

Evaluating the impact of the spectral configuration of airborne hyperspectral imaging sensors on the accurate estimation of Solar-induced chlorophyll fluorescence (SIF)

Anirudh Belwalkar

ORCID: 0000-0001-6676-5709

Submitted in total fulfilment for the degree of

Doctor of Philosophy

Department of Infrastructure Engineering
Faculty of Engineering and Information Technology
The University of Melbourne

August 2023

1 Abstract

2 Climate change has devastated agriculture and food production. In recent decades heatwaves
3 and droughts have made it harder to meet global food demand. Understanding photosynthesis, plant
4 adaptation, and how photosynthetic efficiency affects crop yields is essential for developing stress-
5 resistant plants and increasing crop production. This climate crisis underlines the need for systems
6 that evaluate photosynthetic efficiency to monitor plant health and increase efficiency. Solar-induced
7 chlorophyll fluorescence (SIF) is a faint electromagnetic signal that can indicate plant stress and
8 photosynthetic efficiency. Accurate SIF quantification requires sub-nanometer resolution sensors.
9 However, sub-nanometer resolution imaging sensors onboard airborne platforms are expensive and
10 difficult to operate, hindering their widespread operational use for plant phenotyping, stress detection,
11 and precision agriculture applications. Consideration should therefore turn towards development of
12 adequate airborne imaging sensors and approaches that use physically-based models to accurately
13 interpret SIF from the sensor.

14 This PhD thesis investigates whether commonly accessible narrow-band imaging sensors
15 could potentially substitute for sub-nanometer imaging sensors in operational SIF retrieval for plant
16 phenotyping, stress detection, and precision agriculture applications. A narrow-band imaging sensor
17 and a sub-nanometer imaging sensor flown in tandem were compared for SIF. Physically-based
18 models and machine learning were used to model the effect of spectral resolution (SR) on narrow-
19 band far-red SIF (SIF_{760}) estimates. Furthermore, an exploratory analysis was conducted to
20 investigate the potential of solar Fraunhofer lines in the SIF emission region for estimating leaf
21 nitrogen concentration across a field and detecting biotic stress in infected trees, using airborne sub-
22 nanometer hyperspectral imagery.

23 Airborne SIF_{760} retrievals from a narrow-band imaging sensor (5.8-nm FWHM) and a sub-
24 nanometer imaging sensor (0.2-nm FWHM) were compared across two wheat and maize phenotyping

25 trials grown under varied nitrogen fertiliser rates over the 2019–2021 growing seasons. The
26 correlation between SIF₇₆₀ values obtained from the two sensors was found to be significant ($R^2 =$
27 0.77–0.9, $p < 0.01$). Notably, the narrow-band imager yielded higher estimates of SIF₇₆₀ than the sub-
28 nanometer imager did. The findings of this study suggest that narrow-band imaging sensors may
29 accurately detect field-wide variations in relative SIF₇₆₀, particularly when nitrogen fertilisation levels
30 vary. The next part of this study focused on improving narrow-band-derived absolute SIF₇₆₀ levels to
31 reduce systematic bias. A Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE)
32 model with Support Vector Regression (SVR) scaling airborne narrow-band SIF₇₆₀ values to 1-nm
33 FWHM was used. As shown by the normalised root-mean-square error (nRMSE) values of 2.45–
34 5.28% for the SCOPE simulated dataset and 4.5–16% for the airborne hyperspectral dataset, the
35 estimated SIF₇₆₀ at 1-nm FWHM showed good agreement with the reference SIF₇₆₀. This study
36 suggests that the proposed SIF₇₆₀ modelling approach can improve the understanding of relative
37 SIF₇₆₀ levels quantified by narrow-band hyperspectral imaging sensors in stress detection and plant
38 physiological monitoring applications.

39 An exploratory investigation of sub-nanometer imagery-derived Fraunhofer lines (FLs)
40 concludes the thesis. The study found that including depths for two FLs near oxygen absorption
41 features improved leaf nitrogen estimation. In addition, it was observed that biotic-induced stress was
42 linked to FL activation in the red and far-red spectral regions. As biotic-induced stress level increased,
43 the sensitivity of FLs in the discernment of and differentiation between symptomatic and
44 asymptomatic trees also increased. These findings indicate the need for additional research on these
45 specialised potential benefits of FLs, which would allow better understanding and more efficient
46 management of the various factors that affect the physiological status of plants.

Declaration

This is to certify that:

1. The thesis comprises only my original work towards the degree of Doctor of Philosophy,
2. Due acknowledgement has been made in the text to all other material used,
3. The thesis has fewer than 80,000 words in length, exclusive of tables, figures, bibliographies, maps, and appendix.

Anirudh Belwalkar

Melbourne, August 2023

Preface

This thesis is comprised of three main research chapters (Chapters 2-4) that are all presented in manuscript format. Chapter two has been published in an international journal as a research article, Chapter three has been submitted for publication, Chapter four is currently being drafted for submission to a journal. These three research Chapters are co-authored with supervisors and research collaborators. The use of 'we' and 'our' in these research chapters reflects the contributions of coauthors. In each publication, I was responsible for over 60% of the authorship, including research conceptualization, modelling, statistical analysis, interpretation of results, and drafting and finalising the manuscripts. Below are the bibliographic details for the three research chapters.

1. Chapter 2 (Paper 1) - **Belwalkar, A.**, Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J., 2022. **Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping.** *Remote Sens. Environ.* 273, 112986.
<https://doi.org/10.1016/j.rse.2022.112986>.
2. Chapter 3 (Paper 2) - **Belwalkar, A.**, Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. **Accurate SIF quantification from a narrow-band airborne hyperspectral imager using SCOPE: assessment with sub-nanometer imagery** (under review in the journal *Remote Sensing of Environment*).
3. Chapter 4 (Paper 3) - **Belwalkar, A.**, Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. **Prospects of solar Fraunhofer lines derived from sub-nanometer hyperspectral imagery for assessing a/biotic stress** (currently being drafted for submission to the journal *Remote Sensing of Environment*).

The original version of the published research article is included in Appendix D. In addition to the journal articles, this thesis also produced three conference publications, which are included in

Appendices E through G. The three conference publications correspond to the three research chapters.

Below are the bibliographic specifications of the conference publications:

1. **Belwalkar, A.**, Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. **Comparing the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with different spectral resolutions for plant phenotyping studies.** In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5845–5848. <https://doi.org/10.1109/IGARSS47720.2021.9553265>.
2. **Belwalkar, A.**, Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. **Accounting for the spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE.** In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 17–22 July 2022, Kuala Lumpur, Malaysia, pp. 5440–5443. <https://doi.org/10.1109/IGARSS46834.2022.9884564>.
3. **Belwalkar, A.**, Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. **Evaluating the relative contribution of Photosystems I and II for leaf nitrogen estimation using fractional depth of Fraunhofer lines and SIF derived from sub-nanometer airborne hyperspectral imagery.** In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 16–21 July 2023, Pasadena, CA, USA, pp. 2819–2822.

Further, during the PhD, I was involved in another research project outside this thesis scope, in which I was the joint first author for a published journal article as follows:

Deshpande, P., **Belwalkar, A.**, Dikshit, O., Tripathi, S., 2021. **Historical land cover classification from CORONA imagery using convolutional neural networks and geometric moments.** Int. J. Remote Sens., 42, 5144-5171. <https://doi.org/10.1080/01431161.2021.1910365>.

Acknowledgements

First and foremost, I would like to thank my principal supervisor, Professor Pablo Zarco-Tejada. Without his continuous intellectual, personal, and financial support, my PhD research would not have been feasible. I will be eternally thankful to him for devoting so much time and energy to my academic and professional progress. I would also like to express my heartfelt gratitude to my co-supervisor, Dr. Tomas Poblete, for his patient advice, unwavering commitment, and wonderful mentoring. Academic exchanges with him supplied me with substantial intellectual input that I cherished the most throughout this journey. He has not only served as a supervisor but also as a trusted confidant, fostering not only my professional development as a researcher but also my personal development as an individual.

Without the companionship of my colleagues and friends, Dr. Manish Patel, Dr. Adrián Gracia Romero, Dr. Na Wang, Andrew Longmire, and Anne Wang, this PhD would not be the same. I especially relished our productive brainstorming, discussion, and collaboration. I am also thankful to the project collaborators, Dr. Albero Hornero and Dr. Rocío Hernández Clemente for their substantial contributions to the several publications that have resulted from this thesis.

Very importantly, I would like to thank my family and my close friends for their accompany for making this journey much more bearable and enjoyable. I am grateful to my parents and my sister for their continuous support and encouragement during this PhD journey. I also feel myself fortunate to have so many friends who are always there for me and have given me so many wonderful memories. My dearest friends Babin, Mahesh, Aditya, Prasad, Kushagra, Achyut and Pramod. Finally, I would like to thank the University of Melbourne for the Graduate Research Scholarship, as well as the university's Research computer Services and the Petascale Campus Initiative for the computing resources.

Table of Contents

Abstract	ii
Declaration	iv
Preface	v
Acknowledgements	vii
Table of Contents	viii
List of Figures	xii
List of Tables	xx
Chapter 1 Introduction	1
1.1 Photosynthesis: principles and regulations	1
1.2 Chlorophyll fluorescence	3
1.2.1 Relationship between Chlorophyll Fluorescence and photochemistry	4
1.2.2 Chlorophyll fluorescence quantification	7
1.2.2.1 Chlorophyll fluorescence quantification using active methods	7
1.2.2.2 Chlorophyll fluorescence quantification using passive methods	9
1.3 Quantification of SIF at different scales and platforms	15
1.3.1 SIF quantification by ground-based spectrometers	15
1.3.2 SIF quantification from sensors onboard spaceborne platforms	16
1.3.3 SIF quantification from sensors onboard airborne platforms	17
1.3.3.1 Airborne SIF studies with narrow-band imaging sensors	18
1.3.3.2 Airborne SIF studies with sub-nanometer imaging sensors	20
1.4 Radiative transfer modelling of SIF	22
1.5 Research gaps	24
1.6 Objectives and thesis structure	24

References	27
Chapter 2 SIF quantification from narrow-band and sub-nanometer airborne hyperspectral imagers for vegetation monitoring	42
Abstract	43
2.1 Introduction	44
2.2 Materials and methods	49
2.2.1 Study sites and field data collection	49
2.2.2 Airborne hyperspectral campaigns	52
2.2.3 SIF quantification from field data and airborne hyperspectral imagery	55
2.2.4 Modelling the spectral resolution effects on SIF quantification using SCOPE	60
2.2.5 Nitrogen assessments using narrow-band and sub-nanometer SIF retrievals	62
2.3 Results	64
2.4 Discussion	72
2.5 Conclusions	78
References	79
Chapter 3 Spectral effects of medium resolution airborne hyperspectral imagers on SIF quantification	89
Abstract	90
3.1 Introduction	91
3.2 Materials and methods	95
3.2.1 Study sites	95
3.2.2 Hyperspectral airborne campaigns	97
3.2.3 Modelling methods	99
3.2.3.1 SCOPE model simulations	99
3.2.3.2 Plant trait estimation using RTM-based hybrid approach	102

3.2.3.3 SIF estimation at 1-nm FWHM using the support vector regression model	103
3.3 Results	106
3.4 Discussion	116
3.5 Conclusions	119
References	120
Chapter 4 Prospects of solar Fraunhofer lines derived from sub-nanometer hyperspectral imagery for assessing a/biotic stress	129
Abstract	130
4.1 Introduction	131
4.2 Materials and methods	135
4.2.1 Study sites and field data collection	135
4.2.2 Airborne campaigns using hyperspectral imagers	135
4.2.3 Methodology for estimating leaf nitrogen concentration	138
4.2.4 Methodology for assessing the sensitivity of distinct FLs for biotic stress detection	142
4.3 Results and discussion	143
4.3.1 Leaf N estimation using depths of distinct FLs	143
4.3.2 Sensitivity of distinct FLs for biotic stress detection	145
4.4 Conclusions	147
References	147
Chapter 5 Conclusions	151
5.1 Salient features and research outcomes	151
5.2 General conclusions	152
5.3 Limitations	155
5.4 Future directions	156
Appendices	157

Appendix A: Supplementary Material for Chapter 2	157
Appendix B: Supplementary Material for Chapter 3	159
Appendix C: Supplementary Material for Chapter 4	163
Appendix D: Journal paper for Chapter 2	166
Appendix E Conference paper 1	186
Appendix F Conference paper 2	191
Appendix G Conference paper 3	196

List of Figures

Fig. 1-1. Perrin–Jablonski diagram illustrating the entire absorption and energy partitioning process in a chlorophyll molecule. Fine lines represent various rotational and vibrational energy levels, and solid lines represent electronic energy levels (modified after Heldt and Piechulla, 2011)	6
Fig. 1-2. ChlF induction kinetic curve recorded by a typical PAM fluorometer (modified after Schreiber, 2004)	9
Fig. 1-3. SIF spectra based on the contributions from the two photosystems, PSI and PSII (a) and reflectance spectra (b) in the 650–800 nm SIF emission region, simulated using the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) radiative transfer model. The insets in (b) show comparisons of r and r^* in the far-red (750–780 nm) and red (685–690 nm) spectral regions, respectively	11
Fig. 1-4. Fraunhofer Line Depth (FLD) principle within the O ₂ -A absorption region. The spectra were simulated using the SCOPE model	13
Fig. 2-1. Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the corresponding irradiance (E) spectra for experimental plots subjected to different nitrogen treatments at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band hyperspectral imager (d) and sub-nanometer hyperspectral imager (e) corresponding to the same vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). (b) was obtained with the sub-nanometer hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). The solid yellow boxes in (a) and (b) show the location of the plots across the three experiments and the dashed yellow box in (a) shows the location of plots across the entire	

field. The transparent grey box in (d) shows the spectral region covered by the sub-nanometer hyperspectral imager 50

Fig. 2-2. Hyperspectral imagery showing zoomed-in plots from identical locations in experiments 1 (a, b) and 3 (c, d). Images (a) and (c) were acquired with the sub-nanometer hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Images (b) and (d) were acquired with the narrow-band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Green polygons indicate plots under different nitrogen treatments, and yellow polygons indicate the selected plots corresponding to five and three nitrogen treatments, respectively, for experiments 1 and 3 55

Fig. 2-3. Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the sub-nanometer imager in the 670- to 780-nm region, (b) the sub-nanometer imager in the O₂-A absorption region, (c) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band imager in the O₂-A absorption region. The transparent grey box in (c) shows the spectral region covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied nitrogen fertilisation rates shown in Table 2-1 56

Fig. 2-4. Hyperspectral imagery from experiment 3. (a-f) Sub-nanometer composite imagery (760 (R), 710 (G) and 680 (B) nm) at various altitudes. (g-i) Average radiance spectra acquired for one of the experimental plots in the 670- to 780-nm region (g), O₂-A absorption region (h) and O₂-B absorption region (i). Area of yellow filled polygons (a, b, c) shown in detail in (d), (e) and (f), respectively. Green polygons indicate plots under different nitrogen treatments, and yellow polygons indicate the selected plots corresponding to three nitrogen treatments 57

Fig. 2-5. (a) Measured radiance from the narrow-band imager. (b) SCOPE-simulated SIF at 1.0-nm FWHM. (c) SCOPE-simulated radiance at 1.0-nm FWHM. (d) SCOPE-simulated radiance corresponding to the narrow-band imager's spectral characteristics (FWHM = 5.8

nm, SSI = 1.626 nm). SCOPE-simulated radiance at different SRs in the O ₂ -B (e) and O ₂ -A absorption regions (f)	63
Fig. 2-6. Leaf physiological traits by fertilisation rate across experiments. Average values indicated by red points. The black lines within boxes represent medians, and the top and bottom of each box represent the 75th and 25th quartile, respectively. Whiskers represent $\pm 1.5 \times$ Inter Quartile Range. Asterisks indicate significant differences from the treatment 1 plots according to Dunnett's test at $\alpha < 0.05$. * $p \leq 0.05$; ** $p \leq 0.01$	65
Fig. 2-7. Comparison of average radiance spectra from one of the plots within experiment-3 in the 670- to 780-nm region obtained from both hyperspectral imagers. The insets show the comparison within O ₂ -A and O ₂ -B absorption features in the 750- to 780-nm region and 685- to 690-nm region, respectively	66
Fig. 2-8. Relationship between depth at the O ₂ -A absorption feature (a) and SIF _{760-3FLD} (b) over the experimental field at site 1 from both hyperspectral imagers. The range of absolute SIF _{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m ² /nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument	67
Fig. 2-9. Relationship between airborne SIF _{760-3FLD} measures from different hyperspectral imagers across experiments 1 (a), 2 (b) and 3 (c). The range of absolute SIF _{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m ² /nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument	68
Fig. 2-10. Relationships between SIF _{760-3FLD} for SCOPE simulations with different SRs against SIF _{760-3FLD} quantified at 1-nm FWHM. The dotted line represents the 1:1 line	68
Fig. 2-11. Relationship between ground-based SIF _{760-3FLD} quantified from the HR-2000 field spectrometer and airborne SIF _{760-3FLD} quantified from the sub-nanometer (a) and the narrow-	

band (b) hyperspectral imagers for experiment 3. The dotted line represents the 1:1 line. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument 69

Fig. 2-12. Effect of sensor altitude on O₂-A band depth and SIF_{760-3FLD} in experiment 3. Letters (a, b and c) within each plot represent the results of Tukey's honest significant difference (HSD) post-hoc comparisons of group means with $\alpha < 0.05$. Groups sharing the same letter are not significantly different. In the boxplots, the average values are shown with a red circle. The black line within the box is the median, and the top and bottom of the box is the 75th and 25th quartile, respectively. The whiskers represent $\pm 1.5 \times$ Interquartile range. The outliers are represented as diamonds. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m \times 12 m) 70

Fig. 2-13. (a) Relationships between SIF_{760-3FLD} estimates from narrow-band and sub-nanometer hyperspectral imagers by sensor altitude. (b) Relationships between airborne SIF_{760-3FLD} from sub-nanometer imager at 1200 and 2200 m AGL compared to the SIF_{760-3FLD} quantified at 900 m AGL. (c) Relationship between airborne SIF_{760-3FLD} from the narrow-band hyperspectral imager at 900 and 1200 m AGL. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m \times 12 m) 71

Fig. 2-14. Relationship between ground-based SIF _{760-3FLD} quantified with a HR-2000 field spectrometer and airborne SIF _{760-3FLD} at 900 m, 1200 m and 2200 m AGL retrieved from the sub-nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF _{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m ² /nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF _{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m)	72
Fig. 2-15. Relationships between N concentration and airborne SIF _{760-3FLD} quantified from a sub-nanometer (a) and narrow-band imager (b). Measured vs. estimated N concentration using Random Forest regression models, which included RTM-based C _{a+b} and SIF _{760-3FLD} generated from either a sub-nanometer (c) or narrow-band imager (d). The dotted line represents the 1:1 line. The range of absolute SIF _{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m ² /nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument	73
Fig. 2-16. Relationships between airborne SIF _{760-3FLD} from the narrow-band hyperspectral imager and MTVI2 (a) and EVI (b). The range of absolute SIF _{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m ² /nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument	77
Fig. 3-1. Overview of experimental fields at Sites 1 (a) and 2 (b) acquired with the narrow-band hyperspectral imager (composite: 760 (R), 710 (G), and 680 (B) nm). The black lines correspond to the average radiance spectra in the O ₂ -A absorption region used for SIF quantification and the average reflectance spectra in the 400–800-nm spectral region used for plant trait estimation for all plots. Shaded areas in the reflectance and radiance plots represent the ±1 standard deviation of the average reflectance and radiance	96

Fig. 3-2. Overview of the methodology used for estimating SIF ₇₆₀ at 1-nm FWHM from the narrow-band airborne hyperspectral imager	101
Fig. 3-3. Effects of leaf biochemical and structural traits on the relationship between SCOPE-simulated SIF _{760-3FLD} at two different spectral resolutions. Traits include C _{a+b} (a-c), LAI (d-f), LIDF _a (g-i), and Vcmax (j-l). All other SCOPE input parameters were left at their default settings. The dashed red line depicts the 1:1 line	107
Fig. 3-4. Relative importance of the eight potential predictor variables at different SRs for estimating SIF ₇₆₀ at 1-nm FWHM using Simulated Dataset-3 _{site 1} . The relative importance score was obtained using out-of-bag (OOB) error	108
Fig. 3-5. Ranges of variation for the leaf biochemical and structural traits estimated from the narrow-band hyperspectral imagery at the two study sites: C _{a+b} (a), LAI (b), and LIDF _a (c) ...	108
Fig. 3-6. Maps of estimated C _{a+b} ($\mu\text{g}/\text{cm}^2$) (a) and LAI (m^2/m^2) (b) at plot scale depicting the within-field variability at Site 1	109
Fig. 3-7. Relationships between the SIF _{760-3FLD} at the default 1-nm FWHM simulated by SCOPE (used here as the reference SIF) and the SIF ₇₆₀ estimated at 1-nm FWHM by the linear model (a, b) and by the SVR model (c, d) from 5.8-nm FWHM spectra for SCOPE-simulated test datasets corresponding to Site 1 and Site 2. The red dashed and black solid lines depict the 1:1 line and regression line, respectively. *** <i>p</i> -value < 0.001	111
Fig. 3-8. Relationships between SIF _{760-3FLD} at 1-nm FWHM simulated by SCOPE (used here as the reference SIF) and SIF ₇₆₀ estimated by the linear model (a-e) and by the SVR model (f-j) from different SRs for SCOPE-simulated test datasets corresponding to Site 1. SSI was related to SR according to the Nyquist criterion (SR = SSI \times 2). The red dashed and black solid lines depict the 1:1 line and regression line, respectively. *** <i>p</i> -value < 0.001	112
Fig. 3-9. Relationships between the airborne SIF _{760-3FLD} quantified from the sub-nanometer imager (used here as the reference SIF) and narrow-band imager (5.8-nm FWHM) for	

validation plots corresponding to both sites (a, b). Relationships between the airborne SIF _{760-3FLD} quantified from the sub-nanometer imager and the airborne 1-nm SR SIF ₇₆₀ estimated by the linear model (c, d) and SVR model (e, f) from the 5.8-nm SR narrow-band airborne spectra for both sites. The reference 1-nm SR SIF _{760-3FLD} was obtained by convolving the sub-nanometer resolution spectra to 1-nm FWHM. The red dashed and black solid lines depict the 1:1 line and regression line, respectively. *** <i>p</i> -value < 0.001	113
Fig. 3-10. Plot-scale maps of reference SIF _{760-3FLD} from sub-nanometer imager (a) and estimated SIF ₇₆₀ from narrow-band imager (b) using the SVR model at 1-nm FWHM for Site 1. The reference 1-nm SR SIF _{760-3FLD} was obtained by convolving the sub-nanometer resolution spectra to 1-nm FWHM	114
Fig. 3-11. Relationships between the airborne SIF _{760-3FLD} quantified from the sub-nanometer imager by convolving to different SRs against SIF _{760-3FLD} convolved to 1-nm FWHM (used here as the reference SIF) for validation plots corresponding to Site 1 (a-e). Relationships between the reference SIF _{760-3FLD} and the airborne SIF ₇₆₀ at 1-nm FWHM estimated by the linear model (f-j) and SVR model (k-o) from the sub-nanometer airborne spectra convolved to different SRs. The red dashed and black solid lines depict the 1:1 line and regression line, respectively. *** <i>p</i> -value < 0.001	115
Fig. 4-1. (a) Overview of Experiment-2 at the Boundary Bend study site. (b) Zoomed-in view of tree crowns identified in the scene within the green rectangle in (a). (c) Spatial distribution of visual assessments of <i>Verticillium dahliae</i> (<i>Vd</i>) infection	136
Fig. 4-2. Sample radiance spectra acquired from the sub-nanometer imaging sensor at the two experiment sites	137
Fig. 4-3. Irradiance spectra obtained from ground-based HR-2000 spectrometer concurrently with the acquisition of sub-nanometer imagery for (a) Experiment-1 and (b) Experiment-2 ...	138

Fig. 4-4. Comparison of original and convolved HR-2000 derived irradiance spectra for Experiment-1: (a) in the entire 680-773 nm spectral region; (b) in the O ₂ -A absorption region; (c) in the O ₂ -B absorption region (c)	139
Fig. 4-5. Locations of the band centres corresponding to red FLs (a), group-1 far-red FLs (b), and group-2 far-red FLs (c) shown in dashed black, and oxygen absorption lines (a, b) shown in dashed red identified from the average radiance spectra of one of the plots imaged by the sub-nanometer hyperspectral imager	140
Fig. 4-6. Example of selection of left shoulder wavelength (λ_{out}) and the wavelength at the bottom of the FL (λ_{in}) for calculating absolute FL depth corresponding to FL _{751.224 nm} using sub-nanometer mean radiance extracted from one of the plots in Experiment-1	141
Fig. 4-7. Measured vs estimated mean leaf N concentration using the best GPR models as a function of: (a) C _{a+b} and SIF ₇₆₀ ; (b) C _{a+b} , SIF ₇₆₀ , and best-performing red FL; (c) C _{a+b} , SIF ₇₆₀ , and best-performing far-red FL; (d) C _{a+b} and best-performing combination of one red and one far-red FL. The dashed line indicates the 1:1 line. The error bars indicate the standard deviation based on five runs of the GPR model. The GPR model as a function of C _{a+b} and SIF ₇₆₀ was used as a benchmark. *** <i>p</i> -value <0.05	144
Fig. 4-8. Sensitivity of different absorption features (FLs, O ₂ -A and O ₂ -B band depths) identified from sub-nanometer hyperspectral imagery to distinguish asymptomatic trees from symptomatic trees with varying stages of disease progression caused by <i>Vd</i> infection. The comparison between symptomatic and asymptomatic trees was conducted using a one-way ANOVA test with a significance level of 0.05	146

List of Tables

Table 2-1. Field measurements and meteorological conditions coincident with flights	52
Table 2-2. Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral images during the three airborne campaigns	53
Table 2-3. Spectral characteristics of the airborne hyperspectral imagers	54
Table 2-4. Range of the SCOPE input parameters used in this study	62
Table 2-5. Parameters and ranges used for the look-up table generation for the PRO4SAIL RTM	64
Table 3-1. Spectral characteristics of hyperspectral imagers and acquisition details	98
Table 3-2. Range of SCOPE input parameters used in this study	103
Table 3-3. Description of the SCOPE simulations used in this study	104
Table 3-4. Performance of linear and SVR models built to estimate SIF_{760} at 1-nm FWHM resolution from the 5.8-nm FWHM resolution SCOPE-simulated and airborne datasets	110

48 **Chapter 1**

49

50 **Introduction**

51

52

53 **1.1 Photosynthesis: principles and regulations**

54 The global population is projected to reach 9.7 billion by the year 2050 (United Nations,
55 2022). A 70% increase in food production will be required to keep up with the demands of the world's
56 expanding population, which equates to an additional 44 million metric tonnes of food per year
57 (Tester and Langridge, 2010). Furthermore, climate change – including varying greenhouse gas
58 concentrations in the atmosphere, rising temperatures, altered precipitation patterns, and increased
59 frequency of extreme weather events – is having a substantial impact on agricultural production and
60 food security (Asseng *et al.*, 2015; Cogato *et al.*, 2019; Hasegawa *et al.*, 2018).

61 Photosynthesis is the fundamental mechanism governing plant growth and productivity,
62 enabling plants to accumulate biomass (Hofius and Börnke, 2007; Simkin *et al.*, 2019; Van Bel *et al.*,
63 2003). It is the process by which plants transform solar energy into the biochemical energy which
64 supports the vast majority of life on earth. As photosynthesis is the primary regulator of plant growth
65 and productivity, it is vital to understand its functioning and plant adaptations to changing
66 environmental conditions, as well as the effects of photosynthetic efficiency on crop yields, in order
67 to increase crop production and develop stress-tolerant plants to meet global food demands (Hussain
68 *et al.*, 2021).

69 Photosynthesis is initiated by the absorption of light by plant photosynthetic pigments,
70 primarily chlorophylls, and involves two distinct sets of reactions: (1) light reactions and (2) carbon
71 fixation reactions (Porcar-Castell *et al.*, 2014). The light reactions involve the conversion of absorbed
72 solar radiation into chemical energy in the form of two biochemical products, adenosine triphosphate
73 (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). The carbon fixation reactions,

74 on the other hand, involve the synthesis of complex energy-rich biomolecules from the ATP and
75 NADPH using atmospheric CO₂. The overall sequence of carbon fixation reactions is called the
76 Calvin-Benson cycle (Stiller, 1962).

77 The light absorption and energy conversion reactions occur in the photosynthetic apparatus,
78 which consists of four different complexes – two photosystems (PSI and PSII), the cytochrome b₆f,
79 and ATP synthase (F-type ATPase) – encapsulated within the thylakoid membrane of the chloroplasts
80 (Frigerio *et al.*, 2008). A photosystem is the collective term for the antenna complex and reaction
81 centre. Antenna complexes are composed of photosynthetic pigments – including chlorophylls,
82 carotenoids, phycoerythrin, and phycocyanin – bound to proteins. The antenna system absorbs light
83 energy and transfers it to the reaction centres. The transferred energy is then used by the reaction
84 centres to drive electron transfer reactions (photochemistry), resulting in charge separation within the
85 thylakoid membrane driven by the transfer of electrons from chlorophyll to pheophytin (Blankenship,
86 2014). The cytochrome b₆f complex functions as an electron transfer bridge between the two
87 photosystems, enabling the transfer of electrons from PSII to PSI. Additionally, the electron transfer
88 energy is used by the cytochrome b₆f complex for transferring protons from the stroma to the
89 thylakoid lumen. The proton concentration gradient resulting from the accumulation of protons in the
90 thylakoid lumen is then used by the final complex of the photosynthetic apparatus, ATP synthase, to
91 synthesise ATP (Kramer *et al.*, 2004).

92 The rates of production of the two biochemical products, ATP and NADPH, by light reactions
93 and the rate of their consumption by carbon fixation reactions may not always be equivalent, due to
94 the influence of environmental factors like water and sunlight availability, temperature, or pathogen
95 infection (Hatfield and Prueger, 2011; Huner *et al.*, 1996; Thiele *et al.*, 1998). Consequently, to
96 compensate for these differential rates, plants have evolved a variety of mechanisms to regulate the
97 energy balance between light reactions and carbon fixation reactions (Anderson *et al.*, 1995; Walters,
98 2005). These include changes in chlorophyll concentrations (Giardi *et al.*, 1996; Murchie and Horton,

99 1997), photorespiration (Kozaki and Takeba, 1996), chloroplast and leaf movements (Arena *et al.*,
100 2008; Haupt 1990; Ludlow and Bjorkman 1984; Sarvikas *et al.*, 2010), anthocyanin concentrations
101 (Close and Beadle, 2003; Merzlyak *et al.*, 2008). Typically, these regulatory mechanisms are able to
102 compensate for detrimental environmental conditions, but prolonged stress can weaken them and
103 cause a substantial decrease in plant productivity. Hence, the quantification of photosynthetic
104 efficiency is critical for monitoring the health of plants and advancing our understanding of how the
105 photosynthetic machinery operates.

106

107 1.2 Chlorophyll fluorescence

108 There are three possible outcomes when chlorophyll pigments within the photosynthetic
109 apparatus absorb solar radiation: (i) the energy can be used to drive photochemistry; (ii) the energy
110 can be dissipated as heat; or (iii) the energy can be re-emitted as an electromagnetic signal known as
111 chlorophyll fluorescence (ChlF) (Krause and Weis, 1984; Maxwell and Johnson, 2000). ChlF
112 originates primarily from the antenna complexes and reaction centres of PSII, with a minor
113 contribution from PSI. The three energy dissipation pathways compete with one another, and
114 therefore any increase in the efficiency of one pathway lowers the yield of the other two (Maxwell
115 and Johnson, 2000).

116 At the molecular level, light absorption by chlorophyll excites electrons from their ground
117 state (S_0) to a higher energy level known as a ‘singlet’. Each electronic energy level has the energy
118 levels of the various rotation and vibration states superimposed on it. There are two major singlet
119 states that exist, depending on the energy of the absorbed photon. The absorption of red light causes
120 excitation of the first singlet (S_1), while blue light causes excitation of the second singlet (S_2). As S_2
121 is extremely unstable, with a half-life in the order of 10^{-12} – 10^{-14} seconds, the excitation energy is
122 exclusively lost as heat through rotations and vibrations until S_1 is attained. The loss of excitation

123 energy from S_1 to S_0 occurs via a number of pathways: the excitation energy could be used to drive
124 photochemistry; the excitation energy could be transferred to a nearby pigment (Forster energy
125 transfer) (Forster, 1948); the excitation energy could be emitted as ChlF signal (Porcar-Castell *et al.*,
126 2014); the excitation energy could be dissipated as heat (Heldt and Piechulla, 2011). Furthermore, S_1
127 can attain a lower excitation state, known as the triplet state, by releasing energy as heat via a process
128 known as intersystem crossing (Clegg, 2004). The relaxation of energy from the triplet state to the
129 ground state, S_0 , then occurs via the emission of phosphorescent light. A schematic representation of
130 the entire absorption and energy partitioning process is shown in Fig. 1-1.

131 **1.2.1 Relationship between Chlorophyll Fluorescence and photochemistry**

132 For PSII, the quantum yield (Φ) of an i^{th} process competing against n other de-excitation
133 pathways with k_i as the first-order rate constant can be expressed as (Govindjee, 2004):

$$\Phi_i = \frac{k_i}{\sum_{i=0}^{i=n} k_i} \quad (1.1)$$

134 When all PSII reaction centres are open, owing to the dark-adapted leaf, the quantum yield of
135 ChlF (Φ_{F_0}) will be at its minimum, resulting in the lowest ChlF emission (F_0), while the quantum
136 yield of photochemistry (Φ_p) will be at its maximum, denoted as Φ_{P_0} . Both quantum yields can be
137 expressed with Eq. (1.1) as (Butler, 1978):

$$\Phi_{P_0} = \frac{k_p}{k_p + k_F + k_O} \quad (1.2)$$

$$\Phi_{F_0} = \frac{k_F}{k_p + k_F + k_O} \quad (1.3)$$

139 In Eq. (1.2) and Eq. (1.3), k_P , k_F and k_O represent, respectively, the rate constants for
 140 photochemistry, ChlF and the other de-excitation pathways, mainly regulated and constitutive heat
 141 dissipation, as illustrated in Fig. 1-1. Likewise, when the PSII reaction centres are closed due to the
 142 exposure of a dark-adapted leaf to a short actinic pulse of high photosynthetically active photon flux
 143 density (PPFD) after reaching F_o , the rate constant for photochemistry is almost zero, resulting in the
 144 highest ChlF emission (F_M) and the maximum quantum yield of chlorophyll fluorescence (Φ_{F_M}):

$$\Phi_{F_M} = \frac{k_F}{k_F + k_O} \quad (1.4)$$

145 Rearranging Equations (1.3) and (1.4) by calculating their difference and dividing by Equation
 146 (1.4) yields:

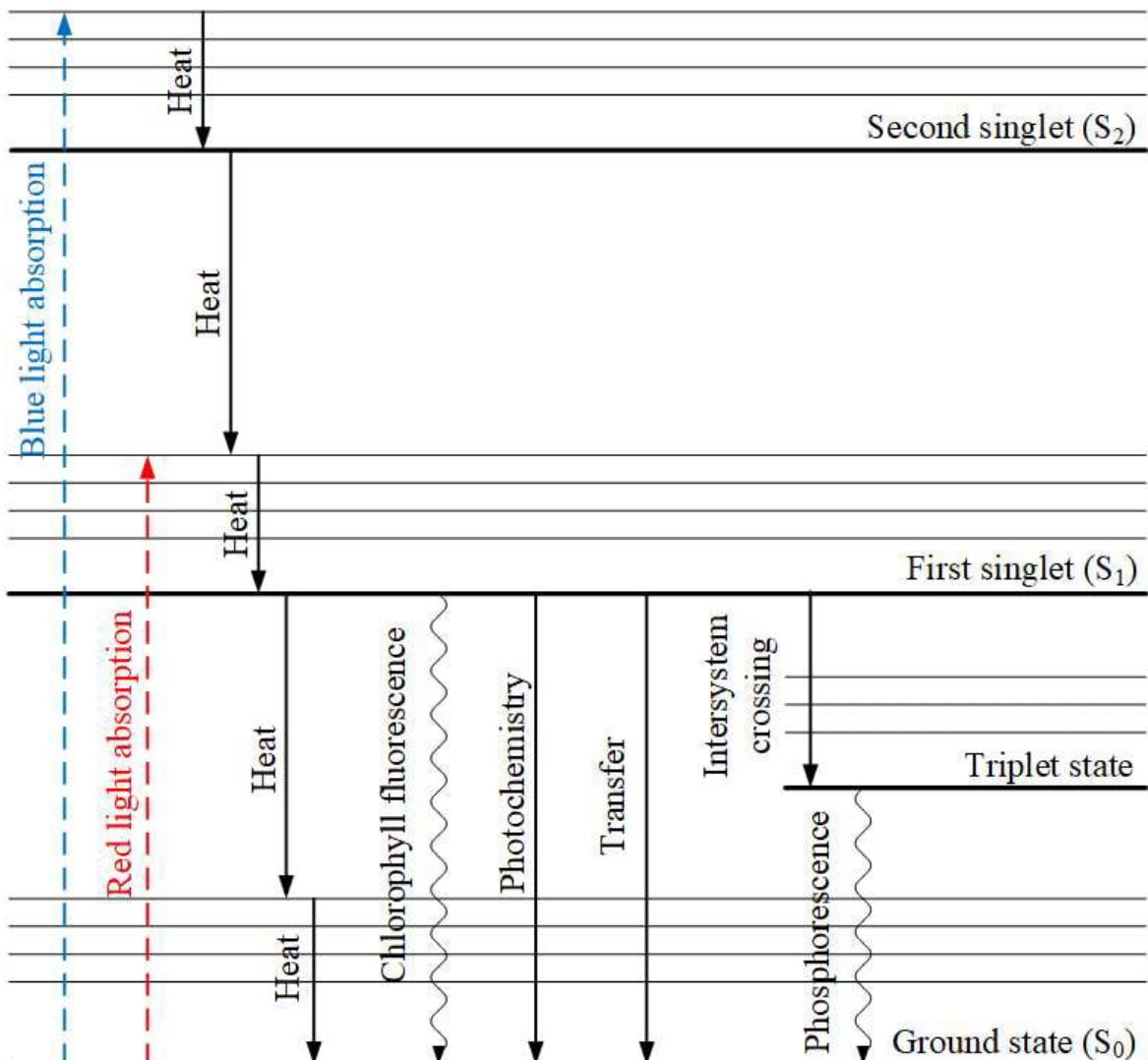
$$\frac{\Phi_{F_M} - \Phi_{F_o}}{\Phi_{F_M}} = \frac{k_P}{k_P + k_F + k_O} = \Phi_{P_o} \quad (1.5)$$

147
 148 As the ChlF intensity is proportional to the quantum yield with additional terms related to the
 149 intensity of the incident light and the absorption cross-section of the leaf, the quantum yield can be
 150 substituted for by the corresponding ChlF intensity levels by assuming that the additional terms are
 151 constant (Govindjee, 2004) which simplifies Eq. (1.5) as follows:

$$\frac{F_m - F_o}{F_m} = \frac{F_v}{F_m} = \Phi_{P_o} \quad (1.6)$$

152
 153 In Eq. (1.6), F_v denotes the difference between F_m and F_o in dark-adapted vegetation and is
 154 referred to as variable fluorescence. This theoretical derivation (Eq. 1.1 – 1.6) suggests that $\frac{F_v}{F_m}$ could
 155 serve as an indicator of the PSII photochemistry efficiency, enabling the assessment of plant health

156 with measurements of variations in ChlF parameters. However, Φ_{P_0} computed using F_m and F_v cannot
 157 be considered a rigorous quantitative measure of the quantum yield of PSII photochemistry because
 158 some of the assumptions made to derive Eq. (1.6) may not be applicable under all conditions
 159 (Blankenship, 2014). Nevertheless, $\frac{F_v}{F_m}$ provides a reasonable estimation of PSII photochemistry
 160 efficiency with a consistent mean value of 0.83 for non-stressed leaves (Björkman and Demmig,
 161 1987).



162
 163 **Fig. 1-1.** Perrin-Jablonski diagram illustrating the entire absorption and energy partitioning process
 164 in a chlorophyll molecule. Fine lines represent various rotational and vibrational energy levels, and
 165 solid lines represent electronic energy levels (modified after Heldt and Piechulla, 2011).

167 On exposing a dark-adapted leaf to strong light, the PSII reaction centres gradually close,
168 resulting in an increase in ChlF yield up to maximum ChlF intensity F_m , but ChlF yield then begins
169 to decrease within a few minutes. This phenomenon of decreased ChlF yield is referred to as
170 fluorescence quenching and can be explained by two concurrent processes: photochemical quenching
171 (PQ), which indicates the availability of open PSII reaction centres for photochemistry; and non-
172 photochemical quenching (NPQ), which indicates the efficiency of energy conversion to heat via
173 regulated non-radiative heat dissipation (Maxwell and Johnson, 2000). Within several minutes of
174 illumination, ChlF attains a steady-state level at intensity F_t . Consequently, in order to estimate PSII
175 photochemistry from ChlF measurements, disentangling these two quenching mechanisms is crucial.

176 **1.2.2 Chlorophyll fluorescence quantification**

177 Based on the light source employed, ChlF estimation methods can be broadly divided into
178 two groups – (1) active methods and (2) passive methods. Active methods rely on an artificial light
179 source, such as pulse-amplitude modulation (PAM) fluorometry or high-power laser diodes, and are
180 typically restricted to leaf-scale. In contrast, passive techniques use solar irradiance and the radiance
181 emitted by vegetation and are generally applicable at canopy-scale.

182 **1.2.2.1 Chlorophyll fluorescence quantification using active methods**

183 PAM fluorometry (Schreiber *et al.*, 1986), which makes use of high-tech electronic
184 instruments called PAM fluorometers, is one of the most popular active methods for estimating ChlF
185 at leaf-scale. PAM fluorometers enable the quantification and isolation of the variations in ChlF yield
186 induced by the pulse-modulating measuring light against a background of ChlF intensity fluctuations
187 originating from actinic and saturating lights that are orders of magnitude larger. This makes
188 fluorometers suitable for experiments under both controlled laboratory conditions and field
189 conditions. There are four types of light sources that are used in PAM fluorometers for their specific
190 functions: a low-intensity pulsed measuring light (ML); a moderate-intensity actinic light (AL); a

191 high-intensity saturating pulse (SP); and far-red radiation (FR). The measurement is initiated by the
 192 application of ML under a dark-adapted state to obtain F_o . Then, F_m is measured in the dark-adapted
 193 state with the application of SP for a short duration (usually less than 1 s). The application of SP
 194 activates AL, resulting in a rapid increase in ChlF followed by a slow drop to a steady-state intensity,
 195 F_t . Both photochemical and non-photochemical mechanisms contribute to these ChlF intensity
 196 changes. The application of SP at this precise moment eliminates the contribution of PQ and produces
 197 the light-adapted maximal ChlF intensity F'_m which is lower than F_m . Since the difference between
 198 F_m and F'_m is accounted for by non-photochemical processes, and the difference between F'_m and F_t
 199 is accounted for by photochemical processes, these ChlF parameters can be used to differentiate
 200 between the PQ and NPQ contributions (Brooks and Niyogi, 2011). The quantum yield of
 201 photochemistry (defined as optimal quantum yield) and of NPQ can be defined as:

$$\Phi_P = \frac{F'_m - F_t}{F'_m} \quad (1.7)$$

$$NPQ = \frac{F_m - F'_m}{F'_m} \quad (1.8)$$

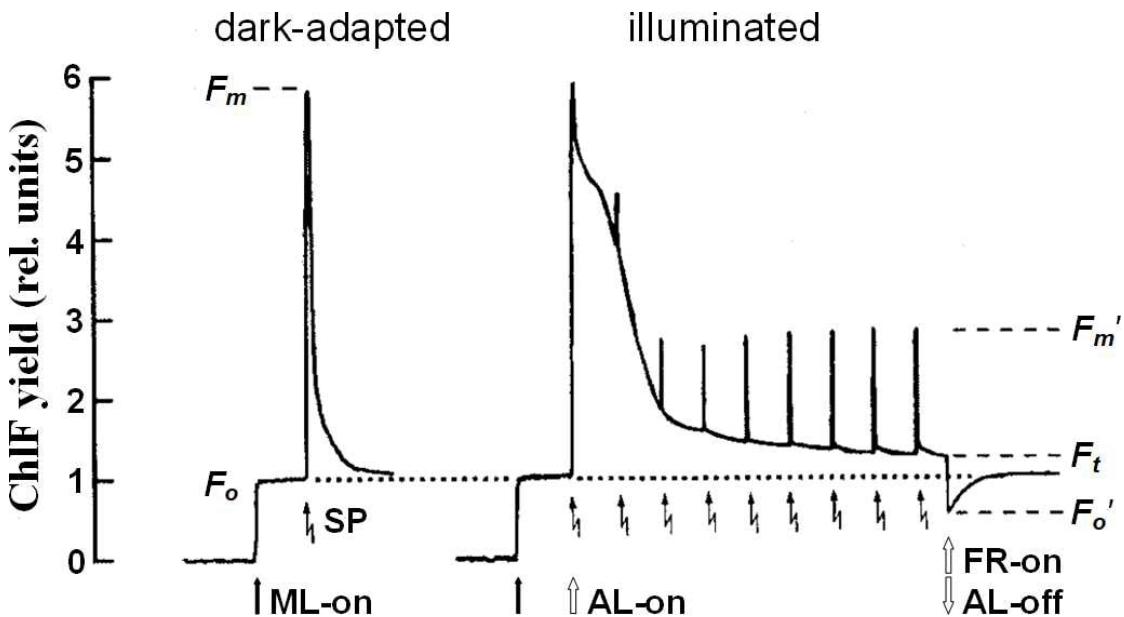
202

203 Using Eq. (1.7) eliminates the need to determine F_o , allowing measurements to be conducted
 204 under actual field conditions without the need to fully dark-adapt the sample (Genty *et al.*, 1989). The
 205 actinic light is subsequently turned off and FR is activated to permit the re-oxidation of PSII in order
 206 to obtain the minimal ChlF in the light-adapted state (F'_o). The ChlF induction kinetics recorded using
 207 a typical PAM fluorometer, are shown in Fig. 1-2.

208 In addition to PAM fluorometry, laser-induced fluorescence transient (LIFT) is a newly
 209 developed active approach for measuring ChlF. In contrast to PAM fluorometers, which require close
 210 proximity to the leaf for ChlF yield estimation, the LIFT method can be used at target distances
 211 between 5 and 50 m. LIFT is based on the principle of fast repetition rate fluorometry (FRRF) (Kolber

212 and employs a pulsed laser excitation source with a variable duty cycle to modulate the
213 extent of photosynthetic activity and quantify the resulting variations in ChlF yield (Kolber *et al.*,
214 2005).

215



216

217 **Fig. 1-2.** ChlF induction kinetic curve recorded by a typical PAM fluorometer (modified after
218 Schreiber, 2004).

219

220 1.2.2.2 Chlorophyll fluorescence quantification using passive methods

221 Since ChlF is an electromagnetic signal emitted as a by-product of photosynthesis, it can be
222 remotely sensed. Using solar radiation as its energy source, solar-induced chlorophyll fluorescence
223 (SIF) refers to the passive estimation of ChlF primarily at canopy-scale. SIF is a faint electromagnetic
224 signal that superimposes onto reflected solar radiation and accounts for a very small fraction (< 1-
225 2%) of the total upwelling radiance (L) from the vegetation target (Frankenberg and Berry, 2018).
226 Consequently, isolating the SIF signal from the L signal is challenging because of SIF's negligible
227 contribution.

Spectral emission of SIF ranges from 650–800 nm, with peaks in the red and near-infrared (far-red) spectral regions at approximately 685 nm (SIF_{685}) and 740 nm (SIF_{740}), respectively (Mohammed *et al.*, 2019). SIF originates from both PSI and PSII, with PSII being the primary contributor to the complete SIF emission range and PSI contributing mostly in the near-infrared region (Fig. 1-3a). Assuming that both SIF emission and surface reflectance (r) follow Lambert's law, the top-of-canopy (TOC) L detected by a ground-based sensor include contributions from both solar-reflected and SIF emitted radiations and can be represented as follows (Meroni *et al.*, 2009):

$$L(\lambda) = \frac{r(\lambda) \cdot E(\lambda)}{\pi} + SIF(\lambda) \quad (1.9)$$

235

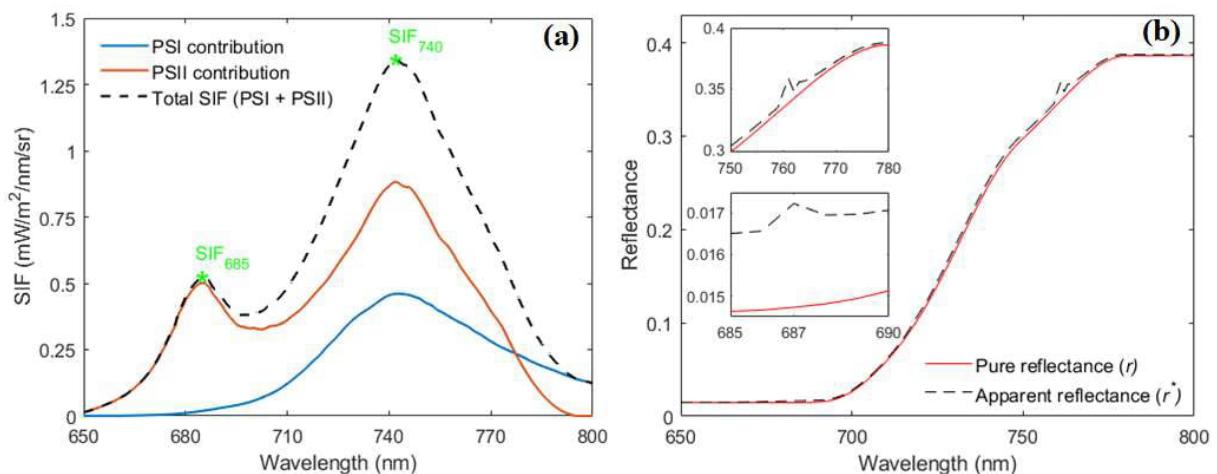
where λ and E represent the wavelength and total irradiance (sum of direct and diffused components) incident on the target, respectively. All the terms in Eq. 1.9 are spectrally variable, with ground-based sensors only providing quantifications for E and L , leaving r and SIF to be determined. Since there are these two unknown terms in Eq. 1.9, assumptions regarding the spectral shape of r and SIF are leveraged for SIF estimation.

Reflectance-based approaches and radiance-based approaches can be broadly categorised as the two types of SIF retrieval techniques (Meroni *et al.*, 2009). Reflectance-based approaches were the earliest attempt to explore the effects of SIF on the apparent reflectance spectra (r^*) using conventional remote sensing techniques, paving the way for future advances. Since these approaches used r^* to derive spectral indices linked to SIF, they could not retrieve SIF in physical units. The link between SIF and apparent reflectance r^* (Fig. 1-3b) was computed as the ratio between the upwelling and incident fluxes as related to pure reflectance r :

$$r^*(\lambda) = \frac{\pi \cdot L(\lambda)}{E(\lambda)} = r(\lambda) + \frac{\pi \cdot SIF(\lambda)}{E(\lambda)} \quad (1.10)$$

248

249 The several spectral indices proposed for SIF retrieval (Dobrowski *et al.*, 2006; Pérez-Priego
 250 *et al.*, 2005; Zarco-Tejada *et al.*, 2000a; 2000b) can be grouped into three distinct classes: reflectance
 251 ratios (e.g., r_{685}/r_{630} and r_{740}/r_{800}); derivatives (e.g., D_{730}/D_{706}); and subtraction metrics (e.g., $r_{760.59}$ –
 252 $r_{759.5}$). With the emergence of sensors with sub-nanometer resolution capabilities for estimating SIF
 253 in precise physical units, reflectance-based methodologies have been rendered obsolete and replaced
 254 with radiance-based approaches.



255 **Fig. 1-3.** SIF spectra based on the contributions from the two photosystems, PSI and PSII (a) and
 256 reflectance spectra (b) in the 650–800 nm SIF emission region, simulated using the Soil-Canopy
 257 Observation of Photosynthesis and Energy (SCOPE) radiative transfer model. The insets in (b) show
 258 comparisons of r and r^* in the far-red (750–780 nm) and red (685–690 nm) spectral regions,
 259 respectively.

261
 262 Radiance-based approaches retrieve SIF in radiance units from radiometrically calibrated
 263 downwelling irradiance and upwelling radiance reflected from vegetation canopies. Several
 264 algorithms have been proposed to disentangle the contribution of SIF from that of the reflected solar
 265 radiation (see a full review in Mohammed *et al.*, 2019). Using these algorithms, SIF can be estimated
 266 within specific absorption bands or across the entire emission region. As SIF is a relatively faint
 267 signal, its precise estimation requires the use of spectral regions where SIF's proportional contribution
 268 to the total reflected radiance is high. Opportunities exist in solar Fraunhofer Lines (FLs) and telluric
 269 absorption lines of the solar spectrum, where irradiance is drastically reduced (Mohammed *et al.*,
 270 2019). Since these absorption features are quite narrow, their proper characterisation is needed for

271 the accurate estimation of SIF, which necessitates the use of sub-nanometer resolution (full-width-at-
272 half-maximum (FWHM) \leq 1-nm) instruments.

273 The majority of SIF quantification methods use oxygen absorption bands (O₂-A and O₂-B)
274 centred around 760 nm (SIF₇₆₀) and 687 nm (SIF₆₈₇), respectively, since they are wider and deeper
275 than other absorption features (Meroni *et al.*, 2009). The oldest and most extensively used approach
276 for SIF quantification is based on the Fraunhofer Line Depth (FLD) (Plascyk, 1975) principle, which
277 uses the fluorescence *in-filling* effect. Although originally intended for FLs, this approach is currently
278 used for SIF quantification in oxygen absorption bands. Using two flux measurements, one inside
279 and one outside the absorption line, the FLD approach estimates SIF by comparing the depth of
280 absorption lines obtained simultaneously from a fluorescence-free reference and a vegetation target
281 (Fig. 1-4). Assuming both reflectance and SIF remain constant within the narrow absorption region
282 encompassed by the inside (λ_{in}) and outside (λ_{out}) wavelengths, Eq. (1.9) can be written as:

$$L(\lambda_{in}) = \frac{r \cdot E(\lambda_{in})}{\pi} + SIF \quad (1.11)$$

$$L(\lambda_{out}) = \frac{r \cdot E(\lambda_{out})}{\pi} + SIF \quad (1.12)$$

283

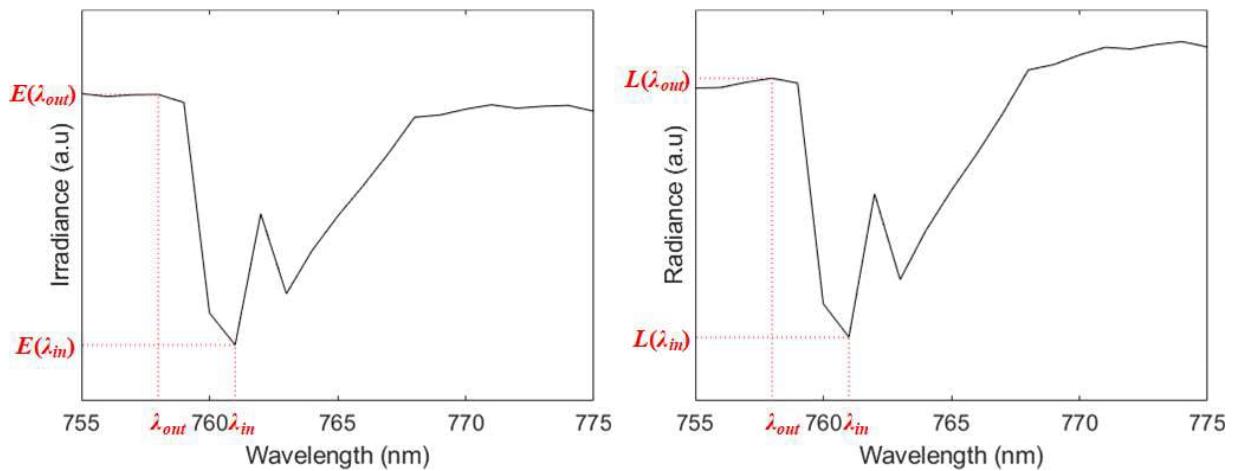
284 The above system of equations can be solved using the measurements of E and L at the two
285 wavelengths from the ground-based sensor to obtain estimates of r and SIF:

$$r = \frac{L(\lambda_{out}) - L(\lambda_{in})}{E(\lambda_{out}) - E(\lambda_{in})} \cdot \pi \quad (1.13)$$

$$SIF = \frac{E(\lambda_{out}) \cdot L(\lambda_{in}) - E(\lambda_{in}) \cdot L(\lambda_{out})}{E(\lambda_{out}) - E(\lambda_{in})} \quad (1.14)$$

286

287 Although SIF quantification using the FLD method is simple because it requires only two
 288 wavelengths, the assumption of constant r and SIF within the narrow absorption line is inadequate.
 289 Consequently, numerous variations of the conventional 2-band FLD method have been proposed,
 290 including 3-band FLD (3FLD) (Maier *et al.*, 2003), corrected FLD (cFLD) (Gómez-Chova *et al.*,
 291 2006), extended FLD (eFLD) (Mazzoni *et al.*, 2007) and improved FLD (iFLD) (Alonso *et al.*, 2008).
 292 In particular, 3FLD and iFLD are the most often used FLD-based methods for SIF quantification at
 293 oxygen absorption features.



294

295 **Fig. 1-4.** Fraunhofer Line Depth (FLD) principle within the O₂-A absorption region. The spectra were
 296 simulated using the SCOPE model.

297

298 The 3FLD method assumes that both r and SIF vary linearly along the narrow absorption line
 299 considered. Rather than employing a single reference band outside the absorption line (λ_{out}), the
 300 weighted mean of two reference bands located at the left (λ_{out}^l) and right (λ_{out}^r) shoulders of the
 301 reference band inside the absorption line is used. By substituting for the outside fluxes with the
 302 interpolated values in Eq. 1.14, SIF can be quantified as:

$$SIF_{3FLD} = \frac{(w_l \cdot E(\lambda_{out}^l) + w_r \cdot E(\lambda_{out}^r)) \cdot L(\lambda_{in}) - E(\lambda_{in}) \cdot (w_l \cdot L(\lambda_{out}^l) + w_r \cdot L(\lambda_{out}^r))}{w_l \cdot E(\lambda_{out}^l) + w_r \cdot E(\lambda_{out}^r) - E(\lambda_{in})} \quad (1.15)$$

$$\text{where } w_l = \frac{\lambda_{out}^r - \lambda_{in}}{\lambda_{out}^r - \lambda_{out}^l}, \quad w_r = \frac{\lambda_{in} - \lambda_{out}^l}{\lambda_{out}^r - \lambda_{out}^l} \quad (1.16)$$

303

304 The iFLD method makes use of two correction factors (α_r^* and α_F^*) to relate r and SIF inside
 305 and outside the narrow absorption line. The correction factors are computed as:

$$\alpha_r^* = \frac{r^*(\lambda_{out})}{\tilde{r}(\lambda_{in})}, \quad \alpha_F^* \approx \frac{E(\lambda_{out})}{\tilde{E}(\lambda_{in})} \cdot \alpha_r^* \quad (1.17)$$

306

307 In Eq. (1.17), $\tilde{r}(\lambda_{in})$ denotes the interpolated apparent reflectance inside the absorption line
 308 obtained by either using cubic or spline interpolation to eliminate the *in-filling* effect on apparent
 309 reflectance (Alonso *et al.*, 2008). $\tilde{E}(\lambda_{in})$ represents the absorption free interpolated irradiance inside
 310 the absorption line. Interpolations are performed using numerous contiguous, absorption-unaffected
 311 bands surrounding the absorption line. Using both the correction factors, SIF can be quantified as:

$$SIF_{iFLD} = \frac{\alpha_r^* \cdot E(\lambda_{out}) \cdot L(\lambda_{in}) - E(\lambda_{in}) \cdot L(\lambda_{out})}{\alpha_r^* \cdot E(\lambda_{out}) - \alpha_F^* \cdot E(\lambda_{in})} \quad (1.18)$$

312

313 Spectral Fitting Methods (SFMs) are a more recent, improved technique for SIF quantification
 314 (Cogliati *et al.*, 2015; 2019; Meroni *et al.*, 2010; Zhao *et al.*, 2018). In SFM, the spectral shapes of
 315 both r and SIF are modelled as smooth mathematical functions employing all available bands within
 316 a constrained spectral region known as the fitting window. The most widely used mathematical
 317 functions are polynomial functions of orders 1 to 3 and the Gaussian function. The upwelling radiance
 318 recorded by the sensor can be expressed as (Meroni *et al.*, 2010):

$$L(\lambda) = \frac{r_{mod}(\lambda) \cdot E(\lambda)}{\pi} + SIF_{mod}(\lambda) + \varepsilon_{mod}(\lambda) = L_{mod}(\lambda) + \varepsilon_{mod}(\lambda) \quad (1.19)$$

319

320 In Eq. (1.19), $r_{mod}(\lambda)$ and $SIF_{mod}(\lambda)$ represents the modelled reflectance and SIF within the
321 fitting window, respectively. $L_{mod}(\lambda)$ and $\varepsilon_{mod}(\lambda)$ represents the modelled upwelling radiance and
322 modelling error at each wavelength. The mathematical system generated using all wavelengths within
323 the fitting window is then solved to obtain the coefficients associated with the parametric functions
324 of modelled reflectance and SIF using least-squares fitting.

325 Apart from FLD-based approaches and SFM methods, data-driven statistical approaches
326 based on Principal Component Analysis or Singular Value Decomposition (Guanter *et al.*, 2013;
327 Joiner *et al.*, 2013; Köhler *et al.*, 2015) have also been developed for SIF quantification. These
328 approaches have been developed particularly for spaceborne SIF retrievals within the narrow solar
329 Fraunhofer lines around the O₂-A absorption region. Other recent SIF quantification methods include
330 physically-based approaches using numerical inversion of canopy radiative transfer models (RTM)
331 (Celesti *et al.*, 2018; Verhoef *et al.*, 2018), Partial Least Squares (PLS) regression-based approach
332 exploiting solar Fraunhofer lines (Naethe *et al.*, 2022), hybrid machine learning phasor-based
333 approach (Scodellaro *et al.*, 2022) and a band shape fitting approach based on the measured shape of
334 the oxygen absorption feature (Van der Tol *et al.*, 2023).

335

336 1.3 Quantification of SIF at different scales and platforms

337 The instrumentation used for SIF quantification has undergone significant advances over the
338 past few decades. Sensors capable of quantifying SIF can be deployed on a variety of platforms,
339 including fixed or mobile platforms for ground-based SIF, unmanned aerial vehicles (UAVs) and
340 conventional aircraft for airborne SIF, and spacecraft for spaceborne SIF.

341 1.3.1 SIF quantification by ground-based spectrometers

342 SIF has been primarily quantified at ground-level due to the wide availability of ground-based
343 spectrometers that can measure both downwelling irradiance and upwelling radiance and thereby

344 validate, interpret, and provide data inputs to models for airborne and spaceborne SIF measurements.
345 In conjunction with additional field measurements collected at comparable temporal and spatial
346 scales, ground-based SIF measurements can aid in the interpretation and comprehension of the SIF
347 signal. Several *in situ* automated SIF systems are currently available, in either a bi-hemispherical or
348 hemispherical-conical configuration, with the capacity to acquire continuous high temporal resolution
349 TOC SIF data. Bi-hemispherical configuration systems include Fluorescence Auto-Measurement
350 Equipment (FAME) (Gu *et al.*, 2019) and 4S-SIF (Kim *et al.*, 2022) whereas hemispherical-conical
351 configuration systems include FLOX (JB Hyperspectral Devices, Düsseldorf, Germany), FluoSpec2
352 (Yang *et al.*, 2018), PhotoSpec (Grossmann *et al.*, 2018), AutoSIF (Zhou *et al.*, 2016) and SIFSpec
353 (Du *et al.*, 2019).

354 Due to its extremely high signal-to-noise ratio (SNR) of 1000:1 and FWHM of 0.3-nm, QE-
355 Pro (Ocean Insight, Dunedin, FL, USA) has become the most widely used spectrometer for ground-
356 based SIF studies in recent years. Ground-based SIF studies using automated SIF systems have
357 primarily examined the link between far-red SIF and gross primary productivity (GPP), the factors
358 affecting this relationship and the viability of predicting GPP precisely using long-term ground-based
359 SIF measurements based on modelling methods (Chen *et al.*, 2022; Damm *et al.*, 2010; Dechant *et*
360 *al.*, 2020; Hao *et al.*, 2022; Li *et al.*, 2020; Liu *et al.*, 2017; 2021; Morozumi *et al.*, 2023; Yang *et al.*,
361 2015). The detection of vegetation stress caused by factors like, water stress (Butterfield *et al.*, 2023;
362 Pérez-Priego *et al.*, 2005; De Cannière *et al.*, 2021; 2022; Xu *et al.*, 2018; 2021), biotic-induced stress
363 (Du *et al.*, 2023; Jing *et al.*, 2022), heat stress (Kimm *et al.*, 2021, and herbicide-induced stress (Carter
364 *et al.*, 2004; Meroni and Colombo, 2006), is yet another prominent application for ground-based SIF
365 studies.

366 1.3.2 SIF quantification from sensors onboard spaceborne platforms

367 The practical implementation of satellite-based SIF estimation has been facilitated by new
368 insights into the impact of fluorescence on apparent reflectance, along with advances in modelling,

369 estimation methods, and sensor capabilities, leading to an expansion of SIF's applicability across a
370 wide range of research domains (Mohammed *et al.*, 2019; Sun *et al.*, 2023b). In 2007, the first
371 retrievals of SIF₇₆₀ were made using the Medium Resolution Imaging Spectrometer (MERIS)
372 (Guanter *et al.*, 2007). SIF₇₆₀ quantification from space was confirmed by this regional-scale study,
373 leading to the development of the first global maps of SIF from the Thermal And Near-infrared Sensor
374 for Carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) on the Japanese
375 Greenhouse gases Observing SATellite (GOSAT) (Joiner *et al.*, 2011). Since then, a number of
376 satellite sensors that were originally intended for measuring atmospheric trace gases and greenhouse
377 gases (eg., methane, sulphur dioxide, carbon dioxide) have been used to quantify SIF on both a
378 regional and global scale at coarse spatial scales. These satellites include Global Ozone Monitoring
379 Experiment 2 (GOME-2) (Joiner *et al.*, 2013), Scanning Imaging Absorption SpectroMeter for
380 Atmospheric CHartographY (SCIAMACHY) (Joiner *et al.*, 2012), Orbiting Carbon Observatory 2
381 (OCO-2) (Frankenberg *et al.*, 2014), TROPOspheric Monitoring Instrument (TROPOMI) (Guanter
382 *et al.*, 2015), and Chinese Carbon Dioxide Observation Satellite Mission (TanSat) (Du *et al.*, 2018).

383 In addition to the existing satellite missions, in 2024, the European Space Agency (ESA) aims
384 to launch the FLuorescence EXplorer (FLEX) (Drusch *et al.*, 2017), designed specifically to measure
385 SIF at a high spectral resolution of 0.3 nm, globally, with a spatial resolution of 300 m. The primary
386 research goal of FLEX is to advance our understanding of physiological signs of plant stress and
387 global seasonal variations in photosynthetic activity and efficiency. Specific outputs expected from
388 the mission include: (1) SIF estimates at the two peaks and at the O₂-A and O₂-B bands (SIF₆₈₅, SIF₇₄₀,
389 SIF₇₆₀, SIF₆₈₇); (2) estimates of total fluorescence emission; and (3) reflectance-derived indices and
390 biophysical traits (ESA, 2018).

391 **1.3.3 SIF quantification from sensors onboard airborne platforms**

392 Observations of SIF at intermediate scales from airborne platforms are vital for bridging the
393 gap between the field and global scales, allowing for improved interpretation of SIF at high spatial

394 resolutions. Airborne SIF measurements can be classified based on whether the sensor deployed on
395 the airborne platform is an imaging sensor or a non-imaging spectrometer. Fluorescence mapping
396 using airborne imaging sensors can reveal photosynthetic efficiency and detect early indicators of
397 stress at scales significant for ecology and resource management. Moreover, airborne SIF
398 measurements have gradually become an integral component of the process of calibrating and
399 validating SIF measurements obtained from spaceborne sensors.

400 The past decade has seen significant technological advances in airborne hyperspectral
401 imagers, particularly the introduction of sub-nanometer imagers that can accurately characterise the
402 narrow absorption features for accurate SIF quantification in physical units. These imagers have now
403 replaced the initially employed coarser resolution narrow-band imagers, which had FWHM greater
404 than 1 nm and could only provide SIF in relative units because of constraints imposed by their spectral
405 configuration. Despite these technological advances, there are still certain challenges to overcome
406 when estimating SIF from airborne platforms. Among these challenges, a precise characterisation of
407 atmospheric effects within the SIF emission region remains the most critical. Atmospheric RTMs are
408 typically used to estimate atmospheric parameters like upwelling transmittance, path scattered
409 radiance, and spherical albedo to account for atmospheric influences, followed by transmittance
410 correction strategy (Damm *et al.*, 2015; Siegmann *et al.*, 2019) to account for the high uncertainty
411 associated with the estimates. Non-linearity correction, sensor-stray light correction, point-spread-
412 function artefacts, and illumination artefacts arising from geometric optical scattering in high-spatial-
413 resolution data are challenging areas in which improvements need to be made (Mohammed *et al.*,
414 2019).

415 **1.3.3.1 Airborne SIF studies with narrow-band imaging sensors**

416 Before the advent of sub-nanometer imaging sensors capable of accurately quantifying SIF,
417 it could only be quantified in relative units using narrow-band imaging sensors. The Reflective Optics
418 System Imaging Spectrometer (ROSIS, 7-nm FWHM) (Maier *et al.*, 2003), Compact Airborne

419 Spectrographic Imager (CASI, 2.4–14.4 nm FWHM) (Guanter *et al.*, 2007; Rossini *et al.*, 2015b;
420 Zarco-Tejada *et al.*, 2002; 2001), Airborne Imaging Spectrometer (AISA Eagle, 3.3-nm FWHM)
421 (Panigada *et al.*, 2014), Airborne Prism Experiment (APEX, 5.7-nm FWHM) (Damm *et al.*, 2015),
422 AISA (1.6-nm FWHM) (Corp *et al.*, 2006), MCA-6 (Tetracam, Inc., California, USA, 1.57–1.6 nm
423 FWHM with custom-made filters) (Zarco Tejada *et al.*, 2009), and AIRFLEX (0.5–5.8 nm FWHM)
424 (Moya *et al.*, 2003; 2006) were the earliest narrow-band hyperspectral and multispectral imagers used
425 to quantify SIF₇₆₀. Currently operational narrow-band hyperspectral imaging sensors for SIF₇₆₀
426 quantification include micro- and nano-hyperspec VNIR imagers (Headwall Photonics Inc., Boston,
427 MA, USA) with 5.8–6.5 nm FWHM (Pancorbo *et al.*, 2023; Poblete *et al.*, 2023; Suarez *et al.*, 2021;
428 Zarco-Tejada *et al.*, 2012).

429 Several studies have demonstrated the utility of relative SIF levels derived from narrow-band
430 imaging sensors, despite their inability to precisely characterise narrow absorption features within the
431 SIF emission region. Narrow-band SIF estimates have shown the most promising results for the
432 detection of biotic- (Calderón *et al.*, 2015; 2013; Camino *et al.*, 2021; Hernández-Clemente *et al.*,
433 2017; Hornero *et al.*, 2021b; Poblete *et al.*, 2020; 2021; 2023; Zarco-Tejada *et al.*, 2018; 2021) and
434 abiotic-induced stress (Camino *et al.*, 2018a; Panigada *et al.*, 2014; Rossini *et al.*, 2015b; Zarco-
435 Tejada *et al.*, 2009; 2012). By integrating traits related to thermal, fluorescence, and spectral
436 indicators of chlorophyll concentration and structural changes into a machine learning framework,
437 Zarco-Tejada *et al.* (2018) demonstrated that prediction accuracies of over 80% can be achieved for
438 the early detection of infection in olive trees caused by the pathogen *Xylella fastidiosa* (*Xf*). In a
439 subsequent investigation, Zarco-Tejada *et al.* (2021) demonstrated that the degree of infection, which
440 is crucial for distinguishing between biotic- and abiotic-induced stress, affects SIF. Other application
441 areas include assessment of grain protein concentrations (Longmire *et al.*, 2022), estimation of leaf
442 nitrogen concentration (Camino *et al.*, 2018b; Wang *et al.*, 2022), link with GPP (Damm *et al.*, 2015;
443 Zarco-Tejada *et al.*, 2013) and plant phenotyping (Camino *et al.*, 2019; Gonzalez-Dugo *et al.*, 2015).

444 Narrow-band SIF estimates were shown to be useful in the aforementioned studies. However,
445 in absolute terms, narrow-band SIF estimates are overestimated and require careful validation using
446 reliable ground-based and airborne sub-nanometer resolution SIF to investigate their reliability.
447 Furthermore, an efficient modelling strategy needs to be developed to account for the effects of
448 spectral configuration on the absolute SIF levels. Addressing these two factors will pave the way for
449 the widespread adoption of narrow-band quantified SIF in operational settings for plant phenotyping,
450 precision agriculture, and plant physiology monitoring applications.

451 **1.3.3.2 Airborne SIF studies with sub-nanometer imaging sensors**

452 The Hyplant sensor developed by the Finnish company Specim in collaboration with
453 Forschungszentrum Jülich (Germany) was the first sub-nanometer imaging sensor specifically
454 designed for accurate SIF estimation (Rascher *et al.*, 2015). It is serving as a demonstrator for the
455 FLEX satellite mission and consists of two modules, DUAL (380–2500 nm) and FLUO (670–780
456 nm), with spectral resolutions of 0.28 nm for O₂-A and 0.29 nm for O₂-B in the FLUO module
457 allowing for accurate SIF estimation (Siegmann *et al.*, 2019). Other sub-nanometer imaging sensors
458 available for accurate SIF estimation include the AISA IBIS Fluorescence Imager (SPECIM, Spectral
459 Imaging Ltd., Oulu, Finland), Hyperspec Solar-Induced Fluorescence Imaging sensor (Headwall
460 Photonics, Fitchburg, MA, USA) (Paynter *et al.*, 2020), and chlorophyll fluorescence imaging
461 spectrometer (CFIS) (Frankenberg *et al.*, 2018) with SRs of 0.245, ≤ 0.2 , and 0.07 nm respectively.

462 Rossini *et al.* (2015a) demonstrated for the first time that a sub-nanometer imaging sensor is
463 capable of precisely mapping the two peaks of SIF. Both SIF₆₈₇ and SIF₇₆₀ increased significantly
464 when treated with an herbicide known to selectively elevate fluorescence levels, demonstrating the
465 ability of airborne sub-nanometer SIF observations to accurately monitor photosynthetic efficiency.
466 Rascher *et al.* (2015) presented the first validated maps over diverse land cover types of SIF from
467 Hyplant, showing that SIF varies between crop varieties. Accurate SIF estimation from sub-
468 nanometer imaging sensor has been demonstrated as valuable in a number of subsequent studies for

469 a wide range of applications, including GPP estimation (Wieneke *et al.*, 2016), herbicide stress
470 detection (Pinto *et al.*, 2020), downscaling SIF from canopy-level to leaf- and photosystem-level (Liu
471 *et al.*, 2019; Siegmann *et al.*, 2021), assessing the wide heterogeneity of peatland vegetation traits
472 (Bandopadhyay *et al.*, 2019), assessing sensitivity of SIF to heat stress and water stress (Zeng *et al.*,
473 2022), validating the contribution of understory SIF modelled via 3-D RTMs (Hornero *et al.*, 2021),
474 assessing SIF responses to soil water-limitation (Damm *et al.*, 2022), and validating spaceborne SIF
475 estimates (Sun *et al.*, 2017). More recently, R. Wang *et al.* (2022) investigated how sensor type,
476 quantification approach, and atmospheric correction affect SIF values, enabling an improved
477 understanding of spatial and temporal GPP patterns by harmonising SIF products across airborne,
478 stationary, and mobile ground-based platforms. The study presented for the first time the retrieval of
479 the full SIF spectrum with a sub-nanometer imaging sensor (AISA IBIS Fluorescence Imager) and
480 investigated the effect on the accuracy of retrieved spectrum by removing from consideration the
481 715–740 nm water absorption bands.

482 Recently, Albert *et al.* (2023) simulated several spectral stray light scenarios and used near-
483 ground-level observations from the Hyperspec Solar-Induced Fluorescence Imaging sensor to
484 examine the sensitivity of SIF retrieval methods to stray light. The O₂-A band and 12 Fraunhofer
485 lines (FLs) without prominent water and oxygen absorption bands were used to quantify SIF with
486 FLD and 3FLD techniques. Although this was the first study to use distinct FLs for SIF quantification
487 with a sub-nanometer imager, as opposed to the more common telluric absorption bands, additional
488 tests are necessary to determine the potential of these narrow FLs when the sensor is onboarding an
489 airborne platform under actual field conditions. The promising opportunity offered by sub-nanometer
490 imaging sensors to detect narrow FLs within the SIF spectrum must be exploited further to investigate
491 their potential for a variety of applications, including biotic and abiotic stress detection, plant
492 physiology monitoring, and nutrient assessment.

493

494 **1.4 Radiative transfer modelling of SIF**

495 Vegetation RTMs describe the interaction between the incident solar radiation and vegetation
496 (primarily absorption and scattering) using radiative transfer equations to, account for the effect of
497 canopy structure (Jacquemoud *et al.*, 2009). The advancements in SIF instrumentation and retrieval
498 methods have been accompanied by progress in modelling methods for SIF estimation. The earliest
499 modelling efforts to incorporate fluorescence into RTMs involved the development of leaf RTMs like
500 the FLSAIL model (Rosema *et al.*, 1991) and Fluorescence–Reflectance–Transmittance (FRT) model
501 (Zarco-Tejada *et al.*, 2000a, 2000b). The first model simulated the effects of fluorescence caused by
502 laser-induced fluorescence, whereas the second model demonstrated the contribution of fluorescence
503 to apparent reflectance spectra. These earlier attempts laid the foundation for the development of
504 more advanced leaf-level models such as FluorMODleaf (Pedrós *et al.*, 2010), Fluspect (Vilfan *et al.*,
505 2016) and Fluorescence Leaf Canopy Vector Radiative Transfer (FluLCVRT) (Kallel, 2020).

506 To accurately model fluorescence emission at canopy-scale, a canopy-level fluorescence
507 RTM must describe the following three primary processes: (1) incident radiation absorption; (2)
508 subsequent fluorescence emission; and (3) post-emission fluorescence scattering and re-absorption
509 within the canopy typically accomplished by incorporating a leaf-fluorescence model into a canopy
510 reflectance model (Disney, 2016; Mohammed *et al.*, 2019). FluorSAIL (Verhoef, 2004) and the Soil-
511 Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol *et al.*, 2009) were
512 the first canopy-scale models to be developed. Because these models consider the vegetation canopy
513 as a series of uniform layers, they are referred to as one-dimensional (1-D) models and are suitable
514 only for homogenous and uniform canopies. Recent modelling efforts have used more rigorous
515 mathematical frameworks to account for the re-absorption and scattering of chlorophyll fluorescence
516 within the homogenous canopy (Atherton *et al.*, 2019; Romero *et al.*, 2020; Yang and van der Tol,
517 2018; Zeng *et al.*, 2019).

518 SCOPE is the most extensively used fluorescence RTM and has undergone numerous
519 enhancements in recent years. Yang *et al.* (2021) provides additional information regarding the
520 enhancements of SCOPE and the new features of the current version (SCOPE 2.0). SCOPE has
521 proven beneficial in numerous studies aimed at elucidating the relationship between photosynthesis
522 and fluorescence-reflectance (Camino *et al.*, 2019; Damm *et al.*, 2015; Migliavacca *et al.*, 2017;
523 Pacheco-Labrador *et al.*, 2019; Verrelst *et al.*, 2016; Yang *et al.*, 2022; Zhang *et al.*, 2022; Zhu *et al.*,
524 2023), understanding the impact of spectral resolution and SNR on FLD-based SIF quantification
525 (Liu *et al.*, 2015), developing and validating new SIF quantification approaches (Celesti *et al.*, 2018;
526 Cogliati *et al.*, 2015; 2019; Naethe *et al.*, 2022; Scodellaro *et al.*, 2022; Van der Tol *et al.*, 2023;
527 Verhoef *et al.*, 2018; Zhao *et al.*, 2019), and disentangling the physiological and non-physiological
528 components of SIF (Wang *et al.* 2023; Xu *et al.*, 2021; Yang *et al.*, 2020; Zeng *et al.*, 2019; 2022).

529 To address the limitations of 1-D canopy-level fluorescence RTMs in modelling
530 heterogeneous, non-uniform, and complex canopies like forests and row-structured, grid-based crop
531 canopies like vineyards and tree orchards, several ray-tracing-based three-dimensional (3-D) canopy-
532 level fluorescence models have been developed. These include the Fluorescence model with Weight
533 Photon Spread (FluorWPS) for row crops (Zhao *et al.*, 2016), the Discrete Anisotropic Radiative
534 Transfer (DART) model for any 3-D vegetation architecture (Gastellu-Etchegorry *et al.*, 2017), Forest
535 Light Environmental Simulator for SIF (FLiES-SIF), and FluorFLIGHT for forest canopies (Sakai *et*
536 *al.*, 2020; Hernández-Clemente *et al.*, 2017). Although the capacity of these ray-tracing-based 3-D
537 models to provide spatially precise modelling could give valuable insights into the interplay of
538 fluorescence fluxes within complex canopy structures, their high computational costs limit their
539 application at landscape-scale (Mohammed *et al.*, 2019; Sun *et al.*, 2023a). The newly developed 3-
540 D models FluorTER (Zeng *et al.*, 2020), based on spectral invariant theory, and FluorESRT (Li *et*
541 *al.*, 2022), targeted at pest-damaged forests, are analytically simple, computationally less intensive,
542 and have the potential for large-scale application.

543 **1.5 Research gaps**

544 The following research gaps were identified in the literature reviewed:

- 545 1. A number of studies have demonstrated the feasibility of quantifying SIF₇₆₀ using widely
546 available narrow-band hyperspectral sensors, but none have assessed the performance and
547 reliability of narrow-band SIF₇₆₀ measurements by comparing them to estimates of sub-
548 nanometer SIF₇₆₀ acquired simultaneously from ground-based and airborne sensors.
- 549 2. Although narrow-band SIF₇₆₀ estimates in absolute physical units are typically overestimated
550 due to the impact of sensor's spectral configurations, no studies have been conducted to
551 investigate how the impact of sensor spectral resolution can be accounted for using RTM-
552 based approaches for retrieving SIF₇₆₀ from narrow-band imaging sensors at appropriate
553 absolute physical levels.
- 554 3. While previous studies have demonstrated the significance of SIF₇₆₀ for biotic and abiotic
555 vegetation stress detection and for improving the retrieval of leaf N concentrations, further
556 research on the viability of using the depth of solar Fraunhofer lines within the SIF emission
557 region is required to harness the full potential of the entire SIF emission region.

558

559 **1.6 Objectives and thesis structure**

560 This thesis focuses primarily on improving the interpretation of SIF₇₆₀ estimates obtained
561 from widely available narrow-band imaging sensors by spectrally scaling narrow-band SIF₇₆₀
562 estimates with radiative transfer modelling and machine learning approaches. In addition, the
563 potential of solar Fraunhofer lines within the SIF emission region for the estimation of N
564 concentration across the field and for the detection of both biotic and abiotic stress using
565 sub-nanometer hyperspectral imagery is investigated. Based on the research gaps identified, the
566 following specific objectives were defined and addressed in this research:

567 1. Assessing the impact of using a narrow-band hyperspectral imager (5.8-nm FWHM), as
568 compared to using a sub-nanometer hyperspectral imager (≤ 0.2 nm FWHM) for SIF₇₆₀
569 quantification using existing methods.

570 2. Developing and evaluating a methodology for modelling the effect of sensor spectral
571 resolution on SIF₇₆₀ quantification from narrow-band hyperspectral imagery by integrating
572 RTM-based approaches with machine learning algorithms.

573 3. Assessing of the capability of the fractional depth of narrow solar Fraunhofer lines within the
574 SIF emission region for estimating leaf nitrogen concentration across the field and for the
575 detection of biotic stress using sub-nanometer resolution (≤ 0.2 nm FWHM) airborne
576 hyperspectral imagery.

577 This thesis comprises five chapters. The first chapter provides a general overview, and the last
578 chapter summarises the findings and implications of this study and discusses possible future
579 applications. The middle three chapters 2, 3, and 4 address research objectives 1, 2 and 3, respectively.

580

581 **Chapter 2** attends to objective 1, focusing on the evaluation of SIF₇₆₀ retrievals from narrow-
582 band and sub-nanometer airborne hyperspectral imagers flown in tandem. The effects of SR and
583 sensor altitude on SIF₇₆₀ accuracy were investigated across three years, comparing SIF₇₆₀ quantified
584 from two hyperspectral imagers with different spectral configurations over three experimental fields
585 with varying nitrogen application rates. Additionally, simulations using the SCOPE model were
586 conducted for theoretical assessment of the effect of SR on absolute SIF levels. Strong significant
587 relationships were obtained among the narrow-band, sub-nanometer, and ground-based SIF₇₆₀
588 estimates, demonstrating the capability of narrow-band imaging sensors for plant phenotyping,
589 vegetation stress detection and plant physiological condition monitoring applications, all of which
590 require reliable assessment of relative SIF₇₆₀ variability across the experimental field. This chapter
591 has been published in the journal *Remote Sensing of Environment*:

592 Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.,
593 2022. **Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne**
594 **hyperspectral imagers flown in tandem: modelling and validation in the context of plant**
595 **phenotyping.** *Remote Sens. Environ.* 273, 112986. <https://doi.org/10.1016/j.rse.2022.112986>.

596

597 **Chapter 3** addresses objective 2 by proposing a methodology for spectrally scaling SIF₇₆₀
598 estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM to 1-nm FWHM using an
599 empirical approach based on a Support Vector Regression (SVR) algorithm with SIF₇₆₀ at 5.8-nm
600 FWHM and SCOPE-derived leaf biochemical and structural traits as model inputs. The SVR model
601 was evaluated using SCOPE model simulations and airborne data obtained from two airborne
602 hyperspectral imagers flown in tandem on board an aircraft during two distinct wheat and maize
603 phenotyping studies. For both simulated and airborne datasets, the estimated SIF₇₆₀ at 1-nm FWHM
604 matched well with the reference SIF₇₆₀, implying that this SIF scaling mechanism could be a viable
605 technique for enhancing the interpretation of relative SIF₇₆₀ levels assessed by narrow-band
606 hyperspectral imagers. This chapter is currently under review by the journal *Remote Sensing of*
607 *Environment*:

608 **Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Accurate**
609 **SIF quantification from a narrow-band airborne hyperspectral imager using SCOPE:**
610 **assessment with sub-nanometer imagery** (under review by the journal *Remote Sensing of*
611 *Environment*).

612

613 **Chapter 4** targets objective 3. Using sub-nanometer hyperspectral imagery, a set of distinct
614 Fraunhofer lines devoid of water and oxygen absorptions was firstly identified within the SIF
615 emission region. In the subsequent stage, the sensitivity of the depth of these narrow lines for the

616 identification of biotic-induced stress caused by pathogen infections at varying levels of stress was
617 investigated. Furthermore, the potential of these lines for improved estimation of leaf nitrogen
618 concentration in conjunction with leaf chlorophyll content and SIF₇₆₀ estimations was explored. This
619 chapter is currently being drafted for submission to the journal *Remote Sensing of Environment*.

620 **Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Prospects**
621 **of solar Fraunhofer lines derived from sub-nanometer hyperspectral imagery for assessing**
622 **a/biotic stress** (currently being drafted for submission to the journal *Remote Sensing of*
623 *Environment*).

624

625 **References**

626 Albert, L.P., Cushman, K.C., Zong, Y., Allen, D.W., Alonso, L., Kellner, J.R., 2023. Sensitivity of
627 solar-induced fluorescence to spectral stray light in high resolution imaging spectroscopy.
628 *Remote Sens. Environ.* 285, 113313.

629 Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López, J., Guanter, L., Calpe, J., Moreno, J.,
630 2008. Improved Fraunhofer line discrimination method for vegetation fluorescence
631 quantification. *IEEE Geosci. Remote Sens. Lett.* 5, 620–624.

632 Anderson, J.M, Chow, W.S, Park, Y.I., 1995. The grand design of photosynthesis: acclimation of the
633 photosynthetic apparatus to environmental cues. *Photosynth. Res.* 46, 129–139.

634 Arena, C., Vitale, L., De Santo, A.V., 2008. Paraheliotropism in *Robinia pseudoacacia* L.: an efficient
635 strategy to optimise photosynthetic performance under natural environmental conditions. *Plant*
636 *Biology* 10, 194–201.

637 Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman,
638 M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal,
639 P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A.J., de Sanctis, G., Doltra, J., Fereres, E.,
640 Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones,
641 C.D., Kersebaum, K.C., Koehler, A.K., Müller, C., Naresh Kumar, S., Nendel, C., O'leary, G.,
642 Olesen, J.E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A.C., Semenov, M.A.,
643 Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha,
644 K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., Zhu, Y., 2015. Rising temperatures reduce global
645 wheat production. *Nat. Clim. Change* 5, 143–147.

646 Atherton, J., Liu, W., Porcar-Castell, A., 2019. Nocturnal Light Emitting Diode Induced Fluorescence
647 (LEDIF): A new technique to measure the chlorophyll a fluorescence emission spectral
648 distribution of plant canopies in situ. *Remote Sens. Environ.* 231, 111137.

654 Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., Julitta, T.,
655 Arthur, A. mac, Hueni, A., Tomelleri, E., Celesti, M., Burkart, A., Strózecki, M., Sakowska, K.,
656 Gabka, M., Rosadziński, S., Sojka, M., Iordache, M.D., Reusen, I., Van der Tol, C., Damm, A.,
657 Schuettemeyer, D., Juszczak, R., 2019. HyPlant-derived sun-induced fluorescence - a new
658 opportunity to disentangle complex vegetation signals from diverse vegetation types. *Remote*
659 *Sens.* 11, 1691.

660

661 Björkman, O., Demmig, B., 1987. Photon yield of O₂ evolution and chlorophyll fluorescence
662 characteristics at 77 K among vascular plants of diverse origins. *Planta* 170, 489–504.

663

664 Blankenship, R.E., 2014. *Molecular Mechanisms of Photosynthesis*. John Wiley & Sons, Inc.,
665 Hoboken, NJ.

666

667 Brooks, M.D., Niyogi, K.K., 2011. Use of a Pulse-Amplitude Modulated Chlorophyll Fluorometer to
668 Study the Efficiency of Photosynthesis in *Arabidopsis* Plants, in: Jarvis, R. (Eds.) *Chloroplast*
669 *Research in Arabidopsis. Methods in Molecular Biology*, vol 775. Humana Press, Totowa, NJ,
670 pp. 299–310.

671

672 Butler, W.L., 1978. Energy distribution in the photochemical apparatus of photosynthesis. *Annu. Rev.*
673 *Plant. Physiol.* 29, 345–78.

674

675 Butterfield, Z., Magney, T., Grossmann, K., Bohrer, G., Vogel, C., Barr, S., Keppel-Aleks, G., 2023.
676 Accounting for changes in radiation improves the ability of SIF to track water stress-induced
677 losses in summer GPP in a temperate deciduous forest. *J. Geophys. Res. Biogeosci.* 128,
678 e2022JG007352.

679

680 Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution airborne
681 hyperspectral and thermal imagery for early detection of *Verticillium* wilt of olive using
682 fluorescence, temperature and narrow-band spectral indices. *Remote Sens. Environ.* 139, 231–
683 245.

684

685 Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J., 2015. Early detection and quantification of
686 *Verticillium* wilt in olive using hyperspectral and thermal imagery over large areas. *Remote*
687 *Sens.* 7, 5584–5610.

688

689 Camino, C., Zarco-Tejada, P.J., Gonzalez-Dugo, V., 2018a. Effects of heterogeneity within tree
690 crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of
691 precision agriculture. *Remote Sens.* 10, 604.

692

693 Camino, C., González-Dugo, V., Hernandez, P., Sillero, J.C., Zarco-Tejada, P.J., 2018b. Improved
694 nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-
695 SWIR hyperspectral imagery in the context of precision agriculture. *Int. J. Appl. Earth Obs.*
696 *Geoinf.* 70, 105–117.

697

698 Camino, C., Gonzalez-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., 2019. Radiative transfer Vcmax
699 estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance
700 in rainfed and irrigated plant phenotyping trials. *Remote Sens. Environ.* 231, 111186.

701

702 Camino, C., Calderón, R., Parnell, S., Dierkes, H., Chemin, Y., Román-Écija, M., Montes-Borrego,
703 M., Landa, B.B., Navas-Cortes, J.A., Zarco-Tejada, P.J., Beck, P.S.A., 2021. Detection of

704 Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely
705 sensed plant traits. *Remote Sens. Environ.* 260, 112420.

706

707 Carter, G.A., Freedman, A., Kebabian, P.L., Scott, H.E., 2004. Use of a prototype instrument to detect
708 short-term changes in solar-excited leaf fluorescence. *Int. J. Remote Sens.* 25, 1779-1784.

709

710 Celesti, M., Van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F.,
711 Colombo, R., Rossini, M., 2018. Exploring the physiological information of sun-induced
712 chlorophyll fluorescence through radiative transfer model inversion. *Remote Sens. Environ.* 215,
713 97-108.

714

715 Chen, R., Liu, L., Liu, X., 2022. Leaf chlorophyll contents dominates the seasonal dynamics of
716 SIF/GPP ratio: Evidence from continuous measurements in a maize field. *Agric. For. Meteorol.*
717 323, 109070.

718

719 Clegg, R.M., 2004. Nuts and bolts of excitation energy migration and energy transfer, in:
720 Papageorgiou, G.C., Govindjee (Eds.), *Chlorophyll a Fluorescence, a signature of*
721 *photosynthesis. Advances in Photosynthesis and Respiration*, vol 19. Springer, Dordrecht, pp.
722 83-105.

723

724 Close, D.C., Beadle, C.L., 2003. The ecophysiology of foliar anthocyanin. *Botanical Review* 69, 149-
725 161.

726

727 Cogato, A., Meggio, F., De Antoni Migliorati, M., Marinello, F., 2019. Extreme weather events in
728 agriculture: a systematic review. *Sustainability* 11, 2547.

729

730 Cogliati, S., Celesti, M., Cesana, I., Miglietta, F., Genesio, L., Julitta, T., Schuettemeyer, D., Drusch,
731 M., Rascher, U., Jurado, P., Colombo, R., 2019. A spectral fitting algorithm to retrieve the
732 fluorescence spectrum from canopy radiance. *Remote Sens.* 11.

733

734 Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J., Moreno, J., Drusch, M.,
735 Colombo, R., 2015. Retrieval of sun-induced fluorescence using advanced spectral fitting
736 methods. *Remote Sens. Environ.* 169, 344-357.

737

738 Corp L., Middleton E., Daughtry C., Campbell P., 2006. Solar induced fluorescence and reflectance
739 sensing techniques for monitoring nitrogen utilization in corn. In: Proc. IEEE International
740 Geoscience and Remote Sensing Symposium (IGARSS), 31 July-04 August 2006, Denver, CO,
741 USA, pp. 2267-2270.

742

743 Damm, A., Elbers, J.A.N., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., Meroni, M.,
744 Miglietta, F., Moersch, A., Moreno, J., 2010. Remote sensing of sun-induced fluorescence to
745 improve modeling of diurnal courses of gross primary production (GPP). *Glob. Chang. Biol.* 16,
746 171-186.

747

748 Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W.,
749 Ammann, C., Schaeppman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows
750 ecosystem-specific relationships to gross primary production: an assessment based on
751 observational and modeling approaches. *Remote Sens. Environ.* 166, 91-105.

752

753 Damm, A., Cogliati, S., Colombo, R., Fritsche, L., Genangeli, A., Genesio, L., Hanus, J., Peressotti,
754 A., Rademske, P., Rascher, U., Schuettemeyer, D., 2022. Response times of remote sensing

755 measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to
756 evolving soil water limitation in a crop canopy. *Remote Sens. Environ.* 273, 112957.

757

758 Daumard, F., Goulas, Y., Ounis, A., Pedros, R., Moya, I., 2007. Atmospheric correction of airborne
759 passive measurements of fluorescence. In: Proc. International Symposium on Physical
760 Measurements and Signatures in Remote Sensing (ISPMRS), 12–14 March 2007, Davos,
761 Switzerland.

762

763 De Cannière, S., Herbst, M., Vereecken, H., Defourny, P., Jonard, F., 2021. Constraining water
764 limitation of photosynthesis in a crop growth model with sun-induced chlorophyll fluorescence.
765 *Remote Sens. Environ.* 267, 112722.

766

767 De Cannière, S., Vereecken, H., Defourny, P., Jonard, F., 2022. Remote sensing of instantaneous
768 drought stress at canopy level using sun-induced chlorophyll fluorescence and canopy
769 reflectance. *Remote Sens.* 14, 2642.

770

771 Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q.,
772 Kang, M., Li, J., Moya, I., 2020. Canopy structure explains the relationship between
773 photosynthesis and sun-induced chlorophyll fluorescence in crops. *Remote Sens. Environ.* 241,
774 111733.

775

776 Disney, M., 2016. Remote sensing of vegetation: potentials, limitations, developments and
777 applications. In: Hikosaka, K., Niinemets, Ü., Anten, N.P.R. (Eds.), *Canopy Photosynthesis: From Basics to Applications*. Springer, Dordrecht, pp. 289–331.

779

780 Dobrowski, S. Z., Pushnik, J. C., Zarco-Tejada, P. J., and Ustin, S. L., 2005. Simple reflectance
781 indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at
782 the canopy scale. *Remote Sens. Environ.* 97, 403–414.

783

784 Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M.,
785 Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W., 2017. The FLorescence EXplorer mission concept - ESA's Earth Explorer 8. *IEEE Trans. Geosci. Remote Sens.* 55, 1273–1284.

788

789 Du, K., Jing, X., Zeng, Y., Ye, Q., Li, B., Huang, J., 2023. An Improved Approach to Monitoring
790 Wheat Stripe Rust with Sun-Induced Chlorophyll Fluorescence. *Remote Sens.* 15, 693.

791

792 Du, S., Liu, L., Liu, X., Guo, J., Hu, J., Wang, S., Zhang, Y., 2019. SIFSpec: Measuring solar-induced
793 chlorophyll fluorescence observations for remote sensing of photosynthesis. *Sensors* 19, 3009.

794

795 Du, S., Liu, L., Liu, X., Zhang, X., Zhang, X., Bi, Y., Zhang, L., 2018. Retrieval of global terrestrial
796 solar-induced chlorophyll fluorescence from TanSat satellite. *Sci. Bull.* 63, 1502–1512.

797

798 ESA (European Space Agency), 2015. Report for Mission Selection: FLEX. ESA SP-1330/2 (2
799 Volume Series). 197 pp., Noordwijk (The Netherlands).
800 https://esamultimedia.esa.int/docs/EarthObservation/SP1330-2_FLEX.pdf.

801

802 Forster, T., 1948. Intermolecular Energy Migration and Fluorescence. *Annals of Physics* 2, 55–75.

803

804 Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollack, R., Taylor, T.E.,
805 2014. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon
806 Observatory-2. *Remote Sens. Environ.* 147, 1–12.

807

808 Frankenberg, C., Berry, J., 2018. Solar induced chlorophyll fluorescence: Origins, relation to
809 photosynthesis and retrieval. in: Liang, S. (Eds.), *Comprehensive Remote Sensing*, vol 3.
810 Elsevier, pp. 143–162.

811

812 Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., McDuffie, J.,
813 Drewry, D.T., Pavlick, R., Kuhnert, A., 2018. The chlorophyll fluorescence imaging
814 spectrometer (CFIS), mapping far red fluorescence from aircraft. *Remote Sens. Environ.* 217,
815 523–536.

816

817 Frigerio, S., Bassi R., Giacometti G.M., 2008. Light Conversion in Photosynthetic Organisms, in:
818 Pavesi, L., Fauchet, P.M. (Eds.), *Biophotonics*. Springer, Berlin, Heidelberg, pp. 1–14.

819

820 Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., Al Bitar, A.,
821 Aval, J., Benhmida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton, D.,
822 Chrysoulakis, N., Mitraka, Z., 2017. DART: recent advances in remote sensing data modeling
823 with atmosphere, polarization, and chlorophyll fluorescence. *IEEE J. Sel. Top. Appl. Earth Obs.*
824 *Remote Sens.* 10, 2640–2649.

825

826 Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of
827 photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochim. Biophys.*
828 *Acta* 990, 87–92.

829

830 Giardi, M.T., Cona, A., Geiken, B., Kucera, T., Masajidek, J., Matoo, A.K., 1996. Long-term drought
831 stress induces structural and functional reorganization of photosystem II. *Planta*, 99, 118–125.

832

833 Gómez-Chova, L., Alonso-Chorda, L., Amoros-Lopez, J., Vila-Frances, J., Del Valle-Tascon, S.,
834 Calpe, J., Moreno, J., 2006. Solar induced fluorescence measurements using a field
835 spectroradiometer. *AIP Conf. Proc.* 852, 274–281.

836

837 Gonzalez-Dugo, V., Hernandez, P., Solis, I., Zarco-Tejada, P.J., 2015. Using high-resolution
838 hyperspectral and thermal airborne imagery to assess physiological condition in the context of
839 wheat phenotyping. *Remote Sens.* 7, 13586–13605.

840

841 Govindjee, 2004. Chlorophyll a fluorescence: a bit of basics and history, in: Papageorgiou, G.C.,
842 Govindjee (Eds.), *Chlorophyll a Fluorescence, a signature of photosynthesis. Advances in*
843 *Photosynthesis and Respiration*, vol 19. Springer, Dordrecht, pp. 1–42.

844

845 Grossmann, K., Frankenberg, C., Magney, T.S., Hurlock, S.C., Seibt, U., Stutz, J., 2018. PhotoSpec:
846 a new instrument to measure spatially distributed red and far-red solar-induced chlorophyll
847 fluorescence. *Remote Sens. Environ.* 216, 311–327.

848

849 Gu, L., Wood, J.D., Chang, C.Y., Sun, Y., Riggs, J.S., 2019. Advancing terrestrial ecosystem science
850 with a novel automated measurement system for sun-induced chlorophyll fluorescence for
851 integration with eddy covariance flux networks. *J. Geophys. Res. Biogeosci.* 124, 127–146.

852

853 Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., Köhler, P., Damm, A., Joiner, J.,
854 Frankenberg, C., Landgraf, J., 2015. Potential of the TROPOspheric Monitoring Instrument

855 (TROPOMI) onboard the Sentinel-5 precursor for the monitoring of terrestrial chlorophyll
856 fluorescence. *Atmos. Meas. Tech.* 8, 1337–1352.

857

858 Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., Joiner, J., 2013.
859 Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-
860 induced chlorophyll fluorescence from ground and space. *Remote Sens. Environ.* 133, 52–61.

861

862 Guanter, L., Alonso, L., Gómez-Chova, L., Amorós-López, J., Vila, J., Moreno, J., 2007. Estimation
863 of solar-induced vegetation fluorescence from space measurements. *Geophys. Res. Lett.* 34,
864 L08401.

865

866 Hao, D., Zeng, Y., Zhang, Z., Zhang, Y., Qiu, H., Biriukova, K., Celesti, M., Rossini, M., Zhu, P.,
867 Asrar, G.R., Chen, M., 2022. Adjusting solar-induced fluorescence to nadir-viewing provides a
868 better proxy for GPP. *ISPRS J. Photogramm. Remote Sens.* 186, 157–169.

869

870 Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B.L., Doelman, J.C., Fellmann, T., Kyle,
871 P., Koopman, J.F.L., Lotze-Campen, H., Mason-D'Croz, D., Ochi, Y., Pérez Domínguez, I.,
872 Stehfest, E., Sulser, T.B., Tabeau, A., Takahashi, K., Takakura, J., van Meijl, H., van Zeist, W.J.,
873 Wiebe, K., Witzke, P., 2018. Risk of increased food insecurity under stringent global climate
874 change mitigation policy. *Nat. Clim. Change* 8, 699–703.

875

876 Hatfield, J.L., Prueger, J.H., 2011. Agroecology: Implications for Plant Response to Climate Change,
877 in: Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E (Eds.), *Crop Adaption*
878 to Climate Change. Wiley-Blackwell, West Sussex, UK, pp. 27–43.

879

880 Haupt, W., 1990. Chloroplast movement. *Plant Cell Environ.* 13, 595–614.

881

882 Heldt, H., Piechulla, B., 2011. *Plant Biochemistry*, Academic Press, Elsevier, San Diego, CA, USA.

883

884 Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J., 2017. Assessing the effects
885 of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative
886 transfer model to account for forest structure. *Remote Sens. Environ.* 193, 165–179.

887

888 Hofius, D., Börnke; F. A. J., 2007. Photosynthesis, carbohydrate metabolism and source–sink
889 relations. In: Viola, R., Gebhardt, C., MacKerron, D., Vreudenhil, D. (Eds.), *Potato biology and*
890 *biotechnology: advances and perspectives*, Elsevier Science B.V., Amsterdam, pp. 257–285.

891

892 Hornero, A., North, P.R.J., Zarco-Tejada, P.J., Rascher, U., Martín, M.P., Migliavacca, M.,
893 Hernández-Clemente, R., 2021a. Assessing the contribution of understory sun-induced
894 chlorophyll fluorescence through 3-D radiative transfer modelling and field data. *Remote Sens.*
895 *Environ.* 253, 112195.

896

897 Hornero, A., Zarco-Tejada, P.J., Quero, J.L., North, P.R.J., Ruiz-Gómez, F.J., Sánchez-Cuesta, R.,
898 Hernández-Clemente, R., 2021b. Modelling hyperspectral- and thermal-based plant traits for the
899 early detection of Phytophthora-induced symptoms in oak decline. *Remote Sens. Environ.* 263,
900 112570.

901

902 Huner, N.P.A., Maxwell, D.P., Gray, G.R., Savitch, L.V., Krol, M., Ivanov, A.G., Falk, S., 1996.
903 Sensing environmental temperature change through imbalances between energy supply and
904 energy consumption: redox state of photosystem II. *Physiologia Plantarum* 98, 358–364.

905

906 Hussain, S., Ulhassan, Z., Breistic, M., Zivcak, M., Zhou, W., Allakhverdiev, S.I., Yang, X., Safdar
907 M.E., Yang, W., Liu, W., 2021. Photosynthesis research under climate change. *Photosynth. Res.*
908 150, 5–19.

909

910 Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C.,
911 Ustin, S.L., 2009. PROSPECT+SAIL models: a review of use for vegetation characterization.
912 *Remote Sens. Environ.* 113 (Suppl. 1), S56–S66.

913

914 Jing, X., Li, B., Ye, Q., Zou, Q., Yan, J., Du, K., 2022. Integrate the Canopy SIF and Its Derived
915 Structural and Physiological Components for Wheat Stripe Rust Stress Monitoring. *Remote*
916 *Sens.* 14, 3427.

917

918 Joiner, J., Guanter, L., Lindstrom, R., Voigt, M., Vasilkov, A.P., Middleton, E.M., Huemmrich, K.F.,
919 Yoshida, Y., Frankenberg, C., 2013. Global monitoring of terrestrial chlorophyll fluorescence
920 from moderate spectral resolution near-infrared satellite measurements: methodology,
921 simulations, and application to GOME-2. *Atmos. Meas. Tech.* 6, 2803–2823.

922

923 Joiner, J., Yoshida, Y., Vasilkov, A.P., Middleton, E.M., Campbell, P.K.E., Yoshida, Y., Kuze, A.,
924 Corp, L.A., 2012. Filling-in of near-infrared solar lines by terrestrial fluorescence and other
925 geophysical effects: simulations and space-based observations from SCIAMACHY and
926 GOSAT. *Atmos. Meas. Tech.* 5, 809–829.

927

928 Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., Middleton, E.M., 2011. First
929 observations of global and seasonal terrestrial chlorophyll fluorescence from space. *Biogeosci.*
930 8, 637–651.

931

932 Kallel, A., 2020. FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on
933 Monte Carlo vector radiative transfer simulation. *Journal of Quantitative Spectroscopy and*
934 *Radiative Transfer* 253, 107183.

935

936 Kim, J., Ryu, Y., Dechant, B., 2022. Development of a filter-based near-surface remote sensing
937 system to retrieve far-red sun-induced chlorophyll fluorescence. *Remote Sens. Environ.* 283,
938 113311.

939

940 Kimm, H., Guan, K., Jiang, C., Miao, G., Wu, G., Suyker, A.E., Ainsworth, E.A., Bernacchi, C.J.,
941 Montes, C.M., Berry, J.A., Yang, X., 2021. A physiological signal derived from sun-induced
942 chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the
943 US Corn Belt. *Environ. Res. Lett.* 16, 124051.

944

945 Köhler, P., Guanter, L., Joiner, J., 2015. A linear method for the retrieval of sun-induced chlorophyll
946 fluorescence from GOME-2 and SCIAMACHY data. *Atmos. Meas. Tech.* 8, 2589–2608.

947

948 Kolber, Z., Klimov, D., Ananyev, G., Rascher, U., Berry, J., Osmond, B., 2005. Measuring
949 photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for
950 remote measurements of photosynthesis in terrestrial vegetation. *Photosynth. Res.* 84, 121–129.

951

952 Kolber, Z., Prasil, O., Falkowski, P.G., 1998. Measurements of variable chlorophyll fluorescence
953 using fast repetition rate techniques: defining methodology and experimental protocols. *Biochim*
954 *Biophys Acta* 1367, 88–106.

955

956 Kozaki, A., Takeba, G., 1996. Photorespiration protects C3 plants from photooxidation. *Nature*, 384,
957 557–560.

958

959 Kramer, D.M., Avenson, T.J., Edwards, G.E., 2004. Dynamic flexibility in the light reactions of
960 photosynthesis governed by both electron and proton transfer reactions. *Trends Plant Sci.* 9, 349–
961 357.

962

963 Krause, G.H., Weis, E., 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation
964 of fluorescence signals. *Photosynth. Res.* 5, 139–157.

965

966 Li, Z., Zhang, Q., Li, J., Yang, X., Wu, Y., Zhang, Z., Wang, S., Wang, H., Zhang, Y., 2020. Solar-
967 induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous
968 ground measurements. *Remote Sens. Environ.* 236, 111420.

969

970 Li, X., Shabanov, N.V., Chen, L., Zhang, Y., Huang, H., 2022. Modeling solar-induced fluorescence
971 of forest with heterogeneous distribution of damaged foliage by extending the stochastic
972 radiative transfer theory. *Remote Sens. Environ.* 271, 112892.

973

974 Liu, L., Liu, X., Hu, J., 2015. Effects of spectral resolution and SNR on the vegetation solar-induced
975 fluorescence retrieval using FLD-based methods at canopy level. *Eur. J. Remote Sens.* 48, 743–
976 762.

977

978 Liu, L., Guan, L., Liu, X., 2017. Directly estimating diurnal changes in GPP for C3 and C4 crops
979 using far-red sun-induced chlorophyll fluorescence. *Agric. For. Meteorol.* 232, 1–9.

980

981 Liu, X., Guanter, L., Liu, L., Damm, A., Malenovský, Z., Rascher, U., Peng, D., Du, S., Gastellu-
982 Etchegorry, J.-P., 2019. Downscaling of solar-induced chlorophyll fluorescence from canopy
983 level to photosystem level using a random forest model. *Remote Sens. Environ.* 231, 110772.

984

985 Liu, X., Liu, Z., Liu, L., Lu, X., Chen, J., Du, S., Zou, C., 2021. Modelling the influence of incident
986 radiation on the SIF-based GPP estimation for maize. *Agric. For. Meteorol.* 307, 108522.

987

988 Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop traits
989 retrieved from airborne hyperspectral and thermal remote sensing imagery to predict wheat grain
990 protein content. *ISPRS J. Photogramm. Remote Sens.* 193, 284–298.

991

992 Ludlow, M.M., Bjorkman, O., 1984. Paraheliotropic leaf movement in *Siratro* as a protective
993 mechanism against drought-induced damage to primary photosynthetic reactions: damage by
994 excessive light and heat. *Planta*, 161, 505–518.

995

996 Maier, S.W., Günther, K.P., Stellmes, M., 2003. Sun-induced fluorescence: a new tool for precision
997 farming. In: Schepers, J., VanToai, T. (Eds.), *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*. ASA Spec. Publ. 66. ASA, CSSA,
998 and SSSA, Madison (Wisconsin), USA, pp. 209–222.

1000

1001 Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence — a practical guide. *J. Exp. Bot.* 51,
1002 659–668.

1003

1004 Mazzoni, M., Agati, G., Cecchi, G., Toci, G., Mazzinghi, P., 2007. High resolution measurements of
1005 solar induced chlorophyll fluorescence in the Fraunhofer oxygen bands. In *Proc. SPIE 10567, International Conference on Space Optics*, Noordwijk, Netherlands.

1006

1007 Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of
1008 spectral fitting methods for vegetation fluorescence quantification. *Remote Sens. Environ.* 114,
1009 363–374.

1010

1011 Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009.
1012 Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications.
1013 *Remote Sens. Environ.* 113, 2037–2051.

1014

1015 Meroni, M., Colombo, R., 2006. Leaf level detection of solar induced chlorophyll fluorescence by
1016 means of a subnanometer resolution spectroradiometer. *Remote Sens. Environ.* 103, 438–448.

1017

1018 Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, K.R., 2008. Light absorption by
1019 anthocyanins in juvenile, stressed, and senescing leaves. *J. Exp. Bot.* 59, 3903–3911.

1020

1021 Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T. S., Moreno, G., Van der Tol, C.,
1022 Rascher, U., Berninger, A., Bessenbacher, V., Burkart, A., Carrara, A., 2017. Plant functional
1023 traits and canopy structure control the relationship between photosynthetic CO₂ uptake and far-
1024 red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability.
1025 *New Phytol.*, 214, 1078–1091.

1026

1027 Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., Van der Tol, C., Nedbal, L., Goulas,
1028 Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský,
1029 Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A.,
1030 Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll
1031 fluorescence (SIF) in vegetation: 50 years of progress. *Remote Sens. Environ.* 231, 111177.

1032

1033 Morozumi, T., Kato, T., Kobayashi, H., Sakai, Y., Nakashima, N., Buareal, K., Nasahara, K.N.,
1034 Akitsu, T.K., Murayama, S., Noda, H.M., Muraoka, H., 2023. Contributions of the understory
1035 and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in
1036 conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf
1037 forest. *Remote Sens. Environ.* 284, 113340.

1038

1039 Moya, I., Daumard, F., Moise, N., Ounis, A., Goulas, Y., 2006. First airborne multiwavelength
1040 passive chlorophyll fluorescence measurements over La Mancha (Spain) fields. In: Proc. Recent
1041 Advances in Quantitative Remote Sensing, 25–29 September 2006, Torrent, Spain, pp. 820–825.

1042

1043 Murchie, E.H., Horton, P., 1997. Acclimation of photosynthesis to irradiance and spectral quality in
1044 British plant species: chlorophyll content, photosynthetic capacity and habitat preference. *Plant*
1045 *Cell Environ.* 20, 438–448.

1046

1047 Naethe, P., Julitta, T., Chang, C.Y.Y., Burkart, A., Migliavacca, M., Guanter, L., Rascher, U., 2022.
1048 A precise method unaffected by atmospheric reabsorption for ground-based retrieval of red and
1049 far-red sun-induced chlorophyll fluorescence. *Agric. For. Meteorol.* 325, 109152.

1050

1051 Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T.S., Julitta, T., Rossini, M., Guan, J., Moreno,
1052 G., Carvalhais, N., Martín, M.P., Gonzalez-Cascon, R., Kolle, O., 2019. Multiple-constraint
1053 inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional
1054 traits. *Remote Sens. Environ.* 234, 111362.

1055

1056 Panigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati,
1057 S., Picchi, V., Pinto, F., Marchesi, A., Colombo, R., 2014. Fluorescence, PRI and canopy

1058 temperature for water stress detection in cereal crops. *Int. J. Appl. Earth Obs. Geoinf.* 30, 167–
1059 178.

1060

1061 Pancorbo, J.L., Alonso-Ayuso, M., Camino, C., Raya-Sereno, M.D., Zarco-Tejada, P.J., Molina, I.,
1062 Gabriel, J.L., Quemada, M., 2023. Airborne hyperspectral and Sentinel imagery to quantify
1063 winter wheat traits through ensemble modeling approaches. *Precision Agric.* 24, 1288–1311.

1064

1065 Paynter, I., Cook, B., Corp, L., Nagol, J., McCorkel, J., 2020. Characterization of FIREFLY, an
1066 imaging spectrometer designed for remote sensing of solar induced fluorescence. *Sensors* 20,
1067 4682.

1068

1069 Pedrós, R., Goulas, Y., Jacquemoud, S., Louis, J., Moya, I., 2010. FluorMODleaf: a new leaf
1070 fluorescence emission model based on the PROSPECT model. *Remote Sens. Environ.* 114, 155–
1071 167.

1072

1073 Pérez-Priego, O., Zarco-Tejada, P.J., Miller, J.R., Sepulcre-Cantó, G., Fereres, E., 2005. Detection of
1074 water stress in orchard trees with a high-resolution spectrometer through chlorophyll
1075 fluorescence in-filling of the O2-A band. *IEEE Trans. Geosci. Remote Sens.* 43, 2860–2869.

1076

1077 Plascyk, J.A., 1975. The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote
1078 sensing of solar-stimulated luminescence. *Opt. Eng.* 14, 144339.

1079

1080 Pinto, F., Celesti, M., Acebron, K., Alberti, G., Cogliati, S., Colombo, R., Juszczak, R., Matsubara,
1081 S., Miglietta, F., Palombo, A., Panigada, C., 2020. Dynamics of sun-induced chlorophyll
1082 fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis. *Plant,*
1083 *cell & environment*, 43, 1637–1654.

1084

1085 Poblete, T., Camino, C., Beck, P.S.A., Hornero, A., Kattenborn, T., Saponari, M., Boscia, D., Navas-
1086 Cortes, J.A., Zarco-Tejada, P.J., 2020. Detection of *Xylella fastidiosa* infection symptoms with
1087 airborne multispectral and thermal imagery: Assessing bandset reduction performance from
1088 hyperspectral analysis. *ISPRS J. Photogramm. Remote Sens.* 162, 27–40.

1089

1090 Poblete, T., Navas-Cortes, J.A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa,
1091 B.B., Zarco-Tejada, P.J., 2021. Discriminating *Xylella fastidiosa* from *Verticillium dahliae*
1092 infections in olive trees using thermal- and hyperspectral-based plant traits. *ISPRS J.*
1093 *Photogramm. Remote Sens.* 179, 133–144.

1094

1095 Poblete, T., Navas-Cortes, J.A., Hornero, A., Camino, C., Calderon, R., Hernandez-Clemente, R.,
1096 Landa, B.B., Zarco-Tejada, P.J., 2023. Detection of symptoms induced by vascular plant
1097 pathogens in tree crops using high-resolution satellite data: Modelling and assessment with
1098 airborne hyperspectral imagery. *Remote Sens. Environ.* 295, 113698.

1099

1100 Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfundel, E.E., Moreno, J.,
1101 Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for
1102 remote sensing applications: mechanisms and challenges. *J. Exp. Bot.* 65, 4065–4095.

1103

1104 Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M.,
1105 Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S.,
1106 Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pikl, M., Pinto, F., Prey, L.,
1107 Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., 2015.

1108 Sun-induced fluorescence - a new probe of photosynthesis: first maps from the imaging
1109 spectrometer HyPlant. *Glob. Chang. Biol.* 21, 4673–4684.

1110

1111 Romero, J.M., Cordon, G.B., Lagorio, M.G., 2020. Re-absorption and scattering of chlorophyll
1112 fluorescence in canopies: A revised approach. *Remote Sens. Environ.* 246, 111860.

1113

1114 Rosema, A., Verhoef, W., Schroote, J., Snel, J.F.H., 1991. Simulating fluorescence light canopy
1115 interaction in support of laser-induced fluorescence measurements. *Remote Sens. Environ.* 37,
1116 117–130.

1117

1118 Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., Colombo, R.,
1119 Damm, A., Drusch, M., Hanus, J., Janoutova, R., Julitta, T., Kokkalis, P., Moreno, J., Novotny,
1120 J., Panigada, C., Pinto, F., Schickling, A., Schüttemeyer, D., Zemek, F., Rascher, U., 2015a. Red
1121 and far-red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. *Geophys.*
1122 *Res. Lett.* 42, 1632–1639.

1123

1124 Rossini, M., Panigada, C., Cilia, C., Meroni, M., Busetto, L., Cogliati, S., Amaducci, S., Colombo,
1125 R., 2015b. Discriminating irrigated and rainfed maize with diurnal fluorescence and canopy
1126 temperature airborne maps. *ISPRS Int. J. Geoinf.* 4, 626-646.

1127

1128 Sakai, Y., Kobayashi, H., Kato, T., 2020. FLiES-SIF version 1.0: three-dimensional radiative transfer
1129 model for estimating solar induced fluorescence. *Geosci. Model Dev.* 13, 4041-4066.

1130

1131 Sarvikas, P., Hakala-Yatkin, M., Dönmez, S., Tyystjärvi, E., 2010. Short flashes and continuous light
1132 have similar photoinhibitory efficiency in intact leaves. *J. Exp. Bot.* 61, 4239–4247.

1133

1134 Schreiber, U., 2004. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method:
1135 An Overview. in: Papageorgiou, G.C., Govindjee (Eds.), *Chlorophyll a Fluorescence. Advances*
1136 *in Photosynthesis and Respiration*, vol 19. Springer, Dordrecht, pp. 279–319.

1137

1138 Schreiber, U., Schliwa, U., Bilger, W., 1986. Continuous recording of photochemical and
1139 nonphotochemical fluorescence quenching with a new type of modulation fluorometer.
1140 *Photosynth. Res.* 10, 51–62.

1141

1142 Scodellaro, R., Cesana, I., D'Alfonso, L., Bouzin, M., Collini, M., Chirico, G., Colombo, R.,
1143 Miglietta, F., Celesti, M., Schuettemeyer, D., Cogliati, S., Sironi, L., 2022. A novel hybrid
1144 machine learning phasor-based approach to retrieve a full set of solar-induced fluorescence
1145 metrics and biophysical parameters. *Remote Sens. Environ.* 280, 113196.

1146

1147 Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., Douglas, S., Guanter,
1148 L., Hanuš, J., Kataja, K., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Pikl, M., Pinto, F.,
1149 Vargas, J.Q., Rademske, P., Rodriguez-Morene, F., Sabater, N., Schickling, A., Schüttemeyer,
1150 D., Zemek, F., Rascher, U., 2019. The high-performance airborne imaging spectrometer
1151 HyPlant-from raw images to top-of-canopy reflectance and fluorescence products: Introduction
1152 of an automatized processing chain. *Remote Sens.* 11, 2760.

1153

1154 Siegmann, B., Cendrero-Mateo, M.P., Cogliati, S., Damm, A., Gamon, J., Herrera, D., Jedmowski,
1155 C., Junker-Frohn, L.V., Kraska, T., Muller, O., Rademske, P., 2021. Downscaling of far-red
1156 solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a
1157 diurnal data set acquired by the airborne imaging spectrometer HyPlant. *Remote Sens. Environ.*
1158 264, 112609.

1159 Simkin, A.J., López-Calcagno, P.E., Raines, C.A., 2019. Feeding the world: improving
1160 photosynthetic efficiency for sustainable crop production. *J. Exp. Bot.* 70, 1119–1140.

1161

1162 Stiller, M., 1962. The path of carbon in photosynthesis. *Ann. Rev. Plant Physiol.* 13, 151-170.

1163

1164 Suarez, L., Zhang, P., Sun, J., Wang, Y., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2021. Assessing
1165 wine grape quality parameters using plant traits derived from physical model inversion of
1166 hyperspectral imagery. *Agric. For. Meteorol.* 306, 108445.

1167

1168 Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T., Verma,
1169 M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Köhler, P., Evans, B., Yuen, K., 2017.
1170 OCO-2 advances photosynthesis observation from space via solar induced chlorophyll
1171 fluorescence. *Science* 358, eaam5747.

1172

1173 Sun, Y., Wen, J., Gu, L., Joiner, J., Chang, C. Y.-Y., van der Tol, C., Porcar-Castell, A., Magney, T.
1174 S., Wang, L., Hu, L., Rascher, U., Zarco-Tejada, P. J., Barrett, C. B., Lai, J., Han, J., Luo, Z., 2023a. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure,
1175 function, and service: Part I—Harnessing theory. *Glob. Chang. Biol.* 29, 2926–2952.

1176

1177 Sun, Y., Gu, L., Wen, J., van der Tol, Y., Porcar-Castell, A., Joiner, J., Chang, C.Y., Magney, T.,
1178 Wang, L., Hu, L., Rascher, U., Zarco-Tejada, P.J., Barrett, C.B., Lai, J., Han, J., Luo, Z., 2023b.
1179 From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function,
1180 and service: Part II—Harnessing data, *Glob. Chang. Biol.* 29, 2893–2925.

1181

1182 Tester, M., Langridge, P., 2010. Breeding technologies to increase crop production in a changing
1183 world. *Science* 327, 818–822.

1184

1185 Thiele, A., Krause, G.H., Winter, K., 1998. In situ study of photoinhibition of photosynthesis and
1186 xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. *Aust. J. Plant.
1187 Physiol.* 25, 189–195.

1188

1189 United Nations, 2022. World Population Prospects 2022: Summary of Results. UN
1190 DESA/POP/2022/TR/NO. 3.

1191

1192 Van Bel, A.J.E., Offler, C.E., Patrick, J.W., 2003. Photosynthesis and Partitioning | Sources and
1193 Sinks, in: Thomas, B. (Eds.), *Encyclopedia of Applied Plant Sciences*, Elsevier, pp. 724-734.

1194

1195 Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of
1196 soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance.
1197 *Biogeosci.* 6, 3109–3129.

1198

1199 Van der Tol, C., Julitta, T., Yang, P., Sabater, N., Reiter, I., Tudoroiu, M., Schuettemeyer, D., Drusch,
1200 M., 2023. Retrieval of chlorophyll fluorescence from a large distance using oxygen absorption
1201 bands. *Remote Sens. Environ.* 284, 113304.

1202

1203 Verhoef, W., 2004. Extension of SAIL to model solar - induced canopy fluorescence spectra. In: Proc.
1204 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, 17–19 November
1205 2004, Montreal, Canada.

1206

1207

1208 Verhoef, W., Van der Tol, C., Middleton, E.M., 2018. Hyperspectral radiative transfer modeling to
1209 explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX
1210 – Sentinel-3 tandem mission multi-sensor data. *Remote Sens. Environ.* 204, 942–963.

1211

1212 Verrelst, J., Van der Tol, C., Magnani, F., Sabater, N., Rivera, J. P., Mohammed, G., and Moreno, J.,
1213 2016. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net
1214 photosynthesis of vegetation canopies: A SCOPE modeling study. *Remote Sens. Environ.* 176,
1215 139–151.

1216

1217 Vilfan, N., Van der Tol, C., Muller, O., Rascher, U., Verhoef, W., 2016. Fluspect-B: a model for leaf
1218 fluorescence, reflectance and transmittance spectra. *Remote Sens. Environ.* 186, 596–615.

1219

1220 Walters, R.G., 2005. Towards an understanding of photosynthetic acclimation. *J. Exp. Bot.* 56, 435–
1221 447.

1222

1223 Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., 2022. Evaluating
1224 the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen
1225 assessment in almond using airborne hyperspectral imagery. *Remote Sens. Environ.* 279,
1226 113141.

1227

1228 Wang, R., Gamon, J.A., Hmimina, G., Cogliati, S., Zygielbaum, A.I., Arkebauer, T.J., Suyker, A.,
1229 2022. Harmonizing solar induced fluorescence across spatial scales, instruments, and extraction
1230 methods using proximal and airborne remote sensing: A multi-scale study in a soybean field.
1231 *Remote Sens. Environ.* 281, 113268.

1232

1233 Wang, N., Yang, P., Clevers, J.G., Wieneke, S., Kooistra, L., 2023. Decoupling physiological and
1234 non-physiological responses of sugar beet to water stress from sun-induced chlorophyll
1235 fluorescence. *Remote Sens. Environ.* 286, 113445.

1236

1237 Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., 2016. Airborne
1238 based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for
1239 improved estimates of gross primary productivity. *Remote Sens. Environ.* 184, 654–667.

1240

1241 Xu, S., Atherton, J., Riikinen, A., Zhang, C., Oivukkamäki, J., MacArthur, A., Honkavaara, E.,
1242 Hakala, T., Koivumäki, N., Liu, Z., Porcar-Castell, A., 2021. Structural and photosynthetic
1243 dynamics mediate the response of SIF to water stress in a potato crop. *Remote Sens. Environ.*
1244 263, 112555.

1245

1246 Xu, S., Liu, Z., Zhao, L., Zhao, H., Ren, S., 2018. Diurnal response of sun-induced fluorescence and
1247 PRI to water stress in maize using a near-surface remote sensing platform. *Remote Sens.* 10,
1248 1510.

1249

1250 Yang, P., van der Tol, C., 2018. Linking canopy scattering of far-red sun induced chlorophyll
1251 fluorescence with reflectance. *Remote Sens. Environ.* 209, 456–467.

1252

1253 Yang, P., van der Tol, C., Campbell, P.K., Middleton, E.M., 2020. Fluorescence Correction
1254 Vegetation Index (FCVI): A physically based reflectance index to separate physiological and
1255 non-physiological information in far-red sun-induced chlorophyll fluorescence. *Remote Sens.*
1256 *Environ.* 240, 111676.

1257

1258 Yang, S., Yang, J., Shi, S., Song, S., Zhang, Y., Luo, Y., Du, L., 2022. An exploration of solar-
1259 induced chlorophyll fluorescence (SIF) factors simulated by SCOPE for capturing GPP across
1260 vegetation types. *Ecol. Model.* 472, 110079.

1261

1262 Yang, X., Shi, H., Stovall, A., Guan, K., Miao, G., Zhang, Y., Zhang, Y., Xiao, X., Ryu, Y., Lee, J.-
1263 E., 2018. FluoSpec 2—an automated field spectroscopy system to monitor canopy solar-induced
1264 fluorescence. *Sensors* 18, 2063.

1265

1266 Yang, X., Tang, J., Mustard, J.F., Lee, J.E., Rossini, M., Joiner, J., Munger, J.W., Kornfeld, A.,
1267 Richardson, A.D., 2015. Solar-induced chlorophyll fluorescence that correlates with canopy
1268 photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. *Geophys. Res.*
1269 *Lett.* 42, 2977-2987.

1270

1271 Yang, P., Prikaziuk, E., Verhoef, W., Van der Tol, C., 2021. SCOPE 2.0: A model to simulate
1272 vegetated land surface fluxes and satellite signals. *Geosci. Model Dev.* 14, 4697–4712.

1273

1274 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., 2000a. Chlorophyll fluorescence
1275 effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation.
1276 *Remote Sens. Environ.* 74, 582–595.

1277

1278 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2000b. Chlorophyll
1279 fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level
1280 measurements with hyperspectral data. *Remote Sens. Environ.* 74, 596–608.

1281

1282 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2001. Estimation
1283 of chlorophyll fluorescence under natural illumination from hyperspectral data. *Int. J. Appl.*
1284 *Earth Obs. Geoinf. (Special Issue on Applications of Imaging Spectroscopy)* 3, 321–327.

1285

1286 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2002. Vegetation
1287 stress detection through chlorophyll a+b estimation and fluorescence effects on hyperspectral
1288 imagery. *J. Environ. Qual.* 31, 1433–1441.

1289

1290 Zarco-Tejada, P.J., Berni, J.A., Suárez, L., Sepulcre-Cantó, G., Morales, F. and Miller, J.R., 2009.
1291 Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for
1292 vegetation stress detection. *Remote Sens. Environ.* 113, 1262-1275.

1293

1294 Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and narrow-
1295 band indices acquired from a UAV platform for water stress detection using a micro-
1296 hyperspectral imager and a thermal camera. *Remote Sens. Environ.* 117, 322–337.

1297

1298 Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández-Clemente, R.,
1299 Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P.R.J.,
1300 Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of *Xylella*
1301 *fastidiosa* infection revealed in spectral plant-trait alterations. *Nat. Plants* 4, 432–439.

1302

1303 Zarco-Tejada, P.J., Poblete, T., Camino, C., Gonzalez-Dugo, V., Calderon, R., Hornero, A.,
1304 Hernandez-Clemente, R., Román-Écija, M., Velasco-Amo, MP., Landa, BB., Beck, PSA.,
1305 Saponari, M., Boscia, D., Navas-Cortes, JA., 2021. Divergent abiotic spectral pathways unravel
1306 pathogen stress signals across species. *Nat. Commun.* 12, 6088.

1307

1308 Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J. A., 2019. A practical approach for
1309 estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. *Remote*
1310 *Sens. Environ.* 232, 111209.

1311

1312 Zeng, Y., Badgley, G., Chen, M., Li, J., Anderegg, L. D. L., Kornfeld, A., Liu, Q., Xu, B., Yang, B.,
1313 Yan, K., Berry, J. A., 2020. A radiative transfer model for solar induced fluorescence using
1314 spectral invariants theory. *Remote Sens. Environ.* 240, 111678.

1315

1316 Zeng, Y., Chen, M., Hao, D., Damm, A., Badgley, G., Rascher, U., Johnson, J.E., Dechant, B.,
1317 Siegmann, B., Ryu, Y., Qiu, H., 2022. Combining near-infrared radiance of vegetation and
1318 fluorescence spectroscopy to detect effects of abiotic changes and stresses. *Remote Sens.*
1319 *Environ.* 270, 112856.

1320

1321 Zhang, Z., Zhang, X., Porcar-Castell, A., Chen, J.M., Ju, W., Wu, L., Wu, Y. and Zhang, Y., 2022.
1322 Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with
1323 hemispherical than nadir measurements: Evidence from field observations and model
1324 simulations. *Remote Sens. Environ.* 279, 113118.

1325

1326 Zhao, F., Dai, X., Verhoef, W., Guo, Y., Van der Tol, C., Li, Y., Huang, Y., 2016. FluorWPS: a
1327 Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-
1328 dimensional canopy. *Remote Sens. Environ.* 187, 385–399.

1329

1330 Zhao, F., Li, R., Verhoef, W., Cogliati, S., Liu, X., Huang, Y., Guo, Y., Huang, J., 2018.
1331 Reconstruction of the full spectrum of solar-induced chlorophyll fluorescence: intercomparison
1332 study for a novel method. *Remote Sens. Environ.* 219, 233–246.

1333

1334 Zhou, X., Liu, Z., Xu, S., Zhang, W., Wu, J., 2016. An automated comparative observation system
1335 for sun-induced chlorophyll fluorescence of vegetation canopies. *Sensors* 16, 775.

1336

1337 Zhu, K., Chen, J., Wang, S., Fang, H., Chen, B., Zhang, L., Li, Y., Zheng, C., Amir, M., 2023.
1338 Characterization of the layered SIF distribution through hyperspectral observation and SCOPE
1339 modeling for a subtropical evergreen forest. *ISPRS J. Photogramm. Remote Sens.* 201, 78-91.

1340 **Chapter 2**

1341

1342 **SIF quantification from narrow-band and sub-**

1343 **nanometer airborne hyperspectral imagers for**

1344 **vegetation monitoring**

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354 This chapter resulted in two research articles.

1355 1. **Belwalkar, A.**, Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-

1356 Tejada, P.J., 2022. **Evaluation of SIF retrievals from narrow-band and sub-**

1357 **nanometer airborne hyperspectral imagers flown in tandem: modelling and**

1358 **validation in the context of plant phenotyping.** *Remote Sens. Environ.* 273, 112986.

1359 <https://doi.org/10.1016/j.rse.2022.112986>

1360 2. **Belwalkar, A.**, Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021.

1361 **Comparing the retrieval of chlorophyll fluorescence from two airborne**

1362 **hyperspectral imagers with different spectral resolutions for plant phenotyping**

1363 **studies.** In: *Proc. IEEE International Geoscience and Remote Sensing Symposium*

1364 (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5845–5848.

1365 <https://doi.org/10.1109/IGARSS47720.2021.9553265>.

1366 **Abstract**

1367 Solar-induced chlorophyll fluorescence (SIF) can be used as an indicator of crop
1368 photosynthetic activity and a proxy for vegetation stress in plant phenotyping and precision
1369 agriculture applications. SIF quantification is sensitive to the spectral resolution (SR), and its accurate
1370 retrieval requires sensors with sub-nanometer resolutions. However, for accurate SIF quantification
1371 from imaging sensors onboard airborne platforms, sub-nanometer imagers are costly and more
1372 difficult to operate than the commonly available narrow-band imagers (i.e., 4- to 6-nm bandwidths),
1373 which can also be installed on drones and lightweight aircraft. Although a few theoretical and
1374 experimental studies have evaluated narrow-band spectra for SIF quantification, there is a lack of
1375 research focused on comparing the effects of the SR on SIF from airborne hyperspectral imagers in
1376 practical applications. This study investigates the effects of SR and sensor altitude on SIF accuracy,
1377 comparing SIF quantified at the 760-nm O₂-A band (SIF₇₆₀) from two hyperspectral imagers with
1378 different spectral configurations (full width at half-maximum resolutions of \leq 0.2 nm and 5.8 nm)
1379 flown in tandem on board an aircraft. SIF₇₆₀ retrievals were compared from two different wheat and
1380 maize phenotyping trials grown under different nitrogen fertiliser application rates over the 2019–
1381 2021 growing seasons. SIF₇₆₀ from the two sensors were correlated ($R^2 = 0.77$ –0.9, $p < 0.01$), with
1382 the narrow-band imager producing larger SIF₇₆₀ estimates than the sub-nanometer imager (root mean
1383 square error (RMSE) 3.28–4.69 mW/m²/nm/sr). Ground-level SIF₇₆₀ showed strong relationships
1384 with both sub-nanometer ($R^2 = 0.90$, $p < 0.001$, RMSE = 0.07 mW/m²/nm/sr) and narrow-band ($R^2 =$
1385 0.88, $p < 0.001$, RMSE = 3.26 mW/m²/nm/sr) airborne retrievals. Simulation-based assessments of
1386 SIF₇₆₀ for SRs ranging from 1 to 5.8 nm using the SCOPE model were consistent with experimental
1387 results showing significant relationships among SIF₇₆₀ quantified at different SRs. Predictive
1388 algorithms of leaf nitrogen concentration using SIF₇₆₀ from either the narrow-band or sub-nanometer
1389 sensor yielded similar performance, supporting the use of narrow-band resolution imagery for

1390 assessing the spatial variability of SIF in plant phenotyping, vegetation stress detection and precision
1391 agriculture contexts.

1392 **Keywords:** Solar-induced chlorophyll fluorescence, SIF, plant phenotyping, stress detection,
1393 airborne, hyperspectral, hyperspectral imager

1394

1395 **2.1 Introduction**

1396 Solar radiation reaching a plant canopy cannot be fully used for photosynthesis, and the
1397 resulting excess radiation is partly re-emitted as a weak electromagnetic signal termed solar-induced
1398 chlorophyll fluorescence (SIF) (see a full review on SIF in Mohammed *et al.*, 2019). SIF flux
1399 originates from photosystem II (PSII) and has a spectral range of 650–800 nm with one peak at 685
1400 nm (SIF₆₈₅) and a second peak at 740 nm (SIF₇₄₀). The SIF energy dissipation pathway directly
1401 competes with the PSII photochemistry and heat dissipation (Krause and Weis, 1984; Lichtenhaller
1402 and Rinderle, 1988). Thus, SIF is a proxy for plant photosynthetic rate, which may be related to plant
1403 stress levels (Genty *et al.*, 1989; Weis and Berry, 1987; Zarco-Tejada *et al.*, 2016). However, SIF
1404 emitted from the canopy constitutes a small fraction (1–5%) of the total reflected solar radiation,
1405 making it difficult to quantify (Meroni *et al.*, 2009).

1406 Specialised algorithms are necessary for decoupling SIF from total reflected solar radiation.
1407 These algorithms are classified based on whether SIF is retrieved within specific absorption bands or
1408 over the whole SIF emission region (Mohammed *et al.*, 2019). Most methods use discrete solar or
1409 telluric absorption lines of the solar spectrum, where the contribution of SIF to the total radiance
1410 signal is relatively higher. The terrestrial oxygen absorption bands (O₂-A and O₂-B) centred around
1411 760 nm and 687 nm, respectively, are broader and deeper than the other absorption features and,
1412 therefore, commonly used for quantifying SIF (Meroni *et al.*, 2009). The fluorescence *in-filling*
1413 method, based on the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975), depends on a few

1414 discrete spectral bands inside and outside the oxygen absorption features and is the most widely used
1415 method for SIF retrieval due to its ease of implementation. By contrast, spectral fitting methods
1416 (SFMs) model the fluorescence and reflectance spectrum by spectral curve fitting, using all the
1417 contiguous wavelengths within a fixed spectral window mostly centered around oxygen absorption
1418 bands (Meroni *et al.*, 2010; Meroni and Colombo, 2006).

1419 The earliest attempt to incorporate leaf fluorescence into a radiative transfer model (RTM)
1420 was the Fluorescence–Reflectance–Transmittance (FRT) model (Zarco-Tejada *et al.*, 2000a; 2000b).
1421 This attempt led to the development of the leaf model FluorMODleaf (Pedrós *et al.*, 2008) and a
1422 canopy-level RTM named FluorSAIL (Verhoef, 2004). These models prompted the development of
1423 an integrated, vertical, one-dimensional, leaf-canopy fluorescence–temperature–photosynthesis
1424 model named Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol
1425 *et al.*, 2009), which is widely used to assess the linkage between fluorescence–reflectance and
1426 photosynthesis (Camino *et al.*, 2019; Celesti *et al.*, 2018; Verhoef *et al.*, 2018). SCOPE simulates
1427 top-of-canopy radiance, chlorophyll fluorescence and reflectance for homogenous canopies. It has
1428 been used to quantify the effects of the leaf biochemistry, maximum carboxylation rate (Vcmax), and
1429 canopy structure on apparent reflectance, including fluorescence effects. Recently, three-dimensional
1430 canopy RTMs integrating fluorescence have been developed, such as FluorFLIGHT (Hernández-
1431 Clemente *et al.*, 2017), the Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao *et al.*,
1432 2016), and the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry *et al.*,
1433 2017). These models simulate scattering within the canopy components and thus account for canopy
1434 structural heterogeneity.

1435 The earliest experiments involving ground-based sub-nanometer-resolution spectrometers
1436 quantified SIF at both leaf (Meroni and Colombo, 2006) and canopy levels (Pérez-Priego *et al.*, 2005),
1437 detecting herbicide- and water-induced stress, respectively. The development of sub-nanometer-
1438 resolution hyperspectral sensors in the past decade has enabled SIF retrievals from airborne platforms.

1439 Sensors include the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg *et al.*,
1440 2018), the high-resolution airborne imaging spectrometer HyPlant (Rascher *et al.*, 2015), and the
1441 Hyperspec High-Resolution Chlorophyll Fluorescence Sensor (Headwall Photonics, Fitchburg, MA,
1442 USA) (Belwalkar *et al.*, 2021) with spectral resolutions (SRs) of 0.1, 0.28 and ≤ 0.2 nm, respectively.
1443 Sub-nanometer-resolution SIF observations at the global scale are available from satellite sensors
1444 such as OCO-2 (Orbiting Carbon Observatory-2) (Frankenberg *et al.*, 2014), GOSAT (Greenhouse
1445 gases Observing SATellite) (Guanter *et al.*, 2012), and TROPOMI (TROPOspheric Monitoring
1446 Instrument) (Guanter *et al.*, 2015) with spatial resolutions of $1.29\text{ km} \times 2.25\text{ km}$, $50\text{ km} \times 50\text{ km}$ and
1447 $5.5\text{ km} \times 3.5\text{ km}$, respectively. The European Space Agency is also set to launch the FLoorescence
1448 EXplorer (FLEX) (Drusch *et al.*, 2017) in 2024, a mission solely dedicated to measuring SIF at a high
1449 SR of 0.3 nm across the globe at 300-m spatial resolution.

1450 As a result of these technical and methodological advances, SIF is frequently used for
1451 monitoring crop photosynthesis. SIF is measured from a variety of platforms, including ground-based
1452 spectrometers (Cogliati *et al.*, 2015; Daumard *et al.*, 2012; Grossmann *et al.*, 2018; Kim *et al.*, 2021;
1453 Li *et al.*, 2020; Pérez-Priego *et al.*, 2005; Rossini *et al.*, 2016), drones and manned aircraft
1454 (Bandopadhyay *et al.*, 2019; Damm *et al.*, 2014; 2015; Siegmann *et al.*, 2019; Tagliabue *et al.*, 2020;
1455 Zarco-Tejada *et al.*, 2012; 2013a) and satellite platforms (Frankenberg *et al.*, 2014; Guanter *et al.*,
1456 2012; 2015). SIF observations at intermediate scales obtained from airborne platforms are important
1457 for i) improving the interpretation of SIF at coarser spatial resolutions and thus bridging the gap
1458 between field and global scales, ii) disentangling the contribution of different scene components in
1459 aggregated pixels (Hornero *et al.*, 2021a; Zarco-Tejada *et al.*, 2013b), and iii) evaluating the
1460 sensitivity of SIF for describing plant physiological processes at high spatial resolutions (e.g., as an
1461 early indicator of biotic and abiotic stress in precision agriculture and forestry).

1462 Modelling studies (Damm *et al.*, 2011; Liu *et al.*, 2015) of FLD-based SIF retrieval have
1463 shown that sensor SR and the signal-to-noise ratio (SNR) (collectively accounting for more than 80%

1464 of the retrieval error) strongly affect SIF measurement accuracy. Several studies have demonstrated
1465 the potential of sub-nanometer airborne hyperspectral imagers for precise SIF quantification in a
1466 variety of contexts, including estimating gross primary productivity (GPP) (Wieneke *et al.*, 2016),
1467 validating satellite-based SIF retrievals (Sun *et al.*, 2017), assessing the physiological effects of age
1468 on loblolly pine forest (Colombo *et al.*, 2018) and quantifying functional diversity of terrestrial
1469 ecosystems (Tagliabue *et al.*, 2020). Although sub-nanometer-resolution imaging sensors are
1470 recommended for obtaining absolute measurements of SIF, relative SIF measurements from narrow-
1471 band sensors are useful in a variety of settings, including water stress detection (Camino *et al.*, 2018a;
1472 Panigada *et al.*, 2014; Zarco-Tejada *et al.*, 2012), plant phenotyping (Camino *et al.*, 2019; 2018b;
1473 Gonzalez-Dugo *et al.*, 2015), biotic-induced stress detection (Calderón *et al.*, 2015; 2013; Hernández-
1474 Clemente *et al.*, 2017; Hornero *et al.*, 2021b; Poblete *et al.*, 2020; 2021; Zarco-Tejada *et al.*, 2018)
1475 and linking canopy-level SIF_{760} and GPP using sensors such as the Airborne Prism Experiment
1476 (APEX) with a full width at half-maximum resolution (FWHM) of 5.7 nm over perennial grassland,
1477 cropland and mixed temperate forest (Damm *et al.*, 2015). In these studies, the reported higher levels
1478 of the quantified SIF_{760} were consistent with other modelling and experimental studies (Julitta *et al.*,
1479 2016; Nakashima *et al.*, 2021; Nichol *et al.*, 2019; Süß *et al.*, 2016).

1480 The impacts of SR on FLD-based SIF retrievals have been previously assessed with models
1481 (Damm *et al.*, 2011; Dechant *et al.*, 2017; Hernández-Clemente *et al.*, 2017; Liu *et al.*, 2015) and
1482 experiments (Julitta *et al.*, 2016). Julitta *et al.* (2016) compared SIF retrievals at both the O₂-A and
1483 O₂-B bands using four portable field spectrometers with different spectral sampling intervals (SSIs),
1484 SRs, and SNRs simultaneously measuring the same vegetation target. SIF estimates at the O₂-A band
1485 from three of the four spectrometers with sub-nanometer resolution (FWHM \leq 1 nm) were consistent
1486 with the expected ranges from ground-based SIF observations over lawn grassland reported by
1487 Rossini *et al.* (2016). In contrast, the average SIF from the coarsest-resolution spectrometer (FWHM
1488 = 5.5 nm) was six times higher than the values obtained from the other three spectrometers, reaching

1489 values above $4 \text{ mW/m}^2/\text{nm/sr}$. Our study expands on this previous work by assessing the effects of
1490 SR and flight altitude on airborne-based SIF retrievals, which are commonly used in precision
1491 agriculture applications. This is, to the best of our knowledge, the first study to do so. Aspects
1492 regarding the effects of the atmosphere, flight altitude, and performance of imaging sensors on SIF
1493 retrievals need to be studied in addition to the theoretical work and the assessments carried out using
1494 close-range spectrometer data.

1495 The need for sub-nanometer imagers for the accurate quantification of SIF brings important
1496 challenges in precision agriculture, plant phenotyping and biosecurity applications due to their
1497 complexity, higher cost and increased operational difficulties. Standard narrow-band hyperspectral
1498 imagers (i.e., with SR in the range of 4–6 nm FWHM) are an appealing alternative that are
1499 increasingly being used with drones and lightweight aircraft to collect high-spatial-resolution imagery
1500 (Aasen *et al.*, 2018). However, it is unclear how useful SIF_{760} estimates from these imagers are for
1501 plant physiological assessments when compared to ground-based or sub-nanometer airborne SIF_{760}
1502 estimates. Such assessment is critical, particularly when the relative quantification of fluorescence
1503 across the landscape could be readily used to detect biotic- and abiotic-induced vegetation stress.
1504 Empirical work is needed to evaluate whether SIF_{760} retrievals from these narrow-band hyperspectral
1505 imagers are sufficient for detecting physiological stress in crops, relative to measurements from sub-
1506 nanometer instruments.

1507 Monitoring crop nutrient status is one potentially important application of airborne SIF_{760}
1508 quantification (Camino *et al.*, 2018b; Wang *et al.*, 2021). Accurate assessments of plant nutrition
1509 across a field can help to ensure crop yields by allowing for more efficient use of N-fertilisers.
1510 Excessive N fertiliser application can result in the loss of reactive forms of N (ammonia, nitrate, and
1511 nitrogen oxides) to the environment, causing water pollution, climate forcing, and biodiversity loss.
1512 As a result, assessing crop response to N-fertilisers is critical for ensuring resource efficiency while
1513 optimising yields.

1514 In this study, we compared SIF₇₆₀ measured from a 5.8-nm FWHM narrow-band hyperspectral
1515 imager to a sub-nanometer hyperspectral imager of ≤ 0.2 nm FWHM flown in tandem at multiple
1516 sensor altitudes and across two wheat and maize trials grown under different nitrogen application
1517 rates and for three growing seasons. We validated airborne measures with sub-nanometer ground
1518 retrievals and evaluated results against SCOPE simulations. We then assessed the performance of
1519 sub-nanometer and narrow-band SIF₇₆₀ estimates for predicting nitrogen concentration using machine
1520 learning models. Our findings provide important insights that support the operational use of standard,
1521 commercially available narrow-band hyperspectral imagers for quantifying relative SIF levels. This
1522 is especially important for precision agriculture and plant physiology monitoring purposes that
1523 require accurate assessment of the SIF variability within and across experimental fields.

1524

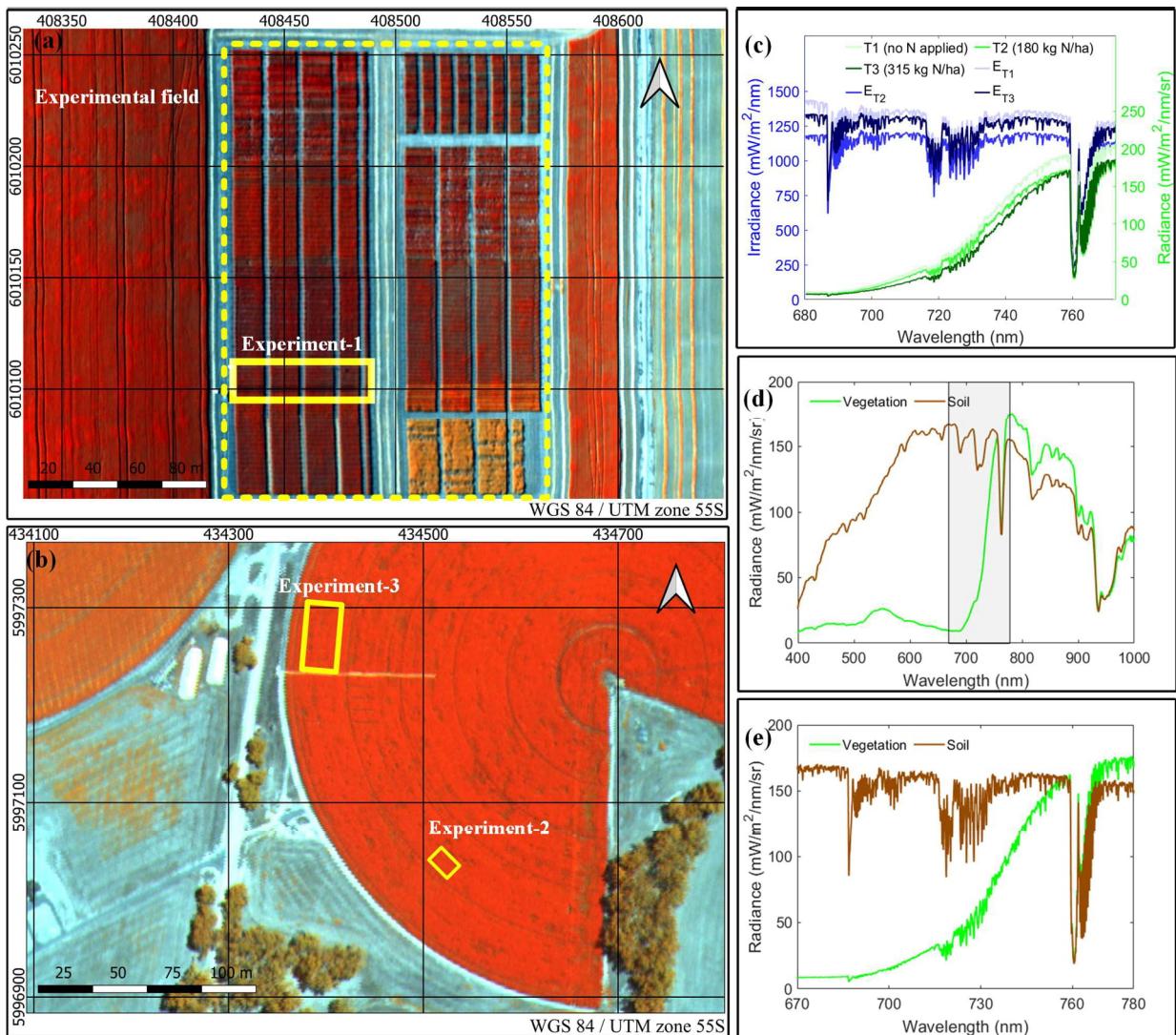
1525 **2.2 Materials and methods**

1526 **2.2.1 Study sites and field data collection**

1527 Experiments took place at two field trial sites in Victoria, Australia, in 2019, 2020 and 2021
1528 (Fig. 2-1a and 2-1b). Experiment 1 was conducted over 15 plots of dryland wheat (cv. Scepter) (Yang
1529 *et al.*, 2018) located at site 1 in Yarrawonga (36°02'55"S, 145°59'02"E). Plots were 26 m² (2 m \times 13
1530 m) and planted in May 2019. Plots were grown with five different rates of nitrogen fertiliser in the
1531 form of urea (46% N) (T1: 0 kg N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg
1532 N/ha). The surrounding areas were planted with several varieties of wheat grown under various
1533 physiological conditions and nitrogen fertiliser application rates (Fig. 2-1a).

1534 Experiments 2 and 3 were conducted in 2020 and 2021 at site 2 in Peechelba East (36°10'04"S,
1535 146°16'23"E) over irrigated maize plots. Experiment 2 consisted of 8 plots and experiment 3
1536 consisted of 20 plots. Plots were sown in October 2019 and October 2020 with two urea application
1537 rates for experiment 2 (T1: 207 kg N/ha, T2: 387 kg N/ha) and three for experiment 3 (T1: 0 kg N/ha,

1538 T2: 180 kg N/ha, T3: 315 kg N/ha). The plot sizes were 15 m² (3 m × 5 m) for experiment 2 and 36
 1539 m² (3 m × 12 m) for experiment 3. The climate at both field trial sites is humid subtropical (Cfa)
 1540 according to the Köppen classification. At site 1, the mean annual temperature is 16.3 °C and average
 1541 rainfall is 559 mm. At site 2, the mean annual temperature is 15.2 °C and average rainfall is 642 mm.



1542 **Fig. 2-1.** Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the
 1543 corresponding irradiance (E) spectra for experimental plots subjected to different nitrogen treatments
 1544 at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band
 1545 hyperspectral imager (d) and sub-nanometer hyperspectral imager (e) corresponding to the same
 1546 vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager (composite:
 1547 760 (R), 710 (G) and 680 (B) nm). (b) was obtained with the sub-nanometer hyperspectral imager
 1548 (composite: 760 (R), 710 (G) and 680 (B) nm). The solid yellow boxes in (a) and (b) show the location
 1549 of the plots across the three experiments and the dashed yellow box in (a) shows the location of plots
 1550 across the entire field. The transparent grey box in (d) shows the spectral region covered by the sub-
 1551 nanometer hyperspectral imager.

1552

1553 For experiment-3, field measurements of top-of-canopy (TOC) spectral radiances for the
1554 computation of ground-based SIF₇₆₀ were collected from all 20 plots on 20 January 2021 at midday
1555 from 11:45 to 16:30 solar time under clear sky conditions. TOC spectral radiance was measured using
1556 a 0.065-nm FWHM HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA). The total incoming
1557 irradiance was calculated using the radiance reflected from a white reference panel (Labsphere Inc.,
1558 North Sutton, NH, USA) measured by the spectrometer. The spectral measurements were acquired
1559 from the nadir using bare optical fiber, with an angular field of view of 25°, mounted on a tripod of
1560 2.5 m height. The vegetation targets were measured at a distance of 1 m above the canopy. Radiance
1561 measurements were recorded at five different locations within each plot and then averaged to reduce
1562 noise. Incident solar radiation was measured prior to radiance measurements, and radiance/irradiance
1563 measurements were completed within 3 minutes for each plot. Examples of radiance and irradiance
1564 measurements are shown in Fig. 2-1c, with visible differences in spectra associated with applied
1565 nitrogen rate.

1566 A summary of the physiological measurements performed at each experiment is shown in
1567 Table 2-1. The growth stages during the airborne campaigns corresponded to i) grain filling (milking
1568 stage) for wheat in 2019, ii) dough stage for maize in 2020, and iii) silking stage for maize in 2021.
1569 A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was installed in the field for
1570 concurrent readings of meteorological conditions at the time of hyperspectral image acquisitions. For
1571 experiments 1 and 3, leaf measurements were carried out under field conditions, coincident with the
1572 airborne campaigns. For experiment 2, leaf measurements were performed 4 days prior to the airborne
1573 campaign under similar meteorological conditions (Table 2-1). Measurements were made on 10–15
1574 leaves per plot for experiment 1 and 5–10 leaves per plot for experiments 2 and 3. Measurements
1575 were made on leaves at the top of the canopy at noon, under clear skies. Chlorophyll content, nitrogen
1576 balance index (NBI), flavonols and anthocyanin content were measured using a handheld Dualex
1577 leaf-clip sensor (FORCE-A, Orsay, France). Steady-state leaf fluorescence yield (F_t) was measured

1578 using the FluorPen FP110-LM (Photon Systems Instruments, Drásov, Czech Republic) handheld
 1579 fluorometer. Random samples of 10–15 leaves per plot for experiment 1 and 4–5 leaves per plot for
 1580 experiments 2 and 3 from the top of the canopy were selected for determining the total N
 1581 concentration (%) destructively in the laboratory, following the Kjeldahl method (Kjeldahl, 1883).
 1582 To verify the impacts of fertilisation rate on leaf physiological traits, measurements were evaluated
 1583 using analysis of variance (ANOVA) followed by a Dunnett's test at $\alpha < 0.05$. In addition to the 15
 1584 plots at site 1, leaf-level measurements from more than 100 adjacent plots within the entire
 1585 experimental field (dashed yellow box in Fig. 2-1a) were also conducted to investigate the intra-field
 1586 variability.

1587 **Table 2-1.** Field measurements and meteorological conditions coincident with flights.

Field trial site	Experiment #	Treatment (kg N/ha)	Growth stage	Field measurements	Meteorological conditions		
					T _a	RH	P _a
Yarrawonga (Site 1)	1	T1:0,					
		T2:46,					
		T3:92,	Grain filling	Ft, Chl, NBI, Flav, Anth, TN	19.2	30.1	1002.8
		T4:138,					
		T5:184					
Peechelba (Site 2)	2	T1:207,					
		T2:387	Dough	Ft, Chl, NBI, Flav, Anth, TN	23.3	36.2	1008.5
	3	T1:0,		Ft, Chl, NBI,			
		T2:180,	Silking	Flav, Anth, TN, TOC L	25.3	33.5	1003.6
		T3:315					

Ft = Steady-state chlorophyll fluorescence, Chl = Chlorophyll content ($\mu\text{g}/\text{cm}^2$), NBI = Nitrogen balanced index (Dualex unit (d.u)), Flav = Flavonols (Dualex unit), Anth = Anthocyanins (Dualex unit), TN = Total Nitrogen concentration (%), TOC L = Top-of-canopy radiance ($\text{mW}/\text{m}^2/\text{nm}/\text{sr}$) from HR-2000, T_a = Average air temperature ($^{\circ}\text{C}$), RH = Relative humidity (%) and P_a = Average air pressure (mBar).

1588

1589 **2.2.2 Airborne hyperspectral campaigns**

1590 Airborne campaigns were conducted in 2019, 2020 and 2021 (Table 2-2), flying with the
 1591 aircraft's heading on the solar plane. Two hyperspectral imagers were installed in tandem on a
 1592 Cessna-172 aircraft operated by the HyperSens Laboratory, University of Melbourne's Airborne
 1593 Remote Sensing Facility. The first hyperspectral imager was a Hyperspec VNIR E-Series model

1594 (Headwall Photonics, Fitchburg, MA, USA) and the second hyperspectral imager was a high-
1595 resolution Hyperspec Fluorescence sensor (Headwall Photonics, Fitchburg, MA, USA). The spectral
1596 characteristics of both hyperspectral imagers are shown in Table 2-3. Both hyperspectral imagers
1597 were radiometrically calibrated in the laboratory using an integrating sphere (Labsphere XTH2000C,
1598 Labsphere Inc., North Sutton, NH, USA); as a result, coefficients derived from the constant light
1599 source at four different illumination levels were calculated for the flight configuration of each imager.
1600 The atmospheric correction for the VNIR imager was performed using the SMARTS model
1601 (Gueymard, 2001), with the aerosol optical depth measured at 550 nm with a Microtops II
1602 sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA), allowing the conversion of the radiance
1603 values to reflectance. Image orthorectification was conducted with PARGE (ReSe Applications
1604 Schläpfer, Wil, Switzerland) using inputs from the solidly installed and synchronized inertial
1605 measurement units (VN-300-VectorNav Technologies LLC, Dallas, TX, USA for VNIR imager and
1606 Trimble APX-15 UAV, Applanix Corporation, Ontario, Canada for Fluorescence imager); more
1607 information on data preprocessing and image correction can be found in Zarco-Tejada *et al.* (2016).

1608 **Table 2-2.** Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral images
1609 during the three airborne campaigns.

Flight date	Flight time (local)	Experiment	AGL (m)		Spatial resolution (m)	
			NB	SN	NB	SN
09/10/19	15:40 - 16:30	1	400	900	0.25	0.20
16/03/20	12:50 - 13:50	2	700	850	0.50	0.20
			900	900	0.65	0.20
20/01/21	11:40 - 12:20	3	1200	1200	0.9	0.30
			2200	2200	1.7	0.55

NB = Narrow-band hyperspectral imager

SN = Sub-nanometer hyperspectral imager

AGL= above ground level

1610

1611 Differences in radiance spectra corresponding to vegetation and soil targets acquired from the
1612 two hyperspectral imagers were visually identified as a function of spectral configurations (Fig. 2-1d
1613 and 1e). Above-ground-level (AGL) altitudes and spatial resolutions of the imagery are detailed in

1614 Table 2-2. The spatial resolution of imagery from both airborne hyperspectral imagers was sufficient
1615 for identification of individual plots over the experimental sites (Fig. 2-2). Differences in fertilisation
1616 rate could be visually discriminated based on radiance spectra acquired from both the hyperspectral
1617 imagers over the entire spectral range (Fig. 2-3a and 2-3c) and in the O₂-A absorption feature (Fig.
1618 2-3b and 2-3d) for experiment 1.

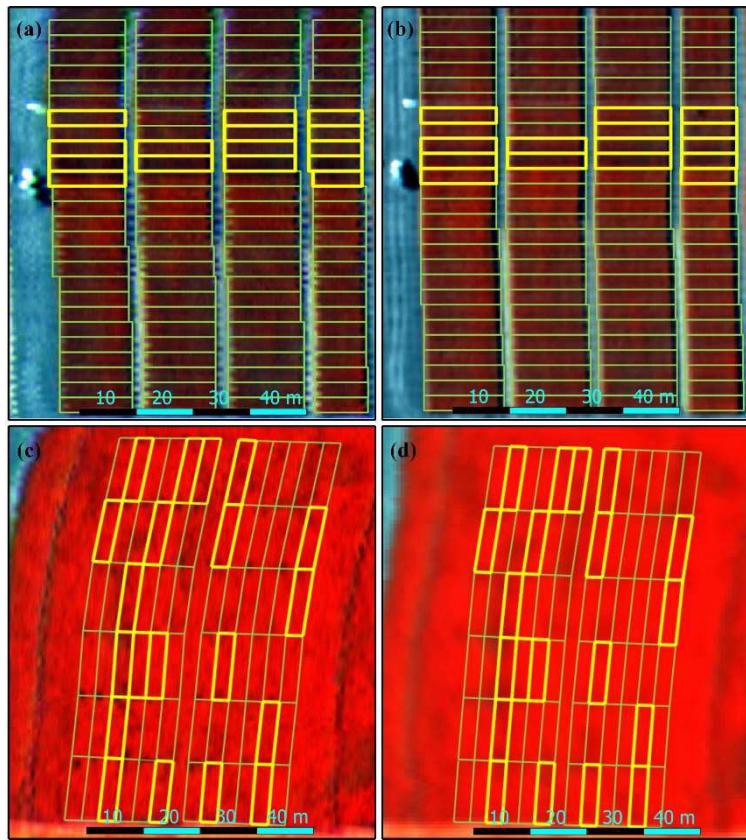
1619 **Table 2-3.** Spectral characteristics of the airborne hyperspectral imagers.

Configuration	Fluorescence sensor (Sub-nanometer imager)	VNIR E-Series sensor (Narrow-band imager)
Spectral range	670-780 nm	400-1000 nm
Number of spectral bands	2160	371
Spectral sampling interval	0.051 nm	1.626 nm
FWHM	≤0.2 nm	5.8 nm
Number of un-binned spatial pixels	1600	1600
SNR	>300:1*	>300:1*
Field of view	23.5°	66°
Aperture	f/2.5	f/2.5
Bit depth	16	16

*with spatial binning

1620

1621 To investigate the impact of sensor altitude on the inter-comparison of airborne-quantified
1622 SIF₇₆₀ from both hyperspectral imagers and with ground-based SIF₇₆₀, images from both
1623 hyperspectral imagers were acquired at three different altitudes (900 m, 1200 m and 2200 m) for
1624 experiment 3 (Table 2-2). All images were acquired within a 20-minute time interval to minimize the
1625 impact of sun-sensor geometry and changes in atmospheric conditions on the SIF₇₆₀ retrievals. The
1626 effect of sensor height on O₂-A absorption feature depth and SIF₇₆₀ quantifications was assessed using
1627 ANOVA followed by Tukey's honest significant difference (HSD) post-hoc test at $\alpha < 0.05$. Fig. 2-4
1628 shows the impact of the sensor altitude on the radiance spectra for the sub-nanometer imager. The
1629 radiance imagery acquired from the sub-nanometer imager at three different altitudes over the entire
1630 field (Fig. 2-4a, 2-4b and 2-4c) and over the experimental plots (Fig. 2-4d, 2-4e and 2-4f) differed in
1631 the 670- to 780-nm spectral region (Fig. 2-4g) and in the oxygen absorption features (Fig. 2-4h and
1632 2-4i).



1633 **Fig. 2-2.** Hyperspectral imagery showing zoomed-in plots from identical locations in experiments 1
1634 (a, b) and 3 (c, d). Images (a) and (c) were acquired with the sub-nanometer hyperspectral imager
1635 (composite: 760 (R), 710 (G) and 680 (B) nm). Images (b) and (d) were acquired with the narrow-
1636 band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Green polygons indicate
1637 plots under different nitrogen treatments, and yellow polygons indicate the selected plots
1638 corresponding to five and three nitrogen treatments, respectively, for experiments 1 and 3.

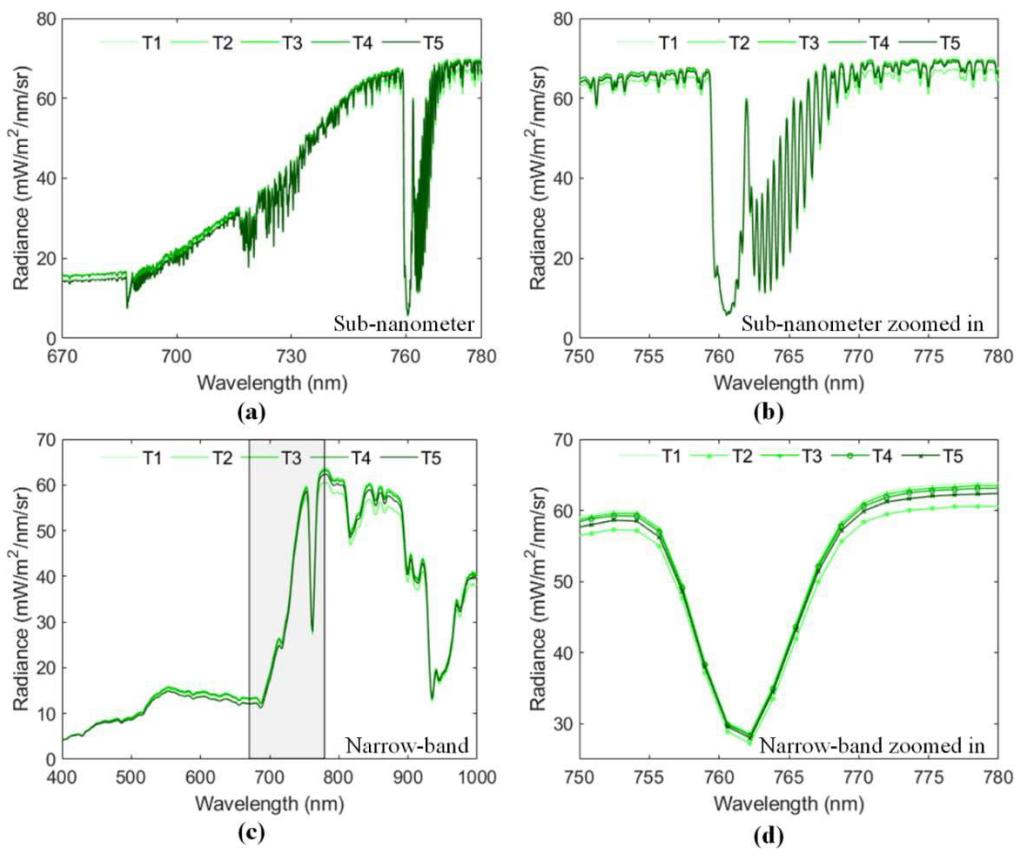
1639 **2.2.3 SIF quantification from field data and airborne hyperspectral imagery**

1640 A thresholding approach based on the normalised difference vegetation index (NDVI) was
1641 used to select the pixels corresponding to vegetation in each individual plot. To ensure that only pure
1642 vegetation pixels were considered for the analysis, all pixels with an NDVI greater than 0.6 were
1643 selected. For each plot, mean radiance spectra were calculated by averaging spectra from all_pure
1644 vegetation pixels within the plot, excluding boundary pixels, from hyperspectral images acquired
1645 from both imagers. This object-based analysis strategy was used to reduce the uncertainty when using
1646 pixel-based SIF retrievals due to the SNR of the instrument. For experiment 1, the total incoming
1647 irradiance at the flight time was measured using the HR-2000 spectrometer with a CC-3 VIS-NIR
1648 cosine corrector diffuser. Due to the unavailability of cosine corrector diffuser for experiments 2 and

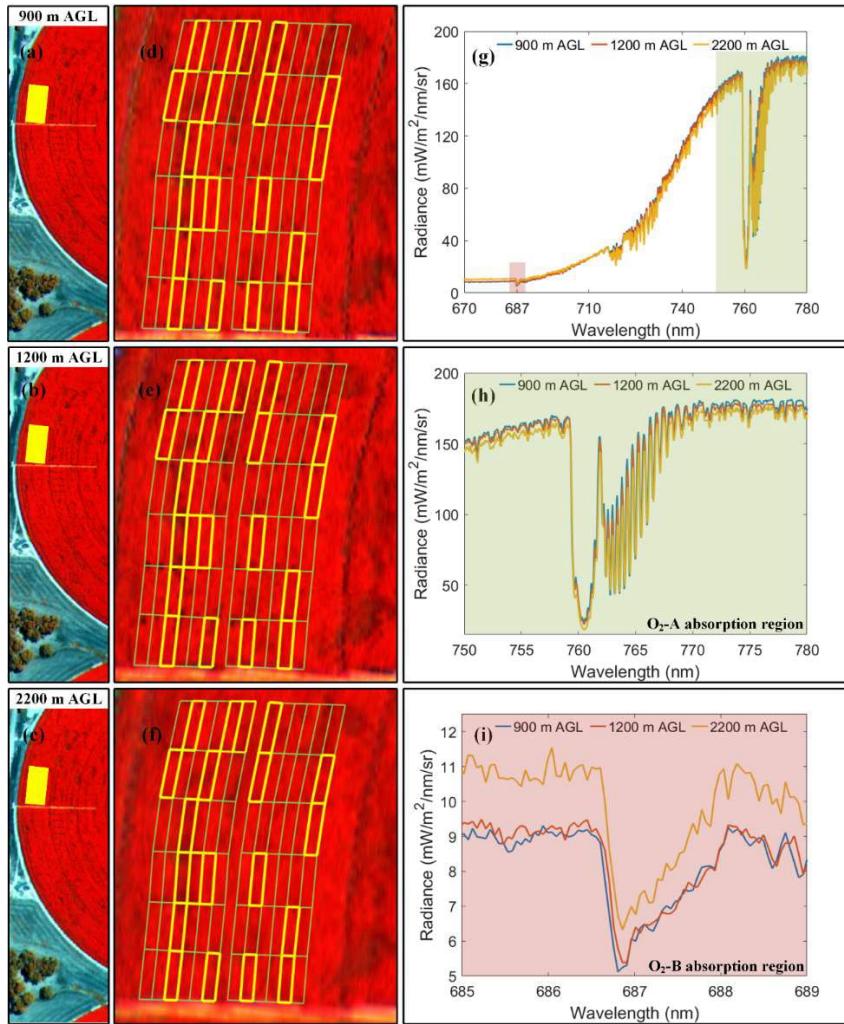
1649 3, the total incoming irradiance at the flight time was calculated by measuring the radiance reflected
 1650 from the white reference panel by the spectrometer. Ground-based SIF₇₆₀ from eight plots measured
 1651 concurrently with airborne image acquisition were used to validate the airborne SIF₇₆₀ calculated
 1652 from both imagers. The relative root mean square error (rRMSE) was calculated between the airborne
 1653 and ground-based SIF₇₆₀ following Eq. (2.1):

$$rRMSE = \sqrt{\frac{\sum_{i=1}^n \left(\frac{F_{airborne,i} - F_{ground,i}}{F_{ground,i}} \right)^2}{n}} \times 100\% \quad (2.1)$$

1644 where $F_{airborne,i}$ and $F_{ground,i}$ are the SIF₇₆₀ values retrieved from airborne and ground-based
 1645 spectrometers, respectively, for plot i , with n representing the number of plots.



1654 **Fig. 2-3.** Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the
 1655 sub-nanometer imager in the 670- to 780-nm region, (b) the sub-nanometer imager in the O₂-A
 1656 absorption region, (c) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band
 1657 imager in the O₂-A absorption region. The transparent grey box in (c) shows the spectral region
 1658 covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied nitrogen
 1659 fertilisation rates shown in Table 2-1.
 1660



1662 **Fig. 2-4.** Hyperspectral imagery from experiment 3. (a–f) Sub-nanometer composite imagery (760
 1663 (R), 710 (G) and 680 (B) nm) at various altitudes. (g–i) Average radiance spectra acquired for one of
 1664 the experimental plots in the 670- to 780-nm region (g), O₂-A absorption region (h) and O₂-B
 1665 absorption region (i). Area of yellow filled polygons (a, b, c) shown in detail in (d), (e) and (f),
 1666 respectively. Green polygons indicate plots under different nitrogen treatments, and yellow polygons
 1667 indicate the selected plots corresponding to three nitrogen treatments.

1668

1669

Field spectrometer radiances/irradiances were calibrated using coefficients derived from a

1670

uniform calibrated light source and an integrating sphere (Labsphere XTH2000C). To match the SR

1671

of the radiance images acquired from both sensors, the high-resolution irradiance spectra acquired

1672

with the HR-2000 spectrometer was resampled through Gaussian convolution (Hornero *et al.*, 2021b;

1673

Suarez *et al.*, 2021) corresponding to the SR of the airborne hyperspectral imagers. As the spectral

1674

characteristics of the narrow-band hyperspectral imager do not meet the requirements (Drusch *et al.*,

1675

2017; ESA, 2015) for quantifying SIF at the O₂-B (SIF₆₈₇) absorption feature, SIF₆₈₇ values for

1676 hyperspectral imagers were not compared. This limitation also affects the applicability of SFMs with
1677 the narrow-band hyperspectral imager, as it requires sub-nanometer resolution for accurate SIF
1678 quantification. Thus, the retrieval of SIF_{760} using irradiance derived from HR-2000 measurements
1679 and average radiance derived from airborne hyperspectral images and ground-based HR-2000
1680 measurements was performed using the O₂-A-band *in-filling* method through the FLD principle,
1681 based on a total of three spectral bands (3FLD) (Maier *et al.*, 2003). The spectral window for ‘*in*’ and
1682 ‘*out*’ irradiance (E) and radiance (L) used in 3FLD computation was selected based on the spectral
1683 characteristics of the measuring instruments. For the narrow-band imager, E_{in}/L_{in} corresponds to the
1684 E/L minima in the 755–765 nm region. The minima for both E and L was observed at 762 nm, and
1685 this was consistent for all datasets. E_{out}/L_{out} corresponds to the weighted mean of E/L maxima in the
1686 spectral regions of 750–755 nm and 771–776 nm, respectively following the methodology proposed
1687 in Damm *et al.* (2011). The spectral window for both ground-based and airborne sub-nanometer
1688 sensors was selected using the methodology proposed in Julitta *et al.* (2017)¹, which considers the
1689 FWHM of the sub-nanometer resolution instrument and uses the mean of E/L in the left and right
1690 shoulder regions to reduce noise. An additional data quality check was performed for the matching
1691 of the ‘*in*’ band for E/L, and in the event of a mismatch, E_{in}/L_{in} was defined as the mean of E_{in}/L_{in} of
1692 adjacent wavelengths. The absolute depth (in radiance units) and relative depth (in percent) of the O₂-
1693 A band feature were calculated in addition to the airborne SIF_{760} quantification. The absolute depth
1694 was calculated as the difference between the solar radiance at the left shoulder wavelength and the
1695 wavelength at the bottom of the O₂-A absorption feature, and the relative depth was calculated as the
1696 ratio of absolute depth and the solar radiance at the left shoulder wavelength. The wavelength
1697 providing the highest radiance in the 750–759 nm range was selected as the left shoulder wavelength.

1698 In the absence of atmospheric correction, SIF_{760} values could be negative even for fluorescent
1699 targets (see Fig. 6 in Marrs *et al.*, 2021). The atmospheric correction process involves estimating

¹ R code available on GitHub platform at <https://github.com/tommasojulitta>

1700 several atmospheric parameters such as upwelling transmittance, path scattered radiance, and
1701 spherical albedo using atmospheric RTMs. Additionally, to account for uncertainties in the estimation
1702 of atmospheric parameters, the transmittance correction technique (Damm *et al.*, 2014; Grunder *et*
1703 *al.*, 2010; Siegmann *et al.* 2019) is a commonly used approach that forces the non-fluorescent targets
1704 to give zero SIF₇₆₀. Due to the complexities involved in accurately estimating the atmospheric
1705 parameters, RTM-based atmospheric correction was not performed in the current study. Instead, on
1706 account of the successful implementation of a rescaling scheme to correct negative airborne SIF₇₆₀
1707 and SIF₆₈₇ values in Bandopadhyay *et al.* (2019), we used a simplified correction technique based on
1708 the same principle of using non-fluorescent targets (i.e., bare soil) as in the widely used transmittance
1709 correction technique, to compensate for negative SIF₇₆₀ values related to calibration and atmospheric
1710 factors such as aerosol scattering and surface pressure. Any deviation from the non-fluorescent
1711 behaviour of bare soil targets identified in each image was attributed to spectral miscalibration or
1712 atmospheric effects. The method relies on forcing the non-fluorescent target to give zero SIF₇₆₀, and
1713 the non-zero SIF₇₆₀ served as an offset to correct the SIF₇₆₀ from vegetation targets following Eq.
1714 (2.2):

$$SIF_{corrected} = SIF_{vegetation\ target} - SIF_{non-fluorescent\ target} \quad (2.2)$$

1715 To minimize the directional effects on the airborne-quantified SIF₇₆₀, the corrected SIF₇₆₀ was
1716 normalised to a reference-viewing angle using a reflectance-based angular correction approach (Hao
1717 *et al.*, 2021). The normalisation method employs a reference SIF₇₆₀ corresponding to a reference
1718 viewing angle, as well as near-infrared reflectance of vegetation (NIRv) (Badgley *et al.*, 2017), to
1719 normalise SIF₇₆₀ quantified at any viewing direction to a reference viewing angle. Two different
1720 approaches were used to compute the reference SIF₇₆₀ for normalisation. In the first approach, a single
1721 plot located at the centre of each hyperspectral image was selected as the reference SIF₇₆₀ on account
1722 of being a nadir-view. In the second approach, locations of the ground-based spectral measurements
1723 were identified in the hyperspectral images and used for calculating the reference SIF₇₆₀. Since the

1724 ground-based spectral measurements were primarily conducted along the plot's centre, only pure
1725 vegetation pixels located along the plot's centre were used to compute mean radiance for the reference
1726 SIF₇₆₀ calculation. This differs from the airborne SIF₇₆₀ corresponding to individual plots, which was
1727 calculated using mean radiance from all pure vegetation pixels excluding the boundaries. The second
1728 approach was only applied for experiment 3 to validate the airborne-quantified SIF₇₆₀ with the
1729 ground-based HR-2000 SIF₇₆₀ measurements so that the reference viewing direction remained
1730 identical for ground-based and airborne SIF₇₆₀. Normalisation was conducted according to the nadir-
1731 viewing angle for all inter-comparisons of airborne SIF₇₆₀ from both imagers.

1732 The study focused on assessing the spectral configuration of the two instruments, with
1733 attempts made to reduce distortions caused by other factors. We used pixels close to the nadir-viewing
1734 angle and avoided evaluating areas close to the image borders to reduce the potential effects of
1735 instrument 'smile' on assessment of the two instruments. Moreover, the angular correction used to
1736 normalise SIF₇₆₀ minimizes the potential instrument smile effects (detailed above). Further work and
1737 a corresponding paper will evaluate sensor smile effects and corrections needed when using narrow-
1738 band instruments for SIF₇₆₀ retrievals. This additional work is important because entire images, rather
1739 than just nadir pixels, are needed for practical applications in precision agriculture.

1740 **2.2.4 Modelling the spectral resolution effects on SIF quantification using SCOPE**

1741 The SCOPE model integrates three radiative transfer modules and an energy balance module
1742 to estimate outgoing radiation spectra, turbulent heat fluxes, photosynthesis rates and chlorophyll
1743 fluorescence (Van der Tol *et al.*, 2009). Surface reflectance and fluorescence spectra are simulated
1744 by linking several energy balance, photosynthesis and canopy biophysical parameters with TOC
1745 radiance, with SSI and SR of 1.0 nm each. The model assumes a homogenous canopy structure, and
1746 the canopy radiative transfer equations are based on the widely used SAIL model (Verhoef, 1984).
1747 Net radiation over the canopy is calculated by integrating the contribution from the individual layers
1748 with shaded and sunlit leaves at different leaf angles over the canopy depth. The canopy reflectance

1749 modelling is conducted based on four different Bidirectional Reflectance Distribution Function
1750 (BRDF) terms representing direct and diffused hemispherical contribution from the surrounding and
1751 the direct and diffused reflectance in the viewing direction. The leaf-level fluorescence spectra are
1752 modelled within the 640- to 850-nm spectral region based on the FLUSPECT model (Vilfan *et al.*,
1753 2016) by using the leaf reflectance and fluorescence outputs derived from the PROSPECT model
1754 (Jacquemoud and Baret, 1990).

1755 A simulated dataset using the SCOPE model (version 2.0) was generated to evaluate the
1756 influence of the SR of the airborne hyperspectral sensors on the 3FLD-based SIF₇₆₀ quantification.
1757 The dataset consisted of 400,000 simulations generated by randomly varying specific input
1758 parameters, drawing from a uniform distribution within ranges shown in Table 2-4. All other SCOPE
1759 input parameters were kept at their default values. The air temperature and air pressure inputs for the
1760 SCOPE model were measured with a portable weather station during the airborne campaign at field
1761 trial site 1. Details regarding the definition and ranges of all input parameters can be found in Table
1762 A-1 (Appendix A). For each case, the TOC spectra of total upwelling radiance, SIF radiance and the
1763 corresponding irradiance were simulated using the default 1.0-nm SR and 1.0-nm SSI obtained from
1764 SCOPE. To compare the SIF₇₆₀ retrieval performance for SR corresponding to the narrow-band
1765 hyperspectral imager, SCOPE-simulated spectra were resampled to 5.8-nm FWHM through Gaussian
1766 convolution matching the SSI with the narrow-band imager. The resampled radiance spectra in the
1767 400- to 1000-nm spectral region were compared with the average radiance spectra obtained from the
1768 narrow-band imager at experimental field trial site 1 using RMSE as the cost function. For each
1769 narrow-band airborne radiance spectrum, we selected the 10 closest resampled radiance spectra from
1770 the 400,000 simulations along with their corresponding resampled-irradiance for the analysis. Fig. 2-
1771 5a shows the measured radiance spectra from the_narrow-band imager. Fig. 2-5b and 2-5c show the
1772 SCOPE-simulated SIF and radiance spectra at 1-nm FWHM corresponding to the selected
1773 simulations. A comparison of the simulated SCOPE radiance spectra against the narrow-band imager

1774 is shown in Fig. 2-5d. Additionally, radiance and irradiance spectra corresponding to SRs of 2.0 nm,
 1775 3.0 nm, 4.0 nm and 5.0 nm were generated by resampling SCOPE-simulated 1.0-nm SR spectra with
 1776 Gaussian convolution but keeping the SSI at 1.0-nm. Fig. 2-5e and 2-5f show the comparison
 1777 between the radiance spectra simulated by SCOPE at different SRs in the O₂-B and O₂-A absorption
 1778 regions, respectively. The O₂-B absorption feature could only be identified at the default 1.0-nm SR.
 1779 The decrease of SR from the default 1 nm to 5.8 nm resulted in O₂-A-band depth reduction and an
 1780 increment in the radiance signal corresponding to the absorption minima.

1781 **Table 2-4.** Range of the SCOPE input parameters used in this study.

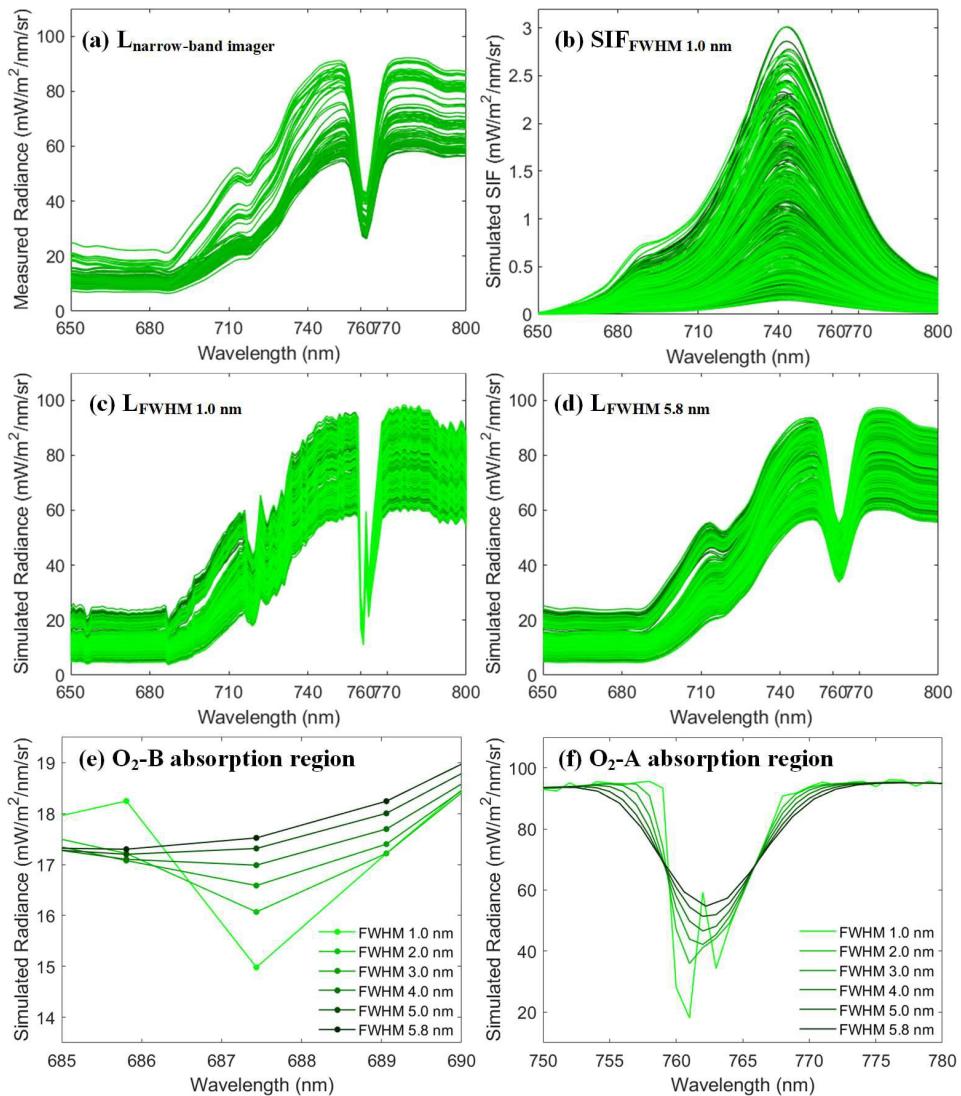
Parameter	Range/Value	Unit	Description
C _{a+b}	10–50	µg·cm ⁻²	Chlorophyll <i>a+b</i> content
C _{dm}	0.001–0.05	g·m ⁻²	Dry matter content
C _w	0.001–0.05	cm	Leaf water equivalent layer
N	1.2–1.8	—	Leaf thickness parameters
Vcmax	20–120	µmol·m ⁻¹ ·s ⁻¹	Maximum carboxylation capacity at 25 °C
fqe	0.001–0.015	—	Fluorescence quantum yield efficiency at photosystem level
LAI	2–6	m ² ·m ⁻²	Leaf area index
LIDF _a	−1–0	—	Leaf inclination
LIDF _b	0	—	Variation in leaf inclination
R _{in}	600–1000	W·m ⁻²	Broadband incoming shortwave radiation
T _a	19.2	°C	Air temperature
p	1002.8	hPa	Air pressure
tts	35.42	deg.	Solar zenith angle

1782

1783 **2.2.5 Nitrogen assessments using narrow-band and sub-nanometer SIF retrievals**

1784 The effects of sensor SR on nitrogen estimation were assessed using models with chlorophyll
 1785 content and SIF traits as inputs (Camino *et al.*, 2018b). Nitrogen content was predicted using Random
 1786 Forest (RF) (Breiman, 2001) models fit to data from field trial site 1, using i) C_{a+b} derived from the
 1787 narrow-band hyperspectral imagery through the inversion of PRO4SAIL RTM and ii) SIF₇₆₀
 1788 quantified from each of the hyperspectral imagers as inputs. The PRO4SAIL model used coupled
 1789 PROSPECT-D (Féret *et al.*, 2021) and 4SAIL (Verhoef *et al.*, 2007) to retrieve the biochemical
 1790 constituents and canopy structural parameters, respectively. A look-up table with 200,000 simulations

1791 was built by randomly varying the biochemical and biophysical parameters with a uniform
 1792 distribution within the ranges shown in Table 2-5.



1793 **Fig. 2-5.** (a) Measured radiance from the narrow-band imager. (b) SCOPE-simulated SIF at 1.0-nm
 1794 FWHM. (c) SCOPE-simulated radiance at 1.0-nm FWHM. (d) SCOPE-simulated radiance
 1795 corresponding to the narrow-band imager's spectral characteristics (FWHM = 5.8 nm, SSI = 1.626
 1796 nm). SCOPE-simulated radiance at different SRs in the O₂-B (e) and O₂-A absorption regions (f).

1797

1798 Support vector machines (SVMs) were trained using simulated reflectance as inputs.

1799 Reflectance spectra were matched with the spectral resolution of the narrow-band hyperspectral
 1800 imager (5.8-nm FWHM). SVMs were first trained in parallel (MATLAB parallel computing toolbox)
 1801 using a radial basis function and optimising the hyperparameters during training to predict C_{a+b}. Then,
 1802 using the average reflectance spectra extracted from pure-vegetation pixels, C_{a+b} was estimated for

1803 each experimental plot. Subsequently, RF regression models were fit for each hyperspectral sensor,
1804 using crop N concentration as a response variable and the estimated C_{a+b} from the narrow-band VNIR
1805 reflectance spectra ($C_{a+b\text{-narrow}}$) and SIF_{760} derived from each hyperspectral imager (i.e., $C_{a+b\text{-narrow}}$ +
1806 $SIF_{760\text{-narrow}}$ vs. $C_{a+b\text{-narrow}} + SIF_{760\text{-sub-nanometer}}$) as predictors.

1807 **Table 2-5.** Parameters and ranges used for the look-up table generation for the PRO4SAIL RTM.

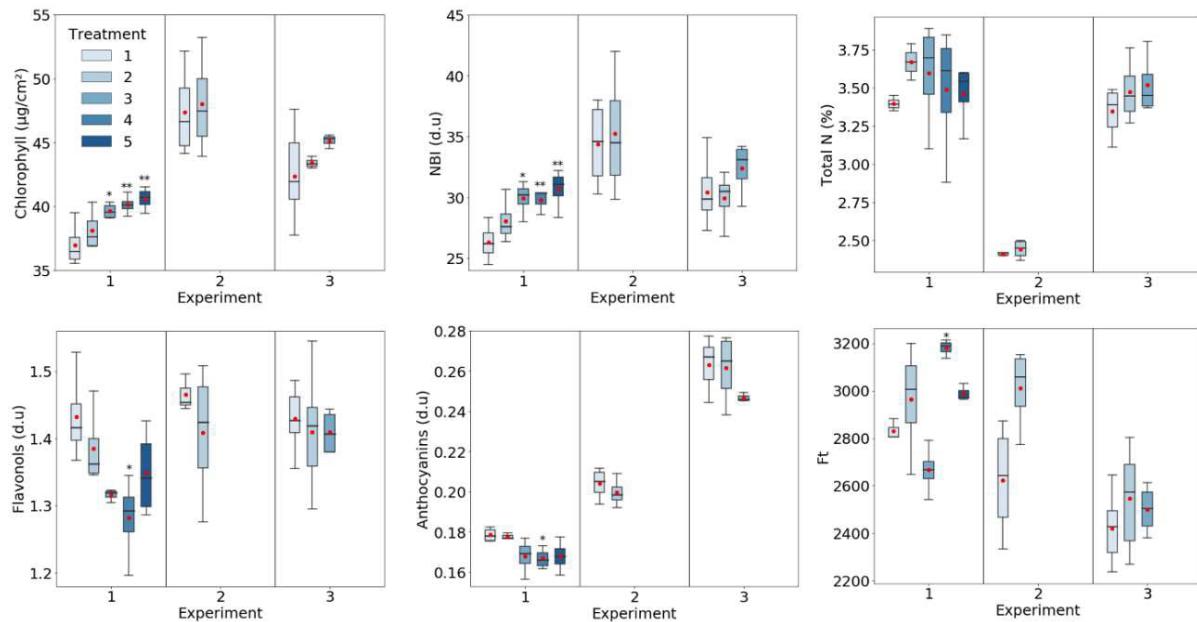
Parameter	Abbreviation	Value/range
Chlorophyll $a+b$ content [$\mu\text{g}/\text{cm}^2$]	C_{a+b}	4–70
Carotenoid content [$\mu\text{g}/\text{cm}^2$]	C_{x+c}	1–20
Anthocyanin content [$\mu\text{g}/\text{cm}^2$]	Anth	0–15
Dry matter content [g/cm^2]	C_m	0.007
Water content [g/cm^2]	C_w	0.001
Mesophyll structure Coeff.	N	0.5–3
Leaf area index [m^2/m^2]	LAI	0.3–5
Average leaf angle [deg.]	LIDF _a	0–90
Hot spot parameter	h	0.01
Soil reflectance	R_{soil}	PRO4SAIL dry soil spectra
Observer angle [deg.]	tt_o	0
Sun zenith angle [deg.]	tt_s	35.42
Relative azimuth angle [deg.]	Ψ	0

1808

1809 **2.3 Results**

1810 In experiment 1, leaf physiological traits were significantly different in plots fertilised at
1811 different rates ($p < 0.05$; Fig. 2-6). For experiments 2 and 3, differences were non-significant, but
1812 there was visible variation in leaf physiological variables among plots receiving different nitrogen
1813 treatments (Fig. 2-6). Differences in leaf total N concentration measured by destructive sampling
1814 were generally consistent with the trends observed in leaf steady-state fluorescence (Ft) with minor
1815 exceptions (e.g., values observed for T3 in experiment 1). Ft was lower in plots with the least N
1816 applied compared to other plots in all the experiments (Fig. 2-6, Ft and Total N panels). Fertilisation

1817 rate was positively associated with chlorophyll *a+b* content and the leaf nitrogen balance index (NBI),
 1818 while leaf flavonols and anthocyanins were inversely associated with fertilisation rate. Leaf
 1819 physiological values were more variable in experiment 1 (T1–T5: 0–184 kg N/ha) than in experiments
 1820 2 (T1–T2: 207–387 kg N/ha) or 3 (T1–T3: 0–315 kg N/ha).

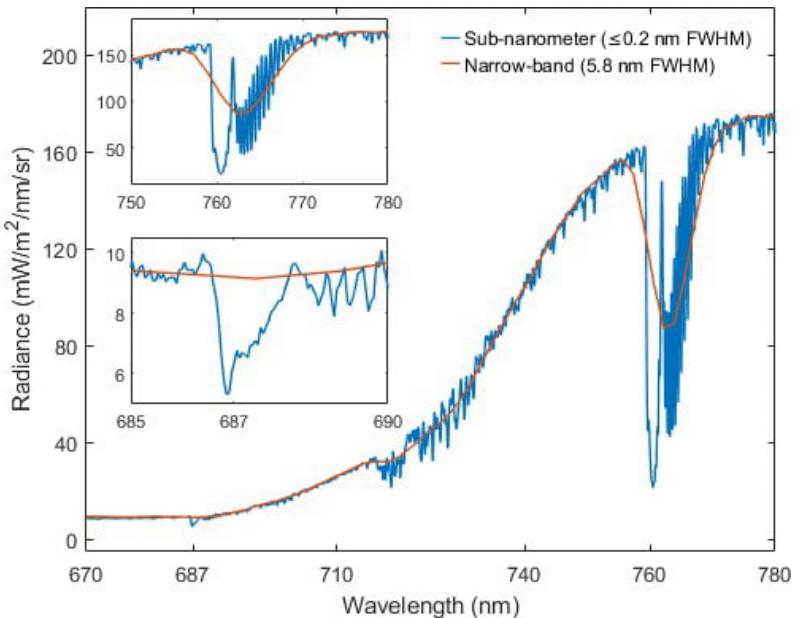


1821 **Fig. 2-6.** Leaf physiological traits by fertilisation rate across experiments. Average values indicated
 1822 by red points. The black lines within boxes represent medians, and the top and bottom of each box
 1823 represent the 75th and 25th quartile, respectively. Whiskers represent $\pm 1.5 \times$ Inter Quartile Range.
 1824 Asterisks indicate significant differences from the treatment 1 plots according to Dunnett's test at $\alpha <$
 1825 0.05. * $p \leq 0.05$; ** $p \leq 0.01$.

1826

1827 The absorption features at O₂-A and O₂-B absorption regions were evident in the radiance
 1828 spectra from both airborne hyperspectral imagers (Fig. 2-7). However, their shape and depth were
 1829 strongly influenced by the SR. As a result of the coarser SR of the narrow-band imager, the absorption
 1830 feature at the O₂-B band in the 685- to 690-nm spectral region could not be identified in the narrow-
 1831 band radiance spectra (Fig. 2-7, inset). This result restricts the comparison between the narrow-band
 1832 and sub-nanometer hyperspectral imagers for the calculation of SIF at the O₂-B band. Moreover, a
 1833 reduction in the depth of the O₂-A absorption feature in the 750- to 780-nm spectral region and the
 1834 corresponding increment in the radiance signal at the absorption minima were observed for the

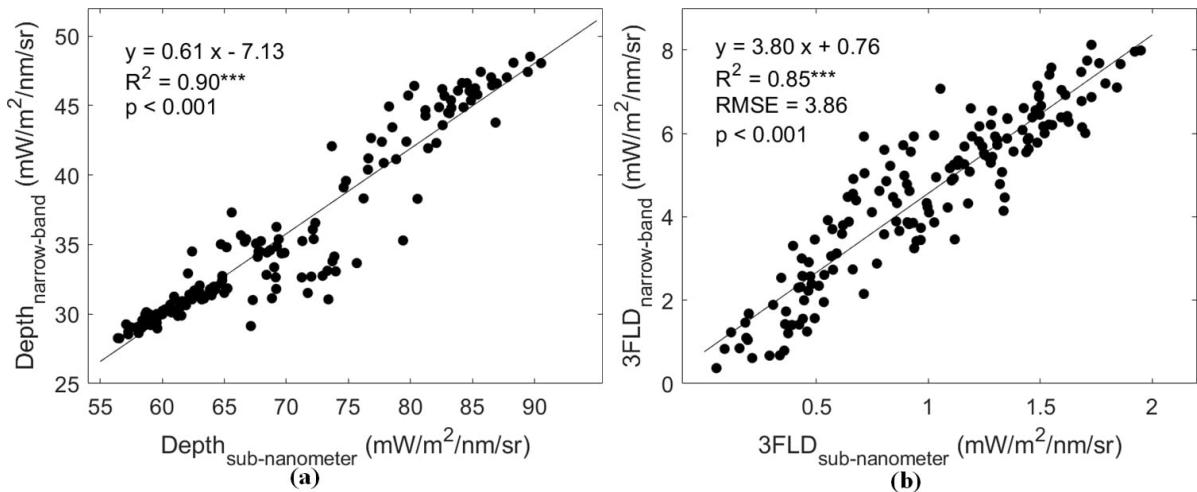
1835 narrow-band radiance spectra, as expected (Fig. 2-7, inset). The wavelength corresponding to the
 1836 radiance minimum was shifted towards higher wavelengths when compared to sub-nanometer
 1837 radiance spectra, as shown in several studies (Cendrero-Mateo *et al.*, 2019; Damm *et al.*, 2011; Julitta
 1838 *et al.*, 2016; Liu *et al.*, 2015).



1839 **Fig. 2-7.** Comparison of average radiance spectra from one of the plots within experiment-3 in the
 1840 670- to 780-nm region obtained from both hyperspectral imagers. The insets show the comparison
 1841 within O₂-A and O₂-B absorption features in the 750- to 780-nm region and 685- to 690-nm region,
 1842 respectively.

1843

1844 At site 1, the depths of the O₂-A absorption feature from each of the two imagers were strongly
 1845 correlated ($R^2 = 0.90$, $p < 0.001$; Fig. 2-8a), when using data from the full set of >100 plots.
 1846 Nevertheless, the range of SIF₇₆₀ values quantified with the 3FLD method (SIF_{760-3FLD}) differed
 1847 between sub-nanometer imager (0.05–1.95 mW/m²/nm/sr) and the narrow-band imager (0.37–8.12
 1848 mW/m²/nm/sr; Fig. 2-8b). Although there was some lack of correspondence in SIF_{760-3FLD} between
 1849 the two imagers (RMSE = 3.86 mW/m²/nm/sr), the two were significantly correlated ($R^2 = 0.85$, $p <$
 1850 0.001; Fig. 2-8b).

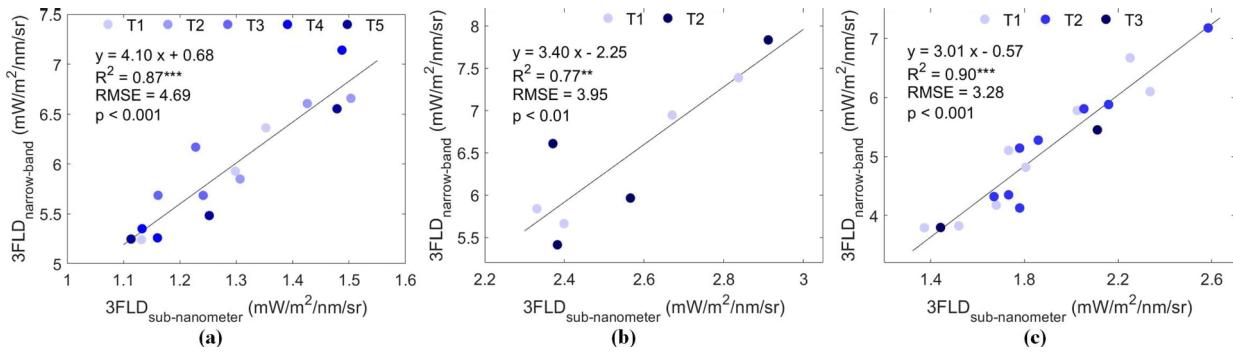


1851 **Fig. 2-8.** Relationship between depth at the O₂-A absorption feature (a) and SIF_{760-3FLD} (b) over the
 1852 experimental field at site 1 from both hyperspectral imagers. The range of absolute SIF_{760-3FLD} levels
 1853 derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr
 1854 quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

1855

1856 Airborne SIF_{760-3FLD} estimates from both hyperspectral imagers are compared in Fig. 2-9. The
 1857 best agreement between measures was observed in experiment 3 ($R^2 = 0.9$, RMSE = 3.28
 1858 mW/m²/nm/sr, $p < 0.001$). Measures from each sensor were also well correlated in experiments 1 (R^2
 1859 = 0.87, RMSE = 4.69 mW/m²/nm/sr, $p < 0.001$; Fig. 2-9a) and 2 ($R^2 = 0.77$, RMSE = 3.95
 1860 mW/m²/nm/sr, $p < 0.01$; Fig. 2-9b). The error between estimates was consistent across experiments,
 1861 yielding RMSEs within 3.28–4.69 mW/m²/nm/sr.

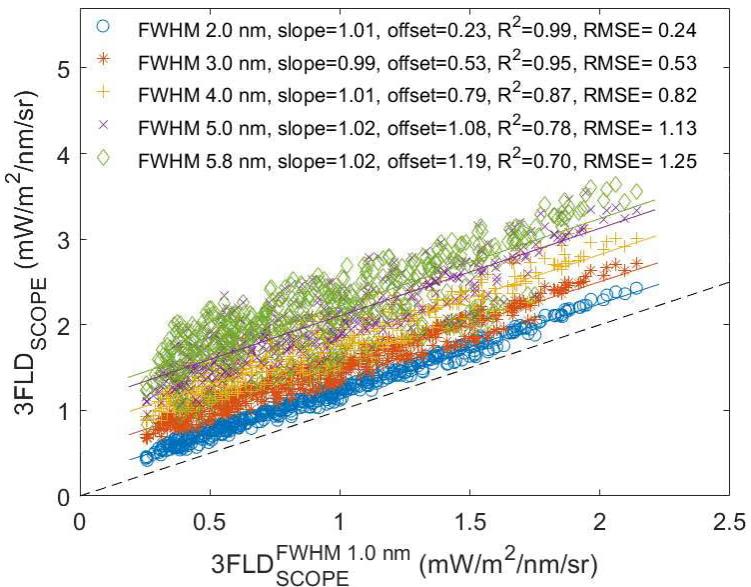
1862 Low-resolution SCOPE-simulated SIF_{760-3FLD} values (2- to 5.8-nm FWHM) were
 1863 significantly correlated with SIF_{760-3FLD} simulated at 1-nm FWHM ($p < 0.001$, R^2 0.70–0.99; Fig. 2-
 1864 10). RMSE values tended to increase with decreasing SR (Fig. 2-10). The pattern of differing
 1865 absolute SIF_{760-3FLD} values but stable relative differences across SRs observed with the SCOPE-
 1866 simulated data was consistent with the experimental results from the airborne hyperspectral imagers.



1867 **Fig. 2-9.** Relationship between airborne SIF₇₆₀-3FLD measures from different hyperspectral imagers
1868 across experiments 1 (a), 2 (b) and 3 (c). The range of absolute SIF₇₆₀-3FLD levels derived from the
1869 narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy
1870 vegetation due to the impact of the spectral resolution of the instrument.

1871

1872

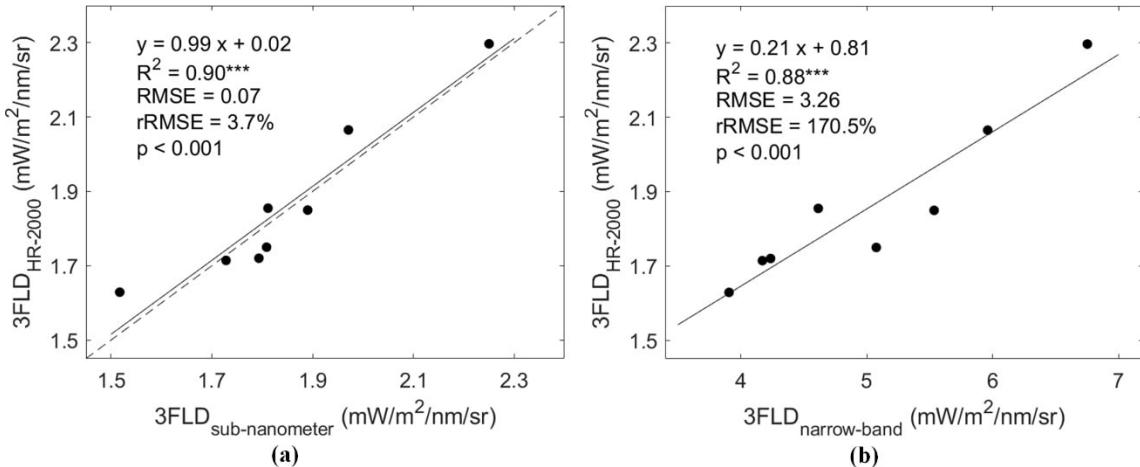


1873 **Fig. 2-10.** Relationships between SIF₇₆₀-3FLD for SCOPE simulations with different SRs against
1874 SIF₇₆₀-3FLD quantified at 1-nm FWHM. The dotted line represents the 1:1 line.

1875

1876 A comparison of airborne SIF₇₆₀ retrievals to ground-based SIF₇₆₀-3FLD retrievals in
1877 experiment 3 is shown in Fig. 2-11. Ground-based measures were significantly correlated with both
1878 the sub-nanometer ($R^2 = 0.90$, $p < 0.001$; Fig. 2-11a) and the narrow-band ($R^2 = 0.88$, $p < 0.001$)
1879 hyperspectral imagers (Fig. 2-11b). SIF₇₆₀-3FLD from the sub-nanometer imager showed strong
1880 agreement with the ground-based SIF₇₆₀-3FLD values (RMSE = 0.07 mW/m²/nm/sr, rRMSE = 3.7%),
1881 whereas the narrow-band imager exhibited greater overall differences from ground-based measures
1882 (RMSE = 3.26 mW/m²/nm/sr, rRMSE = 170.5%). SIF-yield, which was estimated by normalising

1883 the corrected SIF_{760-3FLD} by the average NIR radiance in the 776–780-nm spectral region, was also
 1884 significantly correlated with the leaf-level steady-state chlorophyll fluorescence in experiment 1 (R^2
 1885 = 0.53, $p < 0.01$ for sub-nanometer imager; R^2 = 0.34, $p < 0.05$ for narrow-band imager).

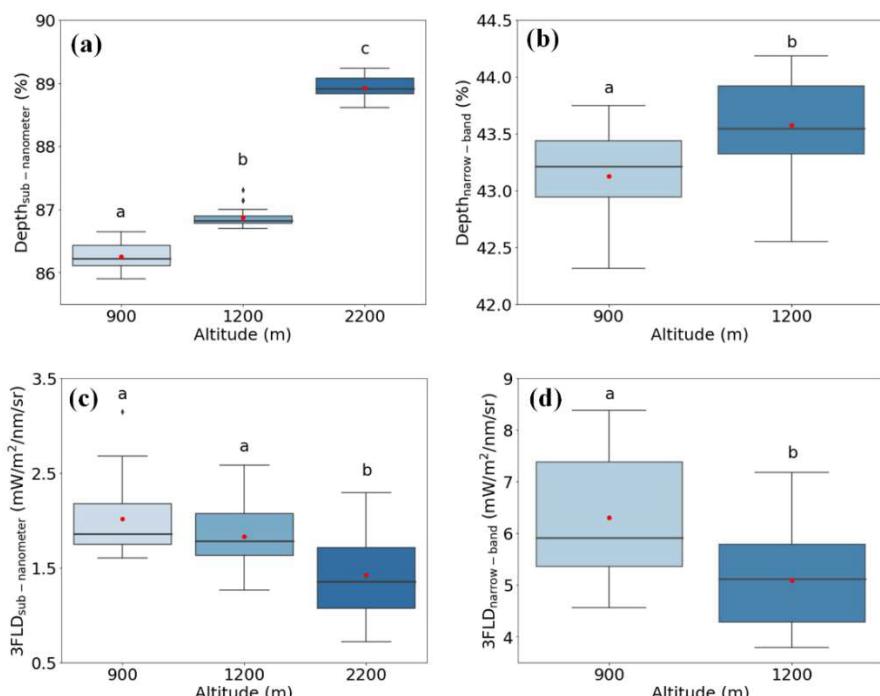


1886 **Fig. 2-11.** Relationship between ground-based SIF_{760-3FLD} quantified from the HR-2000 field
 1887 spectrometer and airborne SIF_{760-3FLD} quantified from the sub-nanometer (a) and the narrow-band (b)
 1888 hyperspectral imagers for experiment 3. The dotted line represents the 1:1 line. The range of absolute
 1889 SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3
 1890 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the
 1891 instrument.

1892
 1893 Measures of O₂-A band depth and airborne SIF_{760-3FLD} at different altitudes are presented in
 1894 Fig. 2-12. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because
 1895 pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m). O₂-A absorption feature depth and
 1896 SIF_{760-3FLD} differed significantly with altitude (Fig. 2-12). The depth of the O₂-A absorption feature
 1897 increased with sensor altitude, and SIF_{760-3FLD} decreased with sensor altitude for both airborne
 1898 imagers (Fig. 2-12).

1899 Sub-nanometer SIF_{760-3FLD} retrievals were significantly correlated with narrow-band imager
 1900 retrievals in experiment 3 at both 900 m AGL ($R^2 = 0.85$, $p < 0.001$; Fig. 2-13a) and 1200 AGL (R^2
 1901 = 0.9, $p < 0.001$; Fig. 2-13a). The slope of the relationship between sub-nanometer and narrow-band
 1902 retrievals was steeper for 900 m AGL than for 1200 m AGL. RMSE at 900 m AGL (4.29
 1903 mW/m²/nm/sr) was higher than that of 1200 m AGL (3.28 mW/m²/nm/sr), possibly explained by
 1904 larger SIF_{760-3FLD} values at lower altitudes. SIF_{760-3FLD} at 900 m AGL was significantly correlated with

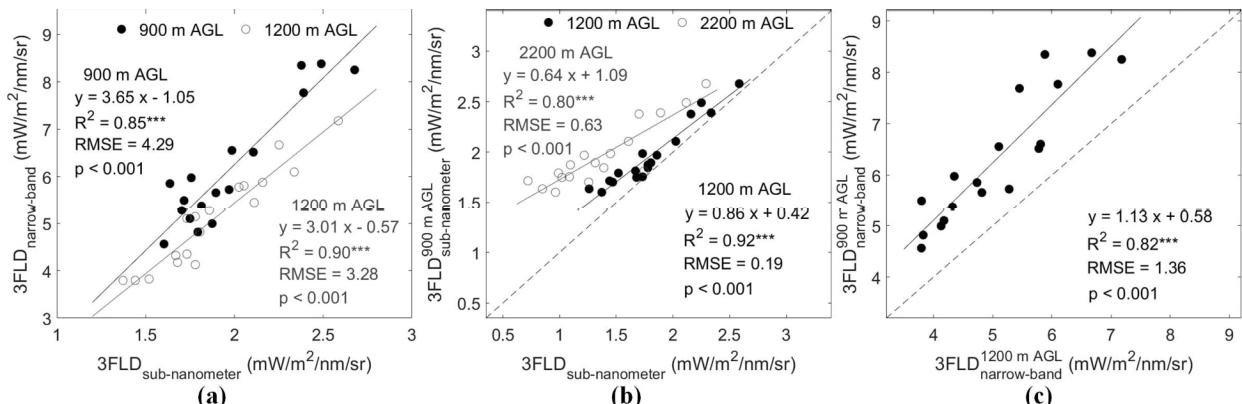
1905 SIF_{760-3FLD} at 1200 m AGL ($R^2 = 0.92, p < 0.001$; Fig. 2-13b) and 2200 m AGL ($R^2 = 0.8, p < 0.001$;
 1906 Fig. 2-13b) using the sub-nanometer imager. SIF_{760-3FLD} values decreased with imager altitude, and
 1907 the relationship between low-altitude and high-altitude measurements also changed, with shallower
 1908 slopes at higher altitudes (Fig. 2-13b). RMSE was higher at 2200 m AGL than at 1200 m AGL
 1909 altitude, when compared to 900 m AGL. A similar pattern was observed for narrow-band SIF_{760-3FLD}
 1910 retrievals, with an overall significant correlation ($R^2 = 0.82$, RMSE = 1.36 mW/m²/nm/sr, $p < 0.001$;
 1911 Fig. 2-13c) and lower SIF_{760-3FLD} values at higher altitudes.



1912 **Fig. 2-12.** Effect of sensor altitude on O₂-A band depth and SIF_{760-3FLD} in experiment 3. Letters (a, b
 1913 and c) within each plot represent the results of Tukey's honest significant difference (HSD) post-hoc
 1914 comparisons of group means with $\alpha < 0.05$. Groups sharing the same letter are not significantly
 1915 different. In the boxplots, the average values are shown with a red circle. The black line within the
 1916 box is the median, and the top and bottom of the box is the 75th and 25th quartile, respectively. The
 1917 whiskers represent $\pm 1.5 \times$ Interquartile range. The outliers are represented as diamonds. The range
 1918 of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range
 1919 of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution
 1920 of the instrument. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded
 1921 because pixels were too coarse (1.7 m) relative to plot size (3 m \times 12 m).

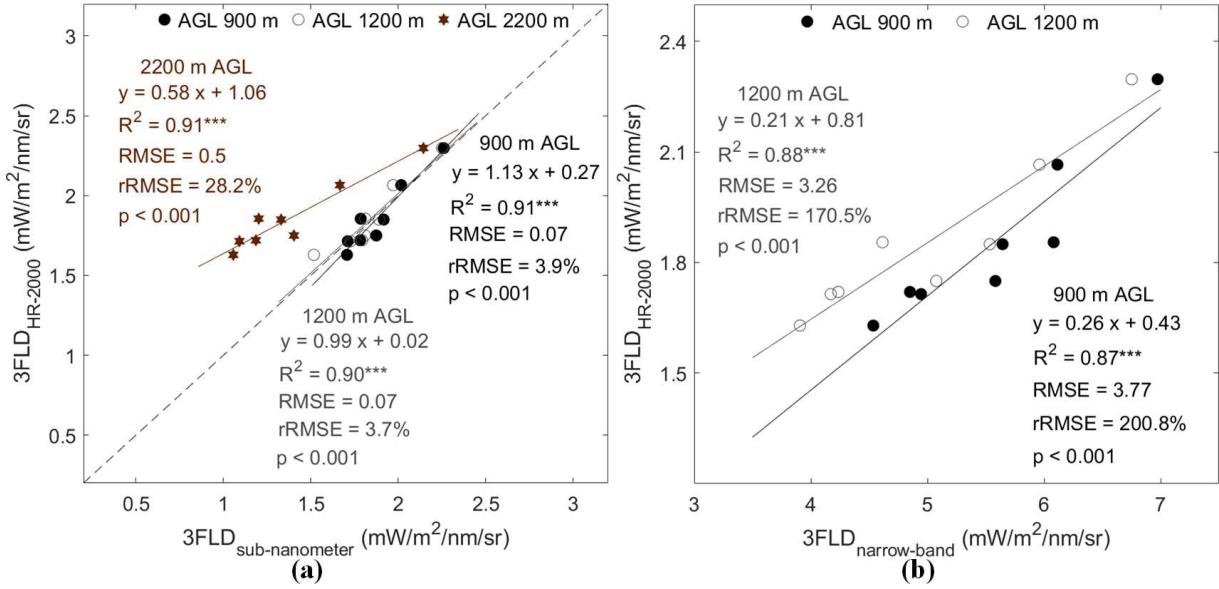
1922
 1923 Sub-nanometer SIF_{760-3FLD} was significantly correlated with ground-based SIF_{760-3FLD} at all
 1924 sensor altitudes ($p < 0.001$, all $R^2 > 0.9$; Fig. 2-14a). RMSEs between airborne and ground-based SIF
 1925 retrievals at 900 and 1200 m AGL were lower than 0.1 mW/m²/nm/sr and rRMSEs were lower than

1926 4%. SIF_{760-3FLD} at 2200 m AGL consistently underestimated ground-based SIF (RMSE = 0.5
 1927 mW/m²/nm/sr and rRMSE = 28.2%; Fig. 2-14a). Ground-based SIF_{760-3FLD} was also significantly
 1928 correlated with airborne SIF_{760-3FLD} from the narrow-band imager ($p < 0.001$, $R^2 > 0.85$) at both
 1929 altitudes (Fig. 2-14b). Narrow-band imager SIF_{760-3FLD} estimates at 1200 m AGL tended to be smaller
 1930 than ground-based measures (Fig. 2-14b), and error was high for both 900 m AGL (RMSE = 3.77
 1931 mW/m²/nm/sr, rRMSE = 200.8%) and 1200 m AGL (RMSE = 3.26 mW/m²/nm/sr, rRMSE =
 1932 170.5%).



1933 **Fig. 2-13.** (a) Relationships between SIF_{760-3FLD} estimates from narrow-band and sub-nanometer
 1934 hyperspectral imagers by sensor altitude. (b) Relationships between airborne SIF_{760-3FLD} from sub-
 1935 nanometer imager at 1200 and 2200 m AGL compared to the SIF_{760-3FLD} quantified at 900 m AGL.
 1936 (c) Relationship between airborne SIF_{760-3FLD} from the narrow-band hyperspectral imager at 900 and
 1937 1200 m AGL. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was
 1938 higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the
 1939 impact of the spectral resolution of the instrument. SIF_{760-3FLD} measures with the narrow-band imager
 1940 at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12
 1941 m).

1942
 1943 Nitrogen predictions from both RF models were significantly correlated ($p < 0.01$) with the
 1944 field-level nitrogen content measurements obtained by destructive sampling (Fig. 2-15). SIF_{760-FLD}
 1945 from the sub-nanometer hyperspectral imager by itself was significantly correlated with field-level
 1946 nitrogen content ($R^2 = 0.71$, $p < 0.001$; Fig. 2-15a), as was SIF₇₆₀ quantified from the narrow-band
 1947 imager ($R^2 = 0.67$, $p < 0.001$; Fig. 2-15b). The RF algorithm using SIF_{760-sub-nanometer} performed
 1948 slightly better ($R^2 = 0.93$, RMSE = 0.09%; Fig. 2-15c) than the RF using SIF_{760-narrow-band} ($R^2 = 0.87$,
 1949 RMSE = 0.12 %; Fig. 2-15d).



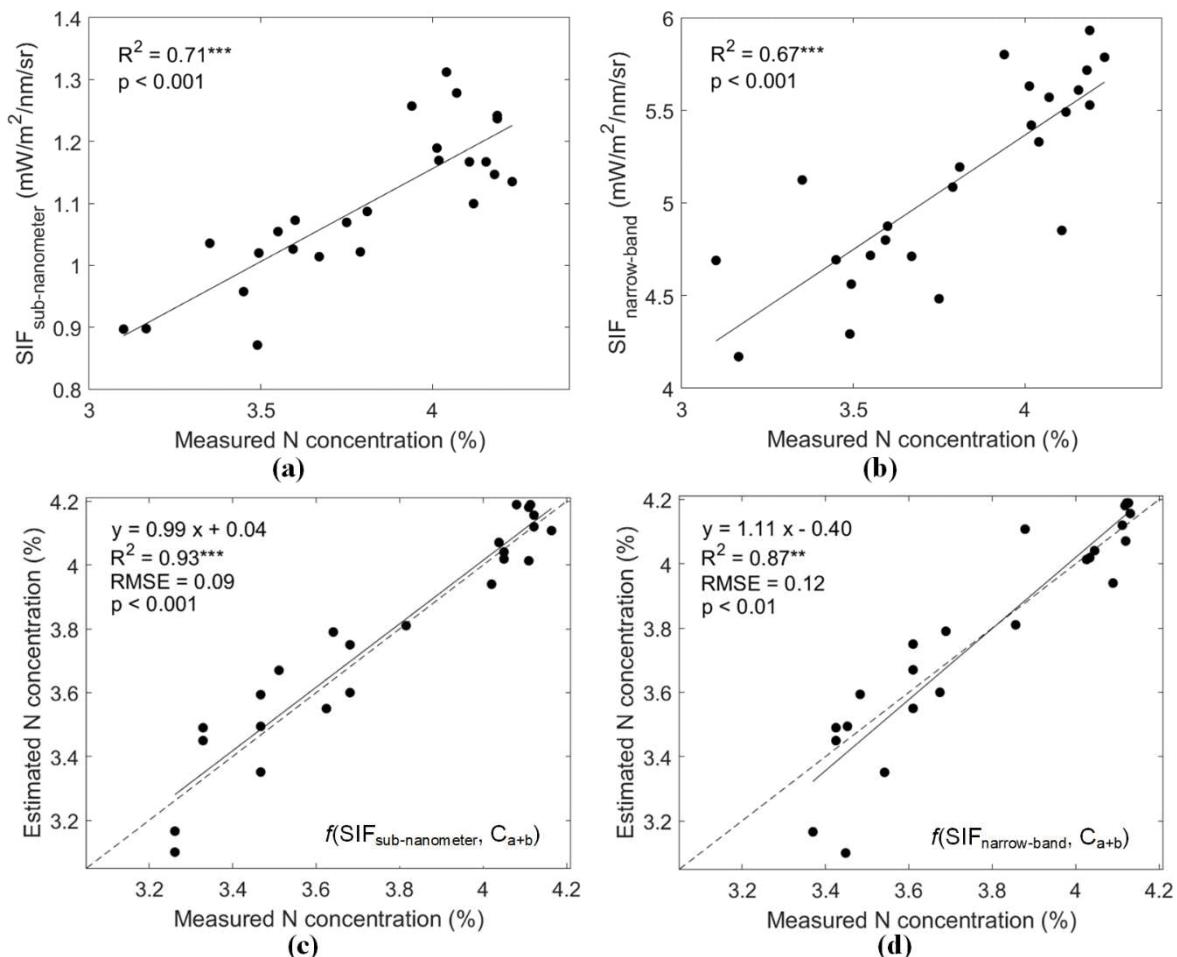
1950 **Fig. 2-14.** Relationship between ground-based SIF_{760-3FLD} quantified with a HR-2000 field
1951 spectrometer and airborne SIF_{760-3FLD} at 900 m, 1200 m and 2200 m AGL retrieved from the sub-
1952 nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF_{760-3FLD} levels
1953 derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr
1954 quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.
1955 SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were
1956 too coarse (1.7 m) relative to plot size (3 m × 12 m).

1957

1958 2.4 Discussion

1959 In this study we examined the relationship between airborne SIF_{760-3FLD} quantified using sub-
1960 nanometer resolution (i.e., ≤ 0.2 nm FWHM) and narrow-band resolution (i.e., 5.8-nm FWHM)
1961 hyperspectral imagers in the context of plant phenotyping for homogenous crop canopies. Our results
1962 support the assertion that airborne SIF retrievals from narrow-band hyperspectral imagers can
1963 successfully track small physiological changes induced by plant pathogens and environmental
1964 stresses, as reported elsewhere (Calderon *et al.*, 2015; 2013; Camino *et al.*, 2021; 2018a; Hernandez-
1965 Clemente *et al.*, 2017; Panigada *et al.*, 2014; Poblete *et al.*, 2021; 2020; Zarco-Tejada *et al.*, 2018;
1966 2012). Precise SIF₇₆₀ quantification at absolute scales was not essential for detecting plant stress in
1967 these studies. In our study, narrow-band airborne SIF_{760-3FLD} was significantly associated with both
1968 sub-nanometer airborne and ground-based SIF observations. Our results particularly illustrate the

1969 capability of these narrow-band hyperspectral imagers for characterising the intra-field SIF₇₆₀
 1970 variability induced by different nitrogen fertilisation rates.



1971 **Fig. 2-15.** Relationships between N concentration and airborne SIF_{760-3FLD} quantified from a sub-
 1972 nanometer (a) and narrow-band imager (b). Measured vs. estimated N concentration using Random
 1973 Forest regression models, which included RTM-based C_{a+b} and SIF_{760-3FLD} generated from either a
 1974 sub-nanometer (c) or narrow-band imager (d). The dotted line represents the 1:1 line. The range of
 1975 absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of
 1976 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of
 1977 the instrument.

1978
 1979 Previous studies have highlighted the importance of sensor configuration for detecting
 1980 spectral absorption features occurring over very narrow spectral ranges, particularly the need for high
 1981 SR and SNR when quantifying SIF (Mohammed *et al.*, 2019). The literature has emphasised the need
 1982 for instruments with sub-nanometer resolutions to accurately characterise narrow absorption features
 1983 for reliable SIF estimates in physical units (Cogliati *et al.*, 2015; Julitta *et al.*, 2016; Meroni and
 1984 Colombo, 2006; Meroni *et al.*, 2011; Rossini *et al.*, 2010). The experimental results from these studies

1985 are consistent with modelling studies based on FluorSAIL3 (Damm *et al.*, 2011; Cendrero-Mateo *et*
1986 *al.*, 2019) and SCOPE (Liu *et al.*, 2015), which showed an increase in the SIF₇₆₀ retrieval accuracy
1987 with increasing sensor SR. These modelling studies also found strong correlations between modelled
1988 and estimated SIF₇₆₀ for low SR (5 nm) instruments using 3FLD ($r = 0.78$, RMSE = 0.31
1989 mW/m²/nm/sr) and iFLD ($r = 0.81$, RMSE = 0.081 mW/m²/nm/sr) (Damm *et al.*, 2011). The SCOPE
1990 modelling results presented in this study support the findings of previous modelling efforts,
1991 illustrating statistically significant relationships ($p < 0.001$, $R^2 = 0.70\text{--}0.99$, RMSE = 0.24–1.25
1992 mW/m²/nm/sr; Fig. 2-10) between SIF_{760-3FLD} at 1 nm and SIF_{760-3FLD} at coarser SRs ranging from 2-
1993 nm to 5.8-nm FWHM. The offset of the linear relationship with SIF_{760-3FLD} at 1 nm increased steadily
1994 as the SR decreased from 2 to 5.8 nm, while the slope remained close to 1. This offset increase can
1995 be attributed to differences in radiance corresponding to the O₂-A band minima, which showed a
1996 200% increase (Fig. 2-5f) when resampling radiance spectra from 1 to 5.8 nm SR. Our modelling
1997 results and those of previous studies suggest that narrow-band resolution sensors (4- to 6-nm FWHM)
1998 with sufficient SNR can sufficiently characterise relative SIF₇₆₀ levels despite their inability to
1999 provide reliable absolute SIF₇₆₀ estimates.

2000 Differential nitrogen application rates in the three experiments were associated with
2001 variability of leaf physiological measurements (Fig. 2-6) and airborne SIF_{760-3FLD}. Narrow-band and
2002 sub-nanometer SIF_{760-3FLD} estimates were strongly correlated across experiments, and both differed
2003 by nitrogen fertilisation level. The best correlation, observed in experiment 3, may be attributed to
2004 the identical flight altitude at which the narrow-band and the sub-nanometer hyperspectral images
2005 were collected for this experiment (site 2; Table 2-2) in addition to the higher relative SIF_{760-3FLD}
2006 variability observed within the experimental plots compared to experiments 1 and 2 (Fig. 2-9). The
2007 results demonstrated consistency across experimental sites and airborne campaigns carried out at
2008 different times, flight altitudes and years, showing robust relationships in terms of the relative SIF₇₆₀₋
2009 _{3FLD} variability quantified by the two hyperspectral imagers. The differences obtained in absolute

2010 levels of SIF_{760-3FLD} quantified in the three experiments can be associated with the differences in crop
2011 varieties, crop growth stages and the slightly different acquisition times of the airborne hyperspectral
2012 images. These results are consistent with previous studies showing differences in both ground-based
2013 and airborne SIF₇₆₀ measurements according to nitrogen treatment (Cendrero-Mateo *et al.*, 2016; Jia
2014 *et al.*, 2018; 2021; Quemada *et al.*, 2014; Watt *et al.*, 2020a; 2020b).

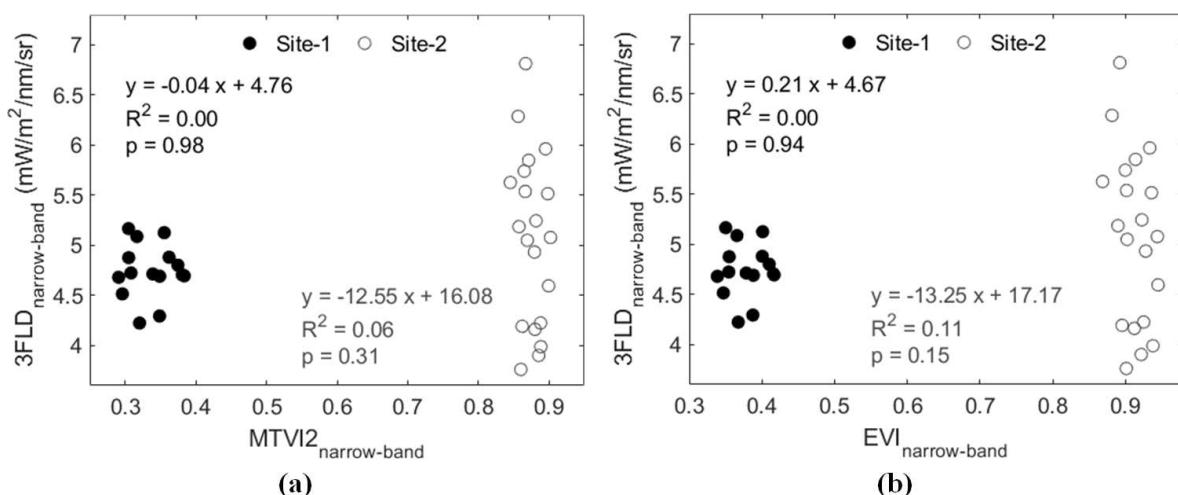
2015 Sensor altitude was identified as a critical factor in determining SIF accuracy (Daumard *et al.*,
2016 2015; Ni *et al.*, 2016). MODTRAN (Berk *et al.*, 2014) was used in these studies to show that the
2017 depth of the O₂-A absorption feature increases with sensor altitude. This is consistent with our
2018 findings, which show that the O₂-A band depth increased with altitude for both airborne hyperspectral
2019 imagers (Fig. 2-12) due to an increase in the radiance of the O₂-A band minima (Fig. 2-4h). Despite
2020 correcting for the atmospheric effects, SIF_{760-3FLD} decreased with altitude for both airborne
2021 hyperspectral imagers. Such a decrease is linked to the correction method used, which relies on non-
2022 fluorescent targets. The relative increase in O₂-A band depth with increasing altitude is greater for
2023 vegetation targets than for bare soil targets (Daumard *et al.* 2015). This difference results in a bias in
2024 the corrected SIF_{760-3FLD}. Although SIF_{760-3FLD} was overestimated at higher altitudes with both
2025 hyperspectral imagers, airborne estimates remained well correlated with ground-based measurements
2026 across altitudes (Fig. 2-12 and 2-14). This result has important implications for drone and airborne-
2027 based SIF quantifications in plant phenotyping studies and precision agriculture applications, in
2028 which sensor altitude is generally adapted depending on the flight efficiency and areal coverage.
2029 Although the relative variability needs to be assessed for detecting physiological changes induced by
2030 biotic or abiotic factors, understanding the effects of sensor altitude on SIF retrievals is critical for
2031 accurately interpreting SIF when used as input in stress-detection models.

2032 Few studies have validated airborne-quantified SIF₇₆₀ from narrow-band hyperspectral
2033 imagers against ground-based observations from high-resolution field spectrometers, due to the
2034 challenges associated with complex and heterogenous canopies including forest areas and cash crops

such as vineyards and tree orchards. Damm *et al.* (2015) demonstrated the relationship between the medium-resolution Airborne Prism Experiment (APEX) sensor and a ground-based ASD (PANalytical, Boulder, US) field spectrometer for three different types of ecosystems. Measures were correlated ($R^2 = 0.71$), but airborne SIF₇₆₀ systematically overestimated ground-based SIF₇₆₀ by a proportionality factor (slope of airborne vs. ground SIF₇₆₀ relationship) of 1.93 and an rRMSE of 28.9%. Guanter *et al.* (2007) found good agreement ($R^2 = 0.85$) between airborne SIF₇₆₀ derived from the Compact Airborne Spectrographic Imager (CASI, Itres Research Ltd., Canada) and ground-based SIF₇₆₀ derived from the ASD FieldSpec FR spectroradiometer. The airborne vs. ground-based relationship found in the current study ($R^2 = 0.88$, proportionality factor = 4.76) is consistent with the results from both studies above. Due to the impact of SR on the absolute SIF_{760-3FLD} quantification, larger deviations in terms of rRMSE and proportionality factor were observed compared with the results from Damm *et al.* (2015), which can be attributed to the sub-nanometer resolution (0.065-nm FWHM) of the reference ground-based HR-2000 spectrometer used in our study as compared to the moderate spectral resolution of ASD spectrometers (>1.0-nm FWHM) used elsewhere.

The potential effects of the canopy structure are important to consider when comparing the narrow-band vs. sub-nanometer SIF retrievals. The TOC SIF observations from ground-based, airborne and spaceborne platforms are strongly affected by plant canopy structure due to the re-absorption and scattering of light within the canopy (Fournier *et al.*, 2012; Porcar-Castell *et al.*, 2014; Dechant *et al.*, 2020; Yang and Van der Tol, 2018; Zeng *et al.*, 2019). This structure is usually characterised by parameters such as leaf area index and the leaf inclination distribution function and may be approximated with vegetation indices such as Modified Triangular Vegetation Index (MTVI2) (Haboudane *et al.*, 2004) and Enhanced Vegetation Index (EVI) (Huete *et al.*, 2002) when assessing the effects of structure on SIF. In our study, the structural differences across experimental plots were generally small as structural changes were generally not associated with experimental treatments. Nevertheless, we tested whether treatment-associated variability in canopy structure could

2060 be related to SIF_{760-3FLD} from the narrow-band hyperspectral imager. We found that the relationships
 2061 of both MTVI2 and EVI with narrow-band airborne SIF_{760-3FLD} were weak and non-significantly
 2062 correlated at both field trial sites ($p > 0.1$, $R^2 = 0 - 0.11$; Fig. 2-16). These results suggest that the
 2063 SIF_{760-3FLD} variability captured by the narrow-band imager in the experiments was not driven by
 2064 changes arising from structural effects. Moreover, it shows that the fluorescence *in-filling* at the O₂-
 2065 A band was unaffected by structure, with the variability across experimental plots due to subtle
 2066 physiological differences.



2067 **Fig. 2-16.** Relationships between airborne SIF_{760-3FLD} from the narrow-band hyperspectral imager and
 2068 MTVI2 (a) and EVI (b). The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager
 2069 was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the
 2070 impact of the spectral resolution of the instrument.

2071
 2072 Predictive models of leaf N concentration improved only slightly when using SIF₇₆₀ from the
 2073 sub-nanometer imager compared to the narrow-band imager, with a marginal increase in the model
 2074 performance ($R^2 = 0.87$ vs. 0.93) and a decrease in the error (RMSE = 0.12% vs. 0.09%). The
 2075 direction of this improvement is consistent with the greater accuracy of the sub-nanometer SR imager.
 2076 Nevertheless, these results suggest that data from the narrow-band hyperspectral imager may be
 2077 sufficient for predicting N concentration in plant phenotyping and precision agriculture applications.
 2078 Narrow-band imagery may be particularly suitable since relative changes in SIF linked to
 2079 physiological conditions, nutritional deficiencies and stress levels are often the focus of such studies.

2080 For assessing crop physiological status, standard commercially available hyperspectral
2081 imagers with 4- to 6-nm FWHM and SNRs greater than 300:1 can provide reliable relative SIF₇₆₀
2082 estimates (Zarco-Tejada *et al.*, 2012; 2013a). These sensors are lightweight and can be carried on
2083 drone platforms that provide very high spatial resolution images due to low flying altitude. This
2084 capacity to generate very high spatial resolution imagery with narrow spectral bands is particularly
2085 important for plant phenotyping and precision agriculture applications for mapping physiological
2086 condition (Mohammed *et al.*, 2019). Additional work using RTMs such as SCOPE and others is
2087 needed for improving the interpretation of SIF quantified using broader resolutions in precision
2088 agriculture.

2089

2090 2.5 Conclusions

- 2091 1. Strong significant relationships were observed between SIF₇₆₀ quantified with narrow-band
2092 and sub-nanometer hyperspectral imagers flown in tandem across experimental sites and
2093 airborne campaigns conducted at different times, flight altitudes and years. These results
2094 demonstrate robust quantification of relative SIF₇₆₀ variability at lower spectral resolution,
2095 demonstrating its validity for detecting stress levels.
- 2096 2. The experimental results obtained for SIF₇₆₀ from the two hyperspectral imagers were
2097 successfully validated via SCOPE modelling, confirming the reliability of narrow-band SIF₇₆₀
2098 estimates for stress-detection applications requiring the assessment of the relative variability
2099 across the experimental field.
- 2100 3. The estimation of leaf nitrogen concentration using SIF₇₆₀ obtained similar results at both
2101 spectral resolutions (i.e. sub-nanometer vs. narrow-band SIF₇₆₀), suggesting that the relative
2102 SIF₇₆₀ levels obtained from narrow-band hyperspectral imagers enable the prediction of
2103 nitrogen concentration for plant phenotyping and precision agriculture applications.

2104 4. The SIF₇₆₀ variability detected by the narrow-band hyperspectral imager was not related to
2105 canopy structural alterations, but rather to distinct physiological responses to various nitrogen
2106 fertilisation levels across the experimental plots. These results demonstrate the potential of
2107 narrow-band SIF₇₆₀ to track small physiological changes caused due to nutrient variability.

2108

2109 **Acknowledgements**

2110 The authors gratefully acknowledge the Foundation for Arable Research Australia, in particular
2111 Michael Straight and Ben Morris; the Grains Research and Development Corporation Australia; and
2112 Riverine Plains Incorporated for their provision and management of the field trials. A. Gracia Romero
2113 and Y. Wang are acknowledged for their technical support during the field and airborne campaigns.

2114

2115 **References**

2116 Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P.J., 2018. Quantitative Remote Sensing at
2117 Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement
2118 Procedures, and Data Correction Workflows. *Remote Sens.* 10, 1091.

2119

2120 Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial
2121 photosynthesis. *Sci. Adv.* 3, e1602244.

2122

2123 Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., Julitta, T.,
2124 Arthur, A. mac, Hueni, A., Tomelleri, E., Celesti, M., Burkart, A., Strózecki, M., Sakowska, K.,
2125 Gabka, M., Rosadziński, S., Sojka, M., Iordache, M.D., Reusen, I., Van der Tol, C., Damm, A.,
2126 Schuettemeyer, D., Juszczak, R., 2019. HyPlant-derived sun-induced fluorescence - a new
2127 opportunity to disentangle complex vegetation signals from diverse vegetation types. *Remote
2128 Sens.* 11, 1691.

2129

2130 Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. Comparing the
2131 retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with different
2132 spectral resolutions for plant phenotyping studies. In: Proc. IEEE International Geoscience and
2133 Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5845–5848.

2134

2135 Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., Van den Bosch, J., 2014. MODTRAN6:
2136 A major upgrade of the MODTRAN radiative transfer code. In: Proc. SPIE 9088, Algorithms
2137 and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H, 13
2138 June 2014.

2139 Breiman, L., 2001. Random Forests. *Mach. Learn.* 45, 5–32.

2140

2141 Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution airborne
2142 hyperspectral and thermal imagery for early detection of *Verticillium* wilt of olive using
2143 fluorescence, temperature and narrow-band spectral indices. *Remote Sens. Environ.* 139, 231–
2144 245.

2145

2146 Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J., 2015. Early detection and quantification of
2147 *Verticillium* wilt in olive using hyperspectral and thermal imagery over large areas. *Remote*
2148 *Sens.* 7, 5584–5610.

2149

2150 Camino, C., Zarco-Tejada, P.J., Gonzalez-Dugo, V., 2018a. Effects of heterogeneity within tree
2151 crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of
2152 precision agriculture. *Remote Sens.* 10, 604.

2153

2154 Camino, C., González-Dugo, V., Hernandez, P., Sillero, J.C., Zarco-Tejada, P.J., 2018b. Improved
2155 nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-
2156 SWIR hyperspectral imagery in the context of precision agriculture. *Int. J. Appl. Earth Obs.*
2157 *Geoinf.* 70, 105–117.

2158

2159 Camino, C., Gonzalez-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., 2019. Radiative transfer Vcmax
2160 estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance
2161 in rainfed and irrigated plant phenotyping trials. *Remote Sens. Environ.* 231, 111186.

2162

2163 Camino, C., Calderón, R., Parnell, S., Dierkes, H., Chemin, Y., Román-Écija, M., Montes-Borrego,
2164 M., Landa, B.B., Navas-Cortes, J.A., Zarco-Tejada, P.J., Beck, P.S.A., 2021. Detection of
2165 *Xylella fastidiosa* in almond orchards by synergic use of an epidemic spread model and remotely
2166 sensed plant traits. *Remote Sens. Environ.* 260, 112420.

2167

2168 Celesti, M., Van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F.,
2169 Colombo, R., Rossini, M., 2018. Exploring the physiological information of Sun-induced
2170 chlorophyll fluorescence through radiative transfer model inversion. *Remote Sens. Environ.* 215,
2171 97–108.

2172

2173 Cendrero-Mateo, M.P., Moran, M.S., Papuga, S.A., Thorp, K.R., Alonso, L., Moreno, J., Ponce-
2174 Campos, G., Rascher, U., Wang, G., 2016. Plant chlorophyll fluorescence: active and passive
2175 measurements at canopy and leaf scales with different nitrogen treatments. *J. Exp. Bot.* 67, 275–
2176 286.

2177

2178 Cendrero-Mateo, M.P., Wienke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L.,
2179 Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H.,
2180 Pacheco-Labrador, J., Mac Arthur, A., 2019. Sun-induced chlorophyll fluorescence III:
2181 benchmarking retrieval methods and sensor characteristics for proximal sensing. *Remote Sens.*
2182 11, 962.

2183

2184 Cogliati, S., Rossini, M., Julitta, T., Meroni, M., Schickling, A., Burkart, A., Pinto, F., Rascher, U.,
2185 Colombo, R., 2015. Continuous and long-term measurements of reflectance and sun-induced
2186 chlorophyll fluorescence by using novel automated field spectroscopy systems. *Remote Sens.*
2187 *Environ.* 164, 270–281.

2188

2189 Colombo, R., Celesti, M., Bianchi, R., Campbell, P.K.E., Cogliati, S., Cook, B.D., Corp, L.A., Damm,
2190 A., Domec, J.C., Guanter, L., Julitta, T., Middleton, E.M., Noormets, A., Panigada, C., Pinto, F.,
2191 Rascher, U., Rossini, M., Schickling, A., 2018. Variability of sun-induced chlorophyll
2192 fluorescence according to stand age-related processes in a managed loblolly pine forest. *Glob.*
2193 *Chang. Biol.* 24, 2980–2996.

2194

2195 Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M.E., Verhoef, W., Rascher, U., 2011.
2196 Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-
2197 induced chlorophyll fluorescence. *Remote Sens. Environ.* 115, 1882–1892.

2198

2199 Damm, A., Guanter, L., Laurent, V.C.E., Schaepman, M.E., Schickling, A., Rascher, U., 2014. FLD-
2200 based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution
2201 airborne spectroscopy data. *Remote Sens. Environ.* 147, 256–266.

2202

2203 Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W.,
2204 Ammann, C., Schaepman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows
2205 ecosystem-specific relationships to gross primary production: An assessment based on
2206 observational and modeling approaches. *Remote Sens. Environ.* 166, 91–105.

2207

2208 Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A., Moya, I., 2012.
2209 Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth
2210 of a sorghum field. *IEEE Trans. Geosci. Remote Sens.* 50, 4292–4300.

2211

2212 Daumard, F., Goulas, Y., Ounis, A., Pedrós, R., Moya, I., 2015. Measurement and correction of
2213 atmospheric effects at different altitudes for remote sensing of sun-induced fluorescence in
2214 oxygen absorption bands. *IEEE Trans. Geosci. Remote Sens.* 53, 5180–5196.

2215

2216 Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q.,
2217 Kang, M., Li, J., Moya, I., 2020. Canopy structure explains the relationship between
2218 photosynthesis and sun-induced chlorophyll fluorescence in crops. *Remote Sens. Environ.* 241,
2219 111733.

2220

2221 Dechant, B., Ryu, Y., Yang K., Kim J., 2017. A comprehensive analysis of spectral resolution effects
2222 on SIF retrieval and potential correction methods. In: Proc. American Geophysical Union, Fall
2223 Meeting, 11–15 December 2017, New Orleans, USA.

2224

2225 Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M.,
2226 Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W., 2017.
2227 The FLuorescence EXplorer mission concept - ESA's Earth Explorer 8. *IEEE Trans. Geosci.*
2228 *Remote Sens.* 55, 1273–1284.

2229

2230 ESA (European Space Agency), 2015. Report for Mission Selection: FLEX. ESA SP-1330/2 (2
2231 Volume Series). 197 pp., Noordwijk (The Netherlands). https://esamultimedia.esa.int/docs/EarthObservation/SP1330-2_FLEX.pdf.

2232

2233 Féret, J.B., Berger, K., de Boissieu, F., Malenovský, Z., 2021. PROSPECT-PRO for estimating
2234 content of nitrogen-containing leaf proteins and other carbon-based constituents. *Remote Sens.*
2235 *Environ.* 252, 112173.

2236

2237

2238 Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., Moya, I., 2012. Effect of canopy
2239 structure on sun-induced chlorophyll fluorescence. *ISPRS J. Photogramm. Remote Sens.* 68,
2240 112–120.

2241

2242 Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollack, R., Taylor, T.E.,
2243 2014. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon
2244 Observatory-2. *Remote Sens. Environ.* 147, 1–12.

2245

2246 Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., McDuffie, J.,
2247 Drewry, D.T., Pavlick, R., Kuhnert, A., 2018. The chlorophyll fluorescence imaging
2248 spectrometer (CFIS), mapping far red fluorescence from aircraft. *Remote Sens. Environ.* 217,
2249 523–536.

2250

2251 Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., Al Bitar, A.,
2252 Aval, J., Benhmida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton, D.,
2253 Chrysoulakis, N., Mitraka, Z., 2017. DART: recent advances in remote sensing data modeling
2254 with atmosphere, polarization, and chlorophyll fluorescence. *IEEE J. Sel. Top. Appl. Earth Obs.*
2255 *Remote Sens.* 10, 2640–2649.

2256

2257 Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of
2258 photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochim. Biophys.*
2259 *Acta* 990, 87–92.

2260

2261 Gonzalez-Dugo, V., Hernandez, P., Solis, I., Zarco-Tejada, P.J., 2015. Using high-resolution
2262 hyperspectral and thermal airborne imagery to assess physiological condition in the context of
2263 wheat phenotyping. *Remote Sens.* 7, 13586–13605.

2264

2265 Grossmann, K., Frankenberg, C., Magney, T.S., Hurlock, S.C., Seibt, U., Stutz, J., 2018. PhotoSpec:
2266 a new instrument to measure spatially distributed red and far-red solar-induced chlorophyll
2267 fluorescence. *Remote Sens. Environ.* 216, 311–327.

2268

2269 Guanter, L., Alonso, L., Gómez-Chova, L., Amorós-López, J., Vila, J., Moreno, J., 2007. Estimation
2270 of solar-induced vegetation fluorescence from space measurements. *Geophys. Res. Lett.* 34,
2271 L08401.

2272

2273 Guanter, L., Alonso, L., Gómez-Chova, L., Meroni, M., Preusker, R., Fischer, J., & Moreno, J., 2010.
2274 Developments for vegetation fluorescence retrieval from spaceborne high-resolution
2275 spectrometry in the O₂-A and O₂-B absorption bands. *J. Geophys. Res.* 115, 19303.

2276

2277 Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, H., Grainger,
2278 R.G., 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT
2279 space measurements. *Remote Sens. Environ.* 121, 236–251.

2280

2281 Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., Köhler, P., Damm, A., Joiner, J.,
2282 Frankenberg, C., Landgraf, J., 2015. Potential of the TROPOspheric Monitoring Instrument
2283 (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll
2284 fluorescence. *Atmos. Meas. Tech.* 8, 1337–1352.

2285

2286 Gueymard, C.A., 2001. Parameterized transmittance model for direct beam and circumsolar spectral
2287 irradiance. *Sol. Energy* 71, 325–346.

2288

2289 Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral
2290 vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling
2291 and validation in the context of precision agriculture. *Remote Sens. Environ.* 90, 337–352.

2292

2293 Hao, D., Zeng, Y., Qiu, H., Biriukova, K., Celesti, M., Migliavacca, M., Rossini, M., Asrar, G.R.,
2294 Chen, M., 2021. Practical approaches for normalizing directional solar-induced fluorescence to
2295 a standard viewing geometry. *Remote Sens. Environ.* 255, 112171.

2296

2297 Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J., 2017. Assessing the effects
2298 of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative
2299 transfer model to account for forest structure. *Remote Sens. Environ.* 193, 165–179.

2300

2301 Hornero, A., North, P.R.J., Zarco-Tejada, P.J., Rascher, U., Martín, M.P., Migliavacca, M.,
2302 Hernández-Clemente, R., 2021a. Assessing the contribution of understory sun-induced
2303 chlorophyll fluorescence through 3-D radiative transfer modelling and field data. *Remote Sens.*
2304 *Environ.* 253, 112195.

2305

2306 Hornero, A., Zarco-Tejada, P.J., Quero, J.L., North, P.R.J., Ruiz-Gómez, F.J., Sánchez-Cuesta, R.,
2307 Hernández-Clemente, R., 2021b. Modelling hyperspectral- and thermal-based plant traits for the
2308 early detection of Phytophthora-induced symptoms in oak decline. *Remote Sens. Environ.* 263,
2309 112570.

2310

2311 Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the
2312 radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sens.*
2313 *Environ.* 83, pp. 195–213.

2314

2315 Jacquemoud, S., Baret, F., 1990. PROSPECT: a model of leaf optical properties spectra. *Remote*
2316 *Sens. Environ.* 34, 75–91.

2317

2318 Jia, M., Zhu, J., Ma, C., Alonso, L., Li, D., Cheng, T., Tian, Y., Zhu, Y., Yao, X., Cao, W., 2018.
2319 Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on
2320 detecting leaf nitrogen concentration in wheat. *Remote Sens.* 10, 1315.

2321

2322 Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T., Tian, Y., Zhu, Y.,
2323 Cao, W., Yao, X., 2021. Estimation of leaf nitrogen content and photosynthetic nitrogen use
2324 efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales.
2325 *Eur. J. Agron.* 122, 126192.

2326

2327 Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Arthur, A., Mac,
2328 Middleton, E.M., Rascher, U., Schickling, A., Colombo, R., 2016. Comparison of sun-induced
2329 chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. *Remote*
2330 *Sens.* 8, 122.

2331

2332 Julitta, T., Wutzler, T., Rossini, M., Colombo, R., Cogliati, S., Meroni, M., Burkart, A., Migliavacca,
2333 M., 2017. An R package for field spectroscopy: From system characterization to sun-induced
2334 chlorophyll fluorescence Retrieval. In: Proc. 6th International Workshop on Remote Sensing of
2335 Vegetation Fluorescence, 17–19 January 2017, Frascati, Italy.

2336

2337 Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H.S., Kornfeld, A., Berry, J.A., 2021. Solar- induced
2338 chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate
2339 evergreen needleleaf forest during the fall transition. *Remote Sens. Environ.* 258, 112362.

2340 Kjeldahl, J., 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen. *J. Anal. Chem.* 22,
2341 366–382.

2342

2343 Krause, G. H., Weis, E., 1984. Chlorophyll fluorescence as a tool in plant physiology. II.
2344 Interpretation of fluorescence signals. *Photosynth. Res.* 5, 139–157.

2345

2346 Li, Z., Zhang, Q., Li, J., Yang, X., Wu, Y., Zhang, Z., Wang, S., Wang, H., Zhang, Y., 2020. Solar-
2347 induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous
2348 ground measurements. *Remote Sens. Environ.* 236, 111420.

2349

2350 Lichtenthaler, H. K., Rinderle, U., 1988. The role of chlorophyll fluorescence in the detection of stress
2351 conditions in plants. *Crit. Rev. Anal. Chem.* 19 (Suppl. 1), S29–S85.

2352

2353 Liu, L., Liu, X., Hu, J., 2015. Effects of spectral resolution and SNR on the vegetation solar-induced
2354 fluorescence retrieval using FLD-based methods at canopy level. *Eur. J. Remote Sens.* 48, 743–
2355 762.

2356

2357 Maier, S.W., Günther, K.P., Stellmes, M., 2003. Sun-induced fluorescence: a new tool for precision
2358 farming. In: Schepers, J., VanToai, T. (Eds.), *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*. ASA Spec. Publ. 66. ASA, CSSA, and SSSA, Madison (Wisconsin), USA, pp. 209–222.

2361

2362 Marrs, J.K., Jones, T.S., Allen, D.W., Hutyra, L.R., 2021. Instrumentation sensitivities for tower-
2363 based solar-induced fluorescence measurements. *Remote Sens. Environ.* 259, 112413.

2364

2365 Meroni, M., Colombo, R., 2006. Leaf level detection of solar induced chlorophyll fluorescence by
2366 means of a subnanometer resolution spectroradiometer. *Remote Sens. Environ.* 103, 438–448.

2367

2368 Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications.
2369 *Remote Sens. Environ.* 113, 2037–2051.

2371

2372 Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of
2373 Spectral Fitting Methods for vegetation fluorescence quantification. *Remote Sens. Environ.* 114,
2374 363–374.

2375

2376 Meroni, M., Barducci, A., Cogliati, S., Castagnoli, F., Rossini, M., Busetto, L., & Di Cella, U.M.,
2377 2011. The hyperspectral radiometer, a new instrument for long-term and unattended field
2378 spectroscopy measurements. *Rev. Sci. Instrum.* 82, 043106.

2379

2380 Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., Van der Tol, C., Nedbal, L., Goulas,
2381 Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský,
2382 Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A.,
2383 Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll
2384 fluorescence (SIF) in vegetation: 50 years of progress. *Remote Sens. Environ.* 231, 111177.

2385

2386 Nakashima, N., Kato, T., Morozumi, T., Tsujimoto, K., Akitsu, T.K., Nasahara, K.N., Murayama, S.,
2387 Muraoka, H., Noda, H.M., 2021. Area-ratio Fraunhofer line depth (aFLD) method approach to
2388 estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-
2389 temperate deciduous broadleaf forest. *J. Plant Res.* 134, 713–728.

2390 Ni, Z., Liu, Z., Li, Z.L., Nerry, F., Huo, H., Sun, R., Yang, P., Zhang, W., 2016. Investigation of
2391 atmospheric effects on retrieval of sun-induced fluorescence using hyperspectral imagery.
2392 Sensors 16, 480.

2393

2394 Nichol, C.J., Drolet, G., Porcar-Castell, A., Wade, T., Sabater, N., Middleton, E.M., Maclellan, C.,
2395 Levula, J., Mammarella, I., Vesala, T., Atherton, J., 2019. Diurnal and Seasonal Solar Induced
2396 Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy. Remote Sens. 11,
2397 273.

2398

2399 Panigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati,
2400 S., Picchi, V., Pinto, F., Marchesi, A., Colombo, R., 2014. Fluorescence, PRI and canopy
2401 temperature for water stress detection in cereal crops. Int. J. Appl. Earth Obs. Geoinf. 30, 167–
2402 178.

2403

2404 Pedrós, R., Moya, I., Goulas, Y., Jacquemoud, S., 2008. Chlorophyll fluorescence emission spectrum
2405 inside a leaf. Photochem. Photobiol. Sci. 7, 498–502.

2406

2407 Pérez-Priego, O., Zarco-Tejada, P.J., Miller, J.R., Sepulcre-Cantó, G., Fereres, E., 2005. Detection of
2408 water stress in orchard trees with a high-resolution spectrometer through chlorophyll
2409 fluorescence *in-filling* of the O₂-A band. IEEE Trans. Geosci. Remote Sens. 43, 2860–2869.

2410

2411 Poblete, T., Camino, C., Beck, P.S.A., Hornero, A., Kattenborn, T., Saponari, M., Boscia, D., Navas-
2412 Cortes, J.A., Zarco-Tejada, P.J., 2020. Detection of *Xylella fastidiosa* infection symptoms with
2413 airborne multispectral and thermal imagery: Assessing bandset reduction performance from
2414 hyperspectral analysis. ISPRS J. Photogramm. Remote Sens. 162, 27–40.

2415

2416 Poblete, T., Navas-Cortes, J.A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa,
2417 B.B., Zarco-Tejada, P.J. (2021), Discriminating *Xylella fastidiosa* from *Verticillium dahliae*
2418 infections in olive trees using thermal- and hyperspectral-based plant traits. ISPRS J.
2419 Photogramm. Remote Sens. 179, 133–144.

2420

2421 Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfündel, E.E., Moreno,
2422 J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for
2423 remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095.

2424

2425 Plascyk, J.A., 1975. The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote
2426 sensing of solar-stimulated luminescence. Opt. Eng. 14, 144339.

2427

2428 Quemada, M., Gabriel, J.L., Zarco-Tejada, P., 2014. Airborne hyperspectral images and ground-level
2429 optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens. 6, 2940–2962.

2430

2431 Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M.,
2432 Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S.,
2433 Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pilkl, M., Pinto, F., Prey, L.,
2434 Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., 2015. Sun-induced
2435 fluorescence - a new probe of photosynthesis: first maps from the imaging
2436 spectrometer HyPlant. Glob. Chang. Biol. 21, 4673–4684.

2437

2438 Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto, L., Picchi, V., Cescatti,
2439 A., Seufert, G., Colombo, R., 2010. High resolution field spectroscopy measurements for
2440 estimating gross ecosystem production in a rice field. Agric. For. Meteorol. 150, 1283–1296.

2441 Rossini, M., Meroni, M., Celesti, M., Cogliati, S., Julitta, T., Panigada, C., Rascher, U., Van der Tol,
2442 C., Colombo, R., 2016. Analysis of red and far-red sun-induced chlorophyll fluorescence and
2443 their ratio in different canopies based on observed and modeled data. *Remote Sens.* 8, 412.

2444

2445 Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., Douglas, S., Guanter,
2446 L., Hanuš, J., Kataja, K., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Pikl, M., Pinto, F.,
2447 Vargas, J.Q., Rademske, P., Rodriguez-Moreno, F., Sabater, N., Schickling, A., Schüttemeyer,
2448 D., Zemek, F., Rascher, U., 2019. The high-performance airborne imaging spectrometer
2449 HyPlant—from raw images to top-of-canopy reflectance and fluorescence products: Introduction
2450 of an automatized processing chain. *Remote Sens.* 11, 2760.

2451

2452 Suarez, L., Gonzalez-Dugo, V., Camino, C., Hornero, A., Zarco-Tejada, P.J., 2021. Physical model
2453 inversion of the green spectral region to track assimilation rate in almond trees with an airborne
2454 nano-hyperspectral imager. *Remote Sens. Environ.* 252, 112147.

2455

2456 Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T., Verma,
2457 M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Köhler, P., Evans, B., Yuen, K., 2017.
2458 OCO-2 advances photosynthesis observation from space via solar induced chlorophyll
2459 fluorescence. *Science* 358, eaam5747.

2460

2461 Süß, A., Hank, T., Mauser, W., 2016. Deriving diurnal variations in sun-induced chlorophyll-a
2462 fluorescence in winter wheat canopies and maize leaves from ground-based hyperspectral
2463 measurements. *Int. J. Remote Sens.* 37, 60–77.

2464

2465 Tagliabue, G., Panigada, C., Celesti, M., Cogliati, S., Colombo, R., Migliavacca, M., Rascher, U.,
2466 Rocchini, D., Schüttemeyer, D., Rossini, M., 2020. Sun-induced fluorescence heterogeneity as
2467 a measure of functional diversity. *Remote Sens. Environ.* 247, 111934.

2468

2469 Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of
2470 soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance.
2471 *Biogeosci.* 6, 3109–3129.

2472

2473 Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling:
2474 the SAIL model. *Remote Sens. Environ.* 16, 125–141.

2475

2476 Verhoef, W., 2004. Extension of SAIL to model solar - induced canopy fluorescence spectra. In: Proc.
2477 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, 17–19 November
2478 2004, Montreal, Canada.

2479

2480 Verhoef, W., Jia, L., Xiao, Q., Su, Z., 2007. Unified optical-thermal four-stream radiative transfer
2481 theory for homogeneous vegetation canopies. *IEEE Trans. Geosci. Remote Sens.* 45, 1808–1822.

2482

2483 Verhoef, W., Van der Tol, C., Middleton, E.M., 2018. Hyperspectral radiative transfer modeling to
2484 explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX
2485 – Sentinel-3 tandem mission multi-sensor data. *Remote Sens. Environ.* 204, 942–963.

2486

2487 Vilfan, N., Van der Tol, C., Muller, O., Rascher, U., Verhoef, W., 2016. Fluspect-B: a model for leaf
2488 fluorescence, reflectance and transmittance spectra. *Remote Sens. Environ.* 186, 596–615.

2489

2490 Wang, Y., Suarez, L., Qian, X., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., 2021.
2491 Assessing the contribution of airborne-retrieved chlorophyll fluorescence for nitrogen

2492 assessment in almond orchards. In: Proc. IEEE International Geoscience and Remote Sensing
2493 Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5853–5856.

2494

2495 Watt, M.S., Buddenbaum, H., Leonardo, E.M.C., Estarija, H.J., Bown, H.E., Gomez-Gallego, M.,
2496 Hartley, R.J.L., Pearse, G.D., Massam, P., Wright, L., Zarco-Tejada, P.J., 2020a. Monitoring
2497 biochemical limitations to photosynthesis in N and P-limited radiata pine using plant functional
2498 traits quantified from hyperspectral imagery. *Remote Sens. Environ.* 248, 112003.

2499

2500 Watt, M.S., Buddenbaum, H., Leonardo, E.M.C., Estarija, H.J.C., Bown, H.E., Gomez-Gallego, M.,
2501 Hartley, R., Massam, P., Wright, L., Zarco-Tejada, P.J., 2020b. Using hyperspectral plant traits
2502 linked to photosynthetic efficiency to assess N and P partition. *ISPRS J. Photogramm. Remote*
2503 *Sens.* 169, 406–420.

2504

2505 Weis, E., Berry, J.A., 1987. Quantum efficiency of photosystem II in relation to ‘energy’- dependent
2506 quenching of chlorophyll fluorescence. *Biochim. Biophys. Acta* 894, 198–208.

2507

2508 Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., 2016. Airborne
2509 based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for
2510 improved estimates of gross primary productivity. *Remote Sens. Environ.* 184, 654–667.

2511

2512 Yang, R., Juhasz, A., Zhang, Yujuan, Chen, X., Zhang, Yinjun, She, M., Zhang, J., Maddern, R.,
2513 Edwards, I., Diepeveen, D., Islam, S., Ma, W., 2018. Molecular characterisation of the NAM-1
2514 genes in bread wheat in Australia. *Crop Pasture Sci.* 69, 1173–1181.

2515

2516 Yang, P., Van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll
2517 fluorescence with reflectance. *Remote Sens. Environ.* 209, 456–467.

2518

2519 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., 2000a. Chlorophyll fluorescence
2520 effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation.
2521 *Remote Sens. Environ.* 74, 582–595.

2522

2523 Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2000b. Chlorophyll
2524 fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level
2525 measurements with hyperspectral data. *Remote Sens. Environ.* 74, 596–608.

2526

2527 Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and narrow-
2528 band indices acquired from a UAV platform for water stress detection using a micro-
2529 hyperspectral imager and a thermal camera. *Remote Sens. Environ.* 117, 322–337.

2530

2531 Zarco-Tejada, P.J., Catalina, A., González, M.R., Martín, P., 2013a. Relationships between net
2532 photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral
2533 imagery. *Remote Sens. Environ.* 136, 247–258.

2534

2535 Zarco-Tejada, P.J., Suarez, L., Gonzalez-Dugo, V., 2013b. Spatial resolution effects on chlorophyll
2536 fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative
2537 transfer simulation. *IEEE Geosci. Remote Sens. Lett.* 10, 937–941.

2538

2539 Zarco-Tejada, P.J., González-Dugo, M.V., Fereres, E., 2016. Seasonal stability of chlorophyll
2540 fluorescence quantified from airborne hyperspectral imagery as an indicator of net
2541 photosynthesis in the context of precision agriculture. *Remote Sens. Environ.* 179, 89–103.

2542

2543 Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández- Clemente, R.,
2544 Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez- Dugo, V., North, P.R.J.,
2545 Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of *Xylella*
2546 *fastidiosa* infection revealed in spectral plant-trait alterations. *Nat. Plants* 4, 432–439.

2547

2548 Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J.A., 2019. A practical approach for
2549 estimating the escape ratio of solar-induced chlorophyll fluorescence. *Remote Sens. Environ.*
2550 232, 111209.

2551

2552 Zhao, F., Dai, X., Verhoef, W., Guo, Y., Van der Tol, C., Li, Y., Huang, Y., 2016. FluorWPS: a
2553 Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-
2554 dimensional canopy. *Remote Sens. Environ.* 187, 385–399.

2555 **Chapter 3**

2556

2557 **Spectral effects of medium resolution airborne**
2558 **hyperspectral imagers on SIF quantification**

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569 This chapter resulted in two research articles.

2570 1. **Belwalkar, A.**, Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.
2571 **Accurate SIF quantification from a narrow-band airborne hyperspectral imager**
2572 **using SCOPE: assessment with sub-nanometer imagery** (currently under review by the
2573 journal *Remote Sensing of Environment*)

2574 2. **Belwalkar, A.**, Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. **Accounting for the**
2575 **spectral resolution on SIF retrieval from a narrow-band airborne imager using**
2576 **SCOPE**. In: Proc. IEEE International Geoscience and Remote Sensing Symposium
2577 (IGARSS), 17–22 July 2022, Kuala Lumpur, Malaysia, pp. 5440–5443.
2578 <https://doi.org/10.1109/IGARSS46834.2022.9884564>.

2579 **Abstract**

2580 Hyperspectral imaging of solar-induced chlorophyll fluorescence (SIF) is useful for large-
2581 scale plant phenotyping and stress detection. However, the most accurate instruments for SIF
2582 quantification, such as sub-nanometer (≤ 1 -nm full-width at half-maximum, FWHM) airborne
2583 hyperspectral imagers, are expensive and complex to use. Previous studies have demonstrated that
2584 standard narrow-band hyperspectral imagers (i.e., 4–6-nm FWHM) are more cost-effective and are
2585 able to provide far-red SIF (SIF_{760}) estimations that correlate strongly with precise sub-nanometer
2586 resolution measurements. Nevertheless, narrow-band SIF_{760} estimates are subject to systematic
2587 overestimation due to the influence of spectral resolution (SR) on SIF_{760} levels. In this study, we
2588 investigated ways to address this bias using simulations from the Soil Canopy Observation,
2589 Photochemistry and Energy fluxes (SCOPE) model with Support Vector Regression (SVR) to
2590 estimate SIF_{760} at 1-nm SR from narrow-band resolution spectra. The performance of the proposed
2591 approach was evaluated using SCOPE model simulations and airborne imagery acquired from the
2592 two airborne hyperspectral imagers (FWHM ≤ 0.2 nm and 5.8 nm) flown in tandem on board an
2593 aircraft that collected data from two different wheat and maize phenotyping trials. The estimated
2594 SIF_{760} at 1-nm SR matched well with the reference SIF_{760} for both simulated (normalised root mean
2595 square error (nRMSE) 2.45–5.28%) and airborne hyperspectral (nRMSE = 4.5–16%) datasets. These
2596 results suggest that the proposed SIF_{760} modelling approach could be a useful strategy for improving
2597 the interpretation of relative SIF_{760} levels quantified from narrow-band hyperspectral imagers in
2598 studies focused on stress detection assessing plant physiological conditions.

2599 **Keywords:** Solar-induced chlorophyll fluorescence, SIF, narrow-band, SCOPE, SVR, airborne,
2600 hyperspectral, hyperspectral imager

2601

2602

2603 **3.1 Introduction**

2604 Solar-induced chlorophyll fluorescence (SIF) is a weak electromagnetic signal emitted by
2605 chlorophyll *a* that provides useful information about plant photosynthetic activity and stress
2606 (Lichtenthaler and Rinderle, 1988; Campbell *et al.*, 2008; Malenovský *et al.*, 2009; Zarco-Tejada *et*
2607 *al.*, 2016; 2021). Direct measurement of the SIF signal is complex due to its superimposition on the
2608 reflected solar radiation and small magnitude (1–5% of total upwelling radiance in the near infrared)
2609 (Meroni *et al.*, 2009). Since sensor capabilities impact the shape of absorption features commonly
2610 used for SIF estimation, instruments with sufficient spectral resolution (SR) and signal-to-noise ratio
2611 (SNR) are required for detecting subtle variations across narrow absorption features for accurate SIF
2612 quantification (Mohammed *et al.*, 2019). Sensors with a sub-nanometer resolution are thus
2613 recommended for obtaining SIF estimates in precise physical units and absolute terms.

2614 SIF signal can be retrieved using a range of platforms, including ground-based spectrometers
2615 (Acebron *et al.*, 2021; Cogliati *et al.*, 2015; Damm *et al.*, 2021; Grossmann *et al.*, 2018; Hao *et al.*,
2616 2022; Kim *et al.*, 2021; Li *et al.*, 2020; Pacheco-Labrador *et al.*, 2019), drones (Bendig *et al.*, 2019;
2617 Chang *et al.*, 2020; Suarez *et al.*, 2021; N. Wang *et al.*, 2021; Xu *et al.*, 2021; Zarco-Tejada *et al.*,
2618 2012), piloted aircrafts (Damm *et al.*, 2015; 2022; Poblete *et al.*, 2020; Rascher *et al.*, 2015; Siegmann
2619 *et al.*, 2021), and satellites (Braghieri *et al.*, 2021; Köhler *et al.*, 2018; Sun *et al.*, 2018). For airborne
2620 SIF estimation, there are several imaging sensors with sub-nanometer resolution capabilities, such as
2621 the chlorophyll fluorescence imaging spectrometer (CFIS) (Frankenberg *et al.*, 2018), the high-
2622 resolution airborne imaging spectrometer HyPlant (Rascher *et al.*, 2015), the AISA IBIS Fluorescence
2623 Imager (SPECIM, Spectral Imaging Ltd., Oulu, Finland) (R. Wang *et al.*, 2022), and the Hyperspec
2624 Solar-Induced Fluorescence Imaging sensor (Headwall Photonics, Fitchburg, MA, USA) (Paynter *et*
2625 *al.*, 2020) with SRs of 0.07, 0.28, 0.245, and ≤ 0.2 nm, respectively. These sub-nanometer imaging
2626 sensors can precisely characterise narrow absorption features needed for the accurate quantification
2627 of SIF in physical units.

Despite their potential, sub-nanometer imaging sensors pose significant challenges that restrict their widespread use for plant physiology monitoring, precision agriculture, and plant phenotyping applications. Their radiometric calibration is among the most challenging aspects. Since these sensors have narrow contiguous bands with a spectral sampling interval (SSI) on the order of 10^{-1} nm, a sophisticated calibration facility is required for accurate characterisation of the detector's spectral response (Brown *et al.*, 2006). A further obstacle is the difficulty in processing different flight lines, which is primarily due to the large amount of data generated, which makes mosaicking multiple flight lines a challenging task. Furthermore, these sensors have a spectral range limited to the SIF emission region (650–800 nm). Consequently, they cannot be used to simultaneously estimate SIF, plant traits, and vegetation indices, necessitating the integration of an additional sensor into the airborne platform. In addition, their weights make these sensors incompatible with drones, requiring lightweight aircraft to be used as the aerial platform (Frankenberg *et al.*, 2018; Headwall Photonics, 2021; Specim, 2022).

In recent years, there has been rapid progress in the use of hyperspectral imaging sensors with narrow-band SRs in the 4–6-nm FWHM range, in conjunction with drones and lightweight aircraft (Aasen *et al.*, 2018). A variety of compact, lightweight, and low-cost narrow-band hyperspectral imaging sensors in the visible and near-infrared spectral range (400–1000 nm) are now widely available, such as Specim FX10 (5.5-nm FWHM, SPECIM, Spectral Imaging Ltd., Oulu, Finland), Micro- and Nano-Hyperspec (5.8- and 6-nm FWHM, respectively, Headwall Photonics Inc., Boston, MA, USA), Pika L and Pika XC2 (3.3- and 1.9-nm FWHM, respectively, Resonon Inc., Bozeman, MT, USA), and FireflEYE 185 (8-nm FWHM, Cubert GmbH, Ulm, Baden-Württemberg, Germany), among others. These sensors have the capability of retrieving narrow-band hyperspectral vegetation indices and estimating numerous plant functional traits, which could provide substantial insight into the health of the plant. Furthermore, these sensors can be mounted on either piloted or non-piloted airborne platforms. These standard narrow-band hyperspectral imagers could provide a cost-effective

2653 and more operationally viable alternative to sub-nanometer imagers for quantifying far-red SIF,
2654 hereafter SIF₇₆₀. Several past studies have demonstrated the utility of relative SIF₇₆₀ levels derived
2655 from narrow-band imaging sensors for a variety of applications, such as biotic-induced stress
2656 detection (Calderón *et al.*, 2015; 2013; Hernández-Clemente *et al.*, 2017; Hornero *et al.*, 2021;
2657 Poblete *et al.*, 2021; 2020; Zarco-Tejada *et al.*, 2021; 2018), water stress detection (Camino *et al.*,
2658 2018a; Panigada *et al.*, 2014; Zarco-Tejada *et al.*, 2012), plant phenotyping (Camino *et al.*, 2019;
2659 2018b; Gonzalez-Dugo *et al.*, 2015), nutrient assessment (Longmire *et al.*, 2022; Y. Wang *et al.*,
2660 2022; Watt *et al.*, 2020) and its link with gross primary production (GPP) (Damm *et al.*, 2015; Zarco-
2661 Tejada *et al.*, 2013). More recently, Belwalkar *et al.* (2022) found strong correlations between
2662 airborne SIF₇₆₀ estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM and sub-
2663 nanometer SIF₇₆₀ estimates acquired concurrently using an airborne sub-nanometer hyperspectral
2664 imager with ≤ 0.2 -nm FWHM and a ground-based spectrometer with 0.065-nm FWHM. Although
2665 narrow-band SIF₇₆₀ estimates were larger than sub-nanometer SIF₇₆₀ estimates (root mean square
2666 error, RMSE = 3.28–4.69 mW/m²/nm/sr), SIF₇₆₀ levels estimated from both airborne sensors were
2667 strongly correlated ($R^2 = 0.77$ –0.9) across multiple experimental sites. Thus, we hypothesise that
2668 spectrally scaling narrow-band SIF₇₆₀ imaging to finer resolutions using physically-based models
2669 could facilitate the quantification of absolute SIF₇₆₀ levels at finer spatial resolutions.

2670 Due to the re-absorption and scattering of light within the leaves and canopy, plant pigments
2671 and canopy structure have strong effects on top-of-canopy (TOC) SIF (Dechant *et al.*, 2020;
2672 Migliavacca *et al.*, 2017; Porcar-Castell *et al.*, 2014; Van der Tol *et al.*, 2016; Yang and Van der Tol,
2673 2018; Zeng *et al.*, 2019). Previous studies using physically-based models successfully accounted for
2674 these light re-absorption and scattering effects when downscaling SIF from the canopy level to the
2675 leaf level (Liu *et al.*, 2019; Romero *et al.*, 2020; 2018; Yang and Van der Tol, 2018). In addition,
2676 prior studies have demonstrated that SIF spectra and vegetation biophysical traits can be retrieved
2677 simultaneously, either with radiative transfer model (RTM) inversion alone (Celesti *et al.*, 2018;

2678 Verhoef *et al.*, 2018) or through RTM combined with machine learning modelling (Scodellaro *et al.*,
2679 2022). The widely used RTM Soil-Canopy-Observation of Photosynthesis and Energy fluxes
2680 (SCOPE) (Van der Tol *et al.*, 2009) can model light re-absorption and scattering mechanisms while
2681 taking canopy structure into consideration. A sensitivity analysis of the SCOPE model revealed that
2682 canopy structure and leaf optical properties primarily determine TOC SIF variability when
2683 considering only vegetation parameters (Verrelst *et al.*, 2015). Consequently, the interpretation of
2684 narrow-band SIF₇₆₀ estimates could be improved by including plant trait information derived from
2685 RTMs, such as SCOPE. We hypothesise that incorporating canopy structure and pigment content
2686 parameters through the SCOPE-based modelling approach could potentially aid in the estimation of
2687 SIF₇₆₀ at finer spectral resolution from narrow-band resolution sensors, enabling retrieval of
2688 appropriate absolute SIF₇₆₀ levels in physical units.

2689 Although Belwalkar *et al.* (2022) demonstrated significant correlations between SIF₇₆₀
2690 estimates derived from narrow-band and sub-nanometer airborne hyperspectral imagers flown in
2691 tandem, these narrow-band SIF₇₆₀ estimates were accurate only in relative terms, and their conversion
2692 to absolute SIF₇₆₀ levels in physical units required further investigation. Furthermore, several prior
2693 studies have demonstrated that sensors with broader spectral specifications overestimate SIF₇₆₀
2694 (Damm *et al.*, 2015; Julitta *et al.*, 2016; Maimaitiyiming *et al.*, 2020; Nichol *et al.*, 2019; Süß *et al.*,
2695 2016). The magnitude of this bias depends on both the spectral resolution and the spectral sampling
2696 interval of the instrument, and additional modelling is needed for accurate SIF quantification in
2697 practical applications. Although previous studies have demonstrated the impact of the spectral
2698 resolution on SIF (Belwalkar *et al.*, 2022; Cendrero-Mateo *et al.*, 2019; Damm *et al.*, 2011; Julitta *et*
2699 *al.*, 2016; Liu *et al.*, 2015), they have mostly focused on modelling efforts and on hand-held
2700 spectrometer data collected at the near-field scale. There is a lack of research focusing on assessing
2701 the impact of SR and SSI on SIF from airborne narrow-band imaging sensors under ambient field
2702 conditions. Studies carried out under such conditions with operational sensors will make progress on

2703 the operational use of cost-efficient and simpler sensors for fluorescence quantification and
2704 photosynthesis assessment.

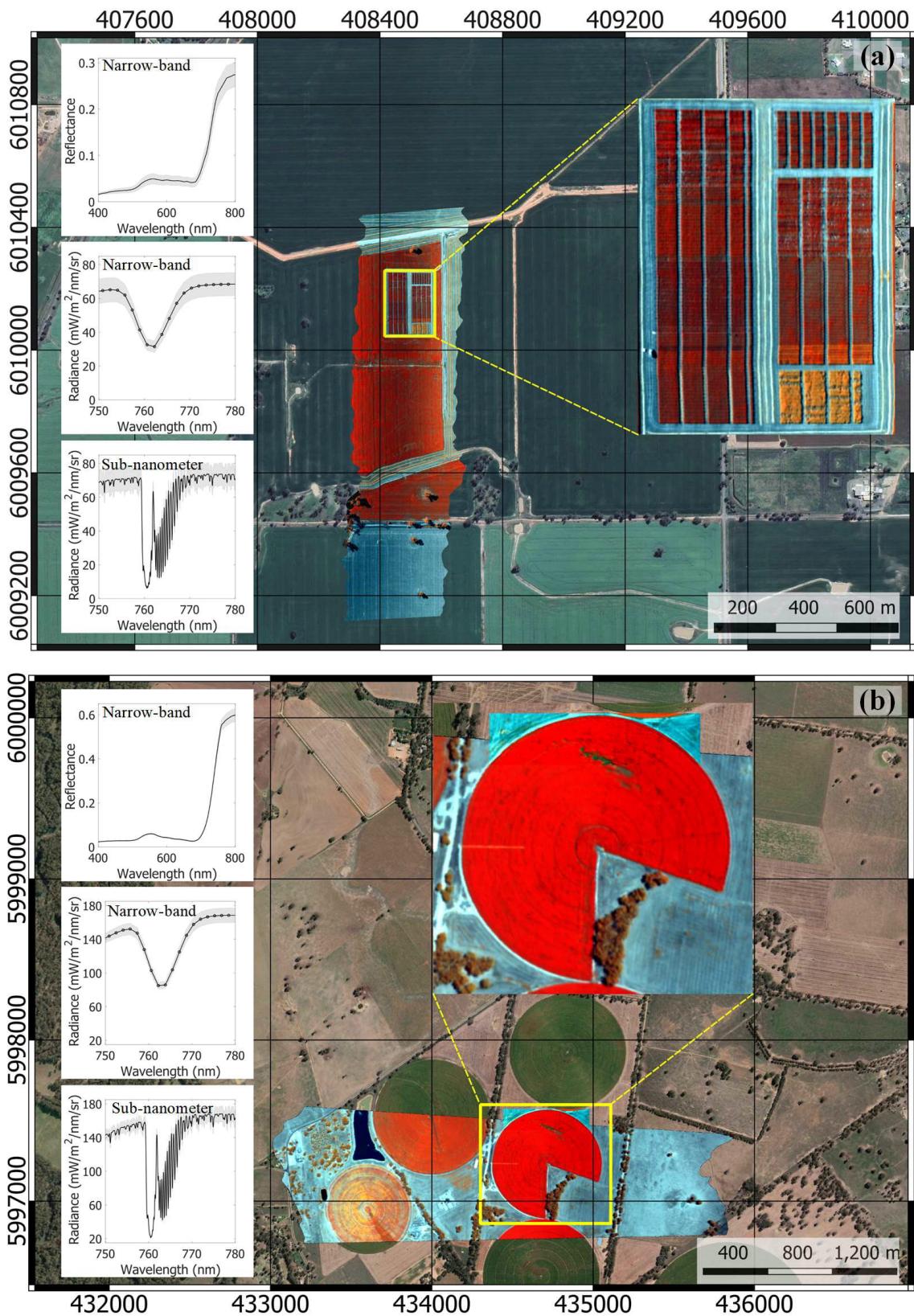
2705 Our study extends the prior work of Belwalkar *et al.* (2022) by modelling the effect of SR on
2706 narrow-band SIF₇₆₀ estimations to optimise their interpretation, with the intention of addressing the
2707 limitations associated with the absolute SIF₇₆₀ levels quantified from narrow-band airborne
2708 hyperspectral imagers. We used an empirical approach based on SCOPE modelling and Support
2709 Vector Regression (SVR) to estimate SIF₇₆₀ at a finer target resolution. Due to SCOPE's default
2710 spectral characteristics and the experimental results of Julitta *et al.* (2016) indicating that
2711 spectrometers with FWHM \leq 1 nm can estimate the absolute value of SIF₇₆₀, we selected 1-nm
2712 FWHM as the target resolution for validation purposes. Input data consisted of 5.8-nm FWHM
2713 resolution narrow-band airborne hyperspectral imager data deriving SIF₇₆₀ and SCOPE model
2714 inverted leaf biochemical and structural traits as predictor variables.

2715

2716 3.2 Materials and methods

2717 3.2.1 Study sites

2718 The study was conducted at two sites in Victoria, Australia (Fig. 3-1). Site 1 was located in
2719 Yarrawonga (36°02'55"S, 145°59'02"E) and was planted with several varieties of rainfed wheat grown
2720 under various physiological conditions and fertilisation treatments. The airborne campaign was
2721 conducted during grain filling in 2019 (Fig. 3-1a). Plots were 26 m² (2 m \times 13 m) in size and were
2722 planted in May 2019. The second trial site (Site 2) was managed under irrigated conditions using an
2723 overhead pivot in Peechelba East (36°10'04"S, 146°16'23"E) in 2021. A single variety of maize
2724 (Pioneer Hybrid 1756) was grown across the entire experimental field under different nitrogen
2725 fertiliser application rates. The growth stage during the airborne campaign corresponded to silking
2726 (Fig. 3-1b). Plots measured 36 m² (3 m \times 12 m) and were planted in October 2020.



2727 **Fig. 3-1.** Overview of experimental fields at Sites 1 (a) and 2 (b) acquired with the narrow-band
2728 hyperspectral imager (composite: 760 (R), 710 (G), and 680 (B) nm). The black lines correspond to
2729 the average radiance spectra in the O₂-A absorption region used for SIF quantification and the average
2730 reflectance spectra in the 400–800-nm spectral region used for plant trait estimation for all plots.
2731 Shaded areas in the reflectance and radiance plots represent the ±1 standard deviation of the average
2732 reflectance and radiance.

2733 At both trial sites, leaf measurements were carried out in the field simultaneously with
2734 airborne campaigns. Handheld leaf-clip sensors (Dualex, FORCE-A, Orsay, France and FluorPen
2735 FP110-LM, Photon Systems Instruments, Drásov, Czech Republic) were used to measure leaf
2736 chlorophyll content, nitrogen balance index (NBI), flavonol content, anthocyanin content, and steady-
2737 state leaf fluorescence yield (F_t). Details of leaf-level measurements can be found in Belwalkar *et al.*
2738 (2022). A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was set up for
2739 concurrent readings of meteorological conditions (air temperature and air pressure) during the
2740 hyperspectral image acquisition over both of the trial sites. The total incoming irradiance (E) was
2741 measured continuously during flights with a 0.065-nm FWHM HR-2000 spectrometer (Ocean
2742 Insight, Dunedin, FL, USA) set up at each field site. The spectrometer at Site 1 was equipped with a
2743 CC-3 VIS-NIR cosine corrector-diffuser probe, whereas at Site 2, irradiance was measured using the
2744 radiance (L) reflected from a white reference panel (Labsphere Inc., North Sutton, NH, USA). The
2745 irradiance measured from the HR-2000 spectrometer was calibrated using coefficients derived from
2746 a uniform calibrated light source and an integrating sphere (Labsphere XTH2000C, Labsphere Inc.,
2747 North Sutton, NH, USA).

2748 3.2.2 Hyperspectral airborne campaigns

2749 For both airborne campaigns, two hyperspectral imagers were flown in tandem on a Cessna
2750 172R operated by the HyperSens Laboratory, the University of Melbourne's Airborne Remote
2751 Sensing Facility, to acquire high-resolution hyperspectral imagery over the two study sites. The first
2752 hyperspectral imager (Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA)
2753 captured images in the 400–1000-nm spectral range with 5.8-nm FWHM resolution, and the second
2754 hyperspectral imager (Hyperspec Solar-Induced Fluorescence Imaging sensor, Headwall Photonics,
2755 Fitchburg, MA, USA) operated in the 670–780-nm spectral range with ≤ 0.2 -nm FWHM resolution.
2756 Further technical details of the imaging and flight data can be found in Table 3-1.

2757 **Table 3-1.** Spectral characteristics of hyperspectral imagers and acquisition details**Characteristics of hyperspectral imagers**

	VNIR E-Series (Narrow-band)	Solar-Induced Fluorescence Imaging (Sub-nanometer)
Spectral range	400–1000 nm	670–780 nm
Number of spectral bands	371	2160
Spectral sampling interval (SSI)	1.626 nm	0.051 nm
FWHM	5.8 nm	≤0.2 nm
Number of un-binned spatial pixels	1600	1600
Signal-to-noise ratio (SNR)	>300:1*	>300:1*
Field of view	66°	23.5°
Radiometric resolution	16	16

Image acquisition details

	Site 1	Site 2
Acquisition dates	9 th October 2019, 15:40 – 16:30 (local time)	20 th January 2021, 11:40 – 12:20 (local time)
Flight altitude (above ground level)	400 m (VNIR imager) 900 m (Fluorescence imager)	1200 m (both imagers)
Mean spatial resolution	0.2 m (both imagers)	0.7 m (VNIR imager) 0.3 m (Fluorescence imager)

*Applicable only for plot-level mean radiance/reflectance computation

2758

2759 The radiometric calibration of the two hyperspectral imagers was performed by means of an
 2760 integrating sphere (Labsphere XTH2000C) using coefficients derived from the calibrated light source
 2761 at four different illumination levels. The SMARTS model (Gueymard, 2001) was used to perform
 2762 atmospheric correction for the VNIR E-Series (narrow-band) imager to convert radiance images to
 2763 reflectance images. Aerosol optical depth measurements in the 440-, 500-, 675-, 870-, and 936-nm
 2764 spectral bands obtained from a Microtops II sun photometer (Solar Light Co., Philadelphia, PA, USA)
 2765 and meteorological measurements from the portable weather station were used for input parameters.
 2766 Hyperspectral images were ortho-rectified using inertial measurement units and GPS data (VN-300-
 2767 VectorNav Technologies LLC, Dallas, TX, USA for the narrow-band imager and Trimble APX-15
 2768 UAV, Applanix Corporation, Ontario, Canada for the sub-nanometer imager) recorded during the
 2769 flights using the Parametric Geocoding & Ortho-rectification for Airborne Optical Scanner Data

2770 software (PARGE, ReSe Applications Schläpfer, Wil, Switzerland). Additional information on data
2771 pre-processing and image correction can be found in Zarco-Tejada *et al.* (2016).

2772 We used the Normalised Difference Vegetation Index (NDVI) as a thresholding strategy to
2773 identify vegetational pixels within each plot, as described in Belwalkar *et al.* (2022). Mean radiance
2774 from both narrow-band and sub-nanometer imagers and reflectance spectra from the narrow-band
2775 imager were calculated for each plot by averaging all selected vegetation pixels, excluding the
2776 boundary pixels (Belwalkar *et al.*, 2022). The average radiance spectra from the narrow-band
2777 hyperspectral imager (Fig. 3-1) were used to quantify SIF₇₆₀ using the O₂-A band *in-filling* approach,
2778 employing the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975) and a total of three spectral
2779 bands (3FLD) (Maier *et al.*, 2003), named here as SIF_{760-3FLD}. The irradiance measured from HR-
2780 2000 spectrometer was convolved assuming a Gaussian band spectral response function of 5.8-nm
2781 FWHM resolution to match the spectral characteristics of the narrow-band hyperspectral imager. The
2782 ‘*in*’ E and L were selected as the E/L minima in the 755–765-nm spectral region, while the ‘*out*’ E
2783 and L were selected as the weighted mean of E/L local maxima in the 750–759-nm and 771–780-nm
2784 spectral regions, respectively. In case of multiple local maxima within the spectral regions, the local
2785 maximum closest to the ‘*in*’ band was selected (Cendrero-Mateo *et al.*, 2019). The airborne SIF₇₆₀₋
2786 3FLD was further corrected using non-fluorescent soil targets identified in the imagery and then
2787 normalised using a reflectance-based angular normalisation approach (Hao *et al.*, 2021) to account
2788 for atmospheric and directional effects as described in Belwalkar *et al.* (2022).

2789 **3.2.3 Modelling methods**

2790 **3.2.3.1 SCOPE model simulations**

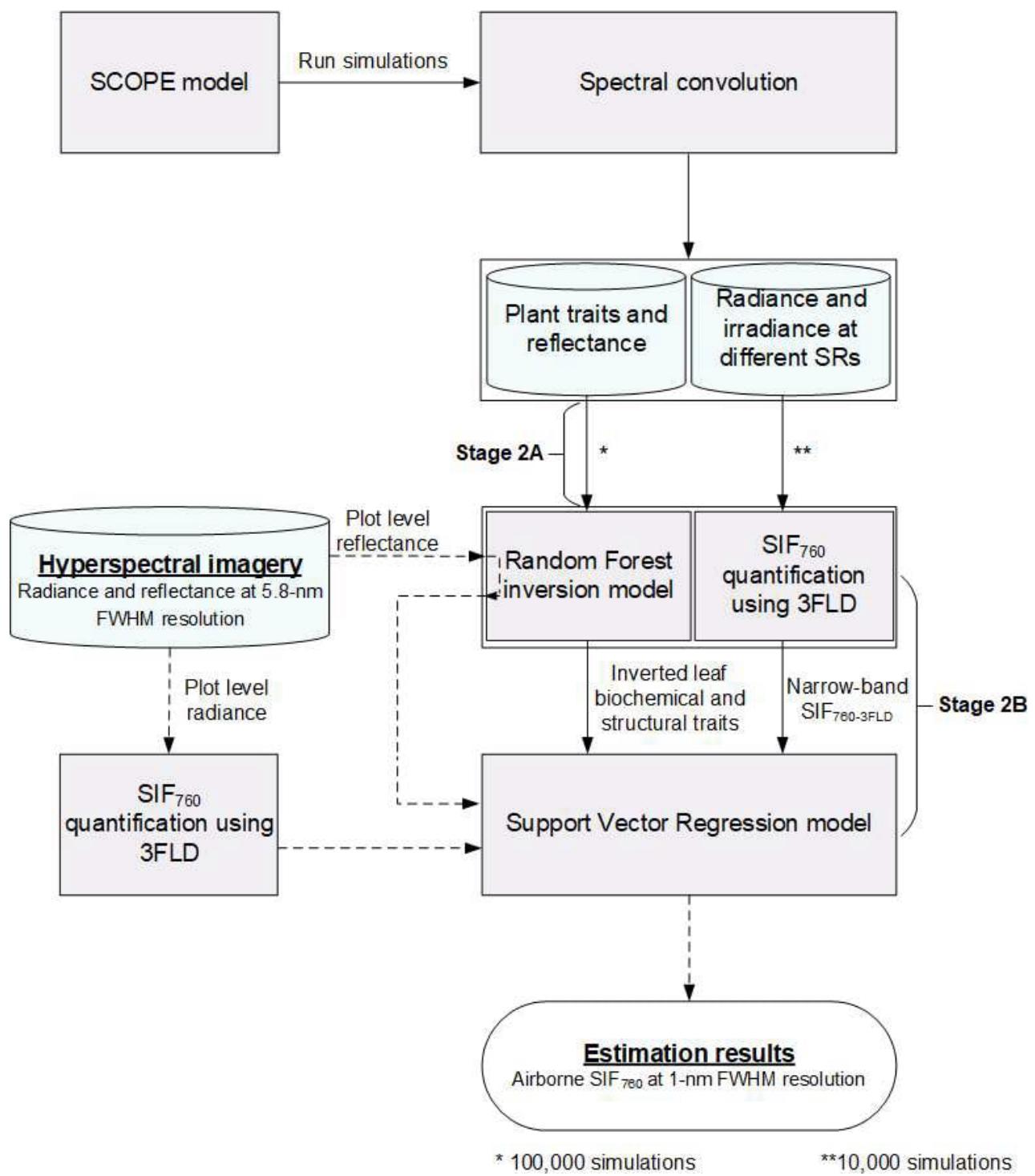
2791 The SCOPE model (version 2.0) (Yang *et al.*, 2021) was used to account for the effect of the
2792 sensor's spectral resolution on SIF₇₆₀ quantification. SCOPE simulations were used in two stages: 1)
2793 a theoretical sensitivity analysis of the effect of plant traits on the inter-relationship between SIF₇₆₀-

2794 3FLD and SR, and 2) the development of a machine learning–based estimation model to scale narrow-
2795 band SIF_{760-3FLD} estimates to 1-nm FWHM resolution.

2796 In the first stage, a local sensitivity analysis was used to determine how individual plant traits
2797 independently affect SIF_{760-3FLD} estimates from narrow-band hyperspectral imagery. This differs from
2798 previous modelling-based studies (Damm *et al.*, 2011; Liu *et al.*, 2015) that varied multiple plant
2799 traits simultaneously. In simulations for Stage 1, the plant traits leaf chlorophyll content (C_{a+b}), leaf
2800 area index (LAI), leaf inclination distribution function (LIDF_a), and maximum rate of carboxylation
2801 (V_{cmax}) were selected for analysis based on their association with SIF variability in a global SCOPE-
2802 sensitivity study (Verrelst *et al.*, 2015). SCOPE simulations at the default 1-nm FWHM and 1-nm
2803 SSI were generated by randomly varying input parameters drawn from a uniform distribution within
2804 the following ranges: C_{a+b} (10–50), LAI (1–5), LIDF_a (–0.8–0.8), and V_{cmax} (40–200). A total of
2805 1000 simulations (Simulated Dataset-1) were obtained for each trait while holding other parameters
2806 constant. All other SCOPE inputs were set at their default values. SCOPE simulations were then
2807 convolved to match the SR, SSI, and band centres of the narrow-band hyperspectral image, assuming
2808 a Gaussian band spectral response function. SIF_{760-3FLD} was estimated from simulated irradiance and
2809 TOC total upwelling radiance at both 1- and 5.8-nm FWHM resolutions following the same
2810 methodology outlined in Section 2.2 and compared across simulations of the four leaf biochemical
2811 and structural traits.

2812 Stage 2 consisted of using SCOPE model simulations to develop prediction models for
2813 estimating SIF₇₆₀ at 1-nm FWHM resolution from narrow-band resolution spectra (Fig. 3-2). Due to
2814 differences in crop type, crop growth stage, image acquisition time, and meteorological conditions
2815 between the two study sites, SCOPE simulations were conducted separately for each study site. An
2816 alternative strategy would have been to generate a global SCOPE-simulated data set that could be
2817 applied to any study site. However, due to the complexity of SCOPE input parameters that would be
2818 needed for such a model (leaf, canopy, soil, and micrometeorology), we used site-specific simulations

2819 based on spatially stable micrometeorological conditions likely to occur during airborne imaging
2820 sensor acquisition in practice (Verrelst *et al.*, 2015).



2821 **Fig. 3-2.** Overview of the methodology used for estimating SIF₇₆₀ at 1-nm FWHM from the narrow-
2822 band airborne hyperspectral imager.
2823

2824 Two distinct sets of simulations were generated for each study site, using parameter values
2825 drawn from random uniform distributions detailed in Table 3-2. The ranges of input parameters for
2826 the simulated datasets were determined using field measurements from each study site as well as
2827 estimates from the existing literature (detailed in Table B-1, Appendix B). The meteorological
2828 variables (air temperature and air pressure) were determined from the portable weather station.
2829 SCOPE defaults were used for other parameters and spectral characteristics. One dataset of 100,000
2830 simulations (Simulated Dataset-2_{site 1} and Simulated Dataset-2_{site 2}) was used for the estimation of
2831 plant traits (Stage 2A, Section 2.3.2). A second dataset of 10,000 simulations (Simulated Dataset-3_{site}
2832 1 and Simulated Dataset-3_{site 2}) was used for SIF₇₆₀ estimation at 1-nm FWHM resolution (Stage 2B,
2833 Section 2.3.3). As with other simulations, 1-nm SR outputs were convolved to match the spectral
2834 resolution of the narrow-band hyperspectral imager using a Gaussian spectral response function.
2835 Additionally, radiance and irradiance spectra were convolved to 2-, 3-, 4-, 5-, and 6-nm SR for
2836 Simulated Dataset-2_{site 1} and Simulated Dataset-3_{site 1} while maintaining the Nyquist criterion (SSI =
2837 SR/2) (Damm *et al.*, 2011). A list of the SCOPE simulations used at each stage is provided in Table
2838 3-3.

2839 **3.2.3.2 Plant trait estimation using RTM-based hybrid approach**

2840 In Stage 2A (Fig. 3-2), an RTM-based hybrid inversion method was used to estimate leaf
2841 biochemical and structural traits using the TOC reflectance spectra from the narrow-band imagery at
2842 both study sites. Only traits with the highest variable importance scores as determined by the predictor
2843 screening approach (detailed in Section 3.2.3.3) were estimated. A similar method combining RTMs
2844 and machine learning regression models, such as Gaussian process regression (GPR), support vector
2845 machines (SVMs), and random forest (RF), have successfully been used in previous studies to obtain
2846 plant traits from airborne and spaceborne hyperspectral imagery (Camino *et al.*, 2021; Danner *et al.*,
2847 2021; De Grave *et al.* 2020; Poblete *et al.*, 2021). A set of RF regression models (Camino *et al.*, 2021;
2848 S. Wang *et al.*, 2021) was trained using a look-up table containing 100,000 simulations corresponding

2849 to Simulated Dataset-2 (Table-3-3) for each site. The simulated 5.8-nm FWHM reflectance spectra
 2850 were used as inputs to the RF-inversion models, with each plant trait as output. RF-inversion models
 2851 were also trained using 2-, 3-, 4-, 5-, and 6-nm SR data from Simulated Dataset-2_{site 1}. RF-inversion
 2852 models were trained in parallel (MATLAB parallel computing toolbox) with 10-fold cross-validation.
 2853 Hyperparameters were optimised using Bayesian optimisation (Mockus, 2012) in MATLAB during
 2854 training (MATLAB; Statistics and Machine Learning toolbox; MathWorks Inc., Natick, MA, USA).
 2855 Finally, the trained RF-inversion models were used to predict plant traits using narrow-band airborne
 2856 reflectance imagery (Fig. 3-1) at the plot level.

2857 **Table 3-2.** Range of SCOPE input parameters used in this study

Parameter	Range/Value		Unit	Description
	Site 1	Site 2		
C_{a+b}	10–70	40–80	$\mu\text{g}\cdot\text{cm}^{-2}$	Leaf chlorophyll concentration
C_{ca}	1–20	1–20	$\mu\text{g}\cdot\text{cm}^{-2}$	Leaf carotenoid concentration
C_{ant}	0–8	0–8	$\mu\text{g}\cdot\text{cm}^{-2}$	Anthocyanin content
C_{dm}	0.001– 0.05	0–0.001	$\text{g}\cdot\text{m}^{-2}$	Dry matter content
C_w	0.001– 0.05	0.001– 0.05	Cm	Leaf water equivalent layer
N	1–1.5	1–2.5	–	Leaf thickness parameters
V_{cmax}	30–110	40–250	$\mu\text{mol}\cdot\text{m}^{-1}\cdot\text{s}^{-1}$	Maximum carboxylation capacity at 25°C
LAI	0.5–5	2–6	$\text{m}^2\cdot\text{m}^{-2}$	Leaf area index
LIDF _a	–1–1	–1–1	–	Leaf inclination parameter for the mean leaf zenith angle
LIDF _b	0	0	–	Bimodality of the leaf angle distribution
R_{in}	700	900	$\text{W}\cdot\text{m}^{-2}$	Broadband incoming shortwave radiation
T _a *	19.2	25.3	°C	Air temperature
p*	1002.8	1003.6	hPa	Air pressure
tts	35.42	34.93	deg.	Solar zenith angle

2858 * Meteorological variables retrieved from portable weather station during the airborne campaign

2859 **3.2.3.3. SIF estimation at 1-nm FWHM using the support vector regression model**

2860 In Stage 2B (Fig. 3-2), a simulated SIF training dataset comprising SIF_{760-3FLD} values
 2861 corresponding to 1-, 2-, 3-, 4-, 5-, 6-, and 5.8-nm FWHM for Site 1 and SIF_{760-3FLD} values
 2862 corresponding to 1- and 5.8-nm FWHM for Site 2 was generated using TOC radiance and irradiance

2863 corresponding to Simulated Dataset-3_{site 1} and Simulated Dataset-3_{site 2}, respectively (Table 3-3).
 2864 SIF_{760-3FLD} for all SCOPE simulated data was computed following the same methodology as outlined
 2865 in section 2.2. We evaluated two sets of models for estimating 1-nm SR SIF₇₆₀ from the narrow-band
 2866 resolution spectra. The first model, referred to as the linear model, used the slope and intercept of the
 2867 linear relationship between convolved coarse-SR SIF_{760-3FLD} and 1-nm SR SIF_{760-3FLD} from the
 2868 simulated SIF training dataset. The second model used an SVR algorithm as detailed below.

2869 **Table 3-3. Description of the SCOPE simulations used in this study**

Stage	Dataset (Simulation count)	Data type	Objective
1	Simulated Dataset-1 (1,000)	Radiance and irradiance	Assessment of the impact of leaf biochemical and structural traits on SIF _{760-3FLD} relationships across two different SRs
2A	Simulated Dataset-2 (100,000)	Reflectance	Development of hybrid inversion models for plant traits estimation
2B	Simulated Dataset-3 (10,000)	Radiance, irradiance and reflectance	Development of SVR models to estimate SIF ₇₆₀ at 1-nm FWHM
Validation	Simulated Dataset-4 (50,000)	Radiance, irradiance and reflectance	Quantitative evaluation of different SIF ₇₆₀ estimation models

2870
 2871 First, for each of the six SRs corresponding to the Simulated Dataset-3_{site 1}, we selected inputs
 2872 for SVR models from a pool of eight potential predictor variables: seven SCOPE plant traits and the
 2873 corresponding narrow-band SIF_{760-3FLD}. Candidate plant traits included leaf water content (C_w), leaf
 2874 dry matter content (C_{dm}), the mesophyll structural parameter (N), C_{a+b}, LAI, LIDF_a, and Vcmax.
 2875 Potential predictors were screened using variable importance scores from an RF model fit to 1-nm
 2876 SR SIF₇₆₀ data using the 'oobPermutedPredictorImportance' function in MATLAB (Schneider *et al.*,
 2877 2020; Thomas *et al.*, 2021), which generates permutations of out-of-bag (OOB) observations from
 2878 regression trees and evaluates their impact on prediction. The four predictors with the highest scores
 2879 were selected as SVR model inputs. Several SVR models were then built with all possible
 2880 permutations of this subset of predictors, with the inclusion of narrow-band SIF_{760-3FLD} as a required
 2881 predictor variable for each model. Plant trait inputs required for SVR models were derived from the

2882 simulated reflectance corresponding to Simulated dataset-3 using the RF-inversion models built in
2883 Stage 2A. SVR models were trained in parallel using the MATLAB parallel computing toolbox with
2884 10-fold cross-validation, and the hyperparameters were optimised during training using Bayesian
2885 optimisation.

2886 For each site, an independent test dataset using 50,000 SCOPE simulations (Simulated
2887 Dataset-4) was used to evaluate the SIF_{760} estimation models (Table 3-3). This dataset was generated
2888 using the same input parameter ranges (Table 3-2) and methodology described in sections 2.3.1 and
2889 2.3.2. Plot-level 1-nm SR SIF_{760} estimated from regression models was compared to the SCOPE-
2890 simulated reference $SIF_{760\text{-}3FLD}$ using coefficient of determination (R^2), root mean square error
2891 (RMSE), and normalised root mean square error (nRMSE) as evaluation metrics. The nRMSE was
2892 computed as the ratio of RMSE and mean of reference $SIF_{760\text{-}3FLD}$. Regression model predictions were
2893 also generated for the airborne datasets at both study sites, using the estimated plant traits and $SIF_{760\text{-}3FLD}$
2894 quantified from 5.8-nm FWHM narrow-band imagery as inputs. The performance evaluation of
2895 the regression models for the airborne datasets was conducted using sub-nanometer-resolution
2896 airborne hyperspectral imagery acquired concurrently with narrow-band resolution imagery. The sub-
2897 nanometer resolution radiance spectra corresponding to the selected validation plots (as in Belwalkar
2898 *et al.*, 2022) were convolved to the default SCOPE spectral characteristics to compute 1-nm SR
2899 $SIF_{760\text{-}3FLD}$, which served as a reference to validate the estimated 1-nm SR SIF_{760} from the 5.8-nm
2900 FWHM resolution narrow-band hyperspectral imager. The computation of 1-nm SR $SIF_{760\text{-}3FLD}$ from
2901 the convolved sub-nanometer-resolution airborne spectra was carried out following the same
2902 procedure as outlined in Section 2.2 for quantifying $SIF_{760\text{-}3FLD}$ from the narrow-band hyperspectral
2903 imager.

2904 Airborne datasets corresponding to the other five narrow-band SRs were not available for the
2905 evaluation of best-performing regression models for SIF_{760} estimation at 1-nm FWHM resolution.
2906 Therefore, sub-nanometer resolution airborne radiance spectra and ground-based irradiance spectra

2907 for Site 1 were convolved to generate $SIF_{760-3FLD}$ at these SRs, with SSI following the Nyquist
2908 criterion. Because the sub-nanometer and narrow-band hyperspectral imagers were flown in tandem,
2909 the estimates of plant traits that were obtained from the narrow-band hyperspectral imager at Site 1
2910 were used as the other three inputs in the SVR model.

2911

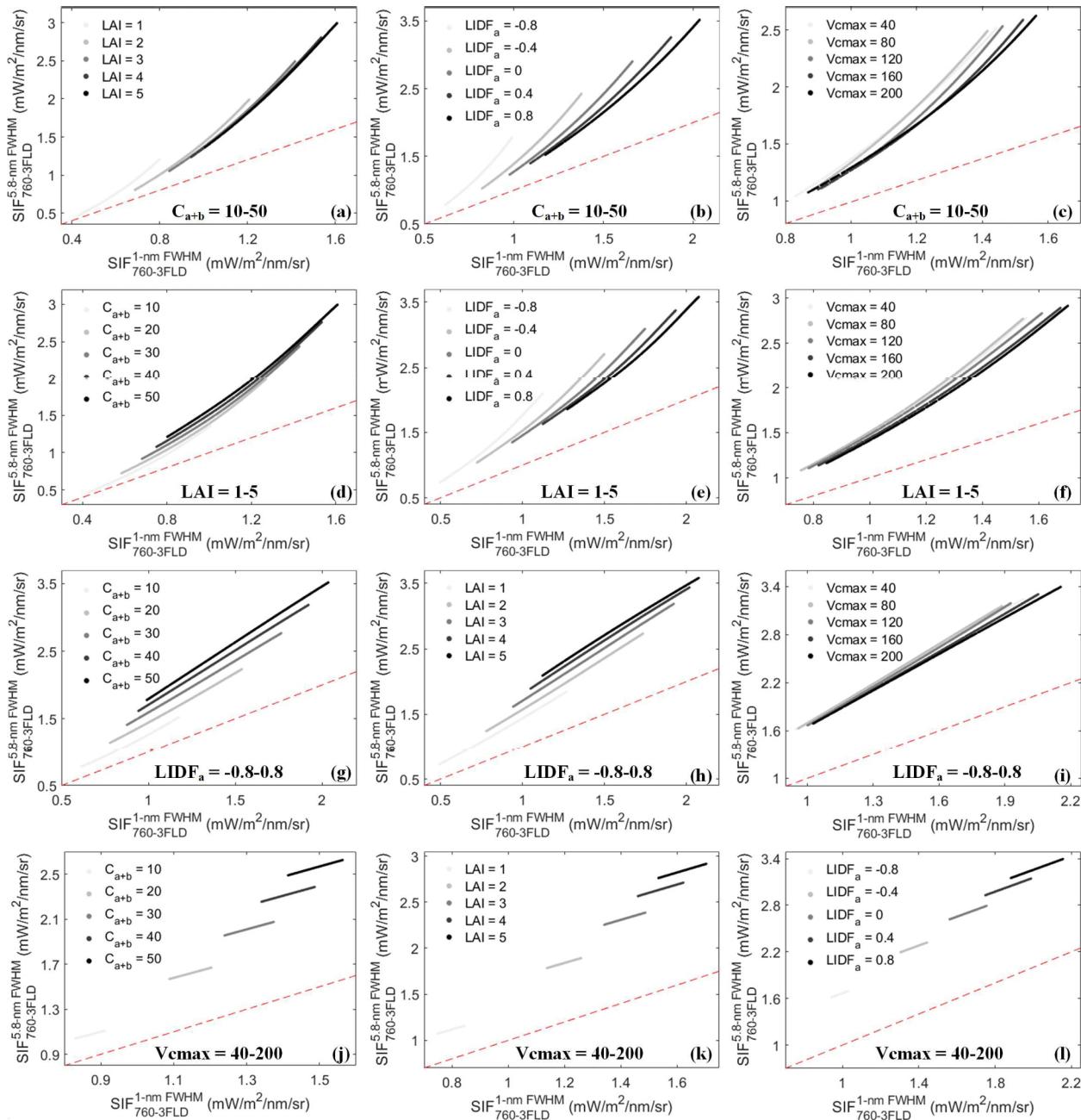
2912 **3.3 Results**

2913 The sensitivity of the relationship between SCOPE-derived $SIF_{760-3FLD}$ at different SRs to leaf
2914 biochemical and structural traits is presented in Fig. 3-3. Overall, $SIF_{760-3FLD}$ increased with
2915 increasing values of C_{a+b} , LAI, LIDF_a, and Vcmax for all scenarios; however, the relationship
2916 between SIF at 1- and 5.8-nm SRs varied widely across simulations. Narrow-band $SIF_{760-3FLD}$ tended
2917 to be overestimated as plant trait parameters increased, with a non-linear response to changing C_{a+b}
2918 (Fig. 3-3a-c) and LAI (Fig. 3-3d-f), but a linear response to varying LIDF_a (Fig. 3-3g-i) and Vcmax
2919 (Fig. 3-3j-l).

2920 Narrow-band $SIF_{760-3FLD}$, LIDF_a, C_{a+b} , and LAI were identified as the most important
2921 parameters for 1-nm SR SIF_{760} estimation, with a combined importance of close to 95% (Fig. 3-4).
2922 The ranges of values for the three most important plant traits (C_{a+b} , LAI, and LIDF_a) estimated via
2923 the SCOPE-based hybrid inversion approach are shown in Fig. 3-5. The substantial differences in
2924 estimated plant traits between the two study sites can be attributed to differences in crop type,
2925 irrigation regime, and weather. All three estimated plant traits were more variable at Site 1 than at
2926 Site 2, as expected, given the use of multiple cultivars and a wider range of nitrogen treatments. The
2927 resulting plot-scale spatial variability associated with the estimated C_{a+b} and LAI within the entire
2928 experimental field at Site 1 is depicted in Fig. 3-6.

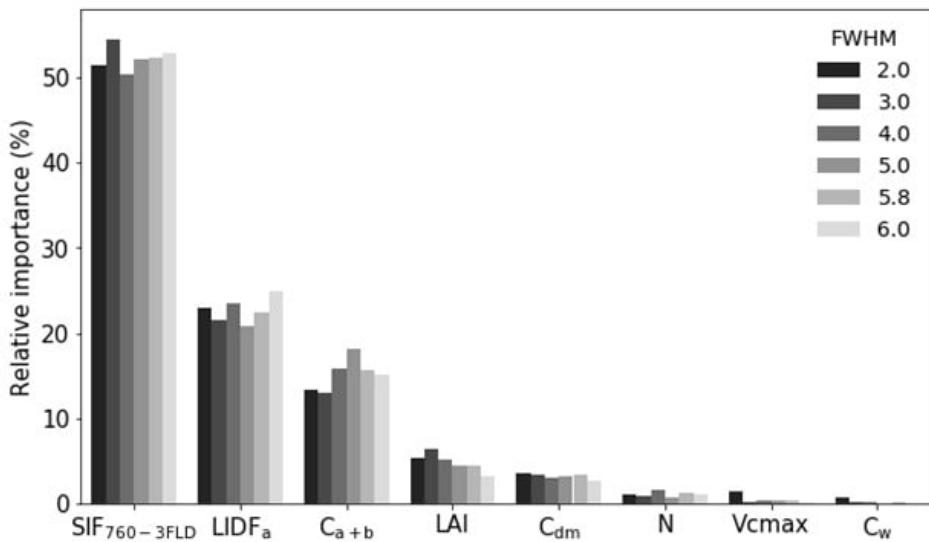
2929 Validation statistics for models estimating 1-nm SR SIF_{760} based on SCOPE-simulated data
2930 are shown in Table 3-4A. The SVR model using 5.8-nm SR $SIF_{760-3FLD}$ and all three plant traits as

2931 inputs performed the best at both Site 1 (nRMSE = 5.28%) and Site 2 (nRMSE = 2.45%). The subset
 2932 of SVR models that included LIDF_a as a predictor (Models 4, 6, 7, and 8 in Table 3-4A) performed
 2933 best at Site 1 (nRMSE < 7%), while the subset of SVR models that included LAI as a predictor
 2934 (Models 3, 5, 7, and 8 in Table 3-4A) performed best at Site 2 (nRMSE < 6%).

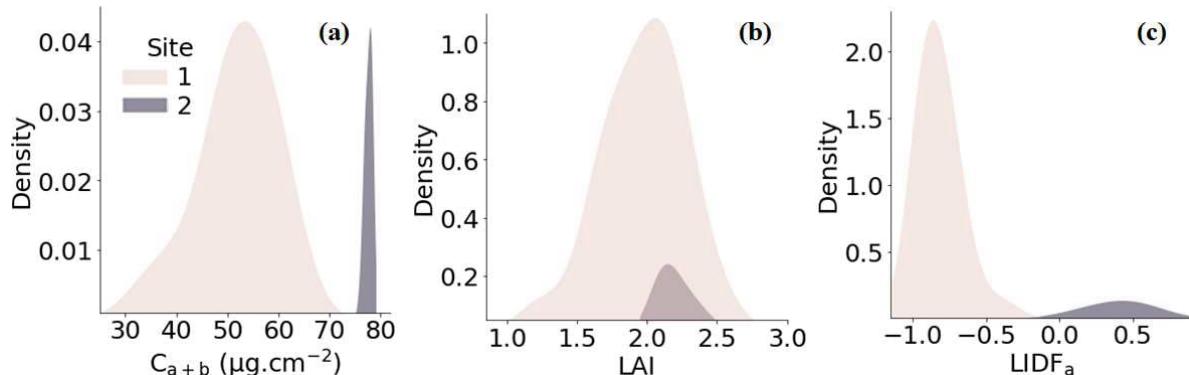


2935 **Fig. 3-3.** Effects of leaf biochemical and structural traits on the relationship between SCOPE-
 2936 simulated SIF_{760-3FLD} at two different spectral resolutions. Traits include C_{a+b} (a-c), LAI (d-f), LIDF_a
 2937 (g-i), and Vcmax (j-l). All other SCOPE input parameters were left at their default settings. The
 2938 dashed red line depicts the 1:1 line.

2939



2940 **Fig. 3-4.** Relative importance of the eight potential predictor variables at different SRs for estimating
 2941 SIF_{760} at 1-nm FWHM using Simulated Dataset-3_{site 1}. The relative importance score was obtained
 2942 using out-of-bag (OOB) error.

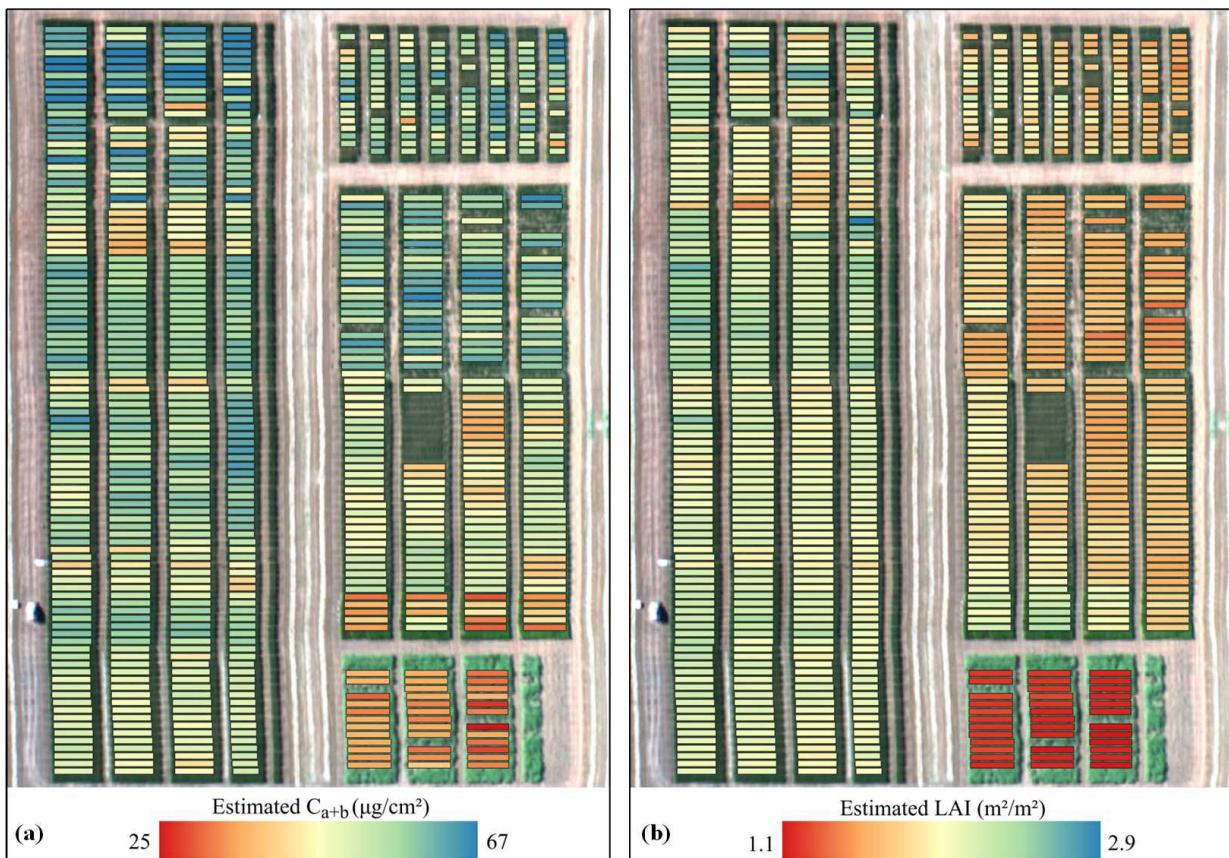


2943 **Fig. 3-5.** Ranges of variation for the leaf biochemical and structural traits estimated from the narrow-
 2944 band hyperspectral imagery at the two study sites: C_{a+b} (a), LAI (b), and $LIDF_a$ (c).

2945

2946 The performance of the linear and SVR models using airborne data corresponding to the
 2947 validation plots is presented in Table 3-4B. As observed with the simulated datasets, the set of SVR
 2948 models that included $LIDF_a$ at Site 1 and LAI at Site 2 performed better than models without these
 2949 predictors. At Site 1, the SVR model including all four predictors (Model 8 in Table 3-4B) did not
 2950 have the lowest nRMSE, unlike the results for the simulated datasets. However, the best-performing
 2951 SVR model at Site 1 (Model 6 in Table 3-4B) had an nRMSE within 0.5% of the full model.
 2952 Nevertheless, results for the full SVR model (Model 8 in Table 3-4) were relatively consistent for

2953 simulated and airborne data across study sites. Thus, Model 8 was deemed the best-performing SVR
2954 model and was used exclusively for the remainder of the analysis.



2955 **Fig. 3-6.** Maps of estimated C_{a+b} ($\mu\text{g}/\text{cm}^2$) (a) and LAI (m^2/m^2) (b) at plot scale depicting the within-
2956 field variability at Site 1.

2957
2958 Comparisons between estimated and reference 1-nm SR SIF₇₆₀ for the linear and the SVR
2959 models using SCOPE-simulated data are shown in Fig. 3-7. Both model estimates were significantly
2960 correlated with the reference values ($R^2 \geq 0.91$; $p < 0.001$; Fig. 3-7a and b), with most points located
2961 close to the 1:1 line. The SVR model performed better than the linear model, with an RMSE of less
2962 than 0.1 mW/m²/nm/sr (Fig. 3-7c and d). We further evaluated the performance of the SIF₇₆₀ scaling
2963 methodology using five other narrow-band SRs for Simulated Dataset-4 at Site 1. The estimates from
2964 both models were significantly correlated with reference values across narrow-band SRs ($R^2 \geq 0.94$;
2965 $p < 0.001$) (Fig. 3-8). RMSE values tended to increase as SR decreased for both linear (Fig. 3-8a-e)
2966 and SVR (Fig. 3-8f-j) models. The SVR model outperformed the linear model for all five narrow-

2967 band SRs, with RMSEs ranging from 0.037–0.136 mW/m²/nm/sr for the linear model and 0.027–
 2968 0.076 mW/m²/nm/sr for the SVR model.

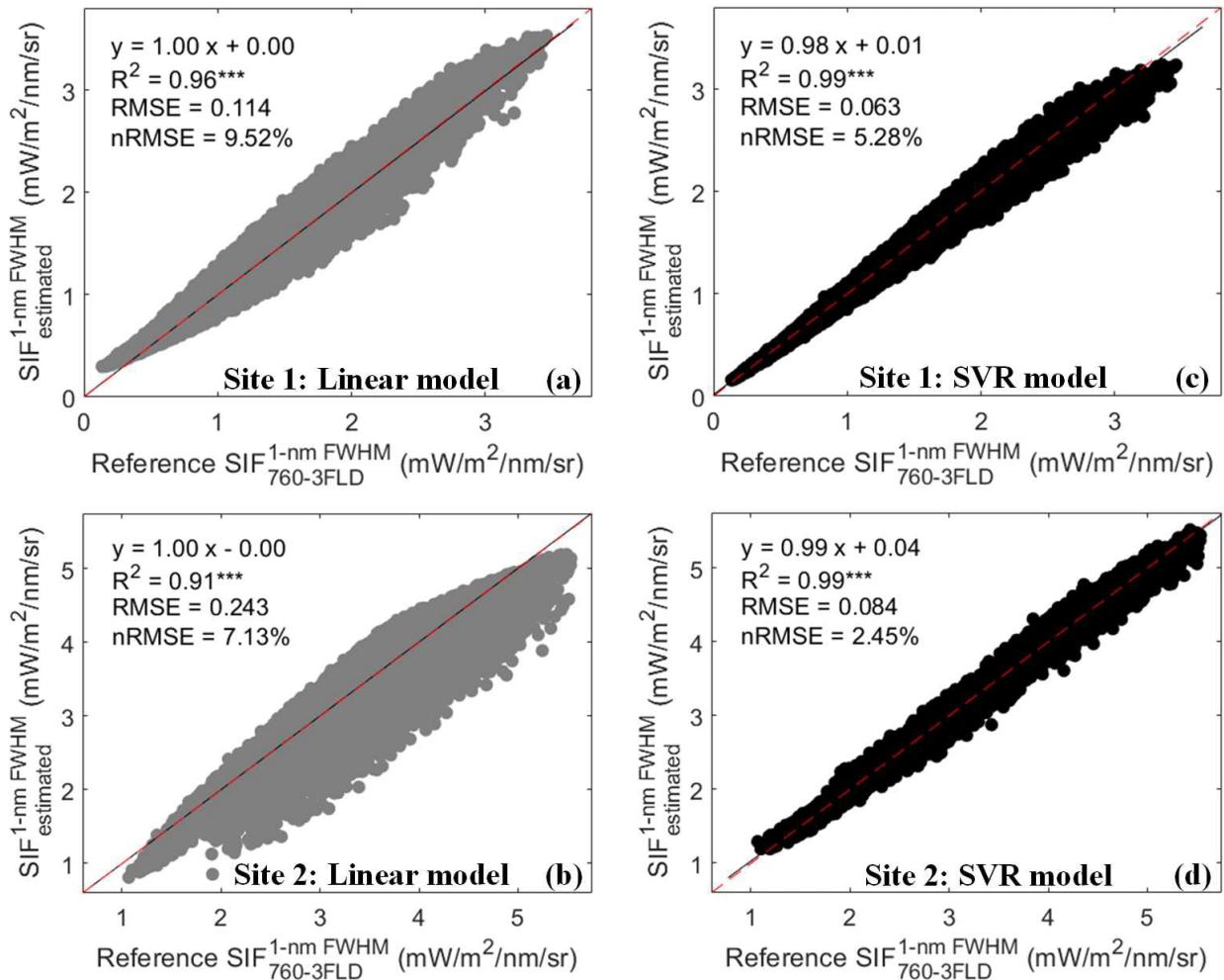
2969 **Table 3-4.** Performance of linear and SVR models built to estimate SIF₇₆₀ at 1-nm FWHM resolution
 2970 from the 5.8-nm FWHM resolution SCOPE-simulated and airborne datasets

Estimation model	Site 1		Site 2	
A: Simulated data	RMSE	nRMSE	RMSE	nRMSE
Linear Model: SIF _{1 nm} = f (SIF _{5.8 nm})	0.114	9.52%	0.243	7.13%
SVR Model 1: SIF _{1 nm} = f (SIF _{5.8 nm})	0.104	8.69%	0.229	6.72%
SVR Model 2: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b})	0.091	7.65%	0.216	6.33%
SVR Model 3: SIF _{1 nm} = f (SIF _{5.8 nm} , LAI)	0.100	8.40%	0.199	5.85%
SVR Model 4: SIF _{1 nm} = f (SIF _{5.8 nm} , LIDF _a)	0.076	6.39%	0.235	6.88%
SVR Model 5: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LAI)	0.085	7.09%	0.124	3.63%
SVR Model 6: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LIDF _a)	0.068	5.72%	0.212	6.22%
SVR Model 7: SIF _{1 nm} = f (SIF _{5.8 nm} , LAI, LIDF _a)	0.076	6.39%	0.178	5.22%
SVR Model 8: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LAI, LIDF _a)	0.063	5.28%	0.084	2.45%
B: Airborne data				
Linear Model: SIF _{1 nm} = f (SIF _{5.8 nm})	0.517	30.35%	0.308	11.76%
SVR Model 1: SIF _{1 nm} = f (SIF _{5.8 nm})	0.413	24.25%	0.168	6.42%
SVR Model 2: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b})	0.387	22.70%	0.149	5.69%
SVR Model 3: SIF _{1 nm} = f (SIF _{5.8 nm} , LAI)	0.435	25.53%	0.151	5.79%
SVR Model 4: SIF _{1 nm} = f (SIF _{5.8 nm} , LIDF _a)	0.270	15.86%	0.141	5.39%
SVR Model 5: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LAI)	0.426	24.96%	0.154	5.88%
SVR Model 6: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LIDF _a)	0.265	15.53%	0.145	5.56%
SVR Model 7: SIF _{1 nm} = f (SIF _{5.8 nm} , LAI, LIDF _a)	0.266	15.60%	0.123	4.70%
SVR Model 8: SIF _{1 nm} = f (SIF _{5.8 nm} , C _{a+b} , LAI, LIDF _a)	0.273	16.00%	0.118	4.50%

2971

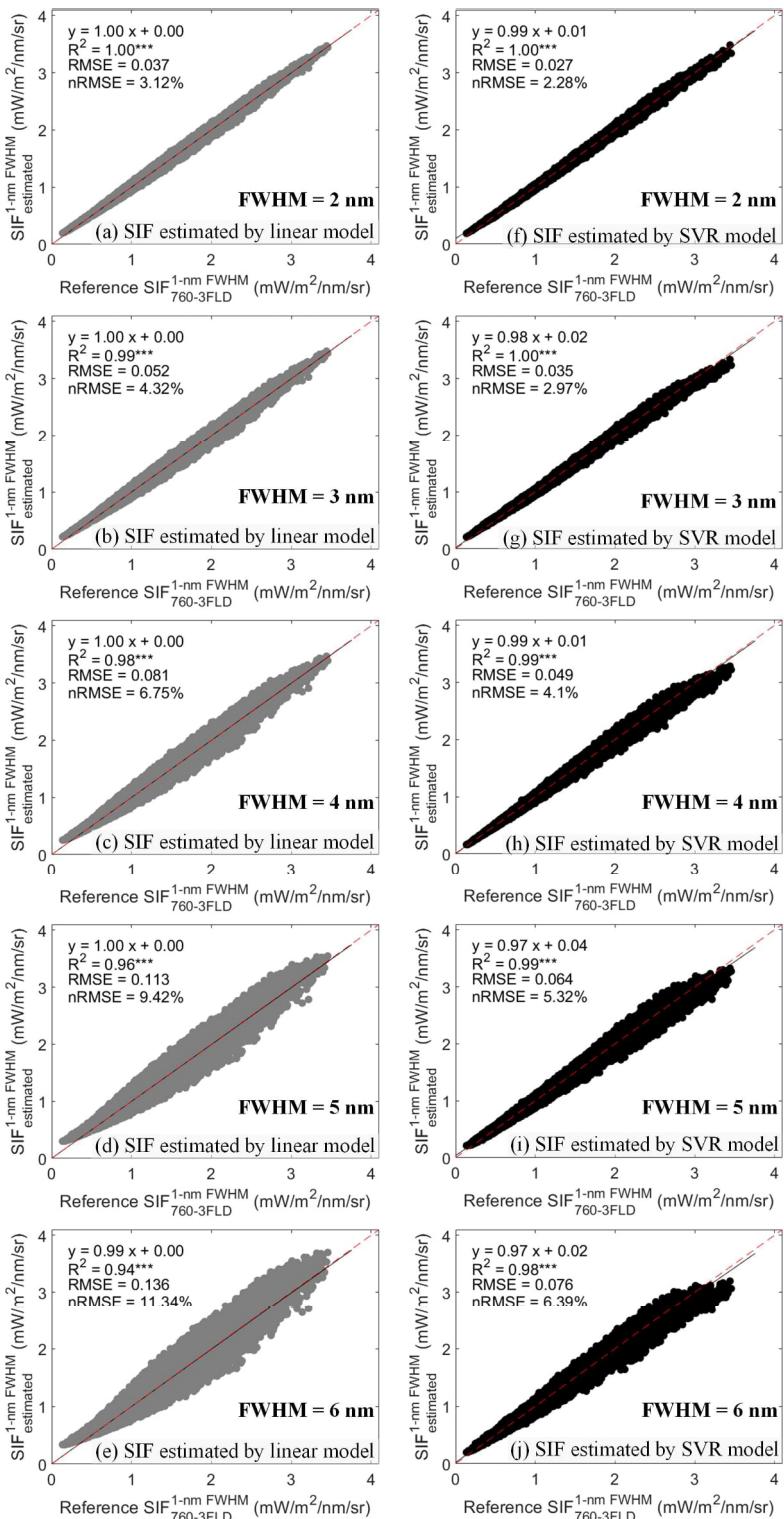
2972 The relationships between reference airborne 1-nm SR SIF_{760-3FLD} and SIF₇₆₀ estimated by the
 2973 linear and SVR models are shown in Fig. 3-9. SIF_{760-3FLD} estimates derived from the narrow-band
 2974 imager were overestimated compared to the 1-nm SR reference (RMSE = 2.23 mW/m²/nm/sr for Site
 2975 1 and RMSE = 2.117 mW/m²/nm/sr for site 2) due to the spectral characteristics of the narrow-band
 2976 imager. Nevertheless, narrow-band SIF_{760-3FLD} was significantly correlated with the high-SR
 2977 reference at both Site 1 ($R^2 = 0.93$, $p < 0.001$; Fig. 3-9a) and Site 2 ($R^2 = 0.95$, $p < 0.001$; Fig. 3-9b).
 2978 The RMSEs for narrow-band SIF₇₆₀ estimates scaled with both the linear and SVR models were less
 2979 than 0.6 mW/m²/nm/sr. The linear model overestimated 1-nm SR SIF₇₆₀ at Site 1 (nRMSE = 30.35%;

2980 Fig. 3-9c) and underestimated it at Site 2 (nRMSE = 11.76%; Fig. 3-9d). SIF₇₆₀ estimated using the
 2981 SVR model was more accurate at both sites (nRMSE = 16% for Site 1 and nRMSE = 4.5% for Site
 2982 2; Fig. 3-9e and f), with the majority of points near the 1:1 line. A plot-scale visualization of scaled
 2983 SVR estimates from the narrow-band hyperspectral imager for the entire field at Site 1 is shown in
 2984 Fig. 3-10.



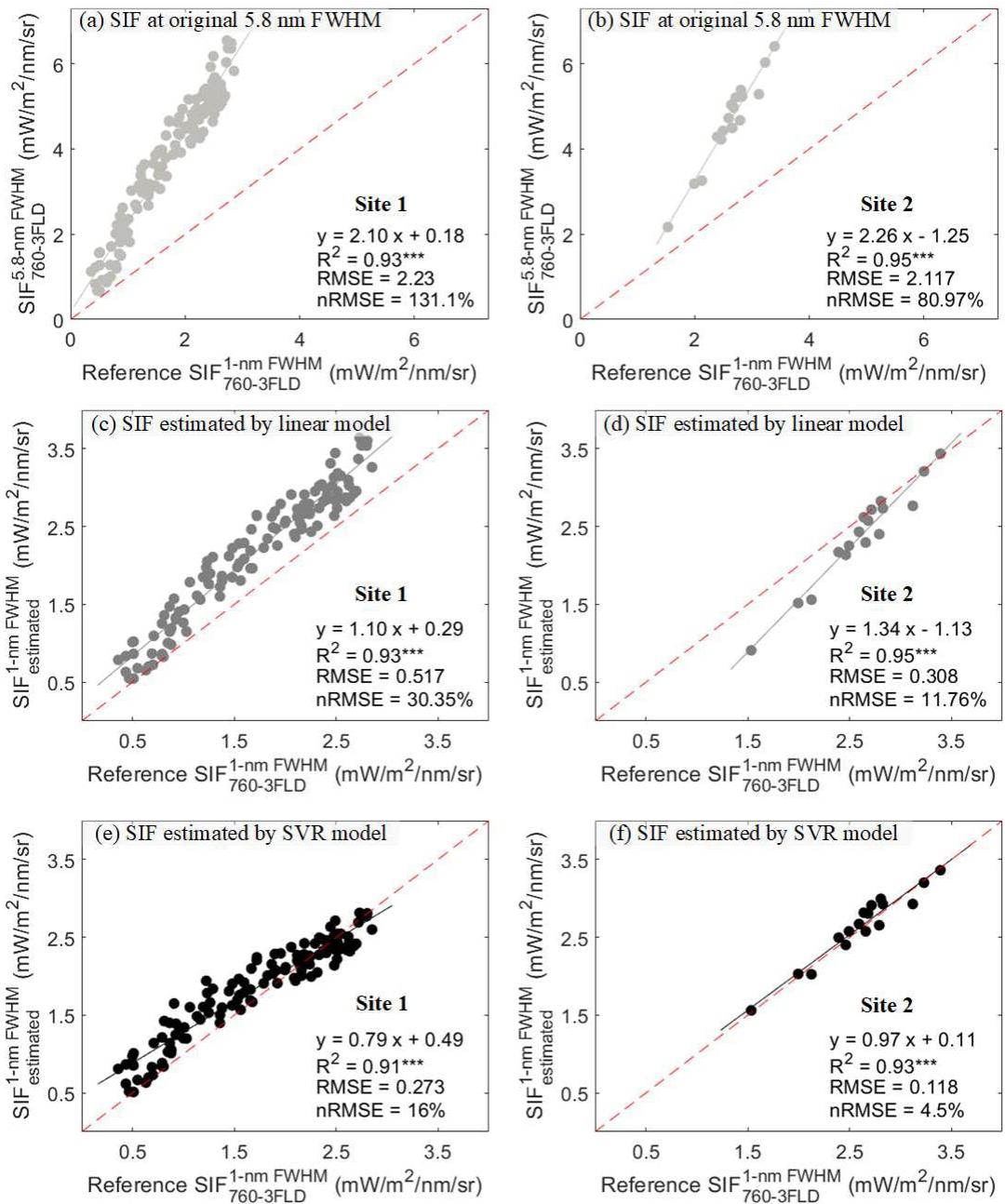
2985 **Fig. 3-7.** Relationships between the SIF_{760-3FLD} at the default 1-nm FWHM simulated by SCOPE
 2986 (used here as the reference SIF) and the SIF₇₆₀ estimated at 1-nm FWHM by the linear model (a, b)
 2987 and by the SVR model (c, d) from 5.8-nm FWHM spectra for SCOPE-simulated test datasets
 2988 corresponding to Site 1 and Site 2. The red dashed and black solid lines depict the 1:1 line and
 2989 regression line, respectively. *** p -value < 0.001.

2990



2991
2992
2993
2994
2995

Fig. 3-8. Relationships between SIF_{760-3FLD} at 1-nm FWHM simulated by SCOPE (used here as the reference SIF) and SIF₇₆₀ estimated by the linear model (a-e) and by the SVR model (f-j) from different SRs for SCOPE-simulated test datasets corresponding to Site 1. SSI was related to SR according to the Nyquist criterion (SR = SSI×2). The red dashed and black solid lines depict the 1:1 line and regression line, respectively. ***p-value < 0.001.

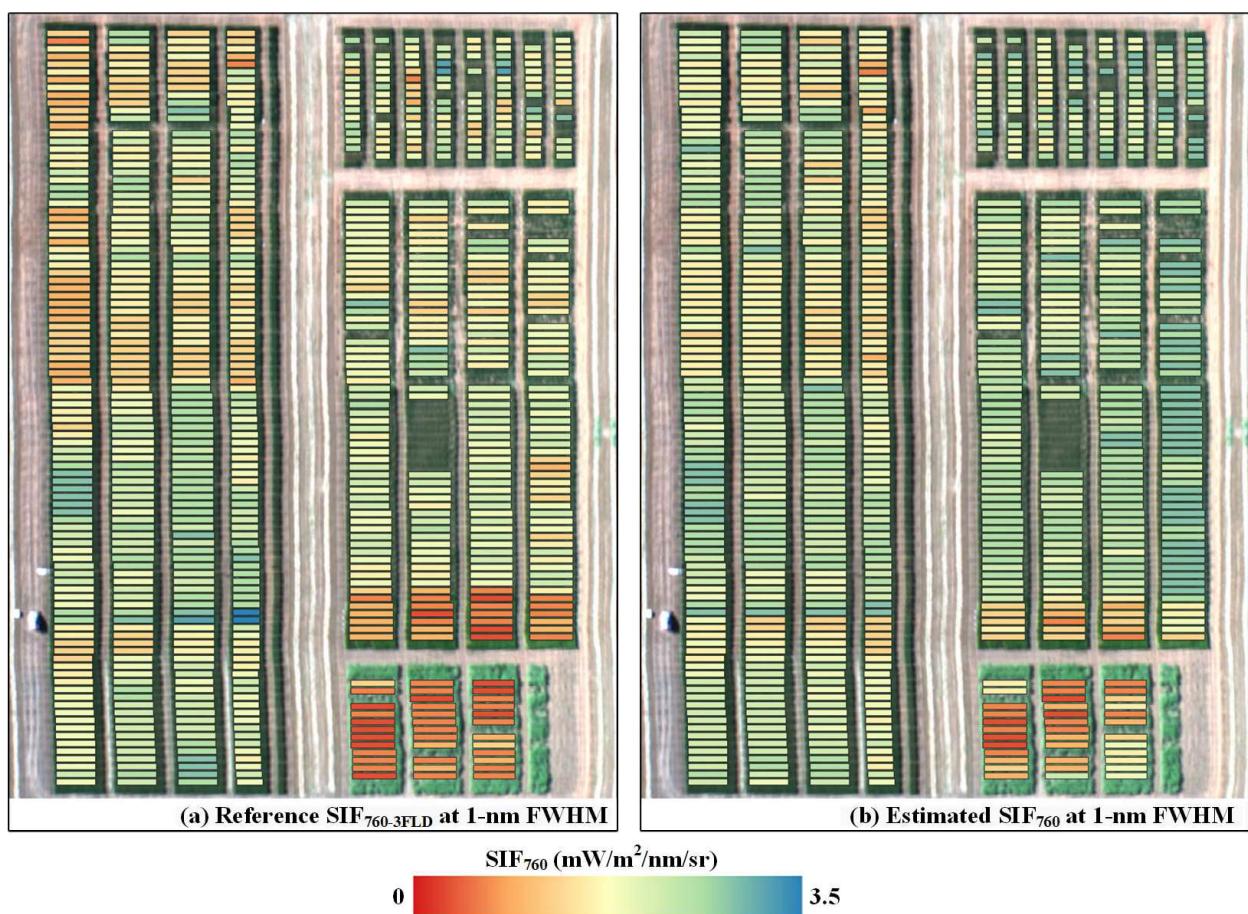


2996 **Fig. 3-9.** Relationships between the airborne SIF_{760-3FLD} quantified from the sub-nanometer imager
2997 (used here as the reference SIF) and narrow-band imager (5.8-nm FWHM) for validation plots
2998 corresponding to both sites (a,b). Relationships between the airborne SIF_{760-3FLD} quantified from the
2999 sub-nanometer imager and the airborne 1-nm SR SIF₇₆₀ estimated by the linear model (c,d) and SVR
3000 model (e,f) from the 5.8-nm SR narrow-band airborne spectra for both sites. The reference 1-nm SR
3001 SIF_{760-3FLD} was obtained by convolving the sub-nanometer resolution spectra to 1-nm FWHM. The
3002 red dashed and black solid lines depict the 1:1 line and regression line, respectively. *** p -value <
3003 0.001.

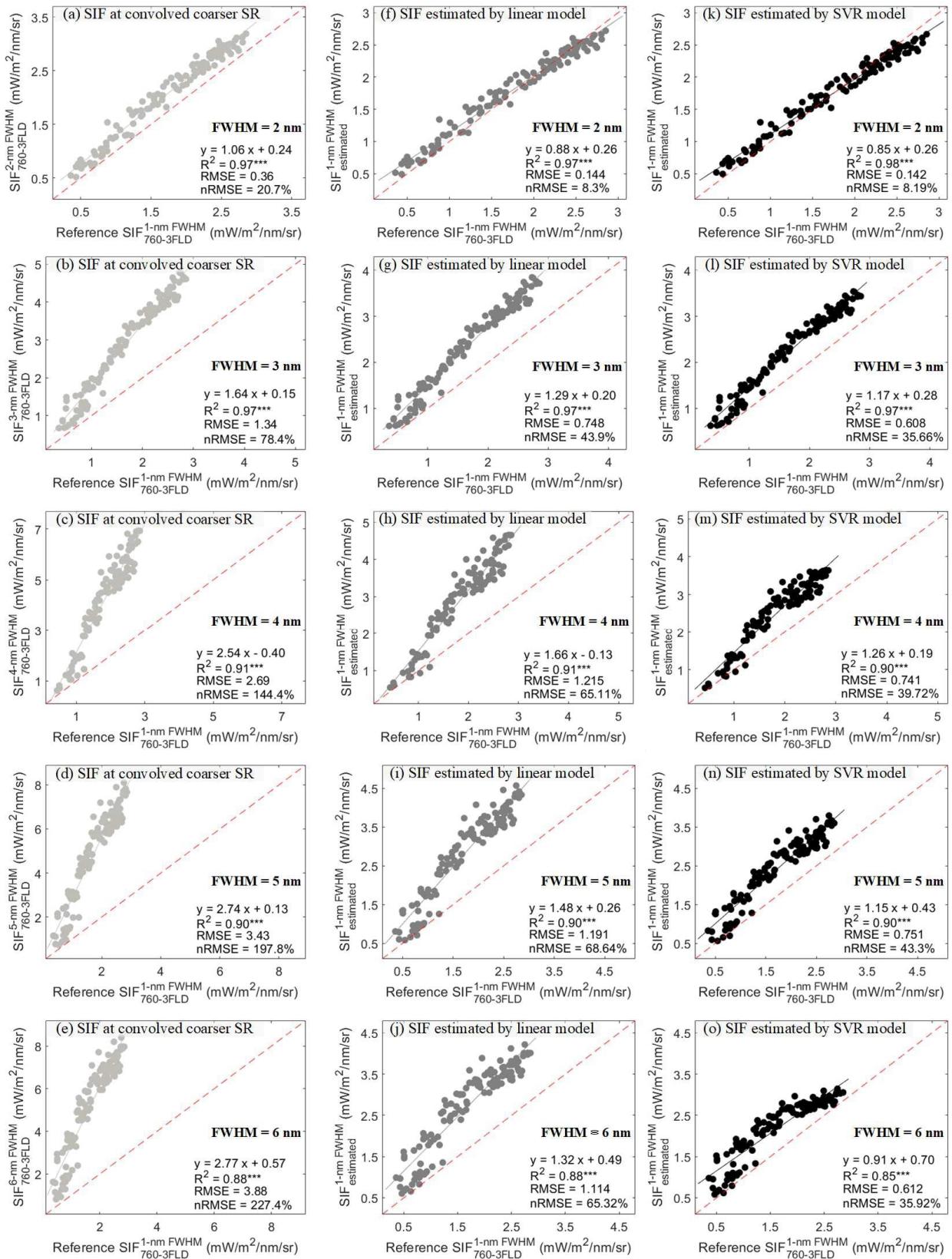
3004

3005 The relationships between the reference airborne 1-nm SR SIF_{760-3FLD} and SIF₇₆₀ estimated
3006 from multiple SRs are shown in Fig. 3-11. Significant correlations were found at all SRs ($R^2 = 0.88 -$
3007 0.97, $p < 0.001$). At coarser resolutions, SIF_{760-3FLD} estimates tended to be larger than reference values

3008 (RMSE = 0.36–3.88 mW/m²/nm/sr; Fig. 3-11a–e) and relationships to reference SIF_{760-3FLD} were less
 3009 linear. This non-linearity and higher absolute SIF_{760-3FLD} values at coarser SRs can be attributed to
 3010 sensor noise from the convolution of the 0.065-nm FWHM irradiance spectra from the ground-based
 3011 HR-2000 spectrometer and the \leq 0.2-nm FWHM radiance spectra from the sub-nanometer airborne
 3012 imager. The process of Gaussian convolution influences the absolute SIF_{760-3FLD} levels at narrow-
 3013 band resolution and produces higher SIF_{760-3FLD} levels in absolute units. Both linear (Fig. 3-11a–e)
 3014 and SVR models reduced this bias (reduction in slope). The SVR model (nRMSE = 8.19–43.30%;
 3015 Fig. 3-11k–o) outperformed the linear model (nRMSE = 8.30–68.64%; Fig. 3-11f–j) for all SRs.
 3016 However, the estimated SIF₇₆₀ from both models was higher than the reference SIF_{760-3FLD}, except for
 3017 2-nm SR, for which the points were close to the 1:1 line.



3018 **Fig. 3-10.** Plot-scale maps of reference SIF_{760-3FLD} from sub-nanometer imager (a) and estimated
 3019 SIF₇₆₀ from narrow-band imager (b) using the SVR model at 1-nm FWHM for Site 1. The reference
 3020 1-nm SR SIF_{760-3FLD} was obtained by convolving the sub-nanometer resolution spectra to 1-nm
 3021 FWHM.



3022
3023
3024
3025
3026
3027

Fig. 3-11. Relationships between the airborne SIF_{760-3FLD} quantified from the sub-nanometer imager by convolving to different SRs against SIF_{760-3FLD} convolved to 1-nm FWHM (used here as the reference SIF) for validation plots corresponding to Site 1 (a-e). Relationships between the reference SIF_{760-3FLD} and the airborne SIF₇₆₀ at 1-nm FWHM estimated by the linear model (f-j) and SVR model (k-o) from the sub-nanometer airborne spectra convolved to different SRs. The red dashed and black solid lines depict the 1:1 line and regression line, respectively. ***p-value < 0.001.

3028 **3.4 Discussion**

3029 In precision agriculture, plant phenotyping studies, and other high-throughput applications,
3030 the complexity and operational costs of sub-nanometer airborne imaging sensors make alternative
3031 sensors appealing, if SIF can be measured accurately. Previous theoretical work using the SCOPE
3032 model has evaluated the most critical parameters affecting SIF via global sensitivity analysis (Verrelst
3033 *et al.*, 2015). Our study builds on this theoretical work by considering how narrow-band sensors affect
3034 SIF retrieval and by validating theoretical estimates against high-resolution experimental field data.
3035 Extending recent work by Belwalkar *et al.* (2022), we evaluated a novel modelling methodology to
3036 accurately quantify SIF₇₆₀ at 1-nm FWHM from narrow-band-resolution imaging sensors using
3037 SCOPE RTM and support vector regression.

3038 Our results revealed that the SIF₇₆₀ quantified from broader SR hyperspectral imager (5.8-nm
3039 FWHM) aligned well ($R^2 = 0.91\text{--}0.93$; RMSE = 0.118–0.273 mW/m²/nm/sr) with SIF_{760-3FLD}
3040 quantified at 1-nm FWHM from the sub-nanometer airborne imager flown in tandem and used for
3041 validation across two plant phenotyping experimental sites showing nutrient stress variability. Our
3042 findings support the operational viability of using standard, commercially accessible, low-cost
3043 narrow-band hyperspectral imaging sensors to obtain accurate absolute SIF₇₆₀ levels in phenotyping
3044 trials of homogeneous and uniform canopies.

3045 In our approach, we found that site-specific parameters were required to generate SCOPE-
3046 simulated datasets that could characterise the correct structural and ambient conditions of the fields
3047 under study for the accurate estimation of SIF₇₆₀ (Table 3-4). This highlights the need for precise
3048 parametrization of SCOPE, or any other physically-based model, to generate site-specific training
3049 datasets reflecting the actual field conditions observed at a given study site. The global SCOPE-
3050 sensitivity study (Verrelst *et al.*, 2015) has identified a set of SCOPE model inputs related to leaf,
3051 canopy, soil, and micrometeorology as having outsized impact on SIF quantification. Future research
3052 could consider ways to account for all these inputs at scale to enable generalized applications for any

3053 location and set of ambient conditions. However, the development of such a training dataset is still in
3054 progress owing to the extensive effort and computational cost required in the parametrization of the
3055 SCOPE model to meet a wide range of field and ambient conditions.

3056 Interpreting SIF₇₆₀ from narrow-band sensors requires careful consideration of the scaling
3057 approach employed to account for sensor spectral specification. The combination of incoming
3058 photosynthetically active radiation (PAR) and SIF₇₆₀-based indices such as near-infrared reflectance
3059 of vegetation (NIRv) (Badgley *et al.*, 2017) and the Fluorescence Correction Vegetation Index (FCVI)
3060 (Yang *et al.*, 2020), denoted NIRvP and FCVIP, respectively, has recently been demonstrated to
3061 provide reliable structural proxies for photosynthesis and SIF (Dechant *et al.*, 2022). These indices
3062 could be used to scale SIF₇₆₀ through a less complex approach than that proposed in this paper. Using
3063 SCOPE-simulated datasets, we examined whether these indices could provide more accurate SIF₇₆₀
3064 estimates than the proposed approach. SIF₇₆₀ estimates obtained from the two indices were found to
3065 be inferior to those obtained using the proposed linear and SVR models, suggesting that SIF_{760-3FLD}
3066 calculated with 5.8-nm FWHM radiance is preferable to FCVIP and NIRvP as a predictor variable
3067 (detailed in Appendix B).

3068 The effect of sensor noise on the SIF₇₆₀ scaling methodology proposed in this study is
3069 important to consider in an operational context, as SIF is strongly influenced by sensor SNR. Because
3070 the SVR model was trained on noise-free simulated SCOPE spectra in this study, this method is not
3071 recommended for pixel-based analysis using sensors with low SNR levels. Instead, analyses should
3072 be limited to an object-based scale in which pixels are averaged across individual areas. Future
3073 research could characterise the effect of sensor noise on the simulated training dataset, thereby
3074 enabling the estimation of SIF₇₆₀ at the pixel scale and the generation of SIF₇₆₀ pixel-level maps from
3075 narrow-band imaging sensors with low SNR. In the current study, the SIF₇₆₀ scaling approach was
3076 designed and validated for phenotyping experiments involving nutrient variability as part of nitrogen
3077 application treatments, causing nutrient deficiency and stress. Future research will focus on

3078 evaluating the proposed scaling approach for canopies subjected to other abiotic stresses, such as
3079 under water limiting conditions, and under biotic-induced stress (see Zarco-Tejada *et al.* (2021) for
3080 the significance of SIF for separating biotic from abiotic stress). Such research will be critical for
3081 understanding the potential of narrow-band imaging sensors for estimating accurate SIF_{760} across a
3082 wide range of ecosystems.

3083 Although a recent version of the SCOPE model (version 2.0) accounts for the vertical
3084 heterogeneity of the canopy biophysical and biochemical properties, it retains the assumption of
3085 homogeneity in the horizontal direction (Yang *et al.*, 2021). Thus, our methods based on SCOPE
3086 parametrization are most applicable in experimental fields with homogeneous crop canopies. It will
3087 also be important to further investigate the scaling approach described in this study over complex and
3088 heterogeneous canopies, such as forests, and row-structured and grid-based crop canopies such as
3089 vineyards and tree orchards. Such efforts will require the extraction of crown spectra from pure
3090 vegetation pixels from very-high-spatial-resolution hyperspectral imagery to minimize the impact of
3091 the structural heterogeneity. Alternatively, three-dimensional canopy RTMs capable of directly
3092 simulating canopies with tree crowns, such as FluorFLIGHT (Hernández-Clemente *et al.*, 2017), the
3093 Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao *et al.*, 2016), and the Discrete
3094 Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry *et al.*, 2017), could be
3095 employed. Such studies would be relevant for future missions such as the FLoorescence EXplorer
3096 (FLEX) (Drusch *et al.*, 2017) when attempting to monitor the fluorescence emission in forests and
3097 heterogeneous crops.

3098 In summary, the need for an accurate estimation of SIF is critical from an operational
3099 perspective, and dedicated sub-nanometer hyperspectral imagers may not be readily available in many
3100 agronomic settings. Consequently, it is essential to consider the adoption of suitable airborne imaging
3101 sensors, as well as the development of methods based on physically-based models for correctly
3102 interpreting SIF from the selected sensor, particularly in cases where sensors have coarser spectral

3103 resolutions (greater than 1-nm FWHM). The selection of appropriate physically-based models based
3104 on the type of ecosystem under consideration, especially for complex heterogeneous canopies, and
3105 the proper modelling approach are additional factors to consider. Accounting for the aforementioned
3106 considerations will facilitate the use of accurately quantified SIF from imaging sensors onboard
3107 piloted and unmanned airborne platforms for the advancement of research on photosynthesis,
3108 physiological assessment and pre-visual stress detection.

3109

3110 **3.5 Conclusions**

- 3111 1. The overestimated SIF_{760} levels obtained from narrow-band resolution imaging sensors can
3112 be scaled to the appropriate absolute SIF_{760} levels quantified from sub-nanometer
3113 (FWHM \leq 1nm) resolution imagers. A modelling framework integrating SCOPE RTM and a
3114 machine learning method was proposed and validated.
- 3115 2. Following extensive testing with SCOPE simulations covering a wide range of spectral
3116 characteristics, it was determined that the best results could be achieved with an SVR model
3117 employing $SIF_{760\text{-}3FLD}$ at narrow-band resolution and the SCOPE-derived leaf biochemical
3118 and structural traits (C_{a+b} , LAI, and $LIDF_a$) as predictor variables.
- 3119 3. The robustness of the proposed approach was demonstrated by the high degree of agreement
3120 between the estimated SIF_{760} at 1-nm FWHM and the reference $SIF_{760\text{-}3FLD}$ quantified from
3121 the airborne sub-nanometer resolution imager at two experimental sites with different crop
3122 types, irrigation regimes, and weather conditions.
- 3123 4. The findings of this study pave the way for the widespread adoption of hyperspectral imagers
3124 with FWHM $>$ 1 nm for operational applications of SIF requiring retrievals of chlorophyll
3125 fluorescence emission in absolute physical units.

3126

3127

3128 **Acknowledgements**

3129 This research was supported by The University of Melbourne's Research Computing Services and
3130 the Petascale Campus Initiative. The authors gratefully acknowledge the Foundation for Arable
3131 Research Australia, in particular Michael Straight and Ben Morris; the Grains Research and
3132 Development Corporation Australia; and Riverine Plains Incorporated for their provision and
3133 management of the field trials. A. Longmire, A. Gracia-Romero and Y. Wang are acknowledged for
3134 their technical support during the field and airborne campaigns.

3135

3136 **References**

3137 Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P.J., 2018. Quantitative Remote Sensing at
3138 Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement
3139 Procedures, and Data Correction Workflows. *Remote Sens.* 10, 1091.

3140 Acebron, K., Matsubara, S., Jedmowski, C., Emin, D., Muller, O., Rascher, U., 2021. Diurnal
3141 dynamics of nonphotochemical quenching in *Arabidopsis* npq mutants assessed by solar-induced
3142 fluorescence and reflectance measurements in the field. *New Phytol.* 229, 2104–2119.

3143 Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial
3144 photosynthesis. *Sci. Adv.* 3, e1602244.

3145 Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.,
3146 2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral
3147 imagers flown in tandem: modelling and validation in the context of plant phenotyping. *Remote
3148 Sens. Environ.* 273, 112986.

3149 Bendig, J., Malenovský, Z., Gautam, D., Lucieer, A., 2020. Solar-induced chlorophyll fluorescence
3150 measured from an unmanned aircraft system: sensor Etaloning and platform motion correction.
3151 *IEEE Trans. Geosci. Remote Sens.* 58, 3437–3444.

3152 Braghieri, R.K., Wang, Y., Doughty, R., Sousa, D., Magney, T., Widlowski, J.L., Longo, M., Bloom,
3153 A.A., Worden, J., Gentine, P., Frankenberg, C., 2021. Accounting for canopy structure improves
3154 hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a
3155 new generation earth system model. *Remote Sens. Environ.* 261, 11249.

3156 Brown, S.W., Eppeldauer, G.P., Lykke, K.R., 2006. Facility for spectral irradiance and radiance
3157 responsivity calibrations using uniform sources. *Appl. Opt.* 45, 8218–8237.

3158 Campbell, P.K.E., Middleton, E.M., Corp, L.A., Kim, M.S., 2008. Contribution of chlorophyll
3159 fluorescence to the apparent vegetation reflectance. *Sci. Total Environ.* 404, 433–439.

3160

3167 Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution airborne
3168 hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using
3169 fluorescence, temperature and narrow-band spectral indices. *Remote Sens. Environ.* 139, 231–
3170 245.

3171 Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J., 2015. Early detection and quantification of
3172 Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. *Remote*
3173 *Sens.* 7, 5584–5610.

3175 Camino, C., Zarco-Tejada, P.J., Gonzalez-Dugo, V., 2018a. Effects of heterogeneity within tree
3176 crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of
3177 precision agriculture. *Remote Sens.* 10, 604.

3179 Camino, C., González-Dugo, V., Hernandez, P., Sillero, J.C., Zarco-Tejada, P.J., 2018b. Improved
3180 nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-
3181 SWIR hyperspectral imagery in the context of precision agriculture. *Int. J. Appl. Earth Obs.*
3182 *Geoinf.* 70, 105–117.

3184 Camino, C., Gonzalez-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., 2019. Radiative transfer Vcmax
3185 estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance
3186 in rainfed and irrigated plant phenotyping trials. *Remote Sens. Environ.* 231, 111186.

3188 Camino, C., Calderón, R., Parnell, S., Dierkes, H., Chemin, Y., Román-Écija, M., Montes-Borrego,
3189 M., Landa, B.B., Navas-Cortes, J.A., Zarco-Tejada, P.J., Beck, P.S.A., 2021. Detection of
3190 *Xylella fastidiosa* in almond orchards by synergic use of an epidemic spread model and remotely
3191 sensed plant traits. *Remote Sens. Environ.* 260, 112420.

3193 Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L.,
3194 Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H.,
3195 Pacheco-Labrador, J., Mac Arthur, A., 2019. Sun-induced chlorophyll fluorescence III:
3196 benchmarking retrieval methods and sensor characteristics for proximal sensing. *Remote Sens.*
3197 11, 962.

3199 Celesti, M., van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F.,
3200 Colombo, R., Rossini, M., 2018. Exploring the physiological information of Sun-induced
3201 chlorophyll fluorescence through radiative transfer model inversion. *Remote Sens. Environ.* 215,
3202 97–108.

3204 Chang, C.Y., Zhou, R., Kira, O., Marri, S., Skovira, J., Gu, L., Sun, Y., 2020. An Unmanned Aerial
3205 System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and
3206 hyperspectral reflectance toward improving crop monitoring. *Agric. For. Meteorol.* 294, 108145.

3208 Cogliati, S., Rossini, M., Julitta, T., Meroni, M., Schickling, A., Burkart, A., Pinto, F., Rascher, U.,
3209 Colombo, R., 2015. Continuous and long-term measurements of reflectance and sun-induced
3210 chlorophyll fluorescence by using novel automated field spectroscopy systems. *Remote Sens.*
3211 *Environ.* 164, 270–281.

3213 Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T., 2021. Efficient RTM-based training of
3214 machine learning regression algorithms to quantify biophysical & biochemical traits of
3215 agricultural crops. *ISPRS J. Photogramm. Remote Sens.* 173, 278–296.

3217

3218 Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M.E., Verhoef, W., Rascher, U., 2011.
3219 Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-
3220 induced chlorophyll fluorescence. *Remote Sens. Environ.* 115, 1882–1892.

3221

3222 Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W.,
3223 Ammann, C., Schaepman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows
3224 ecosystem-specific relationships to gross primary production: An assessment based on
3225 observational and modeling approaches. *Remote Sens. Environ.* 166, 91–105.

3226

3227 Damm, A., Haghghi, E., Paul-Limoges, E., van der Tol, C., 2021. On the seasonal relation of sun-
3228 induced chlorophyll fluorescence and transpiration in a temperate mixed forest. *Agric. For.
3229 Meteorol.* 304–305, 108386.

3230

3231 Damm, A., Cogliati, S., Colombo, R., Fritsche, L., Genangeli, A., Genesio, L., Hanus, J., Peressotti,
3232 A., Rademske, P., Rascher, U., Schuettemeyer, D., Siegmann, B., Sturm, J., Miglietta, F., 2022.
3233 Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface
3234 temperature and vegetation indices to evolving soil water limitation in a crop canopy. *Remote
3235 Sens. Environ.* 273, 112957.

3236

3237 Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q.,
3238 Kang, M., Li, J., Moya, I., 2020. Canopy structure explains the relationship between
3239 photosynthesis and sun-induced chlorophyll fluorescence in crops. *Remote Sens. Environ.* 241,
3240 111733.

3241

3242 Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., Tagliabue,
3243 G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y., Frankenberg, C., Berry, J.A., 2022. NIRvP: A
3244 robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across
3245 scales. *Remote Sens. Environ.* 268, 112763.

3246

3247 De Grave, C., Verrelst, J., Morcillo-Pallarés, P., Pipia, L., Rivera-Caicedo, J.P., Amin, E., Belda, S.,
3248 Moreno, J., 2020. Quantifying vegetation biophysical variables from the Sentinel-3/FLEX
3249 tandem mission: evaluation of the synergy of OLCI and FLORIS data sources. *Remote Sens.
3250 Environ.* 251, 112101.

3251

3252 Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., Moya, I., 2012. Effect of canopy
3253 structure on sun-induced chlorophyll fluorescence. *ISPRS J. Photogramm. Remote Sens.* 68,
3254 112–120.

3255

3256 Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., McDuffie, J.,
3257 Drewry, D.T., Pavlick, R., Kuhnert, A., 2018. The chlorophyll fluorescence imaging
3258 spectrometer (CFIS), mapping far red fluorescence from aircraft. *Remote Sens. Environ.* 217,
3259 523–536.

3260

3261 Fu, P., Meacham-Hensold, K., Siebers, M. H., & Bernacchi, C. J., 2021. The inverse relationship
3262 between solar-induced fluorescence yield and photosynthetic capacity: benefits for field
3263 phenotyping. *J. Experim. Bot.*, 72, 1295–1306.

3264

3265 Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., Al Bitar, A.,
3266 Aval, J., Benhmida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton, D.,
3267 Chrysoulakis, N., Mitraka, Z., 2017. DART: recent advances in remote sensing data modeling

3268 with atmosphere, polarization, and chlorophyll fluorescence. *IEEE J. Sel. Top. Appl. Earth Obs.*
3269 *Remote Sens.* 10, 2640–2649.

3270

3271 Gonzalez-Dugo, V., Hernandez, P., Solis, I., Zarco-Tejada, P.J., 2015. Using high-resolution
3272 hyperspectral and thermal airborne imagery to assess physiological condition in the context of
3273 wheat phenotyping. *Remote Sens.* 7, 13586–13605.

3274

3275 Grossmann, K., Frankenberg, C., Magney, T.S., Hurlock, S.C., Seibt, U., Stutz, J., 2018. PhotoSpec:
3276 a new instrument to measure spatially distributed red and far-red solar-induced chlorophyll
3277 fluorescence. *Remote Sens. Environ.* 216, 311–327.

3278

3279 Gueymard, C.A., 2001. Parameterized transmittance model for direct beam and circumsolar spectral
3280 irradiance. *Sol. Energy* 71, 325–346.

3281

3282 Hao, D., Zeng, Y., Qiu, H., Biriukova, K., Celesti, M., Migliavacca, M., Rossini, M., Asrar, G.R.,
3283 Chen, M., 2021. Practical approaches for normalizing directional solar-induced fluorescence to
3284 a standard viewing geometry. *Remote Sens. Environ.* 255, 112171.

3285

3286 Hao, D., Zeng, Y., Zhang, Z., Zhang, Y., Qiu, H., Biriukova, K., Celesti, M., Rossini, M., Zhu, P.,
3287 Asrar, G.R., Chen, M., 2022. Adjusting solar-induced fluorescence to nadir-viewing provides a
3288 better proxy for GPP. *ISPRS J. Photogramm. Remote Sens.* 186, 157–169.

3289

3290 Headwall Photonics, 2021. Headwall Solar-Induced-Fluorescence-Imaging-Sensor. URL:
3291 <https://headwallphotonics.sharefile.com/share/view/sf435916f5c104db8b062a06e58786bef>
3292 [Online; accessed 25. Oct. 2022].

3293

3294 Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J., 2017. Assessing the effects
3295 of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative
3296 transfer model to account for forest structure. *Remote Sens. Environ.* 193, 165–179.

3297

3298 Hornero, A., Zarco-Tejada, P.J., Quero, J.L., North, P.R.J., Ruiz-Gómez, F.J., Sánchez-Cuesta, R.,
3299 Hernández-Clemente, R., 2021. Modelling hyperspectral- and thermal-based plant traits for the
3300 early detection of Phytophthora-induced symptoms in oak decline. *Remote Sens. Environ.* 263,
3301 112570.

3302

3303 Jia, J., Wang, Y., Chen, J., Guo, R., Shu, R., Wang, J., 2020. Status and application of advanced
3304 airborne hyperspectral imaging technology: A review. *Infrared Phys. Technol.* 104, 103115.

3305

3306 Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Arthur, A. Mac,
3307 Middleton, E.M., Rascher, U., Schickling, A., Colombo, R., 2016. Comparison of sun-induced
3308 chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. *Remote*
3309 *Sens.* 8, 122.

3310

3311 Kattenborn, T., Fassnacht, F.E., Pierce, S., Lopatin, J., Grim, J.P., Schmidlein, S., 2017. Linking
3312 plant strategies and plant traits derived by radiative transfer modelling. *J. Veg. Sci.* 28, 717–727.

3313

3314 Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H.S., Kornfeld, A., Berry, J.A., 2021. Solar- induced
3315 chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate
3316 evergreen needleleaf forest during the fall transition. *Remote Sens. Environ.* 258, 112362.

3317

3318 Köhler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J., 2018. Global
3319 retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor
3320 comparison to OCO-2. *Geophys. Res. Lett.* 45, 10, 456–10, 463.

3321

3322 Li, Z., Zhang, Q., Li, J., Yang, X., Wu, Y., Zhang, Z., Wang, S., Wang, H., Zhang, Y., 2020. Solar-
3323 induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous
3324 ground measurements. *Remote Sens. Environ.* 236, 111420.

3325

3326 Lichtenthaler, H. K., Rinderle, U., 1988. The role of chlorophyll fluorescence in the detection of stress
3327 conditions in plants. *Crit. Rev. Anal. Chem.* 19 (Suppl. 1), S29–S85.

3328

3329 Liu, L., Liu, X., Hu, J., 2015. Effects of spectral resolution and SNR on the vegetation solar-induced
3330 fluorescence retrieval using FLD-based methods at canopy level. *Eur. J. Remote Sens.* 48, 743–
3331 762.

3332

3333 Liu, X., Guanter, L., Liu, L., Damm, A., Malenovský, Z., Rascher, U., Peng, D., Du, S., Gastellu-
3334 Etchegorry, J.-P., 2019. Downscaling of solar-induced chlorophyll fluorescence from canopy
3335 level to photosystem level using a random forest model. *Remote Sens. Environ.* 231, 110772.

3336

3337 Longmire, A.R., Poblete, T., Hunt, J.R., Chen, D., Zarco-Tejada, P.J., 2022. Assessment of crop traits
3338 retrieved from airborne hyperspectral and thermal remote sensing imagery to predict wheat grain
3339 protein content. *ISPRS J. Photogramm. Remote Sens.* 193, 284–298.

3340

3341 Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J., 2020. Recent advances of hyperspectral imaging
3342 technology and applications in agriculture. *Remote Sens.* 12, 2659.

3343

3344 Maimaitiyiming, M., Sagan, V., Sidike, P., Maimaitijiang, M., Miller, A.J., Kwasniewski, M., 2020.
3345 Leveraging very-high spatial resolution hyperspectral and thermal UAV imageries for
3346 characterizing diurnal indicators of grapevine physiology. *Remote Sens.* 12, 3216.

3347

3348 Malenovský, Z., Mishra, K.B., Zemek, F., Rascher, U., Nedbal, L., 2009. Scientific and technical
3349 challenges in remote sensing of plant canopy reflectance and fluorescence. *J. Exp. Bot.* 60, 2987–
3350 3004.

3351

3352 Malenovský, Z., Regaieg, O., Yin, T., Lauret, N., Guilleux, J., Chavanon, E., Duran, N., Janoutová,
3353 R., Delavois, A., Meynier, J., Medjdoub, G., Yang, P., van der Tol, C., Morton, D., Cook, B.D.,
3354 Gastellu-Etchegorry, J.P., 2021. Discrete anisotropic radiative transfer modelling of solar-
3355 induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation
3356 canopies. *Remote Sens. Environ.* 263, 112564.

3357

3358 Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009.
3359 Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications.
3360 *Remote Sens. Environ.* 113, 2037–2051.

3361

3362 Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T.S., Moreno, G., Van der Tol, C.,
3363 Rascher, U., Berninger, A., Bessenbacher, V., Burkart, A., Carrara, A., Fava, F., Guan, J.-H.,
3364 Hammer, T.W., Henkel, K., Juarez-Alcalde, E., Julitta, T., Kolle, O., Martín, M.P., Musavi, T.,
3365 Pacheco-Labrador, J., Pérez-Burgueño, A., Wutzler, T., Zaehle, S., Reichstein, M., 2017. Plant
3366 functional traits and canopy structure control the relationship between photosynthetic CO₂
3367 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different
3368 nutrient availability. *New Phytol.* 214, 1078–1091.

3369 Mockus, J., 2012. Bayesian Approach to Global Optimization: Theory and Applications, vol. 37.
3370 Springer Science & Business.

3371

3372 Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., Van der Tol, C., Nedbal, L., Goulas,
3373 Y., P'erez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský,
3374 Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A.,
3375 Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll
3376 fluorescence (SIF) in vegetation: 50 years of progress. *Remote Sens. Environ.* 231, 111177.

3377

3378 Ni, Z., Liu, Z., Li, Z.L., Nerry, F., Huo, H., Sun, R., Yang, P., Zhang, W., 2016. Investigation of
3379 atmospheric effects on retrieval of sun-induced fluorescence using hyperspectral imagery.
3380 *Sensors* 16, 480.

3381

3382 Nichol, C.J., Drolet, G., Porcar-Castell, A., Wade, T., Sabater, N., Middleton, E.M., Maclellan, C.,
3383 Levula, J., Mammarella, I., Vesala, T., Atherton, J., 2019. Diurnal and Seasonal Solar Induced
3384 Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy. *Remote Sens.* 11,
3385 273.

3386

3387 Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T.S., Julitta, T., Rossini, M., Guan, J., Moreno,
3388 G., Carvalhais, N., Martín, M.P., Gonzalez-Cascon, R., Kolle, O., Reischtein, M., van der Tol,
3389 C., Carrara, A., Martini, D., Hammer, T.W., Mooszen, H., Migliavacca, M., 2019. Multiple-
3390 constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant
3391 functional traits. *Remote Sens. Environ.* 234, 111362.

3392

3393 Panigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati,
3394 S., Picchi, V., Pinto, F., Marchesi, A., Colombo, R., 2014. Fluorescence, PRI and canopy
3395 temperature for water stress detection in cereal crops. *Int. J. Appl. Earth Obs. Geoinf.* 30, 167–
3396 178.

3397

3398 Paynter, I., Cook, B., Corp, L., Nagol, J., McCorkel, J., 2020. Characterization of FIREFLY, an
3399 imaging spectrometer designed for remote sensing of solar induced fluorescence. *Sensors* 20,
3400 4682.

3401

3402 Plascyk, J.A., 1975. The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote
3403 sensing of solar-stimulated luminescence. *Opt. Eng.* 14, 144339.

3404

3405 Poblete, T., Camino, C., Beck, P.S.A., Hornero, A., Kattenborn, T., Saponari, M., Boscia, D., Navas-
3406 Cortes, J.A., Zarco-Tejada, P.J., 2020. Detection of *Xylella fastidiosa* infection symptoms with
3407 airborne multispectral and thermal imagery: Assessing bandset reduction performance from
3408 hyperspectral analysis. *ISPRS J. Photogramm. Remote Sens.* 162, 27–40.

3409

3410 Poblete, T., Navas-Cortes, J.A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa,
3411 B.B., Zarco-Tejada, P.J., 2021. Discriminating *Xylella fastidiosa* from *Verticillium dahliae*
3412 infections in olive trees using thermal- and hyperspectral-based plant traits. *ISPRS J.*
3413 *Photogramm. Remote Sens.* 179, 133–144.

3414

3415 Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfündel, E.E., Moreno,
3416 J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for
3417 remote sensing applications: mechanisms and challenges. *J. Exp. Bot.* 65, 4065–4095.

3418

3419 Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M.,
3420 Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S.,
3421 Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pilkl, M., Pinto, F., Prey, L.,
3422 Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., 2015.
3423 Sun-induced fluorescence - a new probe of photosynthesis: first maps from the imaging
3424 spectrometer HyPlant. *Glob. Chang. Biol.* 21, 4673–4684.

3425

3426 Romero, J.M., Cordon, G.B., Lagorio, M.G., 2018. Modeling re-absorption of fluorescence from the
3427 leaf to the canopy level. *Remote Sens. Environ.* 204, 138–146.

3428

3429 Romero, J.M., Cordon, G.B., Lagorio, M.G., 2020. Re-absorption and scattering of chlorophyll
3430 fluorescence in canopies: A revised approach. *Remote Sens. Environ.* 246, 111860.

3431

3432 Schneider, F.D., Ferraz, A.A., Hancock, S., Duncanson, L.I., Dubayah, R.O., Pavlick, R.P., Schimel,
3433 D.S., 2020. Towards mapping the diversity of canopy structure from space with GEDI. *Environ.*
3434 *Res. Lett.* 15, 115006.

3435

3436 Siegmann, B., Cendrero-Mateo, M.P., Cogliati, S., Damm, A., Gamon, J., Herrera, D., Jedmowski,
3437 C., Junker-Frohn, L.V., Kraska, T., Muller, O., Rademske, P., van der Tol, C., Quiros-Vargas,
3438 J., Yang, P., Rascher, U., 2021. Downscaling of far-red solar-induced chlorophyll fluorescence
3439 of different crops from canopy to leaf level using a diurnal data set acquired by the airborne
3440 imaging spectrometer HyPlant. *Remote Sens. Environ.* 264, 112609.

3441

3442 Scodellaro, R., Cesana, I., D'Alfonso, L., Bouzin, M., Collini, M., Chirico, G., Colombo, R.,
3443 Miglietta, F., Celesti, M., Schuettemeyer, D., Cogliati, S., Sironi, L., 2022. A novel hybrid
3444 machine learning phasor-based approach to retrieve a full set of solar-induced fluorescence
3445 metrics and biophysical parameters. *Remote Sens. Environ.* 280, 113196.

3446

3447 Specim, 2022. AISA IBIS Fluorescence Imager. URL:
3448 https://www.specim.fi/downloads/AisaIBIS_Datasheet-ver1-15.pdf [Online; accessed 25. Oct.
3449 2022].

3450

3451 Stuart, M.B., McGonigle, A.J.S., Willmott, J.R., 2019. Hyperspectral Imaging in Environmental
3452 Monitoring: A Review of Recent Developments and Technological Advances in Compact Field
3453 Deployable Systems. *Sensors* 19, 3071.

3454

3455 Suarez, L., Gonzalez-Dugo, V., Camino, C., Hornero, A., Zarco-Tejada, P.J., 2021. Physical model
3456 inversion of the green spectral region to track assimilation rate in almond trees with an airborne
3457 nano-hyperspectral imager. *Remote Sens. Environ.* 252, 112147.

3458

3459 Sun, Y., Frankenberg, A., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T.S., 2018. Overview
3460 of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2:
3461 retrieval, cross-mission comparison, and global monitoring for GPP. *Remote Sens. Environ.* 209,
3462 808–823.

3463

3464 Süß, A., Hank, T., Mauser, W., 2016. Deriving diurnal variations in sun-induced chlorophyll-a
3465 fluorescence in winter wheat canopies and maize leaves from ground-based hyperspectral
3466 measurements. *Int. J. Remote Sens.* 37, 60–77.

3467

3468 Thomas, V.A., Wynne, R.H., Kauffman, J., McCurdy, W., Brooks, E. B., Thomas, R. Q., Rakestraw,
3469 J., 2021. Mapping thins to identify active forest management in southern pine plantations using
3470 Landsat time series stacks. *Remote Sens. Environ.* 252, 112127.

3471

3472 Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of
3473 soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance.
3474 *Biogeosci.* 6, 3109–3129.

3475

3476 Van der Tol, C., Rossini, M., Cogliati, S., Verhoef, W., Colombo, R., Rascher, U., Mohammed, G.,
3477 2016. A model and measurement comparison of diurnal cycles of sun-induced chlorophyll
3478 fluorescence of crops. *Remote Sens. Environ.* 186, 663–677.

3479

3480 Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J., Samson, R., 2015. Bidirectional sun-
3481 induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering
3482 properties – a bottom-up approach. *Remote Sens. Environ.* 158, 169–179.

3483

3484 Verhoef, W., van der Tol, C., Middleton, E.M., 2018. Hyperspectral radiative transfer modeling to
3485 explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX
3486 – Sentinel-3 tandem mission multi-sensor data. *Remote Sens. Environ.* 204, 942–963.

3487

3488 Verrelst, J., Rivera, J.P., Van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015. Global
3489 sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced
3490 fluorescence? *Remote Sens. Environ.* 166, 8–21.

3491

3492 Verrelst, J., Van der Tol, C., Magnani, F., Sabater, N., Rivera, J.P., Mohammed, G., Moreno, J., 2016.
3493 Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net
3494 photosynthesis of vegetation canopies: a SCOPE modelling study. *Remote Sens. Environ.* 176,
3495 139–151.

3496

3497 Wang, N., Suomalainen, J., Bartholomeus, H., Kooistra, L., Masiliūnas, D., Clevers, J.G.P.W., 2021.
3498 Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a
3499 point-based spectrometer on a UAV. *Int. J. Appl. Earth Obs. Geoinf.* 96, 102276.

3500

3501 Wang, R., Gamon, J.A., Hmimina, G., Cogliati, S., Zygielbaum, A.I., Arkebauer, T.J., Suyker, A.,
3502 2022. Harmonizing solar induced fluorescence across spatial scales, instruments, and extraction
3503 methods using proximal and airborne remote sensing: A multi-scale study in a soybean field.
3504 *Remote Sens. Environ.* 281, 113268.

3505

3506 Wang, S., Guan, K., Wang, Z., Ainsworth, E.A., Zheng, T., Townsend, P.A., Liu, N., Nafziger, E.,
3507 Masters, M.D., Li, K., Wu, G., 2021. Airborne hyperspectral imaging of nitrogen deficiency on
3508 crop traits and yield of maize by machine learning and radiative transfer modeling. *Int. J. Appl.*
3509 *Earth Obs. Geoinf.* 105, 102617.

3510

3511 Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., 2022. Evaluating
3512 the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen
3513 assessment in almond using airborne hyperspectral imagery. *Remote Sens. Environ.* 279,
3514 113141.

3515

3516 Watt, M.S., Buddenbaum, H., Leonardo, E.M.C., Estarija, H.J.C., Bown, H.E., Gomez-Gallego, M.,
3517 Hartley, R., Massam, P., Wright, L., Zarco-Tejada, P.J., 2020. Using hyperspectral plant traits

3518 linked to photosynthetic efficiency to assess N and P partition. *ISPRS J. Photogramm. Remote*
3519 *Sens.* 169, 406–420.

3520

3521 Xu, S., Atherton, J., Riikonen, A., Zhang, C., Oivukkamäki, J., MacArthur, A., Honkavaara, E.,
3522 Hakala, T., Koivumäki, N., Liu, Z., 2021. Structural and photosynthetic dynamics mediate the
3523 response of SIF to water stress in a potato crop. *Remote Sens. Environ.* 263, 11255.

3524

3525 Yang, P., Van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll
3526 fluorescence with reflectance. *Remote Sens. Environ.* 209, 456–467.

3527

3528 Yang, P., Van der Tol, C., Campbell, P.K., Middleton, E.M., 2020. Fluorescence Correction
3529 Vegetation Index (FCVI): A physically based reflectance index to separate physiological and
3530 non-physiological information in far-red sun-induced chlorophyll fluorescence. *Remote Sens.*
3531 *Environ.* 240, 111676.

3532

3533 Yang, P., Prikaziuk, E., Verhoef, W., Van der Tol, C., 2021. SCOPE 2.0: A model to simulate
3534 vegetated land surface fluxes and satellite signals. *Geosci. Model Dev.* 14, 4697–4712.

3535

3536 Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and narrow-
3537 band indices acquired from a UAV platform for water stress detection using a micro-
3538 hyperspectral imager and a thermal camera. *Remote Sens. Environ.* 117, 322–337.

3539

3540 Zarco-Tejada, P.J., Morales, A., Testi, L., Villalobos, F.J., 2013. Spatio-temporal patterns of
3541 chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral
3542 imagery as compared with carbon fluxes measured with eddy covariance. *Remote Sens. Environ.*
3543 133, 102–115.

3544

3545 Zarco-Tejada, P.J., González-Dugo, M.V., Fereres, E., 2016. Seasonal stability of chlorophyll
3546 fluorescence quantified from airborne hyperspectral imagery as an indicator of net
3547 photosynthesis in the context of precision agriculture. *Remote Sens. Environ.* 179, 89–103.

3548

3549 Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández-Clemente, R.,
3550 Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P.R.J.,
3551 Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of *Xylella*
3552 *fastidiosa* infection revealed in spectral plant-trait alterations. *Nat. Plants* 4, 432–439.

3553

3554 Zarco-Tejada, P.J., Poblete, T., Camino, C., Gonzalez-Dugo, V., Calderon, R., Hornero, A.,
3555 Hernandez-Clemente, R., Román-Écija, M., Velasco-Amo, MP., Landa, BB., Beck, PSA.,
3556 Saponari, M., Boscia, D., Navas-Cortes, JA., 2021. Divergent abiotic spectral pathways unravel
3557 pathogen stress signals across species. *Nat. Commun.* 12, 6088.

3558

3559 Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J.A., 2019. A practical approach for
3560 estimating the escape ratio of solar-induced chlorophyll fluorescence. *Remote Sens. Environ.*
3561 232, 111209.

3562

3563 Zhao, F., Dai, X., Verhoef, W., Guo, Y., Van der Tol, C., Li, Y., Huang, Y., 2016. FluorWPS: a
3564 Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-
3565 dimensional canopy. *Remote Sens. Environ.* 187, 385–399.

3566 **Chapter 4**

3567

3568 **Prospects of solar Fraunhofer lines derived from sub-**
3569 **nanometer hyperspectral imagery for assessing a/biotic**
3570 **stress**

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581 This chapter resulted in two research articles.

3582 1. **Belwalkar, A.**, Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.
3583 **Prospects of solar Fraunhofer lines derived from sub-nanometer hyperspectral**
3584 **imagery for assessing a/biotic stress** (currently being drafted for submission to the
3585 journal *Remote Sensing of Environment*).

3586 2. **Belwalkar, A.**, Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. **Evaluating the**
3587 **relative contribution of Photosystems I and II for leaf nitrogen estimation using**
3588 **fractional depth of Fraunhofer lines and SIF derived from sub-nanometer airborne**
3589 **hyperspectral imagery.** In: Proc. IEEE International Geoscience and Remote Sensing
3590 Symposium (IGARSS), 16–21 July 2023, Pasadena, California, USA, pp. 2819–2822.

3591 **Abstract**

3592 With the advent of sub-nanometer resolution imaging sensors capable of characterising
3593 narrow absorption features, Fraunhofer lines (FLs) can now potentially be identified. This opens up
3594 a promising avenue for the exploration of these FLs for vegetation monitoring and precision
3595 agriculture applications. This study is an exploratory analysis which seeks to examine the prospects
3596 of using individual FL depths derived from sub-nanometer airborne hyperspectral imagery for a
3597 potential improvement of leaf nitrogen (N) estimates and to detect biotic-induced stress in infected
3598 vegetation. A sub-nanometer hyperspectral imager with ≤ 0.2 nm full-width at half-maximum
3599 (FWHM) resolution and a narrow-band hyperspectral imager with 5.8-nm FWHM were flown in
3600 tandem over a rainfed winter wheat field for leaf N estimation (Experiment-1) and over a commercial
3601 olive orchard infected with the fungus *Verticillium dahliae* (*Vd*) for biotic stress detection
3602 (Experiment-2). For Experiment-1, wheat plots were fertilised with variable concentrations of N to
3603 produce nutrient variability. To estimate leaf N concentration, regression models using Gaussian
3604 process regression (GPR) were built with different permutations of solar-induced chlorophyll
3605 fluorescence (SIF), leaf chlorophyll content (C_{a+b}), and depths of individual FLs. For Experiment-2,
3606 the sensitivity of different FLs and the two oxygen absorption features (O_2 -A and O_2 -B) for detecting
3607 disease progression at different stages was examined by comparing the absorption depths of
3608 asymptomatic trees with those of symptomatic trees with increasing levels of disease severity. The
3609 results for Experiment-1 showed that GPR models incorporating the depth of distinct Fraunhofer lines
3610 as predictor variables performed better than the benchmark model constructed using C_{a+b} and far-red
3611 SIF (SIF_{760}) alone. The best leaf N-estimation model built with FLs from the red and far-red regions
3612 (C_{a+b} , $FL_{682.97\text{ nm}}$, $FL_{757.002\text{ nm}}$) yielded an R^2 of 0.71, outperforming the standard approach used in
3613 previous works (C_{a+b} , SIF_{760}) ($R^2 = 0.56$). The results of the biotic-induced stress detection
3614 experiment demonstrated that the depth of individual FLs could distinguish between different stages
3615 of disease progression. $FL_{671.73\text{ nm}}$ and $FL_{756.90\text{ nm}}$, as well as oxygen-based O_2 -B (686.86 nm), were
3616 found to be responsive throughout all stages of disease progression. Further FLs were found to be

3617 sensitive as disease severity progressed. These results from both experiments suggest that narrow FLs
3618 derived from sub-nanometer resolution imagery are useful for vegetation stress detection, providing
3619 the foundation for future research into the utility of FLs for plant physiology monitoring applications.

3620

3621 **Keywords:** Solar-induced chlorophyll fluorescence, SIF, airborne, hyperspectral, leaf nitrogen, sub-
3622 nanometer, Fraunhofer lines, stress detection, *Verticillium dahliae*

3623

3624 **4.1 Introduction**

3625 The frequency of extreme weather events and large fluctuations in precipitation and
3626 temperature patterns are predicted to rise globally because of climate change (Cogato *et al.*, 2019;
3627 Schmidhuber *et al.*, 2007; Zampieri *et al.*, 2017). Consequently, biotic and/or abiotic vegetation
3628 stresses will become more common and, without prompt and efficient management responses, may
3629 result in declines in global food production (Atzberger, 2013). It is thus increasingly crucial to detect
3630 signs of vegetation stress as early as possible, before any permanent damage is done, so that corrective
3631 agrotechnical actions can be taken to prevent production loss (Berger *et al.*, 2022).

3632 Olive trees are infected by more than a hundred different pests and pathogens which cause
3633 decreased yields and higher overall production costs (Fernández-Escobar *et al.*, 2013). The soil-borne
3634 fungus *Verticillium dahliae* (*Vd*) Kleb, responsible for Verticillium wilt (VW), is one of the major
3635 threats to olive production around the world (Jiménez-Díaz *et al.*, 2012). In more than 400 plant
3636 species, this pathogen colonises the vascular system, restricting water flow and leading to water stress
3637 (Pegg and Brady, 2002).

3638 Traditional methods for detecting *Vd* infections have relied on *in situ* observations followed
3639 by laboratory studies. While these methods are effective, they are also too laborious, costly, and time-
3640 consuming to be practical for widespread monitoring (Gramaje *et al.*, 2013). Hence, developing

3641 robust methods for large-scale plant scanning is crucial for detecting detrimental crop pathogens and
3642 ensuring they are eradicated quickly or contained in an effective manner (Stokstad, 2015). In this
3643 context, multi-sensor strategies involving airborne narrow-band hyperspectral and thermal imaging
3644 sensors have demonstrated encouraging findings for the early detection of infectious plant diseases
3645 at large scales (Calderón *et al.*, 2015; 2013; Camino *et al.*, 2021; Poblete *et al.*, 2023; 2021; Zarco-
3646 Tejada *et al.*, 2021; 2018).

3647 Thermal imagery-derived normalised canopy temperature, Crop Water Stress Index (CWSI),
3648 and narrow-band hyperspectral imagery-derived SIF₇₆₀ and vegetation indices related to structure,
3649 xanthophyll, chlorophyll, carotenoid, and disease indices have been demonstrated to be the best
3650 indicators for detecting symptoms in *Vd*-infected olive trees (Calderón *et al.*, 2015; 2013). Zarco-
3651 Tejada *et al.* (2018) used a machine learning framework that considered pigment, structural,
3652 fluorescence, and thermal-based plant traits (PSFTs) to detect infection caused by the bacterium
3653 *Xylella fastidiosa* (*Xf*) in olive trees with an overall accuracy of over 80%. In a subsequent study,
3654 Poblete *et al.* (2021) demonstrated that hyperspectral and thermal traits can be used to detect and
3655 differentiate symptoms in olive trees caused by *Vd* and *Xf* infection from a mixed (*Xf* + *Vd*) dataset,
3656 which can exhibit visually similar symptoms, using a three-stage machine learning-based approach.
3657 In a subsequent study, Zarco-Tejada *et al.* (2021) demonstrated the capability of hyperspectral and
3658 thermal traits to distinguish between symptoms caused by *Vd* and *Xf* infections and those caused by
3659 water stress, thereby reducing the uncertainty of *Xf* detections across different hosts to less than 6%.
3660 In all the aforementioned studies, narrow-band SIF₇₆₀ was found to be one of the most important
3661 indicators for detecting biotic stress. Due to the limitations regarding the spectral characteristics of
3662 narrow-band hyperspectral imagers used in these studies, only the capability of SIF₇₆₀ for biotic stress
3663 detection was investigated. It would be beneficial to explore other spectral regions within the SIF
3664 emission regions, as those regions may provide valuable insights for pre-visual stress detection.

3665 Nitrogen (N) is a macronutrient which plays a crucial role in plant development, yield and
3666 grain quality, and which is often the dominant limiting factor in photosynthesis (Evans, 1989;
3667 Lemaire *et al.*, 2008). Accurate field-wide assessments of leaf N concentration (N%) enable more
3668 targeted use of N-fertilisers, thereby mitigating the environmental effects of N-overfertilisation while
3669 improving crop yields. Standard destructive sampling for leaf N determination relies on the laboratory
3670 analysis of leaf tissue using methods such as Kjeldahl digestion and Dumas combustion. Although
3671 accurate, these techniques are time-consuming and expensive for monitoring the leaf N status of large
3672 areas. In recent decades, the use of remote sensing technologies has increased, particularly through
3673 hyperspectral imagery, for mapping the spatial and temporal variations of crop leaf N concentration
3674 at paddock-scale (Berger *et al.*, 2020).

3675 Recent studies using narrow-band airborne and spaceborne hyperspectral imagers have
3676 demonstrated that accurate determination of leaf N concentration can be achieved by combining the
3677 radiative transfer model (RTM)-derived leaf biochemical constituents with SIF₇₆₀ acquired from
3678 high-resolution airborne hyperspectral imagery (Camino *et al.*, 2018; Y. Wang *et al.*, 2022a; 2022b).
3679 Even though these studies have demonstrated improved leaf N retrievals when including SIF₇₆₀, the
3680 potential of other spectral features within the 650-800 nm SIF emission region to characterise both
3681 PSI and PSII photosystems has not yet been explored. Moreover, the potential information extracted
3682 from the red spectral region, i.e. SIF quantified at the O₂-B absorption band centred around 687 nm
3683 (SIF₆₈₇), and from the depth of solar Fraunhofer lines (FLs), which are absorption lines in the solar
3684 spectrum, could provide valuable insights for improved characterisation of photosynthesis and leaf N
3685 variability.

3686 The depth of FLs within particular spectral windows devoid of significant terrestrial
3687 absorptions ('pure FLs' hereafter) is practically unaffected by atmospheric scattering, making SIF
3688 retrieval at individual pure FLs in these spectral windows nearly insensitive to atmospheric effects
3689 (Frankenberg *et al.*, 2011; 2018; Guanter *et al.*, 2013). With the recently developed sub-nanometer

3690 resolution airborne hyperspectral imagers, it is now possible to investigate the potential of these
3691 narrow pure FLs within the SIF emission region. However, the quantification of *in-filling* at
3692 individual FLs and its conversion to SIF would require accurate characterisation of the shape of
3693 individual FLs in the reference solar irradiance spectrum. This irradiance spectrum either needs to be
3694 acquired from the sub-nanometer imager using ground-based reference targets (Wang *et al.*, 2022) or
3695 from the explicit modelling of the instrument spectral response function (Guanter *et al.*, 2012; Sun *et*
3696 *al.*, 2018). However, reference irradiance spectrum may not be always available, preventing the
3697 quantification of SIF at individual FLs. Since the depths of solar FLs decrease in the presence of SIF
3698 (Plascyk and Gabriel, 1975), we hypothesise that, under identical solar conditions, the depth of the
3699 distinct pure FLs detected from different vegetation targets within the sub-nanometer airborne
3700 hyperspectral imagery can be used as a proxy for SIF, i.e. by assessing the FL depth in relative terms
3701 within a single image.

3702 The first part of this study aims to assess the relative contribution of the SIF emitted by each
3703 of the two photosystems (PSI and PSII) in explaining leaf N variability across the field. SIF₇₆₀, SIF₆₈₇
3704 and the depth of distinct pure solar FLs inside PSI and PSII emission regions derived from sub-
3705 nanometer airborne hyperspectral imagery were all evaluated. The second part of this study
3706 investigates the sensitivity of distinct pure FLs derived from sub-nanometer imagery to differentiate
3707 between asymptomatic and symptomatic trees with different stages of disease progression caused by
3708 *Vd* infections, comparing their performance against standard methods of SIF quantification using
3709 oxygen absorption features.

3710

3711

3712

3713

3714 **4.2 Materials and methods**

3715 **4.2.1 Study sites and field data collection**

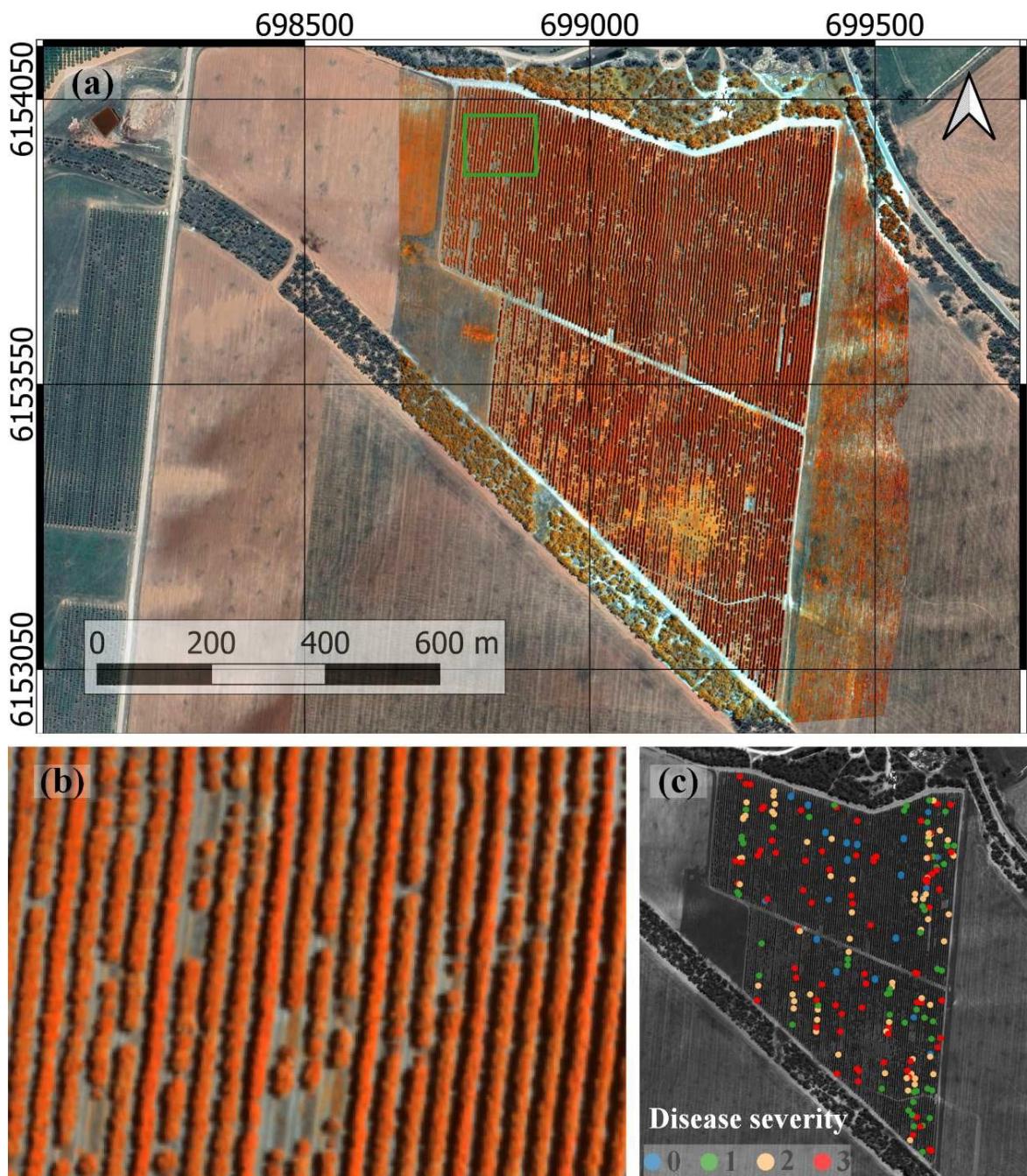
3716 The first experiment regarding the estimation of leaf nitrogen concentration was conducted at
3717 a phenotyping trial site located in Yarrawonga, northeast Victoria, Australia (36°02'55"S,
3718 145°59'02"E) in 2019. According to the Köppen climate classification system, the climate at the field
3719 trial location is humid subtropical (Cfa), with average temperature of 16.3 °C and average annual
3720 rainfall of 559 mm. The plot sizes were 26 m² (2 m × 13 m) and were planted in May 2019. Several
3721 cultivated varieties of rainfed wheat were grown under varying physiological conditions and N
3722 fertilisation treatments. More details about the study site can be found in Belwalkar *et al.* (2022a).

3723 The second experiment, regarding biotic stress detection, was carried out at a *Vd* infected
3724 commercial olive orchard located in Boundary Bend, northwest Victoria, Australia (34°44'23"S,
3725 143°10'27"E) in 2023 (Fig. 4-1a). The region has a Mediterranean climate, with warm dry summers
3726 and cool wet winters, and average annual rainfall of 335.8 mm. In December 2022, visual disease
3727 severity (SEV) assessments were performed using a scale of 0–3 depending on the proportion of the
3728 tree canopy displaying symptoms of the disease. Of the 111 olive trees examined, 32 were deemed to
3729 be asymptomatic (SEV = 0), whereas 79 showed signs of disease and were reported as symptomatic
3730 (21 trees, SEV = 1; 26 trees, SEV = 2; and 32 trees, SEV = 3; Fig. 4-1c).

3731 **4.2.2 Airborne campaigns using hyperspectral imagers**

3732 Airborne campaigns operated by the HyperSens Laboratory at the University of Melbourne's
3733 Airborne Remote Sensing Facility corresponding to Experiment-1 and Experiment-2 under clear sky
3734 conditions were conducted on 9 October 2019 and 31 January 2023, respectively. For both
3735 experiments, a sub-nanometer hyperspectral imager (FWHM ≤0.2 nm; 670–780 nm) and a narrow-
3736 band hyperspectral imager (FWHM = 5.8 nm; 400–1000 nm) (Headwall Photonics Inc., Fitchburg,
3737 MA, USA) were used to acquire airborne hyperspectral imagery with spatial resolutions of 20 cm and

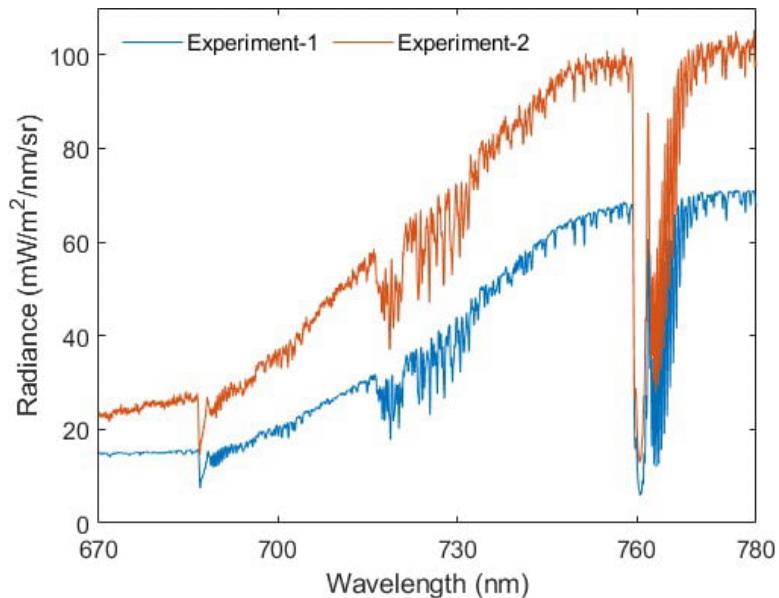
3738 30 cm for Experiment-1 and Experiment-2, respectively (Fig. 4-2). Further details regarding the
3739 spectral configuration of the two hyperspectral imagers can be found in Belwalkar *et al.* (2022a).



3740

3741 **Fig. 4-1.** (a) Overview of Experiment-2 at the Boundary Bend study site. (b) Zoomed-in view of tree
3742 crowns identified in the scene within the green rectangle in (a). (c) Spatial distribution of visual
3743 assessments of *Verticillium dahliae* (*Vd*) infection.

3744



3745

3746 **Fig. 4-2.** Sample radiance spectra acquired from the sub-nanometer imaging sensor at the two
 3747 experimental sites.

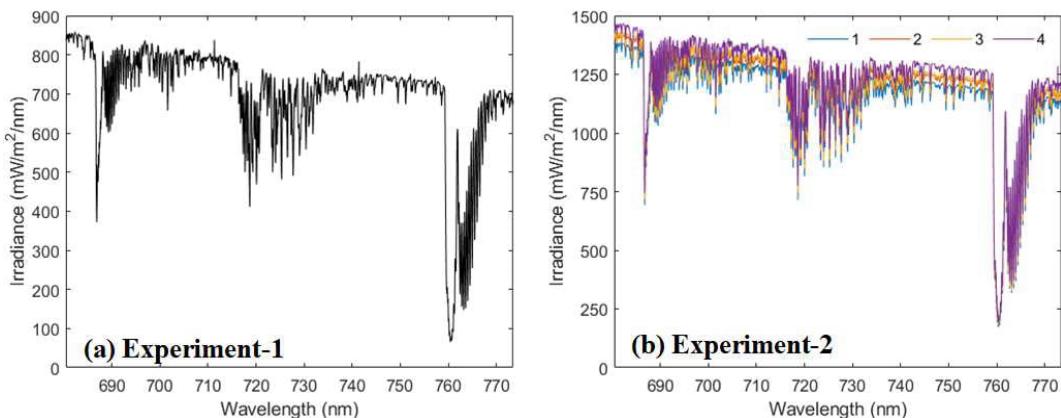
3748

3749 For Experiment-1, ground spectral measurements were taken concurrently with the flight,
 3750 using a CC-3 VIS-NIR cosine corrector diffuser attached to an HR-2000 spectrometer (Ocean Insight,
 3751 Dunedin, FL, USA) with a 0.065-nm FWHM, for continuous measurement of the total incident
 3752 radiation (Fig. 4-3a). Pure vegetation pixels were extracted within individual wheat plots using a
 3753 thresholding approach based on the normalised difference vegetation index (NDVI), and mean
 3754 radiance spectra corresponding to the sub-nanometer imager and mean reflectance spectra from the
 3755 narrow-band hyperspectral imager were retrieved. Belwalkar *et al.* (2022a) provide a full description
 3756 of the airborne campaign, data preprocessing, and image correction. In addition, the total leaf N
 3757 concentration (%) was determined in the laboratory using the Kjeldahl method of destructive testing,
 3758 with samples consisting of 10–15 leaves randomly selected per plot.

3759

3760 For Experiment-2, four different sets of sub-nanometer resolution radiance imagery covering
 3761 the entire orchard were acquired within a 40-minute time interval. The total incoming irradiance
 3762 concurrent with the airborne campaign was calculated using the radiance reflected from a white
 3763 reference panel (Labsphere Inc., North Sutton, NH, USA) measured by the HR-2000 spectrometer
 (Fig. 4-3b). Sunlit tree-crown pixels corresponding to individual trees were extracted from each sub-

nanometer radiance imagery using a two-stage approach. In the first stage, automatic object-based segmentation of the sub-nanometer radiance imagery was carried out using Fiji (Abràmoff *et al.*, 2004) combining Sauvola's binarisation (Sauvola and Pietikäinen, 2000) methods on the near-infrared band (mean of 774-776 nm), and Phansalkar's thresholding method (Phansalkar *et al.*, 2011) on the Normalised Difference Red Edge (NDRE) index. This stage allowed for the separation of pure sunlit tree-crowns from the soil background, as well as within-crown shadows. In the second stage, following Zarco-Tejada *et al.* (2018), a binary watershed-based segmentation using the Euclidean distance map was applied to individual objects obtained in the first stage to extract sunlit tree-crown pixels corresponding to individual trees. Using NDVI and the near-infrared band (800 nm), we followed a similar procedure to extract sunlit tree-crown pixels for individual trees from narrow-band radiance imagery. The sunlit tree-crown pixels were then used to obtain mean radiance spectra for each individual tree from both sub-nanometer and narrow-band imagery.



3776

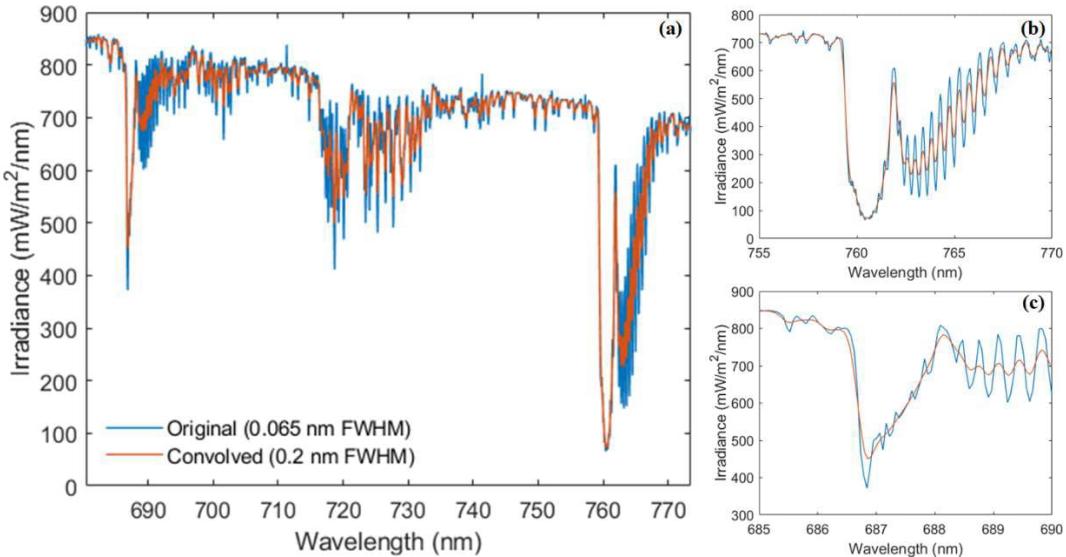
Fig. 4-3. Irradiance spectra obtained from ground-based HR-2000 spectrometer concurrently with the acquisition of sub-nanometer imagery for (a) Experiment-1 and (b) Experiment-2.

3779

3780 4.2.3 Methodology for estimating leaf nitrogen concentration

3781 The irradiance spectra obtained from the HR-2000 spectrometer were convolved to the
 3782 spectral characteristics of the sub-nanometer imager using Gaussian convolution (Fig. 4-4). Using
 3783 this convolved irradiance and the mean radiance derived from each plot, SIF₇₆₀ and red SIF (SIF₆₈₇)

were quantified using the *in-filling* approach, employing the Fraunhofer Line Depth (FLD) principle with a total of three spectral bands (3FLD) (Maier *et al.*, 2003). Furthermore, we identified 17 pure FLs across the 670–780 nm spectral range of the sub-nanometer imager, excluding regions with significant water vapour and oxygen absorption (Albert *et al.*, 2023). The FLs identified were divided into two groups according to their positions in the spectral region. Five of these FLs were located in the red region of the spectrum (670–685 nm, named ‘red FLs’ here), while the remaining twelve were located in the far-red region (740–759 nm and 770–780 nm, named first and second ‘far-red FLs’ groups, respectively). The exact locations of the band centres corresponding to all FLs, and the O₂-A and O₂-B oxygen absorption bands are illustrated in Fig. 4-5. The positions of band centres corresponding to all FLs, and oxygen absorption features were computed as the mode of band centres corresponding to all the plots used for the analysis.



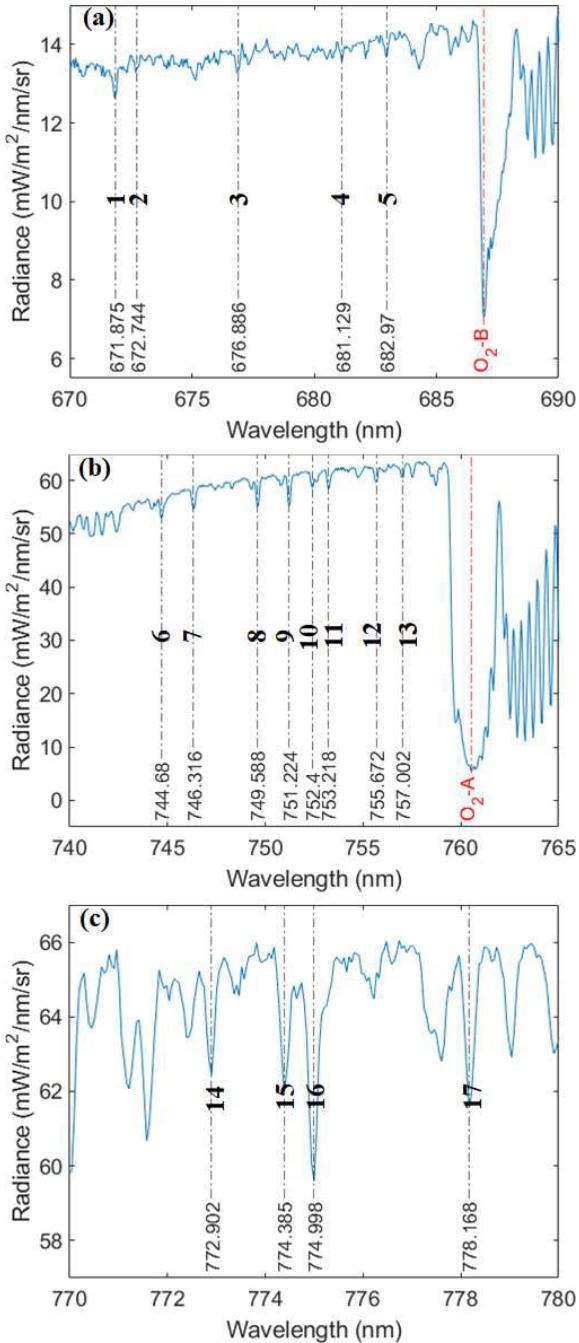
3795

Fig. 4-4. Comparison of original and convolved HR-2000 derived irradiance spectra for Experiment-1: (a) in the entire 680–773 nm spectral region; (b) in the O₂-A absorption region; (c) in the O₂-B absorption region (c).

3799

3800 Unlike the O₂-A absorption feature, the detected FLs are quite narrow, so the assumption of
 3801 a Gaussian spectral response function for convolving the solar irradiance spectra corresponding to
 3802 individual FLs is not valid. Hence, instead of SIF, we computed the depth of individual FLs and used
 3803 FL depth as a proxy for SIF. For each FL, the absolute depth in radiance units was computed as the

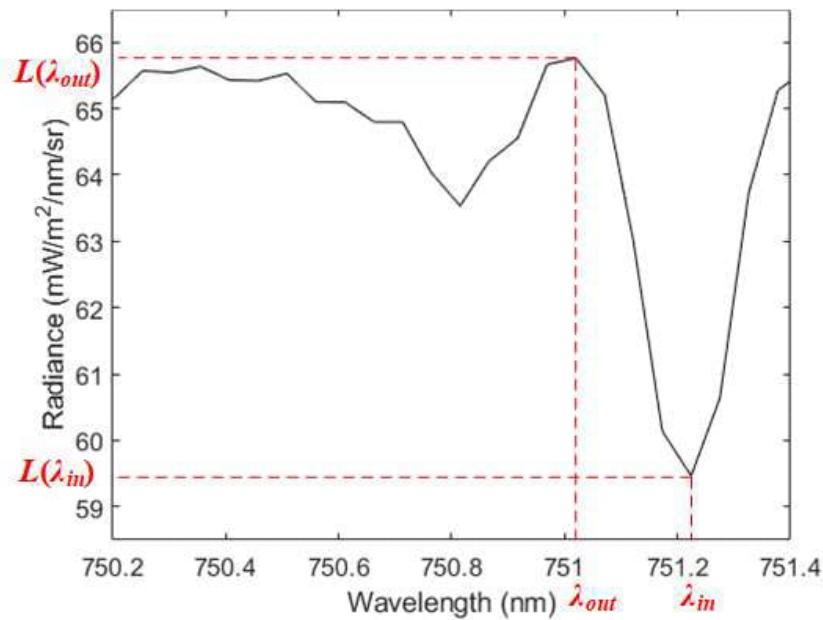
3804 difference between the radiance at the left shoulder wavelength and the wavelength at the bottom of
3805 the FL. The left shoulder wavelength was selected by searching for the wavelength providing highest
3806 radiance within 1 nm of the bottom wavelength (Fig. 4-6).



3807

3808 **Fig. 4-5.** Locations of the band centres corresponding to red FLs (a), group-1 far-red FLs (b), and
3809 group-2 far-red FLs (c) shown in dashed black, and oxygen absorption lines (a, b) shown in dashed
3810 red identified from the average radiance spectra of one of the plots imaged by the sub-nanometer
3811 hyperspectral imager.

3812



3813

3814 **Fig. 4-6.** Example of selection of left shoulder wavelength (λ_{out}) and the wavelength at the bottom of
 3815 the FL (λ_{in}) for calculating absolute FL depth corresponding to $FL_{751.224\text{ nm}}$ using sub-nanometer mean
 3816 radiance extracted from one of the plots in Experiment-1.

3817

3818 Regression models based on GPR were trained to empirically estimate leaf N concentration
 3819 using C_{a+b} , SIF_{760} , SIF_{687} and the depth of distinct FLs as a pool of potential predictor variables. C_{a+b} ,
 3820 SIF_{760} , and depth corresponding to a single FL were used to initially train GPR models. Subsequently,
 3821 GPR models were trained on leaf N estimation using C_{a+b} , and one FL depth each from the red and
 3822 far-red FL groups to further examine the effect of using FL depths corresponding to both the red and
 3823 far-red FL groups as predictor variables. The GPR models were trained in parallel (MATLAB parallel
 3824 computing toolbox) and the hyperparameters were optimised by incorporating Bayesian optimisation
 3825 into the leave-one-out cross-validation (LOOCV). The performance evaluation of the trained GPR
 3826 models was carried out using the coefficient of determination (R^2), root-mean-square error (RMSE),
 3827 and normalised root-mean-square error (nRMSE). To limit random errors, for each possible
 3828 combination of predictor variables, five GPR models were independently trained, and the average
 3829 estimate was then used to determine R^2 , RMSE, and nRMSE.

3830

Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) (Van der Tol *et al.*, 2009)

3831

RTM-based hybrid inversion with random forest regression (Belwalkar *et al.*, 2022b) was used to

3832 estimate C_{a+b} from the mean reflectance spectra obtained from the narrow-band hyperspectral imager
3833 in the 400-800 nm spectral region. To determine if the leaf N estimates could be further improved by
3834 including SIF emission regions other than the O₂-A absorption band, we used the GPR model
3835 developed with C_{a+b} and SIF₇₆₀ as a benchmark. Then we compared against this benchmark by adding
3836 the depth of distinct solar FLs into the models. Since PSII largely influences the red spectral region,
3837 the contributions of SIF₆₈₇ and red FLs are attributed only to PSII. In contrast, the contributions of
3838 SIF₇₆₀ and far-red FLs are attributed to both photosystems.

3839 **4.2.4 Methodology for assessing the sensitivity of distinct FLs for biotic stress detection**

3840 Similarly to the identification of distinct FLs in Experiment-1, 16 FLs (5 in the red region and
3841 11 in the far-red region) were identified across the 670–776 nm spectral range in Experiment-2. Due
3842 to recalibration of the sub-nanometer hyperspectral imager in 2020, the band centres for experiment-
3843 2's 16 FLs and Experiment-1's 17 FLs were not identical. The absolute depths for all red and far-red
3844 FLs were computed using the methodology described in section 4.2.3. In addition, absolute depths
3845 corresponding to both O₂-A and O₂-B absorption features were computed, and the wavelengths with
3846 the maximum radiance in the ranges of 755–759 nm for O₂-A and 685–686 nm for O₂-B were chosen
3847 as the left shoulder wavelengths. The absorption depths were further normalised using a proxy for
3848 photosynthetically absorbed radiation (PAR), which was calculated by spectrally integrating the HR-
3849 2000 derived irradiance spectra within the 680–700 nm spectral region corresponding to the
3850 acquisition time of each radiance image. This normalisation was required to account for the effect of
3851 incoming solar radiation on the absolute depth of the absorption features derived from the four sub-
3852 nanometer resolution radiance images at varying acquisition times.

3853 The sensitivity of different absorption features (16 FLs and 2 oxygen features) for detecting
3854 *Vd*-induced symptoms was investigated for three different stages of disease progression – early,
3855 intermediate, and all. The trees were categorised as either asymptomatic (SEV = 0) or symptomatic
3856 (SEV ≥ 1) if they exhibited one of three rising disease progression levels. Trees with early-stage

3857 disease were those rated as symptomatic with a SEV of 1; trees in the intermediate stage were those
3858 rated as symptomatic with a SEV of 1-2; and trees in all stages were those rated as symptomatic with
3859 a SEV of 1-3. To determine if disease symptoms affect absorption features differently over the course
3860 of disease, the depths of absorption features of asymptomatic trees were compared to those of
3861 symptomatic trees with three levels of severity – SEV = 0 vs. SEV = 1; SEV = 0 vs. SEV \leq 2; and
3862 SEV = 0 vs. SEV \geq 1 – using an Analysis of Variance (ANOVA) statistical test. This analysis of
3863 absorption feature depths enabled the assessment of the capability of different absorption features to
3864 detect disease progression in relation to the intensity of pathogen-induced stress. Additionally, using
3865 the narrow-band radiance imagery, absolute depths corresponding to the O₂-A absorption features
3866 were computed to examine the sensitivity of narrow-band derived O₂-A depth for detecting different
3867 stages of disease progression and to compare its performance against sub-nanometer derived O₂-A
3868 band depth.

3869

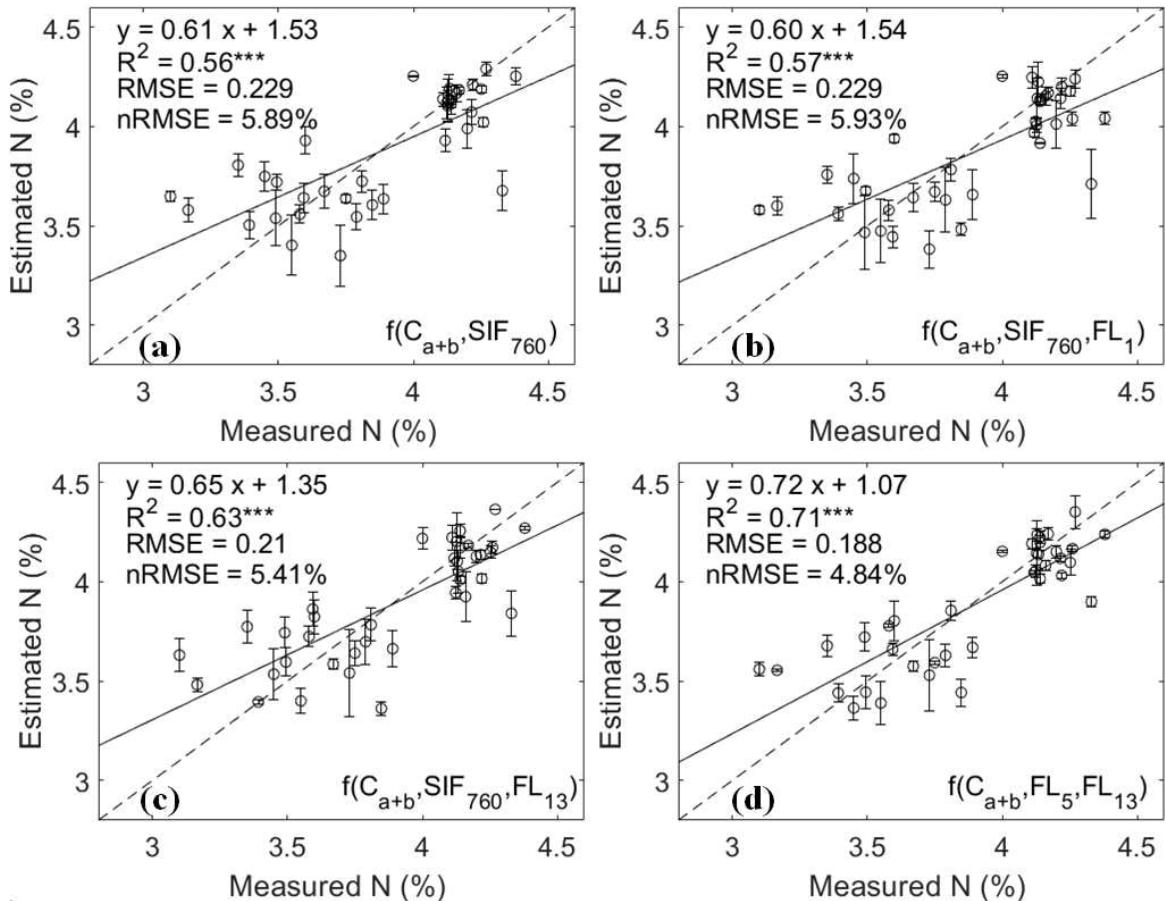
3870 4.3 Results and discussion

3871 4.3.1 Leaf N estimation using depths of distinct FLs

3872 GPR models trained with a single FL as one of the three predictor variables produced a total
3873 of 17 distinct GPR models (5 models for the red FL group and 12 models for the far-red FL group).
3874 Among the red FL group, the performance of the GPR model with FL₁ depth was comparable with
3875 the benchmark (R^2 = 0.56; RMSE = 0.229%; nRMSE = 5.89%; Fig. 4-7a and 4-7b), whereas the
3876 performance of the other four red FL depths did not improve prediction. Among the far-red FLs, the
3877 model that included FL₁₃ depth showed the highest performance, outperforming the benchmark (R^2
3878 = 0.63; RMSE = 0.21%; nRMSE = 5.41%; Fig. 4-7c).

3879 Since FL₁₃ performed the best among all red and far-red FLs, for the next set of GPR models
3880 with two FLs and C_{a+b} as predictors, we selected FL₁₃ among the far-red FLs and independently

3881 evaluated all five red FLs as potential GPR model predictors. When compared to the benchmark
 3882 model, the GPR model trained with FL_5 (682.97 nm) and FL_{13} (757.002 nm) had substantially
 3883 improved leaf N estimation ($R^2 = 0.71$; RMSE = 0.188%; nRMSE = 4.84%; Fig. 4-7d), with more
 3884 data points closer to the 1:1 line. The model's performance did not improve further after including
 3885 more FLs from either of the two FL groups.



3886

3887 **Fig. 4-7.** Measured vs estimated mean leaf N concentration using the best GPR models as a function
 3888 of: (a) C_{a+b} and SIF_{760} ; (b) C_{a+b} , SIF_{760} , and best-performing red FL; (c) C_{a+b} , SIF_{760} , and best-
 3889 performing far-red FL; (d) C_{a+b} and best-performing combination of one red and one far-red FL. The
 3890 dashed line indicates the 1:1 line. The error bars indicate the standard deviation based on five runs of
 3891 the GPR model. The GPR model as a function of C_{a+b} and SIF_{760} was used as a benchmark. *** p -
 3892 value <0.05 .

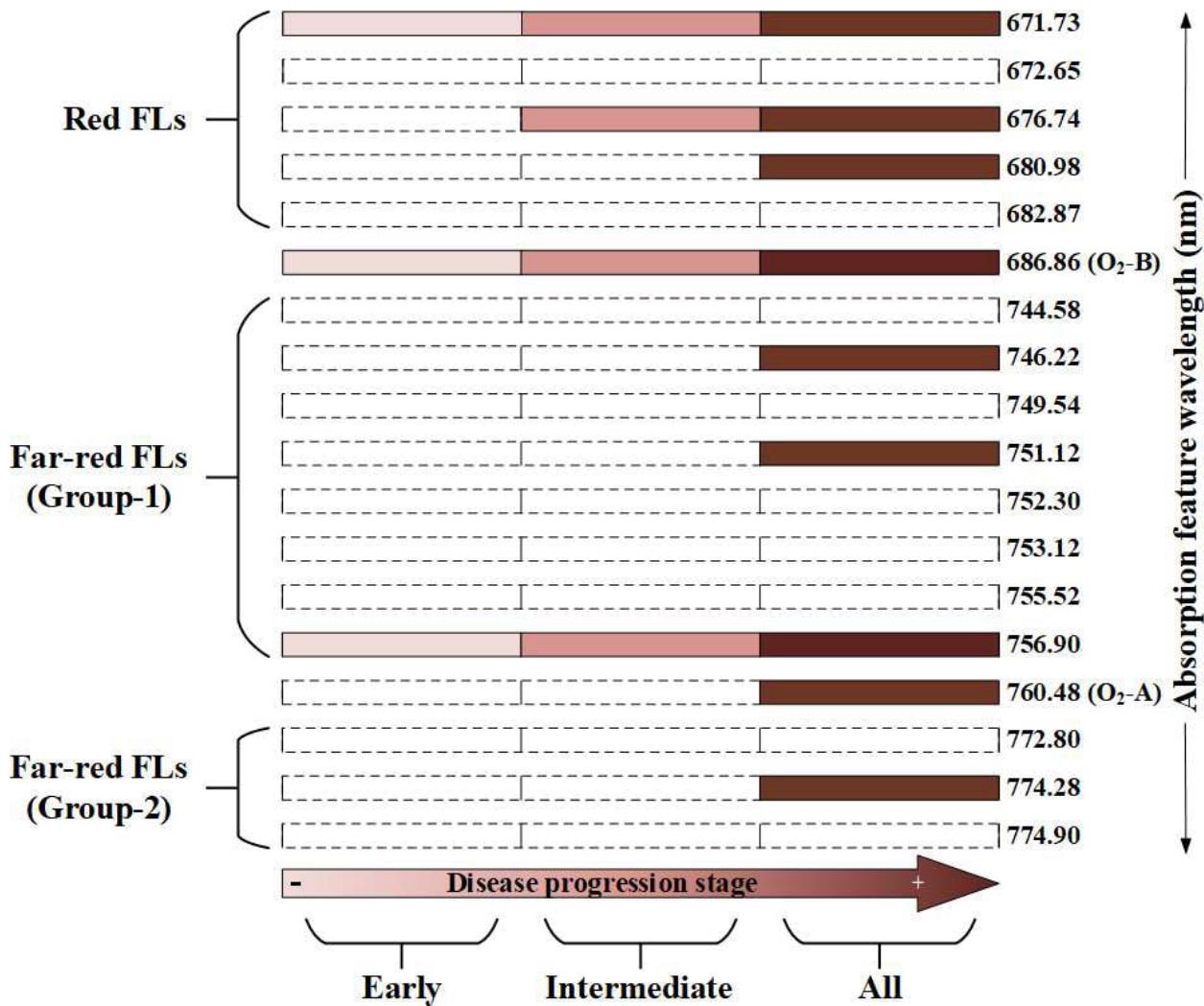
3893

3894 Furthermore, we found that the model's performance decreased when it included SIF_{687} with
 3895 any combination of predictor variables. This result could possibly be attributed to the high collinearity
 3896 observed between C_{a+b} and SIF_{687} . Our results suggest that FL depths corresponding to 757.002 nm

3897 (FL₁₃) and 682.97 nm (FL₅), in conjunction with C_{a+b} estimated by RTM simulations, provided
3898 improved estimation of leaf N concentration. These findings of the current exploratory study for the
3899 investigation of individual FLs provide a foundation for future research into the use of FLs identified
3900 in sub-nanometer imagery for plant phenotyping and precision agriculture applications.

3901 **4.3.2 Sensitivity of distinct FLs for biotic stress detection**

3902 Firstly, the evaluation of the distribution of relative absorption feature depths corresponding
3903 to red FLs, the two far-red FLs groups, and the two oxygen absorption features was carried out using
3904 Dunnett's test, comparing them with the asymptomatic trees for early, intermediate, and all stages of
3905 disease progression (Figs. C1-C4, Appendix C). The sensitivity of different absorption features
3906 identified from sub-nanometer hyperspectral imagery to detect different stages of disease progression
3907 caused by *Vd* infection is shown in Fig. 4-8. Only FL_{671.73 nm}, FL_{756.90 nm}, and the O₂-B (686.86 nm)
3908 absorption feature were found to be sensitive for detecting the early stage of disease progression. The
3909 same three absorption features, along with one additional FL in the red spectral region (FL_{676.74 nm}),
3910 were found to be sensitive for both the intermediate and all stages of disease progression. With
3911 increasing stress severity levels, the O₂-A (760.48 nm) feature, an additional red FL (FL_{680.95 nm}) and
3912 three additional far-red FLs (FL_{746.22 nm}, FL_{751.12 nm}, FL_{774.28 nm}) could detect all stages of disease
3913 progression. Among the 16 FLs investigated, nine FLs including two red FLs (FL_{672.65 nm}, FL_{682.87 nm})
3914 and seven far-red FLs (FL_{744.58 nm}, FL_{749.54 nm}, FL_{752.30 nm}, FL_{753.12 nm}, FL_{755.52 nm}, FL_{772.80 nm}, FL_{774.90}
3915 nm) were found to be incapable of distinguishing asymptomatic trees from symptomatic trees at any
3916 level of infection (Fig. 4-8). The O₂-A band depth quantified from the narrow-band imagery could
3917 only detect all stages of disease progression showing agreement with the trend observed for the O₂-
3918 A band depth quantified from the sub-nanometer imagery.



3932 exploratory analysis using FL depth is the first step towards realising the potential of these narrow
3933 Fraunhofer lines for biotic and abiotic stress detection.

3934

3935 **4.4 Conclusions**

3936 1. The quantification of the depth of narrow Fraunhofer lines in the SIF emission region
3937 improves leaf N estimations and the detection of biotic stress in vegetation.

3938 2. With RMSEs of less than 0.19%, the best results for leaf N estimation were achieved by the
3939 regression model constructed using C_{a+b} , red FL closest to O₂-B band (682.97 nm), and far-
3940 red FL closest to O₂-A band (757.002 nm).

3941 3. It was found that the red FL furthest from the O₂-B band (671.73 nm) and one far-red FL
3942 closest to the O₂-A band (756.90 nm), along with the O₂-B absorption feature, could detect
3943 the three stages of disease progression (early, intermediate, and all). As expected, more FLs
3944 were found to be sensitive as levels of disease progression increased.

3945 4. The results of this exploratory investigation of FL's potential provides a foundation for future
3946 research on the use of FLs identified from sub-nanometer imagery in the context of precision
3947 agriculture, plant physiology monitoring, and for the detection of biotic and abiotic vegetation
3948 stress.

3949

3950 **References**

3951 Albert, L.P., Cushman, K.C., Zong, Y., Allen, D.W., Alonso, L., Kellner, J.R., 2023. Sensitivity of
3952 solar-induced fluorescence to spectral stray light in high resolution imaging spectroscopy.
3953 *Remote Sens. Environ.* 285, 113313.

3954
3955 Atzberger, C., 2013. Advances in remote sensing of agriculture: context description, existing
3956 operational monitoring systems and major information needs. *Remote Sens.* 5, 949–981.
3957

3958 Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.,
3959 2022a. Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral
3960 imagers flown in tandem: modelling and validation in the context of plant phenotyping. *Remote*
3961 *Sens. Environ.* 273, 112986.

3962

3963 Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022b. Accounting for the spectral
3964 resolution on SIF retrieval from a narrow-band airborne imager using SCOPE. In: Proc. IEEE
3965 International Geoscience and Remote Sensing Symposium (IGARSS), 17–22 July, Kuala
3966 Lumpur, Malaysia, pp. 5440-5443.

3967

3968 Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst,
3969 J., Atzberger, C., van der Tol, C., Damm, A., Rascher, U., Herrmann, I., Paz, V. S., Fahrner, S.,
3970 Pieruschka, R., Prikaziuk, E., Buchaillot, Ma. L., Halabuk, A., Celesti, M., ... Schlerf, M. (2022).
3971 Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain:
3972 A review. *Remote Sens. Environ.* 280, 113198.

3973

3974 Berger, K., Verrelst, J., Féret, J.B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W.,
3975 Hank, T., 2020. Crop nitrogen monitoring: Recent progress and principal developments in the
3976 context of imaging spectroscopy missions. *Remote Sens. Environ.* 242, 111758.

3977

3978 Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution airborne
3979 hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using
3980 fluorescence, temperature and narrow-band spectral indices. *Remote Sens. Environ.* 139, 231–
3981 245.

3982

3983 Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J., 2015. Early detection and quantification of
3984 Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. *Remote*
3985 *Sens.* 7, 5584–5610.

3986

3987 Camino, C., Calderón, R., Parnell, S., Dierkes, H., Chemin, Y., Román-Écija, M., Montes-Borrego,
3988 M., Landa, B.B., Navas-Cortes, J.A., Zarco-Tejada, P.J., Beck, P.S.A., 2021. Detection of
3989 *Xylella fastidiosa* in almond orchards by synergic use of an epidemic spread model and remotely
3990 sensed plant traits. *Remote Sens. Environ.* 260, 112420.

3991

3992 Camino, C., González-Dugo, V., Hernández, P., Sillero, J.C., Zarco-Tejada, P.J., 2018. Improved
3993 nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-
3994 SWIR hyperspectral imagery in the context of precision agriculture. *Int. J. Appl. Earth Obs.*
3995 *Geoinf.* 70, 105-117.

3996

3997 Cogato, A., Meggio, F., De Antoni Migliorati, M., Marinello, F., 2019. Extreme weather events in
3998 agriculture: a systematic review. *Sustain.* 11, 2547.

3999

4000 Evans, J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. *Oecologia*, 78, 9–
4001 19.

4002

4003 Fernández-Escobar, R., De la Rosa, R., Leon, L., Gomez, J.A., Testi, L., Orgaz, F., GilRibes, J.A.,
4004 Quesada-Moraga, E., Trapero, A., Msalle, M., 2013. Evolution and sustainability of the olive
4005 production systems. *Opt. Mediterraneennes* 106, 11–42.

4006

4007 Frankenberg, C., Butz, A., Toon, G.C., 2011. Disentangling chlorophyll fluorescence from
4008 atmospheric scattering effects in O₂ A-band spectra of reflected sun-light. *Geophys. Res. Lett.*
4009 38, L03801.

4010

4011 Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., McDuffie, J.,
4012 Drewry, D.T., Pavlick, R., Kuhnert, A., 2018. The chlorophyll fluorescence imaging
4013 spectrometer (CFIS), mapping far red fluorescence from aircraft. *Remote Sens. Environ.* 217,
4014 523–536.

4015

4016 Gramaje, D., Pérez-Serrano, V., Montes-Borrego, M., Navas-Cortés, J.A., Jiménez-Díaz, R.M.,
4017 Landa, B.B., 2013. A comparison of real-time PCR protocols for the quantitative monitoring of
4018 asymptomatic olive infections by *Verticillium dahliae* pathotypes. *Phytopathology*, 103, 1058–
4019 1068.

4020

4021 Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, H., Grainger,
4022 R.G., 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT
4023 space measurements. *Remote Sens. Environ.* 121, 236–251.

4024

4025 Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., Joiner, J., 2013.
4026 Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-
4027 induced chlorophyll fluorescence from ground and space. *Remote Sens. Environ.* 133, 52–61.

4028

4029 Jimenez-Diaz, R.M., Cirulli, M., Bubici, G., del Mar Jimenez-Gasco, M., Antoniou, P.P., Tjamos,
4030 E.C., 2012. *Verticillium* wilt, a major threat to olive production: current status and future
4031 prospects for its management. *Plant disease*, 96, 304–329.

4032

4033 Lemaire, G., Jeuffroy, M.H., Gastal, F., 2008. Diagnosis tool for plant and crop N status in vegetative
4034 stage: Theory and practices for crop N management. *Eur. J. Agron.* 28, 614–624.

4035

4036 Maier, S.W., Günther, K.P., Stellmes, M., 2003. Sun-induced fluorescence: a new tool for precision
4037 farming. In: Schepers, J., VanToai, T. (Eds.), *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*. ASA Spec. Publ. 66. ASA, CSSA,
4038 and SSSA, Madison (Wisconsin), USA, pp. 209–222.

4039

4040 Plascyk, J.A., Gabriel, F.C., 1975. The Fraunhofer Line Discriminator MKII – an airborne instrument
4041 for precise and standardized ecological luminescence measurement. *IEEE Trans. Instrum. Meas.*
4042 24, 306–313.

4043

4044 Pegg, G.F., Brady, B.L., 2002. *Verticillium* wilts. CABI, Wallingford, UK.

4045

4046

4047 Poblete, T., Navas-Cortes, J.A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa,
4048 B.B., Zarco-Tejada, P.J., 2021. Discriminating *Xylella fastidiosa* from *Verticillium dahliae*
4049 infections in olive trees using thermal- and hyperspectral-based plant traits. *ISPRS J. Photogramm. Remote Sens.* 179, 133–144.

4050

4051 Poblete, T., Navas-Cortes, J.A., Hornero, A., Camino, C., Calderon, R., Hernandez-Clemente, R.,
4052 Landa, B.B., Zarco-Tejada, P.J., 2023. Detection of symptoms induced by vascular plant
4053 pathogens in tree crops using high-resolution satellite data: Modelling and assessment with
4054 airborne hyperspectral imagery. *Remote Sens. Environ.* 295, 113698.

4055

4056

4057 Schmidhuber, J., Tubiello, F. N., 2007. Global food security under climate change. *Proc. Natl. Acad. Sci. U.S.A.* 104, 19703-19708.

4059

4060 Stokstad, E., 2015. Italy's olives under siege. *Science* 348, 620-620.

4061

4062 Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T.S., 2018. Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. *Remote Sens. Environ.* 209, 808–823.

4066

4067 Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. *Biogeosci. 6*, 3109-3129.

4070

4071 Wang, R., Gamon, J.A., Hmimina, G., Cogliati, S., Zygielbaum, A.I., Arkebauer, T.J., Suyker, A., 2022. Harmonizing solar induced fluorescence across spatial scales, instruments, and extraction methods using proximal and airborne remote sensing: A multi-scale study in a soybean field. *Remote Sens. Environ.* 281, 113268.

4075

4076 Wang, Y., Suarez, L., Gonzalez-Dugo, V., Ryu, D., Moar, P., Zarco-Tejada, P.J., 2022b. Leaf nitrogen assessment with ISS DESIS imaging spectrometer as compared to high-resolution airborne hyperspectral imagery. In: *Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 17–22 July, Kuala Lumpur, Malaysia, pp. 5444-5447.

4080

4081 Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., 2022a. Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery. *Remote Sens. Environ.* 279, 113141.

4085

4086 Zampieri, M., Ceglar, A., Dentener, F., Toreti, A., 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. *Environ. Res. Lett.* 12, 064008.

4089

4090 Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P.R.J., Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of *Xylella fastidiosa* infection revealed in spectral plant-trait alterations. *Nat. Plants* 4, 432–439.

4094

4095 Zarco-Tejada, P.J., Poblete, T., Camino, C., Gonzalez-Dugo, V., Calderon, R., Hornero, A., Hernandez-Clemente, R., Román-Écija, M., Velasco-Amo, MP., Landa, BB., Beck, PSA., Saponari, M., Boscia, D., Navas-Cortes, JA., 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across species. *Nat. Commun.* 12, 6088.

4099 **Chapter 5**

4100

4101 **Conclusions**

4102

4103

4104 The results of each study have been thoroughly and specifically discussed in the preceding
4105 chapters. This chapter's objective is to provide a concise overview of the research, contextualise the
4106 findings, emphasise their applications and limitations, and suggest future research directions.

4107

4108 **5.1 Salient features and research outcomes**

4109 The research undertaken for this thesis establishes the utility of SIF₇₆₀ quantified by airborne
4110 narrow-band imaging sensors for plant physiology monitoring, plant phenotyping, and precision
4111 agriculture applications. It also outlines the potential for these purposes of using narrow solar
4112 Fraunhofer lines detected from sub-nanometer resolution imaging sensors. Some of the salient
4113 features of this research are:

4114 • Airborne SIF₇₆₀ derived from a narrow-band imaging sensor (5.8-nm FWHM) exhibited
4115 strong correlations with both ground-based and airborne sub-nanometer resolution SIF₇₆₀
4116 estimates, demonstrating its utility for stress-detection applications requiring the
4117 quantification of relative SIF₇₆₀ differences.

4118 • A modelling framework integrating SCOPE RTM and machine learning methods was
4119 proposed to scale the overestimated narrow-band SIF₇₆₀ levels to appropriate absolute levels,
4120 which allow the use of narrow-band quantified SIF₇₆₀ for applications that require SIF₇₆₀
4121 estimates in absolute physical units.

4122 • The inclusion of the depth quantity calculated at the Fraunhofer lines derived from sub-
4123 nanometer imagery (≤ 0.2 nm FWHM) around the two oxygen absorption bands improved the

4124 estimates of leaf nitrogen concentration as compared to standard methods based on SIF₇₆₀ and
4125 chlorophyll content.

4126 • The depth of individual Fraunhofer lines derived from sub-nanometer imagery demonstrated
4127 sensitivity to the different stages of disease progression caused by *Verticillium dahliae*
4128 infections. This finding lays the framework for further investigation into the utility of FLs for
4129 plant physiology monitoring applications.

4130

4131 **5.2 General conclusions**

4132 Hyperspectral imaging of SIF can be used as a proxy for vegetation stress and an indicator of
4133 crop photosynthetic activity for large-scale plant phenotyping and stress detection applications. The
4134 extremely low strength of the SIF signal (1-2% of the total incoming solar radiation) necessitates the
4135 use of sub-nanometer resolution sensors for its accurate estimation. Improving the spectral resolution
4136 of imaging sensors onboard airborne platforms has been a focus of technological development over
4137 the past decade, leading to the development of sub-nanometer resolution imaging sensors for accurate
4138 SIF quantification. However, their high cost and operational complexity prevent their widespread use
4139 in the context of precision agriculture, plant physiology monitoring and stress detection applications.

4140 Although a few theoretical studies have evaluated the impact of the spectral configuration of
4141 sensors on SIF accuracy, the literature lacks studies focusing on such assessments in practical
4142 applications with airborne hyperspectral imaging sensors. This thesis examined the applicability of
4143 cost-effective narrow-band imaging sensors as an alternative to sub-nanometer imaging sensors for
4144 the precise estimation of SIF₇₆₀ in physical units and absolute levels. In particular, the application of
4145 a modelling methodology integrating RTM and machine learning algorithms resulted in improved
4146 SIF₇₆₀ estimates derived from a narrow-band imaging sensor in absolute physical units. Improved leaf
4147 nitrogen estimates and the ability to differentiate between disease stages when detecting biotic-

4148 induced stress in infected vegetation were additional outcomes of an exploratory study designed to
4149 evaluate the prospects of using individual FL depths derived from the sub-nanometer imaging sensor.

4150 First, a dataset from three plant phenotyping experiments integrating narrow-band
4151 hyperspectral imagery, sub-nanometer imagery, field observations, and radiative transfer modelling
4152 demonstrated the reliability of narrow-band imagery for detecting relative SIF_{760} variability induced
4153 by variable nitrogen fertiliser application across a field. Strong significant correlations were found
4154 between SIF_{760} quantified by both narrow-band and sub-nanometer imaging sensors flown in tandem,
4155 demonstrating consistency across experimental wheat and maize phenotyping sites and airborne
4156 campaigns conducted at different times and flight altitudes, and in different years. Although strongly
4157 correlated with both ground-based and sub-nanometer resolution SIF_{760} estimates, the narrow-band
4158 imaging sensor yielded larger SIF_{760} estimates than the typical range of $0\text{--}3\text{ mW/m}^2/\text{nm/sr}$ expected
4159 from healthy vegetation. The effect of spectral configuration on SIF accuracy was observed in the
4160 elevated SIF_{760} values obtained from the narrow-band imagery. This limits the applicability of
4161 narrow-band SIF_{760} levels to only those investigations that require relative assessment of SIF
4162 variability in the field. However, if the overestimated narrow-band SIF_{760} estimates are readjusted to
4163 appropriate absolute physical levels via modelling, narrow-band imaging sensor's low cost and light
4164 weight could enable the operational collection of high-spatial resolution fluorescence data for diverse
4165 applications. The next part of this thesis was therefore focused on improving the absolute SIF_{760} levels
4166 derived from narrow-band imaging sensors using modelling methods based on the integration of
4167 machine learning and radiative transfer models.

4168 Since plant pigments and canopy structure greatly affect TOC SIF, there was a need for
4169 research into the role that leaf-biochemical and structural traits might play in improving narrow-band
4170 SIF_{760} estimations. Of the seven-leaf biochemical and structural traits evaluated using simulated data
4171 corresponding to resolutions ranging from 2–6 nm FWHM, C_{a+b} , LAI, and $LIDF_a$ showed the highest
4172 sensitivity for estimating SIF_{760} at 1-nm FWHM. Incorporating leaf biochemical and structural traits

4173 could be a useful strategy for enhancing the interpretation of relative SIF₇₆₀ levels derived from
4174 narrow-band imaging sensors, as evidenced by validations performed for the two airborne datasets
4175 with simultaneously acquired sub-nanometer resolution airborne data with a RMSE of 4.5–16%.
4176 Extensive validations conducted for SCOPE-simulated datasets corresponding to other resolutions
4177 ranging from 2–6 nm demonstrated consistency with the results obtained from the narrow-band
4178 imaging sensor, illustrating the robustness of the modelling approach.

4179 The concluding work for this thesis focused on an exploratory analysis of the prospects of
4180 individual Fraunhofer lines derived from sub-nanometer imagery, which had not been explored to
4181 date and could potentially yield important insights into the physiological status of vegetation. It was
4182 demonstrated that incorporating the depths of two distinct FLs proximal to oxygen absorption features
4183 improved leaf nitrogen estimations, as compared to recently proposed approaches involving RTM-
4184 derived leaf-biochemical constituents and SIF₇₆₀. Furthermore, the activation of separate FLs in the
4185 red and far-red spectral range was found to be correlated with three stages of disease progression due
4186 to *Verticillium dahliae* infections. The O₂-B feature, one red FL, and one far-red FL were all found to
4187 be sensitive for the early, intermediate, and all stages. As the level of disease stress increased from
4188 early to intermediate and from intermediate to all, more FLs became sensitive for differentiating
4189 symptomatic from asymptomatic trees.

4190 The first results from this exploratory research suggest that it would be worthwhile to dive
4191 deeper into the potential benefits of these narrow FLs, in particular by quantifying the SIF associated
4192 with specific FLs, in order to better understand and manage the factors that influence plant health.
4193 This is particularly important in the context of stress detection and plant physiology monitoring
4194 applications using airborne imaging sensors. In such studies, SIF₇₆₀ has typically been used as a proxy
4195 for stress. However, the need for accurate characterisation of atmospheric effects in the O₂-A
4196 absorption region introduces uncertainties into the retrieval of SIF₇₆₀. Since pure FLs are insensitive
4197 to atmospheric effects, quantifying SIF at individual FLs provides an appealing alternative to the use

4198 of SIF₇₆₀. However, it remains challenging to achieve the high SNR needed for accurate SIF
4199 estimation with FLD-based approaches at such narrow absorption features.

4200

4201 **5.3 Limitations**

4202 This research has the following limitations:

- 4203 • Narrow-band SIF₇₆₀ estimates were compared to ground-based and airborne sub-nanometer
4204 SIF₇₆₀ estimates at plant phenotyping experimental sites growing wheat and maize under
4205 nutritional variability. Further research is needed to evaluate the robustness of narrow-band
4206 SIF₇₆₀ quantification in complex heterogenous canopies due to the potentially increased
4207 effects of shadows and within-crown multiple scattering processes.
- 4208 • Due to the use of SCOPE RTM, which is a one-dimensional model, the narrow-band SIF₇₆₀
4209 scaling methodology cannot be readily applied to complex heterogeneous canopies. Further
4210 validation is required for complex canopies using 3-D modelling approaches.
- 4211 • Narrow-band SIF₇₆₀ estimates were scaled using a modelling strategy that involved creating
4212 RTM-based simulated training datasets that reflected the actual field conditions observed at a
4213 given study site. As a result, the trained model is not transferable to new environments due to
4214 a lack of generalisation capabilities.
- 4215 • The need for accurate characterisation of the shape of distinct narrow Fraunhofer line
4216 absorption features in the solar irradiance spectrum prevents the quantification of SIF
4217 corresponding to distinct narrow Fraunhofer lines, so this research used the depth of the
4218 Fraunhofer lines as proxy for SIF.

4219

4220

4221 **5.4 Future directions**

4222 The following are some possible avenues for additional research:

- 4223 • To better understand how canopy structure, plant physiological status, and meteorological
4224 factors influence narrow-band SIF₇₆₀ levels and its relationship with sub-nanometer SIF₇₆₀
4225 estimates, large-scale airborne campaigns could be conducted over a variety of canopies under
4226 varying physiological and environmental conditions. Such assessment is particularly
4227 important for canopies impacted by biotic- and abiotic-induced stress.
- 4228 • More research is needed to identify a methodology based on three-dimensional RTMs to
4229 properly characterise heterogenous canopies that will enable understanding of the impact of
4230 the clumping effect in the context of scaling narrow-band SIF₇₆₀ estimates.
- 4231 • Developing a novel retrieval method targeting SIF estimation at distinct Fraunhofer lines
4232 found to be sensitive for biotic and abiotic stress detection.
- 4233 • Evaluating the capability of SIF derived from distinct Fraunhofer lines detected from sub-
4234 nanometer resolution airborne imagery to distinguish between pre-visual biotic- and abiotic-
4235 induced stress.

4236

4237

4238

4239

4240

4241

4242

4243

4244 **Appendices**

4245

4246 **Appendix A: Supplementary Material for Chapter-2**

4247

4248

Table A-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model.

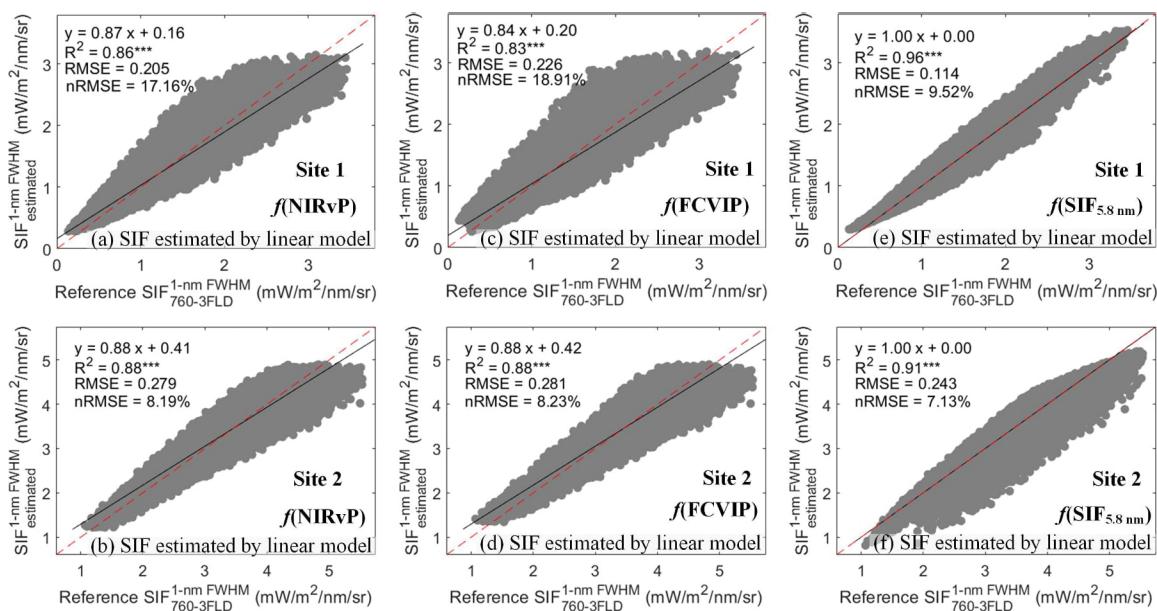
Parameter	Definition	Range/Value	Unit
FLUSPECT			
C_{ab}	Leaf chlorophyll concentration	10–50	$\mu\text{g}\cdot\text{cm}^{-2}$
C_{ca}	Leaf carotenoid concentration	2.5–12.5 ($C_{ab}/4$)	$\mu\text{g}\cdot\text{cm}^{-2}$
C_{dm}	Leaf dry matter content	0.001–0.05	$\text{g}\cdot\text{cm}^{-2}$
C_w	Equivalent water thickness in leaves	0.001–0.05	cm
C_s	Leaf senescence parameters	0	-
C_{ant}	Anthocyanin content	1	$\mu\text{g}\cdot\text{cm}^{-2}$
N	Leaf structure parameter	1.2–1.8	-
ρ (thermal)	Broadband leaf thermal reflectance	0.01	-
τ (thermal)	Broadband leaf thermal transmittance	0.01	-
Leaf biochemical			
V_{cmo}	Maximum carboxylation capacity	20–120	$\mu\text{mol}\cdot\text{m}^{-2}\text{ s}^{-1}$
m	Ball-Berry stomatal parameter (slope)	8	-
B_0	Ball-Berry stomatal parameter (intercept)	0.01	-
Type	Photochemical pathway	0 (C3)	-
K_v	Extinction coefficient for vertical V_{cmo} profile	0.64	-
$Rdparam$	Parameter for dark respiration	0.015	-
$Tyear$	Mean annual temperature	15	°C
β	Fraction of photons partitioned to PSII	0.51	-
$kNPQs$	Rate constant of sustained thermal dissipation	0	s^{-1}
q_{Ls}	Fraction of functional reaction centers	1	-
stress factor	Stress factor to reduce V_{cmo}	1	-
Fluorescence			
fqe	Fluorescence quantum yield efficiency at photosystem level	0.001–0.015	-
Soil			
spectrum	Type of soil reflectance spectrum	1 (type 1)	-
rss	Soil resistance for evaporation from the pore space	500	$\text{s}\cdot\text{m}^{-1}$
rst	Broadband soil thermal reflectance	0.06	-
cs	Specific heat capacity of the soil	1180	$\text{J}\cdot\text{kg}^{-1}\cdot\text{K}^{-1}$
ρ_s	Specific mass of the soil	1800	$\text{kg}\cdot\text{m}^{-3}$
λ_s	Heat conductivity of the soil	1.55	$\text{J}\cdot\text{m}^{-1}\cdot\text{K}^{-1}$

SMC	Volumetric soil moisture content in the root zone	25	-
BSMBrightness	BSM model parameter for soil brightness	0.5	-
BSMlat	BSM model parameter 'lat'	25	-
BSMlon	BSM model parameter 'long'	45	-
Canopy			
LAI	Leaf area index	2–6	$\text{m}^2 \cdot \text{m}^{-2}$
hc	Vegetation height	2	m
LIDF _a	Leaf inclination parameter for the mean leaf zenith angle	-1–0	-
LIDF _b	Bimodality of the leaf angle distribution	0	-
leafwidth	Leaf width	0.1	m
Meteorological			
z	Measurement height of meteorological data	5	m
Rin	Broadband incoming shortwave radiation (0.4–2.5 μm)	600–1000	$\text{W} \cdot \text{m}^{-2}$
Ta	Air temperature	19.2*	$^{\circ}\text{C}$
Rli	Broadband incoming longwave radiation	300	$\text{W} \cdot \text{m}^{-2}$
p	Air pressure	1002.8*	hPa
ea	Atmospheric vapor pressure	15	hPa
u	Wind speed at height z	2	$\text{m} \cdot \text{s}^{-1}$
C _a	Atmospheric CO ₂ concentration	410	ppm
O _a	Atmospheric O ₂ concentration	209	per mile
Angles			
tts	Solar zenith angle	35.42	deg.
tto	Observation zenith angle	0	deg.
ψ	Azimuthal difference between solar and observation angle	0	deg.

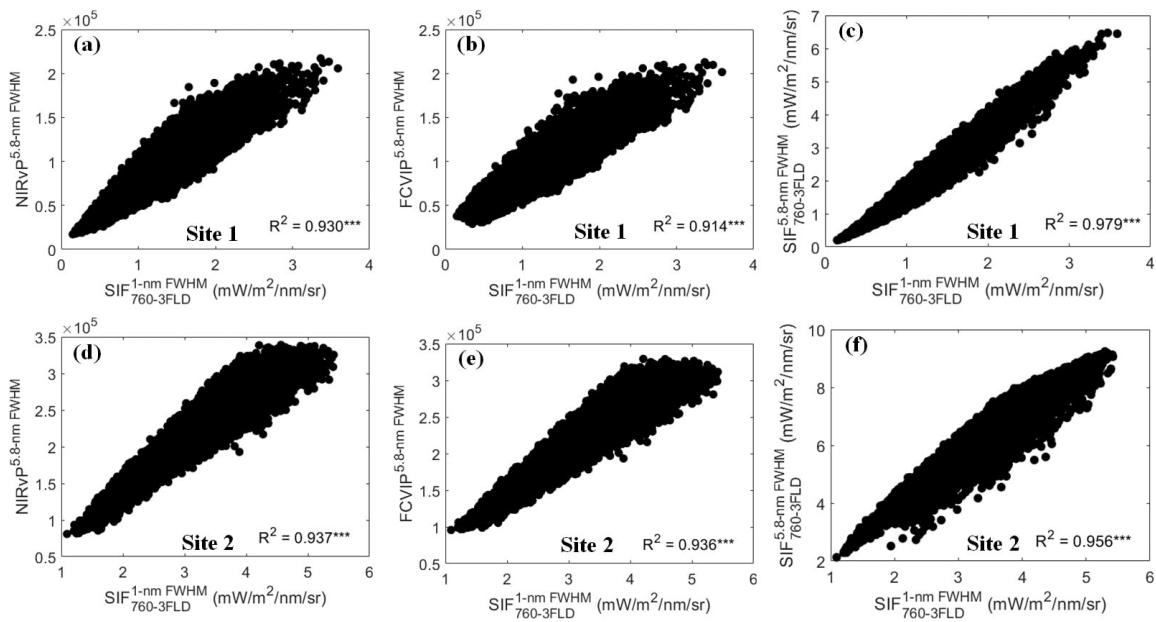
*Meteorological variables retrieved from portable weather station during the airborne campaign

4249 Appendix B: Supplementary Material for Chapter-3

4250
4251 We assessed the feasibility of using narrow-band derived FCVIP and NIRvP as predictor
4252 variables for estimating SIF₇₆₀ at 1-nm FWHM using SCOPE-simulated datasets. The method
4253 consisted of building two linear models with NIRvP and FCVIP as the predictor variables to estimate
4254 SIF₇₆₀ at 1-nm FWHM from 5.8-nm FWHM data (denoted Simulated Dataset-3_{site 1} and Simulated
4255 Dataset-3_{site 2} in this study). The performance of these linear models was then validated using another
4256 independent dataset (Simulated Dataset-4) for both sites and then compared with that of the linear
4257 models built using SIF_{760-3FLD} at 5.8-nm FWHM as the predictor variable. PAR was estimated by
4258 spectrally integrating irradiance spectra at 1-nm FWHM from 400–700 nm to replicate field
4259 conditions. In this assessment, the linear model built using SIF_{760-3FLD} at 5.8-nm FWHM
4260 outperformed the two linear models based on NIRvP and FCVIP (Fig. B-1). The differences in model
4261 performance may be attributed to the stronger correlation between 1-nm FWHM SIF_{760-3FLD} and 5.8-
4262 nm FWHM SIF_{760-3FLD} than NIRvP and FCVIP calculated at 5.8-nm FWHM (Fig. B-2).



4263 **Fig. B-1.** Relationships between the SIF_{760-3FLD} at the default 1-nm FWHM simulated by SCOPE
4264 (used here as the reference SIF) and the SIF₇₆₀ estimated at 1-nm FWHM by the linear model using
4265 NIRvP (a, b), FCVIP (c, d) and SIF_{760-3FLD} at 5.8-nm FWHM (e, f) as the predictor for SCOPE-
4266 simulated test datasets corresponding to Site 1 and Site 2. The red dashed and black solid lines depict
4267 the 1:1 line and regression line, respectively. ***p-value < 0.001.



4268 **Fig. B-2.** Relationships between SCOPE-derived SIF_{760-3FLD} at 1-nm and NIRvP (a, d), FCVIP (b, e)
4269 and SCOPE-derived SIF_{760-3FLD} (c, f) at 5.8-nm for simulated training datasets corresponding to Site
4270 1 and Site 2.

4271

Table B-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model.

Parameter	Definition	Range/Value		Unit
		Site 1	Site 2	
FLUSPECT				
C _{a+b}	Leaf chlorophyll concentration	10–70	40–80	µg·cm ⁻²
C _{ca}	Leaf carotenoid concentration	1–20	1–20	µg·cm ⁻²
C _{dm}	Leaf dry matter content	0.001–0.05	0–0.001	g·cm ⁻²
C _w	Equivalent water thickness in leaves	0.001–0.05	0.001–0.05	cm
C _s	Leaf senescence parameters	0	0	-
C _{ant}	Anthocyanin content	0–8	0–8	µg·cm ⁻²
N	Leaf structure parameter	1–1.5	1–2.5	-
ρ(thermal)	Broadband leaf thermal reflectance	0.01	0.01	-
τ(thermal)	Broadband leaf thermal transmittance	0.01	0.01	-
Leaf biochemical				
V _{cmax}	Maximum carboxylation capacity	30–110	40–250	µmol·m ⁻² s ⁻¹
m	Ball-Berry stomatal parameter (slope)	8	8	-
B ₀	Ball-Berry stomatal parameter (intercept)	0.01	0.01	-

Type	Photochemical pathway	0	0	-
K_v	Extinction coefficient for vertical V_{cmax} profile	0.64	0.64	-
Rdparam	Parameter for dark respiration	0.015	0.015	-
Tyear	Mean annual temperature	15	15	°C
β	Fraction of photons partitioned to PSII	0.51	0.51	-
kNPQs	Rate constant of sustained thermal dissipation	0	0	s^{-1}
qLs	Fraction of functional reaction centers	1	1	-
stress factor	Stress factor to reduce V_{cmax}	1	1	-

Fluorescence

fqe	Fluorescence quantum yield efficiency at photosystem level	0.01	0.01	-
-----	--	------	------	---

Soil

spectrum	Type of soil reflectance spectrum	1	1	-
rss	Soil resistance for evaporation from the pore space	500	500	$s \cdot m^{-1}$
r_{st}	Broadband soil thermal reflectance	0.06	0.06	-
cs	Specific heat capacity of the soil	1180	1180	$J \cdot kg^{-1} \cdot K^{-1}$
ρ_s	Specific mass of the soil	1800	1800	$kg \cdot m^{-3}$
λ_s	Heat conductivity of the soil	1.55	1.55	$J \cdot m^{-1} \cdot K^{-1}$
SMC	Volumetric soil moisture content in the root zone	25	25	-
BSMBrightness	BSM model parameter for soil brightness	0.5	0.5	-
BSMlat	BSM model parameter 'lat'	25	25	-
BSMlon	BSM model parameter 'long'	45	45	-

Canopy

LAI	Leaf area index	0.5–5	2–6	$m^2 \cdot m^{-2}$
hc	Vegetation height	1.2	1.2	m
LIDF _a	Leaf inclination parameter for the mean leaf zenith angle	-1–1	-1–1	-
LIDF _b	Bimodality of the leaf angle distribution	0	0	-
leafwidth	Leaf width	0.07	0.07	m

Meteorological

z	Measurement height of meteorological data	5	5	m
Rin	Broadband incoming shortwave radiation (0.4–2.5 μm)	700	900	$W \cdot m^{-2}$

Ta	Air temperature	19.2*	25.3*	°C
Rli	Broadband incoming longwave radiation	300	300	W·m ⁻²
p	Air pressure	1002.8*	1003.6*	hPa
ea	Atmospheric vapor pressure	15	15	hPa
u	Wind speed at height z	2	2	m·s ⁻¹
C _a	Atmospheric CO ₂ concentration	380	380	ppm
O _a	Atmospheric O ₂ concentration	209	209	per mile

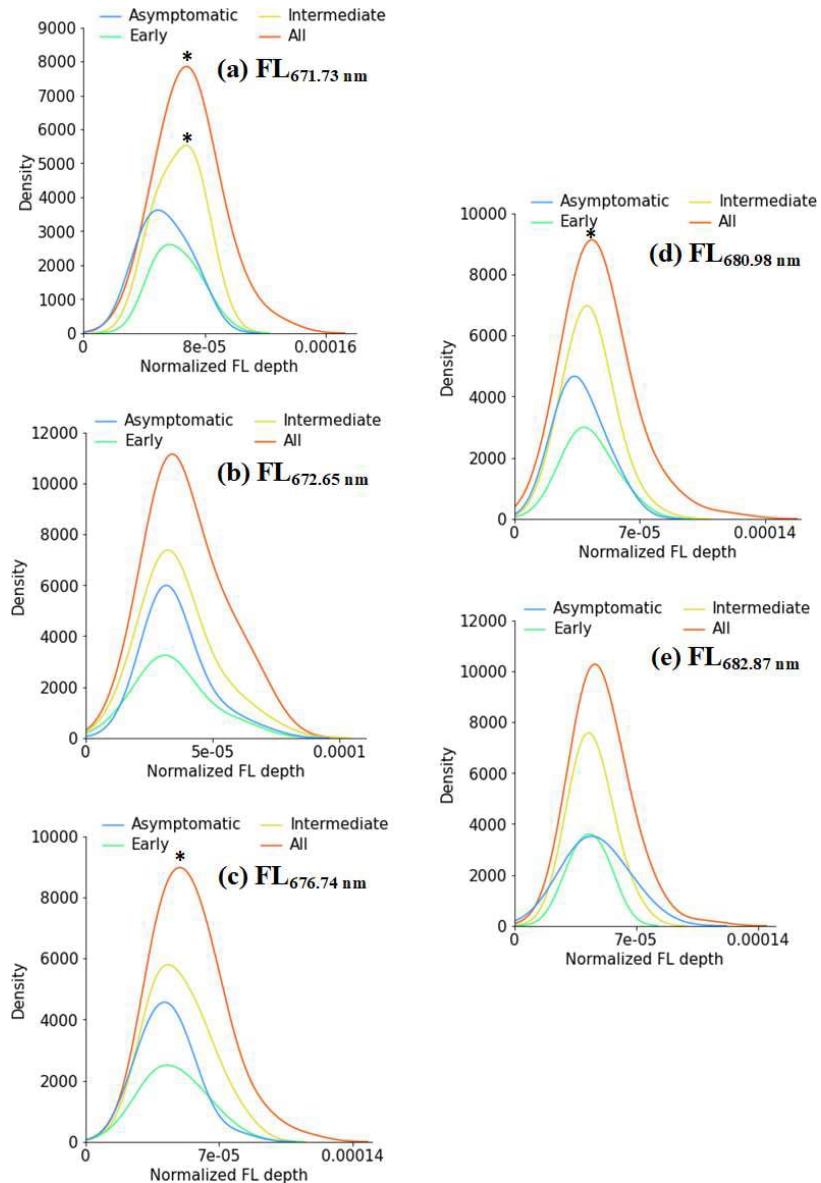
Angles

tts	Solar zenith angle	35.42	34.93	deg.
tto	Observation zenith angle	0	0	deg.
ψ	Azimuthal difference between solar and observation angle	0	0	deg.

*Meteorological variables retrieved from portable weather station during the airborne campaign

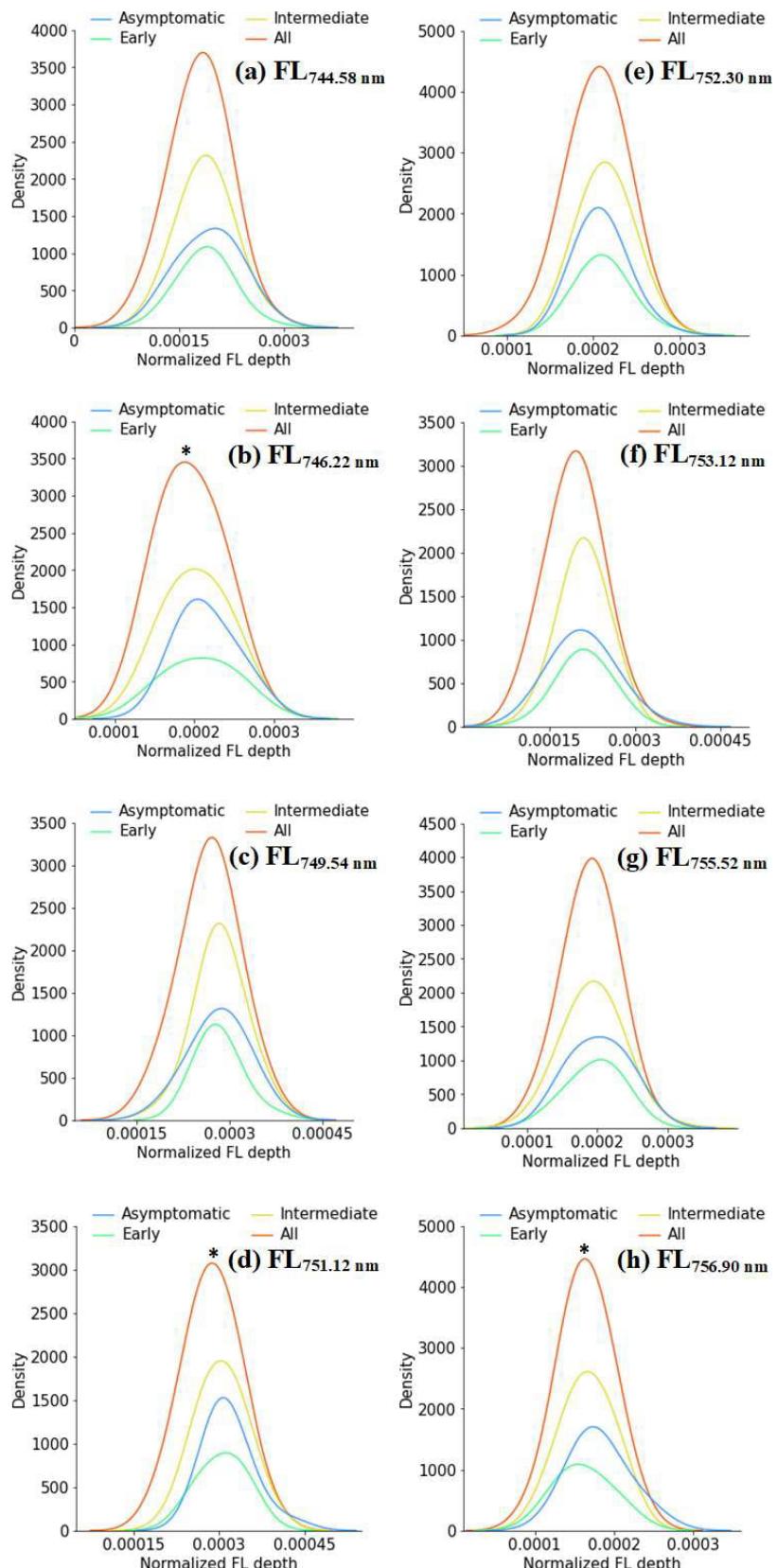
4272 Appendix C: Supplementary Material for Chapter-4

4273



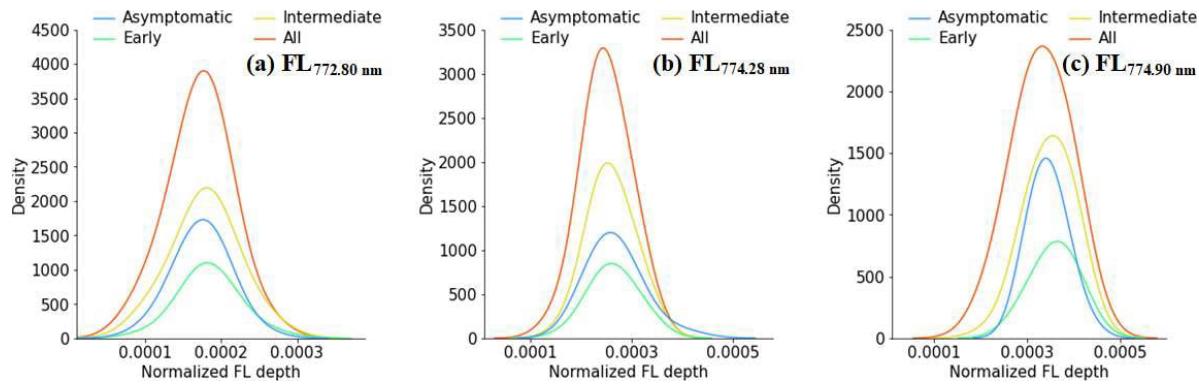
4274

4275 **Fig. C-1.** Histograms for the assessment of the relationship between asymptomatic trees and those in
4276 the three stages of disease progression for the absorption feature depths corresponding to red FLs.
4277 Asterisks indicate significant differences from the asymptomatic trees according to Dunnett's test at
4278 $\alpha < 0.05$.



4279

4280 **Fig. C-2.** Histograms for the assessment of the relationship between asymptomatic trees and those in
 4281 the three stages of disease progression for the absorption feature depths corresponding to first far-red
 4282 FLs group. Asterisks indicate significant differences from the asymptomatic trees according to
 4283 Dunnett's test at $\alpha < 0.05$.

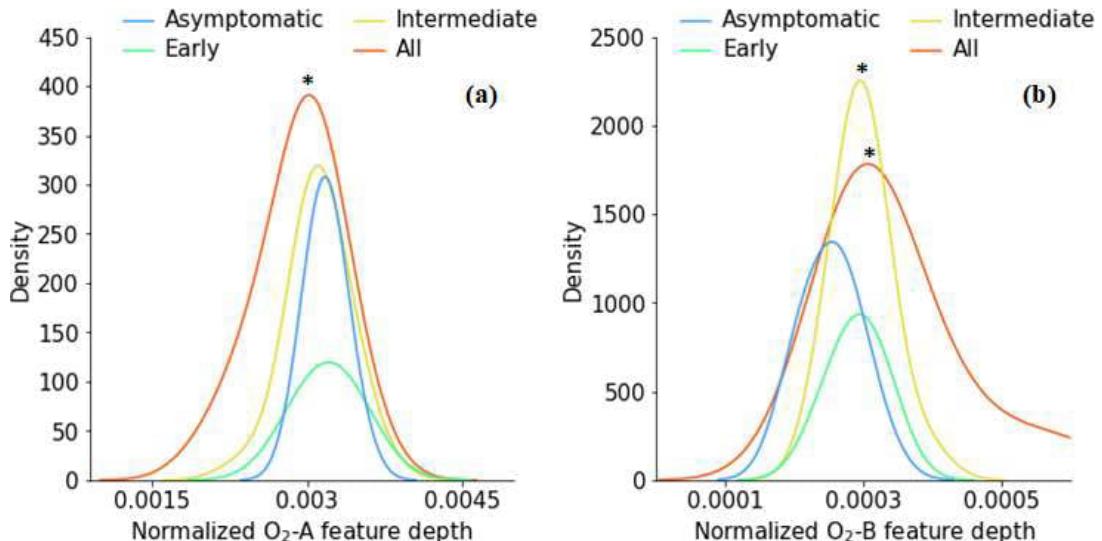


4284

4285 **Fig. C-3.** Histograms for the assessment of the relationship between asymptomatic trees and those in
 4286 the three stages of disease progression for the absorption feature depths corresponding to second far-
 4287 red FLs group.

4288

4289



4290

4291 **Fig. C-4.** Histograms for the assessment of the relationship between asymptomatic trees and those in
 4292 the three stages of disease progression for the absorption feature depths corresponding to the two
 4293 oxygen absorption features. Asterisks indicate significant differences from the asymptomatic trees
 4294 according to Dunnett's test at $\alpha < 0.05$.

Appendix D: Journal paper for Chapter-2

This appendix contains the author-accepted manuscript of the Remote Sensing of Environment paper used for Chapter 2. Below is the bibliographic detail.

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J., 2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping. *Remote Sens. Environ.* 273, 112986.
<https://doi.org/10.1016/j.rse.2022.112986>.

Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: Modelling and validation in the context of plant phenotyping

A. Belwalkar ^a, T. Poblete ^a, A. Longmire ^b, A. Hornero ^{c,d}, R. Hernandez-Clemente ^d, P. J. Zarco-Tejada ^{a,b,c,*}

^a Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), University of Melbourne, Melbourne, Victoria, Australia

^b School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences (FVAS), University of Melbourne, Melbourne, Victoria, Australia

^c Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain

^d Department of Geography, Swansea University, SA2 8PP Swansea, United Kingdom

ARTICLE INFO

Editor: Jing M. Chen

Keywords:

Solar-induced chlorophyll fluorescence
SIF
Plant phenotyping
Stress detection
Airborne
Hyperspectral
Hyperspectral imager

ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) can be used as an indicator of crop photosynthetic activity and a proxy for vegetation stress in plant phenotyping and precision agriculture applications. SIF quantification is sensitive to the spectral resolution (SR), and its accurate retrieval requires sensors with sub-nanometer resolutions. However, for accurate SIF quantification from imaging sensors onboard airborne platforms, sub-nanometer imagers are costly and more difficult to operate than the commonly available narrow-band imagers (i.e., 4- to 6-nm bandwidths), which can also be installed on drones and lightweight aircraft. Although a few theoretical and experimental studies have evaluated narrow-band spectra for SIF quantification, there is a lack of research focused on comparing the effects of the SR on SIF from airborne hyperspectral imagers in practical applications. This study investigates the effects of SR and sensor altitude on SIF accuracy, comparing SIF quantified at the 760-nm O₂-A band (SIF₇₆₀) from two hyperspectral imagers with different spectral configurations (full width at half-maximum resolutions of 0.1–0.2 nm and 5.8 nm) flown in tandem on board an aircraft. SIF₇₆₀ retrievals were compared from two different wheat and maize phenotyping trials grown under different nitrogen fertilizer application rates over the 2019–2021 growing seasons. SIF₇₆₀ from the two sensors were correlated ($R^2 = 0.77\text{--}0.9$, $p < 0.01$), with the narrow-band imager producing larger SIF₇₆₀ estimates than the sub-nanometer imager (root mean square error (RMSE) 3.28–4.69 mW/m²/nm/sr). Ground-level SIF₇₆₀ showed strong relationships with both sub-nanometer ($R^2 = 0.90$, $p < 0.001$, RMSE = 0.07 mW/m²/nm/sr) and narrow-band ($R^2 = 0.88$, $p < 0.001$, RMSE = 3.26 mW/m²/nm/sr) airborne retrievals. Simulation-based assessments of SIF₇₆₀ for SRs ranging from 1 to 5.8 nm using the SCOPE model were consistent with experimental results showing significant relationships among SIF₇₆₀ quantified at different SRs. Predictive algorithms of leaf nitrogen concentration using SIF₇₆₀ from either the narrow-band or sub-nanometer sensor yielded similar performance, supporting the use of narrow-band resolution imagery for assessing the spatial variability of SIF in plant phenotyping, vegetation stress detection and precision agriculture contexts.

1. Introduction

Solar radiation reaching a plant canopy cannot be fully utilized for photosynthesis, and the resulting excess radiation is partly re-emitted as a weak electromagnetic signal termed solar-induced chlorophyll fluorescence (SIF) (see a full review on SIF in Mohammed et al., 2019). SIF

flux originates from photosystem II (PSII) and has a spectral range of 650–800 nm with one peak at 685 nm (SIF₆₈₅) and a second peak at 740 nm (SIF₇₄₀). The SIF energy dissipation pathway directly competes with the PSII photochemistry and heat dissipation (Krause and Weis, 1984; Lichtenthaler and Rinderle, 1988). Thus, SIF is a proxy for plant photosynthetic rate, which may be related to plant stress levels (Genty

* Corresponding author at: Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), University of Melbourne, Melbourne, Victoria, Australia.

E-mail address: pablo.zarco@unimelb.edu.au (P.J. Zarco-Tejada).

<https://doi.org/10.1016/j.rse.2022.112986>

Received 20 August 2021; Received in revised form 28 February 2022; Accepted 2 March 2022
0034-4257/© 2022 Elsevier Inc. All rights reserved.

et al., 1989; Weis and Berry, 1987; Zarco-Tejada et al., 2016). However, SIF emitted from the canopy constitutes a small fraction (1–5%) of the total reflected solar radiation, making it difficult to quantify (Meroni et al., 2009).

Specialized algorithms are necessary for decoupling SIF from total reflected solar radiation. These algorithms are classified based on whether SIF is retrieved within specific absorption bands or over the whole SIF emission region (Mohammed et al., 2019). Most methods utilize discrete solar or telluric absorption lines of the solar spectrum, where the contribution of SIF to the total radiance signal is relatively higher. The terrestrial oxygen absorption bands (O₂-A and O₂-B) centred around 760 nm and 687 nm, respectively, are broader and deeper than the other absorption features and, therefore, commonly used for quantifying SIF (Meroni et al., 2009). The fluorescence *in-filling* method, based on the Fraunhofer Line Depth (FLD) principle (Plascky, 1975), depends on a few discrete spectral bands inside and outside the oxygen absorption features and is the most widely used method for SIF retrieval due to its ease of implementation. By contrast, spectral fitting methods (SFMs) model the fluorescence and reflectance spectrum by spectral curve fitting, utilizing all the contiguous wavelengths within a fixed spectral window mostly centred around oxygen absorption bands (Meroni et al., 2010; Meroni and Colombo, 2006).

The earliest attempt to incorporate leaf fluorescence into a radiative transfer model (RTM) was the Fluorescence–Reflectance–Transmittance (FRT) model (Zarco-Tejada et al., 2000a, 2000b). This attempt led to the development of the leaf model FluorMODleaf (Pedrós et al., 2008) and a canopy-level RTM named FluorSAIL (Verhoef, 2004). These models prompted the development of an integrated, vertical, one-dimensional, leaf-canopy fluorescence–temperature–photosynthesis model named Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol et al., 2009), which is widely used to assess the linkage between fluorescence–reflectance and photosynthesis (Camino et al., 2019; Celesti et al., 2018; Verhoef et al., 2018). SCOPE simulates top-of-canopy radiance, chlorophyll fluorescence and reflectance for homogeneous canopies. It has been used to quantify the effects of the leaf biochemistry, maximum carboxylation rate (V_{max}), and canopy structure on apparent reflectance, including fluorescence effects. Recently, three-dimensional canopy RTMs integrating fluorescence have been developed, such as FluorFLIGHT (Hernández-Clemente et al., 2017), the Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao et al., 2016), and the Discrete Anisotropic Radiative Transfer (DART) model (Gastelli-Etchegorry et al., 2017). These models simulate scattering within the canopy components and thus account for canopy structural heterogeneity.

The earliest experiments involving ground-based sub-nanometer-resolution spectrometers quantified SIF at both leaf (Meroni and Colombo, 2006) and canopy levels (Pérez-Priego et al., 2005), detecting herbicide- and water-induced stress, respectively. The development of sub-nanometer-resolution hyperspectral sensors in the past decade has enabled SIF retrievals from airborne platforms. Sensors include the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg et al., 2018), the high-resolution airborne imaging spectrometer HyPlant (Rascher et al., 2015), and the Hyperspec High-Resolution Chlorophyll Fluorescence Sensor (Headwall Photonics, Fitchburg, MA, USA) (Belwalkar et al., 2021) with spectral resolutions (SRs) of 0.1, 0.28 and 0.1–0.2 nm, respectively. Sub-nanometer-resolution SIF observations at the global scale are available from satellite sensors such as OCO-2 (Orbiting Carbon Observatory-2) (Frankenberg et al., 2014), GOSAT (Greenhouse gases Observing SATellite) (Guanter et al., 2012), and TROPOMI (TROPOspheric Monitoring Instrument) (Guanter et al., 2015) with spatial resolutions of 1.29 km × 2.25 km, 50 km × 50 km and 5.5 km × 3.5 km, respectively. The European Space Agency is also set to launch the Fluorescence EXplorer (FLEX) (Drusch et al., 2017) in 2024, a mission solely dedicated to measuring SIF at a high SR of 0.3 nm across the globe at 300-m spatial resolution.

As a result of these technical and methodological advances, SIF is

frequently used for monitoring crop photosynthesis. SIF is measured from a variety of platforms, including ground-based spectrometers (Cogliati et al., 2015; Daumard et al., 2012; Grossmann et al., 2018; Kim et al., 2021; Li et al., 2020; Pérez-Priego et al., 2005; Rossini et al., 2016), drones and manned aircraft (Bandopadhyay et al., 2019; Damm et al., 2014, 2015; Siegmann et al., 2019; Tagliabue et al., 2020; Zarco-Tejada et al., 2012, 2013a) and satellite platforms (Frankenberg et al., 2014; Guanter et al., 2012, 2015). SIF observations at intermediate scales obtained from airborne platforms are important for i) improving the interpretation of SIF at coarser spatial resolutions and thus bridging the gap between field and global scales, ii) disentangling the contribution of different scene components in aggregated pixels (Hornero et al., 2021a; Zarco-Tejada et al., 2013b), and iii) evaluating the sensitivity of SIF for describing plant physiological processes at high spatial resolutions (e.g., as an early indicator of biotic and abiotic stress in precision agriculture and forestry).

Modelling studies (Damm et al., 2011; Liu et al., 2015) of FLD-based SIF retrieval have shown that sensor SR and the signal-to-noise ratio (SNR) (collectively accounting for more than 80% of the retrieval error) strongly affect SIF measurement accuracy. Several studies have demonstrated the potential of sub-nanometer airborne hyperspectral imagers for precise SIF quantification in a variety of contexts, including estimating gross primary productivity (GPP) (Wieneke et al., 2016), validating satellite-based SIF retrievals (Sun et al., 2017), assessing the physiological effects of age on loblolly pine forest (Colombo et al., 2018) and quantifying functional diversity of terrestrial ecosystems (Tagliabue et al., 2020). Although sub-nanometer-resolution imaging sensors are recommended for obtaining absolute measurements of SIF, relative SIF measurements from narrow-band sensors are useful in a variety of settings, including water stress detection (Camino et al., 2018a; Panigada et al., 2014; Zarco-Tejada et al., 2012), plant phenotyping (Camino et al., 2019, 2018b; Gonzalez-Dugo et al., 2015), biotic-induced stress detection (Calderón et al., 2015, 2013; Hernández-Clemente et al., 2017; Hornero et al., 2021b; Poblete et al., 2020, 2021; Zarco-Tejada et al., 2018) and linking canopy-level SIF₇₆₀ and GPP using sensors such as the Airborne Prism Experiment (APEX) with a full width at half-maximum resolution (FWHM) of 5.7 nm over perennial grassland, cropland and mixed temperate forest (Damm et al., 2015). In these studies, the reported higher levels of the quantified SIF₇₆₀ were consistent with other modelling and experimental studies (Julitta et al., 2016; Nakashima et al., 2021; Nichol et al., 2019; Süß et al., 2016).

The impacts of SR on FLD-based SIF retrievals have been previously assessed with models (Damm et al., 2011; Dechant et al., 2017; Hernández-Clemente et al., 2017; Liu et al., 2015) and experiments (Julitta et al., 2016). Julitta et al. (2016) compared SIF retrievals at both the O₂-A and O₂-B bands using four portable field spectrometers with different spectral sampling intervals (SSIs), SRs, and SNRs simultaneously measuring the same vegetation target. SIF estimates at the O₂-A band from three of the four spectrometers with sub-nanometer resolution (FWHM \leq 1 nm) were consistent with the expected ranges from ground-based SIF observations over lawn grassland reported by Rossini et al. (2016). In contrast, the average SIF from the coarsest-resolution spectrometer (FWHM = 5.5 nm) was six times higher than the values obtained from the other three spectrometers, reaching values above 4 mW/m²/nm/sr. Our study expands on this previous work by assessing the effects of SR and flight altitude on airborne-based SIF retrievals, which are commonly used in precision agriculture applications. This is, to the best of our knowledge, the first study to do so. Aspects regarding the effects of the atmosphere, flight altitude, and performance of imaging sensors on SIF retrievals need to be studied in addition to the theoretical work and the assessments carried out using close-range spectrometer data.

The need for sub-nanometer imagers for the accurate quantification of SIF brings important challenges in precision agriculture, plant phenotyping and biosecurity applications due to their complexity, higher cost and increased operational difficulties. Standard narrow-band

hyperspectral imagers (i.e., with SR in the range of 4–6 nm FWHM) are an appealing alternative that are increasingly being used with drones and lightweight aircraft to collect high-spatial-resolution imagery (Aasen et al., 2018). However, it is unclear how useful SIF₇₆₀ estimates from these imagers are for plant physiological assessments when compared to ground-based or sub-nanometer airborne SIF₇₆₀ estimates. Such assessment is critical, particularly when the relative quantification of fluorescence across the landscape could be readily used to detect biotic- and abiotic-induced vegetation stress. Empirical work is needed to evaluate whether SIF₇₆₀ retrievals from these narrow-band hyperspectral imagers are sufficient for detecting physiological stress in crops, relative to measurements from sub-nanometer instruments.

Monitoring crop nutrient status is one potentially important application of airborne SIF₇₆₀ quantification (Camino et al., 2018b; Wang et al., 2021). Accurate assessments of plant nutrition across a field can help to ensure crop yields by allowing for more efficient use of N-

fertilizers. Excessive N fertilizer application can result in the loss of reactive forms of N (ammonia, nitrate, and nitrogen oxides) to the environment, causing water pollution, climate forcing, and biodiversity loss. As a result, assessing crop response to N-fertilizers is critical for ensuring resource efficiency while optimizing yields.

In this study, we compared SIF₇₆₀ measured from a 5.8-nm FWHM narrow-band hyperspectral imager to a sub-nanometer hyperspectral imager of 0.1- to 0.2-nm FWHM flown in tandem at multiple sensor altitudes and across two wheat and maize trials grown under different nitrogen application rates and for three growing seasons. We validated airborne measures with sub-nanometer ground retrievals and evaluated results against SCOPE simulations. We then assessed the performance of sub-nanometer and narrow-band SIF₇₆₀ estimates for predicting nitrogen concentration using machine learning models. Our findings provide important insights that support the operational use of standard, commercially available narrow-band hyperspectral imagers for

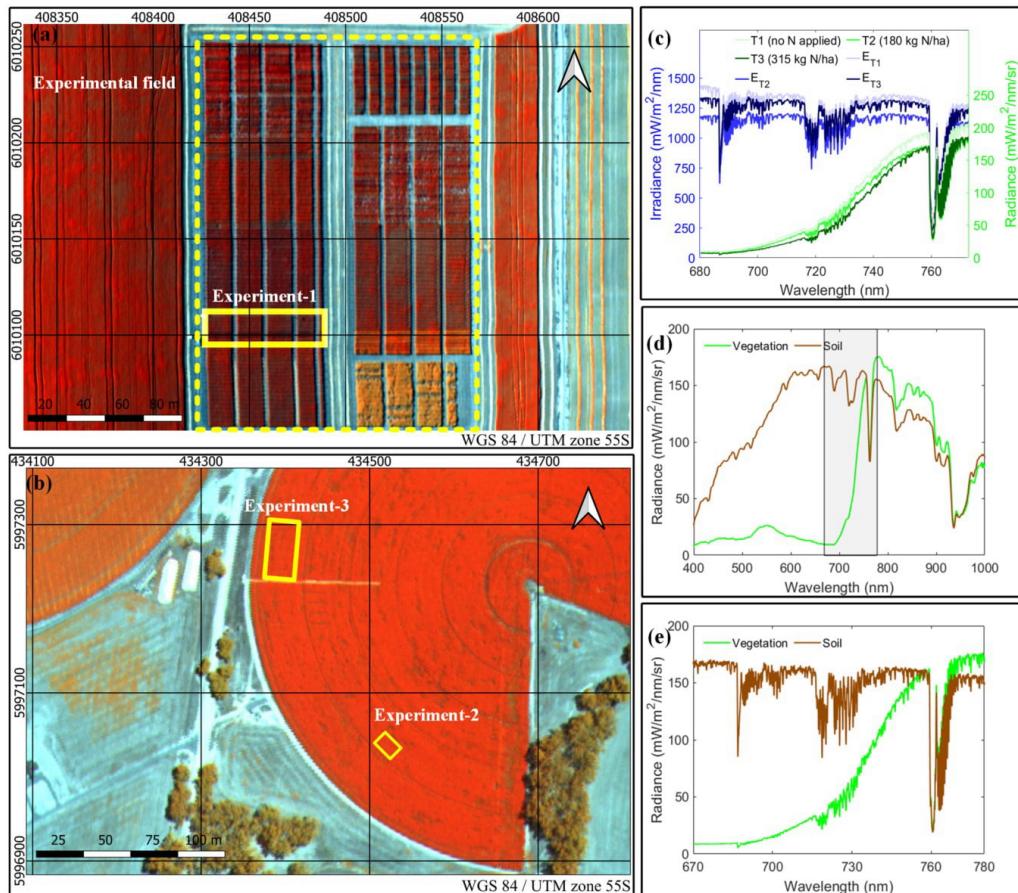


Fig. 1. Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the corresponding irradiance (E) spectra for experimental plots subjected to different nitrogen treatments at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band hyperspectral imager (d) and sub-nanometer hyperspectral imager (e) corresponding to the same vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). (b) was obtained with the sub-nanometer hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). The solid yellow boxes in (a) and (b) show the location of the plots across the three experiments and the dashed yellow box in (a) shows the location of plots across the entire field. The transparent grey box in (d) shows the spectral region covered by the sub-nanometer hyperspectral imager. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

quantifying relative SIF levels. This is especially important for precision agriculture and plant physiology monitoring purposes that require accurate assessment of the SIF variability within and across experimental fields.

2. Materials and methods

2.1. Study sites and field data collection

Experiments took place at two field trial sites in Victoria, Australia, in 2019, 2020 and 2021 (Fig. 1a and b). Experiment 1 was conducted over 15 plots of dryland wheat (cv. Scepter) (Yang et al., 2018) located at site 1 in Yarrawonga ($36^{\circ}02'55"S$, $145^{\circ}59'02"E$). Plots were 26 m^2 ($2\text{ m} \times 13\text{ m}$) and planted in May 2019. Plots were grown with five different rates of nitrogen fertilizer in the form of urea (46% N) (T1: 0 kg N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg N/ha). The surrounding areas were planted with several varieties of wheat grown under various physiological conditions and nitrogen fertilizer application rates (Fig. 1a).

Experiments 2 and 3 were conducted in 2020 and 2021 at site 2 in Peechelba East ($36^{\circ}10'04"S$, $146^{\circ}16'23"E$) over irrigated maize plots. Experiment 2 consisted of 8 plots and experiment 3 consisted of 20 plots. Plots were sown in October 2019 and October 2020 with two urea application rates for experiment 2 (T1: 207 kg N/ha, T2: 387 kg N/ha) and three for experiment 3 (T1: 0 kg N/ha, T2: 180 kg N/ha, T3: 315 kg N/ha). The plot sizes were 15 m^2 ($3\text{ m} \times 5\text{ m}$) for experiment 2 and 36 m^2 ($3\text{ m} \times 12\text{ m}$) for experiment 3. The climate at both field trial sites is humid subtropical (Cfa) according to the Köppen classification. At site 1, the mean annual temperature is 16.3°C and average rainfall is 559 mm. At site 2, the mean annual temperature is 15.2°C and average rainfall is 642 mm.

For experiment-3, field measurements of top-of-canopy (TOC) spectral radiances for the computation of ground-based SIF₇₆₀ were collected from all 20 plots on 20 January 2021 at midday from 11:45 to 16:30 solar time under clear sky conditions. TOC spectral radiance was measured using a 0.065-nm FWHM HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA). The total incoming irradiance was calculated using the radiance reflected from a white reference panel (Labsphere Inc., North Sutton, NH, USA) measured by the spectrometer. The spectral measurements were acquired from the nadir using bare optical fiber, with an angular field of view of 25° , mounted on a tripod of 2.5 m height. The vegetation targets were measured at a distance of 1 m above the canopy. Radiance measurements were recorded at five different locations within each plot and then averaged to reduce noise. Incident solar radiation was measured prior to radiance measurements, and radiance/irradiance measurements were completed within 3 min for each plot. Examples of radiance and irradiance measurements are shown in Fig. 1c, with visible differences in spectra associated with applied nitrogen rate.

A summary of the physiological measurements performed at each experiment is shown in Table 1. The growth stages during the airborne campaigns corresponded to i) grain filling (milking stage) for wheat in 2019, ii) dough stage for maize in 2020, and iii) silking stage for maize in 2021. A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was installed in the field for concurrent readings of meteorological conditions at the time of hyperspectral image acquisitions. For experiments 1 and 3, leaf measurements were carried out under field conditions, coincident with the airborne campaigns. For experiment 2, leaf measurements were performed 4 days prior to the airborne campaign under similar meteorological conditions (Table 1). Measurements were made on 10–15 leaves per plot for experiment 1 and 5–10 leaves per plot for experiments 2 and 3. Measurements were made on leaves at the top of the canopy at noon, under clear skies. Chlorophyll content, nitrogen balance index (NBI), flavonols and anthocyanin content were measured using a handheld Dualex leaf-clip sensor (FORCE-A, Orsay, France). Steady-state leaf fluorescence yield (F_t) was measured

using the FluorPen FP110-LM (Photon Systems Instruments, Drásov, Czech Republic) handheld fluorometer. Random samples of 10–15 leaves per plot for experiment 1 and 4–5 leaves per plot for experiments 2 and 3 from the top of the canopy were selected for determining the total N concentration (%) destructively in the laboratory, following the Kjeldahl method (Kjeldahl, 1883). To verify the impacts of fertilization rate on leaf physiological traits, measurements were evaluated using analysis of variance (ANOVA) followed by a Dunnett's test at $\alpha < 0.05$. In addition to the 15 plots at site 1, leaf-level measurements from more than 100 adjacent plots within the entire experimental field (dashed yellow box in Fig. 1a) were also conducted to investigate the intra-field variability.

2.2. Airborne hyperspectral campaigns

Airborne campaigns were conducted in 2019, 2020 and 2021 (Table 2), flying with the aircraft's heading on the solar plane. Two hyperspectral imagers were installed in tandem on a Cessna-172 aircraft operated by the HyperSens Laboratory, University of Melbourne's Airborne Remote Sensing Facility. The first hyperspectral imager was a Hyperspec VNIR E-Series model (Headwall Photonics, Fitchburg, MA, USA) and the second hyperspectral imager was a high-resolution Hyperspec Fluorescence sensor (Headwall Photonics, Fitchburg, MA, USA). The spectral characteristics of both hyperspectral imagers are shown in Table 3. Both hyperspectral imagers were radiometrically calibrated in the laboratory using an integrating sphere (Labsphere XTH2000C, Labsphere Inc., North Sutton, NH, USA); as a result, coefficients derived from the constant light source at four different illumination levels were calculated for the flight configuration of each imager. The atmospheric correction for the VNIR imager was performed using the SMARTS model (Guemard, 2001), with the aerosol optical depth measured at 550 nm with a Microtops II sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA), allowing the conversion of the radiance values to reflectance. Image orthorectification was conducted with PARGE (ReSe Applications Schläpfer, Wil, Switzerland) using inputs from the solidly installed and synchronized inertial measurement units (VN-300-VectorNav Technologies LLC, Dallas, TX, USA for VNIR imager and Trimble APX-15 UAV, Applanix Corporation, Ontario, Canada for Fluorescence imager); more information on data pre-processing and image correction can be found in Zarco-Tejada et al. (2016).

Differences in radiance spectra corresponding to vegetation and soil targets acquired from the two hyperspectral imagers were visually identified as a function of spectral configurations (Fig. 1d and e). Above-ground-level (AGL) altitudes and spatial resolutions of the imagery are detailed in Table 2. The spatial resolution of imagery from both airborne hyperspectral imagers was sufficient for identification of individual plots over the experimental sites (Fig. 2). Differences in fertilization rate could be visually discriminated based on radiance spectra acquired from both the hyperspectral imagers over the entire spectral range (Fig. 3a and c) and in the O₂-A absorption feature (Fig. 3b and d) for experiment 1.

To investigate the impact of sensor altitude on the inter-comparison of airborne-quantified SIF₇₆₀ from both hyperspectral imagers and with ground-based SIF₇₆₀, images from both hyperspectral imagers were acquired at three different altitudes (900 m, 1200 m and 2200 m) for experiment 3 (Table 2). All images were acquired within a 20-min time interval to minimize the impact of sun-sensor geometry and changes in atmospheric conditions on the SIF₇₆₀ retrievals. The effect of sensor height on O₂-A absorption feature depth and SIF₇₆₀ quantifications was assessed using ANOVA followed by Tukey's honest significant difference (HSD) post-hoc test at $\alpha < 0.05$. Fig. 4 shows the impact of the sensor altitude on the radiance spectra for the sub-nanometer imager. The radiance imagery acquired from the sub-nanometer imager at three different altitudes over the entire field (Fig. 4a, b and c) and over the experimental plots (Fig. 4d, e and f) differed in the 670- to 780-nm

Table 1

Field measurements and meteorological conditions coincident with flights.

Field trial site	Experiment #	Treatment (kg N/ha)	Growth stage	Field measurements		Meteorological conditions		
				T _a	RH	P _a		
Yarrawonga (Site 1)	1	T1:0, T2:46, T3:92, T4:138, T5:184	Grain filling	Ft, Chl, NBI, Flav, Anth, TN	19.2	30.1	1002.8	
Peechelba (Site 2)	2	T1:207, T2:387	Dough	Ft, Chl, NBI, Flav, Anth, TN	23.3	36.2	1008.5	
	3	T1:0, T2:180, T3:315	Silking	Ft, Chl, NBI, Flav, Anth, TN, TOC L	25.3	33.5	1003.6	

Ft = Steady-state chlorophyll fluorescence, Chl = Chlorophyll content ($\mu\text{g}/\text{cm}^2$),

NBI = Nitrogen balanced index (Dualex unit (d.u)), Flav = Flavonols (Dualex unit),

Anth = Anthocyanins (Dualex unit), TN = Total Nitrogen concentration (%),

TOC L = Top-of-canopy radiance ($\text{mW}/\text{m}^2/\text{nm}/\text{sr}$) from HR-2000, T_a = Average air temperature ($^{\circ}\text{C}$),RH = Relative humidity (%) and P_a = Average air pressure (mBar).**Table 2**

Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral images during the three airborne campaigns.

Flight date	Flight time (local)	Experiment	AGL (m)		Spatial resolution (m)	
			NB	SN	NB	SN
09/10/19	15:40–16:30	1	400	900	0.25	0.20
16/03/20	12:50–13:50	2	700	850	0.50	0.20
20/01/21	11:40–12:20	3	900	900	0.65	0.20
			1200	1200	0.9	0.30
			2200	2200	1.7	0.55

NB = Narrow-band hyperspectral imager.

SN = Sub-nanometer hyperspectral imager.

AGL = above ground level.

cosine corrector diffuser for experiments 2 and 3, the total incoming irradiance at the flight time was calculated by measuring the radiance reflected from the white reference panel by the spectrometer. Ground-based SIF₇₆₀ from eight plots measured concurrently with airborne image acquisition were used to validate the airborne SIF₇₆₀ calculated from both imagers. The relative root mean square error (rRMSE) was calculated between the airborne and ground-based SIF₇₆₀ following Eq. (1):

$$rRMSE = \sqrt{\frac{\sum_{i=1}^n \left(\frac{F_{airborne,i} - F_{ground,i}}{F_{ground,i}} \right)^2}{n}} \times 100\% \quad (1)$$

where $F_{airborne,i}$ and $F_{ground,i}$ are the SIF₇₆₀ values retrieved from airborne and ground-based spectrometers, respectively, for plot i , with n representing the number of plots.

Field spectrometer radiances/irradiances were calibrated using coefficients derived from a uniform calibrated light source and an integrating sphere (Labsphere XTH2000C). To match the SR of the radiance images acquired from both sensors, the high-resolution irradiance spectra acquired with the HR-2000 spectrometer was resampled through Gaussian convolution (Hornero et al., 2021b; Suarez et al., 2021) corresponding to the SR of the airborne hyperspectral imagers. As the spectral characteristics of the narrow-band hyperspectral imager do not meet the requirements (Drusch et al., 2017; ESA, 2015) for quantifying SIF at the O₂-B (SIF₆₈₇) absorption feature, SIF₆₈₇ values were not compared. This limitation also affects the applicability of SFMs with the narrow-band hyperspectral imager, as it requires sub-nanometer resolution for accurate SIF quantification. Thus, the retrieval of SIF₇₆₀ using irradiance derived from HR-2000 measurements and average radiance derived from airborne hyperspectral images and ground-based HR-2000 measurements was performed using the O₂-A-band *in-filling* method through the FLD principle, based on a total of three spectral bands (3FLD) (Maier et al., 2003). The spectral window for 'in' and 'out' irradiance (E) and radiance (L) used in 3FLD computation was selected based on the spectral characteristics of the measuring instruments. For the narrow-band imager, E_{in}/L_{in} corresponds to the E/L minima in the 755–765 nm region. The minima for both E and L was observed at 762 nm, and this was consistent for all datasets. E_{out}/L_{out} corresponds to the weighted mean of E/L maxima in the spectral regions of 750–755 nm and 771–776 nm, respectively following the methodology proposed in Damm et al. (2011). The spectral window for both ground-based and airborne sub-nanometer sensors was selected using the methodology proposed in Julitta et al. (2017),¹ which considers the FWHM of the sub-nanometer resolution instrument and uses the mean of E/L in the left and right shoulder regions to reduce noise. An additional data quality check was performed for the matching of the 'in' band for E/L, and in the event of a mismatch, E_{in}/L_{in} was defined as the mean of E_{in}/L_{in} of adjacent wavelengths. The absolute depth (in radiance units) and

Table 3
Spectral characteristics of the airborne hyperspectral imagers.

Configuration	Fluorescence sensor (Sub-nanometer imager)	VNIR E-Series sensor (Narrow-band imager)
Spectral range	670–780 nm	400–1000 nm
Number of spectral bands	2160	371
Spectral sampling interval	0.051 nm	1.626 nm
FWHM	0.1–0.2 nm	5.8 nm
Number of un-binned spatial pixels	1600	1600
SNR	>300:1*	>300:1*
Field of view	23.5°	66°
Aperture	f/2.5	f/2.5
Bit depth	16	16

* With spatial binning.

spectral region (Fig. 4g) and in the oxygen absorption features (Fig. 4h and i).

2.3. SIF quantification from field data and airborne hyperspectral imagery

A thresholding approach based on the normalized difference vegetation index (NDVI) was used to select the pixels corresponding to vegetation in each individual plot. To ensure that only pure vegetation pixels were considered for the analysis, all pixels with an NDVI greater than 0.6 were selected. For each plot, mean radiance spectra were calculated by averaging spectra from all pure vegetation pixels within the plot, excluding boundary pixels, from hyperspectral images acquired from both imagers. This object-based analysis strategy was used to reduce the uncertainty when using pixel-based SIF retrievals due to the SNR of the instrument. For experiment 1, the total incoming irradiance at the flight time was measured using the HR-2000 spectrometer with a CC-3 VIS-NIR cosine corrector diffuser. Due to the unavailability of

¹ R code available on GitHub platform at <https://github.com/tommasojulitta>

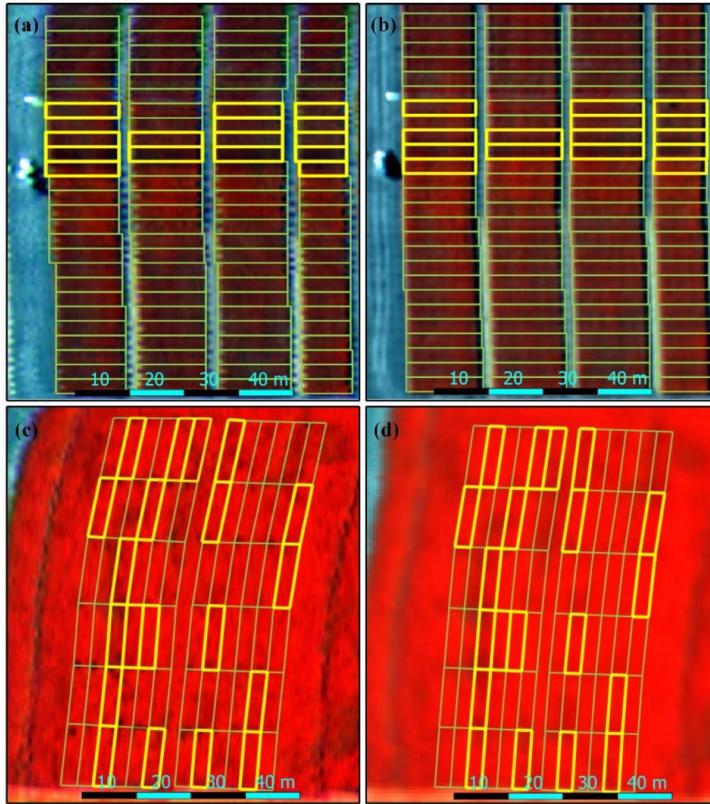


Fig. 2. Hyperspectral imagery showing zoomed-in plots from identical locations in experiments 1 (a, b) and 3 (c, d). Images (a) and (c) were acquired with the sub-nanometer hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Images (b) and (d) were acquired with the narrow-band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Green polygons indicate plots under different nitrogen treatments, and yellow polygons indicate the selected plots corresponding to five and three nitrogen treatments, respectively, for experiments 1 and 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

relative depth (in percent) of the O₂-A band feature were calculated in addition to the airborne SIF₇₆₀ quantification. The absolute depth was calculated as the difference between the solar radiance at the left shoulder wavelength and the wavelength at the bottom of the O₂-A absorption feature, and the relative depth was calculated as the ratio of absolute depth and the solar radiance at the left shoulder wavelength. The wavelength providing the highest radiance in the 750–759 nm range was selected as the left shoulder wavelength.

In the absence of atmospheric correction, SIF₇₆₀ values could be negative even for fluorescent targets (see Fig. 6 in Marrs et al., 2021). The atmospheric correction process involves estimating several atmospheric parameters such as upwelling transmittance, path scattered radiance, and spherical albedo using atmospheric RTMs. Additionally, to account for uncertainties in the estimation of atmospheric parameters, the transmittance correction technique (Damm et al., 2014; Guanter et al., 2010; Siegmann et al., 2019) is a commonly used approach that forces the non-fluorescent targets to give zero SIF₇₆₀. Due to the complexities involved in accurately estimating the atmospheric parameters, RTM-based atmospheric correction was not performed in the current study. Instead, on account of the successful implementation of a rescaling scheme to correct negative airborne SIF₇₆₀ and SIF₆₈₇ values in Bandopadhyay et al. (2019), we used a simplified correction technique based on the same principle of using non-fluorescent targets (i.e., bare soil) as in the widely used transmittance correction technique, to compensate for negative SIF₇₆₀ values related to calibration and atmospheric factors such as aerosol scattering and surface pressure. Any

deviation from the non-fluorescent behaviour of bare soil targets identified in each image was attributed to spectral miscalibration or atmospheric effects. The method relies on forcing the non-fluorescent target to give zero SIF₇₆₀, and the non-zero SIF₇₆₀ served as an offset to correct the SIF₇₆₀ from vegetation targets following Eq. (2):

$$SIF_{corrected} = SIF_{vegetation\ target} - SIF_{non-fluorescent\ target} \quad (2)$$

To minimize the directional effects on the airborne-quantified SIF₇₆₀, the corrected SIF₇₆₀ was normalized to a reference-viewing angle using a reflectance-based angular correction approach (Hao et al., 2021). The normalization method employs a reference SIF₇₆₀ corresponding to a reference viewing angle, as well as near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), to normalize SIF₇₆₀ quantified at any viewing direction to a reference viewing angle. Two different approaches were used to compute the reference SIF₇₆₀ for normalization. In the first approach, a single plot located at the centre of each hyperspectral image was selected as the reference SIF₇₆₀ on account of being a nadir-view. In the second approach, locations of the ground-based spectral measurements were identified in the hyperspectral images and used for calculating the reference SIF₇₆₀. Since the ground-based spectral measurements were primarily conducted along the plot's centre, only pure vegetation pixels located along the plot's centre were used to compute mean radiance for the reference SIF₇₆₀ calculation. This differs from the airborne SIF₇₆₀ corresponding to individual plots, which was calculated using mean radiance from all pure vegetation pixels excluding the boundaries. The second approach was only applied for

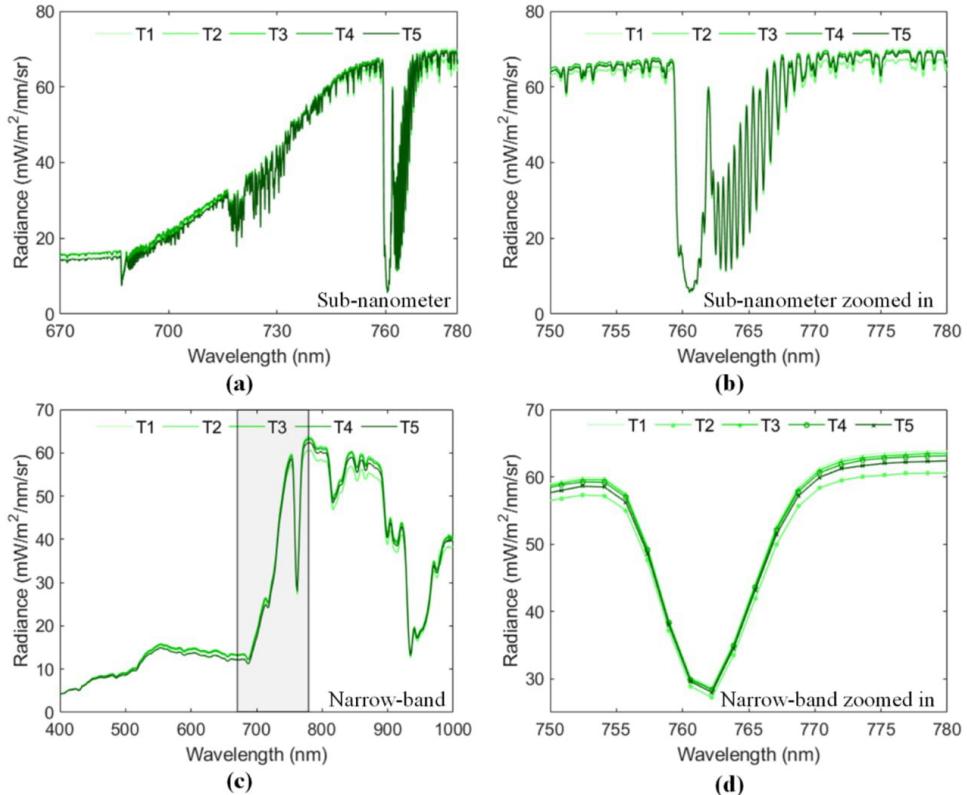


Fig. 3. Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the sub-nanometer imager in the 670- to 780-nm region, (b) the sub-nanometer imager in the O₂-A absorption region, (c) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band imager in the O₂-A absorption region. The transparent grey box in (c) shows the spectral region covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied nitrogen fertilization rates shown in Table-1.

experiment 3 to validate the airborne-quantified SIF₇₆₀ with the ground-based HR-2000 SIF₇₆₀ measurements so that the reference viewing direction remained identical for ground-based and airborne SIF₇₆₀. Normalization was conducted according to the nadir-viewing angle for all inter-comparisons of airborne SIF₇₆₀ from both imagers.

The study focused on assessing the spectral configuration of the two instruments, with attempts made to reduce distortions caused by other factors. We used pixels close to the nadir-viewing angle and avoided evaluating areas close to the image borders to reduce the potential effects of instrument 'smile' on assessment of the two instruments. Moreover, the angular correction used to normalize SIF₇₆₀ minimizes the potential instrument smile effects (detailed above). Further work and a corresponding paper will evaluate sensor smile effects and corrections needed when using narrow-band instruments for SIF₇₆₀ retrievals. This additional work is important because entire images, rather than just nadir pixels, are needed for practical applications in precision agriculture.

2.4. Modelling the spectral resolution effects on SIF quantification using SCOPE simulations

The SCOPE model integrates three radiative transfer modules and an energy balance module to estimate outgoing radiation spectra, turbulent heat fluxes, photosynthesis rates and chlorophyll fluorescence (Van der

Tol et al., 2009). Surface reflectance and fluorescence spectra are simulated by linking several energy balance, photosynthesis and canopy biophysical parameters with TOC radiance, with SSI and SR of 1.0 nm each. The model assumes a homogenous canopy structure, and the canopy radiative transfer equations are based on the widely used SAIL model (Verhoef, 1984). Net radiation over the canopy is calculated by integrating the contribution from the individual layers with shaded and sunlit leaves at different leaf angles over the canopy depth. The canopy reflectance modelling is conducted based on four different Bidirectional Reflectance Distribution Function (BRDF) terms representing direct and diffused hemispherical contribution from the surrounding and the direct and diffused reflectance in the viewing direction. The leaf-level fluorescence spectra are modelled within the 640- to 850-nm spectral region based on the FLUSPECT model (Vilfan et al., 2016) by utilizing the leaf reflectance and fluorescence outputs derived from the PROSPECT model (Jacquemoud and Baret, 1990).

A simulated dataset using the SCOPE model (version 2.0) was generated to evaluate the influence of the SR of the airborne hyperspectral sensors on the 3FLD-based SIF₇₆₀ quantification. The dataset consisted of 400,000 simulations generated by randomly varying specific input parameters, drawing from a uniform distribution within ranges shown in Table 4. All other SCOPE input parameters were kept at their default values. The air temperature and air pressure inputs for the SCOPE model were measured with a portable weather station during the

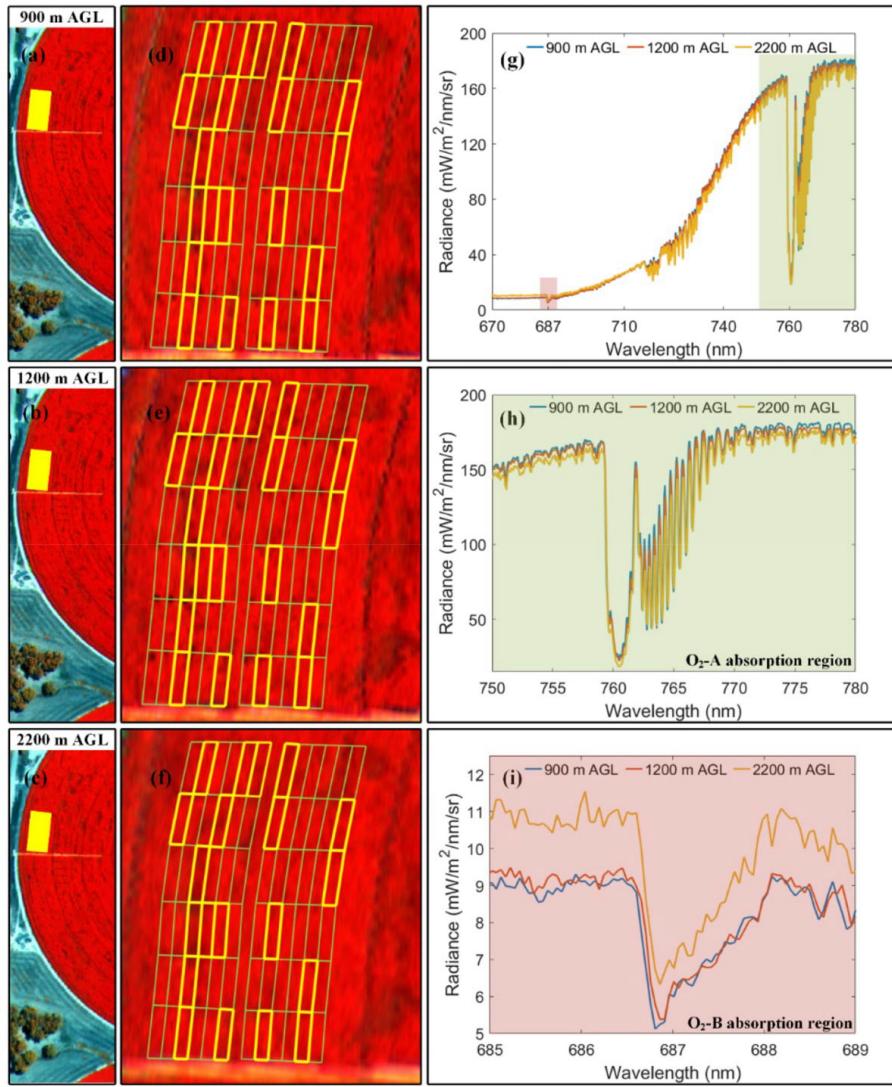


Fig. 4. Hyperspectral imagery from experiment 3. (a–f) Sub-nanometer composite imagery (760 (R), 710 (G) and 680 (B) nm) at various altitudes. (g–i) Average radiance spectra acquired for one of the experimental plots in the 670- to 780-nm region (g), O₂-A absorption region (h) and O₂-B absorption region (i). Area of yellow filled polygons (a, b, c) shown in detail in (d), (e) and (f), respectively. Green polygons indicate plots under different nitrogen treatments, and yellow polygons indicate the selected plots corresponding to three nitrogen treatments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

airborne campaign at field trial site 1. Details regarding the definition and ranges of all input parameters can be found in Supplementary Data S1. For each case, the TOC spectra of total upwelling radiance, SIF radiance and the corresponding irradiance were simulated using the default 1.0-nm SR and 1.0-nm SSI obtained from SCOPE. To compare the SIF₇₆₀ retrieval performance for SR corresponding to the narrow-band hyperspectral imager, SCOPE-simulated spectra were resampled to 5.8-nm FWHM through Gaussian convolution matching the SSI with the narrow-band imager. The resampled radiance spectra in the 400- to 1000-nm spectral region were compared with the average radiance

spectra obtained from the narrow-band imager at experimental field trial site 1 using RMSE as the cost function. For each narrow-band airborne radiance spectrum, we selected the 10 closest resampled radiance spectra from the 400,000 simulations along with their corresponding resampled-irradiance for the analysis. Fig. 5a shows the measured radiance spectra from the narrow-band imager. Fig. 5b and c show the SCOPE-simulated SIF and radiance spectra at 1-nm FWHM corresponding to the selected simulations. A comparison of the simulated SCOPE radiance spectra against the narrow-band imager is shown in Fig. 5d. Additionally, radiance and irradiance spectra corresponding

Table 4
Range of the SCOPE input parameters used in this study.

Parameter	Range/ Value	Unit	Description
C_{ab}	10–50	$\mu\text{g}\cdot\text{cm}^{-2}$	Chlorophyll <i>a</i> + <i>b</i> content
C_{dm}	0.001–0.05	$\text{g}\cdot\text{m}^{-2}$	Dry matter content
C_w	0.001–0.05	cm	Leaf water equivalent layer
N	1.2–1.8	–	Leaf thickness parameters
V_{Cmax}	20–120	$\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$	Maximum carboxylation capacity at 25 °C
fqe	0.001–0.015	–	Fluorescence quantum yield efficiency at photosystem level
LAI	2–6	$\text{m}^2\cdot\text{m}^{-2}$	Leaf area index
LIDF _a	–1–0	–	Leaf inclination
LIDF _b	0	–	Variation in leaf inclination
R_{in}	600–1000	$\text{W}\cdot\text{m}^{-2}$	Broadband incoming shortwave radiation
T _a	19.2	°C	Air temperature
p	1002.8	hPa	Air pressure
tts	35.42	deg.	Solar zenith angle

to SRs of 2.0 nm, 3.0 nm, 4.0 nm and 5.0 nm were generated by resampling SCOPE-simulated 1.0-nm SR spectra with Gaussian convolution but keeping the SSI at 1.0-nm. Fig. 5e and f show the comparison between the radiance spectra simulated by SCOPE at different SRs in the O₂-B and O₂-A absorption regions, respectively. The O₂-B absorption feature could only be identified at the default 1.0-nm SR. The decrease of SR from the default 1 nm to 5.8 nm resulted in O₂-A-band depth reduction and an increment in the radiance signal corresponding to the absorption minima.

2.5. Nitrogen assessments using narrow-band and sub-nanometer SIF retrievals

The effects of sensor SR on nitrogen estimation was assessed using models with chlorophyll content and SIF traits as inputs (Camino et al., 2018b). Nitrogen content was predicted using Random Forest (RF) (Breiman, 2001) models fit to data from field trial site 1, using i) C_{ab} derived from the narrow-band hyperspectral imagery through the inversion of PRO4SAIL RTM and ii) SIF₇₆₀ quantified from each of the hyperspectral imagers as inputs. The PRO4SAIL model used coupled PROSPECT-D (Féret et al., 2021) and 4SAIL (Verhoef et al., 2007) to retrieve the biochemical constituents and canopy structural parameters, respectively. A look-up table with 200,000 simulations was built by randomly varying the biochemical and biophysical parameters with a uniform distribution within the ranges shown in Table 5.

Support vector machines (SVMs) were trained using simulated reflectance as inputs. Reflectance spectra were matched with the spectral resolution of the narrow-band hyperspectral imager (5.8-nm FWHM). SVMs were first trained in parallel (MATLAB parallel computing toolbox) using a radial basis function and optimizing the hyperparameters during training to predict C_{ab}. Then, using the average reflectance spectra extracted from pure-vegetation pixels, C_{ab} was estimated for each experimental plot. Subsequently, RF regression models were fit for each hyperspectral sensor, using crop N concentration as a response variable and the estimated C_{ab} from the narrow-band VNIR reflectance spectra (C_{ab}-narrow) and SIF₇₆₀ derived from each hyperspectral imager (i.e., C_{ab}-narrow + SIF₇₆₀-narrow vs. C_{ab}-narrow + SIF₇₆₀-sub-nanometer) as predictors.

3. Results

In experiment 1, leaf physiological traits were significantly different in plots fertilized at different rates ($p < 0.05$; Fig. 6). For experiments 2 and 3, differences were non-significant, but there was visible variation in leaf physiological variables among plots receiving different nitrogen treatments (Fig. 6). Differences in leaf total N concentration measured

by destructive sampling were generally consistent with the trends observed in leaf steady-state fluorescence (Ft) with minor exceptions (e.g., values observed for T3 in experiment 1). Ft was lower in plots with the least N applied compared to other plots in all the experiments (Fig. 6, Ft and Total N panels). Fertilization rate was positively associated with chlorophyll *a*+*b* content and the leaf nitrogen balance index (NBI), while leaf flavonols and anthocyanins were inversely associated with fertilization rate. Leaf physiological values were more variable in experiment 1 (T1–T5: 0–184 kg N/ha) than in experiments 2 (T1–T2: 207–387 kg N/ha) or 3 (T1–T3: 0–315 kg N/ha).

The absorption features at O₂-A and O₂-B absorption regions were evident in the radiance spectra from both airborne hyperspectral imagers (Fig. 7). However, their shape and depth were strongly influenced by the SR. As a result of the coarser SR of the narrow-band imager, the absorption feature at the O₂-B band in the 685- to 690-nm spectral region could not be identified in the narrow-band radiance spectra (Fig. 7, inset). This result restricts the comparison between the narrow-band and sub-nanometer hyperspectral imagers for the calculation of SIF at the O₂-B band. Moreover, a reduction in the depth of the O₂-A absorption feature in the 750- to 780-nm spectral region and the corresponding increment in the radiance signal at the absorption minima were observed for the narrow-band radiance spectra, as expected (Fig. 7, inset). The wavelength corresponding to the radiance minimum was shifted towards higher wavelengths when compared to sub-nanometer radiance spectra, as shown in several studies (Cendrero-Mateo et al., 2019; Damm et al., 2011; Julitta et al., 2016; Liu et al., 2015).

At site 1, the depths of the O₂-A absorption feature from each of the two imagers were strongly correlated ($R^2 = 0.90$, $p < 0.001$; Fig. 8a), when using data from the full set of >100 plots. Nevertheless, the range of SIF₇₆₀ values quantified with the 3FLD method (SIF_{760-3FLD}) differed between sub-nanometer imager (0.05–1.95 mW/m²/nm/sr) and the narrow-band imager (0.37–8.12 mW/m²/nm/sr; Fig. 8b). Although there was some lack of correspondence in SIF_{760-3FLD} between the two imagers (RMSE = 3.86 mW/m²/nm/sr), the two were significantly correlated ($R^2 = 0.85$, $p < 0.001$; Fig. 8b).

Airborne SIF_{760-3FLD} estimates from both hyperspectral imagers are compared in Fig. 9. The best agreement between measures was observed in experiment 3 ($R^2 = 0.9$, RMSE = 3.28 mW/m²/nm/sr, $p < 0.001$). Measures from each sensor were also well correlated in experiments 1 ($R^2 = 0.87$, RMSE = 4.69 mW/m²/nm/sr, $p < 0.001$; Fig. 9a) and 2 ($R^2 = 0.77$, RMSE = 3.95 mW/m²/nm/sr, $p < 0.01$; Fig. 9b). The error between estimates was consistent across experiments, yielding RMSEs within 3.28–4.69 mW/m²/nm/sr.

Low-resolution SCOPE-simulated SIF_{760-3FLD} values (2- to 5.8-nm FWHM) were significantly correlated with SIF_{760-3FLD} simulated at 1-nm FWHM ($p < 0.001$, $R^2 = 0.70$ –0.99; Fig. 10). RMSE values tended to increase with decreasing SR (Fig. 10). The pattern of differing absolute SIF_{760-3FLD} values but stable relative differences across SRs observed with the SCOPE-simulated data was consistent with the experimental results from the airborne hyperspectral imagers.

A comparison of airborne SIF_{760-3FLD} retrievals to ground-based SIF_{760-3FLD} retrievals in experiment 3 is shown in Fig. 11. Ground-based measures were significantly correlated with both the sub-nanometer ($R^2 = 0.90$, $p < 0.001$; Fig. 11a) and the narrow-band ($R^2 = 0.88$, $p < 0.001$) hyperspectral imagers (Fig. 11b). SIF_{760-3FLD} from the sub-nanometer imager showed strong agreement with the ground-based SIF_{760-3FLD} values (RMSE = 0.07 mW/m²/nm/sr, rRMSE = 3.7%), whereas the narrow-band imager exhibited greater overall differences from ground-based measures (RMSE = 3.26 mW/m²/nm/sr, rRMSE = 170.5%). SIF-yield, which was estimated by normalizing the corrected SIF_{760-3FLD} by the average NIR radiance in the 776–780-nm spectral region, was also significantly correlated with the leaf-level steady-state chlorophyll fluorescence in experiment 1 ($R^2 = 0.53$, $p < 0.01$ for sub-nanometer imager; $R^2 = 0.34$, $p < 0.05$ for narrow-band imager).

Measures of O₂-A band depth and airborne SIF_{760-3FLD} at different altitudes are presented in Fig. 12. SIF_{760-3FLD} measures with the narrow-

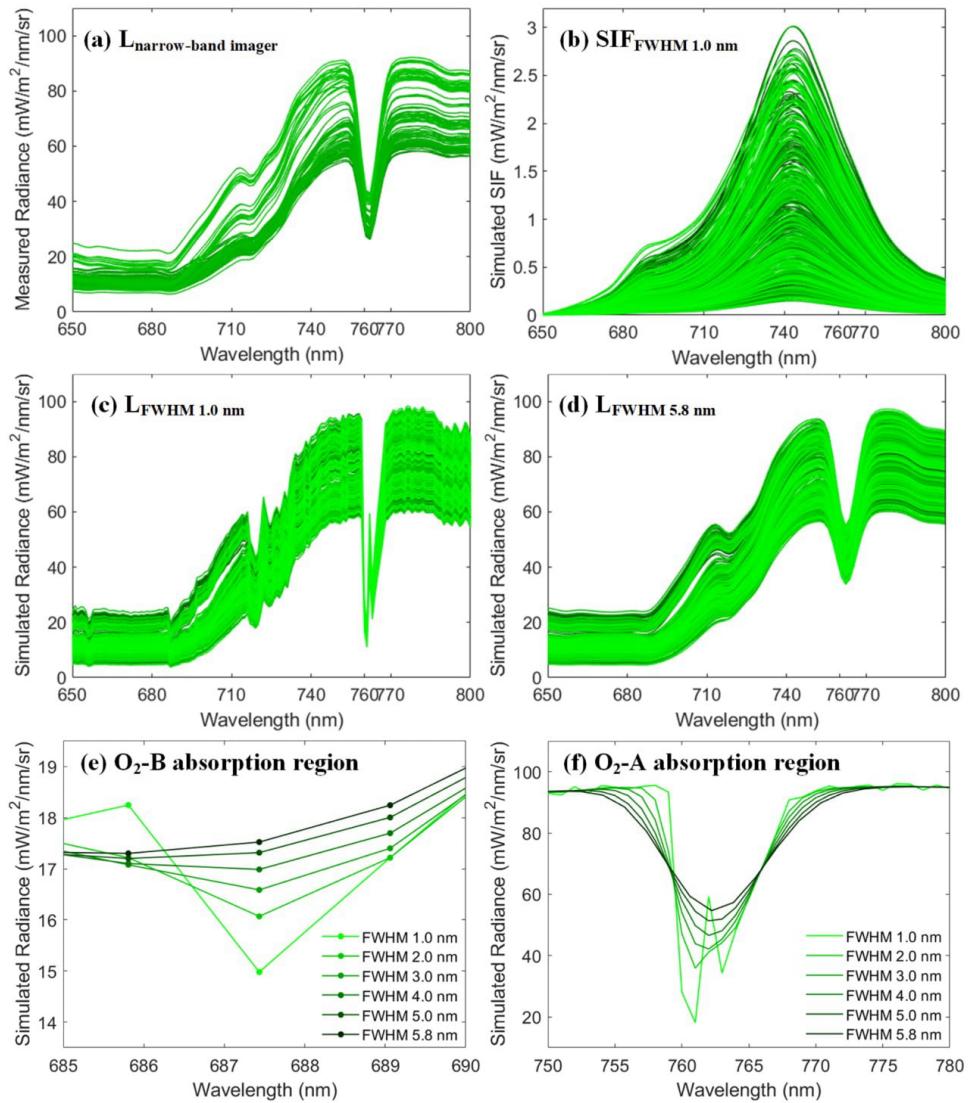


Fig. 5. (a) Measured radiance from the narrow-band imager. (b) SCOPE-simulated SIF at 1.0-nm FWHM. (c) SCOPE-simulated radiance at 1.0-nm FWHM. (d) SCOPE-simulated radiance corresponding to the narrow-band imager's spectral characteristics (FWHM = 5.8 nm, SSI = 1.626 nm). SCOPE-simulated radiance at different SRs in the O₂-B (e) and O₂-A absorption regions (f).

band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m). O₂-A absorption feature depth and SIF_{760-3FLD} differed significantly with altitude (Fig. 12). The depth of the O₂-A absorption feature increased with sensor altitude, and SIF_{760-3FLD} decreased with sensor altitude for both airborne imagers (Fig. 12).

Sub-nanometer SIF_{760-3FLD} retrievals were significantly correlated with narrow-band imager retrievals in experiment 3 at both 900 m AGL ($R^2 = 0.85, p < 0.001$; Fig. 13a) and 1200 AGL ($R^2 = 0.9, p < 0.001$; Fig. 13a). The slope of the relationship between sub-nanometer and narrow-band retrievals was steeper for 900 m AGL than for 1200 m AGL.

RMSE at 900 m AGL (4.29 mW/m²/nm/sr) was higher than that of 1200 m AGL (3.28 mW/m²/nm/sr), possibly explained by larger SIF_{760-3FLD} values at lower altitudes. SIF_{760-3FLD} at 900 m AGL was significantly correlated with SIF_{760-3FLD} at 1200 m AGL ($R^2 = 0.92, p < 0.001$; Fig. 13b) and 2200 m AGL ($R^2 = 0.8, p < 0.001$; Fig. 13b) using the sub-nanometer imager. SIF_{760-3FLD} values decreased with imager altitude, and the relationship between low-altitude and high-altitude measurements also changed, with shallower slopes at higher altitudes (Fig. 13b). RMSE was higher at 2200 m AGL than at 1200 m AGL altitude, when compared to 900 m AGL. A similar pattern was observed for narrow-band SIF_{760-3FLD} retrievals, with an overall significant correlation (R^2

Table 5

Parameters and ranges used for the look-up table generation for the PRO4SAIL RTM.

Parameter	Abbreviation	Value/range
Chlorophyll <i>a</i> + <i>b</i> content [$\mu\text{g}/\text{cm}^2$]	C_{ab}	4–70
Carotenoid content [$\mu\text{g}/\text{cm}^2$]	C_{x+c}	1–20
Anthocyanin content [$\mu\text{g}/\text{cm}^2$]	Anth	0–15
Dry matter content [g/cm^2]	C_m	0.007
Water content [g/cm^2]	C_w	0.001
Mesophyll structure Coeff.	N	0.5–3
Leaf area index [m^2/m^2]	LAI	0.3–5
Average leaf angle [deg.]	LIDFa	0–90
Hot spot parameter	h	0.01
Soil reflectance	R_{soil}	PRO4SAIL dry soil spectra
Observer angle [deg.]	α_o	0
Sun zenith angle [deg.]	α_s	35.42
Relative azimuth angle [deg.]	ψ	0

= 0.82, RMSE = 1.36 $\text{mW}/\text{m}^2/\text{nm}/\text{sr}$, $p < 0.001$; Fig. 13c) and lower SIF_{760-3FLD} values at higher altitudes.

Sub-nanometer SIF_{760-3FLD} was significantly correlated with ground-based SIF_{760-3FLD} at all sensor altitudes ($p < 0.001$, all $R^2 > 0.9$; Fig. 14a). RMSEs between airborne and ground-based SIF retrievals at 900 and 1200 m AGL were lower than 0.1 $\text{mW}/\text{m}^2/\text{nm}/\text{sr}$ and rRMSEs were lower than 4%. SIF_{760-3FLD} at 2200 m AGL consistently underestimated ground-based SIF (RMSE = 0.5 $\text{mW}/\text{m}^2/\text{nm}/\text{sr}$ and rRMSE = 28.2%; Fig. 14a). Ground-based SIF_{760-3FLD} was also significantly correlated with airborne SIF_{760-3FLD} from the narrow-band imager ($p < 0.001$, $R^2 > 0.85$) at both altitudes (Fig. 14b). Narrow-band imager SIF_{760-3FLD} estimates at 1200 m AGL tended to be smaller than ground-based measures (Fig. 14b), and error was high for both 900 m AGL (RMSE = 3.77 $\text{mW}/\text{m}^2/\text{nm}/\text{sr}$, rRMSE = 200.8%) and 1200 m AGL (RMSE = 3.26 $\text{mW}/\text{m}^2/\text{nm}/\text{sr}$, rRMSE = 170.5%).

Nitrogen predictions from both RF models were significantly correlated ($p < 0.01$) with the field-level nitrogen content measurements

obtained by destructive sampling (Fig. 15). SIF_{760-FLD} from the sub-nanometer hyperspectral imager by itself was significantly correlated with field-level nitrogen content ($R^2 = 0.71$, $p < 0.001$; Fig. 15a), as was SIF₇₆₀ quantified from the narrow-band imager ($R^2 = 0.67$, $p < 0.001$; Fig. 15b). The RF algorithm using SIF₇₆₀ sub-nanometer performed slightly better ($R^2 = 0.93$, RMSE = 0.09%; Fig. 15c) than the RF using SIF₇₆₀ narrow-band ($R^2 = 0.87$, RMSE = 0.12%; Fig. 15d).

4. Discussion

In this study we examined the relationship between airborne SIF_{760-3FLD} quantified using sub-nanometer resolution (i.e., 0.1- to 0.2-nm FWHM) and narrow-band resolution (i.e., 5.8-nm FWHM) hyperspectral imagers in the context of plant phenotyping for homogenous crop canopies. Our results support the assertion that airborne SIF retrievals from narrow-band hyperspectral imagers can successfully track small physiological changes induced by plant pathogens and environmental stresses, as reported elsewhere (Calderón et al., 2015, 2013; Camino et al., 2021, 2018; Hernández-Clemente et al., 2017; Panigada et al., 2014; Poblete et al., 2021, 2020; Zarco-Tejada et al., 2018, 2012). Precise SIF₇₆₀ quantification at absolute scales was not essential for detecting plant stress in these studies. In our study, narrow-band airborne SIF_{760-3FLD} was significantly associated with both sub-nanometer airborne and ground-based SIF observations. Our results particularly illustrate the capability of these narrow-band hyperspectral imagers for characterizing the intra-field SIF₇₆₀ variability induced by different nitrogen fertilization rates.

Previous studies have highlighted the importance of sensor configuration for detecting spectral absorption features occurring over very narrow spectral ranges, particularly the need for high SR and SNR when quantifying SIF (Mohammed et al., 2019). The literature has emphasized the need for instruments with sub-nanometer resolutions to accurately characterize narrow absorption features for reliable SIF estimates in physical units (Cogliati et al., 2015; Julitta et al., 2016; Meroni and

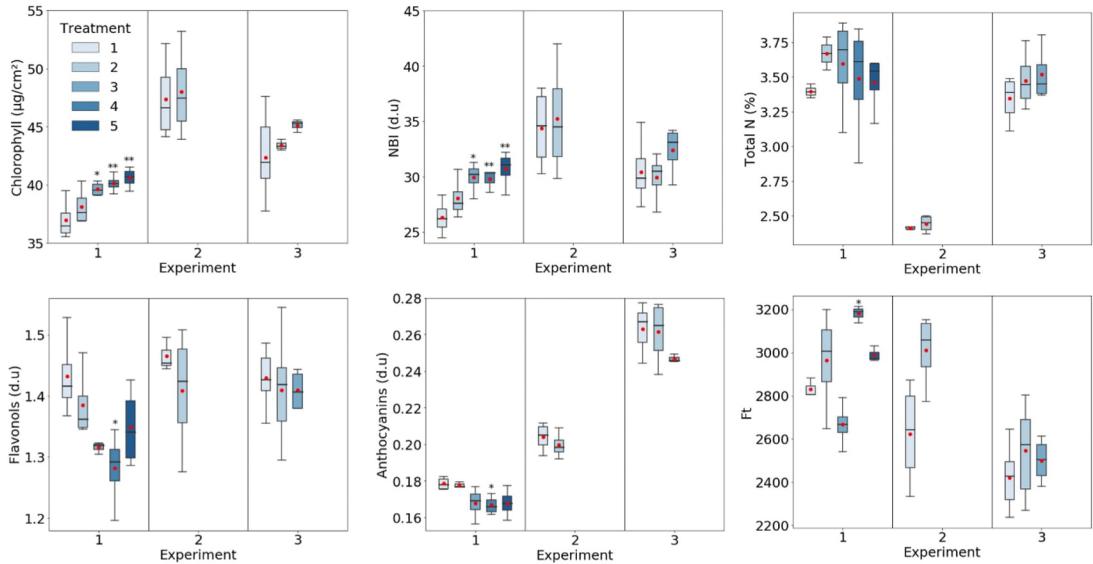


Fig. 6. Leaf physiological traits by fertilization rate across experiments. Average values indicated by red points. The black lines within boxes represent medians, and the top and bottom of each box represent the 75th and 25th quartile, respectively. Whiskers represent $\pm 1.5 \times$ Inter Quartile Range. Asterisks indicate significant differences from the treatment 1 plots according to Dunnett's test at $\alpha < 0.05$. * $p \leq 0.05$; ** $p \leq 0.01$. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

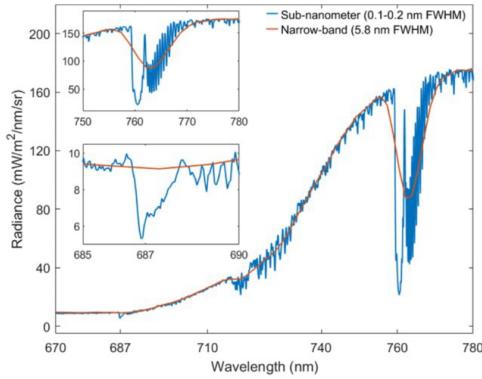


Fig. 7. Comparison of average radiance spectra from one of the plots within experiment-3 in the 670- to 780-nm region obtained from both hyperspectral imagers. The insets show the comparison within O_2 -A and O_2 -B absorption features in the 750- to 780-nm region and 685- to 690-nm region, respectively.

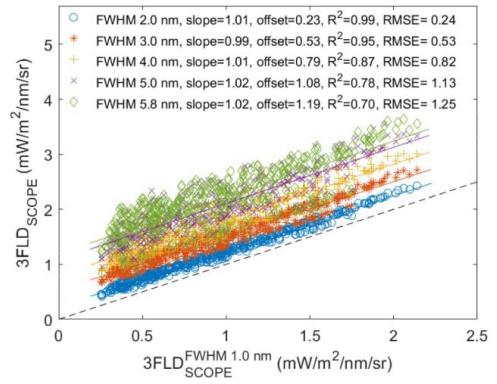


Fig. 10. Relationships between $SIF_{760-3FLD}$ for SCOPE simulations with different SRs against $SIF_{760-3FLD}$ quantified at 1.0-nm FWHM. The dotted line represents the 1:1 line.

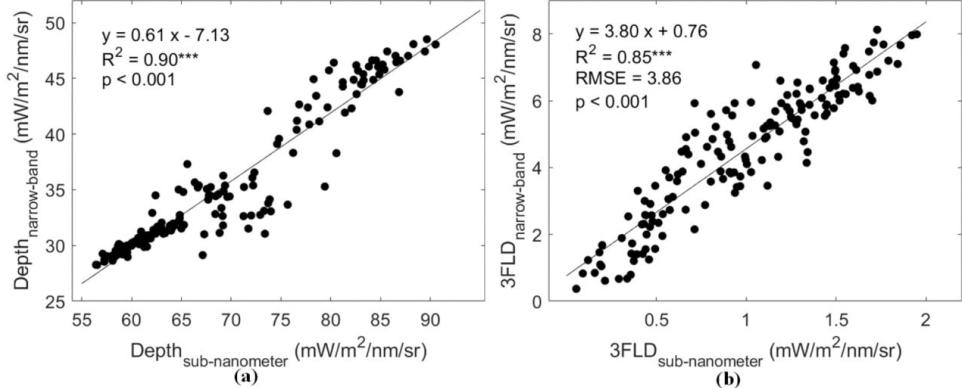


Fig. 8. Relationship between depth at the O_2 -A absorption feature (a) and $SIF_{760-3FLD}$ (b) over the experimental field at site 1 from both hyperspectral imagers. The range of absolute $SIF_{760-3FLD}$ levels derived from the narrow-band imager was higher than the typical range of 0–3 $mW/m^2/nm/sr$ quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

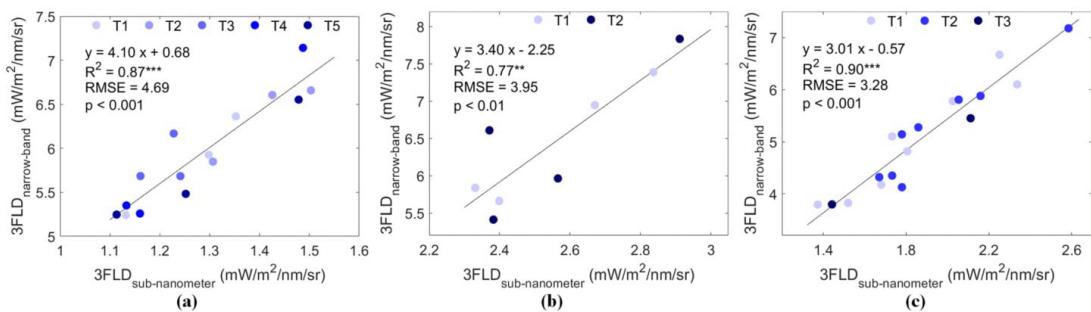


Fig. 9. Relationship between airborne $SIF_{760-3FLD}$ measures from different hyperspectral imagers across experiments 1 (a), 2 (b) and 3 (c). The range of absolute $SIF_{760-3FLD}$ levels derived from the narrow-band imager was higher than the typical range of 0–3 $mW/m^2/nm/sr$ quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

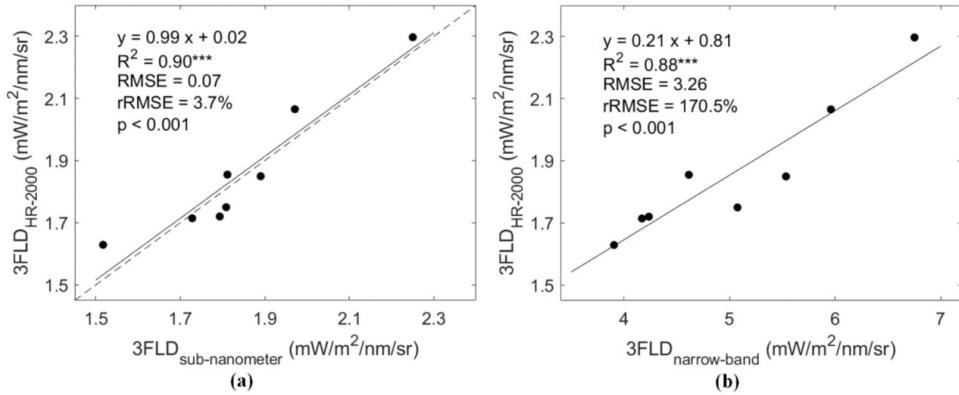


Fig. 11. Relationship between ground-based SIF₇₆₀-3FLD quantified from the HR-2000 field spectrometer and airborne SIF₇₆₀-3FLD quantified from the sub-nanometer (a) and the narrow-band (b) hyperspectral imagers for experiment 3. The dotted line represents the 1:1 line. The range of absolute SIF₇₆₀-3FLD levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

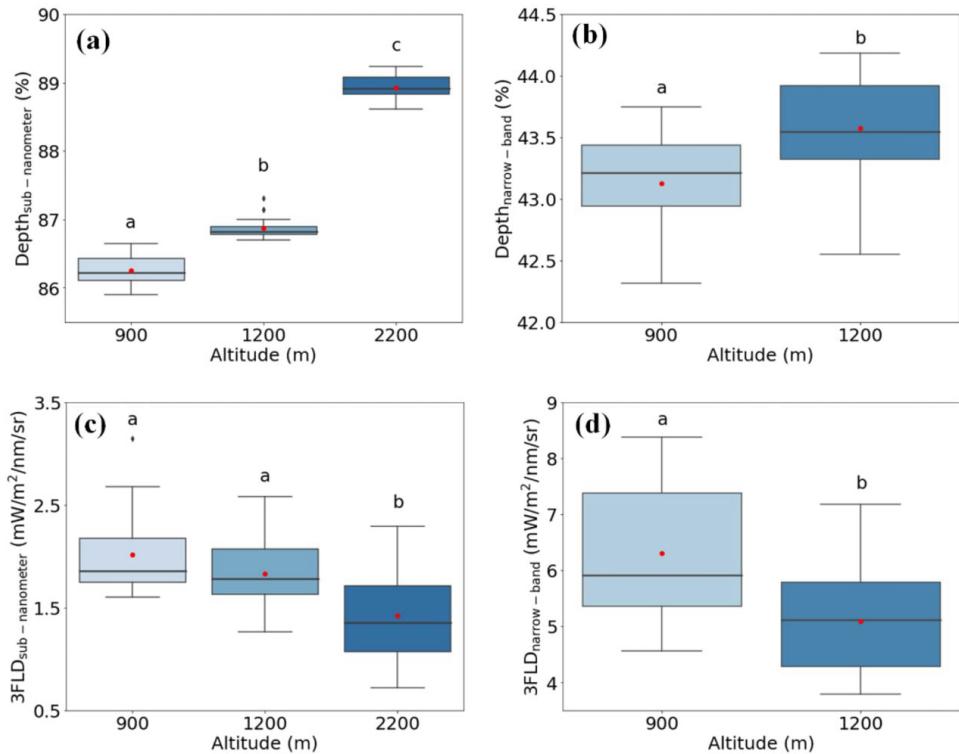


Fig. 12. Effect of sensor altitude on O₂-A band depth and SIF₇₆₀-3FLD in experiment 3. Letters (a, b and c) within each plot represent the results of Tukey's honest significant difference (HSD) post-hoc comparisons of group means with $\alpha < 0.05$. Groups sharing the same letter are not significantly different. In the boxplots, the average values are shown with a red circle. The black line within the box is the median, and the top and bottom of the box is the 75th and 25th quartile, respectively. The whiskers represent $\pm 1.5 \times$ Interquartile range. The outliers are represented as diamonds. The range of absolute SIF₇₆₀-3FLD levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF₇₆₀-3FLD measures with the narrow-band imager at 2200 AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m \times 12 m). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

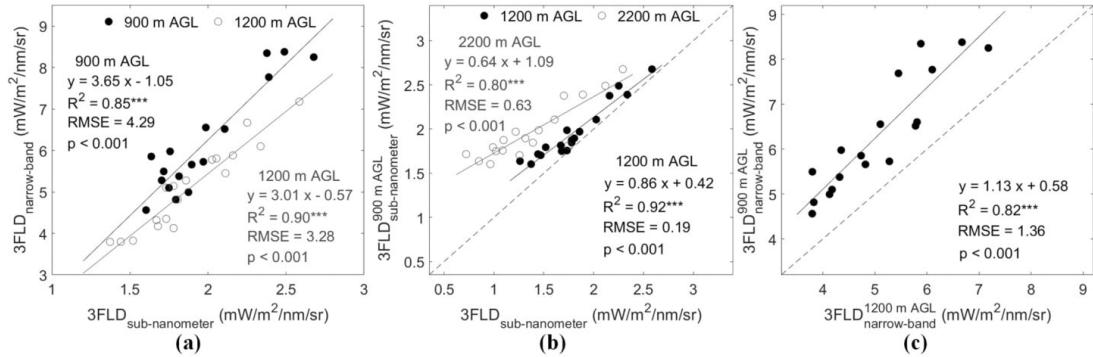


Fig. 13. (a) Relationships between SIF_{760-3FLD} estimates from narrow-band and sub-nanometer hyperspectral imagers by sensor altitude. (b) Relationships between airborne SIF_{760-3FLD} from sub-nanometer imager at 1200 and 2200 m AGL compared to the SIF_{760-3FLD} quantified at 900 m AGL. (c) Relationship between airborne SIF_{760-3FLD} from the narrow-band hyperspectral imager at 900 and 1200 m AGL. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m).

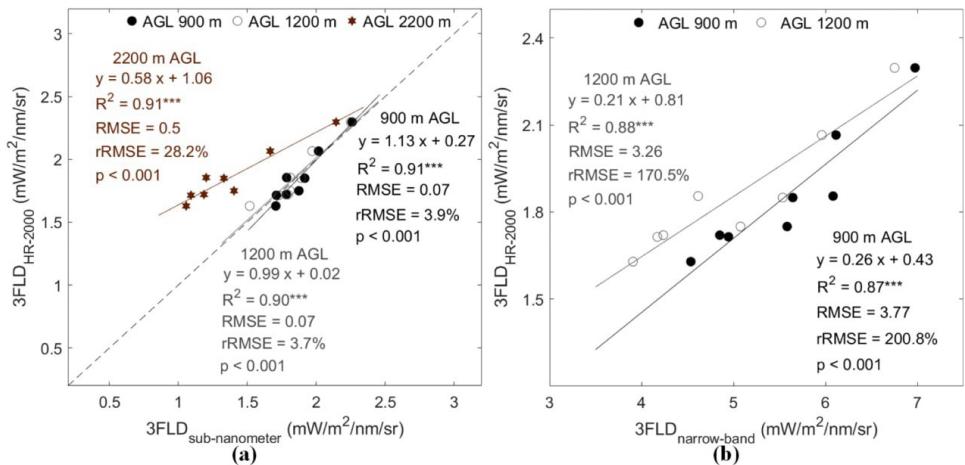


Fig. 14. Relationship between ground-based SIF_{760-3FLD} quantified with a HR-2000 field spectrometer and airborne SIF_{760-3FLD} at 900 m, 1200 m and 2200 m AGL retrieved from the sub-nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF_{760-3FLD} measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m).

Colombo, 2006; Meroni et al., 2011; Rossini et al., 2010). The experimental results from these studies are consistent with modelling studies based on FluorSAIL3 (Damm et al., 2011; Cendrero-Mateo et al., 2019) and SCOPE (Liu et al., 2015), which showed an increase in the SIF₇₆₀ retrieval accuracy with increasing sensor SR. These modelling studies also found strong correlations between modelled and estimated SIF₇₆₀ for low SR (5 nm) instruments using 3FLD ($r = 0.78$, RMSE = 0.31 mW/m²/nm/sr) and iFLD ($r = 0.81$, RMSE = 0.081 mW/m²/nm/sr) (Damm et al., 2011). The SCOPE modelling results presented in this study support the findings of previous modelling efforts, illustrating statistically significant relationships ($p < 0.001$, $R^2 = 0.70$ –0.99, RMSE = 0.24–1.25 mW/m²/nm/sr; Fig. 10) between SIF_{760-3FLD} at 1 nm and SIF_{760-3FLD} at coarser SRs ranging from 2-nm to 5.8-nm FWHM. The offset of the linear relationship with SIF_{760-3FLD} at 1 nm increased steadily as the SR decreased from 2 to 5.8 nm, while the slope remained close to 1. This

offset increase can be attributed to differences in radiance corresponding to the O₂-A band minima, which showed a 200% increase (Fig. 5f) when resampling radiance spectra from 1 to 5.8 nm SR. Our modelling results and those of previous studies suggest that narrow-band resolution sensors (4–6-nm FWHM) with sufficient SNR can sufficiently characterize relative SIF₇₆₀ levels despite their inability to provide reliable absolute SIF₇₆₀ estimates.

Differential nitrogen application rates in the three experiments were associated with variability of leaf physiological measurements (Fig. 6) and airborne SIF_{760-3FLD}. Narrow-band and sub-nanometer SIF_{760-3FLD} estimates were strongly correlated across experiments, and both differed by nitrogen fertilization level. The best correlation, observed in experiment 3, may be attributed to the identical flight altitude at which the narrow-band and the sub-nanometer hyperspectral images were collected for this experiment (site 2; Table 2) in addition to the higher



Fig. 15. Relationships between N concentration and airborne SIF_{760-3FLD} quantified from a sub-nanometer (a) and narrow-band imager (b). Measured vs. estimated N concentration using Random Forest regression models, which included RTM-based C_{ab} and SIF_{760-3FLD} generated from either a sub-nanometer (c) or narrow-band imager (d). The dotted line represents the 1:1 line. The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

relative SIF_{760-3FLD} variability observed within the experimental plots compared to experiments 1 and 2 (Fig. 9). The results demonstrated consistency across experimental sites and airborne campaigns carried out at different times, flight altitudes and years, showing robust relationships in terms of the relative SIF_{760-3FLD} variability quantified by the two hyperspectral imagers. The differences obtained in absolute levels of SIF_{760-3FLD} quantified in the three experiments can be associated with the differences in crop varieties, crop growth stages and the slightly different acquisition times of the airborne hyperspectral images. These results are consistent with previous studies showing differences in both ground-based and airborne SIF₇₆₀ measurements according to nitrogen treatment (Cendrero-Mateo et al., 2016; Jia et al., 2018, 2021; Quemada et al., 2014; Watt et al., 2020a, 2020b).

Sensor altitude was identified as a critical factor in determining SIF accuracy (Daumard et al., 2015; Ni et al., 2016). MODTRAN (Berk et al., 2014) was used in these studies to show that the depth of the O₂-A absorption feature increases with sensor altitude. This is consistent with our findings, which show that the O₂-A band depth increased with altitude for both airborne hyperspectral imagers (Fig. 12) due to an increase in the radiance of the O₂-A band minima (Fig. 4h). Despite correcting for the atmospheric effects, SIF_{760-3FLD} decreased with altitude for both airborne hyperspectral imagers. Such a decrease is linked to the correction method used, which relies on non-fluorescent targets. The relative increase in O₂-A band depth with increasing altitude is greater

for vegetation targets than for bare soil targets (Daumard et al., 2015). This difference results in a bias in the corrected SIF_{760-3FLD}. Although SIF_{760-3FLD} was overestimated at higher altitudes with both hyperspectral imagers, airborne estimates remained well correlated with ground-based measurements across altitudes (Figs. 12 and 14). This result has important implications for drone and airborne-based SIF quantifications in plant phenotyping studies and precision agriculture applications, in which sensor altitude is generally adapted depending on the flight efficiency and areal coverage. Although the relative variability needs to be assessed for detecting physiological changes induced by biotic or abiotic factors, understanding the effects of sensor altitude on SIF retrievals is critical for accurately interpreting SIF when used as input in stress-detection models.

Few studies have validated airborne-quantified SIF₇₆₀ from narrow-band hyperspectral imagers against ground-based observations from high-resolution field spectrometers, due to the challenges associated with complex and heterogeneous canopies including forest areas and cash crops such as vineyards and tree orchards. Damm et al. (2015) demonstrated the relationship between the medium-resolution Airborne Prism Experiment (APEX) sensor and a ground-based ASD (PANalytical, Boulder, US) field spectrometer for three different types of ecosystems. Measures were correlated ($R^2 = 0.71$), but airborne SIF₇₆₀ systematically overestimated ground-based SIF₇₆₀ by a proportionality factor (slope of airborne vs. ground SIF₇₆₀ relationship) of 1.93 and an rRMSE

of 28.9%. [Guanter et al. \(2007\)](#) found good agreement ($R^2 = 0.85$) between airborne SIF₇₆₀ derived from the Compact Airborne Spectrographic Imager (CASI, Itres Research Ltd., Canada) and ground-based SIF₇₆₀ derived from the ASD FieldSpec FR spectroradiometer. The airborne vs. ground-based relationship found in the current study ($R^2 = 0.88$, proportionality factor = 4.76) is consistent with the results from both studies above. Due to the impact of SR on the absolute SIF_{760-3FLD} quantification, larger deviations in terms of rRMSE and proportionality factor were observed compared with the results from [Damm et al. \(2015\)](#), which can be attributed to the sub-nanometer resolution (0.065-nm FWHM) of the reference ground-based HR-2000 spectrometer used in our study as compared to the moderate spectral resolution of ASD spectrometers (>1.0-nm FWHM) used elsewhere.

The potential effects of the canopy structure are important to consider when comparing the narrow-band vs. sub-nanometer SIF retrievals. The TOC SIF observations from ground-based, airborne and spaceborne platforms are strongly affected by plant canopy structure due to the re-absorption and scattering of light within the canopy ([Fournier et al., 2012](#); [Porcar-Castell et al., 2014](#); [Dechant et al., 2020](#); [Yang and Van der Tol, 2018](#); [Zeng et al., 2019](#)). This structure is usually characterized by parameters such as leaf area index and the leaf inclination distribution function and may be approximated with vegetation indices such as Modified Triangular Vegetation Index (MTVI2) ([Haboudane et al., 2004](#)) and Enhanced Vegetation Index (EVI) ([Huete et al., 2002](#)) when assessing the effects of structure on SIF. In our study, the structural differences across experimental plots were generally small as structural changes were generally not associated with experimental treatments. Nevertheless, we tested whether treatment-associated variability in canopy structure could be related to SIF_{760-3FLD} from the narrow-band hyperspectral imager. We found that the relationships of both MTVI2 and EVI with narrow-band airborne SIF_{760-3FLD} were weak and non-significantly correlated at both field trial sites ($p > 0.1$, $R^2 = 0.01$ –0.11; [Fig. 16](#)). These results suggest that the SIF_{760-3FLD} variability captured by the narrow-band imager in the experiments was not driven by changes arising from structural effects. Moreover, it shows that the fluorescence *in-filling* at the O₂-A band was unaffected by structure, with the variability across experimental plots due to subtle physiological differences.

Predictive models of leaf N concentration improved only slightly when using SIF₇₆₀ from the sub-nanometer imager compared to the narrow-band imager, with a marginal increase in the model performance ($R^2 = 0.87$ vs. 0.93) and a decrease in the error (RMSE = 0.12% vs. 0.09%). The direction of this improvement is consistent with the

greater accuracy of the sub-nanometer SR imager. Nevertheless, these results suggest that data from the narrow-band hyperspectral imager may be sufficient for predicting N concentration in plant phenotyping and precision agriculture applications. Narrow-band imagery may be particularly suitable since relative changes in SIF linked to physiological conditions, nutritional deficiencies and stress levels are often the focus of such studies.

For assessing crop physiological status, standard commercially available hyperspectral imagers with 4- to 6-nm FWHM and SNRs greater than 300:1 can provide reliable relative SIF₇₆₀ estimates ([Zarco-Tejada et al., 2012, 2013a](#)). These sensors are lightweight and can be carried on drone platforms that provide very high spatial resolution images due to low flying altitude. This capacity to generate very high spatial resolution imagery with narrow spectral bands is particularly important for plant phenotyping and precision agriculture applications for mapping physiological condition ([Mohammed et al., 2019](#)). Additional work using RTMs such as SCOPE and others is needed for improving the interpretation of SIF quantified using broader resolutions in precision agriculture.

5. Conclusions

We assessed the relationships between airborne SIF_{760-3FLD} quantified from narrow-band (5.8-nm FWHM) and sub-nanometer (0.1- to 0.2-nm FWHM) hyperspectral imagers flown in tandem over three experimental fields with varying nitrogen application rates across 3 years. SIF_{760-3FLD} estimates derived from each imager were significantly correlated with each other for all the three experiments ($p < 0.01$, $R^2 = 0.77$ –0.90). Ground-level HR-2000 SIF_{760-3FLD} was significantly correlated with that of the sub-nanometer ($p < 0.001$, $R^2 = 0.9$) and the narrow-band hyperspectral imager ($p < 0.001$, $R^2 = 0.88$). These strong correlations among the narrow-band, sub-nanometer and ground-based SIF_{760-3FLD} retrievals support the use of narrow-band hyperspectral sensors for detecting relative SIF differences in the context of plant phenotyping, vegetation stress detection and plant physiological condition. Although sub-nanometer SR is required for the accurate retrieval of SIF in absolute units, broader-band hyperspectral imaging technology of 4- to 6-nm bandwidth used in this study provides reliable assessment of relative SIF₇₆₀ variability. The broader-band hyperspectral technology is also cost-effective, compact and facilitates the collection of high-spatial resolution fluorescence data required in precision agriculture.

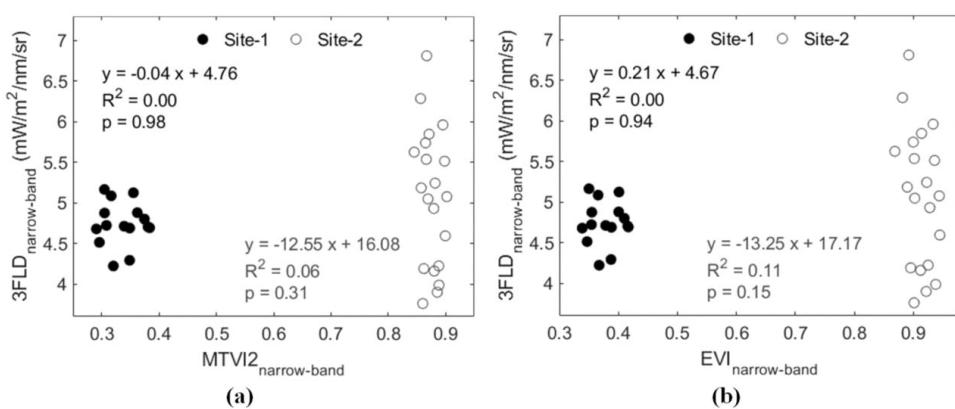


Fig. 16. Relationships between airborne SIF_{760-3FLD} from the narrow-band hyperspectral imager and MTVI2 (a) and EVI (b). The range of absolute SIF_{760-3FLD} levels derived from the narrow-band imager was higher than the typical range of 0–3 mW/m²/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

Credit author statement

A.B., T.P. and P.J.Z.-T. designed the objectives of this study and designed research; A.B., T.P. and A.L. carried out field work and airborne data collections; A.B. analysed data and performed research; A.L. provided field support and access to experimental sites; A.B. wrote the paper, and T.P., A.H., R.H.C. and P.J.Z.-T. contributed and provided comments. All authors read and approved the final submission.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the Foundation for Arable Research Australia, in particular Michael Straight and Ben Morris; the Grains Research and Development Corporation Australia; and Riverine Plains Incorporated for their provision and management of the field trials. A. Gracia-Romero and Y. Wang are acknowledged for their technical support during the field and airborne campaigns.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.rse.2022.112986>.

References

Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P.J., 2018. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. *Remote Sens.* 10, 1091.

Badley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. *Sci. Adv.* 3, e1602244.

Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., Julitta, T., Arthur, A., Mac, Hueni, A., Tomelleri, E., Celesti, M., Burkart, A., Strozecki, M., Sakowska, K., Gabka, M., Rosadzinski, S., Sojka, M., Iordache, M.D., Reusen, I., Van der Tol, C., Damm, A., Schuettemeyer, D., Juszczak, R., 2019. HyPlant-derived sun-induced fluorescence - a new opportunity to disentangle complex vegetation signals from diverse vegetation types. *Remote Sens.* 11, 1691.

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. Comparing the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with different spectral resolutions for plant phenotyping studies. In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5845–5848.

Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., Van den Bosch, J., 2014. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. In: Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H, 13 June 2014.

Breiman, L., 2001. Random Forests. *Mach. Learn.* 45, 5–32.

Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of *Vorticillium* wilt of olive using fluorescence, temperature and narrow-band spectral indices. *Remote Sens. Environ.* 139, 231–245.

Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J., 2015. Early detection and quantification of *Vorticillium* wilt in olive using hyperspectral and thermal imagery over large areas. *Remote Sens.* 7, 5584–5610.

Camino, C., Zarco-Tejada, P.J., González-Dugo, V., 2018a. Effects of heterogeneity within tree crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of precision agriculture. *Remote Sens.* 10, 604.

Camino, C., González-Dugo, V., Hernandez, P., Sillero, J.C., Zarco-Tejada, P.J., 2018b. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. *Int. J. Appl. Earth Obs. Geoinf.* 70, 105–117.

Camino, C., González-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., 2019. Radiative transfer Vemax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rained and irrigated plant phenotyping trials. *Remote Sens. Environ.* 231, 111186.

Camino, C., Calderón, R., Parnell, S., Dierkes, H., Chemin, Y., Román-Écija, M., Montes-Borrego, M., Landa, B.B., Navas-Cortés, J.A., Zarco-Tejada, P.J., Beck, P.S.A., 2021. Detection of *Xylella fastidiosa* in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. *Remote Sens. Environ.* 260, 112420.

Celesti, M., Van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F., Colombo, R., Rossini, M., 2018. Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. *Remote Sens. Environ.* 215, 97–108.

Cendrero-Mateo, M.P., Moran, M.S., Papuga, S.A., Thorp, K.R., Alonso, L., Moreno, J., Ponce-Campos, G., Rascher, U., Wang, G., 2016. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments. *J. Exp. Bot.* 67, 275–286.

Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A., 2019. Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing. *Remote Sens.* 11, 962.

Cogliati, S., Rossini, M., Julitta, T., Meroni, M., Schickling, A., Burkart, A., Pinto, F., Rascher, U., Colombo, R., 2015. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. *Remote Sens. Environ.* 164, 270–281.

Colombo, R., Celesti, M., Bianchi, R., Campbell, P.K.E., Cogliati, S., Cook, B.D., Corp, L.A., Damm, A., Domic, J.C., Guanter, L., Julitta, T., Middleton, E.M., Noormets, A., Panigada, C., Pinto, F., Rascher, U., Rossini, M., Schickling, A., 2018. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest. *Glob. Chang. Biol.* 24, 2980–2996.

Damm, A., Erler, A., Hillen, W., Meroni, M., Schaeppman, M.E., Verhoeft, W., Rascher, U., 2011. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. *Remote Sens. Environ.* 115, 1882–1892.

Damm, A., Guanter, L., Laurent, V.C.E., Schaeppman, M.E., Schickling, A., Rascher, U., 2014. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. *Remote Sens. Environ.* 147, 256–266.

Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W., Ammann, C., Schaeppman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches. *Remote Sens. Environ.* 166, 91–105.

Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A., Moya, I., 2012. Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field. *IEEE Trans. Geosci. Remote Sens.* 50, 4292–4300.

Daumard, F., Goulas, Y., Ounis, A., Pedrós, R., Moya, I., 2015. Measurement and correction of atmospheric effects at different altitudes for remote sensing of sun-induced fluorescence in oxygen absorption bands. *IEEE Trans. Geosci. Remote Sens.* 53, 5180–5196.

Dechant, B., Ryu, Y., Yang, K., Kim, J., 2017. A comprehensive analysis of spectral resolution effects on SIF retrieval and potential correction methods. In: Proc. American Geophysical Union, Fall Meeting, 11–15 December 2017, New Orleans, USA.

Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., Moya, I., 2020. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. *Remote Sens. Environ.* 241, 111733.

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schütttemeyer, D., Verhoeft, W., 2017. The FLoorescence EXplorer mission concept - ESA's Earth Explorer 8. *IEEE Trans. Geosci. Remote Sens.* 55, 1273–1284.

ESA (European Space Agency), 2015. Report for Mission Selection: FLEX. ESA SP-1330/2 (2 Volume Series). 197 pp., Noordwijk (The Netherlands). https://esamultimedia.esa.int/docs/EarthObservation/SPI1330-2_FLEX.pdf.

Féret, J.B., Berger, K., de Boissieu, F., Malenovský, Z., 2021. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. *Remote Sens. Environ.* 252, 112173.

Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., Moya, I., 2012. Effect of canopy structure on sun-induced chlorophyll fluorescence. *ISPRS J. Photogramm. Remote Sens.* 68, 112–120.

Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollack, R., Taylor, T.E., 2014. Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. *Remote Sens. Environ.* 147, 1–12.

Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwocer, M., McDuffie, J., Drewry, D.T., Pavlick, R., Kuhnen, A., 2018. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. *Remote Sens. Environ.* 217, 523–536.

Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., Al Bitar, A., Aval, J., Benhida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton, D., Chrysoulakis, N., Mitra, Z., 2017. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* 10, 2640–2649.

Genty, B., Bryantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochim. Biophys. Acta* 990, 87–92.

Gonzalez-Dugo, V., Hernandez, P., Solis, I., Zarco-Tejada, P.J., 2015. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. *Remote Sens.* 7, 13586–13605.

Grossmann, K., Frankenberg, C., Magney, T.S., Hurllock, S.C., Seibt, U., Stutz, J., 2018. PhotoSpec: a new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence. *Remote Sens. Environ.* 216, 311–327.

Guanter, L., Alonso, L., Gómez-Chova, L., Amorós-López, J., Vila, J., Moreno, J., 2007. Estimation of solar-induced vegetation fluorescence from space measurements. *Geophys. Res. Lett.* 34, L08401.

Guanter, L., Alonso, L., Gómez-Chova, L., Meroni, M., Preusker, R., Fischer, J., Moreno, J., 2010. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O₂-A and O₂-B absorption bands. *J. Geophys. Res.* 115, 19303.

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, H., Grainger, R.G., 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. *Remote Sens. Environ.* 121, 236–251.

Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., Köhler, P., Damm, A., Joiner, J., Frankenberg, C., Landgraf, J., 2015. Potential of the TROPOMospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 precursor for the monitoring of terrestrial chlorophyll fluorescence. *Atmos. Meas. Tech.* 8, 1337–1352.

Guemard, C.A., 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. *Sol. Energy* 71, 325–346.

Haboudane, D., Miller, J.R., Pattee, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. *Remote Sens. Environ.* 90, 337–352.

Hao, D., Zeng, Y., Qiu, H., Birukova, K., Celesti, M., Migliavacca, M., Rossini, M., Asrar, G.R., Chen, M., 2021. Practical approaches for normalizing directional solar-induced fluorescence to a standard viewing geometry. *Remote Sens. Environ.* 255, 112171.

Hernández-Clemente, R., North, P.R.J., Hornero, A., Zarco-Tejada, P.J., 2017. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. *Remote Sens. Environ.* 193, 165–179.

Hornero, A., North, P.R.J., Zarco-Tejada, P.J., Rascher, U., Martín, M.P., Migliavacca, M., Hernández-Clemente, R., 2021a. Assessing the contribution of understory sun-induced chlorophyll fluorescence through 3-D radiative transfer modelling and field data. *Remote Sens. Environ.* 253, 112195.

Hornero, A., Zarco-Tejada, P.J., Quero, J.L., North, P.R.J., Ruiz-Gómez, F.J., Sánchez-Cuesta, R., Hernández-Clemente, R., 2021b. Modelling hyperspectral- and thermal-based plant traits for the early detection of Phytophthora-induced symptoms in oak decline. *Remote Sens. Environ.* 263, 112570.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sens. Environ.* 83, 195–213.

Jacquemoud, S., Baret, F., 1990. PROSPECT: a model of leaf optical properties spectra. *Remote Sens. Environ.* 34, 75–91.

Jia, M., Zhu, J., Ma, C., Alonso, L., Li, D., Cheng, T., Tian, Y., Zhu, Y., Yao, X., Cao, W., 2018. Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat. *Remote Sens.* 10, 1315.

Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X., 2021. Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. *Eur. J. Agron.* 122, 126192.

Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Arthur, A., Mac, Middleton, E.M., Rascher, U., Schickling, A., Colombo, R., 2016. Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. *Remote Sens.* 8, 122.

Julitta, T., Wutzler, T., Rossini, M., Colombo, R., Cogliati, S., Meroni, M., Burkart, A., Migliavacca, M., 2017. An R package for field spectroscopy: From system characterization to sun-induced chlorophyll fluorescence retrieval. In: Proc. 6th International Workshop on Remote Sensing of Vegetation Fluorescence, 17–19 January 2017, Frascati, Italy.

Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H.S., Kornfeld, A., Berry, J.A., 2021. Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition. *Remote Sens.* 22, 112362.

Kjeldahl, J., 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen. *J. Anal. Chem.* 22, 366–382.

Krause, G.H., Weis, E., 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. *Photosynth. Res.* 5, 139–157.

Li, Z., Zhang, Q., Li, J., Yang, X., Wu, Y., Zhang, Z., Wang, S., Wang, H., Zhang, Y., 2020. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. *Remote Sens. Environ.* 236, 111420.

Lichtenhaller, H.K., Rinderle, U., 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. *Crit. Rev. Anal. Chem.* 19 (Suppl. 1), S29–S85.

Liu, L., Liu, X., Hu, J., 2015. Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level. *Eur. J. Remote Sens.* 48, 743–762.

Maier, S.W., Günther, K.P., Stellmes, M., 2003. Sun-induced fluorescence: a new tool for precision farming. In: Schepers, J., VanToai, T. (Eds.), *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*. ASA Spec. Publ. 66. ASA, CSSA, and SSSA, Madison (Wisconsin), USA, pp. 209–222.

Mars, J.K., Jones, T.S., Allen, D.W., Hutyra, L.R., 2021. Instrumentation sensitivities for tower-based solar-induced fluorescence measurements. *Remote Sens. Environ.* 259, 112413.

Meroni, M., Colombo, R., 2006. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. *Remote Sens. Environ.* 103, 438–448.

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. *Remote Sens. Environ.* 113, 2037–2051.

Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoeft, W., 2010. Performance of spectral fitting methods for vegetation fluorescence quantification. *Remote Sens. Environ.* 114, 363–374.

Meroni, M., Barducci, A., Cogliati, S., Castagnoli, F., Rossini, M., Busetto, L., Di Cellia, U., M., 2011. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. *Rev. Sci. Instrum.* 82, 043106.

Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., Van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoeft, W., Malenovský, Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A., Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. *Remote Sens. Environ.* 210, 111177.

Nakashima, N., Kato, T., Morozumi, T., Tsujimoto, K., Akitsu, T.K., Nasahara, K.N., Murayama, S., Muraoka, H., Noda, H.M., 2021. Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest. *J. Plant Res.* 134, 713–728.

Ni, Z., Liu, Z., Li, Z.L., Nerry, F., Huo, H., Sun, R., Yang, P., Zhang, W., 2016. Investigation of atmospheric effects on retrieval of sun-induced fluorescence using hyperspectral imagery. *Sensors* 16, 480.

Nichol, C.J., Drotle, G., Porcar-Castell, A., Wade, T., Sabater, N., Middleton, E.M., Macellan, C., Levula, J., Mammarella, I., Vesala, T., Atherton, J., 2019. Diurnal and seasonal solar induced chlorophyll fluorescence and photosynthesis in a boreal Scots pine canopy. *Remote Sens.* 11, 273.

Panigada, C., Rossini, M., Meroni, M., Cilia, C., Busetto, L., Amaducci, S., Boschetti, M., Cogliati, S., Picchi, V., Pinto, F., Marchesi, A., Colombo, R., 2014. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. *Int. J. Appl. Earth Obs. Geoinf.* 30, 167–178.

Pedrós, R., Moya, I., Goulas, Y., Jacquemoud, S., 2008. Chlorophyll fluorescence emission spectrum inside a leaf. *Photochem. Photobiol. Sci.* 7, 498–502.

Pérez-Priego, O., Zarco-Tejada, P.J., Miller, J.R., Sepulcre-Cantó, G., Fereres, E., 2005. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence *in-filling* of the O₂-A band. *IEEE Trans. Geosci. Remote Sens.* 43, 2860–2869.

Plascky, J.A., 1975. The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence. *Opt. Eng.* 14, 144339.

Poblete, T., Camino, C., Beck, P.S.A., Hornero, A., Kattenborn, T., Saponari, M., Bosca, D., Navas-Cortes, J.A., Zarco-Tejada, P.J., 2020. Detection of *Xylella fastidiosa* infection symptoms with airborne multispectral and thermal imagery: assessing bandset reduction performance from hyperspectral analysis. *ISPRS J. Photogramm. Remote Sens.* 162, 27–40.

Poblete, T., Navas-Cortes, J.A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa, B.B., Zarco-Tejada, P.J., 2021. Discriminating *Xylella fastidiosa* from *Verticillium dahliae* infections in olive trees using thermal- and hyperspectral-based plant traits. *ISPRS J. Photogramm. Remote Sens.* 179, 133–144.

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfundel, E.E., Moreno, J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. *J. Exp. Bot.* 65, 4065–4095.

Quemada, M., Gabriel, J.L., Zarco-Tejada, P., 2014. Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. *Remote Sens.* 6, 2940–2962.

Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Piki, M., Pinto, F., Prey, L., Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., 2015. Sun-induced fluorescence - a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. *Glob. Chang. Biol.* 21, 4673–4684.

Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto, L., Picchi, V., Cescatti, A., Seufert, G., Colombo, R., 2010. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. *Agric. For. Meteorol.* 150, 1283–1296.

Rossini, M., Meroni, M., Celesti, M., Cogliati, S., Julitta, T., Panigada, C., Rascher, U., Van der Tol, C., Colombo, R., 2016. Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data. *Remote Sens.* 11, 2760.

Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., Douglas, S., Guanter, L., Hanus, J., Kataja, K., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Piki, M., Pinto, F., Vargas, J.Q., Rademsko, P., Rodriguez-Moreno, F., Sabater, N., Schickling, A., Schüttemeyer, D., Zemek, F., 2019. The high-performance airborne imaging spectrometer HyPlant-from raw images to top-of-canopy reflectance and fluorescence products: introduction of an automated processing chain. *Remote Sens.* 11, 2760.

Suarez, L., Gonzalez-Dugo, V., Camino, C., Hornero, A., Zarco-Tejada, P.J., 2021. Physical model inversion of the green spectral region to track assimilation rate in almond trees with an airborne nano-hyperspectral imager. *Remote Sens. Environ.* 252, 112147.

Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T., Verma, M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Kohler, P., Evans, B., Yuen, K., 2017. OCO-2 advances photosynthesis observation from space via solar induced chlorophyll fluorescence. *Science* 358 eaam5747.

Süß, A., Hank, T., Mauser, W., 2016. Deriving diurnal variations in sun-induced chlorophyll-a fluorescence in winter wheat canopies and maize leaves from ground-based hyperspectral measurements. *Int. J. Remote Sens.* 37, 60–77.

Tagliabue, G., Panigada, C., Celesti, M., Cogliati, S., Colombo, R., Migliavacca, M., Rascher, U., Rocchini, D., Schüttmeyer, D., Rossini, M., 2020. Sun-induced fluorescence heterogeneity as a measure of functional diversity. *Remote Sens. Environ.* 247, 111934.

Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. *Biogeosci* 6, 3109–3129.

Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. *Remote Sens. Environ.* 16, 125–141.

Verhoef, W., 2004. Extension of SAIL to model solar - induced canopy fluorescence spectra. In: Proc. 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, 17–19 November 2004, Montreal, Canada.

Verhoef, W., Jia, L., Xiao, Q., Su, Z., 2007. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. *IEEE Trans. Geosci. Remote Sens.* 45, 1808–1822.

Verhoef, W., Van der Tol, C., Middleton, E.M., 2018. Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data. *Remote Sens. Environ.* 204, 942–963.

Wilfan, N., Van der Tol, C., Muller, O., Rascher, U., Verhoef, W., 2016. Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. *Remote Sens. Environ.* 186, 596–615.

Wang, Y., Suarez, L., Qian, X., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P. J., 2021. Assessing the contribution of airborne-retrieved chlorophyll fluorescence for nitrogen assessment in almond orchards. In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5853–5856.

Watt, M.S., Buddenbaum, H., Leonardo, E.M.C., Estarjia, H.J., Bown, H.E., Gomez-Gallego, M., Hartley, R.J.L., Pearse, G.D., Massam, P., Wright, L., Zarco-Tejada, P.J., 2020a. Monitoring biochemical limitations to photosynthesis in N and P-limited radiata pine using plant functional traits quantified from hyperspectral imagery. *Remote Sens. Environ.* 248, 112003.

Watt, M.S., Buddenbaum, H., Leonardo, E.M.C., Estarjia, H.J.C., Bown, H.E., Gomez-Gallego, M., Hartley, R., Massam, P., Wright, L., Zarco-Tejada, P.J., 2020b. Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition. *ISPRS J. Photogramm. Remote Sens.* 169, 406–420.

Weis, E., Berry, J.A., 1987. Quantum efficiency of photosystem II in relation to 'energy'-dependent quenching of chlorophyll fluorescence. *Biochim. Biophys. Acta* 894, 198–208.

Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., 2016. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: implications for improved estimates of gross primary productivity. *Remote Sens. Environ.* 184, 654–667.

Yang, P., Van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. *Remote Sens. Environ.* 209, 456–467.

Yang, R., Juhasz, A., Zhang, Yujuan, Chen, X., Zhang, Yinjin, She, M., Zhang, J., Maddern, R., Edwards, I., Diepeveen, D., Islam, S., Ma, W., 2018. Molecular characterisation of the NAM-1 genes in bread wheat in Australia. *Crop Pastur. Sci.* 69, 1173–1181.

Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., 2000a. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. *Remote Sens. Environ.* 74, 582–595.

Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2000b. Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. *Remote Sens. Environ.* 74, 596–608.

Zarco-Tejada, P.J., Gonzalez-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. *Remote Sens. Environ.* 117, 322–337.

Zarco-Tejada, P.J., Catalina, A., González, M.R., Martín, P., 2013a. Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. *Remote Sens. Environ.* 136, 247–258.

Zarco-Tejada, P.J., Suarez, L., Gonzalez-Dugo, V., 2013b. Spatial resolution effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation. *IEEE Geosci. Remote Sens. Lett.* 10, 937–941.

Zarco-Tejada, P.J., González-Dugo, M.V., Fereres, E., 2016. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. *Remote Sens. Environ.* 179, 89–103.

Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P.R.J., Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 2018. Previsual symptoms of *Xylella fastidiosa* infection revealed in spectral plant-trait alterations. *Nat. Plant* 4, 432–439.

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J.A., 2019. A practical approach for estimating the escape ratio of solar-induced chlorophyll fluorescence. *Remote Sens. Environ.* 232, 111209.

Zhao, F., Dai, X., Verhoef, W., Guo, Y., Van der Tol, C., Li, Y., Huang, Y., 2016. FluorWPS: a Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy. *Remote Sens. Environ.* 187, 385–399.

Appendix E: Conference paper 1

This appendix contains the author-accepted manuscript of the IGARSS Conference paper 1.

Below is the bibliographic detail.

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. **Comparing the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with different spectral resolutions for plant phenotyping studies.** In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, Belgium, pp. 5845–5848. <https://doi.org/10.1109/IGARSS47720.2021.9553265>.

COMPARING THE RETRIEVAL OF CHLOROPHYLL FLUORESCENCE FROM TWO AIRBORNE HYPERSPECTRAL IMAGERS WITH DIFFERENT SPECTRAL RESOLUTIONS FOR PLANT PHENOTYPING STUDIES

A. Belwalkar¹, T. Poblete², A. Longmire², A. Hornero^{3,4}, P.J. Zarco-Tejada^{1,2,3}

¹Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), The University of Melbourne, Melbourne, Victoria, Australia

²School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences (FVAS), The University of Melbourne, Melbourne, Victoria, Australia

³Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain

⁴Department of Geography, Swansea University, SA2 8PP Swansea, United Kingdom

ABSTRACT

Several studies have demonstrated the influence of the spectral resolution (SR) on the retrieval of solar-induced chlorophyll fluorescence (SIF) from ground-based sensors with different spectral configurations. However, research studying the implications of the SR of airborne hyperspectral imagers on the retrieved SIF is lacking, and its interpretation is critical for precision agriculture, plant stress detection and phenotyping studies. This work investigates the effects of SR on SIF performance through the Fraunhofer Line Depth (FLD) principle at the O₂-A absorption feature (760.4 nm) using two airborne hyperspectral imagers with different spectral characteristics. A sub-nanometer hyperspectral imager with 0.1-0.2 nm full-width at half-maximum (FWHM) resolution and a broader-band hyperspectral imager of 5.8 nm FWHM were flown in tandem. The campaigns were conducted over a winter wheat field with randomized experimental design, with plots receiving different nitrogen rates to ensure SIF variability. Results showed a bias on the SIF levels quantified by both airborne imagers (RMSE=3.7 mW/m²/nm/sr), but a strong relationship between both sensors at the O₂-A absorption feature ($R^2=0.84$, $p<0.001$). Results confirm the utility of hyperspectral imagers ca. 5 nm FWHM resolution for stress detection and plant phenotyping where assessing the relative variability of SIF across experimental plots is sought.

Index Terms— Airborne, hyperspectral, SIF, FLD, chlorophyll fluorescence, plant phenotyping

1. INTRODUCTION

The energy dissipation pathway by the photosynthetic apparatus in the form of SIF serves as a direct indicator of the physiological state of plants and can assist understanding

of plant functioning, crop performance and the early symptoms of biotic and abiotic stress. Over the last two decades, top-of-canopy (TOC) SIF has been retrieved at various scales and spatial resolutions using ground-based, airborne and satellite platforms [1]-[3]. SIF has largely been retrieved using leaf and ground-based canopy-level sensors, gradually scaling up to satellite platforms for global vegetation monitoring purposes. However, the intermediate scales provided by airborne platforms are critical to bridge the gap between field and satellite-based SIF observations and to disentangle the contribution by the different scene components in aggregated pixels [4], [5]. In this context, assessing the spectral configurations and spatial requirements for the operational use of SIF in precision agriculture and plant phenotyping trials is crucial.

The SR of the sensor is a critical factor that influences the accuracy of the quantified SIF. Modelling based studies [6], [7] have demonstrated that the use of broader-band sensors leads to a higher SIF retrieval bias from FLD-based approaches. As a result, very high-resolution imaging sensors are needed to quantify SIF in absolute terms accurately. Although broader-band sensors (e.g. in the range of 5-6 nm FWHM SR) are sub-optimal for the absolute quantification of SIF at the O₂-A feature, several studies have demonstrated that the relative SIF variability captured by such sensors is a valuable plant trait in the context of plant physiology, gross primary productivity monitoring and for the early detection of biotic and abiotic stress [2], [8]-[10]. Studies comparing SIF retrievals from narrow-band (i.e. below 1 nm FWHM) vs. broader-band hyperspectral imagers (ca. 5-6 nm FWHM) flown in tandem over experimental fields displaying a range of physiological condition are therefore needed. This study aims to evaluate the SIF quantification from broader-band vs. sub-nanometer airborne imagers for stress detection and assessment of crop physiological conditions.

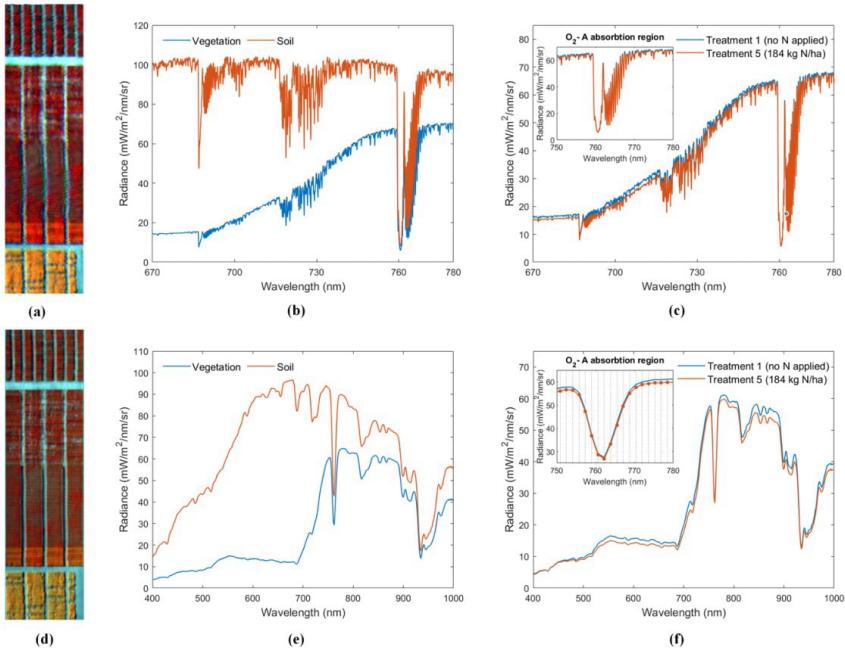


Fig. 1: Subset of the imagery acquired from the aircraft yielding 20 cm pixel resolution and the corresponding sample radiance spectra from the narrow-band hyperspectral imager (a; b) and from the broader-band hyperspectral imager (d; e). Comparison of the radiance spectra for treatment 1 plot with no N applied vs. treatment 5 with the highest levels of N applied (184 kg N/ha) extracted from the narrow-band (c) and broader-band imagers (f). The vertical lines in (f) indicate the location of the 18 spectral bands within the O₂-A absorption region for SIF quantification with the broader-band hyperspectral imager.

2. MATERIALS AND METHODS

2.1. Study sites, field experiment and airborne campaign

The experiment was conducted over fifteen dryland wheat (cv. Scepter) [11] plots located at Yarrawonga, Victoria, Australia. The 2 m × 13 m plots were planted in May 2019 and treated with five different nitrogen (N) application rates in the form of Urea (46% N) fertilizer (T1: 0 kg N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg N/ha). Leaf-level measurements of steady-state chlorophyll fluorescence (F_i) were performed in the field on ten leaves per plot using the FluorPen device (PSI, Czech Republic) at the time of the airborne campaign.

The airborne campaign to collect TOC spectral radiances was carried out under clear sky conditions on 9 October 2019 from 15:40 to 16:30 local time flying with the heading of the aircraft on the solar plane. The payload consisted of two hyperspectral imagers installed in tandem on a Cessna aircraft operated by the HyperSens Laboratory, University of Melbourne's Airborne Remote Sensing Facility. The first linear-array hyperspectral camera used in this study was the Micro-Hyperspec VNIR E-Series model

(Headwall Photonics, Fitchburg, MA, USA) operated with a configuration of 371 spectral bands acquired at 1.626 nm/pixel in the 400–1000 nm region, yielding 5.8 nm FWHM. The second hyperspectral camera was the high-resolution chlorophyll fluorescence imager (Headwall Photonics, Fitchburg, MA, USA) operated with a configuration of 2160 spectral bands acquired at 0.051 nm/pixel in the 670–780 nm region, yielding 0.1–0.2 nm FWHM. Fig. 1 shows a portion of the imagery along with sample radiance spectra acquired from both imagers. Differences in the radiance spectra and the O₂-A feature were visually detected as a function of the nitrogen rates applied over the experimental fields (Fig. 1c and Fig. 1f).

2.2. SIF quantification from field data and airborne hyperspectral imagery

The mean radiance spectra from each plot were calculated by computing the average of all pixels within each region of interest, excluding the boundaries and non-vegetation pixels. The total incoming irradiance at the time of the flight was measured using a 0.065 nm FWHM Ocean Optics HR2000 fiber-optics spectrometer (Ocean Optics, Dunedin, FL,

USA) with a CC-3 VIS-NIR cosine corrector diffuser (Ocean Optics, Dunedin, FL, USA).

The radiometric calibration of the spectrometer was carried out using the coefficients derived from a uniform calibrated light source and an integrating sphere (model XTH2000C, Labsphere Inc., North Sutton, NH, USA) using six different levels of illumination. To match the spectral resolution of the radiance images acquired from both imagers, the high-resolution irradiance spectra collected with the HR2000 spectrometer was resampled through Gaussian convolution corresponding to the spectral resolution of the airborne imagers. The SIF quantification from both instruments was conducted using the O₂-A band *in-filling* method through the FLD principle [12], using a total of three spectral bands (3FLD) [13]. SIF was scaled based on an offset derived from non-fluorescence targets extracted from the imagery to account for the effects of negative values due to atmospheric and calibration factors. In addition to the SIF quantification through the 3FLD method, the depth at the O₂-A absorption feature captured by the two imagers was also quantified.

3. RESULTS

The different spectral characteristics of the two hyperspectral imagers caused significant effects in the measured radiances (Fig. 2). As expected, the depth and shape of the absorption features at the O₂-A (760.4 nm) and O₂-B (687.0 nm) were strongly influenced by the SR. The O₂-B absorption feature could not be identified in the broader-band radiance spectra. A reduction in the O₂-A band depth and an increase in the radiance signal of the absorption minimum were also observed. As reported in other studies, the wavelength corresponding to the radiance minimum was shifted towards higher wavelengths when compared to the narrow-band imager.

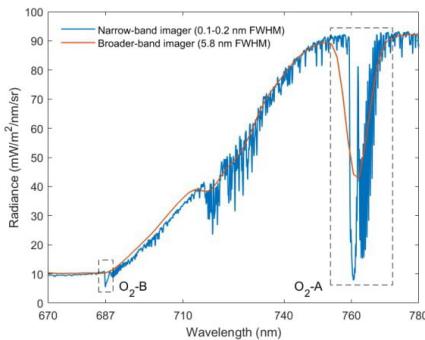


Fig. 2: Comparison of radiance spectra acquired from the narrow-band and broader-band airborne hyperspectral imagers for the same experimental plot.

The O₂-A absorption band depth calculated from the two hyperspectral imagers from radiance spectra extracted from the experimental plots with nitrogen variability exhibited a strong relationship ($R^2=0.84$, $p<0.001$; Fig. 3a). Results obtained when comparing SIF quantified through 3FLD from the two airborne hyperspectral imagers is illustrated in Fig 3b. As the retrieval of SIF at O₂-A band using the FLD principle is primarily affected by the depth of the measured O₂-A absorption feature (shown in Fig. 2 & 3a), large differences in the range of SIF levels from both imagers as a function of the spectral resolution were observed. Although in absolute terms the SIF levels were affected by the spectral resolution of both imagers (RMSE=3.7 mW/m²/nm/sr), a significant relationship was obtained ($R^2=0.71$, $p<0.001$) which demonstrates the agreement in the relative variability of SIF quantified by the two imagers at the O₂-A feature.

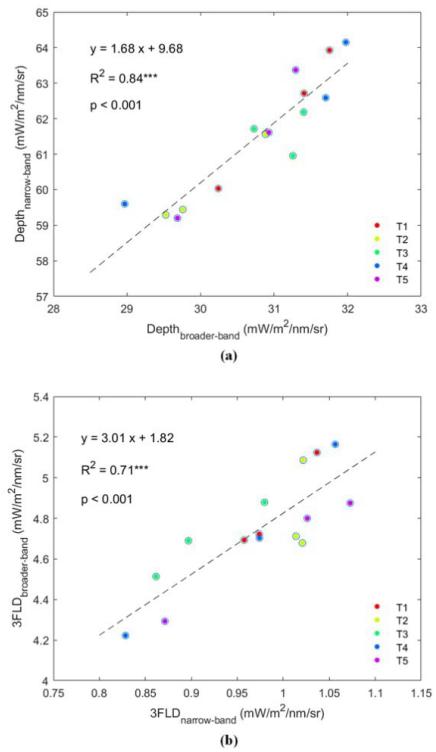


Fig. 3: Relationship between O₂-A band depth captured by the two imagers (a). Relationship between the airborne SIF quantified using the 3FLD method from the two imagers (b).

The assessment of the TOC airborne SIF quantified by both imagers was conducted by comparing against fluorescence measurements carried out at the leaf-level

across the experimental field. The relationships obtained between leaf-level fluorescence and airborne SIF yielded significant results ($R^2=0.65$, $p<0.001$ for the narrow-band imager, and $R^2=0.42$, $p<0.01$ for broader-band imager).

Our results demonstrate the link between the airborne-retrieved SIF from two hyperspectral imagers with different spectral resolutions. These results obtained by sensors flying in tandem support the findings of past studies [2], [9], [10] that showed the capability of broader-band hyperspectral imagers for SIF quantification in the context of early detection of vegetation stress symptoms and plant physiological assessment.

4. CONCLUSIONS

This study assessed the effects of varying spectral resolution from two airborne hyperspectral imagers on the quantification of SIF at the O₂-A absorption feature for vegetation stress detection and plant phenotyping purposes when flown over experimental wheat plots with variable nitrogen rates. The airborne hyperspectral images acquired at 20 cm spatial resolution from a sub-nanometer (0.1-0.2 nm FWHM) and a broader-band imager (5.8 nm FWHM) flown in tandem yielded a bias ($RMSE=3.7$ mW/m²/nm/sr) in the absolute SIF levels quantified by both imagers, but a good agreement when comparing the O₂-A feature depth ($R^2=0.84$) and the 3FLD quantification ($R^2=0.71$). These results demonstrate the potentials of using broader-band hyperspectral imagers for operational retrievals of SIF in the context of plant phenotyping and precision agriculture, where quantification of relative stress levels is required. This study also makes progress toward future work to model the effect of sensor spectral resolution on the retrieved SIF from piloted and drone-based airborne hyperspectral imagers for vegetation stress detection.

5. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Foundation for Arable Research Australia and Riverine Plains Incorporated for their provision and management of the plot trials. A. Gracia-Romero is acknowledged for his technical support during the field and airborne campaigns.

6. REFERENCES

- [1] O. Pérez-Priego, P.J. Zarco-Tejada, J.R. Miller, G. Sepulcre-Cantó, and E. Fereres, "Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence *in-filling* of the O₂-A band," *IEEE Trans. Geosci. Remote Sens.*, vol. 43, no. 12, pp. 2860–2868, Dec. 2005.
- [2] P.J. Zarco-Tejada, M.V. González-Dugo, and E. Fereres, "Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture," *Remote Sens. Environ.*, vol. 179, pp. 89–103, Jun. 2016.
- [3] J. Joiner, Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and E. M. Middleton, "First observations of global and seasonal terrestrial chlorophyll fluorescence from space," *Biogeosciences*, vol. 8, no. 3, pp. 637–651, 2011.
- [4] P. J. Zarco-Tejada, L. Suarez, and V. Gonzalez-Dugo, "Spatial resolution effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation," *IEEE Geosci. Remote Sens. Lett.*, vol. 10, no. 4, pp. 937–941, Jul. 2013.
- [5] A. Hornero et al., "Assessing the contribution of understory sun-induced chlorophyll fluorescence through 3-D radiative transfer modelling and field data," *Remote Sens. Environ.*, vol. 253, Feb. 2021.
- [6] A. Damm et al., "Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence," *Remote Sens. Environ.*, vol. 115, no. 8, pp. 1882–1892, Aug. 2011.
- [7] L. Liu, X. Liu, and J. Hu, "Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level," *Eur. J. Remote. Sens.*, vol. 48, pp. 743–762, 2015.
- [8] A. Damm, L. Guanter, V. C. E. Laurent, M. E. Schaepman, A. Schickling, and U. Rascher, "FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data," *Remote Sens. Environ.*, vol. 147, pp. 256–266, May 2014.
- [9] A. Damm et al., "Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches," *Remote Sens. Environ.*, vol. 166, pp. 91–105, Sep. 2015.
- [10] P. J. Zarco-Tejada et al., "Previsual symptoms of *Xylella fastidiosa* infection revealed in spectral plant-trait alterations," *Nat. Plants*, vol. 4, no. 7, pp. 432–439, Jul. 2018.
- [11] R. Yang et al., "Molecular characterisation of the NAM-1 genes in bread wheat in Australia," *Crop and Pasture Science*, vol. 69, no. 12, pp. 1173–1181, 2018.
- [12] J. A. Plascyk and F. C. Gabriel, "The Fraunhofer Line Discriminator MKII-An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement," *IEEE Trans. Instrum. Meas.*, vol. 24, no. 4, pp. 306–313, Dec. 1975.
- [13] S. W. Maier, K. P. Gunther, and M. Stellmes, "Sun-Induced Fluorescence: A New Tool for Precision Farming," In: *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*, Vol. 66 (eds M McDonald, J Schepers, L Tarty, T Van Toai, D Major), ASA Spec. Publ., Madison, WI, USA, pp. 209–222, 2003.

Appendix F: Conference paper 2

This appendix contains the author-accepted manuscript of the IGARSS Conference paper 2.

Below is the bibliographic detail.

Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. Accounting for the spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE.

In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 17–22

July 2022, Kuala Lumpur, Malaysia, pp. 5440–5443.

<https://doi.org/10.1109/IGARSS46834.2022.9884564>.

ACCOUNTING FOR THE SPECTRAL RESOLUTION ON SIF RETRIEVAL FROM A NARROW-BAND AIRBORNE IMAGER USING SCOPE

A. Belwalkar¹, T. Poblete¹, A. Hornero^{1,3,4}, P.J. Zarco-Tejada^{1,2,3}

¹Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), The University of Melbourne, Melbourne, Victoria, Australia

²School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences (FVAS), The University of Melbourne, Melbourne, Victoria, Australia

³Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain

⁴Department of Geography, Swansea University, SA2 8PP Swansea, United Kingdom

ABSTRACT

Sub-nanometer hyperspectral imagers are increasingly being used to quantify solar-induced chlorophyll fluorescence (SIF) due to their ability to characterize narrow absorption features accurately. However, some limitations prevent their wide use in the operational context due to their high cost, weight, and complexity. On the other hand, more widely-used narrow-band hyperspectral imagers with 4–6 nm full width at half-maximum (FWHM) resolution could be a cost-effective alternative for acquiring high-spatial-resolution hyperspectral imagery to derive SIF. Due to the large effects of the spectral resolution (SR) on the quantified fluorescence, the SIF levels derived from such airborne imagers with 4–6 nm FWHM are overestimated, requiring careful interpretation. In this study, we flew in tandem two airborne hyperspectral imagers with different spectral characteristics. These sensors' imagery was used to model the impact of SR on the SIF quantification using the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model. A Support Vector Machine regression (SVR) model trained via SCOPE simulations was employed to quantify SIF at 1 nm SR from the original 5.8 nm FWHM resolution. The performance of the SIF quantification was evaluated theoretically with SCOPE and tested against airborne hyperspectral radiance and the derived SIF. Results showed that the estimated SIF at 1 nm SR agreed well with the reference SCOPE simulations (RMSE=0.097 mW/m²/nm/sr) and with airborne-quantified SIF (RMSE=0.094 mW/m²/nm/sr).

Index Terms— Airborne, hyperspectral, SIF, 3FLD, solar-induced fluorescence, SCOPE, radiative transfer.

1. INTRODUCTION

The quantification of SIF using imaging sensors onboard airborne platforms has made significant progress in the last decade. SR has improved from narrow-band hyperspectral imagers (i.e., 4–6 nm FWHM) to sub-nanometer sensors specifically designed for accurate SIF retrievals [1]. These airborne imaging spectroscopy sensors provide spatial patterns of fluorescence across the landscape, enabling the development of indicators of photosynthetic functioning used for pre-visual vegetation stress [2], [3]. Although SIF quantification in absolute physical units requires sub-nanometer resolutions [1], the availability of airborne imaging sensors with such capabilities is limited due to their high cost and operational complexity. On the other hand, narrow-band imaging sensors characterized by spectral resolutions ranging from 4–6 nm FWHM are widely available. They can be installed onboard lightweight platforms for operational SIF retrievals needed in precision agriculture applications. Previous studies [4]–[6] have demonstrated the relevance of retrieving SIF from narrow-band sensors in the context of plant physiology, and particularly for the pre-visual detection of biotic and abiotic stress. Recent research [7] found that SIF estimates derived from a narrow-band hyperspectral imager with a 5.8 nm FWHM correlated strongly with ground-based and sub-nanometer airborne SIF estimates acquired simultaneously. However, such narrow-band SIF estimates are overestimated, and their correct interpretation is critical, particularly in applications of plant phenotyping and precision agriculture. Therefore, work is needed to develop methods based on radiative transfer models (RTMs) to accurately quantify SIF from narrow-band hyperspectral imagers.

Light re-absorption and scattering within the canopy, which is driven by vegetation structure and plant pigments, have a

strong influence on the top of canopy (TOC) SIF [8], [9]. Global sensitivity analyses using SCOPE [10] identified leaf chlorophyll content (C_{a+b}), leaf area index (LAI), and the leaf inclination distribution parameter (LIDF_a) as key variables driving the majority of SIF variability [11]. The current study makes progress on the development of modelling methods that account for the spectral resolution when estimating SIF at 1 nm resolution from narrow-band hyperspectral imagery. Leaf biochemistry and structural traits derived from SCOPE model inversions were used as inputs in a modelling approach to assess their impact on the SIF estimates obtained from a narrow-band imager. Sub-nanometer imagery collected concurrently was used for validation purposes to assess the model performance.

2. MATERIALS AND METHODS

2.1. Experimental and simulated datasets

2.1.1. Airborne hyperspectral imagery

On 9 October 2019 an airborne campaign was conducted over a field trial site in Yarrawonga ($36^{\circ}02'55"S$, $145^{\circ}59'02"E$), Australia, under clear sky conditions. Several varieties of dryland wheat were grown under varying physiological conditions induced by a range of nitrogen fertilizer application rates. A narrow-band hyperspectral imager (Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) in the 400–1000 nm spectral region with 5.8 nm FWHM resolution and a sub-nanometer hyperspectral imager (Hyperspec Fluorescence sensor, Headwall Photonics, Fitchburg, MA, USA) in the 670–780 nm spectral region with 0.1–0.2 nm FWHM were installed in tandem on a Cessna 172R aircraft operated by the HyperSens Laboratory, University of Melbourne's Airborne Remote Sensing Facility. The total incoming irradiance was measured with a 0.065-nm FWHM HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA) equipped with a CC-3 VIS-NIR cosine corrector diffuser. Mean radiance spectra corresponding to both hyperspectral imagers and reflectance spectra from the narrow-band hyperspectral imager were extracted from pure vegetation pixels identified within individual plots. Radiance and reflectance spectra were used to quantify SIF and estimate plant traits by radiative transfer, respectively (Fig. 1). A full description of the airborne campaign, data preprocessing and image correction can be found in Belwalkar *et al.* [7].

2.1.2. SCOPE model simulations

Simulations were carried out using the SCOPE model (version 2.0), which integrates three radiative transfer modules and an energy balance module to estimate outgoing radiation spectra, reflectance and chlorophyll fluorescence [10]. A training dataset of 10,000 simulations and a test dataset of 1,000 simulations were generated independently by randomly varying specific input parameters drawn from a

uniform distribution. The following ranges were set based on field measurements and from the existing literature: C_{a+b} [10–70] $\mu\text{g}/\text{cm}^2$, LAI [0.5–5] m^2/m^2 , LIDF_a [-1 to 1], leaf carotenoid content (C_{x+c}) [1–20] $\mu\text{g}/\text{cm}^2$, leaf anthocyanins content (Anth.) [0–8] $\mu\text{g}/\text{cm}^2$, leaf dry matter content (C_{dm}) [0.001–0.05] g/cm^2 , leaf water content (C_w) [0.001–0.05] cm , leaf structure parameter (N) [1–1.5], maximum carboxylation capacity (V_{cmo}) [30–110], and the bimodality of the leaf angle distribution (LIDF_b) as 0. All other SCOPE input parameters were left at their default settings. The air temperature and air pressure inputs were obtained from a portable weather station during the airborne campaign at the field trial site. The TOC spectra of total upwelling radiance, reflectance, SIF radiance, and corresponding irradiance were simulated for each case using SCOPE at the default 1.0-nm SR and 1.0-nm spectral sampling interval (SSI). All simulations were convolved to the narrow-band hyperspectral imager's wavelength range, SSI, and SR assuming a gaussian band spectral response function.

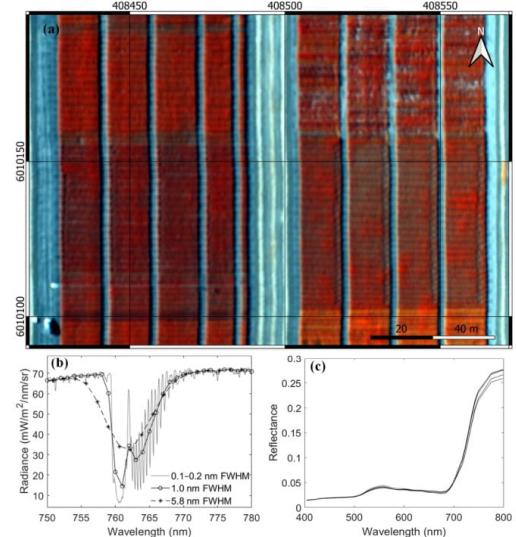


Fig. 1: Airborne hyperspectral image acquired over the field trial site. Airborne radiance (b) and reflectance (c) were used for SIF quantification and plant traits estimation using SCOPE model inversions. The 1.0 nm FWHM radiance shown in (b) were obtained by convolving the original sub-nanometer resolution (0.1–0.2 nm FWHM) spectra.

2.2. SIF quantification and inversion of plant traits

The radiance spectra extracted from the sub-nanometer imager were convolved to the default 1.0-nm SR and 1.0-nm SSI used in SCOPE (Fig. 1b). The resampled sub-nanometer-derived radiance was used to calculate the SIF

used as a reference against the SIF quantified from the narrow-band hyperspectral imager using the modelling approach proposed in this study. The O₂-A band *in-filling* approach was used to quantify SIF from both simulated and airborne datasets, employing the Fraunhofer Line Depth (FLD) principle with a total of three spectral bands (3FLD) [12]. The airborne SIF was further corrected and normalized to account for the atmospheric and directional effects, as described in Belwalkar *et al.* [7]. A look-up table with 100,000 simulations was built by randomly varying the SCOPE input parameters with a uniform distribution within the ranges described in section 2.1.2. Reflectance spectra were matched with the spectral resolution of the narrow-band hyperspectral imager. The reflectance spectra from the SCOPE simulations and the narrow-band hyperspectral imager in the 400–800 nm spectral range (Fig. 1c) were used to estimate C_{a+b}, LAI, and LIDF_a using an RTM-based hybrid inversion with random forest regression [13].

2.3. Estimation of SIF at 1 nm resolution from narrow-band airborne spectra

We evaluated two models for estimating SIF at 1 nm resolution from narrow-band 5.8 nm spectra. The slope and coefficient obtained from the linear relationship between 3FLD retrievals at 1 nm and 5.8 nm from the SCOPE simulated training dataset were used to scale narrow-band SIF retrievals to 1 nm SR in the first model, named here as the linear model. The second model was based on an SVR built using the simulated training dataset, with i) narrow-band SIF quantified using the 3FLD method, and ii) SCOPE-derived C_{a+b}, LAI, and LIDF_a as inputs. The SVR model was first trained in parallel (MATLAB parallel computing toolbox) using a radial basis function and optimizing the hyperparameters during training to predict SIF at 1 nm SR. A 10-fold cross-validation strategy was employed to avoid overfitting on the training samples.

The performance of both models was evaluated using root mean square error (RMSE) and normalized root mean square error (nRMSE) as metrics. The estimated SIF from the simulated test dataset was compared against the reference SCOPE modelled SIF. Additionally, both models were evaluated on the airborne datasets to test the applicability of the models on the experimental data. The SCOPE-based hybrid inversion retrieved the three leaf biochemistry and structural traits. Airborne SIF estimated at 1 nm FWHM from the 5.8 nm spectra was compared against the resampled sub-nanometer SIF, and error metrics were calculated.

3. RESULTS

Fig. 2 shows the range of variation for the leaf traits estimated from the airborne reflectance data using the

SCOPE-based hybrid inversion approach. C_{a+b} exhibited the most significant variability across the experimental plots, attributed to the changes in physiological conditions and nitrogen fertilizer application rates.

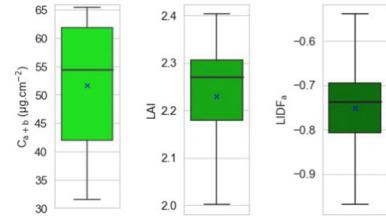


Fig. 2: Range of variation associated with C_{a+b}, LAI and LIDF_a estimated from airborne hyperspectral reflectance. The median and mean values are denoted by a black line within the box, and the marker 'x', respectively.

The predicted SIF using both linear and SVR models from SCOPE simulated data showed significant relationships with the reference 1 nm FWHM SIF ($R^2 > 0.9$, $p < 0.001$; Fig. 3a and 3b). The SVR model outperformed (nRMSE=8.82%) the linear model (nRMSE=12.16%), but the slope of the linear relationship remained close to 1 for both models.

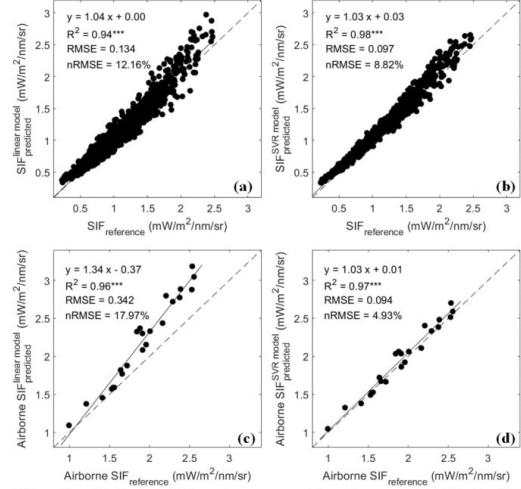


Fig. 3: Relationships between the 1 nm FWHM SIF simulated by SCOPE (used here as the reference SIF) and the SIF estimated by the linear model (a) and by the SVR model (b) from 5.8 nm FWHM spectra. Relationships between the airborne SIF quantified from the sub-nanometer imager and the airborne SIF at 1 nm FWHM estimated by the linear model (c) and SVR model (d) from the 5.8 nm narrow-band airborne spectra. * p -value < 0.05; ** p -value < 0.01; *** p -value < 0.001.

The linear model consistently overestimated the SIF estimated from the narrow-band airborne hyperspectral data, as expected, which was more pronounced for higher SIF values (nRMSE=17.97%, p<0.001; Fig. 3c). In contrast, the predicted airborne SIF at 1 nm FWHM from the airborne 5.8 nm FWHM spectra using the SVR model demonstrated strong agreement with the sub-nanometer derived airborne SIF used as reference (nRMSE=4.93%, p<0.001; Fig. 3d) and was closer to the 1:1 line.

These results suggest that the 5.8 nm FWHM SIF estimates can be scaled to 1 nm resolution using SCOPE radiative transfer modelling techniques and plant-retrieved parameters. These findings also indicate that machine learning models built with leaf and canopy biochemistry and structural traits in addition to narrow-band SIF quantification can improve the SIF retrieval to match the absolute levels of fluorescence expected at 1-nm resolution.

4. CONCLUSIONS

This study investigated the estimation of SIF at 1 nm FWHM from narrow-band airborne hyperspectral radiance collected at 5.8 nm FWHM using RTM modelling techniques. SIF predictions at 1 nm resolution were carried out with an SVR regression model using SCOPE-simulated narrow-band SIF data and leaf biochemical and canopy structural traits as inputs. The model was validated using simulated and experimental airborne SIF imagery acquired at 0.1–0.2 nm FWHM resolution. Results showed strong agreement with both simulated and experimental airborne datasets, with RMSEs lower than 0.1 mW/m²/nm/sr. These findings suggest that RTM-based modelling methods applied to airborne hyperspectral imagers with >1 nm FWHM resolution, which are commonly used in precision agriculture, enable the retrieval of SIF at appropriate absolute physical levels, avoiding the overestimation typically obtained by lower spectral resolution instruments.

5. ACKNOWLEDGEMENTS

The authors would like to thank the Foundation for Arable Research Australia and Riverine Plains Incorporated for providing and managing the plot trials. A. Gracia-Romero and A. Longmire are acknowledged for their technical assistance during the field and airborne campaign.

6. REFERENCES

- [1] G. H. Mohammed et al., “Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress,” *Remote Sens. Environ.*, vol. 231, Sep. 2019.
- [2] P. J. Zarco-Tejada et al., “Previsual symptoms of *Xylella fastidiosa* infection revealed in spectral plant-trait alterations,” *Nat. Plants*, vol. 4, no. 7, pp. 432–439, Jul. 2018.
- [3] U. Rascher et al., “Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant,” *Glob. Chang. Biol.*, vol. 21, no. 12, pp. 4673–4684, Dec. 2015.
- [4] C. Panigada et al., “Fluorescence, PRI and canopy temperature for water stress detection in cereal crops,” *Int. J. Appl. Earth Obs. Geoinf.*, vol. 30, no. 1, pp. 167–178, 2014.
- [5] P. J. Zarco-Tejada et al., “Divergent abiotic spectral pathways unravel pathogen stress signals across species,” *Nat. Comm.*, vol. 12, no. 1, Dec. 2021.
- [6] A. Damm et al., “Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches,” *Remote Sens. Environ.*, vol. 166, pp. 91–105, Sep. 2015.
- [7] A. Belwalkar, T. Poblete, A. Longmire, A. Hornero, R. Hernandez-Clemente and P. J. Zarco-Tejada, “Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: Modelling and validation in the context of plant phenotyping,” *Remote Sens. Environ.*, vol. 273, May 2022.
- [8] B. Dechant et al., “Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops,” *Remote Sens. Environ.*, vol. 241, May 2020.
- [9] Y. Zeng, G. Badgley, B. Dechant, Y. Ryu, M. Chen, and J. A. Berry, “A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence,” *Remote Sens. Environ.*, vol. 232, Oct. 2019.
- [10] C. van der Tol, W. Verhoef, J. Timmermans, A. Verhoef, and Z. Su, “An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance,” *Biogeosciences*, vol. 6, pp. 3109–3129, 2009.
- [11] J. Verrelst, J. P. Rivera, C. van der Tol, F. Magnani, G. Mohammed, and J. Moreno, “Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence?,” *Remote Sens. Environ.*, vol. 166, pp. 8–21, Sep. 2015.
- [12] J. A. Plascyk and F. C. Gabriel, “The Fraunhofer Line Discriminator MKII-An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement,” *IEEE Trans. Instrum. Meas.*, vol. 24, no. 4, pp. 306–313, Dec. 1975.
- [13] C. Camino et al., “Detection of *Xylella fastidiosa* in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits,” *Remote Sens. Environ.*, vol. 260, Jul. 2021.

Appendix G: Conference paper 3

This appendix contains the author-accepted manuscript of the IGARSS Conference paper 3.

Below is the bibliographic detail.

Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. Evaluating the relative contribution of Photosystems I and II for leaf nitrogen estimation using fractional depth of Fraunhofer lines and SIF derived from sub-nanometer airborne hyperspectral imagery. In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 16–21 July 2023, Pasadena, CA, USA, pp. 2819–2822.

EVALUATING THE RELATIVE CONTRIBUTION OF PHOTOSYSTEMS I AND II FOR LEAF NITROGEN ESTIMATION USING FRACTIONAL DEPTH OF FRAUNHOFER LINES AND SIF DERIVED FROM SUB-NANOMETER AIRBORNE HYPERSPECTRAL IMAGERY

A. Belwalkar¹, T. Poblete^{1,2}, A. Hornero^{1,3}, P.J. Zarco-Tejada^{1,2,3}

¹Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), The University of Melbourne, Melbourne, Victoria, Australia

²School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), The University of Melbourne, Melbourne, Victoria, Australia

³Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain

ABSTRACT

Integrating far-red solar-induced chlorophyll fluorescence (SIF₇₆₀) and leaf biochemical constituents (primarily leaf chlorophyll content (C_{a+b})) has recently been demonstrated to improve the estimation of leaf nitrogen (N) concentration from airborne and spaceborne hyperspectral imagery in homogenous and heterogeneous crop canopies. The advent of sub-nanometer resolution imagers capable of detecting narrow solar Fraunhofer lines (FLs) has enabled a novel opportunity to investigate the prospect of leaf N estimation using individual FLs in addition to SIF₇₆₀ and C_{a+b} traits. This study seeks to determine whether incorporating distinct FL depth derived from sub-nanometer airborne hyperspectral imagery could improve leaf N estimates. A sub-nanometer hyperspectral imager with ≤ 0.2 nm full-width at half-maximum (FWHM) resolution was flown in tandem with a narrow-band hyperspectral imager with 5.8 nm FWHM over a winter wheat field. Plots were fertilized with variable concentrations of nitrogen to enable nutrient variability. Regression models utilizing Gaussian process regression (GPR) were built with different permutations of SIF, C_{a+b} and depths of individual FLs for estimating leaf N concentration. Laboratory-determined leaf N estimates were obtained by destructive sampling. Results show that GPR models incorporating the depth of distinct Fraunhofer lines as predictor variables performed better than the benchmark model constructed using C_{a+b} and SIF₇₆₀ alone. The best leaf N-estimation model built with FLs from the red and far-red regions (C_{a+b}, FL_{682.97 nm}, FL_{757.002 nm}) yielded an R² of 0.71, outperforming the standard approach used in previous works (C_{a+b}, SIF₇₆₀) (R² = 0.56).

Index Terms— Airborne, Hyperspectral, SIF, GPR, leaf Nitrogen, Fraunhofer lines, sub-nanometer

1. INTRODUCTION

Nitrogen is a macronutrient that plays a crucial role in plant development, yield and grain quality, whilst it is often the dominant limiting factor in photosynthesis [1], [2]. Accurate field-wide assessments of leaf N concentration (N%) enable more targeted use of N-fertilizers, thereby mitigating the environmental effects of N-overfertilization while improving crop yields. Standard destructive sampling for leaf N determination relies on the laboratory analysis of leaf tissue using methods such as Kjeldahl digestion and Dumas combustion. Although accurate, these techniques are time-consuming and expensive for monitoring the leaf N status of large areas. In recent decades, the use of remote sensing technologies has increased, particularly through hyperspectral imagery, for mapping the spatial and temporal variations of crop leaf N concentration at the paddock scale [3]. There are three main categories of leaf N estimation approaches: 1) empirical methods, 2) physically-based model inversion methods, and 3) hybrid regression methods. Among these approaches, hybrid regression methods integrate physically-based models with advanced machine learning (ML) algorithms taking advantage of both the physical basis provided by radiative transfer models (RTMs) and the adaptability and efficiency of ML methods [4].

Recent studies utilizing narrow-band airborne and spaceborne hyperspectral imagers have demonstrated that accurate determination of leaf N concentration is feasible by combining the RTM-derived leaf biochemical constituents with SIF₇₆₀ acquired from high-resolution airborne hyperspectral imagery [5]–[7]. Even though these studies have demonstrated improved leaf N retrievals when including SIF₇₆₀, the potential of other spectral regions within the 650–800 nm SIF emission region to characterize both PSI and PSII photosystems has not yet been explored. Moreover, the potential information extracted from the red spectral region, i.e. SIF quantified at the O₂-B absorption

band centered around 687 nm (SIF_{687}) and the depth of solar FLs, which are absorption lines in the solar spectrum, could provide valuable insights for improved characterization of photosynthesis and leaf N variability. With the recently developed sub-nanometer resolution airborne hyperspectral imagers, it is now possible to investigate the potential of these narrow FLs within the SIF emission region. This study aims to assess the relative contribution of the solar-induced chlorophyll fluorescence emitted by each of the two photosystems (PSI and PSII) in explaining leaf N variability across the field. SIF_{760} , SIF_{687} and the fractional depth of distinct solar FLs inside PSI and PSII emission regions derived from sub-nanometer airborne hyperspectral imagery are evaluated.

2. MATERIALS AND METHODS

2.1. Study site and airborne hyperspectral imagery

An airborne campaign operated by the HyperSens Laboratory at the University of Melbourne's Airborne Remote Sensing Facility was conducted on 9 October 2019 over a phenotyping trial site in Yarrawonga ($36^{\circ}02'55"S$, $145^{\circ}59'02"E$), Australia. Several cultivated varieties of rainfed wheat were grown under varying physiological conditions and N fertilization treatments. A sub-nanometer hyperspectral imager ($FWHM \leq 0.2$ nm; 670–780 nm) and a narrow-band hyperspectral imager ($FWHM = 5.8$ nm; 400–1000 nm) (Headwall Photonics Inc., Fitchburg, MA, USA) were used to collect airborne hyperspectral imagery at 20 cm spatial resolution. Concurrent with the flights, ground measurements were conducted using a CC-3 VIS-NIR cosine corrector diffuser attached to an HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA) with a 0.065-nm FWHM for continuous measurement of the total incident radiation at the trial site. Pure vegetation pixels were extracted within individual plots, and mean radiance spectra corresponding to the sub-nanometer imager and reflectance spectra from the narrow-band hyperspectral imager were retrieved. Belwalkar *et al.* [8] provide a full description of the airborne campaign, data preprocessing, and image correction. In addition, the total leaf N concentration (%) was destructively determined in the laboratory using the Kjeldahl method, with samples consisting of 10–15 leaves randomly selected per plot.

2.2. SIF quantification and identification of Fraunhofer lines

The irradiance spectra obtained from the HR-2000 spectrometer were convolved to the spectral characteristics of the sub-nanometer imager using Gaussian convolution. Using this convolved irradiance and the mean radiance derived from each plot, SIF_{760} and SIF_{687} were quantified using the *in-filling* approach, employing the Fraunhofer Line Depth (FLD) principle with a total of three spectral bands

(3FLD) [9]. Furthermore, we identified 17 FLs across the 670–780 nm spectral range of the sub-nanometer imager, excluding regions of significant water vapour and oxygen absorption [10]. The identified FLs were divided into two groups according to their positions in the spectral region. Five of these FLs were located in the red region of the spectrum (named here as red FLs), while the remaining twelve were located within the far-red region (named here as far-red FLs). The exact location of the band centres corresponding to all FLs, and the O_2 -A and O_2 -B oxygen absorption bands is illustrated in Fig. 1. For each FL, the absolute depth in radiance units was computed as the difference between the radiance at the left shoulder wavelength and the wavelength at the bottom of the FL. The left shoulder wavelength was selected by searching for the local maxima closest to the bottom FL wavelength within 1 nm.

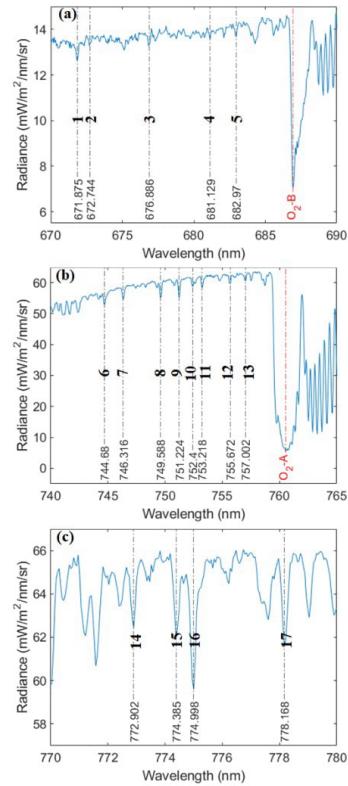


Fig. 1: Locations of the band centres corresponding to red FLs (a) and far-red FLs (b,c) shown in dashed black, and oxygen absorption lines (a,b) shown in dashed red identified from the average radiance spectra of one of the plots imaged by the sub-nanometer hyperspectral imager.

2.3. Regression model for N concentration estimation

We trained regression models based on GPR to empirically estimate leaf N concentration using C_{a+b} , SIF₇₆₀, SIF₆₈₇ and the depth of distinct FLs as a pool of potential predictor variables. C_{a+b} , SIF₇₆₀, and depth corresponding to a single FL were used to initially train GPR models. Subsequently, GPR models were trained using C_{a+b} , and one FL depth each from the red and far-red FL groups on leaf N estimation to further examine the effect of using FL depths corresponding to both the red and far-red FL groups as predictor variables. The GPR models were trained in parallel (MATLAB parallel computing toolbox), and the hyperparameters were optimized by incorporating Bayesian optimization into the leave-one-out cross-validation (LOOCV). The performance evaluation of the trained GPR models was carried out using the coefficient of determination (R^2), root-mean-square error (RMSE) and normalized root-mean-square error (nRMSE). To limit random errors, for each possible combination of predictor variables, five GPR models were independently trained, and the average estimate was then used to determine R^2 , RMSE and nRMSE.

Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) [11] RTM-based hybrid inversion with random forest regression [12] was used to estimate C_{a+b} from the mean reflectance spectra obtained from the narrow-band hyperspectral imager in the 400-800 nm spectral region. To determine if the leaf N estimates could be further improved by including SIF emission regions other than the O₂-A absorption band, we used the GPR model developed with C_{a+b} and SIF₇₆₀ as a benchmark. Then, we compared this benchmark by adding the depth of distinct solar FLs into the models. Since PSII largely influences the red spectral region, the contributions of SIF₆₈₇ and red FLs would be attributed only to PSII. In contrast, the contributions of SIF₇₆₀ and far-red FLs would be attributed to both photosystems.

3. RESULTS

GPR models trained with a single FL as one of the three predictor variables produced a total of 17 distinct GPR models (5 models for the red FL group and 12 models for the far-red FL group). Among the red FL group, the performance of the GPR model with FL₁ depth was comparable with the benchmark ($R^2 = 0.56$; RMSE = 0.229%; nRMSE = 5.89%; Fig. 2a and 2b), whereas the performance of the other four red FL depths did not improve the prediction. From the far-red FLs, the model that included FL₁₃ depth showed the highest performance, outperforming the benchmark model ($R^2 = 0.63$; RMSE = 0.21%; nRMSE = 5.41%; Fig. 2c). Since FL₁₃ performed the best among all red and far-red FLs, for the next set of GPR models with two FLs and C_{a+b} as predictors, we selected FL₁₃ among the far-red FLs and independently evaluated all

five red FLs as potential GPR model predictors. When compared to the benchmark model, the GPR model trained with FL₅ (682.97 nm) and FL₁₃ (757.002 nm) substantially improved the leaf N estimation ($R^2 = 0.71$; RMSE = 0.188%; nRMSE = 4.84%; Fig. 2d) with more data points closer to the 1:1 line. The model's performance did not improve further after including more FLs from either of the two FL groups. Furthermore, we found that the model's performance decreased by including SIF₆₈₇ with any combination of predictor variables. This result could be potentially attributed to the high collinearity observed between C_{a+b} and SIF₆₈₇.

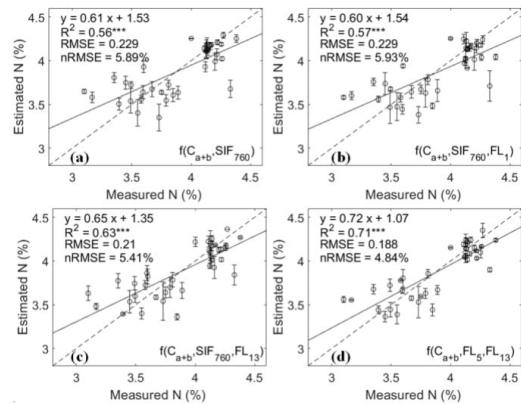


Fig. 2: Measured vs estimated mean leaf N concentration using the best GPR models as a function of C_{a+b} and SIF₇₆₀ (a), C_{a+b} , SIF₇₆₀ and best performing red FL (b), C_{a+b} , SIF₇₆₀ and best performing far-red FL (c), C_{a+b} and best-performing combination of one red and one far-red FL (d). The dashed line indicates the 1:1 line. The error bars indicate the standard deviation based on five runs of the GPR model. The GPR model as a function of C_{a+b} and SIF₇₆₀ was used as a benchmark. *** p -value < 0.05.

Our results suggest that FL depths corresponding to 757.002 nm (FL₁₃) and 682.97 nm (FL₅), in conjunction with C_{a+b} estimated by RTM simulations, provided improved estimates of leaf N concentration. These results provide a foundation for future research into the use of FLs identified in sub-nanometer imagery in the context of precision agriculture and plant physiology monitoring. Future work will focus on evaluating their potential for identifying pre-visual signs of vegetation stress.

4. CONCLUSIONS

This study evaluated the capability of 17 narrow solar Fraunhofer lines depth derived from sub-nanometer imagery to estimate leaf N concentration when combined with C_{a+b} and SIF₇₆₀. With an RMSE of less than 0.19%, the best

results were achieved by the regression model constructed using C_{a+b} , red FL closest to O₂-B band (682.97 nm), and far-red FL closest to O₂-A band (757.002 nm). These results highlight the importance of integrating FLs around the two oxygen absorption bands for more accurate leaf N estimates. Furthermore, the proposed approach based on the depth of distinct FLs demonstrates the importance of sub-nanometer resolution imaging sensors for vegetation trait retrievals, supporting the need for future research focused on the entire SIF emission region for physiological assessment and vegetation stress detection.

5. ACKNOWLEDGEMENTS

The Foundation for Arable Research Australia and Riverine Plains Incorporated provided and managed the plot trials, which the authors gratefully acknowledge. We thank A. Gracia-Romero and A. Longmire for their technical support during the field and airborne campaign.

6. REFERENCES

- [1] J. R. Evans, "Photosynthesis and nitrogen relationships in leaves of C3 plants," *Oecologia*, vol. 78, no. 1, pp. 9–19, 1989.
- [2] G. Lemaire, M. H. Jeuffroy, and F. Gastal, "Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management," *European Journal of Agronomy*, vol. 28, no. 4, pp. 614–624, May 2008.
- [3] K. Berger et al., "Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions," *Remote Sensing of Environment*, vol. 242, June 2020.
- [4] J. Verrelst et al., "Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods," *Surveys in Geophysics*, vol. 40, no. 3, pp. 589–629, May 2019.
- [5] Y. Wang, L. Suarez, T. Poblete, V. Gonzalez-Dugo, D. Ryu, and P. J. Zarco-Tejada, "Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery," *Remote Sensing of Environment*, vol. 279, Sep. 2022.
- [6] Y. Wang, L. Suarez, V. Gonzalez-Dugo, D. Ryu, P. Moar and P. J. Zarco-Tejada, "Leaf nitrogen assessment with ISS DESIS Imaging Spectrometer as compared to high-resolution airborne hyperspectral imagery," in *IEEE International Geoscience and Remote Sensing Symposium*, Kuala Lumpur, Malaysia, pp. 5444–5447, 17–22 July 2022.
- [7] C. Camino, V. González-Dugo, P. Hernández, J. C. Sillero, and P. J. Zarco-Tejada, "Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture," *International Journal of Applied Earth Observation and Geoinformation*, vol. 70, pp. 105–117, Aug. 2018.
- [8] A. Belwalkar, T. Poblete, A. Longmire, A. Hornero, R. Hernandez-Clemente, and P. J. Zarco-Tejada, "Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: Modelling and validation in the context of plant phenotyping," *Remote Sensing of Environment*, vol. 273, May 2022.
- [9] S. W. Maier, K. P. Gunther, and M. Stellmes, "Sun-Induced Fluorescence: A New Tool for Precision Farming," In: *Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology*, Vol. 66 (eds M McDonald, J Schepers, L Tarty, T Van Toai, D Major), ASA Spec. Publ., Madison, WI, USA, pp. 209–222, 2003.
- [10] L. P. Albert, K. C. Cushman, Y. Zong, D. W. Allen, L. Alonso, and J. R. Kellner, "Sensitivity of solar-induced fluorescence to spectral stray light in high resolution imaging spectroscopy," *Remote Sensing of Environment*, vol. 285, Feb. 2023.
- [11] C. van der Tol, W. Verhoef, J. Timmermans, A. Verhoef, and Z. Su, "An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance," *Biogeosciences*, vol. 6, pp. 3109–3129, 2009.
- [12] A. Belwalkar, T. Poblete, A. Hornero, and P. J. Zarco-Tejada, "Accounting for the spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE," in *IEEE International Geoscience and Remote Sensing Symposium*, Kuala Lumpur, Malaysia, pp. 5440–5443, 17–22 July 2022.