for 2019, this was the day after the HS mission, 

while in 2020 the closest available was 18 days earlier. Fluorescence was facultatively added 

to each CZ1 model. Overall, relative S2 feature importance mirrored hyperspectral 

importance across conditions and wheat types and remained stable when SIF was added. The 

S2~hyperspectral similarity is marked when the traits are grouped by indicator type: S2-

derived Ca+b occupied similar importance ranks as hyperspectral Ca+b, Cx+c and PRI; the 

structural indicators S2 Cm and hyperspectral EVI are well-aligned, as are LAI (S2) with 

hyperspectral LAI and LIDFa and Cw with CWSI (Fig. 4.12). 

Leaf water thickness (Cw) dominated model gain in the severe water stress of 2019 CZ1 

bread wheat. By contrast in 2020 importance was spread evenly in a tight range (26—27 %) 

for each of Ca+b, Cw and Cm, while LAI was less important (Fig. 4.12a) in each year. In durum 

wheat, (CZ1-19), importance was evenly spread between plant traits, with marginal 

differences in the order Cw > Ca+b > Cm, and in 2020 durum, feature importance was shared 

very evenly (Fig. 4.12b). In CZ2, where only bread wheat was grown, Ca+b was most 

important in 2019, with Cm and Cw intermediate and LAI lowest. In CZ2-20, Cw took > 40% 

of importance, with the remainder spread evenly between Ca+b, LAI and Cm. Airborne SIF 

added to S2 traits in 2019 bread wheat took low importance and did not disrupt feature order 

relative to the model without SIF, while in 2020 SIF provided gain approximately equal to Cw 

and other traits and greater than LAI, but importance remained distributed as it was without 

SIF, with no change to ranking (Fig. 4.12c). For 2019 durum wheat, SIF contributed 
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marginally more gain than Cw but, similarly, features’ relative magnitude was otherwise 

unchanged, while SIF became the most important in 2020 durum while other features were 

approximately equal (Fig. 4.12d).  

 
Fig. 4.12. Relative importance (proportion) of input features to a gradient boosting 
machine estimating grain protein content in commercial bread (a, c) and durum wheat 
(b, d) grown in CZ1, 2019–2020. On brown background: traits retrieved by radiative 
transfer model inversion from single Sentinel-2 images: chlorophyll (Ca+b), leaf dry 
matter (Cm), leaf water content (Cw) and leaf area index (LAI), ± solar induced 
fluorescence (SIF; airborne). On blue background: vegetation indices EVI and PRI, 
inverted anthocyanins (Anth), Ca+b, carotenes (Cx+c), LAI and leaf inclination (LIDFa) 
from airborne hyperspectral images, plus airborne crop water stress index (CWSI). 



112 
 

For each combination of site, year and wheat type, separate ML models were built with traits 

retrieved from each image of the S2 timeseries. Within each model, represented by a separate 

horizontal sub-panel and marked with its Zadoks growth stage (Z) in Fig. 4.13, feature 

importance sums to 1. Empty sub-panels represent Z stages where cloud-free images were 

available in only one of the years. LAI was the dominant feature in each model from Z15 

(five-leaf seedling) until Z43 (booting) in the 2019 CZ1 bread wheat crops. While Cw became 

predominant in the model based on images from near anthesis (Z69), neither Cm nor Ca+b 

contributed significant gain at any time (Fig. 4.13). In the benign 2020 season, and in both 

years’ durum crops, gain was distributed among traits in each consecutive model, changing 

little and without a clear pattern through the season. In CZ2-19, where images were available 

from Z17 to Z54 (mid-ear emergence), Ca+b was consistently though marginally the more 

important feature, and LAI was consistently the least important, while in 2020 the gain 

contributed by Cw increased from ~35 % early in the season to > 50 % at Z42, the last image 

capture date. 
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Fig. 4.13. Relative importance (proportion) of input features to a gradient boosting 
machine (GBM) estimating grain protein content in commercial bread (a) and durum 
wheat (b), CZ1, 2019–2020. Chlorophyll (Ca+b), leaf dry matter (Cm), leaf water content 
(Cw) and leaf area index (LAI) inverted from Sentinel-2 image timeseries were used as 
separate GBM training feature sets. Importance sums to 1 within year/stage 
combinations. Image dates by Zadoks (Z) growth stage from top down. 

In addition to treating plant traits from each image in a given combination of site, year and 

wheat type as input features to separate models, ML models were built with all traits retrieved 

from each entire S2 timeseries. In this instance, each sub-panel in Fig. 4.14 represents a trait 

in timeseries with the relevant Z stages on the y-axis and feature importance summing to 1 

through the site / year / wheat type. Absent bars again represent an absence of cloud-free 

images. This modelling approach revealed patterns of feature importance consistent with 

those in individual image models: for bread wheat, high LAI importance early in 2019, 

switching to Cw after anthesis, and a minor emphasis on early- to mid-season LAI in 2020, 

and importance evenly distributed between traits and stages in other situations (Fig. 4.14). In 

CZ2, 2019, Ca+b estimated at early stem elongation (Z31) contributed 17 %, and Cm from a 
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similar stage 14 %, of total gain. The 2020 season in CZ2 had Cw at Z42 as the sole major 

gain contributor for GPC estimation; no other feature reached importance > 10 %. 

 

 
Fig. 4.14. Relative importance (proportion) of input features to a gradient boosting 
machine (GBM) estimating grain protein content in commercial bread (a) and durum 
wheat (b), CZ1, 2019–2020. Chlorophyll (Ca+b), leaf dry matter (Cm), leaf water content 
(Cw) and leaf area index (LAI) inverted from Sentinel-2 image timeseries were used 
together as a single GBM training feature set. Importance sums to 1 within years. 
Features arranged by Zadoks (Z) growth stage from top down, within plant trait 
category. 

 

4.4. Model predictive skill 

4.4.1. Hyperspectral models 

For models built with airborne hyperspectral and thermal traits, mean skill in GPC prediction 

over 80 runs per model was assessed for each combination of site, year, product and input 

layer. Predictions of GPC were made for a randomly sampled 30% of observations not used 

to train the algorithm (the ‘unseen’ sample). Coefficient of determination (R2) was used to 

assess pred~obs correlations, and RMSE (% GPC); Table 4.3) to assess model error. In all 

cases, the more information was provided to the model, the better the predictions: Model 1, 
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with physiological, structural and thermal inputs, performed better than models 2 and 3. The 

best predictions were in the 2019 bread wheat crop (R2 = 0.80, RMSE = 0.62), when CWSI 

contributed a mean 69% of total predictive power; this year and crop also had the best 

predictions under models 2 and 3. In lower water stress, the proportional contribution of 

CWSI to the accuracy of models in which it was included was lower, and that of the tested 

physiological variables higher (Table 4.3). Although the individual importance of the 

structural components LAI, LIDFa and EVI was generally low, when added to the 

physiological layer they collectively increased model skill by between 11—21% and reduced 

error more than CWSI in any year/product/model combination. 

Table 4.3. Predictive skill (R2, RMSE; %) for Model 1, built with physiological + 
structural + CWSI layers, Model 2 (physiological + structural) and Model 3 
(physiological only) across bread and durum wheat. Each model / product / year 
combination was run 80 times. 

Model 

Bread wheat Durum wheat 

2019 2020 2019 2020 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

1 0.8 0.62 0.54 0.66 0.54 0.81 0.49 0.67 
2 0.7 0.76 0.5 0.69 0.49 0.84 0.46 0.69 
3 0.57 0.91 0.39 0.76 0.43 0.9 0.37 0.75 

 

4.4.2. Sentinel-2 models 

Predictive skill results for models based on Sentinel-2 plant traits are presented in separate 

sections, dealing first with models built from single end-of-season images and their 

comparison with hyperspectral results, then those constructed with plant traits from 

individual images from the timeseries, and lastly models with traits from full timeseries.  

In parallel with results for HS ± CWSI detailed above, predictive skill for single-image S2 

models, with or without SIF, was best in CZ1-19 bread wheat. The S2 models predicted GPC 

better than HS models only in this combination of site, year, and product, and performed 
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substantially worse than HS in 2020 when conditions were more benign (Fig. 4.15). 

Augmentation of S2 traits with SIF, which was available only in CZ1, made only a minor 

difference in the dry conditions but improved prediction relatively more, from a lower base, 

in each other site/year/product combination (Fig. 4.15). Airborne SIF improved model skill 

most strongly in 2020 durum crops, when prediction based solely on S2 traits was poor. 

 

Fig. 4.15. Mean skill in wheat grain protein content estimation in commercial bread and 
durum wheat crops, CZ1, 2019–2020. Models comprise chlorophyll (Ca+b), leaf dry 
matter, leaf water content and leaf area index (LAI) inverted from single, late-season 
Sentinel-2 images, ± airborne fluorescence (SIF), and models comprising inverted 
anthocyanins, Ca+b, carotenes, LAI, and leaf angle plus vegetation indices EVI and PRI 
and SIF from airborne hyperspectral images, ± airborne crop water stress index. 
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The predictive skill of models built with traits from single successive images from the 

collected timeseries varied substantially in some seasons. Performance was high early in the 

CZ1-19 bread wheat season but diminished from late seedling stage (Z17) until Z69 when the 

last usable image was captured (Fig. 4.16). Although differences were relatively small, 

models based on traits from early phenology generally performed better than those built with 

mid-season traits, usually with a subsequent increase late in seasons. The 2020 season in CZ2 

lacked images past Z42, while images were obtained until at least Z51 in all other seasons. 

 

Fig. 4.16. Evolution through seasons of mean skill in wheat grain protein content 
estimation in commercial bread and durum wheat crops, CZ1, 2019–2020. Models 
comprise chlorophyll, leaf dry matter, leaf water content and leaf area index inverted 
from single Sentinel-2 images in a timeseries. Metrics are shown as a function of 
growing degree days after sowing (GDDAS) at image capture date. 

When predictive skill was compared between late-season single-image (base) models and 

those built from timeseries, the timeseries brought improvements in all site / year / wheat type 

combinations (Fig. 4.17). This included 2019 bread wheat, where base performance was 

already strong, but was emphatic in cases where the base model skill was lower. In two cases, 

CZ1-20 durum, and CZ2-20 bread wheat, the R2 of prediction was more than doubled with 

TS addition, although error was not similarly improved. 
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Fig. 4.17. Mean skill in wheat grain protein content estimation in commercial bread and 
durum wheat crops, CZ1 and CZ2, 2019–2020. Base models comprise chlorophyll, leaf 
dry matter, leaf water content and leaf area index inverted from single late-season 
Sentinel-2 images; timeseries (TS) models comprise the same traits retrieved from 5-6 
S2 images across the same season. 
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5. Discussion 

This chapter contains included material from: 

Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop 

traits retrieved from airborne hyperspectral and thermal remote sensing imagery to predict 

wheat grain protein content. ISPRS Journal of Photogrammetry and Remote Sensing 193, 

284–298. https://doi.org/10.1016/j.isprsjprs.2022.09.015 

Longmire, A.R., Poblete, T., Hornero, A., Chen, D., Zarco-Tejada, P.J., (accepted 2023-10-27). 

Estimation of grain protein content in commercial bread and durum wheat fields via traits 

inverted by radiative transfer modelling from Sentinel-2 timeseries. ISPRS Journal of 

Photogrammetry and Remote Sensing. 

― 

Grain protein content is a complex plant trait under genetic, environmental and management 

control (Zhao et al., 2019). Once a grower has selected a cultivar to be sown, when and with 

what initial fertiliser rates, decisions typically made in view of growing- and market 

conditions, and based on a mixture of experience, expert guidance and sometimes an 

algorithmic decision support, they may have little further possibility of influencing crop 

outcomes. This scenario is normal for wheat cropping in the areas considered in this study, 

where irrigation is never available, and rainfall is the predominant influence on yield and 

quality; such conditions represent a large majority of wheat cropping in Australia and are 

transferable to many locations worldwide. Hence for many wheat growers, possibilities of 

influencing harvest outcomes, and therefore optimising financial returns, through in-season 

interventions are limited to strategic N fertiliser applications, which will require calibration 

from year to year according to rainfall both to date and forecast. However, because of the 

inherent complexity, growers may have relatively little insight into soil variability within 

their fields and its likely effects on GPC. Moreover, the soil conditions with the largest 

potential to affect GPC, soil water and N supply may vary substantially on a scale of meters, 

interact, and are likely to grade into one another along a continuum from repleteness to stress 
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without distinct delineation. The fact that these relationships can themselves alter along 

seasons according to changing plant demands and soil conditions, and that they may not be 

consistent from year to year either, adds further complexity. 

The effects of substantial soil variability on GPC were observed in both the experimental 

plots and in each of the fields considered (e.g. Fig. 4.5, Fig. 4.6). For example, within each 

plot study, and therefore with minimal influence from natural soil conditions, GPC varied by 

3—4 %, sufficient to increase the quality grading of the wheat by at least two classes of the 

Australian Wheat Standards (GrainCorp Ltd., 2021). In single fields, GPC from < 9 % to > 

16 % was observed, a range greater than that between the minimum for Australian (soft) 

white noodle wheat and the minimum for Australian Premium Hard 1. At the date of writing 

this represented a range of AUD322—AUD385 per tonne paid at receival depots (Cargill 

Australia Ltd., 2023); at the yields attained in the same fields, a difference of > AUD150 / ha. 

These challenges present motives and opportunities to calibrate N inputs: strategic increases 

where a positive GPC response is likely, with reductions where none is expected. Moreover, 

it is known that GPC is more likely to respond to supplementary N at certain growth stages 

than at others. This adds to the challenge of GPC prediction but also motivates investigation 

of the temporal dynamics of plant trait effects on GPC. With better in-season DSS, tactical N 

applications could be calibrated in space, quantity and time to optimise GPC. Hence the 

objectives of this thesis: to make progress toward implementable PA algorithms capable of 

estimating GPC prior to harvest, by identifying plant traits and indicators related to GPC in 

bread and durum wheat, quantifying these traits’ and indicators’ relative importance to GPC 

estimation, and testing the fidelity of estimated against measured GPC. 
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5.1. Plot experiments 

Overall, GPC is influenced by the amount of protein available for translocation, the size of 

the protein sink, via grain count, and by late-season conditions affecting photosynthesis and 

phloem transport. Late in seasons, conditions unfavourable for CHO production and 

translocation tend to promote high GPC. From the plot studies, it was evident that relatively 

small increases in soil N can elicit a strong GPC signal, even where there was zero imposed 

difference in moisture levels and any natural difference in soil properties was accounted for 

in experimental design. In each location, the second and third N fertiliser increments/classes 

sat well within the normal range of full-season commercial applications for the relevant 

regions, and these increments produced distinct differences in GPC. This was likely 

compounded at ES2 by soil drying from high early biomass, which would have contributed to 

the observed saturation and reversal of the GPC response. These phenomena, and the large 

GPC signal from realistic increments in N nutrition, emphasise the potential for accurate 

fertiliser calibration to both increase and moderate GPC, depending on conditions. Moreover, 

they confirm that adjustment of fertiliser dosing can help to optimise GPC and reduce N 

losses.  

Overall, the results for experimental plots showed that associations between leaf Ca+b/N 

content, plant stress indicators and GPC were consistently stronger than those between 

structural measures and GPC. The close alignment of CI, VOG1 and ZMI with each of 

Dualex Ca+b and NBI at leaf level, inverted canopy Ca+b, and GPC is related to these 

indicators’ links to leaf N, as found previously (Ustin et al., 2009; Vogelmann et al., 1993; 

P.J. Zarco-Tejada et al., 2001), and to GPC (Li et al., 2020). While present at both locations, 

these associations were more pronounced at ES1 than at ES2. For example, VOG1 was 

strongly correlated with leaf N at site 1 and with Dualex Ca+b, NBI and GPC at both sites. 

This, and close associations between NPCI and leaf N, support other findings in wheat 
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(Ranjan et al., 2012). The NPCI was more closely associated with leaf N/Ca+b, for which it 

was conceived, than with GPC. Further, the combination of higher ranges of CI, VOG1, ZMI 

and airborne canopy Ca+b at site 1, suggest higher Ca+b accumulation there, a hypothesis 

supported by higher Dualex Ca+b but not by the lower leaf N from destructive sampling. In 

contrast, higher GPC at site 2, with lower CI, VOG1, ZMI and airborne Ca+b, may indicate 

that translocation was more advanced at ES2, driven by senescence. This latter hypothesis is 

also supported by the reduction in LAI along the N gradient at site 2. At site 1 only, and from 

airborne RS, the Ca+b- and pigment-focused VIs MTCI, SRPI and TGI were also moderately, 

though significantly, correlated with GPC, as were the structural or RGB-based MTCI, 

NGRDI, BRI2, VARI, and each of the R, G, and B indices (Table A1). 

At ES2, N supply at the upper treatment levels, imposed for experimental reasons but in 

anticipation of higher rainfall, manifestly exceeded plant requirements given the low starting 

soil moisture and very low eventual GSR. This excessive N nutrition is shown by the high 

LAI, which was extreme for Australian wheat (Waldner et al., 2019) and far exceeded the 

LAI recorded at ES1 (Fig. 4.3). Very high GPC in all treatments and declining LAI and leaf 

N, especially at high fertiliser rates, are further signs of excessive N at ES2 but were not seen 

at ES1 (Fig. 4.2, Fig. 4.3). While a greater GPC response to N fertiliser is expected when 

grain filling is water limited (Angus and Fischer, 1991; Holford et al., 1992), and this was 

seen in the comparison of the two sites, the GPC response at ES2 saturated at heavy N 

applications, and at the highest level was below the next highest N treatment. Site 2 was also 

more advanced in phenology at the time of flights and was visibly stressed; it is probable that 

little extractable soil moisture remained. This is witness to the ‘haying off’ phenomenon. The 

unusually high biomass, seen in the LAI values, is likely to have worsened water stress, 

further restricting late season plant N uptake, especially at the higher treatments, evidence for 

which is seen in declining leaf N in treatments Y3 and Y4 but conversely also contributed to 
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high GPC through its function as a large protein source. These phenomena were not seen in 

the more moderate moisture and calibrated N dosing of ES1. Besides causing actual 

reductions in leaf Ca+b/N, and hence indicators associated therewith, the extreme water stress 

at ES2 may also have accelerated senescence, further obscuring the spectroscopic signature 

of differential N rates and, by disrupting translocation, breaking the physiological link 

between leaf- and grain protein contents. Such earlier senescence and translocation of leaf 

proteins than at lower, and hence less water-stressed, treatment levels is a further explanation 

for lower leaf N, which was destructively sampled, in the site 2 high N treatments. Although 

no conclusive trend was seen in either inverted Cw or thermal CWSI at either site, the lower 

Cw and higher CWSI ranges at site 2 were in agreement; hence both leaf water content and 

canopy temperature broadly confirmed the soil moisture contrast between sites. While these 

observations were inconclusive regarding increased soil drying at higher N supply, they were 

also supported by the lower site 2 SIF, discussed below. 

The traits and indices discussed above, linked to GPC via leaf N / Ca+b content, are stable 

over days to weeks, because it is over such periods that Ca+b is stable in wheat (Hamblin et 

al., 2014), but PRIm3 and PRIm4 can show changes on much shorter timescales (Magney et 

al., 2016b). Given the stable weather, however, here the PRI likely shows a more stable 

condition of stress caused by droughting; again, as assessed by PRI, site 2 shows greater 

stress, with distinct saturation at high N treatments. Evidence for a physiological link 

between PRI and photosynthesis was seen, especially at site 2, in the marked alignment 

between PRI and GPC, via a clear inverse relationship between airborne SIF and GPC, and in 

lower overall SIF. SIF, in turn, declined at higher N, which adds evidence for greater drought 

stress in those treatments. Such findings accord with inverse PRI~SIF relationships reported 

previously (Magney et al., 2016; Peñuelas et al., 2011; Suárez et al., 2009) and show the 
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substantial potential of PRI to improve GPC estimation, as it provides a signal of constrained 

assimilation.  

Taken together, high GPC, the distinct alignment between PRIm3 and GPC, CWSI and SIF 

responses show strongly constrained assimilation at ES2 but not at ES1. This was also seen in 

the Cx+c response, which despite saturation was also associated with GPC at ES2 under severe 

stress, though not at site 1. However Cx+c also parallel leaf N and Ca+b, so their response may 

simply reflect N nutrition, as seen by Shah et al. (2017) in wheat. Cx+c should be higher under 

stress, but at the time of image capture, were lower at ES2. These lower values may indicate 

prior Cx+c remobilisation related to senescence: Low Ca+b values at site 2, compared with site 

1 and other work (Hamblin et al., 2014), and which, given the high LAI and recognised 

Ca+b:LAI relationship, would have been higher earlier in the year at that location, suggest that 

Ca+b declined before Cx+c (Gitelson and Merzlyak, 1994a, 1994b). Nevertheless, on evidence 

from the current studies, Cx+c are indicative of potential GPC, in severely droughted 

conditions as reliably as Ca+b and PRI. 

Given that Anth are upregulated under stress (Naing and Kim, 2021; Shoeva et al., 2017), 

and are known to accumulate in the wheat grain, increasingly from post-anthesis drought (X. 

Li et al., 2018), one may expect high Anth to correspond to high GPC. Some evidence was 

seen for this mechanism: at ES1, where inverted canopy Anth were aligned with both leaf N 

and GPC; in parallel, the airborne anthocyanin reflectance index ARI1 was also significantly 

correlated with GPC, at ES1 only. However, if Cx+c and Anth concentrations are understood 

to indicate stress, site 1 appears more stressed, but by all other measures it was not. As an 

alternative to presuming that elevated Anth in this case relate solely to elevated stress, and via 

this to GPC, which was not observed, it is possible that leaf Anth content instead shows only 

a positive response to N fertilisation, as recorded by Yamuangmorn et al. (2018) in rice.  
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Indeed, such hypothetical positive responses of both Cx+c and Anth simply to high N supply 

suggest more accessible soil N at site 1 due to higher soil moisture, while at ES2, strong 

declines in Anth at high N appear to confirm lower soil N accessibility at high N treatments 

and/or earlier senescence. Moreover despite showing some, though limited correlation with 

Ca+b in other work (Shah et al., 2019), here the range of each was higher at ES1 but showed 

no such association along treatment levels within either site. At site 2, similar Anth responses 

at leaf and canopy levels, and their reversal with respect to N treatment and GPC, suggest that 

like Ca+b and Cx+c, Anth translocation had begun before data collection, especially at high N 

and attributable to accelerated senescence. Based on these plot experiments, Anth show some 

association with GPC under mild water stress, but there is no evidence of such under severe 

stress. 

In toto, evidence from the current plot studies and relevant literature as cited allows the 

conclusion that Anth, Cx+c, and PRI are each associated with GPC via moderate to severe 

stress, although because of their intimate connection it remains difficult to separate the effects 

of N and moisture limitation. In some contrast to most of the physiological indicators 

discussed above, structural VIs NDVI and EVINIR showed generally inferior performance as 

GPC indicators; their relatively poor performance in stress assessment has been seen 

previously (Gamon et al., 1992; Peñuelas et al., 1994). Predictably, however, both saturated 

at higher N treatments, particularly under water stress, and showed relatively limited 

association with GPC. A weak relationship with GPC was also common among other 

structural and greenness VIs tested, including EVI2, gNDVI, the green-blue NDVI, MSAVI 

and RDVI. The consistency of the R920/R729 index with Ca+b, NBI, and GPC, likely due to its 

component bands’ sensitivity to water, structure and Ca+b, suggests it could be applied in 

GPC estimation.  
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5.2. Field transect 

The field transect was conceived in order to directly compare destructively sampled soil and 

crop quantities generated under commercial cropping conditions, and ground-level 

spectroscopic measures, with VIs and retrieved parameters from airborne RS. While the 

transect sample size was limited by practicalities of data collection, this segment of the 

project tested the degree to which results from the controlled environments of plot studies 

would translate to commercial growing environment. Unlike the plot experiments, the 

transect was not subject to an imposed N gradient, so its classification into three classes was 

done post hoc by clustering based on GPC. Wheat in the transect field was about as advanced 

in phenology (≥ Z75; mid-milk development), at the time of field work and RS campaigns, as 

the plot sites. The transect’s substantially more moderate Cw and CWSI therefore appear to 

reflect a better match of N supply to soil moisture, with less soil drying by high early 

biomass, than at either plot site, and highlight the contrast between experimental and 

commercial farmer’s objectives. Overall, the transect results showed that some insight into 

relative soil N levels could be gained via spectroscopic estimation of leaf and canopy 

quantities. This is an important finding given that the thesis objective is to contribute 

information about plant performance which arises from soil conditions but is estimated from 

RS observations of the canopy. 

Given the lack of imposed soil N gradient, it was expected that differences in N-related plant 

traits would be more subtle, as seen in VOG1, ZMI and airborne inverted Ca+b. Indeed Ca+b 

trended against GPC and soil N this probably reflects the progress of protein translocation, 

whereby crop areas with higher remaining Ca+b continued to accumulate photosynthate, 

diluting GPC. Airborne NDVI and EVI were relatively consistent with soil N, Dualex NBI 

and GPC; overall, their performance was quite stable across experimental plots and transect. 

While these structural measures were not strongly indicative of GPC in either context, their 
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consistency does demonstrate a link with GPC. This is consistent with other studies which 

have generally integrated NDVI across time or with other indicators to achieve acceptable 

GPC estimates (Feng et al., 2014; Stoy et al., 2022). In the transect, as at ES1, inverted 

canopy level Anth increased with GPC. Also as at both plot sites, Cx+c was parallel with GPC, 

and with soil N, supporting an effect of N nutrition, stress or both on GPC. Moreover, the 

association of PRI with lower assimilation is evident through its alignment with GPC in the 

transect, a dynamic also seen in the plots. These highly consistent relationships support the 

proposition of Anth, Cx+c and PRI as GPC predictors in commercial wheatfields as in the 

experimental context.  

5.3. Commercial fields 

As established by the many previous studies covered in the literature review above and 

confirmed by the plot- and transect-scale components of this study, various plant and canopy 

traits important to the biophysical determination of GPC can be retrieved using RS 

spectroscopy. To advance predictive estimation of GPC for eventual application in PA, a 

strong focus on commercial fields was considered crucial, because while crop genetics are 

invariant within fields and rainfall relatively stable across regions, soil conditions can show 

wide spatial variability within fields. Soil attributes including clay and organic matter 

fractions, native N, and subsoil constraints affecting water and root penetration including B 

and Al, calcrete, and hardpans can vary in severity across tens to hundreds of metres in the 

regions considered here, exerting strong influence over plant-available water capacity 

(PAWC) and N (Nuttall et al., 2003; Sadras et al., 2002) and therefore also over GPC. These 

edaphic realities would be difficult or impossible to replicate in experimental plots. 

Again, the influence of soil physicochemical properties on wheat crops, in particular on GPC 

precursors such as leaf N, Ca+b and LAI and their modes of action, as well as on yield and 

GPC directly are well covered above; these physiological relationships are often both 
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complex and interactive. Further, although soil conditions are relatively stable across time, 

wide variability within and between seasons in the amount and timing of rainfall is a fact of 

life in the cropping environments considered here. Such variability has clear influences on 

plant performance, and therefore on the spectroscopic traits antecedent to GPC, but also 

strongly affects relationships between soil conditions and harvest variables. Indeed, even for 

a single location within a field, the relative effect of subsoil constraints, N supply and PAWC 

on plant growth is so strongly mediated by seasonal rainfall that patterns of variation seen at 

harvest can vary to the point of reversal from year to year (Armstrong et al., 2009; Sadras, 

2003).  

For plant traits to be important in GPC estimation, in particular to be assessed as contributing 

model gain, they should vary spatially across a crop in some relationship with GPC. Such 

spatial variability is visible both in RGB images of the subject fields and in GPC readings 

(Fig. 4.6). The choice of the GBM algorithm was made largely because of its capacity to 

attribute relative gain to model input features, hence both estimating the relative importance 

of plant traits to GPC determination and predicting GPC itself. The chosen ML, and others, 

are designed to handle multiple complex and nonlinear relationships between independent 

and dependent variables, so nonlinearity in precursor~GPC relationships should not of itself 

hinder prediction. Inconsistencies in these relationships, mediated by phenological advance, 

soil and moisture variability complicate GPC prediction, as detailed in the next sections. 

These biophysical realities are revealed in traits’ relative importance, which varies 

substantially across time, both within and between seasons. 

To avoid leakage of importance between ML input features – the plant traits – 

multicollinearity among these was reduced through variance inflation factor (VIF) analyses. 

These were largely data-driven, iterative processes, commencing with the full suite of HS (n 

> 90) or S2 (n > 40) features, in which all VIF values changed at each successive calculation 
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because variables were successively discarded. However, the procedures were forced to 

retain RTM-inverted parameters because these offer better transferability across agronomic 

situations, locations and phenological stages, and hence were considered more likely to be 

more stable than VIs. Based on HS imaging, the narrow-band VIs EVINIR, a novel index 

assessed during the current research, and PRI, sensitive to water stress and photosynthetic 

rate, were linearly independent of and complemented inverted parameters across both years’ 

data, so were included in analyses. In contrast to the HS analysis, none of the S2-compatible, 

multispectral VIs tested was both a) linearly independent of all inverted parameters and b) 

contributed substantially to model skill. While the lack of linear independence among VIs 

contrasts with the findings of equivalent tests in the current HS analyses, it is as expected for 

data of lower spectral resolution. 

Given that no Sentinel-2 VI made a unique contribution to model skill, it can be argued that 

the S2 band set, and the retrieval methods adopted, adequately captured the spectral 

information available and needed for GPC estimation. This in itself is a finding of minor 

importance, in accordance with the findings of Wolanin and colleagues (2019) that S2 bands 

were sufficient to accurately estimate gross primary productivity and the fraction of incident 

radiation captured by Ca+b, without recourse to VIs or non-RS data, via RTM inversion and 

ML.  

5.3.1. Sites and conditions 

Differences in PAW influence GPC via lowered stomatal conductance and assimilation, 

hence lower dilution of protein with new photosynthate, especially late in the season when 

water is limiting. These effects were, in particular in CZ1, 2019, detected in measures of crop 

water sufficiency Cw and CWSI. Constrained carbohydrate (CHO) additions during grain 

filling can therefore increase GPC and reduce yield. However, grain number (GN) is the 
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primary determinant of sink size for both proteins and photosynthates and, therefore, also a 

strong driver of eventual GPC. While early vigour tends to increase GN, stress conditions 

around anthesis can sharply reduce GN. However, strong early vigour can also result in 

excessive shoot biomass, in turn causing soil drying sufficient to severely restrict later 

assimilation. This effect may be sufficient to increase GPC but in severe cases can cause 

complete crop loss (van Herwaarden et al., 1998). These dynamics help to illustrate the large 

swings in GPC that may be precipitated by sub-optimal calibration of N nutrition made in 

incomplete knowledge of PAW changes. 

Besides being very dry, CZ1 saw other weather extremes during critical periods of 2019. 

From mid-September into early October, frosts below ˗4°C affected the durum crop at crucial 

stages (Z42—69; booting, ear emergence and anthesis). Bread wheat fields were less affected 

by frosts due to their location higher in the landscape, a matter of farmer choice, and 

somewhat earlier, less susceptible growth stages (Z33—51; stem elongation to incipient ear 

emergence), related to genetics and later sowing. Frost around anthesis severely reduces grain 

count; durum is more susceptible to both frost and heat damage than bread wheat and other 

cereals (Beres et al., 2020; McCallum et al., 2019). Immediately after these frosts, four days 

had maxima in the range 35—38 °C. Such high temperatures impose high respiratory loads, 

consuming CHO (Heskel et al., 2016), and have the potential to cause permanent damage, 

reduce total N uptake (van Ittersum et al., 2003) and/or simply exceed the optimum for 

photosynthesis (Asseng et al., 2011; Lobell and Gourdji, 2012). Heat stress can also severely 

alter phenology: At T > 34 °C, senescence is accelerated by a factor of three, and sixfold at T 

≥ 36 °C, foreshortening grain filling (Asseng et al., 2011; Porter and Gawith, 1999). In 

addition, droughted plants have less capacity for cooling through evapotranspiration, so 

accumulate more heat. Each of these effects reduce yield, especially if cumulative (Asseng et 

al., 2011); each should therefore affect GPC. Heat stress may increase mean GPC, while 
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reducing GPC variability, and can reduce total N uptake (van Ittersum et al., 2003) through a 

generalised reduction of assimilation. Foreshortened CHO accumulation during grain fill 

(CZ1-19) would also be associated with lower Ca+b, Cm, LAI and SIF variability, diminishing 

these as GPC estimators, while likely enhancing the importance of moisture sufficiency 

measures, as observed in both CWSI and Cw. By interfering with grain development and 

filling, these large variations in weather conditions, seen at crucial times in crop 

development, likely had substantial effects on GPC, without similar effects on canopy 

reflectance characteristics. This would constitute a large source of error, reducing the ability 

of the current methods to predict GPC, and likely would also affect bread and durum wheat 

differently because of their genetic and phenological differences. Such challenges emphasise 

the importance and difficulty of conducting studies in uncontrolled, real-world conditions. 

In CZ2, where rainfall is already substantially lower and crops are grown on former dune 

fields, phenomena influencing PAW and N, including both osmotic and physical 

impediments to root growth, arise from the dune-swale morphology and can be severe 

(Nuttall et al., 2003; Sadras et al., 2002). Though high-resolution soil data were unavailable, 

the influence of the CZ2 dune-swale systems is clearly seen in GPC (Fig. 4.6b); the dune 

effect on biomass can also be seen in the Sentinel-2 RGB areas of the same figure. In these 

areas, the effect of height within the dunes is often strongly discernible at harvest and plays a 

large role in wheat growers’ cropping decisions. Crop responses include complete reversal 

between wet and dry years of yield response on dunes and in swales; mid-slope areas, in 

which soil conditions grade between light-textured soils on one extreme and heavy clays on 

the other, can occupy a high proportion of fields (Armstrong et al., 2009; Hoffmann et al., 

2016). The severe soil variability, known yield response differences, and the proportion of 

fields affected, are also reflected both in less definitive feature importance dynamics, and 

lower GPC estimation skill, seen in CZ2. This difficulty is analysed in depth by Rab et al. 
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(2009): a large majority of the ~ 90 ha they studied across four years in the same region 

showed great wheat yield variability, and this was substantially explained by soil water 

dynamics which they linked in turn to dune-swale topography. 

5.3.2. Single-image analyses 

Especially in severe water stress, but also more generally, CWSI was an important indicator 

of GPC, in hyperspectral analyses. In the S2 analyses, CWSI was excluded from ML analyses 

due to collinearity with at least one S2 inverted parameter in each iteration of VIF analysis, 

but in lieu of CWSI, S2-inverted Cw assumed high importance in the very dry conditions of 

CZ1, 2019 (Fig. 4.12a, c) and throughout the analyses was parallel with CWSI. These 

observations reflect the well-recognised relationship of water stress with assimilation rate, 

hence the protein dilution effect. In addition, the finding that Cw supplanted CWSI when the 

latter was excluded allows the assertion that Cw retrieved from S2 data can, in some 

situations, reduce the requirement for thermal imaging. This is supported by findings of 

SWIR information as important for GPC estimation via its link with plant water relations 

(Pancorbo et al., 2023; Rodrigues et al., 2018), despite findings that Cw was retrieved 

relatively poorly, and substantially less well than LAI, in wheat (Sehgal et al., 2016). 

However, this latter study would have included relatively little Cw variability as it considered 

only two replicates in a plot layout. 

The elevated importance of both water stress indicators in severe conditions, however, comes 

not only of their inherently large contribution to model gain in those conditions, but also of 

their complementarity to the physiological features, which show less spatial variability when 

fields are so dry as to universally depress photosynthesis, and hence contribute little model 

gain. Under such dry conditions, it is apparent that Cw retains more variability than other S2 

traits, especially Ca+b and Cm, whose low importance in dry conditions highlights their lack of 



133 
 

spatial variability and hence small contribution to GPC differences. This low variability in 

dry conditions is physiologically supported because they were established early in the season 

when water and nutrients were less limiting, and therefore remained relatively little affected 

by soil variability, while Cw shows what was happening at the end of the season, after 

differential soil drying. Ca+b, Cm, and shoot biomass, the latter indicated by LAI, contribute to 

the pools of both N and CHO available for translocation. It follows that, as the translocation 

process itself is also impeded by water stress, with protein transport more strongly affected 

than CHO transport (Giuliani et al., 2011; Wardlaw, 1967), these quantities’ influence on 

GPC is more likely to be seen under low water stress. Conversely under high stress the 

combined influence of Ca+b, Cm, and LAI would be both smaller than that of the ongoing 

photosynthetic rate and obscured by inefficient translocation; this comparative reduction of 

their signal likely contributes to the dominance of Cw under severe stress.  

By classifying input features into thermal, structural and physiological layers, and 

sequentially removing these from the HS model, each input’s contribution to GPC estimation 

and each layer’s influence on predictive skill were assessed. When CWSI was excluded as a 

model input for severely stressed crops, LAI importance was high, but in benign conditions, 

LAI and other indicators of canopy structure were not similarly promoted in the absence of 

CWSI. This shows that structural indicators have a greater relative influence on ML outputs 

in terminal drought than in lower stress. Also in drought, the displacement of EVI by LAI in 

model gain on CWSI removal suggests some redundancy between them, and that each was 

less affected by drought than were the physiological traits. These statistical phenomena also 

share a basis in plant development, in that both LAI and EVI indicate canopy structure 

variability established prior to the onset of water stress but which persisted into the late 

season. In benign conditions, structural indicators LAI and LIDFa generally showed low to 

moderate importance in HS models, as did LAI in single-image S2 analyses. This alignment 
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between HS and S2 provides cross-validation of each result. S2-derived Cm, defined as leaf 

dry matter mass per unit area, hence indicative of leaf biomass and likely to correlate with 

other leaf components, crucially Ca+b, and to proxy the protein source size, was also in all 

analyses of equal or greater importance than S2 LAI. The consistently high importance of Cm 

across weather conditions and wheat products appeared to confirm the sensitivity of this 

variable to changes in water status that in HS analyses was adopted by HS stress indicators 

Anth, Cx+c and PRI, treated below, but which are unavailable with the S2 band set. 

Physiological features also showed commonalities across moisture conditions, within both 

HS and S2 analyses and when these were compared. In severe stress, in CZ1-19 bread wheat, 

physiological components contributed little gain. With stomatal conductance and 

photosynthesis universally depressed, the physiological links of HS Ca+b, SIF, and PRI with 

GPC were less prominent as predictive features for ML, showing their lack of power to 

indicate GPC. In these conditions, Cx+c was highest among the generally low importances for 

physiological indicators, but provided more gain on removal of thermal and structural layers, 

as did Anth and Ca+b.  

In more moderate conditions, spatial variability in photosynthetic rate and hence in 

physiological indicators, driven by soil heterogeneity across and between fields, is greater. 

This greater variability allows physiological model features to convey more information, 

conferring to them higher importance. At moderate stress, in the CZ1-19 durum crop, 

airborne SIF approached CWSI in importance and all remaining HS physiological features 

were closely associated below SIF, none individually prominent but each contributing more 

gain than the structural traits. The order of physiological features changed little on removal of 

thermal and structural layers, showing their robustness and utility as GPC predictors in such 

conditions. Meanwhile in CZ1-20 durum, when water stress was lowest, CWSI was either 

demoted, below Cx+c in bread wheat, or varied with PRI between first and second rank. In 



135 
 

these crops, importance was more evenly spread between physiological, thermal and 

structural components. In bread wheat, Cx+c was the best indicator overall, and in durum was 

below only CWSI, SIF and PRI, likely showing a water stress differential between the two 

wheat types.  

At the time of the attendant studies, the availability of spaceborne SIF was limited and its 

spatial resolution was unsuitable to the spatial scales considered. Given this shortcoming, this 

project combined airborne SIF with S2 data by sampling each at the GSD of the GPC data. In 

contrast to all tested S2 VIs and CWSI, and despite its close links to Ca+b and Cw, SIF was 

linearly independent of all other HS and S2 parameters and was included in CZ1 models. 

This linear independence, and the substantial extra skill it conferred to our predictions, are 

important findings in themselves. SIF is a proxy for instantaneous photosynthetic rate; as 

such, its inclusion can greatly improve estimates of other complex biophysical quantities, 

including N status and assimilation (Camino et al., 2019, 2018; Raya-Sereno et al., 2022). It 

follows that, as an estimate of instantaneous assimilation and hence protein dilution, SIF 

should improve GPC estimation.  

Like Ca+b and PRI from HS and S2-derived Ca+b/Cm, SIF was of minor importance to GPC 

estimation in very dry conditions. The SIF contribution to predictive skill and accuracy was 

also minimal in these cases. Though this was assessed only in S2 analyses, as SIF was 

included and removed from models alongside other HS physiological components, it is 

generalisable to HS because of its basis in a lack of variability in biophysical activity across 

crops and the dominance of water stress indicators. In support of these findings, low or 

ambiguous sensitivity of SIF to wheat performance has also been observed by others: at 

regional scales and over multiple years and growing conditions, Cai et al. (2019) found that 

the addition of satellite SIF brought no improvement in wheat yield estimation over EVI-

based measures. Also in regional-scale assessments from satellite RS, Sloat et al. (2021) 
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found that SIF products were better correlated with biological productivity than similar 

measures based on NDVI in moderate growing conditions, but that seasonal SIF-based 

estimates were inferior under water stress. Relevant to the current project, both Cai et al. 

(2019) and Sloat et al. (2021) reported better model skill when SIF was combined with 

reflectance-based input(s), and proposed that estimates might be improved in future by higher 

quality spaceborne SIF. In milder growing conditions, where base model accuracy was low 

(Fig. 4.17), the inclusion of SIF in S2 analyses brought larger estimation improvements. This 

is parallel to and arises for the same reasons as the higher importance of other physiological 

indicators under benign conditions, as discussed above. However, a smaller skill 

improvement was seen on adding SIF to S2 features in CZ1-19 durum, despite the elevation 

of SIF importance to the top rank, above even Cw. This may relate to weather damage to 

reproductive tissues not picked up in the SIF signal, but which is crucial to GPC.  

The current observations at moderate and low water stress appear to confirm that Cx+c, Anth, 

PRI and SIF are sensitive to stress that is yet insufficient to strongly diminish photosynthesis 

or cause visible symptoms, a sensitivity recognised elsewhere (Borrelli et al., 2011; Fratianni 

et al., 2013; Suárez et al., 2008). Moreover, in low stress, each of Cx+c, Anth, PRI and SIF 

consistently had equal or higher importance than Ca+b. This demonstrates that short-term 

stress indicators also may have a more substantial role than Ca+b as precursors to GPC. In 

addition to their detection of mild water stress, this may arise from detection of differing 

degrees of senescence, particularly regarding Cx+c. Overall, physiological features were stable 

across conditions, and consistently supplied more information than structural features. This 

concurs with findings at plot scale in the present work and those of others that Anth, Cx+c, 

PRI and SIF, or combinations thereof, were crucial in stress diagnosis (Poblete et al., 2021; 

Suárez et al., 2008; Zarco-Tejada et al., 2018). The PRI~SIF alignment also mirrors the 

current plot and transect studies and commends PRI as a proxy for photosynthesis in wheat, 
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as proposed by Magney et al. (2016b). Anth importance was moderate in all conditions and 

stable between wheat types in low stress; this shows a differential Anth response under 

variable water stress, supported both at plot scale and in the literature (Chalker-Scott, 2002; 

X. Li et al., 2018).  

While model predictive skill is treated in detail below, it is valuable to consider here the 

apparent effects of the three HS layers. Although GPC estimations produced by the 

physiological layer alone (Model 3) were substantially less accurate than those from 

physiological and other information combined (Models 1 & 2), Model 3 accuracy and error 

metrics were nevertheless acceptable (Table 4.3). This skill stems from the layer’s 

comprehensive coverage of GPC-relevant traits, from instantaneous SIF and PRI to the 

relatively stable Ca+b and suggests that progress can be made without recourse to thermal or 

structural features. In addition, such results align with findings of SIF and Ca+b as far better 

than structural measures in estimating wheat leaf N (Camino et al., 2019), and of PRI as a 

proxy for water stress (Suárez et al., 2008). Except in extreme stress, unstable importance in 

EVI, LAI and LIDFa limited their value for GPC estimation; this is in accordance with recent 

findings that LAI was unrelated to GPC (Pancorbo et al., 2023). Nevertheless, together they 

contributed to model performance and generalisability: the use of structural in addition to 

physiological information (Model 2) brought a substantial improvement in prediction metrics 

across all growing conditions, with the largest impact under water stress, and demonstrates 

the strong influence of biophysical state variables that change gradually through seasons. 

Such consistent influence of structure also provides a counterpoint to claims of leaf N 

measures as uniquely powerful in GPC estimation (Fu et al., 2022; Xue et al., 2007; Zhao et 

al., 2005, 2019). 
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5.3.3. Model skill 

In summary, for CZ1 bread and durum wheat, and regarding both relative trait importance 

and predictive skill, the results obtained from single S2 images captured at or near the end of 

the growing season largely mirrored those from airborne HS (Fig. 4.12, Fig. 4.15). The 

combined relationships of S2 Ca+b, Cm, LAI and SIF with GPC were sufficient to produce 

GPC predictions of broadly similar accuracy to those provided by the full suite of thermal 

and HS indices and retrieved parameters, including stress-specific measures and SIF. S2 

predictions were, however, less accurate than those from HS. This is explained by the lower 

spectral resolution of S2 data, which contains 10 bands intended for land observations 

(Drusch et al., 2012; Wolanin et al., 2019) as compared to the 75 bands of HS reflectance 

used here: Anth, Cx+c and PRI, linked to GPC through their detection of mild stress, cannot be 

retrieved from S2 data so are absent from those analyses, but made substantial contributions 

to HS predictions. Meanwhile, an exception to the rule of better results from HS than S2 

occurred in the very dry conditions of CZ1-19. In that case, S2 was marginally better than HS 

+ CWSI and substantially better than HS without thermal; this confirms Cw as a good proxy 

for thermal information in broadacre crops under differential water stress, while also showing 

the diminished influence of stress-based HS indicators. 

Regardless of the data source, under mild stress the combination of structural and 

physiological inputs was insufficient to bring model performance to the level provided, under 

severe stress, by the strong dynamic linking Cw/CWSI to GPC via stomatal conductance, 

photosynthesis and assimilatory dilution of protein content. Because PAWC variability is 

reduced in mild growing conditions, soil properties have less influence over crop outcomes 

than they do under water stress and hence produce a smaller range of GPC; this narrower 

range itself makes prediction less accurate. However, as established above, PAW variability 

affects many facets of plant performance, from nutrient uptake, through leaf physiology and 
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canopy structure, to rate and duration of photosynthesis and assimilate translocation. While 

the signatures of such differences are detectable in canopy reflectance-based measures, their 

underlying biological phenomena are less directly connected with GPC than those caused by 

severe stress and therefore convey less information for prediction.  

Moreover, in mild growing conditions the influence of CZ2 dune-swale systems on PAW is 

likely to be less definitive; less drying should occur in the heavy-textured but shallow swale 

soils, reducing the PAW advantage conferred in drier seasons by light soils higher on the 

dunes. This dynamic appears verified in CZ2-20, where model accuracy was worst, but may 

also have affected CZ2-19, where error was high despite acceptable pred~obs correlations. 

Assessed by correlation and error metrics, then, CZ2 was the hardest to estimate. The lack of 

HS data for CZ2 hampered more accurate GPC estimation but more importantly also the 

assessment of HS physiological indicators. In this situation, where the mid-slope areas, 

themselves a large proportion of fields, are neither severely droughted nor well-watered and 

grade between these extremes (Rab et al., 2009), the increased power of HS traits, 

particularly Cx+c PRI and SIF, to differentiate moderate levels of water stress may improve 

estimation. 

However, with regard to predictive skill and error metrics, the question arises: how good is 

good enough? As a matter of pure science, the pursuit of maximum fidelity and minimum 

error is valid; this is how methods are refined and compared. With a view to practical 

implementation of PA, where science meets the pragmatism of farming; growers are 

accustomed to uncertainty, neither seek nor expect an exact prognosis, requesting instead 

estimates that can be combined with other information for decision support. Hence because 

PA practices will always be aimed at increasing the likelihood of a desired outcome rather 

than at precise predictions, the answer to “how good?” is more flexible. Of direct, practical 

relevance here is the error associated with modelling, here stated as RMSE, which in all cases 
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except CZ2-19 was < 1 % GPC, within the threshold ranges (1—1.5% GPC) used to define 

wheat classes in Australia. The errors implicit in GPC estimation by the methods and in the 

regions explored in this project can therefore be considered acceptable and are likely accurate 

enough to motivate growers in some situations to take strategic actions. The current project’s 

results in severe water stress are encouraging and taken in isolation may be actionable in 

terms of agronomic interventions. However, it is unlikely that management action would be 

taken in such severe conditions, especially if the intervention itself incurred risks or costs. In 

such cases a cost-neutral intervention would likely be preferred, such as strategic harvesting 

for grain blending or segregation. In moderate growing conditions, strategic fertiliser 

applications may be considered, which although they entail a greater risk of misdirecting 

resources may be worthwhile if parts of a crop can be lifted into a higher GPC class.  

Grain protein estimation based on crop information derived from RS, as presented in the 

attendant studies, is acknowledged as considerably more complex than estimation of 

intermediate quantities, or indeed of yield (Pancorbo et al., 2023; Zhao et al., 2019). Arising 

from an intermittent and relatively small but growing body of work, the published literature 

contains a wide variety of results. Although direct comparisons, particularly of error metrics, 

are not always possible, particularly when metrics are neither consistently computed nor 

supplied, the current studies’ GPC predictions from single airborne HS images captured late 

in seasons were within the wide range of previous results and improved on some. For 

example, Øvergaard et al. (2013) obtained pred~obs R2 = 0.16—0.68, while Hansen et al. 

(2002) achieved R2 = 0.56 / RMSE 0.4—0.79 % and Apan et al. (2006) R2 = 0.92 with RMSE 

0.65—1.18 %. With the addition of met data to an interannual study based on VIs, Li et al. 

(2020) obtained R2 = 0.13—0.85 / 1.02 ≤ RMSE ≤ 3 %, testing on 33% of their observations. 

However, each of Hansen et al. (2002), Apan et al. (2006), Øvergaard et al. (2013), and Li et 
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al. (2020), like many others, relied on proximal HS sensing of experimental plots, and hence 

a relatively small n. In plots,  

Some more recent research has, validly with respect to relevance in commercial settings as 

they therefore account for natural soil variability, considered commercial wheatfields: among 

these, Zhou et al. (2021) realised validation R2 = 0.55—0.63 and RMSE = 1.07—1.18 % 

GPC in an unseen 31% of their full (n = 327) dataset, from airborne multispectral RS. These 

authors tested both single VIs and combinations of several VIs via machine learning, finding 

the combinations performed better. Also from airborne multispectral RS, Stoy et al. (2022) 

succeeded in explaining 40% of GPC variability in a single 24 ha field with highly variable 

soils, using only NDVI, via a model that accounted for NDVI changes across a seasonal TS. 

Touching on methods used in this project, Stoy et al. (2022) also used GPC data from a 

combine harvester and satellite data, but found Landsat NDVI ineffective for GPC 

estimation. Their poor result from satellite data was perhaps related to their use of only a 

single measure – peak seasonal NDVI – and the relatively coarse Landsat GSD (30 m). Also 

working under commercial cropping conditions, with VIs from airborne HS in timeseries, 

Rodrigues et al. (2018) obtained a best correlation between any index and GPC of R2 = 0.21; 

while their prediction errors were small (RMSE < 0.5 % GPC), these results were obtained in 

a single field with low GPC variability. 

The estimation accuracies obtained here from single-image S2 analyses, 0.14 ≤ R2 ≤ 0.82 / 

0.65 ≤ RMSE ≤ 1.97, and with full-season TS 0.31 ≤ R2 ≤ 0.86 / 0.56 ≤ RMSE ≤ 1.68 (Fig. 

4.17) also largely sit within a comparable range to other recent results from satellite RS. Zhao 

et al. (2019) recorded 0.428 ≤ R2 ≤ 0.467 and 0.45 ≤ RMSE ≤ 1.01 for wheat GPC from S2 

via standard VIs, while Tan et al. (2020) had best verification metrics of R2 = 0.81 and 

RMSE = 0.54, also from the four-band multispectral HJ-CCD sensors, although these were 

achieved at field level and not within fields. In large experimental plots, and using only 
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timeseries RS data from two multispectral satellite platforms, Wang et al. (2014) achieved 

moderately strong correlations (R2 ≈ 0.6) but relatively large RMSE = 1.28—2.86 % for 

various VIs with GPC.  

As in the work of Li et al. (2020) and Zhou et al. (2021), predictive skill was tested on a 

substantial unseen hold-out of observations across all fields, more robust than the leave-one-

out (LOO) cross validation metrics often presented as proof of model performance and here 

used only to tune ML models. However, to progress toward a flexible algorithm able to 

estimate GPC from RS data only, validated against but independent of ground-based GPC 

data for training. Successful demonstration of such out-of-sample (OOS) estimation would 

add substantially to the potential for practical application of the wider methods. To this end, 

this project attempted to predict GPC in entire paddocks unseen by the ML algorithm in 

training; predictions were tested in a field-wise LOO method, such that each field’s data were 

successively used as the unseen test set for a model calibrated on all other fields. With all 

data from remaining fields included for model training, the amount of data from the LOO 

field available for training was reduced stepwise from 70 % to 10 %. Predictive skill 

declined, though not dramatically, at each step down to 10 %, but models failed when zero 

data from the LOO field were included in training. This result is to be expected: Like other 

regression-based estimates, a GBM prediction can perform adequately only within the bounds 

of the data on which it was trained; extrapolations are not reliable. In practice, for the present 

case, this means that a training set should incorporate representative coverage of the diverse 

plant trait ~ GPC relationships sufficient to allow the algorithm to learn the patterns inherent 

in them. This is problematic, because as established above, these relationships’ relative 

weight of influence and even the direction of their effects are subject to drastic change 

according to soil properties, weather and phenology. 
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Other recent studies have also shown good results for OOS analyses while training and test 

datasets were consistent, but reported model failure where this was not true. Exemplifying the 

first case, Gómez et al. (2021) achieved good regional wheat yield prediction results (R2 > 

0.8) for both random 20 % holdouts and for a single year held out of ML training by adding 

met and historical yield data as GBM input features to MODIS seasonal NDVI. For wheat 

yield at regional scales in Australia, Cai et al. (2019) did similarly, adding non-RS 

meteorological inputs to satellite EVI and SIF, holding out single years and training ML on 

the remainder of their sample. They obtained very similar results to Gómez et al. (2021) but 

saw a sharp reduction in model skill for a single year of very different weather, emphasising 

the importance of training ML models on representative data. While the focus of these works 

on regional-scale yield diminishes their relevance to work on within-field variability, each 

demonstrated both the value of adding information from sources other than RS, i.e., met and 

production history, and the centrality of RS through its in-season currency. RS assessment of 

plant performance is indispensable to prospective in-season fertiliser DSS at scales useful for 

PA and aimed at improving GPC and/or N efficiency. However, to improve OOS results, RS 

could be augmented with year-to-date met or PAW assessments and historical information; 

while the former are difficult to obtain at spatial scales similar to GPC variability, the 

collection of high-resolution historical GPC data should be increasingly feasible as monitors 

become more common and may be a valuable model input. 

Satellite TS are likely to be very relevant to any operational implementation of the methods 

described here, if only because repeated airborne HS campaigns would be prohibitive in 

terms of cost and complexity, while satellite TS are easily available at low cost. Besides, the 

ultra-high spectral and spatial resolution of the airborne RS used in this project, while crucial 

to scientific advance, may not be strictly necessary for GPC estimation in commercial 

contexts. This provides a counterpoint to recent recommendations of HS data as 
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indispensable for such uses (Pancorbo et al., 2023; Raya-Sereno et al., 2021); while such 

appears true for optimal scientific results, and HS sensing is certainly better when only single 

images are available, multispectral satellite TS is able to compensate at least in some 

situations. 

Despite the negative effects of lower spectral resolution, and the associated loss of 

physiological indicators found highly relevant to HS analyses, particularly in moderate 

growing conditions, the advantage of satellite RS becomes clear through TS. Prediction 

metrics from TS were, overall, similar to and in severe water stress, better than those based 

on HS (Fig. 4.17), demonstrating that S2 TS can be used to predict GPC with moderately 

good fidelity even where prediction was at its most difficult. Bread wheat from CZ1-20 is a 

case in point: while HS+CWSI gave R2 = 0.54 / RMSE = 0.66 %, and accuracy from single-

image S2, without SIF, diminished to R2 = 0.33 / RMSE = 0.80 %, addition of the TS 

reinstated performance back to equivalence with HS+CWSI, at R2 = 0.52 and 

RMSE = 0.67 %. In the same site/year, a parallel result was seen for durum, albeit with a 

more severe drop in performance from single-image S2. The improvement over single-date 

S2 estimates is also large in CZ2, where they come off a particularly low base (Fig. 4.17).  

Such improvements are owed to the incorporation of early-season structural information. 

Along TS and within site/year combinations in all situations, predictive performance was 

better during early development than in the mid-season, showing both that establishment and 

early vigour are important to eventual GPC outcomes, and that our ML approach is sensitive 

to the same biological reality. Canopy structure (LAI) played a far greater role in S2 TS than 

in single-image S2 analyses because it encompasses differences in vigour during the early 

part of seasons. For example, when TS images were considered separately for CZ1-19 bread, 

LAI took 60—80% of total importance at each stage up to Z65, whereafter importance 

switched entirely to Cw (Fig. 4.13a). This may be linked to the acknowledged strong role for 
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early vigour as a predictor of crop performance more generally, including yield prediction, 

for which satellite EVI has been found informative in the early- and mid-season but of little 

value later (Cai et al., 2019). Similarly, early season airborne NDVI was found more closely 

related to GPC than later NDVI (Stoy et al., 2022). It is also likely, however, that the 

importance of LAI stems from its function as a proxy for biomass, hence soil drying, the 

degree of later drought and relative amount and duration of photosynthesis, which are then 

shown by high Cw importance in the final image of the same CZ1-19 bread wheat season. 

This site/year/product combination also demonstrates the ability of TS to diagnose GPC-

related crop performance changes in response to severe stress, which in some circumstances 

could inform strategic agronomic interventions. Under lower water stress, an even spread of 

importance across all four inverted parameters and throughout seasons shows relatively even 

plant performance across time and within fields. In turn, trait ~ GPC associations are weaker, 

and a smaller degree of PAW change through time is evident; this dynamic supplies less 

intelligence for potential agronomic interventions. 

When all dates were pooled for CZ1-19 bread, Z15 (seedlings, pre-tillering) LAI took > 40% 

of importance, and Cw at anthesis took > 30% (Fig. 4.14a), similarly as described above for 

image-by-image modelling. This sudden change was seen only under drought, but a gradual 

switch from LAI to Cw was seen in CZ1-19 durum also, despite a likely reduced crop water 

demand after frosting and noise from weather damage more broadly. In other situations, the 

distribution of importance between dates and traits was quite even whether image dates were 

separate or pooled but always included substantial contributions from LAI. This, and the 

decline of LAI from a mid-season peak when all date / feature combinations were pooled 

shows the high relevance to GPC of above-ground biomass, as a source of both proteins and 

CHO. Again, PAW variability, shown by Cw importance, is low early in the season partly 

because crops have had less time – and biomass – to withdraw water. Increasing Cw 
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importance through seasons likely reflects increasingly variable soil moisture as plants 

differentially accumulate biomass, hence capacity to dry the soil, allowing soil properties in 

turn to exert more influence. Of the inverted traits retrievable from S2, Ca+b, and Cm were 

consistently the least influential but peaked during mid-late vegetative growth (Z50—70) in 

both image-by-image and pooled models. This reflects the physiological links of 

biochemistry and leaf biomass content to GPC, most prominently in mild conditions, as 

sources for translocation. In pooled CZ2-19 models, Ca+b and Cm at early stem elongation 

(Z31) together contributed 31 % of total gain, a very substantial contribution where this was 

spread across 20 features. This high importance of combined leaf thickness and Ca+b in dry 

conditions also appears to indicate a strong role for early N content in GPC determination. 

Cai et al. (2019) have argued that the optimal timing for Australian wheat yield prediction 

accuracy is before October; although this assertion comes from a national-scale study, where 

definition of phenological stage was not possible, in the context of the current work it is 

reasonable, corresponding to Z43—70. Others report that the addition of extra S2 TS data 

after June, in a study considering a large number of fields across a region, gave little 

improvement for yield estimation due to incipient senescence (Hunt et al., 2019). Similar 

timings may hold for GPC prediction also, given that the two quantities co-vary in 

opposition; though little research has addressed this directly, some contend that Z65 is 

effective for GPC (C. Tan et al., 2020; Wang et al., 2014; Zhao et al., 2019), and at plot 

scale, Raya-Sereno et al. (2021) had best results for grain N content at early milk (during 

grain filling; ~Z73). Rodrigues et al. (2018) contend instead that early- to mid-season RS 

(Z31—Z65) is best for hyperspectral VI-based GPC assessment under commercial 

conditions, but this assertion is based on very weak coefficients of determination between 

selected VIs and GPC.  
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Evidence from the current TS analyses did not contradict the fairly diverse findings above, 

but also supported them only relatively weakly. Although the paucity of cloud free images 

after ~Z50 makes it difficult to support suggestions of Z65 and later, hence from around 

flowering and into grain filling, as best for prediction, the attendant studies do confirm that 

late-season images tend to bring higher accuracy. The lack of late images leaves an 

undesirable gap, most notably in the milder, wetter 2020 when no image was available after 

Z50/1400 GDDAS in either zone (Table 3.3, Fig. 4.16). According to the survey of RS timing 

for GPC estimation immediately above, this missingness excluded perhaps the most crucial 

crop information; this is reflected in the lower skill of single-image analyses from 2020. 

While performance may improve further with later cloud-free images, the likelihood of 

obtaining these would not be substantially higher in any similarly mild season, a familiar 

problem in satellite RS research. TS stacking, however, partially compensated for these 

issues in 2020, and improved performance in every case. Moreover, despite the many factors 

that can intervene between early potential and harvest reality, depending on conditions 

specific S2 inverted parameters can contribute to GPC prediction as early as Z15, and 

predictions this early can give reasonable results.  

Overall, the predictive skill improvements gained from adding airborne SIF to S2 analyses 

suggest that if it were available at higher spatial and temporal resolution, TS SIF may 

strongly improve GPC prediction. Nevertheless, it is probable that a strong role for SIF, with 

substantial improvement of predictive performance and associated high gain, would be 

weighted toward the grain filling period, when spatial variability in soil moisture is most 

pronounced and influential, at least in dryland, semi-arid environments, and to relatively 

benign moisture conditions, because if soil is either very wet or very dry there should be less 

variability in SIF. These hypotheses also accord with the findings of Sloat et al. (2021); in 

their work, early-season SIF contributed to overestimation of seasonal productivity, 
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particularly under drought. Given that terminal drought is expected in virtually all Australian 

wheat cropping, such relative unreliability of early-season SIF in harvest prediction will 

likely affect future within-field TS analyses. 

Again, from the perspective of practical application of such methods into agronomic 

interventions, viz, strategic N applications, a question arises regarding how early in seasons 

actionable information would be useful. A recent meta-analysis showed that later (≥ Z55) 

foliar N applications were more effective in increasing GPC than earlier applications, and that 

higher ratios of late to total N applied also increased GPC relatively more (Giordano et al., 

2023). This implies that, as long as crops are not senescent or water stressed to the point of 

impeded translocation, supplementary N applications can potentially be delayed until very 

late in seasons. However, a strong caveat also exists, at least for Australia where foliar 

fertiliser applications are rare: broadcast urea, here the most common source of synthetic N, 

was among the least likely forms to elicit a positive GPC response (Giordano et al., 2023). 

Though broadcast N has also been associated with GPC increases (Zebarth et al., 2007; 

Zhang et al., 2022), solid forms require rain for wash-in, so any such strategy would require 

quick reactions to weather forecasts. 
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6. Conclusions 

This chapter contains included material from: 

Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop 

traits retrieved from airborne hyperspectral and thermal remote sensing imagery to predict 

wheat grain protein content. ISPRS Journal of Photogrammetry and Remote Sensing 193, 

284–298. https://doi.org/10.1016/j.isprsjprs.2022.09.015 

Longmire, A.R., Poblete, T., Hornero, A., Chen, D., Zarco-Tejada, P.J., (accepted 2023-10-27). 

Estimation of grain protein content in commercial bread and durum wheat fields via traits 

inverted by radiative transfer modelling from Sentinel-2 timeseries. ISPRS Journal of 

Photogrammetry and Remote Sensing. 

― 

A comprehensive literature review highlighted that despite solid understandings in crop 

science of the physiological links between plant stress and wheat GPC, and substantial work 

on RS estimation of plant traits associated with GPC, published investigation into GPC 

estimation directly from those or other RS traits was sparse. This situation persists despite the 

crucial importance of GPC on farms and in diets and the prodigious amount of research into 

grain yield prediction. Hence while techniques for estimating relevant parameters including 

LAI, leaf- and canopy Ca+b and N content are advanced, comparatively little research linked 

these with harvest GPC. A further omission concerned plant stress indicators and their 

associations with GPC. 

To address these gaps, airborne hyperspectral and thermal data were collected above 

experimental plots and commercial wheatfields, each in two seasons of diverse precipitation 

and across two locations. Plant traits for each GPC location were retrieved by recognised 

means: vegetation indices, radiative transfer model inversions, solar-induced fluorescence 

and water stress. The project used a machine learning algorithm to concurrently estimate 

GPC and quantify the relative importance of retrieved traits to estimations. Similar retrieval 
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and ML methods were adapted to the reduced spectral but higher temporal resolution of 

Sentinel-2 satellite images: again, suitable VIs were calculated and RTM inversions 

conducted for each GPC location, and for each image capture date in season timeseries. 

Solar-induced fluorescence and CWSI, unavailable from S2 data, were used to supply 

supplementary information to satellite traits. These parallel procedures allowed comparison 

of trait importances and predictive skill between hyperspectral and multispectral data sources, 

evaluating the importance of thermal and hyperspectral data to account for water stress and 

fluorescence emission, respectively. The S2 timeseries data were then applied in two ways: 

first using features from different dates to build separate models, then stacking all 

features/dates into a single model. These approaches allowed trait importance and predictive 

skill to be tracked through seasons, and for the potential of stacked TS images to improve 

model skill. At each step, multicollinearity among plant traits was reduced using data-driven 

methods to avoid diluting their relative importance as ML input features. Overall, these 

procedures permitted a clear view of the relative magnitude of plant traits as GPC predictors 

in commercial conditions.  

Hence, the first study identified the most important hyperspectral-based plant traits related to 

GPC in rainfed wheat under variable stress levels. In experimental plots, two variants of the 

PRI, related to the xanthophyll pigment cycle, showed consistent trends very similar to GPC 

along the induced N nutrition gradient, and in this respect performed better than any other 

spectral trait. Implementation of a gradient boosted machine (GBM) elucidated relationships 

between HS- derived input features and GPC in commercial crops. The thermal CWSI, a 

proxy indicator of canopy transpiration and hence of water stress, contributed strongly to 

GPC modelling under water stress conditions, while Anth, Cx+c, PRI and SIF consistently 

showed high importance in moderate conditions. Structural indicators LAI or any other 

structural proxy such as NDVI contributed substantially less. Using a model built with 



151 
 

thermal and physiological traits quantified by RTM inversion, the GBM predicted GPC with 

R2 = 0.80 and RMSE = 0.62 % between predicted and observed GPC in bread wheat crops. 

These methods were then adapted to the reduced spectral but higher temporal resolution of 

satellite images. Adding further wheat fields to those considered in the HS analyses, and 

therefore more diverse soil and weather conditions, plant and canopy traits inverted from 

Sentinel-2 images were assessed for GPC prediction. Using equivalent modelling methods, 

accuracy from single images was generally lower when based on S2 than on airborne HS 

traits. However, in very dry conditions, the best model using a single S2 image and made 

with PRO4SAIL-inverted Ca+b, Cm, Cw and LAI outperformed the HS+CWSI model in the 

same environment. Adding timeseries S2 inverted traits substantially improved all models 

over single-image versions; improvement was very strong in benign conditions and 

compensated for the accuracy reduction caused by switching from HS to S2. The best 

predictive performance was achieved by stacking retrieved parameters from all dates as 

inputs to a single model (R2 = 0.86, RMSE = 0.56 %). The order and relative importance of 

S2 plant traits were similar to airborne HS: S2 importance was dominated by Cw in drought 

but evenly spread between structural and physiological features in benign conditions. 

6.1. Major findings 

As detailed in Chapter 2, this thesis and the broader research project were structured around 

the below research questions; each is now addressed: 

1) Which imaging spectroscopy-based plant physiological traits, retrievable from 

hyperspectral and thermal airborne remote sensing, are most closely associated with 

GPC? 

2) Are these traits stable across experimental and commercial contexts, different locations 

and contrasting seasonal weather conditions? 
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Very dry conditions increased the importance of water stress measures relative to other plant 

traits, while in milder conditions physiological traits were emphasised. Airborne CWSI was 

associated with higher GPC in plot trials and was the dominant predictor of GPC in dry 

cropping conditions and remained important in moderate conditions. Canopy structural 

components were of relatively low value for GPC prediction, except under drought where 

CWSI was excluded, and showed limited association with GPC in plot trials. In addition to 

Ca+b and SIF, physiological indicators of moderate plant stress Cx+c and PRI were closely 

associated with GPC in experimental and commercial settings, and their contribution to GPC 

estimation was substantial in moderate growing conditions. These conclusions are, in general, 

valid across locations and for both experimental and commercial contexts. 

3) Do plant traits retrieved from Sentinel-2 satellite images show similarities to those from 

hyperspectral images as predictors of GPC? 

With respect to their categories, whether physiological, structural or related to water stress, 

and their importance for GPC estimation, single-image S2 traits were markedly similar to 

airborne thermal and HS traits: S2-inverted Cw assumed the importance and predictive power 

of CWSI in dry conditions, and indeed was excluded due to its collinearity with the S2 

parameters. In moderate conditions, across both years, and in both HS and S2 analyses, 

model gain was more evenly spread between the relevant measure of water sufficiency and 

other features. Ca+b, as the only purely physiological parameter retrievable from S2, was 

consistently of strong secondary importance as were the HS physiological measures in 

moderate conditions. In each analysis of moderate conditions, SIF where included was quasi-

equivalent with Cw/CWSI as contributing most gain. 
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4) What is the effect on model predictive skill of bandset reduction from hyperspectral to 

Sentinel-2 when traits from similar time points in each season are retrieved from the 

respective datasets? 

In very dry conditions this change in data source is associated with a marginal decline in 

coefficient of determination; in moderate conditions the decline is worse but not dramatic. 

Relative error increases under such a change, but in all analyses RMSE remains below 1 % 

GPC.  

5) Crop water stress index is a proxy for transpiration and therefore atmospheric gas 

exchange, while SIF is proportional to photosynthetic rate. Each should therefore add 

predictive power for GPC estimation via the carbohydrate dilution principle, but neither 

is available from Sentinel-2. What are the contributions of CWSI and/or SIF to model 

predictive skill when added to S2 traits? 

Especially in very dry conditions, CWSI substantially improved GPC estimation relative to 

HS traits without CWSI. However, CWSI was not added to S2 models due to collinearity 

with S2 inverted trait Cw; because this absence did not reduce model skill, at least in terminal 

drought, it is asserted that Cw can be an effective proxy for CWSI. SIF improved S2 models’ 

performance metrics, most strongly under moderate cropping conditions. 

6) What plant trait dynamics are evident within and across seasons? 

With all features pooled, in dry conditions, gain transitions from LAI early to Cw late in the 

season; in moderate conditions, gain is distributed evenly between traits and image dates, 

with some weighting toward late images. 

7) What is the effect on model predictive skill of including TS elements in predictive models? 
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When TS images are treated as input features for separate models, in coefficient of 

determination generally increases and error decreases as seasons proceed. In very dry 

conditions, skill declined in the midseason, after the first image, and recovered later. Stacking 

of trait/date combinations to form a single model generated the best results of any modelling, 

including HS, in very dry conditions, and reached similar levels to HS otherwise. Stacked, 

seasonal models were always better than the single-image S2 models tested. 

6.2. Challenges and limitations 

Remote sensing and its associated retrieval methods are well developed and amply able to 

capture many aspects of plants’ complex interactions with their environments; this is 

demonstrated in the detailed retrievals of plant traits, and in their evolution through time, 

presented above. Machine learning algorithms are also powerful tools, capable of interpreting 

multiple nonlinear relationships between predictor and target variables to estimate the latter. 

However, given the inherent complexity, ML is not expected to fully capture or precisely 

interpret the influence of RS traits on GPC. 

- The failure of the predictive model to estimate GPC for entire fields unseen the 

algorithm during the training phase exposed a substantial limitation of the study. 

Although this failure is easily explained as the inability of regression-based 

approaches to reliably extrapolate beyond the bounds of observed data, it indicates a 

need for further work. Moreover, this is a limitation of the ML methods, not of the 

remote sensing procedures, and is likely to be remediable with refinements. Data 

augmentation approaches may prevent model failure in fields contributing sparse or 

zero data to training and facilitate OOS prediction methods for entire fields where 

GPC is not known ab initio. Although this would require large datasets and 

exhaustive testing, it warrants pursuit.  
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- The short season of S2 images in some cases terminated data collection well before 

anthesis. Given that plant development and conditions around and after anthesis, 

particularly during grain filling, are known to strongly influence GPC, this 

shortcoming was significant. 

- With specific relevance to the regions considered here, there is a need for more 

information, for example regarding soil variability, to improve GPC predictions in the 

difficult edaphic conditions of CZ2. 

6.3. Future steps 

The author hypothesises that the methods proposed, developed, and tested in this project, or 

similar methods, could function as well in other continents and agronomic contexts and 

proposes that this be tested. Indeed, with regard to RS-based GPC estimation in wheat, many 

refinements are possible and many avenues remain open for investigation. For example, 

larger collections of GPC and RS data should be sought, so that a wider range of seasonal and 

agronomic conditions can be incorporated as training data for predictive algorithms. As 

protein monitors become more commonplace, GPC data will be more readily available for 

this purpose. Regarding temporal aspects, later TS images, extending at least past the primary 

vegetative growth phases and preferably anthesis, are also likely to improve GPC prediction 

where these are available. Spaceborne SIF timeseries, when in future they become available 

at within-field resolution, should be tested for their impact on model skill. Assessed by the 

results obtained with airborne SIF, such impacts should be positive, particularly late in 

seasons. The effectiveness of Cw as a replacement for CWSI should be tested in a broader 

range of agricultural and horticultural applications.  

Although pure RS approaches beguile, with distinct practical advantages, many other sources 

of ground-based information are available and would likely improve GPC prediction. It 

would be valuable to assess inputs including year-to-date rainfall or real-time soil moisture 
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information from monitoring probes. In regions affected by dune-swale morphology, relative 

elevation may also add predictive power. From the management perspective, agronomic 

information such as cropping history and past N mass balance or training on multi-year 

databases incorporating historic GPC responses may also be beneficial. Furthermore, RS may 

also be used to generate additional inputs, such as information from soil moisture monitoring. 

The studies presented here provide a basis for such future investigations. 

6.4. Scientific contribution and implications 

Specifically, the current thesis contributes to remote sensing and crop science because it: 

- Demonstrates robust new RS-based methods for GPC estimation in commercial wheat 

crops, identifying plant traits retrievable from airborne hyperspectral and Sentinel-2 

data that are physiologically relevant to GPC. 

- Proposes and advances GPC estimation via plant performance parameters retrieved by 

RTM inversion. The component studies are the first published works to use inverted 

parameters for this purpose.  

- Demonstrates that HS indicators of photosynthetic activity PRI and SIF are 

consistently associated with GPC in plot studies and make robust contributions to 

GPC prediction in crops. Cx+c, indicators of pre-visual physiological stress, are also 

shown as linked to harvest GPC. Further investigation of the physiological stress 

indicators found here to be associated with GPC could advance knowledge of stress 

diagnosis and trait~quality relationships in other food crops. 

- Demonstrates the sufficiency of S2 data, via timeseries analysis of PROSAIL-inverted 

parameters, for GPC estimation with low error. Because S2 data are available across 

large spatial extents at spatial resolution relevant to PA applications, associated 

research has potential to advance practical DSS and interventions to improve farm 

incomes and N efficiency. 
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- Confirms the high importance of water status indicators in GPC estimation in crops 

under terminal drought and shows S2 inverted Cw to be an effective proxy for thermal 

CWSI. As assessed in the conditions and with the methods of this study, Cw may 

obviate the need for thermal data at all. This has potential to simplify and expedite 

RS-based assessments of water stress without recourse to thermal sensors or ground 

data collection. 

- Confirms the usefulness of on-combine protein monitor data and machine learning as 

tools for predictive GPC modelling. 

The approaches and analyses developed in this project constitute novel contributions toward 

GPC estimation from RS data sources. As wheat is one of the world's staples and primary 

sources of protein, and while access to RS, GPC monitoring and PA techniques become more 

common, wheat GPC prediction will be increasingly relevant. It is hoped that the methods 

presented herein can assist in maintaining the profitability and minimising the environmental 

impact of cropping industries. 

*** 
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Appendix A 

Table A1. Vegetation indices (VI) calculated from hyperspectral reflectance captured over commercial wheat fields and assessed for 
multicollinearity with inverted traits and contribution to GPC estimation.  

Name Formula Reference 

Anthocyanin Reflectance Index 1 ARI1 = 1/R550 − 1/R700 Gitelson et al. (2001) 

Blue Index  B = R450/R490 - 

BF1  BF1 = R400/R410 - 

BF2 BF2 = R400/R420 - 

BF3  BF3 = R400/R430 - 

BF4  BF4 = R400/R440 - 

BF5  BF5 = R400/R450 - 

Blue/green indices1  BGI1 = R400/R550 Zarco-Tejada et al. (2012, 2005) 

Blue/green indices2  BGI2 = R450/R550 Zarco-Tejada et al. (2012, 2005) 

Blue/red indices1  BRI1 = R400/R690 - 

Blue/red indices2  BRI2 = R450/R690 - 

Carotenoid Index  CAR = R515/R570 Hernández-Clemente et al. (2012) 

Canopy Chlorophyll Index CCI = R720/R700 Sims et al. (2006) 

Chlorophyll Index  CI = R750/R710 Zarco-Tejada et al. (2001) 

Chlorophyll Index - green CIg = R840/R560 − 1 Gitelson et al. (2003) 

Chlorophyll Index - red edge CIre = R750/R700 − 1 Gitelson et al. (2003) 

Carotenoid Reflectance Indices 500  CRI550 = 1/R510 − 1/R550 Gitelson et al. (2006, 2003) 

Carotenoid Reflectance Indices 550, 515  CRI550, 515 = 1/R515 − 1/R550 Gitelson et al. (2006, 2003) 

Carotenoid Reflectance Indices 700 CRI700 = 1/R510 − 1/R700 Gitelson et al. (2006, 2003) 

Carotenoid Reflectance Indices 700, 515  CRI700, 515 = 1/R515 − 1/R700 Gitelson et al. (2006, 2003) 

Carter indices1  Ctr1 = R695/R420 Carter (1994) 

Reflectance Curvature Index  CUR = (R675 ⋅ R690) / R683
2 Zarco-Tejada et al. (2000) 

Chlorophyll Vegetation Index CVI = (R840 ⋅ R670) / R550
2 Vincini et al. (2008) 
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Reflectance band ratio indices DCabCxc = R672 / (R550 ⋅ 3 ⋅ R708) Datt (1998) 

Double-peak Canopy Nitrogen Index DCNI = [(R720 − R700) / (R700 − R670)] / (R720 − R670 + 0.03) Chen et al. (2010) 

Enhanced Vegetation Index EVI = 2.5 ⋅ (R800 − R670) / (R800 + 6 ⋅ R670 − 7.5 ⋅ R450) + 1 Liu & Huete (1995) 

Enhanced VI (NIR) EVINIR = 2.5 ⋅ (R800 − R670) / (R800 + 6 ⋅ R670 − 7.5 ⋅ R800) + 1 Longmire et al. (2022) 

Greenness Index  G = R570/R670 Zarco-Tejada et al. (2001) 

Green Leaf Index GLI = ((2 ⋅ (R550)) − R670 − R450) / ((2 ⋅ (R550)) + R670 + R450 Louhaichi et al. (2001) 

Gitelson & Merzlyak indices1  GM1 = R750/R550 Gitelson and Merzlyak (1996) 

Gitelson & Merzlyak indices2 GM2 = R750/R700 Gitelson and Merzlyak (1996) 
Green Normalized Difference Vegetation 
Index 

gNDVI = (R840 − R550) / (R840 + R550) Gitelson et al. (1994a) 

Healthy-index HI = ((R534 − R698) / (R534 + R698)) − 0.5 ⋅ R704 Mahlein et al. (2013) 

Lichtenthaler Index 2  LIC2 = R440/R690 Lichtenthaler (1996) 

Lichtenthaler Index 3 LIC3 = R440/R740 Lichtenthaler (1996) 

Modified Chlorophyll Absorbance Index MCARI = (R700 − R670) − 0.2 ⋅ (R700 − R550) ⋅ (R700/R670) Haboudane et al. (2002) 

MCARI/MTVI2 ratio 
MCARI / MTVI2 = ((R700 − R670) − 0.2 ⋅ (R700 − R550) ⋅ (R700/R670)) / (1.5 ⋅ (1.2 ⋅ 
(R800 − R550) − 2.5 ⋅ (R670 − R550)) / √(((2 ⋅ R800 + 1)^2) − (6 ⋅ R800 − 5 ⋅ √(R670)) − 
0.5)) 

Eitel et al. (2008) 

Modified Chlorophyll Absorbance Index 
1 

MCARI1 = 1.2(2.5(R800 − R670) − 1.3 ⋅ (R800 − R550)) Haboudane et al. (2004) 

Modified Chlorophyll Absorbance Index 
2 

MCARI2 = 1.5 ⋅ (2.5 ⋅ (R800 − R670) − 1.3 ⋅ (R800 − R550)) / √(((2 ⋅ R800 + 1) ⋅ (2 ⋅ R800 
+ 1)) − (6 ⋅ R800 − 5 ⋅ √(R670)) − 0.5) 

Haboudane et al. (2004) 

Modified Soil Adjusted Vegetation Index MSAVI = (1 + L) ⋅ ((R800 − R670) / (R800 + R670 + L) Qi et al. (1994) 

MERIS total chlorophyll index MTCI = (R754 – R709) / (R709 – R681) Dash and Curran (2004) 

Modified Triangular Vegetation Index 1 MTVI1 = 1.2 ⋅ (1.2 ⋅ (R800 − R550) − 2.5 ⋅ (R670 − R550)) Haboudane et al. (2004) 

Modified Triangular Vegetation Index 2 
MTVI2 = 1.5 ⋅ (1.2 ⋅ (R800 − R550) − 2.5 ⋅ (R670 − R550)) / √(((2 ⋅ R800 + 1)2) − (6 ⋅ R800 
− 5 ⋅ √(R670)) − 0.5) 

Haboudane et al. (2004) 

Normalized Difference Index (red edge) NDREI = (R674 – R712) / (R674 + R712) Delegido et al. (2013) 

Normalised Difference Vegetation Index NDVI = (R800 − R670) / (R800 + R670) Rouse et al. (1974) 
Normalized difference vegetation index 
green-blue 

NDVIgb = (R573 − R440) / (R573 + R440) Hansen and Schjoerring (2003) 

Normalized green-red difference index NGRDI = (R550 − R670) / (R550 + R670) Tucker (1979) 

Normalized Pigments Index  NPCI = (R680 − R430) / (R680 + R430) Peñuelas et al. (1994) 
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Normalized Phaeophytinization Index NPQI = (R415 − R435) / (R415 + R435) Barnes et al. (1992) 
Optimized Soil Adjusted Vegetation 
Index 

OSAVI = ((1 + 0.16) ⋅ (R840 − R670)) / (R840 + R670 + 0.16) Rondeaux et al. (1996) 

Photochemical Reflectance Index PRI = (R550 − R531) / (R550 + R531) Gamon et al. (1992) 

Photochemical Refl. Index (515)  PRI515 = (R515 − R531) / (R515 + R531) Sukhova et al. (2022) 

Photochemical Refl. Index (570) PRI570 = (R570 − R531) / (R570 + R531) Sukhova et al. (2022) 

Carotenoid/Chlorophyll Ratio Index PRI ⋅ CI = (R570 − R530) / (R570 + R530) ⋅ ((R760/R700) − 1) Garrity et al. (2011) 

Photochemical Refl. Index (512)  PRIm1 = (R512 − R531) / (R512 + R531) Hernández-Clemente et al. (2011) 

Photochemical Refl. Index (600)  PRIm2 = (R600 − R531) / (R600 + R531) Hernández-Clemente et al. (2011) 

Photochemical Refl. Index (670) PRIm3 = (R670 − R531) / (R670 + R531) Hernández-Clemente et al. (2011) 

Photochemical Refl. Index (670 and 570) PRIm4 = (R570 − R531 − R670) / (R570 + R531 + R670) Hernández-Clemente et al. (2011) 

Normalized Photoch. Refl. Index PRIn = PRI / (RDVI R700/R670) Zarco-Tejada et al. (2013c) 

Pigment Specific Normalized Difference PSNDc = (R800 − R470) / (R800 + R470) Blackburn (1998) 

Plant Senescence Reflectance Index PSRI = (R648 – R858) / R555 Ren et al. (2017) 

Pigment Specific Simple Ratio a PSSRa = R800/R675 Blackburn (1998) 

Pigment Specific Simple Ratio b PSSRb = R800/R650 Blackburn (1998) 

Pigment Specific Simple Ratio c PSSRc = R800/R500 Blackburn (1998) 

Plant Water Index PWI = R970/R900 Peñuelas et al. (1993) 

R920/R729 R920/R729 - 

R950/R770 R950/R770 - 

Ratio Analysis of Reflectance Spectra  RARS = R746/R513 Chappelle et al. (1992) 
Renormalised Difference Vegetation 
Index 

RDVI = (R840 − R670) / √(R840 + R670) Roujean & Breon (1995) 

Relative greenness index RGI = R690/R550 Ceccato et al. (2001) 
RNIR Carotenoid Reflectance Indices 
510, 550 

RNIR/CRI510, 550 = (1/R510) − (1/R700) ⋅ R770 Gitelson et al. (2006, 2003) 

RNIR Carotenoid Reflectance Indices 
510, 700 

RNIR/CRI510, 700 = (1/R510) − (1/R550) ⋅ R770 Gitelson et al. (2006, 2003) 

Ratio vegetation index (= simple ratio) RVI = R840/R670 Jordan (1969) 

Ratio Vegetation Index I RVI1 = R810/R660 Zhu et al. (2008) 

Ratio Vegetation Index II RVI2 = R810/R560 Xue et al. (2004) 
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Soil Adjusted Vegetation Index SAVI = ((1.5) ⋅ (R840 − R670)) / (R840 + R670 + 0.5) Huete (1988) 

Structure-Intensive Pigment Index SIPI = (R800 − R445) / (R800 + R680) Peñuelas et al. (1995) 

Simple Ratio Pigment Index  SRPI = R430/R680 Peñuelas et al. (1995) 
Transformed Chlorophyll Absorption in 
Reflectance Index 

TCARI = 3 ⋅ [(R700 - R670) - 0.2 ⋅ (R700 - R550) ⋅ (R700 / R670)] Haboudane et al. (2002) 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 

Triangular Chlorophyll Index TCI = (1.2 ⋅ (R700 − R550)) − (1.5 − (R670 − R550)) ⋅ (√(R700 / R670)) Broge and Leblanc (2001) 

Triangular Greenness Index TGI = −0.5 ⋅ (190 ⋅ (R670 − R550)) − 120 ⋅ (R670 − R480) Hunt et al. (2011) 

Triangular Vegetation Index TVI = 0.5 ⋅ (120 ⋅ (R750 − R550) − 200 ⋅ (R670 − R550)) Broge & Leblanc (2001) 

Visible atmospherically resistant index VARI = (R550 − R670) / (R550 + R670 − R450) Gitelson et al. (2002) 

Vogelmann1 VOG1 = R740/R720 Vogelmann et al. (1993) 

Vogelmann2  VOG2 = (R734 − R747) / (R715 + R726) Vogelmann et al. (1993) 

Vogelmann3  VOG3 = (R734 − R747) / (R715 + R720) Vogelmann et al. (1993) 

Zarco-Tejada & Miller Index ZMI = R750/R710 Zarco-Tejada et al. (2001) 
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Table A2. Vegetation indices (VI) calculated from Sentinel-2 reflectance captured over commercial wheat fields and assessed for 
multicollinearity with inverted traits and contribution to GPC estimation. Solar-induced fluorescence (SIF) and crop water stress index 
(CWSI) are from airborne hyperspectral and thermal imagery. 

Name Formula Reference 

Adjusted Transformed Soil-Adjusted VI ATSAVI = a⋅(R800 - a⋅R670 - b / a⋅R800 + R670 - a⋅b + X(1 + a2)) Baret and Guyot  (1991) 

Aerosol Free VI1600 AFRI1510 = R800 - 0.66 ⋅ (R1600/R800 + 0.66 ⋅ R1600) Karnieli et al. (2001) 

Aerosol Free VI2100 AFRI2100 =  R800 - 0.66 ⋅ (R2100/R800 + 0.66 ⋅ R2100) Karnieli et al. (2001) 

Atmospherically Resistant VI ARVI = R800 - R670 - y⋅(R670 - R450) / R800 + R670 - y⋅(R670 - R450) Bannari et al. (1995)  

Chlorophyll Index CI = R750/R710 Zarco-Tejada et al. (2001) 

Chlorophyll Index (green) CIg = R783/R560 – 1 Gitelson et al. (2003) 

Chlorophyll Index (red edge) CIre = R783/R705 – 1 Gitelson et al. (2003) 

Difference VI DVI = g⋅R800 - R670 Richardson and Wiegand (1991) 

Global Environment Monitoring Index GEMI = n⋅(1−0.25n) ⋅ (R670 - 0.125 / 1 - R670) Bannari et al. (1995) 

Double-peak Canopy Nitrogen Index DCNI = [(R720 - R700) / (R700 - R670)] / (R720 - R670 + 0.03) Chen et al. (2010) 

Enhanced VI EVI = 2.5 ⋅ (R800 - R670) / (R800 + 6 ⋅ R670 - 7.5 ⋅ R450) + 1 Liu & Huete (1995) 

Enhanced VI (NIR) EVINIR = 2.5 ⋅ (R800 - R670) / (R800 + 6 ⋅ R670 - 7.5 ⋅ R800) + 1 Longmire et al. (2022) 

Green Normalized Difference VI gNDVI = (R800 - R550) / (R800 + R550) Gitelson et al. (1996) 

Inverted Red-Edge Chlorophyll Index IRECI = (R783 - R665) / (R705 + R740) Frampton et al. (2013) 

Maccioni Index Macc = (R780 - R710) / (R780 - R680) Maccioni et al. (2001) 

Modified Chlorophyll Abs. Ratio Index MCARI = ((R700 - R670) - 0.2 ⋅ (R700 - R550)) ⋅ (R700/R670) Haboudane et al. (2004) 

Modified Chlorophyll Abs. Ratio 
Index1510 

MCARI1510 = ((R700 - R1510) - 0.2 ⋅ (R700 - R550)) ⋅ (R700/R1510) Herrmann et al. (2010) 

MCARI/OSAVI 705, 750 R705, R750 for red, NIR bands of MCARI/OSAVI  Wu et al. (2008) 

Modified Simple Ratio MSR = R800/R670 - 1 / (R800/R670)2 + 1 Chen et al. (1996) 

Modified Soil Adjusted VI MSAVI = 2 ⋅ R800 + 1 - √(2 ⋅ R800+1)2 – 8 ⋅ (R800 - R670) / 2 Qi et al. (1994) 

MERIS Terrestrial Chlorophyll Index MTCI = (R754/R709) / (R709 - R681) Dash and Curran (2004) 

Normalised Difference Index NDI = (R706 - R664) / (R706 + R664) Delegido et al. (2011) 

Normalised Difference VI NDVI = (R800 - R670) / (R800 + R670) Rouse et al. (1974) 

Normalised Difference RE 1 NDRE1 = (R740 - R705) / (R740 + R705) Barnes et al. (2000) 
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Normalised Difference RE 2 NDRE2 = (R783 - R705) / (R783 + R705) Sims and Gamon (2002) 

Normalised Difference Water Index NDWI1510 = (R800 - R1510) / (R800 + R1510) Gao (1996) 

Optimized Soil Adjusted VI OSAVI = (1 + 0.16) ⋅ (R800 - R670 / R800 + R670 + L) Rondeaux et al. (1996) 

Optimized Soil Adjusted VI1510 OSAVI1510 = (1 + 0.16) ⋅ (R800 - R1510 / R800 + R1510 + L) Herrmann et al. (2010) 

Pigment Specific Simple Ratio Chla PSSRa = R800/R680 Blackburn (1998) 

Ratio VI - Simple Ratio 800/670 RVI = R800/R670 Pearson and Miller (1972) 

Red, Green Ratio Index IRG = R670 - R550 Gamon and Surfus (1999) 

Renormalised Difference VI RDVI = R800 - R670 / √R800 + R670 Roujean and Breon (1995) 

Sentinel-2 Red-Edge Position S2REP = 705 + 35 ⋅ (R783 + R665) / 2 - R705 / (R740 - R705) Frampton et al. (2013) 

Transformed Chlorophyll Abs. in 
Reflectance Index 

TCARI = 3 ⋅ [(R700 - R670) - 0.2 ⋅ (R700 - R550) ⋅ (R700/R670)] Haboudane et al. (2002) 

Transformed Chlorophyll Abs. in 
Reflectance Index1610 

TCARI1510 = 3 ⋅ [(R700 - R1510) - 0.2 ⋅ (R700 - R550) ⋅ (R700/R1510)] Herrmann et al. (2010) 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 

TCARI/OSAVI705, 750 R705, R750 for red, NIR bands of TCARI/OSAVI  Wu et al. (2008) 

Plant Water Index PWI = R970/R900 Peñuelas et al. (1993) 

Crop Water Stress Index 

CWSI = 
(்௖ି்௔)ି(்௖ି்௔)ಽಽ

(்௖ି்௔)ೆಽ ି (்௖ି்௔)ಽಽ
  

where: 
(Tc − Ta)LL = −3.25·VPD + 3.38, Tc = canopy temperature, Ta = air temperature, 
VPD = vapour pressure deficit 

Idso (1982) 

Solar-induced fluorescence 
(mW/m2/nm/sr) 

SIFFLD2 = d-R·b, where: R = (c-d)/(a-b), a = E750, b = E762, c = L750 and d = L762 Plascyk and Gabriel (1975) 
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Assessment of crop traits retrieved from airborne hyperspectral and thermal 
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A B S T R A C T   

Wheat (Triticum spp.) is among the world’s most widely grown crops and receives large quantities of nitrogen (N) 
fertiliser. Grain protein content (GPC) is influenced by genetic, agronomic and weather conditions affecting 
crops’ physiological status and stress levels; accurate GPC prediction has potential to reduce N losses and 
improve profit. Success in GPC estimation from remotely sensed plant traits has been limited. For progress to be 
made, it is necessary to robustly identify imaging spectroscopy-based physiological traits most closely associated 
with GPC in both experimental and commercial contexts. We present results from piloted hyperspectral flights 
and ground campaigns at two dryland field experiments with divergent water supply and wide-ranging N 
treatments, and from two years’ flights over 17 commercial fields planted to either bread (T. aestivum) or durum 
(T. durum) wheat, in the southern Australian wheat belt. Imagery was acquired with airborne hyperspectral and 
thermal sensors, with spatial resolutions of approx. 0.3 m and 0.5 m for experimental plots and 1 m/1.7 m in 
commercial fields. Leaf clip measurements, leaf and grain samples were collected and, in commercial fields, 
~40,000 records obtained from harvester-mounted protein monitors. Crop Water Stress Index (CWSI), solar- 
induced fluorescence (SIF), reflectance indices and PRO4SAIL radiative transfer model inverted parameters 
were retrieved for each plot and GPC record location. The photochemical reflectance index (PRI) related to 
xanthophyll pigments was consistently associated with GPC at both leaf and canopy scale in the plots and 
transect. In the commercial crops, a gradient boosted machine learning algorithm (GBM) ranked CWSI as the 
strongest indicator of GPC under severe water stress, while SIF, PRI and inverted biochemical constituents an
thocyanins and carotenoids were consistently important under more benign conditions. Structural parameters 
inverted from the hyperspectral reflectance imagery were not prominent except under severe drought. We 
attained statistically significant results estimating GPC in unseen samples, with best relationships between 
predicted and observed GPC of r2 = 0.80 in a model built with thermal and physiological traits obtained from the 
hyperspectral and thermal imagery.   

1. Introduction 

Combined, bread (Triticum aestivum L.) and durum wheat (T. durum 
Desf.) provide >20% of humans’ carbohydrate (CHO) and protein needs 
(Shiferaw et al., 2013). Bread wheat receives ~17% of global nitrogen 
(N) fertiliser (Heffer and Prud’homme, 2020), but in Australia, a major 
wheat producer, only ~40% of fertiliser N is assimilated in the year of 
application (Angus and Grace, 2017). This is a major expense for farmers 
(Monjardino et al., 2015), and has severe environmental costs (Sutton 

et al., 2011). Grain protein content (GPC) determines the economic and 
nutritional value of grain and the rheological properties of flour. While 
most of the N and protein ultimately translocated to the grain is already 
in the plant before anthesis (Giuliani et al., 2011; Lopez-Bellido et al., 
2004; Masoni et al., 2007), GPC is also influenced by the amount of soil 
N plants can extract, especially during grain filling (Gooding et al., 2007; 
Jamieson and Semenov, 2000; Ottman et al., 2000). Post-anthesis, CHO 
are accumulated while photosynthesis proceeds, but drought or heat 
may depress assimilation, reducing protein dilution (Gooding et al., 
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2007). Further, early season N oversupply can exacerbate drought stress 
if vigorous early growth exhausts soil moisture (Angus and Fischer, 
1991; van Herwaarden et al., 1998). Pre-harvest knowledge of GPC 
could allow forecasting for grain segregation or blending and hence 
access to price premiums (Apan et al., 2006), while GPC monitoring at 
harvest opens opportunities for analysis (Whelan et al., 2009) so far little 
explored. Piloted light aircraft can carry multiple sensors to capture 
thermal and hyperspectral images concurrently. This allows efficient 
operation over individual fields of up to 300 Ha and up to 6500 Ha in 
equivalent light conditions on a single day; UAV payloads are insuffi
cient for such large-scale operations particularly when advanced 
hyperspectral imagers and several instruments are used concurrently. 

Vegetation indices (VI) from remote sensing (RS) have often been 
used to estimate wheat yield. The normalised difference VI (NDVI; 
(Rouse et al., 1974)), the most-used index in agriculture (Herrmann 
et al., 2010) correlates with yield, especially at coarse spatial scales 
(Becker-Reshef et al., 2010; Dempewolf et al., 2014; Lai et al., 2018; 
Toscano et al., 2019), through its sensitivity to crop cover and leaf area 
index (LAI). However, NDVI saturates at high biomass, causing models 
to fail (Baret and Guyot, 1991; Eitel et al., 2008; Zarco-Tejada et al., 
2005), is unreliable where other factors intervene between biomass and 
yield, and lacks transferability. Other VIs have been used in yield esti
mation, especially those based in the red edge which can account for 
chlorophyll concentration as a proxy for crop physiological status. 

Grain quality assessment, in particular GPC and grain N content 
(GNC), is less advanced than yield assessment, but hyperspectral RS is 
promising as it quantifies variables with physiological links to grain 
quality. GPC estimations have been based on satellite (Feng et al., 2014; 
Wang et al., 2014; Wright et al., 2004; Zhao et al., 2005) and airborne 
imagery (Jensen et al., 2007; Prey and Schmidhalter, 2019; Raya-Sereno 
et al., 2021; Rodrigues et al., 2018), mostly in experimental plots. This 
typically induces GPC variability but limits the scope of conclusions by 
omission of commercial settings. Where tested over multiple seasons, 
estimates of wheat GPC, and the specific predictors most suited to doing 
so, have lacked consistency, but for both yield and GPC, observations 
around early grain filling ((Zadoks et al., 1974); development stage 
Z65—73) appear optimal (Apan et al., 2006; Jensen et al., 2007; Lopez- 
Bellido et al., 2004; Prey and Schmidhalter, 2019; Raya-Sereno et al., 
2021). To the best of our knowledge, the objective of assessing wheat 
GPC from hyperspectral RS data at commercial scale has been addressed 
only in a single-year study with ~200 sampling points in one 86 ha field 
(Rodrigues et al., 2018). We build on previous work (Rodrigues et al. 
(2018) and make progress focusing on the understanding of specific 
spectrally derived plant traits such as biochemical constituents and 
structural traits to evaluate their importance across experimental and 
commercial fields, over two years and including advanced traits such as 
thermal indicators of water stress and solar-induced fluorescence. 

Empirical VI-based models predominate for estimating biophysical 
parameters including pigment concentrations, leaf N and structural as
pects related to crop condition and GPC from hyperspectral data (Fer
werda et al., 2005; Herrmann et al., 2010). Narrow band hyperspectral 
reflectance indices (NBHI) have been used successfully in chlorophyll 
(Ca+b) and N estimation in wheat (Li et al., 2014; Wang et al., 2012); 
some are designed to disentangle leaf biochemistry from structural 
variables and water status. Many successful VIs incorporate the red edge 
for its strong correlations with Ca+b (Clevers and Gitelson, 2013; 
Haboudane et al., 2008; Prey and Schmidhalter, 2019). These include 
the normalised difference red edge index (NDRE; (Gitelson and Mer
zlyak, 1994a)), used to retrieve Ca+b in wheat (Li et al., 2015). Devised 
to overcome canopy effects, the Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI; (Haboudane et al., 2002)) normalised by the 
Optimised Soil-Adjusted Vegetation Index (OSAVI; (Rondeaux et al., 
1996)) estimated Ca+b (Gonzalez-Dugo et al., 2015) and total N (Klem 
et al., 2018) in wheat. (Zhao et al., 2020) predicted yield in commercial 
wheat using two indices focused in the red edge: the chlorophyll index 
(CI; (Gitelson et al., 2003)), and OSAVI. Raya-Sereno et al. (2021) found 

that RE indices consistently correlated better than other indices with 
GPC, and that the NDRE was a relatively stable indicator of GNC over 
four years. Similarly, Li et al. (2020) obtained the best of moderate re
sults estimating GPC with the double-peak canopy N index (DCNI; (Chen 
et al., 2010)) and CI. In contrast, in a study estimating GPC from 
airborne multispectral data, greater importance was attributed to the 
red and NIR domains, than to the RE (Zhou et al., 2021). Rodrigues et al. 
(2018) found that combinations of green- and RE bands performed best. 

Indices also target anthocyanins (Anth) and carotenoids (Cx+c), 
whose stress responses suggest them as indicators of GPC. Anth are 
upregulated under water stress (Chalker-Scott, 2002; Naing and Kim, 
2021), can be high in senescing leaves (Sims and Gamon, 2002), and 
post-anthesis drought increases their accumulation in grain (Li et al., 
2018). Cx+c are produced in response to photooxidative, water and heat 
stress (Groth et al., 2020; Janeczko et al., 2018). The photochemical 
reflectance index (PRI; (Gamon et al., 1992)) is sensitive to Cx+c and 
reacts to instantaneous changes in water stress and photosynthetic rate 
(Feng et al., 2017; Magney et al., 2016). PRI is a pre-visual indicator of 
water stress and recovery and is proposed as an alternative to thermal RS 
for water stress detection (Kohzuma et al., 2021; Suárez et al., 2008). 
PRI has been used to improve yield estimates and discriminate water and 
disease stress in wheat (Feng et al., 2017; Magney et al., 2014). Along
side PRI, the carotenoid index CAR (Zarco-Tejada et al., 2013b) has 
shown moderately strong relationships with yield across rainfed and 
irrigated bread and durum wheat (Gonzalez-Dugo et al., 2015). Despite 
the links between stress and GPC and use of CAR and PRI in stress 
detection, neither index seems to have been tested as a predictor of GPC 
in wheat. 

As an alternative to VIs, whose empirical relationships with crop 
performance measures may vary across seasons and locations, parame
ters retrieved by radiative transfer models (RTM) are more robust across 
location, phenological stage and crop type (Clevers and Kooistra, 2012; 
Dorigo et al., 2007; Jacquemoud et al., 1995). By linking leaf and canopy 
models, biochemical and structural parameters at each level can be 
estimated concurrently. Quantities directly associated with yield and/or 
GPC, including Ca+b and LAI, and others that change more dynamically 
with stress such as Anth and Cx+c have been quantified by RTM inversion 
in wheat under water/N stress (Botha et al., 2010; Camino et al., 2018). 
Moreover, retrieval accuracies for PROSPECT and SAIL have been 
shown since early in RTM development (Bacour et al., 2002; Féret et al., 
2008; Jacquemoud et al., 2009, 1995; Li et al., 2015; Ustin et al., 2009). 

Solar-induced fluorescence (SIF) is a proxy for the functional status 
of vegetation, instantaneous photosynthetic rate and assimilation 
(Genty et al., 1989; Meroni et al., 2009; Mohammed et al., 2019). SIF 
shows diurnal and seasonal variations in photosynthetic rate and is key 
to stress diagnosis (Poblete et al., 2020; Zarco-Tejada et al., 2018, 2016, 
2013a). In bread and durum wheat, SIF has been combined with Ca+b 
and leaf structural traits to diagnose N deficiency and water stress 
(Camino et al., 2018). SIF variability should therefore parallel relative 
CHO availability during grain filling in wheat. While Cx+c, SIF, and PRI 
are sensitive to short-term changes induced by stress (Gamon et al., 
1992; Peñuelas et al., 1994), Ca+b and structural measures related to LAI 
reflect more temporally stable canopy traits with influence on GPC. 

Reduced stomatal conductance lowers leaf cooling and assimilation, 
making thermal data useful for tracking the effects of water stress 
(Gonzalez-Dugo et al., 2015; Grant et al., 2007; Idso, 1982). High tem
peratures and drought during grain filling correlate with higher GPC 
because plants’ capacity to dilute protein with newly assimilated CHO is 
lower (Daniel and Triboı̈, 2002; Gooding et al., 2003); these also shorten 
grain filling by accelerating phenology and starch insolubilisation 
(Daniel and Triboı̈, 2002). Water stress indicators have consistently 
improved estimates of wheat yield (e.g. Gonzalez-Dugo et al., 2015; 
Zhao et al., 2020). 

Gradient boosting/boosted machines (GBM) are a machine learning 
algorithm based on work by Friedman (2001). With good predictive 
skill, robustness to multicollinearity and the ability to deal with large 
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numbers of both input features and observations in a computationally 
efficient way (Ruan et al., 2022), GBMs assess input features’ impor
tance in terms of the gain they bring to a model (Grinberg et al., 2020). 
GBM use with RS data has included estimation of leaf N (Yang et al., 
2021) and yield (Cao et al., 2020; Ruan et al., 2022) in wheat, but GPC 
estimation to date has been based solely on genotype data (Grinberg 
et al., 2020). To advance GPC estimation from RS, the variables most 
closely associated with it should be identified and their stability across 
cropping situations assessed; tree-based algorithms such as GBM and RF 
have the advantages both of offering feature importance assessment, the 
primary focus of our work, and of being among the most accurate ML 
algorithms (Abdi, 2020; Ruan et al., 2022; Zhang et al., 2020). 

2. Materials and methods 

2.1. Study sites 

We consider experimental plots and commercial crops, grown under 
rainfed conditions at three locations in the southern Australian wheat 
belt with a variety of climatic regimes and soils. The plot trials were 
located at Birchip (site 1; 35.969◦S, 142.822◦E; altitude 102 m; average 
annual rainfall (AAR) = 353 mm) and Yarrawonga (site 2; 36.050◦S, 
145.983◦E; altitude 129 m; AAR = 470 mm; Fig. 1) and were planted in 
randomised complete block designs with hard white bread wheat (cv. 
Scepter) for N fertiliser treatment trials in 2019 (Fig. 1). Site 1 takes the 
Köppen-Geiger climate classification Bsk and site 2, Cfa (Peel et al., 
2007). Soils are classified as calcarosol and sodosols, respectively, based 
on the Australian Soil Classification (ASC; Isbell, 2002). Site 1 was sown 
on 2019-05-16 and N rates were adjusted according to in-season rainfall 
to target yield modelled with the Yield Prophet® decision support tool 
(Hochman et al., 2009; Hunt et al., 2006) and applied on 2019-08-10 at 
Z31. This produced small increments in N rates, some of which were 
grouped for analysis (Table 1). Site 2 was sown on 2019-05-09 and 
fertiliser was applied in equal doses at Z23 and Z31. All plots were 
approx. 12 × 2 m, treatments were replicated four times and agronomic 
procedures were equivalent. 

The commercial crops included hard white bread and durum wheat 
cultivars in 17 fields across 30 km of latitude around Kaniva (36.37◦S, 

141.24◦E; altitude 142 m; AAR = 451 mm; Fig. 2a). There, the dominant 
soils are vertosols, but both sodosols and chromosols are also common; 
the Köppen-Geiger climate classification for Kaniva is Cfb. Seven fields 
totalling 815 ha of bread and durum wheat were sown between 2019- 
05-15 and 2019-06-03; similar crops were sown from 2019-05- 
12–2019–06–05 across 10 fields (1039 ha). Fertiliser was applied 1–3 
times each season, usually as urea. Dualex and SpectraPen leaf clip 
observations and soil samples were taken in a transect across one field, 
M01 (36.30◦S 141.35◦E), concurrent with the 2020 flight. Absent dif
ferential fertiliser treatments in the crops, K-means clustering (Hartigan 
and Wong, 1979) by GPC was used to divide the transect data into three 
levels for analysis. 

2.2. Ground data collection and laboratory processes 

Dualex (FORCE-A, Orsay, France) and SpectraPen (PSI, Drasov, 
Czech Republic) measurements were made on the adaxial surface of 

Fig. 1. Yarrawonga (site 2) experimental area, Victoria, Australia (a); site 2 plot layout on false colour hyperspectral image (b); site 2 (c) and site 1 (d) study plots 
with N fertiliser treatment levels (c). N application rates (kg N/ha): Y0 = 0, Y1 = 46, Y2 = 92, Y3 = 138, Y4 = 184; B0 = 0, B1 = 30 – 37, B2 = 98 – 104, B3 = 162 
– 171. 

Table 1 
Nitrogen fertiliser applied to experimental wheat plots at Birchip (site 1) and 
Yarrawonga (site 2). Pre-sowing soil N to 120 cm (site 1) and 100 cm (site 2). 
Fertiliser applied at sowing, on 2019-08-10 (Z31; site 1) and 2019-06-26 (Z23) 
and 2019-08-06 (Z31; site 2).  

Location Soil N 
(mg kg− 1) 

Total fertiliser 
(kg N/ha) 

Treatment 
(aggregated) 

Plots (n) 

Site 1  46.8 0 B0 4 
Birchip  30 B1 8   

37   
98 B2 8   
104   
162 B3 12   
167   
171  

Site 2  46.1 0 Y1 4 
Yarrawonga  46 Y2   

92 Y3   
138 Y4   
184 Y5  
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upper sun-adapted leaves central in plots. Ten measurements per plot 
were taken with each instrument, quasi-concurrently with flights and in 
equivalent light and meteorological conditions. Approximately 80 g of 
entire flag or other upper, sun-exposed leaves were cut from the central 
area of plots, sealed in plastic, refrigerated in transit then kept at − 20 ◦C 
until processing. Ten subsamples were taken from the central area of 
these cut leaves with leaf tissue punches of known diameter so that areal 
N content could be calculated; these discs were weighed before and after 
drying. Leaf tissue was dried at 65 ◦C for 48 h, then ground to a uniform 
powder in a ball mill and analysed by Dumas combustion for total N 
(mass %). Plots were machine harvested and the grain assessed for 
protein content by near infrared (NIR) spectroscopy (CropScan 3000B 
Grain Analyser, Next Instruments, Sydney Australia). Ambient temper
ature, barometric pressure and incoming shortwave and longwave ra
diation were recorded on the ground using a portable weather station 
(model WXT510, Vaisala, Helsinki, Finland). During commercial har
vesting, NIR spectrometers (CropScan 3000/3300H, Next Instruments), 
mounted on combine harvesters, collected GPC with location (±0.01 m) 
from real-time kinetic GPS. Dualex and SpectraPen measurements were 
also made during a transect across one field at Miram (M01) in 2020. 
Three soil samples from the top 15 cm were taken with a hand auger and 
mixed to represent each location, which was marked with a hand-held 
GPS (Garmin, Olathe, Kansas, USA). Samples were oven-dried at 65 ◦C 
for 48 h and mineral N extracted as per Rayment and Lyons (2010) on a 
Skalar San++ SFA (FlowAccess V 3.2). 

2.3. Airborne data collection 

Airborne hyperspectral and thermal images were collected by sen
sors flown on a light aircraft over plots at site 1 on 2019–10-03 (1409◦

days after sowing (DDAS)), site 2 on 2019-10-09 (1559 DDAS), and 
commercial fields near Kaniva on 2019-10-22 (bread wheat 1514 DDAS, 
durum 1736 DDAS) and 2020-10-28 (bread 1592 DDAS, durum 1742 

DDAS). Thermal time, and ambient temperature for CWSI calculation, 
were based on data from the Australian Bureau of Meteorology’s (BoM) 
recording station #78015 (Bureau of Meteorology, 2021). The hyper
spectral data were collected in the visible and near infrared (VNIR) 
domains with a hyperspectral VNIR sensor (VNIR E-Series model; 
Headwall Photonics, Fitchburg, MA, USA), capturing 371 bands from 
400 to 1001 nm at 8 nm per pixel, yielding 7 nm FWHM with a 25 µm 
slit. At 12-bit radiometric resolution, storage rate was 50 frames per 
second with exposure time of 18 ms and an 8 mm focal length. Radio
metric and spectral calibration was completed in the laboratory prior to 
flights. Atmospheric correction of radiance was applied with the Simple 
Model of Atmospheric Radiative Transfer of Sunshine (SMARTS) model 
(Gueymard, 1995), using aerosol optical depth (AOD) observed at time 
of flight with a Micro-Tops II sunphotometer (Solar LIGHT Co., Phila
delphia, PA, USA). This method has previously been implemented for 
hyperspectral data (Calderón et al., 2015; Poblete et al., 2020; Zarco- 
Tejada et al., 2018). Orthorectification was performed using Para
metric Geocoding & Orthorectification for Airborne Optical Scanner 
Data (PARGE; ReSe applications GmbH, Wil, Switzerland) using the IMU 
and GPS flight data obtained from a VN-300 (VectorNav Technologies 
LLC, Dallas, TX, USA). Thermal images were collected in the 7.5–14 µm 
region with an A655c camera (FLIR systems, Wilsonville, Oregon, USA). 
Over commercial fields, images were acquired at ≈2000 m above 
ground level (AGL), yielding pixels of 1.0 m (hyperspectral) and 1.7 m 
(thermal) ground sampling distance (GSD). Images acquired at 350 m 
and 400 m AGL gave GSD = 0.15 m for hyperspectral at experimental 
site 1 and GSD = 0.2 m at site 2, respectively. Radiance (L), reflectance 
(R; Fig. 2b) and thermal (canopy temperature; Tc; Fig. 2c) values were 
aggregated to pixel mean per plot. Mean L and R spectra by fertiliser 
treatment level are shown for both plot sites in Fig. 3. 

The crop water stress index (CWSI) was calculated according to Idso 
et al. (1981), normalising canopy temperature (Tc) with air temperature 
(Ta) and vapour pressure deficit (VPD). 

Fig. 2. Wheat fields studied at Kaniva in 2019/2020, with soil types a), false-colour hyperspectral image (R = 775 nm, G = 710 nm, B = 678 nm; b), canopy 
temperature in Kelvin (c) and fields showing regions of interest (ROI) and areas excluded (d). 
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CWSI =
(Tc − Ta) − (Tc − Ta)LL

(Tc − Ta)UL− (Tc − Ta)LL
(1) 

The lower limit (Tc – Ta)LL represents the canopy/air temperature 
differential in a canopy transpiring at its maximum potential rate for a 
given VPD while the upper limit (Tc – Ta)UL represents the same for a 
canopy in which the transpiration flux is zero. The lower limit used here 
was defined by Idso (1982) and adopted by Gonzalez-Dugo et al. (2015). 

(Tc − Ta)LL = − 3.25⋅VPD + 3.38 (2)  

2.4. Data processing 

After their collection, the datasets were combined at each level’s 
primary study unit: plots, transect waypoints and regions of interest 
(ROI). Dualex data from the plots and transect were screened for outliers 
≥2 standard deviations from the plot or waypoint mean, and for erro
neous SpectraPen spectra, then aggregated to mean values and spectra 
per study unit. Data analysis for commercial fields was based on the 
geolocated GPC records collected during harvest. A 100 m2 ROI was 
established around each GPC point by buffering to a 5 m radius, then 
drawing bounding geometry for each point, and the GPC value adopted 
for the ROI (Fig. 2d). The 5 m radius was chosen so that ROI width was 
less than the harvester swath width (12 m) and to increase spatial 

independence between ROIs. Areas within 20 m of perimeter fences, 
dams, trees and cloud shadow, and all ROIs intersecting these, were 
excluded (Fig. 2b–d). A Wilcoxon test (Bauer, 1972) was applied to 
assess the significance and effect size of differences between GPC ob
servations across years and wheat types. Mean L and R spectra and Tc 
values were calculated from image pixels contained within each ROI; for 
L and R, n ≈ 100 pixels, Tc n ≈ 36 pixels. NBHI, inverted leaf and canopy 
parameters, solar-induced fluorescence (SIF) and CWSI were retrieved 
from airborne R, L, and Tc, respectively for all plots and ROIs. NBHI 
were also calculated from SpectraPen R at plot and transect scales. 
Where transect waypoints intersected with ROIs, airborne GPC, NBHI, 
inverted parameters, SIF and CWSI values retrieved for the ROI were 
assigned to waypoints. The NBHI relevant to later procedures are 
detailed in Table 2. Spatial analysis was done in QGIS (QGIS Develop
ment Team, 2020) and R (R Core Team, 2020). 

Analogously to Poblete et al. (2021), inverted leaf and canopy pa
rameters were retrieved with the PROSPECT-D (Féret et al., 2017) and 
4SAILH (Verhoef et al., 2007) radiative transfer models (RTM), linked as 
PRO4SAIL. PROSPECT-D was used to retrieve the leaf pigments Cx+c, 
Ca+b and Anth, while 4SAILH was used to estimate canopy structural 
traits LAI and leaf inclination distribution function (LIDFa) from mean 
plot and ROI spectra. RTM parameters were randomly sampled from 
uniform distributions in the ranges given in Table 3 to construct a look- 
up table (LUT) of 200,000 reflectance spectra simulations with their 

Fig. 3. Mean radiance (W/sr m− 2 nm− 1) and reflectance spectra captured by airborne hyperspectral sensors at Birchip (site 1; a, b) and Yarrawonga (site 2; c, d) 
by treatment. 
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associated leaf and canopy values. To compare synthetic and airborne 
spectra, the LUT was interrogated using support vector machine (SVM) 
algorithms run in MATLAB (MATLAB; Statistics and Machine Learning, 

Deep Learning and Parallel Computing toolboxes; Mathworks Inc., 
Natick, MA, USA), applying a radial basis function. Hyperparameters 
were optimised for each target variable during training, and inversions 
took simulated reflectance spectra as SVM inputs and plant/canopy 
characters as outputs. 

Fluorescence was retrieved using bands inside and outside the O2–A 
Fraunhofer line (FLD2; Plascyk and Gabriel, 1975) and based on irra
diance simulated with the SMARTS software (Gueymard, 1995), then 
convolved to the FWHM and spectral sampling interval (SSI) of the 
hyperspectral sensor. The inside band (762 nm) is the local minimum 
incoming irradiance at the relevant SSI while the outside band (750 nm) 
is on the shoulder of the O2–A line. 

To evaluate collinearity between inputs and reduce dimensionality, 
each year’s data were assessed by variance inflation factor analysis (VIF; 
R package fmsb; (Nakazawa, 2022)) with threshold = 5 (Akinwande 
et al., 2015). Multicollinear features were first excluded among NBHI; 
those surviving (VIF < 5) then underwent a second VIF analysis with the 
inverted parameters, CWSI and SIF. Variables thus chosen were kept 
only if they improved the ML model; these final input features were 
categorised into three layers: physiological (Anth, Ca+b, Cx+c, SIF, PRI); 
structural (EVINIR; hereafter ‘EVI’, LAI, LIDFa); and thermal (CWSI). 

2.5. Algorithms for GPC assessment 

A gradient boosted machine (GBM) machine learning (ML) algorithm 
was used to estimate, through supervised learning, relationships be
tween leaf and canopy traits and the target variable GPC. Our primary 
objective was to assess input features’ relative importance to GPC esti
mation (Chen and Guestrin, 2016). Feature importance, and the per
formance of models containing them, was assessed stepwise: 
physiological + structural + thermal (Model 1); physiological + struc
tural (Model 2); physiological (Model 2), as proposed by Friedman and 
Meulman (2003). 

The GBM used decision trees as its base learners, sub-models with 
weak predictive skill which learn from their predecessors’ error in 
estimating the target variable to iteratively improve the estimate (Chen 
and Guestrin, 2016). Datasets from each site were randomly split 70:30 
into training and test sets at each model run and passed to a linear 
function. Four model hyperparameters were varied across either three or 
four levels: learning rate, tree depth, minimum node size and stochastic 
gradient descent (SGD), and this space was searched by full factorial 
sampling. In SGD, each iteration runs on a randomly sampled subset of 
rows, introducing noise and improving robustness to overfitting. 
Randomised K-fold (K = 5) cross-validation (CV) was implemented, also 
to reduce overfitting. The combination of hyperparameters that mini
mised root mean square error (RMSE) was adopted as the top model for 
each training set, then applied to predict GPC in the relevant test set. 
Data analysis and ML were done in R (R Core Team, 2020) using the 
packages xgboost (Chen et al., 2021) for gradient boosting and caret 
(Kuhn, 2020) for model tuning. 

3. Results 

3.1. Plot experiments 

The 2019 growing season rainfall (GSR) at experimental site 1 was 
65% of long-term AAR, but with good soil moisture from 2018, while at 
site 2 GSR was 54% of AAR with low starting soil moisture. A strong 
gradient in GPC was seen at both sites, parallel with N dosing; GPC 
saturated under high N and was higher overall at the droughted site 2 
(Figs. 4 and 5b). 

Several leaf-level indicators were associated with higher GPC along 
the N treatment gradient at both sites 1 and 2. The NPCI, VOG1, ZMI, 
R920/R729 and PRIm3 (Hernández-Clemente et al., 2011) increased with 
fertiliser N rate (Fig. 5a, b) although trends with GPC were less distinct 
at site 2. At image level, structural indices NDVI and EVI increased in 

Table 2 
Indices calculated from spectra observed with the SpectraPen leaf clip instru
ment in plots at Birchip (site 1) and Yarrawonga (site 2) and in a transect of field 
M01 near Kaniva, and from airborne hyperspectral and thermal imagery 
captured in flights over the same plots and over commercial wheat fields near 
Kaniva. The table shows only those indices/calculations relevant to subsequent 
analyses.  

Type Name Formula Reference 

Chlorophyll 
a + b 

Red edge chlorophyll 
index 

CI = (R750/R700) 
− 1 

Gitelson et al. 
(2003) 

Normalised 
Pigments Index 

NPCI = (R680 −

R430)/(R680 +

R430) 

Peñuelas et al. 
(1994) 

Zarco-Tejada and 
Miller index 

ZMI = R750/R710 Zarco-Tejada et al. 
(2001) 

Vogelmann index 1 VOG1 = R740/ 
R720 

Vogelmann et al. 
(1993)  

Other 
pigments 

Photochemical 
Refectance Index 

PRI = (R531 −

R570)/(R531 +

R570) 

Gamon et al. (1992) 

Photochemical Refl. 
Index (670) 

PRIm3 = (R670 −

R531)/(R670 +

R531) 

(Hernández- 
Clemente et al., 
2011) 

Photochemical Refl. 
Index (670 and 570) 

PRIm4 = (R570 −

R531 − R670)/ 
(R570 + R531 +

R670) 

Hernández- 
Clemente et al. 
(2011)  

Structure Enhanced VI (NIR) EVINIR = 2.5* 
(R800-R670)/ 
(R800 + 6*R670- 
7.5*R800) 

This study 

Normalised 
Difference VI 

NDVI = (R840 −

R670)/(R840 +

R670) 

Rouse et al. (1974)  

Structure/ 
water 

R920/R729 R920/R729 L. Suárez (personal 
communication)  

Fluorescence Solar-induced 
fluorescence (mW/ 
m2/nm/sr) 

FLD2 = d-R*b, 
where R = (c-d)/ 
(a-b), 
a = E750, b =
E762, c = L750 and 
d = L762 

Plascyk and Gabriel 
(1975)  

Water status Crop Water Stress 
Index 

Refer to section 
2.3 

Idso (1982)  

Table 3 
Values and ranges of leaf and canopy traits used for PRO4SAIL (PROSPECT-D +
4SAIL) radiative transfer model inversion and look-up table generation.  

Parameter Abbreviation Value/range 

Chlorophyll a + b content [μg/cm2] Ca+b 3–70 
Carotenoid content [μg/cm2] Cx+c 1–20 
Anthocyanin content [μg/cm2] Anth 1–10 
Dry matter content [g/cm2] Cm 0.001–0.035 
Water content [g/cm2] Cw 0.001–0.035 
Mesophyll struct. Coef. N 0.5–3.0 
Leaf area index [m2/m2] LAI 1–5 
Leaf Inclination Dist. Func. [◦] LIDFa 0–90 
Hot spot parameter h 0.01 
Observer angle [deg.] tto 0 
Sun zenith angle [deg.] tts 47.7 
Relative azimuth angle [deg.] ψ 0  
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line with N treatment and GPC but saturated after the first treatment 
level at site 2 and after the second at site 1. The CI, PRIm4 and, as at leaf 
level, R920/R729 trended with GPC. Agreement between PRIm3 (leaf) and 
PRIm4 (canopy) was close, and leaf-level readings were lower at both 
sites (Fig. 5a–d). Each PRIm* tracked as well with GPC as with leaf N 
from optical and, where conducted, destructive sampling (Fig. 5e, f). 
Associations between image-level indicators and GPC were weaker at 
site 2 (Fig. 5c, d). Dualex observations were similar across sites: Ca+b and 
the Nitrogen Balance Index (NBI) had positive associations with GPC, 
with higher absolute readings at site 1, while Anth were inverted with 
respect to GPC. Leaf N from destructive sampling generally increased 
with N treatment at both sites, but like GPC declined in treatment Y4. 

Among parameters retrieved by RTM inversion, Ca+b trended with 
GPC at both sites, though with saturation at higher values, particularly 
at site 2 where Ca+b concentration was lower (Fig. 6a, b). Inverted Ca+b 
was significantly correlated with Dualex Ca+b (r2 = 0.61, p < 0.0001). 
Cx+c showed a minor trend parallel to GPC at site 2 but saturated after 
one N treatment and was lower range than at site 1, where no trend was 
seen. Anth trended higher with N treatment, and were in higher con
centration overall at site 1, but this relationship was inverted at site 2. 
LAI trended higher with N treatment at site 1, while at site 2 the opposite 
was seen, with saturation, and LAI values were very high. No alignment 
between SIF observations and treatment was seen at site 1, while SIF 
declined with higher N treatment, against GPC at site 2. CWSI was in a 
substantially higher range at site 2. The following relationships at site 1 
were statistically significant: Anth (R = 0.61, p < 0.01), Ca+b (R = 0.63, 
p < 0.01) and CWSI (R = − 0.52, p < 0.05). At site 2 these were: Anth (R 
= − 0.62, p < 0.01) and LAI (R = − 0.55, p < 0.05). 

3.2. Field transect 

The range of GPC at M01 was intermediate between sites 1 and 2, the 
crop had not senesced as much as at site 2 and retained soil moisture 
during our campaigns. At leaf level, VOG1, ZMI, R920/R729 (not shown) 
and PRIm3 trended with GPC, showing some saturation, while NPCI 
showed little association (Fig. 7a). Airborne NDVI, EVI, CI, R920/R729 
(not shown) and PRIm4 trended with GPC, all with saturation (Fig. 7b). 
The two PRI versions agreed closely. Inverted Ca+b was negatively 
associated with GPC, while Cx+c and Anth were positively associated 
with GPC (Fig. 7c). Dualex NBI and soil mineral N followed GPC 
(Fig. 7d). 

3.3. Commercial fields 

A large difference in growing conditions, especially low rainfall in 
2019 (280 mm) compared to 2020 (443 mm), also affected the com
mercial fields (Bureau of Meteorology 2021). Rainfall from December 
2018 until sowing in early May 2019 was also very low (87 mm) 
compared to the subsequent equivalent period (164 mm). Weather 
conditions changed suddenly around anthesis 2019, whereby frost was 
recorded on 9 October, and daily maxima of >35 ◦C were recorded in 
mid-late October. Flights over the 2019 bread wheat crop took place 
1514 DDAS in a year in the lowest decile of long-term AAR: the crop was 
under severe water stress. Remote sensing of bread wheat was done 
1592 DDAS in 2020, a year of rainfall at the long-term AAR. Data cap
ture for durum wheat was 1736 and 1742 DDAS in the respective years. 
Such conditions, especially the moisture contrast between soil types and 
years, can have large effects on grain protein. 

Mean commercial bread wheat GPC was higher in 2019 (mean =

Fig. 4. Plots at site 1 and site 2 with treatment (left of plots) and GPC (%, in italics; right) over false-colour hyperspectral image. Colours represent N rates (kg N/ha): 
B0 = 0, B1 = 30 – 37, B2 = 98 – 104, B3 = 162 – 171; Y0 = 0, Y1 = 46, Y2 = 92, Y3 = 138, Y4 = 184. 
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11.6, SD = 1.52) than 2020 (mean = 11.3, SD = 1.05; Wilcoxon’s p <
0.0001, effect size r = 0.489). Mean durum wheat GPC was higher in 
2020 (mean = 12.7, SD = 0.94) than in 2019 (mean = 11.9, SD = 1.18; 
Wilcoxon’s p < 0.0001, r = 0.360). GPC was significantly higher in 
durum than bread wheat in each year also (2019: p < 0.0001, r = 0.112; 
2020: p < 0.0001, r = 0.564). Wide GPC variability was also seen be
tween and within fields of each product type (Fig. 8). In a subset of our 
data, PRO4SAIL Ca+b and CI were strongly correlated (r2 = 0.86, p <
0.0001). 

Two reflectance indices, EVI and PRI, were both a) selected after VIF 
and b) robust across the two years of the study; these were retained as 

ML input features, supporting our finding of their correlations with GPC 
(Section 3.1). The relative importance of features to GPC estimation was 
quantified for input layers comprising: (i) physiological indicators Anth, 
Ca+b and Cx+c from model inversion, SIF and the photochemical 
reflectance index (PRI); (ii) structural indicators EVI, LAI and LIDFa; and 
(iii) the thermal-based CWSI. These inputs were supplied to the GBM 
algorithm as separate models: physiological + structural + CWSI (Model 

Fig. 5. Reflectance indices at leaf (a, d) and canopy level (b, e) and ground- 
truth indicators (c, f) by N fertiliser treatment at sites 1 (upper) and 2 
(lower). At site 1, n = 20 for ground observations (a) and n = 36 for airborne 
indices (c); at site 2, n = 19. Anth, Ca+b. and NBI in Dualex proprietary units; 
leaf N in mg N cm− 2. 

Fig. 6. Chlorophyll a + b, Carotenes, Anthocyanins and LAI (Ca+b, Cx+c, Anth; 
μg cm− 2, LAI; m2/m− 2(− |− )), retrieved by physical model inversion, plus solar- 
induced fluorescence (SIF; mW m− 2 nm sr) and crop water stress index (CWSI) 
from hyperspectral and thermal data at sites 1 (a; n = 36) and 2 (b; n = 19). 
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1); physiological + structural (Model 2); physiological (Model 3). 
Regarding Model 1 for bread wheat under drought in 2019, CWSI 
contributed 69% of total information, EVI 13% and the remainder was 
split (Fig. 9a). For model 1 in 2020, CWSI was second to Cx+c and EVI 
was also prominent in a more even distribution; Ca+b, PRI and SIF had 
low importance. Under Model 2, LAI and Cx+c were most important: Cx+c 
was most important feature in 2020 under all models (Fig. 9b). 

In durum wheat under Model 1, CWSI was important for GPC esti
mation consistently across years (Fig. 9d), while SIF ranked highly in 
both years and in 2020 was quasi-equivalent to PRI and Cx+c. Pigments 
Ca+b and Cx+c had high importance in 2019 but Ca+b ranked lower in 
2020. Structural features LAI, LIDFa and EVI, with Anth, occupied the 
lowest rankings in both 2019 and 2020. Under Model 2, importance was 
again evenly distributed and rankings were largely retained across in
puts and years (Fig. 9e): SIF was consistently ranked highest and the 

structural indicators lowest. Anth and Ca+b ranked highly in 2019 but 
declined in 2020, while PRI and LIDFa had higher importance in 2020. 
In Model 3 (Fig. 9f), SIF retained top rank across years while Ca+b was 
lower in 2020 than 2019 and PRI higher. 

3.4. Model predictive skill 

The skill of each model in predicting GPC in an unseen 30% of ob
servations was assessed for each combination of year/product/input 
layer by coefficient of determination (r2) and relative root mean square 
error (rRMSE; GPC (%); Table 4). In every case, more information gave 
better predictions: Model 1, with all three layers of input data, out
performed Models 2 and 3. The best GPC prediction was seen in the 2019 
bread wheat crop (r2 = 0.80, rRMSE = 0.62), when CWSI contributed a 
mean 69% of total predictive power. However, this year and crop also 
had the highest r2 when models 2 or 3 were used. In less water-stressed 
scenarios, the contribution of CWSI relative to total model skill was 
lower, confirming the tested physiological quantities as important in
dicators of GPC. Added to the physiological layer, the structural layer, 
comprising LAI, LIDFa and EVI, also increased model skill by between 11 
and 21% despite their low importance rankings. This was higher than 
the respective CWSI contribution in any year/product/model 
combination. 

4. Discussion 

4.1. Plot experiments 

Few studies have focused on GPC estimation using airborne hyper
spectral remote sensing. Our objective was to identify traits related to 
harvest GPC in bread and durum wheat in experimental and commercial 
settings. High GPC is common in conditions unfavourable for CHO 
production and translocation, observations verified through our focus 
on stress indicators. At site 2, N supply at the upper treatment levels 
manifestly exceeded plant requirements given the low starting soil 
moisture and rainfall. This N excess is shown by the high LAI, which was 
extreme for Australian wheat (Waldner et al., 2019) and far exceeded 
LAI at site 1 (Fig. 6). Similarly, high GPC and declining LAI and leaf N, 
especially at high fertiliser rates, are signs of excessive N at site 2 but not 
site 1 (Figs. 5 and 6). While a greater GPC response to fertiliser is ex
pected when grain filling is water limited (Angus and Fischer, 1991; 
Holford et al., 1992), and is seen in the comparison of our two sites, the 
site 2 GPC response saturated at heavy N applications, and at the highest 
level was below the next highest N treatment. Site 2 was also more 
advanced at the time of flights, and little extractable soil moisture 
remained: at the highest N treatment levels, high biomass worsened 
water stress, likely further restricting N uptake. Evidence for this is seen 
in declining leaf N and GPC in treatments Y3 and Y4, not seen in the 
more moderate moisture and calibrated N dosing of site 1. The close 
alignment of CI, VOG1 and ZMI with Ca+b and NBI at leaf level, inverted 
canopy Ca+b, and GPC supports findings of these indices’ links with leaf 
N (Ustin et al., 2009; Vogelmann et al., 1993; Zarco-Tejada et al., 2001), 
and GPC (Li et al., 2020). These associations were more pronounced at 
site 1 than at site 2. The VOG1 index correlated strongly with leaf N at 
site 1 and with Ca+b, NBI and GPC at both sites. This, and close associ
ations between NPCI and leaf N, support other findings in wheat (Ranjan 
et al., 2012), although NPCI was less closely associated with GPC. 
Further, higher ranges of CI, VOG1, ZMI and leaf- and canopy-level Ca+b 
at site 1, but higher GPC at site 2, suggest more advanced translocation 
at site 2, driven by senescence. This latter hypothesis is also supported 
by the reduction in LAI along the N gradient at site 2. 

While most traits and indices discussed above are stable over days to 
weeks, the PRI family of indices can change on much shorter timescales; 
however, given the stable weather, here PRI likely shows stable stresses. 
Especially at site 2, evidence for the physiological link between PRI and 
photosynthesis was seen in the similarity between PRI and GPC, via a 

Fig. 7. Leaf-level (a) and airborne (b) reflectance indices; Chlorophyll, Caro
tenes, and Anthocyanins (Ca+b, Cx+c, Anth; μg cm− 2), retrieved by physical 
model inversion (c) and ground-truth indicators Dualex Nitrogen Balance Index 
(NBI), soil mineral N (mg kg− 1; d), and grain protein content (GPC; %; d) by 
GPC-based k-means clusters in a transect of commercial wheat field M01 (n 
= 20). 
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clear inverse relationship between airborne SIF and GPC, and in lower 
overall SIF. Our findings accord with the inverse PRI ~ SIF relationship 
seen by Magney et al. (2016), Peñuelas et al. (1994) and Suárez et al. 
(2008). 

Although no conclusive CWSI trend was seen at either site, its higher 
range at site 2 aligned with that site’s lower SIF: SIF also declined at 
higher N treatments, likely due to greater drought stress. Seen together, 
high GPC, distinct alignments in the PRIm3 ~ GPC and CWSI ~ SIF re
sponses show strongly constrained assimilation at site 2 but not at site 1. 
This was also seen in the Cx+c response, which despite saturation was 
also associated with GPC. However Cx+c were also parallel with leaf N 
and Ca+b, so their response may simply reflect N nutrition, as seen by 
Shah et al. (2017) in wheat. At image capture, Cx+c were lower overall at 
site 2, likely due to prior remobilisation to the grain. Low Ca+b values at 
site 2, compared with site 1 and other work (Hamblin et al., 2014), also 
suggest that Ca+b declined before Cx+c (Gitelson and Merzlyak, 1994a, 
1994b). Given Anth upregulation under stress, one may expect high 
Anth to correspond to high GPC, but this was seen only in canopy Anth at 
site 1, which aligned with both leaf N and GPC. Alternatively, these 
observations may show a positive Anth response to N fertiliser 
(Yamuangmorn et al., 2018). At site 2, similar Anth responses at leaf and 
canopy levels, and their inversion with respect to N treatment and GPC, 
suggest that like Ca+b and Cx+c, Anth translocation had begun before 
data collection, especially in the high N treatments. Assessed on Cx+c 
and Anth, and if these compounds’ concentrations are taken as a func
tion of stress, site 1 appears more stressed. But Cx+c and Anth also 
respond positively to high N supply, and this suggests more accessible 
soil N at site 1 due to higher soil moisture. At site 2, strong declines in 
Anth at high N appear to confirm lower soil N accessibility at high N 
treatments and/or earlier senescence. NDVI and EVI are inferior to the 
indices discussed above as stress indicators, as seen previously (Gamon 
et al., 1992; Peñuelas et al., 1994) and showed little association with 
GPC. The consistency of the R920/R729. index with Ca+b, NBI, and GPC 
suggests it could be applied in GPC estimation, due to its component 

bands’ sensitivity to water, structure and Ca+b. 

4.2. Field transect 

As at site 1, inverted canopy Anth increased with GPC in the field 
transect. Also as at both plot sites, Cx+c was parallel with GPC, and with 
soil N in M01, supporting an effect of N nutrition, stress or both on GPC. 
The association of PRI with lower assimilation is evident at M01 through 
its alignment with GPC across the transect. Given that wheat in field 
M01 was at least as advanced in phenology during RS campaigns as the 
plot sites were, its substantially lower CWSI likely shows a better match 
of N supply to soil moisture than at either plot site, reflecting the con
trasting experimental and commercial objectives. 

4.3. Commercial fields 

The influence of heterogeneous soil moisture and N availability is 
strong and operates through mechanisms discernible in the leaf and 
canopy traits we retrieved. Our division of input features into thermal, 
structural and physiological layers, and their sequential removal from 
the model, allowed us to assess each input’s contribution to GPC esti
mation, and each layer’s influence on predictive skill. In each situation, 
especially high water stress, CWSI was an important indicator of GPC via 
its relationship with assimilation, but physiological features also showed 
commonalities across moisture conditions. In severe stress, in 2019 
bread wheat, physiological components contributed little. With stomatal 
conductance and photosynthesis universally depressed, the physiolog
ical links of Ca+b, SIF, PRI with GPC lacked power and were deem
phasised as predictive features for ML. In these conditions, Cx+c was 
highest among low importances for physiological indicators and was 
joined by Anth and Ca+b on removal of thermal and structural layers. 
When CWSI was excluded as a model input for severely stressed crops, 
LAI importance was high, confirming the greater relative influence of 
structure in drought than in benign conditions. The displacement of EVI 

Fig. 8. Spatial heterogeneity in grain protein content (GPC; %) in bread (a–c) and durum wheat (d–f) fields in the Kaniva region, 2020.  
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by LAI in drought suggests redundancy between them; each may indi
cate canopy variability established prior to the onset of water stress and 
both are less affected by drought than are physiological traits. 

In more moderate conditions, soil moisture heterogeneity drives 
variability in photosynthetic rate and hence physiological indicators 
across and between fields. This greater variability allows physiological 
features to convey more information, giving higher importance in GPC 
prediction. For example, at moderate stress in the 2019 durum crop, SIF 
approached CWSI in importance and all remaining physiological 

features were close together below SIF, none individually prominent but 
each more informative than structural traits. The order of physiological 
features changed little on removal of thermal and structural layers, 
showing their robustness and utility as GPC predictors in such condi
tions. Meanwhile in 2020, when water stress was lowest, importance 
was more evenly spread between physiological, thermal and structural 
components and physiological indicators Cx+c and PRI reached higher 
importance than CWSI. In these conditions, Cx+c was the best indicator 
overall in bread wheat, and in durum was below only CWSI, SIF and PRI, 

Fig. 9. Relative importance (proportion) of input features to a gradient boosting machine estimating grain protein content (GPC; %) in bread (left) and durum wheat 
(right) in commercial fields near Kaniva, Australia. Three models are shown: physiological + structural + CWSI (model 1; a, d); physiological + structural (model 2; 
b, e); physiological (model 3; c, f). Each sub-figure represents the 2019 (left; bread n = 7213, durum n = 5030) and 2020 seasons (right; bread n = 11060, durum n =
17310). Error bars show standard deviation of the mean proportional importance over 80 runs. 

Table 4 
Predictive skill (r2, rRMSE; %) for Model 1, built with physiological + structural + CWSI layers, Model 2 (physiological + structural) and Model 3 (physiological only) 
across bread and durum wheat. Each model/product/year combination was run 80 times.  

Model Bread wheat Durum wheat 

2019 2020 2019 2020 

r2 rRMSE r2 rRMSE r2 rRMSE r2 rRMSE 

1  0.8  0.62  0.54  0.66  0.54  0.81  0.49  0.67 
2  0.7  0.76  0.5  0.69  0.49  0.84  0.46  0.69 
3  0.57  0.91  0.39  0.76  0.43  0.9  0.37  0.75  
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likely showing a water stress differential between the two wheat types. 
Results at moderate and low stress confirm that Cx+c, Anth, PRI and 

SIF are sensitive to water stress that is yet insufficient to strongly 
diminish photosynthesis. Moreover, each of these consistently had equal 
or higher importance than Ca+b in low stress, showing that short-term 
stress indicators also indicate GPC. Overall, physiological features 
were stable across conditions, and consistently supplied more informa
tion than structural features. This concurs with our own findings at plot 
scale and those of others that Anth, Cx+c, PRI and SIF, or combinations 
thereof, were crucial in stress diagnosis (Poblete et al., 2021; Suárez 
et al., 2008; Zarco-Tejada et al., 2018). The PRI ~ SIF alignment also 
mirrors our plot and transect studies and commends PRI as a proxy for 
photosynthesis in wheat (Magney et al., 2016). Anth importance was 
moderate in all conditions and stable between wheat types in low stress; 
this shows a differential Anth response under variable water stress and 
was supported at plot scale and in the literature (Chalker-Scott, 2002; Li 
et al., 2018). Unstable importance in EVI, LAI and LIDFa limits their 
value for GPC estimation, except in extreme stress, but together they 
contribute to model performance and generalisability. In benign con
ditions, LAI and LIDFa generally show low importance. 

4.4. Model predictive skill 

Though a minor focus of our work, model skill improved on some 
previous results for wheat GPC. Using leave-one-out (LOO) validation, 
Øvergaard et al. (2013) obtained pred ~ obs r2 = 0.16–0.68, while 
Hansen et al. (2002) achieved r2 = 0.56 and Apan et al. (2006) r2 = 0.92. 
Li et al. (2020) obtained r2 = 0.13–0.85, testing on 33% of their ob
servations, and Zhou et al. (2021) also realised r2 = 0.55–0.63 in an 
unseen 31% of their full (n = 327) dataset. Rodrigues et al. (2018) ob
tained r2 = 0.21. Like Øvergaard et al. (2013), Li et al. (2020) and Zhou 
et al. (2021), we tested on a substantial unseen hold-out of observations 
across all fields, a more robust model proof than the LOO methods often 
seen. We also tested prediction with a field-wise LOO method, such that 
each field’s data were successively used as the unseen test set for a model 
calibrated on the rest. Successful demonstration of this is important for 
many potential applications of our methods. When zero data from the 
LOO field were included in training, predictive skill was very poor (not 
shown). We then reduced stepwise from 70% to 10% the availability of 
training data from the LOO field; predictive skill declined, but not 
dramatically, at each step down to 10%. 

That our physiological layer predicted GPC with acceptable accuracy 
without thermal or structural features attests to its coverage of GPC- 
relevant traits, from instantaneous SIF to the relatively stable Ca+b. 
These results agree with findings that SIF and Ca+b were far better than 
structural measures in estimating wheat leaf N (Camino et al., 2018). 
Because the indicators we use to estimate GPC are proxies of the water 
and nutrient stresses present in the region of study, our methods will 
probably work in regions with similar water and nutrient stress levels. In 
regions which are not water- or nutrient-limited, plant traits other than 
those described in this paper will be sensitive to GPC. Each of these 
proposals should be tested; our methods should also be tested with RS 
data of lower resolution, from spaceborne sensors, and in diverse sea
sonal, soil, cultivar, and agronomic conditions. It would also be valuable 
to test timeseries data captured within and across seasons. Further in
puts such as year-to-date rainfall, soil or agronomic data may improve 
model predictive skill, as may training on multi-year databases. Further 
investigation of field-wise LOO is also needed to assess model trans
ferability to unseen paddocks. 

5. Conclusions 

This study identified the most important hyperspectral-based plant 
traits related to grain protein content in rainfed wheat under variable 
stress levels. In experimental plots, two variants of the PRI index related 
to the xanthophyll pigment cycle showed consistent trends very similar 

to GPC along the induced N nutrition gradient, and in this respect per
formed better than any other spectral trait. In commercial crops, we 
implemented a gradient boosted machine to investigate relationships 
between input features and GPC. The thermal CWSI indicator of canopy 
transpiration contributed strongly to the model under water stress 
conditions, while Anth, Cx+c, PRI and SIF consistently showed high 
importance in GPC estimation under more benign conditions. Structural 
indicators such as LAI or its proxy NDVI contributed significantly less. 
We obtained promising results using gradient boosted machine learning 
to estimate GPC from hyperspectral and thermal images. Results yielded 
r2 = 0.80 with rRMSE = 0.62% between predicted and observed GPC 
using a model built with thermal and physiological traits quantified by 
radiative transfer modelling methods. 
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A B S T R A C T

Wheat (Triticum spp.) is crucial to food security. Grain protein content (GPC) is key to its nutritional and eco-
nomic value and is controlled by genetic and agronomic factors, soil properties and weather. GPC prediction
from remote sensing could reduce nitrogen (N) losses, help management decisions, and improve profit. However,
GPC prediction is complex because multiple plant traits influence GPC and their effects change through the grow-
ing season. Traits with known physiological links to GPC, which can be retrieved from imaging spectroscopy, in-
clude leaf area index (LAI), chlorophyll (Ca+b), and stress indicators. Further inspection of these and other traitsretrieved from satellite data can advance research relevant to precision agriculture. Sentinel-2 (S2) timeseries
(TS) were acquired for 6,355 ha of commercial dryland bread (T. aestivum) and durum (T. durum) wheat fields in
south-east Australia through two consecutive years with dissimilar rainfall. Wheat growers provided ∼ 92,000
GPC data points from harvester-mounted protein monitors. For each, Ca+b, leaf dry matter, leaf water content(Cw) and LAI were retrieved from the S2 images by radiative transfer model inversion. A gradient boosted ma-
chine learning algorithm was applied to analyse these traits’ importance to GPC and to predict GPC in 30% of
samples unseen by the algorithm in training. The strongest relationships between predicted and observed GPC
(R2 = 0.86, RMSE = 0.56 %), in a model built from five S2 images across a season, were better than those from
single-date hyperspectral (HS). In severe water stress, LAI was the main predictor of GPC early in the season, but
this switched to Cw later. Trait importance was more evenly distributed in milder conditions. S2 TS had a clearaccuracy advantage over single-date S2 and HS, especially in benign conditions, emphasising the potential of S2
TS for large-scale GPC monitoring.

1. Introduction

Wheat (Triticum spp.) supplies around 20% of humans’ carbohy-
drate (CHO) and protein intake (FAO, 2022). Grain protein content
(GPC; %) dictates the price paid to growers and is influenced by the
amount of nitrogen (N) in the canopy at anthesis (Zadoks stage Z65;
Giuliani et al., 2011;Masoni et al., 2007; Zadoks et al., 1974), and the N
accessible for uptake during grain filling (Gooding et al., 2007). How-
ever, total photosynthesis after Z65 controls protein dilution by new as-
similates, a long-recognised inverse yield ∼ GPC relationship (McNeal
et al., 1978). Fertiliser N is a major cost and risky investment for grain
growers (Monjardino et al., 2015), and entails a heavy environmental
footprint (Galloway et al., 2017). The global urea price increased
by> 400% in two years to April 2022, (Baffes and Koh, 2022); relief is
unlikely as fossil fuels are deeply embedded in fertiliser supply. Timely
GPC estimates could improve farmer access to price premiums (Apan et

al., 2006; Skerritt et al., 2002), guide N applications aimed at increas-
ing protein and improve farm environmental and economic sustainabil-
ity.

Leaf area index (LAI) and chlorophyll (Ca+b) content strongly influ-
ence assimilation (Wolanin et al., 2019), hence protein dilution, while
above-ground N correlates with both Ca+b (Evans, 1989) and GPC
(Feng et al., 2014; Xue et al., 2007; Zhao et al., 2005). Ca+b/N concen-
tration and LAI affect both the total protein available for translocation
(Masclaux-Daubresse et al., 2010) and, via photosynthetic capacity, the
CHO source size. Despite these relationships, Ca+b/N may be only mod-
erately correlated with GPC (Longmire et al., 2022; Zhao et al., 2005)
because other factors, especially water, nutrient and temperature stress,
also affect N/CHO sources and sinks, the rate and duration of post-
anthesis photosynthesis and the fate of assimilates during grain filling
(Asseng et al., 2002; Masclaux-Daubresse et al., 2010). These dynamics
complicate GPC estimation relative to that of its contributory variables
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Fig. 1. Zone 1 (Kaniva; a) and zone 2 (Manangatang; b) commercial wheat fields considered in this study. Subfigure a: Sentinel-2, 2020–09-10 (B08, B04, B03); b;
2019–09-11 (B04, B03, B02).

Table 1
Location, rainfall, climate and crop areas for Kaniva (Zone 1) and Manan-
gatang (Zone 2) in 2019–20. AAR/GSR = long term average annual / grow-
ing season (Apr–Oct) rainfall; rain = annual total (mm).
Zone Lat. Lon. Alt.

(m)
AAR Clim.

zone
Year Rain GSR Area

(Ha)

1 −36.37° 141.24° 142 449 Cfb 2019 288 238 662
2020 444 291 858

2 −35.05° 142.88° 55 316 Bsk 2019 194 135 2341
2020 342 277 2494

and yield, as seen in lower estimation accuracies (e.g. Rodrigues et al.,
2018; Wright et al., 2004; Zhao et al., 2005).

Radiative transfer models (RTM) elucidate mechanistic relation-
ships between leaf and canopy traits and light interactions
(Jacquemoud et al., 1995; Jacquemoud and Baret, 1990). Because they
are robust to non-linearity in these relationships and account for factors
including leaf optical properties, soil reflectance and sun position,
RTMs are transferable across crop types, phenology and agronomic situ-
ations (Clevers and Kooistra, 2012; Dorigo et al., 2007; Jacquemoud et
al., 1995). Through inversion, they allow accurate estimation of plant
traits relevant to GPC (Bacour et al., 2002; Féret et al., 2008;
Jacquemoud et al., 2009, 1995; Li et al., 2015), where structural and
physiological traits can be retrieved concurrently (Poblete et al., 2020;
Zarco-Tejada et al., 2018). Recent studies have retrieved leaf Ca+b,canopy Ca+b content (CCC; Clevers et al., 2017; Houlès et al., 2007) and
LAI from Sentinel-2 (S2) data by RTM inversion (Delloye et al., 2018;
Pan et al., 2019; Upreti et al., 2019; Wolanin et al., 2020), but the work
of Longmire et al. (2022) appears to remain unique in using RTM inver-
sions to estimate GPC.

The multispectral instruments (MSI) aboard the S2 satellites offer
cost-free images optimised for observing vegetation, with 13 bands at a
ground resolution of 10–20 m in the visible, red edge (RE) and near-
infrared domains (Drusch et al., 2012). The strong RE focus of the MSI,
where it records three bands, is optimised for Ca+b, N content and LAI
estimation (Frampton et al., 2013; Herrmann et al., 2011). A five-day
revisit time facilitates timeseries (TS) observations. Hunt et al. (2019)
obtained a substantial improvement in wheat yield estimation on
adding a second S2 TS image, diminishing returns for further images
but better performance closer to harvest, as Wolanin and colleagues
(2020) saw. Similarly, Wang et al. (2014) reported poor correlation be-
tween early-season broadband vegetation indices (VI) and wheat GPC;
relationships improved as the season progressed and stacked TS images
were best. Cumulative VIs have also improved yield but not GPC esti-
mates (Xue et al., 2007).

Longmire et al. (2022) demonstrated that stress-sensitive hyper-
spectral (HS) plant traits anthocyanins (Anth), Ca+b, and carotenoids(Cx+c), the Photochemical Reflectance Indices PRI (Gamon et al. 1992),
PRIm3 and PRIm4 (Hernández-Clemente et al., 2011) and solar-induced
fluorescence (SIF) are associated with GPC. In water-stressed crops, the
thermal crop water stress index (CWSI; Idso, 1982) also showed a
strong, positive association with GPC. While the use of S2 data pre-
cludes retrieval of stress-related HS and thermal traits, it offers poten-
tially major advantages for GPC estimation at yet larger scales and
through TS.

The use of machine- and deep-learning algorithms with RS data is
widespread in agriculture, including for disease detection and monitor-
ing (e.g. Adam et al., 2017; Poblete et al., 2020; Zarco-Tejada et al.,
2018), weed recognition (Gao et al., 2018), crop- and land use classifi-
cation (Abdi, 2020; Ji et al., 2018), primary productivity and yield (e.g.
Cheng et al., 2022; Gómez et al., 2021; Hunt et al., 2019;Wolanin et al.,

2



CO
RR

EC
TE

D
PR

OO
F

A. Longmire et al. ISPRS Journal of Photogrammetry and Remote Sensing xxx (xxxx) 1–14

Table 2
Cloud-free Sentinel-2 images available in zones 1 and 2 in 2019 and 2020
with associated growing degree days after sowing (GDDAS; °C day) and
Zadoks (Z) stage/name. Entries in bold are those compared against airborne
hyperspectral analyses.

Image Bread Durum

Zone Year Date GDDAS Z
stage

Z name GDDAS Z
stage

Z name

1 2019 18-Jul 481 15 seedling 684 16 seedling
23-Jul 537 15 739 17
17-
Aug

770 17 972 31 stem
elong.

11-Sep 1008 32 stem
elong.

1211 37

1-Oct 1237 43 booting 1439 52 ear emerg.
21-Oct 1508 69 anthesis 1710 74 grain fill

2020 17-Jul 452 14 seedling 560 15 seedling
1-Aug 581 15 689 17
26-
Aug

803 31 stem
elong.

910 31 stem
elong.

10-Sep 979 32 1087 33
10-Oct 1375 51 ear

emerg.
1483 67 anthesis

2 2019 17-Jul 904 17 seedling
28-Jul 1028 31 stem

elong.12-
Aug

1169 31

17-
Aug

1220 32

27-
Aug

1325 32

1-Oct 1778 54 ear
emerg.

2020 17-Jul 719 17 seedling
27-Jul 803 17
26-
Aug

1099 32 stem
elong.

31-
Aug

1161 32

10-Sep 1307 34
15-Sep 1385 42 booting

2020, 2019), and GPC estimation (Longmire et al., 2022; Tan et al.,
2020; Zhou et al., 2021). Zhou et al. (2021) obtained their best GPC
predictions with a random forest (RF) and found machine learning (ML)
superior to traditional statistical methods. Gradient boosting machines
(GBM) are a supervised ML algorithm based on the work of Friedman
(2002, 2001) and developed by Chen and Guestrin (2016). The GBM
has seen relatively little use in agriculture (van Klompenburg et al.,
2020), but performed as well as other algorithms in estimating LAI and
CCC in wheat (Upreti et al., 2019). The tree-based GBM algorithm is
able to assess the relative contribution, termed importance or gain, of
input features to target variable estimation (Abdi, 2020; Hunt et al.,
2019). This greatly improves the algorithms’ interpretability, which is
crucial to current research into the dynamic and interacting plant traits
influencing GPC.

Some studies estimating wheat GPC from satellites have had moder-
ate success. Wright et al. (2004) found the green NDVI (Gitelson and
Merzlyak, 1998) best for GPC (airborne R2 = 0.53, satellite
R2 = 0.48). Liu et al. (2005) combined synthetic aperture radar with
the structure insensitive pigment index (SIPI; Peñuelas et al., 1995),
from Landsat data, with R2 = 0.56. Also from Landsat, Zhao et al.
(2005) reported relationships between VIgreen (Gitelson et al., 2002)
and GPC (R2 = 0.46), while Feng et al. (2014) estimated GPC at field
level in commercial wheat, combining MODIS satellite NDVI from two
growth stages and obtaining R2 = 0.567–0.632 and
rRMSE = 0.141–0.144. From S2 data, Zhao et al. (2019) retrieved sev-
eral plant N indicators with good fidelity, but these predicted GPC with
lower skill (R2 = 0.428–0.467); like others (Wang et al., 2014; Zhao et

al., 2005, 2019), this study reported that growth stages ≥ Z65 offered
the best estimations.

A large majority of studies estimating GPC from spectroscopy have
used plot experiments (e.g. Raya-Sereno et al., 2021;Walsh et al., 2023;
Wang et al., 2004; Zhao et al., 2005, 2019), and to date these appear
largely to have used VIs, with no reference to RTM inversions. This re-
search gap demands attention, particularly given the lack of consis-
tency among VIs (Raya-Sereno et al., 2021). Moreover, few studies look
at GPC variability within commercial fields; while Rodrigues et al.
(2018) and Stoy et al. (2022) do so, considering natural soil variability,
only Longmire et al. (2022) sample multiple fields. Finally, the additive
combination of information from TS images is rare in the canon, has
had limited success and, due to reliance on VIs, is likely poorly transfer-
able between agronomic situations (Feng et al., 2014; Rodrigues et al.,
2018; Xue et al., 2007).

To advance precision agriculture, there is a need to improve GPC
prediction within fields but across large extents. The current research
addresses the gaps identified above by combining satellite TS and RTM
inversion to predict GPC within many commercial wheat fields, across
regions with very different climatic and soil characteristics, diverse sea-
sons and both bread- and durum cultivars. Leveraging the GBM’s flexi-
bility, interpretability and predictive skill, plant trait importances to
GPC estimation and model performance are compared between S2 and
airborne HS/thermal RS. The effects of bandset reduction and the facul-
tative inclusion of airborne CWSI and/or SIF to S2 traits are tested. In
the temporal dimension, trait importance dynamics and skill are com-
prehensively assessed through seasons, first with TS elements as sepa-
rate models, then additively stacking them within site-years to form sin-
gle predictive models.

2. Materials and methods

2.1. Study sites

This study considers 6355 Ha of rainfed commercial hard white
bread (cv. Scepter, Vixen, Catapult) and durum (cv. Aurora, Bitalli)
wheat crops grown in two areas of the southern Australian wheat belt.
Both varieties were sown in late May and mid-June in 2019 and 2020
around Kaniva (zone 1; Fig. 1a), while bread wheat only was sown in
similar periods around Manangatang (zone 2; Fig. 1b). Hereafter, the
cropping zones are designated cz1 and cz2, with the year appended,
e.g., cz1-19. Commercial cropping soils and fields in cz1 are described
in Longmire et al. (2022); cz2 soils, Calcarosols in the Australian Soil
Classification (Isbell, 2002), vary greatly across tens to hundreds of me-
tres in clay fraction, subsoil constraints including B and Al, calcrete,
and hardpans. These influence plant-available water (PAW) and N
availability, root growth and harvest outcomes (Nuttall et al., 2003;
Sadras et al., 2002). Climate, including Köppen-Geiger classification
(Peel et al., 2007), and location details are provided in Table 1. Fer-
tiliser was applied 1–3 times each season in each field, according to
grower assessment of conditions, usually as urea, but data relating to
these applications were not consistently available.

2.2. Data collection

Harvester-mounted NIR spectrometers (CropScan 3000/3300H,
Next Instruments, Sydney, Australia) collected GPC during harvesting,
with geolocation (±0.01 m) by real-time kinetic GPS. These devices
use near infrared (NIR) spectroscopy (720–1100 nm) to estimate GPC
for ∼ 400 ml grain samples temporarily removed from the combine’s
clean grain elevator. These devices assess GPC with accuracy sufficient
to meet legal requirements for weights and measures in the United
States and Australia (Clancy and Heiken, n.d.). Readings are taken
every 8–10 s, representing GSD ≈ 10–25 m parallel to harvester travel
and, perpendicularly, equivalent to the swath width (12 m). Over cz1
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Fig. 2. Schematic summary of data handling and machine learning processes.

Table 3
Values and ranges of leaf and canopy traits used for PRO4SAIL
(PROSPECT-D + 4SAIL) radiative transfer model inversion and look-up table
generation.
Parameter Abbreviation Unit Value/range

Anthocyanins Anth μg/cm2 1–10
Carotenoids Cx+c 1–20
Chlorophyll a + b Ca+b 3–70
Dry matter Cm g/cm2 0.001–0.035
Hot spot parameter h – 0.01
Leaf area index LAI m2/ m2 1–5
Leaf Inclination Dist. Func. LIDFa ° 0–90
Mesophyll struct. Coef. N – 0.5–3.0
Observer angle tto ° 0
Relative azimuth angle ψ 0
Solar zenith angle tts varied with date
Water content Cw g/cm2 0.001–0.035

only, HS and thermal data were collected by sensors on a light aircraft
at ∼ 2000 m above ground level (AGL) on 2019–10-22 and 2020–10-
28. This gave pixels of 1.0 m (HS) and 1.7 m (thermal) ground sampling
distance (GSD). HS data were collected with a VNIR E-Series model
(Headwall Photonics, Fitchburg, MA, USA), capturing 371 bands from
400 to 1000 nm at 8 nm per pixel, yielding 5.8 nm FWHMwith a 25 µm
slit. At 12-bit radiometric resolution, the storage rate was 50 frames per
second with an exposure time of 18 ms and an 8 mm focal length. The
hyperspectral imager was calibrated using an integrating sphere (Lab-
sphere XTH2000C, Labsphere Inc., North Sutton, NH, USA), deriving
coefficients at four illumination levels. Thermal images were collected
from 7.5 to 14 µm with an A655c camera (Teledyne FLIR LLC,
Wilsonville, OR, USA), a scientific-grade instrument radiometrically

calibrated by the manufacturer. A further indirect calibration was car-
ried out during flights using ground observations from a handheld in-
frared thermometer (LaserSight from Optris GmbH, Berlin, Germany),
after Calderón et al. (2015). Atmospheric correction of radiance was ap-
plied with the Simple Model of Atmospheric Radiative Transfer of Sun-
shine (SMARTS) model (Gueymard, 1995) using aerosol optical depth
(AOD) observed at the time of flight (Micro-Tops II sunphotometer, So-
lar LIGHT Co., Philadelphia, PA, USA), as done before (Calderón et al.,
2015; Poblete et al., 2020; Zarco-Tejada et al., 2018). Orthorectifica-
tion was performed using Parametric Geocoding and Orthorectification
for Airborne Optical Scanner Data (PARGE; ReSe applications GmbH,
Wil, Switzerland) using an inertial measurement unit and GPS data
from a VN-300 (VectorNav Technologies LLC, Dallas, TX, USA). As for
S2 data, Level 1C orthorectified top-of-atmosphere reflectance (Richter
et al., 2011) rasters for tiles 54HWE (cz1), 54HXG and 54HYG (cz2)
were downloaded from the Copernicus Open Access Hub () and atmos-
pherically corrected to surface reflectance with Sen2Cor v. 2.3.1. Bands
of GSD = 20 m were resampled to 10 m prior to stacking as a multi-
band raster. All images between 1 July and 31 October in each season
were assessed; 23, in which all subject fields were cloud free (Table 2),
were retained.

2.3. Data extraction and processing

Potentially erroneous GPC points were discarded: those with unreal-
istic GPC values, within 20 m of trees, dams, fences and headlands, or
in harvester turn/slow travel zones. A Wilcoxon test (Bauer, 1972) was
applied across a) sites within year/wheat type combinations and b)
wheat types within site/year combinations to test for differences in me-
dian GPC. S2 spectra were extracted to the GPC points, then compatible
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Fig. 3. Spatial variability in grain protein content (GPC; %) in wheat fields in zones 1 (a) and 2 (b) on Sentinel-2 images (R = band 2, G = band 3, B = band 4).

vegetation indices (VIs; Supplementary Table 1) were calculated – and
inverted parameters retrieved (see Section 2.4) – for each point. Air-
borne narrow-band HS indices and inverted parameters, against which
multispectral satellite results are compared, are detailed in Longmire et
al. (2022); for these, CWSI and SIF (Supplementary Table 1), mean
pixel values were calculated per 100 m2 regions of interest (ROI). Each
ROI had as its centroid a GPC point record, giving geolocation and GSD
equivalent to the GPC data and quasi-equivalent to S2 data. SIF was cal-
culated by the Fraunhofer line depth (FLD2) method (Plascyk and
Gabriel, 1975). Data-handling processes are summarised in Fig. 2.

2.4. Radiative transfer model inversion

Leaf properties Ca+b, Cm and Cw were retrieved with PROSPECT-D
(Féret et al., 2017), while LAI was modelled with 4SAILH (Verhoef et
al., 2007), coupled as PRO4SAIL. Simulated spectra were generated by
randomly sampling the full range of model parameters, from uniform
distributions in appropriate ranges for wheat (Table 3; Camino et al.,
2018; Li et al., 2015). The hybrid PRO4SAIL inversions, after Xu et al.
(2019), used look-up tables (LUT) of 200,000 simulations, shown suffi-
cient previously (Longmire et al., 2022; Poblete et al., 2021; Xu et al.,
2019; Zarco-Tejada et al., 2018). The LUTs were interrogated with sup-
port vector machine (SVM) ML algorithms to retrieve each trait inde-
pendently, using as input the simulated reflectance spectra, convolved
to the S2 spectral specifications and the target traits as outputs; such hy-
brid methods effectively address the ill-posed problem (Verrelst et al.,
2015). The SVMmodels were built in MATLAB (MATLAB; Statistics and
Machine Learning toolbox and Deep Learning toolbox; Mathworks Inc.,
Natick,MA, USA) and trained using a radial basis function and SVM hy-
perparameters optimised during training for each variable. With these
trained SVM models, plant traits were inverted from observed re-
flectance at each GPC point or ROI in each site/image combination,
varying solar zenith angle for the changing dates.

2.5. Variance inflation factor analysis

Multicollinearity between potential model input features crop traits
was inspected by variance inflation factor analysis (VIF; R package
fsmb; (Nakazawa, 2022)). Like other recent work, this study used VIF
thresholds (t) of 5–10 (Akinwande et al., 2015; Magney et al., 2016;
Poblete et al., 2021; Zarco-Tejada et al., 2018). VIF was repeated, with
forced inclusion of inverted parameters, for each permutation of site,
year and product. None of the 38 VIs calculated was kept at t = 5;
those kept at t = 10 were added stepwise to ML models, to assess their
contributions to skill. VIs that survived the VIF analysis were: Global
Environment Monitoring Index (GEMI; Pinty and Verstraete, 1992),
Maccioni Index (Macc; Maccioni et al., 2001), MERIS Terrestrial
Chlorophyll Index (MTCI; Dash and Curran, 2004), Transformed
Chlorophyll Absorption in Reflectance Index / Optimized Soil Adjusted
VI (TCARI/OSAVI; Haboudane et al., 2002) and TCARI1610 (Herrmann
et al., 2010). Each of these improved GPC estimation by R2 ≤ 0.03 over
inverted traits only, so all were discarded. Airborne SIF was linearly in-
dependent so it was included where available. Features were also VIF
tested along TS and between features within dates. Minor collinearity
between inverted traits from close image dates (e.g. < 14 days apart)
was disregarded in order to assess feature importance evolution.

2.6. Application of machine learning algorithm to estimate GPC

The study used a GBM to estimate relationships of inverted leaf and
canopy traits – input features – with the target variable GPC, focusing
on the features’ relative importance. Feature importance is a unitless
quantity in the range 0–1, expressing the relative gain contributed by
each model input feature to estimation of the target variable. In each
GBM run, data were randomly split 70%:30% into training and test sets
(Hunt et al., 2019; Wu et al., 2021). Stochastic gradient descent (SGD)
reduces the likelihood of overfitting by training models on random sub-
sets of observations, introducing randomness (Friedman, 2002); here,
models were trained on either 65% or 85% of rows, but all columns
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Fig. 4. Spatial variability in Ca+b (μg/cm2; a), Cm (g/cm2; b), Cw (g/cm2; c) and LAI (m2/m2; d) retrieved by radiative transfer model inversion from S2 images of a
bread wheat field, 2019. Plots arranged by Zadoks growth stage; n = 4897.

were included in every run. Randomised K-fold cross-validation
(K = 5) provided further protection against overfitting. In addition to
SGD, learning rate, tree depth and minimum node size were varied,
with full factorial hyperparameter searching. The GBM was tuned at
each run by finding the hyperparameter combination that minimised
root mean square error (RMSE) of prediction (GPC %). These proce-
dures mirror previous work (Longmire et al., 2022).

The ML algorithm was first run for each site/year/product combina-
tion, using as inputs the plant traits from the S2 image closest to the HS
flight date, the last in the TS. To these features, airborne SIF was facul-
tatively added. Each date was analysed in turn, whereby the input fea-
ture set contained only the four traits retrieved from the relevant image.
Finally, TS were combined such that each permutation of inverted para-
meter and image date was taken as an individual input feature, disre-
garding minor collinearity between inverted parameters in the tempo-
ral dimension. To facilitate comparison across years, sites and crop
types, growing degree days after sowing (GDDAS) were calculated after
Asseng et al. (2010), based on daily temperatures and precipitation spe-
cific to each location, drawn from the SILO dataset (Jeffrey et al.,
2001). Given the large potential for differences in phenological advance
between locations and cultivars, and the need to compare these di-
rectly, APSIM Next Generation (Holzworth et al., 2018) was used to
model phenology in Zadoks stages. For APSIM, met data were from
SILO, sowing date was the mean of fields in each year/location, and cul-
tivars were those most planted (cz1 bread, cv. Scepter; cz1 durum, cv.
Aurora; cz2-19, cv. Scepter; cz2-20, cv. Kord).

3. Results

3.1. Fields, GPC, retrieved parameters

Growing conditions differed strongly between years at both loca-
tions: both total and growing season rainfall were extremely low in
2019 while 2020 was above average (Table 1). A Wilcoxon test (Bauer,
1972) showed significant differences in GPC between all zone/year/
product combinations; effect sizes were small to moderate (not shown).
Large GPC differences were seen within and between paddocks, often
over short distances (Fig. 3).

Plant traits for GPC points showed spatial heterogeneity and pheno-
logical progression for all site/year/product combinations. Example
fields (cz1-19) are plotted to map traits over time for bread (Fig. 4) and
to show progression with phenological advance, relationships between
traits and density distributions within trait and stage combinations in
durum (Fig. 5).

3.2. Feature importance and model performance

3.2.1. End-of-season Sentinel-2 images against hyperspectral images
The following considers first ML models built with traits inverted

from S2 images captured as temporally close as possible to airborne HS
missions detailed in Longmire et al. (2022). In cz1 bread, Cw was domi-nant in the very dry conditions of 2019, while in 2020 importance was
spread evenly in a tight range (0.26–0.27) between Ca+b, Cw and Cm. In
each year, LAI was the least important (Fig. 6a). cz1-19 durum had even
importance across feature types, with Cwmost important and Ca+bmar-ginally higher than Cm, and in 2020 durum, feature importance was
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Fig. 5. Plant traits Ca+b, Cm, Cw and LAI inverted from S2 images of a durum
wheat field, 2019. Violin plots show distribution within Zadoks (Z) growth
stage; white circle = mean, red cross = median; n = 782. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

shared very evenly (Fig. 6b). Airborne SIF was added to S2 inverted fea-
tures in each wheat type and year. SIF had low importance in cz1-19
bread and did not disturb the feature order relative to the base model,
while in cz1-20 importance remained evenly distributed among Cm, Cwand Ca+b despite the inclusion of SIF (Fig. 6c). For cz1-19 durum, SIF
was marginally more important than Cw but again feature order wasotherwise unchanged compared to without SIF, while in cz1-20 durum
SIF was most important and other features were approximately equal
(Fig. 6d). In cz2–19 (bread wheat only), Ca+b was most important, withCm and Cw intermediate and LAI lowest (not shown). In cz2-20, Cwtook > 40% of importance over Ca+b, while Cm and Cw were the low-
est.

Relative feature importance was similar between S2 and HS. Across
conditions and wheat types, the relative importance of S2 traits was
parallel with that of HS features grouped by their type: Ca+b (S2) with
HS pigment indicators Ca+b, Cx+c and PRI; Cm with the HS structural re-flectance index EVI; Cw with CWSI and LAI (S2) with HS LAI and LIDFa(Fig. 6).

Predictive skill for S2 ± SIF was highest in cz1-19 bread, as it was
for HS ± CWSI previously (Longmire et al., 2022). Overall, S2 models
were better predictors than HS models only in cz1-19 bread (Fig. 7a).
Adding SIF to S2 traits made only a minor difference in that context but
improved GPC estimation relatively more from a lower base in each
other site/year/product combination (Fig. 7).

3.2.2. Assessment with individual images in timeseries
Analysis of individual S2 TS components showed that for cz1-19

bread, feature importance was concentrated in LAI until around anthe-
sis (Z60—Z69), when Cw became predominant; neither Cm nor Ca+btook importance at any time (Fig. 8). In the more benign 2020, in zone
1 durum wheat in both years and in zone 2 (not shown), feature impor-

tance was spread evenly at each stage, changing relatively little and
without a discernible pattern through the season.

Model predictive skill in cz1-19 bread wheat was high during Z15
but diminished from Z17 until after anthesis when the final image was
captured (Fig. 9). All site/year/product combinations showed better
predictive performance in early development than in the mid-season,
usually with an increase late in the season.

3.2.3. Stacked timeseries images
Use of all retrieved parameters from all crop stages together re-

vealed patterns consistent with analysis of individual images: high LAI
importance early in the cz1-19 bread wheat season, switching to Cwaround anthesis, and a relatively even distribution of importance across
traits and stages in other crops (Fig. 10).

Predictive skill was compared between single image models and
those incorporating all available trait/date combinations; the latter
brought large improvements in all site/year/product combinations ex-
cept cz1-19 bread (Table 4).

4. Discussion

4.1. Growing conditions and protein variability

GPC is a complex variable under genetic, environmental and man-
agement control (Zhao et al., 2019). While rainfall can be presumed in-
variant across fields within a region, and genetics within a field, soil
properties vary widely within fields and have large effects on GPC inde-
pendent of GSR. PAW differences influence GPC via lowered CHO as-
similation, hence dilution, especially during grain filling. However,
grain count is influenced by earlier conditions, especially around anthe-
sis, is a primary determinant of sink size for both proteins and photo-
synthate and hence is a strong driver of GPC. Further, excessive early
vigour in rainfed crops can dry soil so much that later photosynthesis is
restricted, a phenomenon known as ‘haying off’ in which grain ends
with high protein because it fails to fill with CHO (van Herwaarden et
al., 1998).

Besides extreme dryness, cz1 saw other weather extremes during
critical periods of 2019. From mid-September into early October, frosts
(≈-4 °C) occurred at crucial stages (Z42—69; booting, ear emergence
and anthesis) for the durum crop, while bread wheat fields were less af-
fected due to their location higher in the landscape and less susceptible
growth stages (Z33—51). Frost around anthesis severely reduces grain
count, and durum is more susceptible to both frost and heat damage
than bread wheat (Beres et al., 2020; McCallum et al., 2019). Immedi-
ately after these frosts, four days had maxima of 35–38 °C, imposing
high respiratory loads (Heskel et al., 2016) and with potential to cause
permanent damage, reduce total N uptake (van Ittersum et al., 2003)
and/or simply exceed the optimum for photosynthesis (Asseng et al.,
2011; Lobell and Gourdji, 2012). Heat stress can also severely alter phe-
nology: At T > 34 °C, senescence is accelerated by a factor of three,
and sixfold at T ≥ 36 °C, foreshortening grain filling (Asseng et al.,
2011; Porter and Gawith, 1999). Moreover, droughted plants accumu-
late more heat. These effects reduce yield, especially if cumulative, and
should therefore increase GPC (Asseng et al., 2011). Heat stress may
therefore increase mean GPC but reduce its variability through a gener-
alised reduction of assimilation. Lower assimilation during grain fill
(cz1-19), associated with senescence, would also reduce variability in
Ca+b, Cm, and SIF, diminishing these as GPC estimators, while likely en-
hancing the importance of moisture sufficiency measures, as we ob-
served in both CWSI and Cw. These conditions likely affected both GPC
and the difficulty of its prediction, differentially between bread and du-
rum wheat.

In cz2, where rainfall is lower and crops are grown on former dune-
fields, phenomena influencing PAW and N, including both osmotic and
physical impediments to root growth, arise from the dune-swale mor-
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Fig. 6. Importance (proportion) of inverted traits to GPC (%) estimation in bread (a, c) and durum wheat (b, d) grown in zone 1, 2019–20. Brown background: S2
inverted traits: Ca+b, Cm, Cw and LAI, ± SIF. Blue background: EVI, PRI, Anth, Ca+b, Cx+c, LAI and LIDFa inverted from airborne hyperspectral images. CWSI and SIF
were also from airborne data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

phology and can be severe (Nuttall et al., 2003; Sadras et al., 2002).
Though high-resolution soil data were unavailable, the influence of the
cz2 dune-swale systems is seen in GPC (Fig. 3b); the dune effect on bio-
mass can also be seen in the S2 RGB areas of this figure. In these areas,
height within the dunes can be strongly discernible at harvest, includ-
ing complete reversal of yield response between dune and swale be-
tween wet and dry years; mid-slope areas, which are relatively unaf-
fected by soil variability, can occupy a high proportion of fields
(Armstrong et al., 2009; Hoffmann et al., 2016). The severe soil vari-
ability, known yield response differences, and the proportion of fields
affected, appear also to be reflected both in less definitive feature im-

portance dynamics, and lower GPC estimation skill, as seen in cz2. This
is supported by Rab et al. (2009): a large majority of the ∼ 80 Ha they
studied across four years in the same region showed great yield vari-
ability.

4.2. Plant trait contributions to protein estimation

To be important for GPC determination, a plant trait needs to vary
across the crop in some physiological relationship with GPC. This bio-
physical reality is seen in traits’ relative importance to GPC prediction
across and between years. For single-image analyses of cz1 bread and
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Fig. 7. Mean skill in GPC prediction of models comprising S2 traits Ca+b, Cm, Cw and LAI, ± airborne SIF and models comprising airborne EVI, PRI, Anth, Ca+b,Cx+c, LAI, LIDFa and SIF, ± CWSI from commercial bread and durum wheat fields in zone 1, 2019–20.

durum wheat, and regarding both relative trait importance and predic-
tive skill, our results mirrored those from airborne HS data (Fig. 6, Fig.
7). As no VI was both linearly independent and a strong contributor to
model skill, it is concluded that S2 data, with retrieval as shown, pro-
vide information adequate to estimate GPC. This accords with the find-
ings of Wolanin and colleagues (2019) in estimating complex traits via
RTM inversion and ML. While it contrasts with work based on HS imag-
ing (Longmire et al. 2022), where several narrow-band indices comple-
mented inverted parameters, it is as expected for data of lower spectral
and spatial resolution. In lieu of CWSI, excluded as collinear, Cw as-sumed high importance in the very dry conditions of cz1-19 (Fig. 5a, c),
suggesting that PROSAIL Cw retrieval can replace thermal observations.Under dry conditions, Cw apparently retains more variability and pre-dictive power than other traits, especially Ca+b and Cm, whose low im-
portance can be understood as complementarity but also highlights
their low variability in such conditions. Physiologically, this is reason-
able because they were established earlier in the season when water
and nutrients were not limiting. Ca+b, Cm, and LAI contribute to the
pools of both N and CHO available for translocation, a process impeded
by water stress. Hence low water stress should increase these factors’
influence on GPC, while conversely under high stress it is less than that
of the ongoing photosynthetic rate. Ca+b and Cm importances are lowthroughout cz1-19 and vary least through all crops and seasons.

In contrast to VIs and CWSI, and despite its close links to Ca+b andCw, SIF was linearly independent of all inverted parameters and where
available was included in models. This independence, and the substan-
tial extra skill it conferred to our predictions, are important findings in

themselves. SIF proxies instantaneous photosynthesis, improving esti-
mates of other complex physiological quantities (Camino et al., 2019);
it follows that, as a measure of assimilation and hence protein dilution,
it improves GPC estimation. Substantial improvements seen with SIF in-
clusion, especially where base model accuracy was low (Fig. 7), suggest
that TS SIF could substantially improve GPC prediction, though perhaps
with a strong role limited to grain filling and to benign moisture condi-
tions. Indeed, like those of Ca+b and Cm, SIF contribution was minor in
very dry conditions, as found by others (Cai et al., 2019; Sloat et al.,
2021). Further, the relatively minor skill improvement on adding SIF in
2019 durum may relate to weather damage not picked up in the SIF sig-
nal but crucial to GPC. In mild conditions, the combined relationships
of Ca+b, Cm and SIF with GPC were insufficient to offset the strong
Cw ∼ stomatal conductance ∼ photosynthesis ∼ GPC dynamic in
drought. LAI had low importance in single-image S2 analyses, as it and
other structural components did in our HS models.

Structure played a far greater role in TS analyses because it encom-
passes the early part of seasons. For example, when TS images were
considered separately for cz1-19 bread, LAI took 60–80% of total im-
portance at each stage up to Z65, whereafter the emphasis switched to
Cw (Fig. 8a). When all dates were pooled, Z15 LAI took > 40% of im-
portance, and Cw at anthesis took > 30% (Fig. 10a). This sudden
change was seen only under drought, but a gradual switch from LAI to
Cw was seen in cz1-19 durum also, despite a likely reduced crop water
demand after frosting and noise from weather damage. In other situa-
tions, the distribution of importance between dates and traits was quite
seen whether image dates were separate or pooled, but always included
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Fig. 8. Relative importance (proportion; sum = 1 within each year/stage) of Ca+b, Cm, Cw and LAI inverted from timeseries S2 images and used as separate feature
sets for GPC estimation in commercial bread (a) and durum wheat (b) in zone 1 in 2019 and 2020. Image capture dates by Zadoks stage from top down.

Fig. 9. Performance metrics (R2 and RMSE) for GPC estimation from plant traits inverted from single S2 images of bread and durum wheat fields in cz1,
2019–2020. Metrics are shown as a function of growing degree days after sowing (GDDAS) at image capture.

substantial contributions from LAI. This, and the decline of LAI from a
mid-season peak when all date/feature combinations were pooled,
shows the high sensitivity of GPC to above-ground biomass, as a source
of both proteins and CHO. However, PAW variability is lower early in
the season partly because crops have had less time – and biomass – to
withdraw water. The growth of Cw importance through seasons likelyreflects increasingly variable soil moisture as plants differentially accu-
mulate biomass, hence capacity to dry the soil, and soil properties exert
more influence due to drying.

4.3. Model predictive skill

GPC predictions from single S2 images late in seasons were substan-
tially less accurate than those from HS data (Longmire et al., 2022), ex-
cept in very dry conditions (Fig. 7). The lower S2 spectral resolution ex-
plains this: indicators linked to GPC through their detection of mild
stress, inverted Anth and Cx+c, and the PRI, cannot be calculated fromS2 data so are absent from those analyses, but made substantial contri-
butions to HS predictions. Here the advantages of S2 TS become clear,
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Fig. 10. Relative importance (proportion; sum = 1 within each year) of Ca+b, Cm, Cw and LAI inverted from timeseries S2 images and used together as a single
training feature set for GPC estimation in commercial bread (a) and durum wheat (b) in zone 1, 2019–2020. Features are arranged by Zadoks growth stage at im-
age capture from top down, within plant trait category.

Table 4
Model performance (R2 and RMSE) for GPC estimation from single, late-
season S2 images (base) and TS models from 5 to 6 S2 images across the
same season, captured over commercial bread and durum wheat fields in
cropping zones 1 and 2.

base model timeseries model

zone year wheat type R2 RMSE R2 RMSE

CZ1 2019 bread 0.82 0.65 0.86 0.56
durum 0.38 0.93 0.55 0.81

2020 bread 0.33 0.80 0.52 0.67
durum 0.16 0.85 0.43 0.70

CZ2 2019 bread 0.37 1.97 0.55 1.68
2020 bread 0.14 0.98 0.31 0.90

whereby TS prediction metrics were as good, and sometimes better than
those from HS (Fig. 7). The improvement over single-date S2 estimates
was also large, especially in cz2, where they came off a low base (Table
4). These gains also come from the incorporation of early-season struc-
tural information and demonstrate that S2 TS can be used to predict
GPC even in very difficult conditions. In all situations, predictive per-
formance was better during early development than in the mid-season,
confirming both that emergence and early vigour are important to GPC
outcomes and that our ML approach is sensitive to the same biological
reality.

Cai et al. (2019) assert that the optimal timing for Australian wheat
yield prediction accuracy is before October; this may hold for GPC pre-
diction also, given that the two quantities co-vary in opposition. Oth-
ers contend that Z65 is effective (Tan et al., 2020; Zhao et al., 2019)
and that the addition of extra S2 TS data after June gave little im-
provement (yield; England; Hunt et al., 2019). This study shows that
despite the many factors that can intervene between potential and re-
ality, observations of specific inverted parameters as early as Z15 can
contribute to GPC prediction. It also confirms that later images bring
higher accuracy, and that TS stacking further improves performance. A
lack of late-season images leaves an unfortunate gap, notably in the
milder, wetter 2020 when no image was available after Z50/1400

GDDAS in either zone but also in cz2-19. Performance may improve
further with later cloud-free images, but the likelihood of finding these
would not be substantially higher in any similarly mild season. Estima-
tion of GPC is considerably more complex than estimation of interme-
diate quantities (Zhao et al., 2019). Nevertheless our accuracies (Table
4) are comparable to and often improve on other recent results from
satellite RS: Zhao et al. (2019) recorded 0.428 ≤ R2 ≤ 0.467 for wheat
GPC from S2, while Tan et al. (2020) achieved best metrics of
R2 = 0.81 and RMSE = 0.54 % from Landsat.

5. Conclusions

Plant and canopy traits, retrieved by radiative transfer modelling
from Sentinel-2 image timeseries, were assessed for their contribution
to, and ability to predict, wheat grain protein content in commercial
fields and under diverse soil and weather. Using equivalent modelling
methods from single images, GPC estimation accuracy was generally
lower when based on S2 than on airborne HS traits. However, in very
dry conditions, our best model using a single S2 image and made with
PRO4SAIL-inverted Ca+b, Cm, Cw and LAI, outperformed that built withHS inputs and CWSI. Adding timeseries S2 inverted traits substantially
improved all models over single-image versions; improvement was very
strong in benign conditions and compensated for the accuracy reduc-
tion caused by switching from HS to S2. The best predictive perfor-
mance was achieved by stacking retrieved parameters from all dates as
inputs to a single model (R2 = 0.86, RMSE = 0.56 %). The order and
relative importance of S2 plant traits were similar to airborne HS: S2
importance was dominated by Cw in drought but evenly spread betweenstructural and physiological features in benign conditions. The results
obtained suggest potential applications in precision agriculture. Never-
theless, many refinements are possible: GPC and RS data from a wider
range of seasonal and agronomic conditions, spaceborne SIF and
ground-based sources such as soil moisture assessments should be
tested for their impact on model skill.
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