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Abstract

Climate change has devastated agriculture and food production. In recent decades heatwaves
and droughts have made it harder to meet global food demand. Understanding photosynthesis, plant
adaptation, and how photosynthetic efficiency affects crop yields is essential for developing stress-
resistant plants and increasing crop production. This climate crisis underlines the need for systems
that evaluate photosynthetic efficiency to monitor plant health and increase efficiency. Solar-induced
chlorophyll fluorescence (SIF) is a faint electromagnetic signal that can indicate plant stress and
photosynthetic efficiency. Accurate SIF quantification requires sub-nanometer resolution sensors.
However, sub-nanometer resolution imaging sensors onboard airborne platforms are expensive and
difficult to operate, hindering their widespread operational use for plant phenotyping, stress detection,
and precision agriculture applications. Consideration should therefore turn towards development of
adequate airborne imaging sensors and approaches that use physically-based models to accurately

interpret SIF from the sensor.

This PhD thesis investigates whether commonly accessible narrow-band imaging sensors
could potentially substitute for sub-nanometer imaging sensors in operational SIF retrieval for plant
phenotyping, stress detection, and precision agriculture applications. A narrow-band imaging sensor
and a sub-nanometer imaging sensor flown in tandem were compared for SIF. Physically-based
models and machine learning were used to model the effect of spectral resolution (SR) on narrow-
band far-red SIF (SIF760) estimates. Furthermore, an exploratory analysis was conducted to
investigate the potential of solar Fraunhofer lines in the SIF emission region for estimating leaf
nitrogen concentration across a field and detecting biotic stress in infected trees, using airborne sub-

nanometer hyperspectral imagery.

Airborne SIF7¢0 retrievals from a narrow-band imaging sensor (5.8-nm FWHM) and a sub-

nanometer imaging sensor (0.2-nm FWHM) were compared across two wheat and maize phenotyping
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trials grown under varied nitrogen fertiliser rates over the 2019-2021 growing seasons. The
correlation between SIF760 values obtained from the two sensors was found to be significant (R? =
0.77-0.9, p <0.01). Notably, the narrow-band imager yielded higher estimates of SIF7¢0 than the sub-
nanometer imager did. The findings of this study suggest that narrow-band imaging sensors may
accurately detect field-wide variations in relative SIF7¢0, particularly when nitrogen fertilisation levels
vary. The next part of this study focused on improving narrow-band-derived absolute SIF7¢o levels to
reduce systematic bias. A Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE)
model with Support Vector Regression (SVR) scaling airborne narrow-band SIF7¢0 values to 1-nm
FWHM was used. As shown by the normalised root-mean-square error (nRMSE) values of 2.45—
5.28% for the SCOPE simulated dataset and 4.5-16% for the airborne hyperspectral dataset, the
estimated SIF760 at 1-nm FWHM showed good agreement with the reference SIF760. This study
suggests that the proposed SIF760 modelling approach can improve the understanding of relative
SIF760 levels quantified by narrow-band hyperspectral imaging sensors in stress detection and plant

physiological monitoring applications.

An exploratory investigation of sub-nanometer imagery-derived Fraunhofer lines (FLs)
concludes the thesis. The study found that including depths for two FLs near oxygen absorption
features improved leaf nitrogen estimation. In addition, it was observed that biotic-induced stress was
linked to FL activation in the red and far-red spectral regions. As biotic-induced stress level increased,
the sensitivity of FLs in the discernment of and differentiation between symptomatic and
asymptomatic trees also increased. These findings indicate the need for additional research on these
specialised potential benefits of FLs, which would allow better understanding and more efficient

management of the various factors that affect the physiological status of plants.
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Preface

This thesis is comprised of three main research chapters (Chapters 2-4) that are all presented in

manuscript format. Chapter two has been published in an international journal as a research article,

Chapter three has been submitted for publication, Chapter four is currently being drafted for

submission to a journal. These three research Chapters are co-authored with supervisors and research

collaborators. The use of 'we' and 'our' in these research chapters reflects the contributions of

coauthors. In each publication, I was responsible for over 60% of the authorship, including research

conceptualization, modelling, statistical analysis, interpretation of results, and drafting and finalising

the manuscripts. Below are the bibliographic details for the three research chapters.

1.

Chapter 2 (Paper 1) - Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-
Clemente, R., Zarco-Tejada, P.J., 2022. Evaluation of SIF retrievals from narrow-band
and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and
validation in the context of plant phenotyping. Remote Sens. Environ. 273, 112986.

https://doi.org/10.1016/.rs€.2022.112986.

Chapter 3 (Paper 2) - Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R.,
Zarco-Tejada, P.J. Accurate SIF quantification from a narrow-band airborne
hyperspectral imager using SCOPE: assessment with sub-nanometer imagery (under

review in the journal Remote Sensing of Environment).

Chapter 4 (Paper 3) - Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R.,
Zarco-Tejada, P.J. Prospects of solar Fraunhofer lines derived from sub-nanometer
hyperspectral imagery for assessing a/biotic stress (currently being drafted for submission

to the journal Remote Sensing of Environment).

The original version of the published research article is included in Appendix D. In addition to

the journal articles, this thesis also produced three conference publications, which are included in
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Appendices E through G. The three conference publications correspond to the three research chapters.

Below are the bibliographic specifications of the conference publications:

1. Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J.,2021. Comparing
the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with
different spectral resolutions for plant phenotyping studies. In: Proc. IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 12-16 July 2021, Brussels,

Belgium, pp. 5845-5848. https://doi.org/10.1109/IGARSS47720.2021.9553265.

2. Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. Accounting for the
spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE.
In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 17-22
July 2022, Kuala Lumpur, Malaysia, pp- 5440-5443.

https://doi.org/10.1109/IGARSS46834.2022.9884564.

3. Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. Evaluating the relative
contribution of Photosystems I and II for leaf nitrogen estimation using fractional depth
of Fraunhofer lines and SIF derived from sub-nanometer airborne hyperspectral
imagery. In: Proc. IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), 16-21 July 2023, Pasadena, CA, USA, pp. 2819-2822.

Further, during the PhD, I was involved in another research project outside this thesis scope, in

which I was the joint first author for a published journal article as follows:

Deshpande, P., Belwalkar, A., Dikshit, O., Tripathi, S., 2021. Historical land cover
classification from CORONA imagery using convolutional neural networks and geometric

moments. Int. J. Remote Sens., 42, 5144-5171. https://doi.org/10.1080/01431161.2021.1910365.
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validation plots corresponding to both sites (a, b). Relationships between the airborne SIF7¢o-
3rLp quantified from the sub-nanometer imager and the airborne 1-nm SR SIF760 estimated
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Chapter 1

Introduction

1.1  Photosynthesis: principles and regulations

The global population is projected to reach 9.7 billion by the year 2050 (United Nations,
2022). A 70% increase in food production will be required to keep up with the demands of the world's
expanding population, which equates to an additional 44 million metric tonnes of food per year
(Tester and Langridge, 2010). Furthermore, climate change — including varying greenhouse gas
concentrations in the atmosphere, rising temperatures, altered precipitation patterns, and increased
frequency of extreme weather events — is having a substantial impact on agricultural production and

food security (Asseng et al., 2015; Cogato et al., 2019; Hasegawa et al., 2018).

Photosynthesis is the fundamental mechanism governing plant growth and productivity,
enabling plants to accumulate biomass (Hofius and Bornke, 2007; Simkin ef al., 2019; Van Bel et al.,
2003). It is the process by which plants transform solar energy into the biochemical energy which
supports the vast majority of life on earth. As photosynthesis is the primary regulator of plant growth
and productivity, it is vital to understand its functioning and plant adaptations to changing
environmental conditions, as well as the effects of photosynthetic efficiency on crop yields, in order
to increase crop production and develop stress-tolerant plants to meet global food demands (Hussain

etal., 2021).

Photosynthesis is initiated by the absorption of light by plant photosynthetic pigments,
primarily chlorophylls, and involves two distinct sets of reactions: (1) light reactions and (2) carbon
fixation reactions (Porcar-Castell ez al., 2014). The light reactions involve the conversion of absorbed
solar radiation into chemical energy in the form of two biochemical products, adenosine triphosphate

(ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). The carbon fixation reactions,
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on the other hand, involve the synthesis of complex energy-rich biomolecules from the ATP and
NADPH using atmospheric CO2. The overall sequence of carbon fixation reactions is called the

Calvin-Benson cycle (Stiller, 1962).

The light absorption and energy conversion reactions occur in the photosynthetic apparatus,
which consists of four different complexes — two photosystems (PSI and PSII), the cytochrome bgf,
and ATP synthase (F-type ATPase) — encapsulated within the thylakoid membrane of the chloroplasts
(Frigerio et al., 2008). A photosystem is the collective term for the antenna complex and reaction
centre. Antenna complexes are composed of photosynthetic pigments — including chlorophylls,
carotenoids, phycoerythrin, and phycocyanin — bound to proteins. The antenna system absorbs light
energy and transfers it to the reaction centres. The transferred energy is then used by the reaction
centres to drive electron transfer reactions (photochemistry), resulting in charge separation within the
thylakoid membrane driven by the transfer of electrons from chlorophyll to pheophytin (Blankenship,
2014). The cytochrome bef complex functions as an electron transfer bridge between the two
photosystems, enabling the transfer of electrons from PSII to PSI. Additionally, the electron transfer
energy is used by the cytochrome bef complex for transferring protons from the stroma to the
thylakoid lumen. The proton concentration gradient resulting from the accumulation of protons in the
thylakoid lumen is then used by the final complex of the photosynthetic apparatus, ATP synthase, to

synthesise ATP (Kramer et al., 2004).

The rates of production of the two biochemical products, ATP and NADPH, by light reactions
and the rate of their consumption by carbon fixation reactions may not always be equivalent, due to
the influence of environmental factors like water and sunlight availability, temperature, or pathogen
infection (Hatfield and Prueger, 2011; Huner et al., 1996; Thiele et al., 1998). Consequently, to
compensate for these differential rates, plants have evolved a variety of mechanisms to regulate the
energy balance between light reactions and carbon fixation reactions (Anderson et al., 1995; Walters,

2005). These include changes in chlorophyll concentrations (Giardi et al., 1996; Murchie and Horton,
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1997), photorespiration (Kozaki and Takeba, 1996), chloroplast and leaf movements (Arena et al.,
2008; Haupt 1990; Ludlow and Bjorkman 1984; Sarvikas et al., 2010), anthocyanin concentrations
(Close and Beadle, 2003; Merzlyak et al., 2008). Typically, these regulatory mechanisms are able to
compensate for detrimental environmental conditions, but prolonged stress can weaken them and
cause a substantial decrease in plant productivity. Hence, the quantification of photosynthetic
efficiency is critical for monitoring the health of plants and advancing our understanding of how the

photosynthetic machinery operates.

1.2 Chlorophyll fluorescence

There are three possible outcomes when chlorophyll pigments within the photosynthetic
apparatus absorb solar radiation: (i) the energy can be used to drive photochemistry; (ii) the energy
can be dissipated as heat; or (iii) the energy can be re-emitted as an electromagnetic signal known as
chlorophyll fluorescence (ChlF) (Krause and Weis, 1984; Maxwell and Johnson, 2000). ChlF
originates primarily from the antenna complexes and reaction centres of PSII, with a minor
contribution from PSI. The three energy dissipation pathways compete with one another, and
therefore any increase in the efficiency of one pathway lowers the yield of the other two (Maxwell

and Johnson, 2000).

At the molecular level, light absorption by chlorophyll excites electrons from their ground
state (So) to a higher energy level known as a ‘singlet’. Each electronic energy level has the energy
levels of the various rotation and vibration states superimposed on it. There are two major singlet
states that exist, depending on the energy of the absorbed photon. The absorption of red light causes
excitation of the first singlet (S1), while blue light causes excitation of the second singlet (S2). As S»
is extremely unstable, with a half-life in the order of 10"'>~10"'* seconds, the excitation energy is

exclusively lost as heat through rotations and vibrations until S; is attained. The loss of excitation
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energy from S to So occurs via a number of pathways: the excitation energy could be used to drive
photochemistry; the excitation energy could be transferred to a nearby pigment (Forster energy
transfer) (Forster, 1948); the excitation energy could be emitted as ChlF signal (Porcar-Castell et al.,
2014); the excitation energy could be dissipated as heat (Heldt and Piechulla, 2011). Furthermore, S;
can attain a lower excitation state, known as the triplet state, by releasing energy as heat via a process
known as intersystem crossing (Clegg, 2004). The relaxation of energy from the triplet state to the
ground state, So, then occurs via the emission of phosphorescent light. A schematic representation of

the entire absorption and energy partitioning process is shown in Fig. 1-1.
1.2.1 Relationship between Chlorophyll Fluorescence and photochemistry

For PSII, the quantum yield (®) of an i™ process competing against n other de-excitation

pathways with k; as the first-order rate constant can be expressed as (Govindjee, 2004):

k:
&= i (1.1)

When all PSII reaction centres are open, owing to the dark-adapted leaf, the quantum yield of

ChIF (®g,) will be at its minimum, resulting in the lowest ChIF emission (F,), while the quantum

yield of photochemistry (®,) will be at its maximum, denoted as ®p . Both quantum yields can be

expressed with Eq. (1.1) as (Butler, 1978):

b, = — P
Po™ kp + kp + ko (1.2)

b, = —F (1.3)
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In Eq. (1.2) and Eq. (1.3), kp, kg and k, represent, respectively, the rate constants for
photochemistry, ChlF and the other de-excitation pathways, mainly regulated and constitutive heat
dissipation, as illustrated in Fig. 1-1. Likewise, when the PSII reaction centres are closed due to the
exposure of a dark-adapted leaf to a short actinic pulse of high photosynthetically active photon flux
density (PPFD) after reaching F,, the rate constant for photochemistry is almost zero, resulting in the

highest ChlF emission (Fj,) and the maximum quantum yield of chlorophyll fluorescence (®p,,):

o = _FF (1.4)
M ke + ko

Rearranging Equations (1.3) and (1.4) by calculating their difference and dividing by Equation
(1.4) yields:

Pry — Pr, kp (1.5)

= :@
b, kp +kp+ko PO

As the ChlF intensity is proportional to the quantum yield with additional terms related to the
intensity of the incident light and the absorption cross-section of the leaf, the quantum yield can be
substituted for by the corresponding ChlF intensity levels by assuming that the additional terms are

constant (Govindjee, 2004) which simplifies Eq. (1.5) as follows:

Fn—F, _F _ o, (1.6)

Fm m

In Eq. (1.6), E, denotes the difference between F,, and F, in dark-adapted vegetation and is

referred to as variable fluorescence. This theoretical derivation (Eq. 1.1 — 1.6) suggests that :—" could

serve as an indicator of the PSII photochemistry efficiency, enabling the assessment of plant health



156

157

158

159

160

161

162

163
164
165

166

with measurements of variations in ChIF parameters. However, ®@p  computed using F, and F, cannot

be considered a rigorous quantitative measure of the quantum yield of PSII photochemistry because

some of the assumptions made to derive Eq. (1.6) may not be applicable under all conditions

(Blankenship, 2014). Nevertheless, If—” provides a reasonable estimation of PSII photochemistry

efficiency with a consistent mean value of 0.83 for non-stressed leaves (Bjorkman and Demmig,

1987).
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Fig. 1-1. Perrin-Jablonski diagram illustrating the entire absorption and energy partitioning process
in a chlorophyll molecule. Fine lines represent various rotational and vibrational energy levels, and
solid lines represent electronic energy levels (modified after Heldt and Piechulla, 2011).
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On exposing a dark-adapted leaf to strong light, the PSII reaction centres gradually close,
resulting in an increase in ChlF yield up to maximum ChIF intensity F,,, but ChlF yield then begins
to decrease within a few minutes. This phenomenon of decreased ChIF yield is referred to as
fluorescence quenching and can be explained by two concurrent processes: photochemical quenching
(PQ), which indicates the availability of open PSII reaction centres for photochemistry; and non-
photochemical quenching (NPQ), which indicates the efficiency of energy conversion to heat via
regulated non-radiative heat dissipation (Maxwell and Johnson, 2000). Within several minutes of
illumination, ChlF attains a steady-state level at intensity F;. Consequently, in order to estimate PSII

photochemistry from ChlF measurements, disentangling these two quenching mechanisms is crucial.

1.2.2 Chlorophyll fluorescence quantification

Based on the light source employed, ChlF estimation methods can be broadly divided into
two groups — (1) active methods and (2) passive methods. Active methods rely on an artificial light
source, such as pulse-amplitude modulation (PAM) fluorometry or high-power laser diodes, and are
typically restricted to leaf-scale. In contrast, passive techniques use solar irradiance and the radiance

emitted by vegetation and are generally applicable at canopy-scale.

1.2.2.1 Chlorophyll fluorescence quantification using active methods

PAM fluorometry (Schreiber et al., 1986), which makes use of high-tech electronic
instruments called PAM fluorometers, is one of the most popular active methods for estimating ChlF
at leaf-scale. PAM fluorometers enable the quantification and isolation of the variations in ChIF yield
induced by the pulse-modulating measuring light against a background of ChlF intensity fluctuations
originating from actinic and saturating lights that are orders of magnitude larger. This makes
fluorometers suitable for experiments under both controlled laboratory conditions and field
conditions. There are four types of light sources that are used in PAM fluorometers for their specific

functions: a low-intensity pulsed measuring light (ML); a moderate-intensity actinic light (AL); a



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

high-intensity saturating pulse (SP); and far-red radiation (FR). The measurement is initiated by the
application of ML under a dark-adapted state to obtain F,. Then, F,, is measured in the dark-adapted
state with the application of SP for a short duration (usually less than 1 s). The application of SP
activates AL, resulting in a rapid increase in ChlF followed by a slow drop to a steady-state intensity,
F;. Both photochemical and non-photochemical mechanisms contribute to these ChIF intensity
changes. The application of SP at this precise moment eliminates the contribution of PQ and produces
the light-adapted maximal ChIF intensity F, which is lower than F,. Since the difference between
E,, and F,, is accounted for by non-photochemical processes, and the difference between F,, and F;
is accounted for by photochemical processes, these ChlF parameters can be used to differentiate
between the PQ and NPQ contributions (Brooks and Niyogi, 2011). The quantum yield of

photochemistry (defined as optimal quantum yield) and of NPQ can be defined as:

o, = Fn . Fy (1.7)
Fn

NPOQ = Fn —’Fél (1.8)
Fr

Using Eq. (1.7) eliminates the need to determine F,, allowing measurements to be conducted
under actual field conditions without the need to fully dark-adapt the sample (Genty et al., 1989). The
actinic light is subsequently turned off and FR is activated to permit the re-oxidation of PSII in order
to obtain the minimal ChlF in the light-adapted state (F,). The ChlF induction kinetics recorded using

a typical PAM fluorometer, are shown in Fig. 1-2.

In addition to PAM fluorometry, laser-induced fluorescence transient (LIFT) is a newly
developed active approach for measuring ChlF. In contrast to PAM fluorometers, which require close
proximity to the leaf for ChIF yield estimation, the LIFT method can be used at target distances

between 5 and 50 m. LIFT is based on the principle of fast repetition rate fluorometry (FRRF) (Kolber

8
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et al., 1998) and employs a pulsed laser excitation source with a variable duty cycle to modulate the
extent of photosynthetic activity and quantify the resulting variations in ChlF yield (Kolber et al.,

2005).
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Fig. 1-2. ChIF induction kinetic curve recorded by a typical PAM fluorometer (modified after
Schreiber, 2004).

1.2.2.2 Chlorophyll fluorescence quantification using passive methods

Since ChIF is an electromagnetic signal emitted as a by-product of photosynthesis, it can be
remotely sensed. Using solar radiation as its energy source, solar-induced chlorophyll fluorescence
(SIF) refers to the passive estimation of ChlF primarily at canopy-scale. SIF is a faint electromagnetic
signal that superimposes onto reflected solar radiation and accounts for a very small fraction (< 1-
2%) of the total upwelling radiance (L) from the vegetation target (Frankenberg and Berry, 2018).
Consequently, isolating the SIF signal from the L signal is challenging because of SIF's negligible

contribution.
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Spectral emission of SIF ranges from 650—-800 nm, with peaks in the red and near-infrared
(far-red) spectral regions at approximately 685 nm (SIFegs) and 740 nm (SIF740), respectively
(Mohammed et al., 2019). SIF originates from both PSI and PSII, with PSII being the primary
contributor to the complete SIF emission range and PSI contributing mostly in the near-infrared
region (Fig. 1-3a). Assuming that both SIF emission and surface reflectance () follow Lambert's law,
the top-of-canopy (TOC) L detected by a ground-based sensor include contributions from both solar-
reflected and SIF emitted radiations and can be represented as follows (Meroni et al., 2009):

(1.9)

L) =

—rmf @ + SIF(1)

where A and E represent the wavelength and total irradiance (sum of direct and diffused
components) incident on the target, respectively. All the terms in Eq. 1.9 are spectrally variable, with
ground-based sensors only providing quantifications for £ and L, leaving » and SIF to be determined.
Since there are these two unknown terms in Eq. 1.9, assumptions regarding the spectral shape of r

and SIF are leveraged for SIF estimation.

Reflectance-based approaches and radiance-based approaches can be broadly categorised as
the two types of SIF retrieval techniques (Meroni ef al., 2009). Reflectance-based approaches were
the earliest attempt to explore the effects of SIF on the apparent reflectance spectra (r*) using
conventional remote sensing techniques, paving the way for future advances. Since these approaches
used 7" to derive spectral indices linked to SIF, they could not retrieve SIF in physical units. The link
between SIF and apparent reflectance »* (Fig. 1-3b) was computed as the ratio between the upwelling

and incident fluxes as related to pure reflectance r:

LA . SIF () (1.10)

r*(A) = .E(A) =r(1)+ ECD

10
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The several spectral indices proposed for SIF retrieval (Dobrowski et al., 2006; Pérez-Priego
et al., 2005; Zarco-Tejada et al., 2000a; 2000b) can be grouped into three distinct classes: reflectance
ratios (e.g., r68s5/T630 and 7740/1300); derivatives (e.g., D730/D706); and subtraction metrics (e.g., 7760.59-
r759.5). With the emergence of sensors with sub-nanometer resolution capabilities for estimating SIF
in precise physical units, reflectance-based methodologies have been rendered obsolete and replaced

with radiance-based approaches.
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Fig. 1-3. SIF spectra based on the contributions from the two photosystems, PSI and PSII (a) and
reflectance spectra (b) in the 650-800 nm SIF emission region, simulated using the Soil-Canopy
Observation of Photosynthesis and Energy (SCOPE) radiative transfer model. The insets in (b) show

comparisons of 7 and " in the far-red (750-780 nm) and red (685-690 nm) spectral regions,
respectively.

Radiance-based approaches retrieve SIF in radiance units from radiometrically calibrated
downwelling irradiance and upwelling radiance reflected from vegetation canopies. Several
algorithms have been proposed to disentangle the contribution of SIF from that of the reflected solar
radiation (see a full review in Mohammed et al., 2019). Using these algorithms, SIF can be estimated
within specific absorption bands or across the entire emission region. As SIF is a relatively faint
signal, its precise estimation requires the use of spectral regions where SIF's proportional contribution
to the total reflected radiance is high. Opportunities exist in solar Fraunhofer Lines (FLs) and telluric
absorption lines of the solar spectrum, where irradiance is drastically reduced (Mohammed ef al.,

2019). Since these absorption features are quite narrow, their proper characterisation is needed for

11
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the accurate estimation of SIF, which necessitates the use of sub-nanometer resolution (full-width-at-

half-maximum (FWHM) <I-nm) instruments.

The majority of SIF quantification methods use oxygen absorption bands (O2-A and O»-B)
centred around 760 nm (SIF760) and 687 nm (SIFes7), respectively, since they are wider and deeper
than other absorption features (Meroni et al., 2009). The oldest and most extensively used approach
for SIF quantification is based on the Fraunhofer Line Depth (FLD) (Plascyk, 1975) principle, which
uses the fluorescence in-filling effect. Although originally intended for FLs, this approach is currently
used for SIF quantification in oxygen absorption bands. Using two flux measurements, one inside
and one outside the absorption line, the FLD approach estimates SIF by comparing the depth of
absorption lines obtained simultaneously from a fluorescence-free reference and a vegetation target
(Fig. 1-4). Assuming both reflectance and SIF remain constant within the narrow absorption region

encompassed by the inside (4;;,) and outside (4,,;) wavelengths, Eq. (1.9) can be written as:

. A'
r.E(1
(Ao t) ( out) SIF (1.12)

The above system of equations can be solved using the measurements of £ and L at the two

wavelengths from the ground-based sensor to obtain estimates of » and SIF:

. L(Aout) — L(Ain) - (1.13)
E(Aout) - E(/lin) .

_ EQour)- L(Ain) — E(Ain)- L(Aour) (1.14)

SIF
E(/lout) - E(/lin)

12
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Although SIF quantification using the FLD method is simple because it requires only two
wavelengths, the assumption of constant » and SIF within the narrow absorption line is inadequate.
Consequently, numerous variations of the conventional 2-band FLD method have been proposed,
including 3-band FLD (3FLD) (Maier et al., 2003), corrected FLD (cFLD) (Gomez-Chova et al.,
2006), extended FLD (eFLD) (Mazzoni et al., 2007) and improved FLD (iFLD) (Alonso et al., 2008).
In particular, 3FLD and iFLD are the most often used FLD-based methods for SIF quantification at

oxygen absorption features.
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Fig. 1-4. Fraunhofer Line Depth (FLD) principle within the O»-A absorption region. The spectra were
simulated using the SCOPE model.

The 3FLD method assumes that both  and SIF vary linearly along the narrow absorption line
considered. Rather than employing a single reference band outside the absorption line (4,,;), the
weighted mean of two reference bands located at the left (1},,) and right (17,,;) shoulders of the
reference band inside the absorption line is used. By substituting for the outside fluxes with the

interpolated values in Eq. 1.14, SIF can be quantified as:

(Wl' E(Af)ut) + Wy E(/lr)ut))-L(Ain) - E(/lin)- (Wl- L(Af)ut) + Wy L(/lr)ut)) (1.15)
wi. E(/u)ut) + wp. E(mc;ut) - E(Ain)

SIF3pp =

Hout=Ain_ _ Ain=Aoue (1.16)

r l 4 r T ar l
Aout_/lout Aout_/lout

where w; =
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The iIFLD method makes use of two correction factors (@, and a) to relate » and SIF inside

and outside the narrow absorption line. The correction factors are computed as:

o TOw) B (1.17)
T T ) P B T

In Eq. (1.17), 7#(4;,) denotes the interpolated apparent reflectance inside the absorption line
obtained by either using cubic or spline interpolation to eliminate the in-filling effect on apparent
reflectance (Alonso et al., 2008). E(A;,,) represents the absorption free interpolated irradiance inside
the absorption line. Interpolations are performed using numerous contiguous, absorption-unaffected

bands surrounding the absorption line. Using both the correction factors, SIF can be quantified as:

a:- E(/lout)- L(/lin) - E(Ain)- L(/lout) (1.18)
a;t- E(/lout) - a;" E(Ain)

SIFipp =

Spectral Fitting Methods (SFMs) are a more recent, improved technique for SIF quantification
(Cogliati et al., 2015; 2019; Meroni et al., 2010; Zhao et al., 2018). In SFM, the spectral shapes of
both 7 and SIF are modelled as smooth mathematical functions employing all available bands within
a constrained spectral region known as the fitting window. The most widely used mathematical
functions are polynomial functions of orders 1 to 3 and the Gaussian function. The upwelling radiance

recorded by the sensor can be expressed as (Meroni et al., 2010):

(1.19)

L) =

M + SIFnoa(A) + €moa(D) = Linoa(A) + €moa(A)
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In Eq. (1.19), 13,04(4) and SIF,,,,4 (1) represents the modelled reflectance and SIF within the
fitting window, respectively. L,,4(1) and &,,,4 (1) represents the modelled upwelling radiance and
modelling error at each wavelength. The mathematical system generated using all wavelengths within
the fitting window is then solved to obtain the coefficients associated with the parametric functions

of modelled reflectance and SIF using least-squares fitting.

Apart from FLD-based approaches and SFM methods, data-driven statistical approaches
based on Principal Component Analysis or Singular Value Decomposition (Guanter et al., 2013;
Joiner et al., 2013; Kohler et al., 2015) have also been developed for SIF quantification. These
approaches have been developed particularly for spaceborne SIF retrievals within the narrow solar
Fraunhofer lines around the O»-A absorption region. Other recent SIF quantification methods include
physically-based approaches using numerical inversion of canopy radiative transfer models (RTM)
(Celesti et al., 2018; Verhoef et al., 2018), Partial Least Squares (PLS) regression-based approach
exploiting solar Fraunhofer lines (Naethe ef al., 2022), hybrid machine learning phasor-based
approach (Scodellaro et al., 2022) and a band shape fitting approach based on the measured shape of

the oxygen absorption feature (Van der Tol et al., 2023).

1.3  Quantification of SIF at different scales and platforms

The instrumentation used for SIF quantification has undergone significant advances over the
past few decades. Sensors capable of quantifying SIF can be deployed on a variety of platforms,
including fixed or mobile platforms for ground-based SIF, unmanned aerial vehicles (UAVs) and

conventional aircraft for airborne SIF, and spacecraft for spaceborne SIF.
1.3.1 SIF quantification by ground-based spectrometers

SIF has been primarily quantified at ground-level due to the wide availability of ground-based

spectrometers that can measure both downwelling irradiance and upwelling radiance and thereby
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validate, interpret, and provide data inputs to models for airborne and spaceborne SIF measurements.
In conjunction with additional field measurements collected at comparable temporal and spatial
scales, ground-based SIF measurements can aid in the interpretation and comprehension of the SIF
signal. Several in situ automated SIF systems are currently available, in either a bi-hemispherical or
hemispherical-conical configuration, with the capacity to acquire continuous high temporal resolution
TOC SIF data. Bi-hemispherical configuration systems include Fluorescence Auto-Measurement
Equipment (FAME) (Gu ef al., 2019) and 4S-SIF (Kim et al., 2022) whereas hemispherical-conical
configuration systems include FLOX (JB Hyperspectral Devices, Diisseldorf, Germany), FluoSpec2
(Yang et al., 2018), PhotoSpec (Grossmann et al., 2018), AutoSIF (Zhou et al., 2016) and SIFSpec

(Duet al., 2019).

Due to its extremely high signal-to-noise ratio (SNR) of 1000:1 and FWHM of 0.3-nm, QE-
Pro (Ocean Insight, Dunedin, FL, USA) has become the most widely used spectrometer for ground-
based SIF studies in recent years. Ground-based SIF studies using automated SIF systems have
primarily examined the link between far-red SIF and gross primary productivity (GPP), the factors
affecting this relationship and the viability of predicting GPP precisely using long-term ground-based
SIF measurements based on modelling methods (Chen et al., 2022; Damm et al., 2010; Dechant et
al.,2020; Hao et al., 2022; Li et al., 2020; Liu et al., 2017; 2021; Morozumi et al., 2023; Yang et al.,
2015). The detection of vegetation stress caused by factors like, water stress (Butterfield et al., 2023;
Pérez-Priego et al., 2005; De Canniére et al., 2021; 2022; Xu et al., 2018; 2021), biotic-induced stress
(Duetal., 2023; Jing et al.,2022), heat stress (Kimm et al., 2021, and herbicide-induced stress (Carter
et al., 2004; Meroni and Colombo, 2006), is yet another prominent application for ground-based SIF

studies.

1.3.2 SIF quantification from sensors onboard spaceborne platforms

The practical implementation of satellite-based SIF estimation has been facilitated by new

insights into the impact of fluorescence on apparent reflectance, along with advances in modelling,
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estimation methods, and sensor capabilities, leading to an expansion of SIF's applicability across a
wide range of research domains (Mohammed et al., 2019; Sun et al., 2023b). In 2007, the first
retrievals of SIF760 were made using the Medium Resolution Imaging Spectrometer (MERIS)
(Guanter et al., 2007). SIF760 quantification from space was confirmed by this regional-scale study,
leading to the development of the first global maps of SIF from the Thermal And Near-infrared Sensor
for Carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) on the Japanese
Greenhouse gases Observing SATellite (GOSAT) (Joiner et al., 2011). Since then, a number of
satellite sensors that were originally intended for measuring atmospheric trace gases and greenhouse
gases (eg., methane, sulphur dioxide, carbon dioxide) have been used to quantify SIF on both a
regional and global scale at coarse spatial scales. These satellites include Global Ozone Monitoring
Experiment 2 (GOME-2) (Joiner et al., 2013), Scanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY) (Joiner et al., 2012), Orbiting Carbon Observatory 2
(OCO-2) (Frankenberg et al., 2014), TROPOspheric Monitoring Instrument (TROPOMI) (Guanter

et al., 2015), and Chinese Carbon Dioxide Observation Satellite Mission (TanSat) (Du et al., 2018).

In addition to the existing satellite missions, in 2024, the European Space Agency (ESA) aims
to launch the FLuorescence EXplorer (FLEX) (Drusch et al., 2017), designed specifically to measure
SIF at a high spectral resolution of 0.3 nm, globally, with a spatial resolution of 300 m. The primary
research goal of FLEX is to advance our understanding of physiological signs of plant stress and
global seasonal variations in photosynthetic activity and efficiency. Specific outputs expected from
the mission include: (1) SIF estimates at the two peaks and at the O>-A and O»-B bands (SIFegs, SIF740,
SIF760, SIFes7); (2) estimates of total fluorescence emission; and (3) reflectance-derived indices and

biophysical traits (ESA, 2018).

1.3.3 SIF quantification from sensors onboard airborne platforms

Observations of SIF at intermediate scales from airborne platforms are vital for bridging the

gap between the field and global scales, allowing for improved interpretation of SIF at high spatial
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resolutions. Airborne SIF measurements can be classified based on whether the sensor deployed on
the airborne platform is an imaging sensor or a non-imaging spectrometer. Fluorescence mapping
using airborne imaging sensors can reveal photosynthetic efficiency and detect early indicators of
stress at scales significant for ecology and resource management. Moreover, airborne SIF
measurements have gradually become an integral component of the process of calibrating and

validating SIF measurements obtained from spaceborne sensors.

The past decade has seen significant technological advances in airborne hyperspectral
imagers, particularly the introduction of sub-nanometer imagers that can accurately characterise the
narrow absorption features for accurate SIF quantification in physical units. These imagers have now
replaced the initially employed coarser resolution narrow-band imagers, which had FWHM greater
than 1 nm and could only provide SIF in relative units because of constraints imposed by their spectral
configuration. Despite these technological advances, there are still certain challenges to overcome
when estimating SIF from airborne platforms. Among these challenges, a precise characterisation of
atmospheric effects within the SIF emission region remains the most critical. Atmospheric RTMs are
typically used to estimate atmospheric parameters like upwelling transmittance, path scattered
radiance, and spherical albedo to account for atmospheric influences, followed by transmittance
correction strategy (Damm et al., 2015; Siegmann et al., 2019) to account for the high uncertainty
associated with the estimates. Non-linearity correction, sensor-stray light correction, point-spread-
function artefacts, and illumination artefacts arising from geometric optical scattering in high-spatial-
resolution data are challenging areas in which improvements need to be made (Mohammed et al.,

2019).

1.3.3.1 Airborne SIF studies with narrow-band imaging sensors

Before the advent of sub-nanometer imaging sensors capable of accurately quantifying SIF,
it could only be quantified in relative units using narrow-band imaging sensors. The Reflective Optics

System Imaging Spectrometer (ROSIS, 7-nm FWHM) (Maier et al., 2003), Compact Airborne

18



419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

Spectrographic Imager (CASI, 2.4-14.4 nm FWHM) (Guanter ef al., 2007; Rossini et al., 2015b;
Zarco-Tejada et al., 2002; 2001), Airborne Imaging Spectrometer (AISA Eagle, 3.3-nm FWHM)
(Panigada et al., 2014), Airborne Prism Experiment (APEX, 5.7-nm FWHM) (Damm ef al., 2015),
AISA (1.6-nm FWHM) (Corp et al., 2006), MCA-6 (Tetracam, Inc., California, USA, 1.57-1.6 nm
FWHM with custom-made filters) (Zarco Tejada et al., 2009), and AIRFLEX (0.5-5.8 nm FWHM)
(Moya et al., 2003; 2006) were the earliest narrow-band hyperspectral and multispectral imagers used
to quantify SIF760. Currently operational narrow-band hyperspectral imaging sensors for SIF7s0
quantification include micro- and nano-hyperspec VNIR imagers (Headwall Photonics Inc., Boston,
MA, USA) with 5.8-6.5 nm FWHM (Pancorbo et al., 2023; Poblete et al., 2023; Suarez et al., 2021;

Zarco-Tejada et al., 2012).

Several studies have demonstrated the utility of relative SIF levels derived from narrow-band
imaging sensors, despite their inability to precisely characterise narrow absorption features within the
SIF emission region. Narrow-band SIF estimates have shown the most promising results for the
detection of biotic- (Calderdn et al., 2015; 2013; Camino et al., 2021; Hernandez-Clemente et al.,
2017; Hornero et al., 2021b; Poblete et al., 2020; 2021; 2023; Zarco-Tejada et al., 2018; 2021) and
abiotic-induced stress (Camino et al., 2018a; Panigada et al., 2014; Rossini et al., 2015b; Zarco-
Tejada et al., 2009; 2012). By integrating traits related to thermal, fluorescence, and spectral
indicators of chlorophyll concentration and structural changes into a machine learning framework,
Zarco-Tejada et al. (2018) demonstrated that prediction accuracies of over 80% can be achieved for
the early detection of infection in olive trees caused by the pathogen Xylella fastidiosa (Xf). In a
subsequent investigation, Zarco-Tejada et al. (2021) demonstrated that the degree of infection, which
is crucial for distinguishing between biotic- and abiotic-induced stress, affects SIF. Other application
areas include assessment of grain protein concentrations (Longmire et al., 2022), estimation of leaf
nitrogen concentration (Camino et al., 2018b; Wang et al., 2022), link with GPP (Damm et al., 2015;

Zarco-Tejada et al., 2013) and plant phenotyping (Camino et al., 2019; Gonzalez-Dugo et al., 2015).
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Narrow-band SIF estimates were shown to be useful in the aforementioned studies. However,
in absolute terms, narrow-band SIF estimates are overestimated and require careful validation using
reliable ground-based and airborne sub-nanometer resolution SIF to investigate their reliability.
Furthermore, an efficient modelling strategy needs to be developed to account for the effects of
spectral configuration on the absolute SIF levels. Addressing these two factors will pave the way for
the widespread adoption of narrow-band quantified SIF in operational settings for plant phenotyping,

precision agriculture, and plant physiology monitoring applications.

1.3.3.2 Airborne SIF studies with sub-nanometer imaging sensors

The Hyplant sensor developed by the Finnish company Specim in collaboration with
Forschungszentrum Jiilich (Germany) was the first sub-nanometer imaging sensor specifically
designed for accurate SIF estimation (Rascher ef al., 2015). It is serving as a demonstrator for the
FLEX satellite mission and consists of two modules, DUAL (380-2500 nm) and FLUO (670-780
nm), with spectral resolutions of 0.28 nm for O»-A and 0.29 nm for O2-B in the FLUO module
allowing for accurate SIF estimation (Siegmann et al., 2019). Other sub-nanometer imaging sensors
available for accurate SIF estimation include the AISA IBIS Fluorescence Imager (SPECIM, Spectral
Imaging Ltd., Oulu, Finland), Hyperspec Solar-Induced Fluorescence Imaging sensor (Headwall
Photonics, Fitchburg, MA, USA) (Paynter ef al., 2020), and chlorophyll fluorescence imaging

spectrometer (CFIS) (Frankenberg et al., 2018) with SRs of 0.245, <0.2, and 0.07 nm respectively.

Rossini et al. (2015a) demonstrated for the first time that a sub-nanometer imaging sensor is
capable of precisely mapping the two peaks of SIF. Both SIFeg7 and SIF760 increased significantly
when treated with an herbicide known to selectively elevate fluorescence levels, demonstrating the
ability of airborne sub-nanometer SIF observations to accurately monitor photosynthetic efficiency.
Rascher et al. (2015) presented the first validated maps over diverse land cover types of SIF from
Hyplant, showing that SIF varies between crop varieties. Accurate SIF estimation from sub-

nanometer imaging sensor has been demonstrated as valuable in a number of subsequent studies for
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a wide range of applications, including GPP estimation (Wieneke et al., 2016), herbicide stress
detection (Pinto et al., 2020), downscaling SIF from canopy-level to leaf- and photosystem-level (Liu
et al., 2019; Siegmann et al., 2021), assessing the wide heterogeneity of peatland vegetation traits
(Bandopadhyay et al., 2019), assessing sensitivity of SIF to heat stress and water stress (Zeng et al.,
2022), validating the contribution of understory SIF modelled via 3-D RTMs (Hornero et al., 2021),
assessing SIF responses to soil water-limitation (Damm et al., 2022), and validating spaceborne SIF
estimates (Sun et al., 2017). More recently, R. Wang et al. (2022) investigated how sensor type,
quantification approach, and atmospheric correction affect SIF values, enabling an improved
understanding of spatial and temporal GPP patterns by harmonising SIF products across airborne,
stationary, and mobile ground-based platforms. The study presented for the first time the retrieval of
the full SIF spectrum with a sub-nanometer imaging sensor (AISA IBIS Fluorescence Imager) and
investigated the effect on the accuracy of retrieved spectrum by removing from consideration the

715740 nm water absorption bands.

Recently, Albert et al. (2023) simulated several spectral stray light scenarios and used near-
ground-level observations from the Hyperspec Solar-Induced Fluorescence Imaging sensor to
examine the sensitivity of SIF retrieval methods to stray light. The O2-A band and 12 Fraunhofer
lines (FLs) without prominent water and oxygen absorption bands were used to quantify SIF with
FLD and 3FLD techniques. Although this was the first study to use distinct FLs for SIF quantification
with a sub-nanometer imager, as opposed to the more common telluric absorption bands, additional
tests are necessary to determine the potential of these narrow FLs when the sensor is onboarding an
airborne platform under actual field conditions. The promising opportunity offered by sub-nanometer
imaging sensors to detect narrow FLs within the SIF spectrum must be exploited further to investigate
their potential for a variety of applications, including biotic and abiotic stress detection, plant

physiology monitoring, and nutrient assessment.
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1.4 Radiative transfer modelling of SIF

Vegetation RTMs describe the interaction between the incident solar radiation and vegetation
(primarily absorption and scattering) using radiative transfer equations to, account for the effect of
canopy structure (Jacquemoud et al., 2009). The advancements in SIF instrumentation and retrieval
methods have been accompanied by progress in modelling methods for SIF estimation. The earliest
modelling efforts to incorporate fluorescence into RTMs involved the development of leaf RTMs like
the FLSAIL model (Rosema et al., 1991) and Fluorescence—Reflectance—Transmittance (FRT) model
(Zarco-Tejada et al., 2000a, 2000b). The first model simulated the effects of fluorescence caused by
laser-induced fluorescence, whereas the second model demonstrated the contribution of fluorescence
to apparent reflectance spectra. These earlier attempts laid the foundation for the development of
more advanced leaf-level models such as FluorMODIleaf (Pedrds et al., 2010), Fluspect (Vilfan et al.,

2016) and Fluorescence Leaf Canopy Vector Radiative Transfer (FlTuLCVRT) (Kallel, 2020).

To accurately model fluorescence emission at canopy-scale, a canopy-level fluorescence
RTM must describe the following three primary processes: (1) incident radiation absorption; (2)
subsequent fluorescence emission; and (3) post-emission fluorescence scattering and re-absorption
within the canopy typically accomplished by incorporating a leaf-fluorescence model into a canopy
reflectance model (Disney, 2016; Mohammed et al., 2019). FluorSAIL (Verhoef, 2004) and the Soil-
Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol et al., 2009) were
the first canopy-scale models to be developed. Because these models consider the vegetation canopy
as a series of uniform layers, they are referred to as one-dimensional (1-D) models and are suitable
only for homogenous and uniform canopies. Recent modelling efforts have used more rigorous
mathematical frameworks to account for the re-absorption and scattering of chlorophyll fluorescence
within the homogenous canopy (Atherton et al., 2019; Romero et al., 2020; Yang and van der Tol,

2018; Zeng et al., 2019).
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SCOPE is the most extensively used fluorescence RTM and has undergone numerous
enhancements in recent years. Yang et al. (2021) provides additional information regarding the
enhancements of SCOPE and the new features of the current version (SCOPE 2.0). SCOPE has
proven beneficial in numerous studies aimed at elucidating the relationship between photosynthesis
and fluorescence-reflectance (Camino et al., 2019; Damm et al., 2015; Migliavacca et al., 2017,
Pacheco-Labrador ef al., 2019; Verrelst et al., 2016; Yang et al., 2022; Zhang et al., 2022; Zhu et al.,
2023), understanding the impact of spectral resolution and SNR on FLD-based SIF quantification
(Liu et al., 2015), developing and validating new SIF quantification approaches (Celesti et al., 2018;
Cogliati et al., 2015; 2019; Naethe et al., 2022; Scodellaro et al., 2022; Van der Tol et al., 2023;
Verhoef et al., 2018; Zhao et al., 2019), and disentangling the physiological and non-physiological

components of SIF (Wang et al. 2023; Xu et al., 2021; Yang et al., 2020; Zeng et al., 2019; 2022).

To address the limitations of 1-D canopy-level fluorescence RTMs in modelling
heterogeneous, non-uniform, and complex canopies like forests and row-structured, grid-based crop
canopies like vineyards and tree orchards, several ray-tracing-based three-dimensional (3-D) canopy-
level fluorescence models have been developed. These include the Fluorescence model with Weight
Photon Spread (FluorWPS) for row crops (Zhao et al., 2016), the Discrete Anisotropic Radiative
Transfer (DART) model for any 3-D vegetation architecture (Gastellu-Etchegorry et al., 2017), Forest
Light Environmental Simulator for SIF (FLiES-SIF), and FluorFLIGHT for forest canopies (Sakai et
al., 2020; Hernandez-Clemente et al., 2017). Although the capacity of these ray-tracing-based 3-D
models to provide spatially precise modelling could give valuable insights into the interplay of
fluorescence fluxes within complex canopy structures, their high computational costs limit their
application at landscape-scale (Mohammed et al., 2019; Sun et al., 2023a). The newly developed 3-
D models FluorRTER (Zeng et al., 2020), based on spectral invariant theory, and FluorESRT (Li et
al., 2022), targeted at pest-damaged forests, are analytically simple, computationally less intensive,

and have the potential for large-scale application.
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1.5

Research gaps

The following research gaps were identified in the literature reviewed:

1.6

1.

A number of studies have demonstrated the feasibility of quantifying SIF760 using widely
available narrow-band hyperspectral sensors, but none have assessed the performance and
reliability of narrow-band SIF760 measurements by comparing them to estimates of sub-
nanometer SIF760 acquired simultaneously from ground-based and airborne sensors.
Although narrow-band SIF760 estimates in absolute physical units are typically overestimated
due to the impact of sensor’s spectral configurations, no studies have been conducted to
investigate how the impact of sensor spectral resolution can be accounted for using RTM-
based approaches for retrieving SIF7¢0 from narrow-band imaging sensors at appropriate
absolute physical levels.

While previous studies have demonstrated the significance of SIF760 for biotic and abiotic
vegetation stress detection and for improving the retrieval of leaf N concentrations, further
research on the viability of using the depth of solar Fraunhofer lines within the SIF emission

region is required to harness the full potential of the entire SIF emission region.

Objectives and thesis structure

This thesis focuses primarily on improving the interpretation of SIF7¢0 estimates obtained

from widely available narrow-band imaging sensors by spectrally scaling narrow-band SIF7e0

estimates with radiative transfer modelling and machine learning approaches. In addition, the

potential of solar Fraunhofer lines within the SIF emission region for the estimation of N

concentration across the field and for the detection of both biotic and abiotic stress using

sub-nanometer hyperspectral imagery is investigated. Based on the research gaps identified, the

following specific objectives were defined and addressed in this research:
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1. Assessing the impact of using a narrow-band hyperspectral imager (5.8-nm FWHM), as
compared to using a sub-nanometer hyperspectral imager (<0.2 nm FWHM) for SIF7eo
quantification using existing methods.

2. Developing and evaluating a methodology for modelling the effect of sensor spectral
resolution on SIF760 quantification from narrow-band hyperspectral imagery by integrating
RTM-based approaches with machine learning algorithms.

3. Assessing of the capability of the fractional depth of narrow solar Fraunhofer lines within the
SIF emission region for estimating leaf nitrogen concentration across the field and for the
detection of biotic stress using sub-nanometer resolution (<0.2 nm FWHM) airborne

hyperspectral imagery.

This thesis comprises five chapters. The first chapter provides a general overview, and the last
chapter summarises the findings and implications of this study and discusses possible future

applications. The middle three chapters 2, 3, and 4 address research objectives 1, 2 and 3, respectively.

Chapter 2 attends to objective 1, focusing on the evaluation of SIF7¢ retrievals from narrow-
band and sub-nanometer airborne hyperspectral imagers flown in tandem. The effects of SR and
sensor altitude on SIF760 accuracy were investigated across three years, comparing SIF760 quantified
from two hyperspectral imagers with different spectral configurations over three experimental fields
with varying nitrogen application rates. Additionally, simulations using the SCOPE model were
conducted for theoretical assessment of the effect of SR on absolute SIF levels. Strong significant
relationships were obtained among the narrow-band, sub-nanometer, and ground-based SIF7¢o
estimates, demonstrating the capability of narrow-band imaging sensors for plant phenotyping,
vegetation stress detection and plant physiological condition monitoring applications, all of which
require reliable assessment of relative SIF7¢0 variability across the experimental field. This chapter

has been published in the journal Remote Sensing of Environment:
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Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J.,
2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne
hyperspectral imagers flown in tandem: modelling and validation in the context of plant

phenotyping. Remote Sens. Environ. 273, 112986. https://doi.org/10.1016/j.rse.2022.112986.

Chapter 3 addresses objective 2 by proposing a methodology for spectrally scaling SIF7¢0
estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM to 1-nm FWHM using an
empirical approach based on a Support Vector Regression (SVR) algorithm with SIF7¢0 at 5.8-nm
FWHM and SCOPE-derived leaf biochemical and structural traits as model inputs. The SVR model
was evaluated using SCOPE model simulations and airborne data obtained from two airborne
hyperspectral imagers flown in tandem on board an aircraft during two distinct wheat and maize
phenotyping studies. For both simulated and airborne datasets, the estimated SIF7¢0 at 1-nm FWHM
matched well with the reference SIF760, implying that this SIF scaling mechanism could be a viable
technique for enhancing the interpretation of relative SIF760 levels assessed by narrow-band
hyperspectral imagers. This chapter is currently under review by the journal Remote Sensing of

Environment:

Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Accurate
SIF quantification from a narrow-band airborne hyperspectral imager using SCOPE:
assessment with sub-nanometer imagery (under review by the journal Remote Sensing of

Environment).

Chapter 4 targets objective 3. Using sub-nanometer hyperspectral imagery, a set of distinct
Fraunhofer lines devoid of water and oxygen absorptions was firstly identified within the SIF

emission region. In the subsequent stage, the sensitivity of the depth of these narrow lines for the
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identification of biotic-induced stress caused by pathogen infections at varying levels of stress was
investigated. Furthermore, the potential of these lines for improved estimation of leaf nitrogen
concentration in conjunction with leaf chlorophyll content and SIF760 estimations was explored. This

chapter is currently being drafted for submission to the journal Remote Sensing of Environment.

Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Prospects
of solar Fraunhofer lines derived from sub-nanometer hyperspectral imagery for assessing
a/biotic stress (currently being drafted for submission to the journal Remote Sensing of

Environment).
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Abstract

Solar-induced chlorophyll fluorescence (SIF) can be used as an indicator of crop
photosynthetic activity and a proxy for vegetation stress in plant phenotyping and precision
agriculture applications. SIF quantification is sensitive to the spectral resolution (SR), and its accurate
retrieval requires sensors with sub-nanometer resolutions. However, for accurate SIF quantification
from imaging sensors onboard airborne platforms, sub-nanometer imagers are costly and more
difficult to operate than the commonly available narrow-band imagers (i.e., 4- to 6-nm bandwidths),
which can also be installed on drones and lightweight aircraft. Although a few theoretical and
experimental studies have evaluated narrow-band spectra for SIF quantification, there is a lack of
research focused on comparing the effects of the SR on SIF from airborne hyperspectral imagers in
practical applications. This study investigates the effects of SR and sensor altitude on SIF accuracy,
comparing SIF quantified at the 760-nm O»-A band (SIF760) from two hyperspectral imagers with
different spectral configurations (full width at half-maximum resolutions of <0.2 nm and 5.8 nm)
flown in tandem on board an aircraft. SIF760 retrievals were compared from two different wheat and
maize phenotyping trials grown under different nitrogen fertiliser application rates over the 2019—
2021 growing seasons. SIF7¢0 from the two sensors were correlated (R? = 0.77-0.9, p < 0.01), with
the narrow-band imager producing larger SIF76 estimates than the sub-nanometer imager (root mean
square error (RMSE) 3.28-4.69 mW/m?/nm/sr). Ground-level SIF76 showed strong relationships
with both sub-nanometer (R?=0.90, p < 0.001, RMSE = 0.07 mW/m?/nm/sr) and narrow-band (R =
0.88, p < 0.001, RMSE = 3.26 mW/m?*nm/sr) airborne retrievals. Simulation-based assessments of
SIF760 for SRs ranging from 1 to 5.8 nm using the SCOPE model were consistent with experimental
results showing significant relationships among SIF7s quantified at different SRs. Predictive
algorithms of leaf nitrogen concentration using SIF760 from either the narrow-band or sub-nanometer

sensor yielded similar performance, supporting the use of narrow-band resolution imagery for
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assessing the spatial variability of SIF in plant phenotyping, vegetation stress detection and precision

agriculture contexts.

Keywords: Solar-induced chlorophyll fluorescence, SIF, plant phenotyping, stress detection,

airborne, hyperspectral, hyperspectral imager

2.1 Introduction

Solar radiation reaching a plant canopy cannot be fully used for photosynthesis, and the
resulting excess radiation is partly re-emitted as a weak electromagnetic signal termed solar-induced
chlorophyll fluorescence (SIF) (see a full review on SIF in Mohammed et al, 2019). SIF flux
originates from photosystem II (PSII) and has a spectral range of 650-800 nm with one peak at 685
nm (SIFess) and a second peak at 740 nm (SIF740). The SIF energy dissipation pathway directly
competes with the PSII photochemistry and heat dissipation (Krause and Weis, 1984; Lichtenthaler
and Rinderle, 1988). Thus, SIF is a proxy for plant photosynthetic rate, which may be related to plant
stress levels (Genty et al., 1989; Weis and Berry, 1987; Zarco-Tejada et al., 2016). However, SIF
emitted from the canopy constitutes a small fraction (1-5%) of the total reflected solar radiation,

making it difficult to quantify (Meroni et al., 2009).

Specialised algorithms are necessary for decoupling SIF from total reflected solar radiation.
These algorithms are classified based on whether SIF is retrieved within specific absorption bands or
over the whole SIF emission region (Mohammed et al., 2019). Most methods use discrete solar or
telluric absorption lines of the solar spectrum, where the contribution of SIF to the total radiance
signal is relatively higher. The terrestrial oxygen absorption bands (O»-A and O»-B) centred around
760 nm and 687 nm, respectively, are broader and deeper than the other absorption features and,
therefore, commonly used for quantifying SIF (Meroni et al., 2009). The fluorescence in-filling

method, based on the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975), depends on a few
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discrete spectral bands inside and outside the oxygen absorption features and is the most widely used
method for SIF retrieval due to its ease of implementation. By contrast, spectral fitting methods
(SFMs) model the fluorescence and reflectance spectrum by spectral curve fitting, using all the
contiguous wavelengths within a fixed spectral window mostly centered around oxygen absorption

bands (Meroni et al., 2010; Meroni and Colombo, 2006).

The earliest attempt to incorporate leaf fluorescence into a radiative transfer model (RTM)
was the Fluorescence—Reflectance—Transmittance (FRT) model (Zarco-Tejada et al., 2000a; 2000b).
This attempt led to the development of the leaf model FluorMODleaf (Pedros et al., 2008) and a
canopy-level RTM named FluorSAIL (Verhoef, 2004). These models prompted the development of
an integrated, vertical, one-dimensional, leaf-canopy fluorescence—temperature—photosynthesis
model named Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol
et al., 2009), which is widely used to assess the linkage between fluorescence-reflectance and
photosynthesis (Camino et al., 2019; Celesti et al., 2018; Verhoef et al., 2018). SCOPE simulates
top-of-canopy radiance, chlorophyll fluorescence and reflectance for homogenous canopies. It has
been used to quantify the effects of the leaf biochemistry, maximum carboxylation rate (Vcmax), and
canopy structure on apparent reflectance, including fluorescence effects. Recently, three-dimensional
canopy RTMs integrating fluorescence have been developed, such as FluorFLIGHT (Hernandez-
Clemente et al., 2017), the Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao et al.,
2016), and the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al.,
2017). These models simulate scattering within the canopy components and thus account for canopy

structural heterogeneity.

The earliest experiments involving ground-based sub-nanometer-resolution spectrometers
quantified SIF at both leaf (Meroni and Colombo, 2006) and canopy levels (Pérez-Priego et al., 2005),
detecting herbicide- and water-induced stress, respectively. The development of sub-nanometer-

resolution hyperspectral sensors in the past decade has enabled SIF retrievals from airborne platforms.
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Sensors include the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg et al.,
2018), the high-resolution airborne imaging spectrometer HyPlant (Rascher et al., 2015), and the
Hyperspec High-Resolution Chlorophyll Fluorescence Sensor (Headwall Photonics, Fitchburg, MA,
USA) (Belwalkar et al., 2021) with spectral resolutions (SRs) of 0.1, 0.28 and <0.2 nm, respectively.
Sub-nanometer-resolution SIF observations at the global scale are available from satellite sensors
such as OCO-2 (Orbiting Carbon Observatory-2) (Frankenberg et al., 2014), GOSAT (Greenhouse
gases Observing SATellite) (Guanter et al., 2012), and TROPOMI (TROPOspheric Monitoring
Instrument) (Guanter et al., 2015) with spatial resolutions of 1.29 km % 2.25 km, 50 km % 50 km and
5.5 km x 3.5 km, respectively. The European Space Agency is also set to launch the FLuorescence
EXplorer (FLEX) (Drusch et al., 2017) in 2024, a mission solely dedicated to measuring SIF at a high

SR of 0.3 nm across the globe at 300-m spatial resolution.

As a result of these technical and methodological advances, SIF is frequently used for
monitoring crop photosynthesis. SIF is measured from a variety of platforms, including ground-based
spectrometers (Cogliati et al., 2015; Daumard et al., 2012; Grossmann et al., 2018; Kim et al., 2021;
Li et al., 2020; Pérez-Priego et al., 2005; Rossini et al., 2016), drones and manned aircraft
(Bandopadhyay et al., 2019; Damm et al., 2014; 2015; Siegmann et al., 2019; Tagliabue et al., 2020;
Zarco-Tejada et al., 2012; 2013a) and satellite platforms (Frankenberg et al., 2014; Guanter et al.,
2012; 2015). SIF observations at intermediate scales obtained from airborne platforms are important
for 1) improving the interpretation of SIF at coarser spatial resolutions and thus bridging the gap
between field and global scales, ii) disentangling the contribution of different scene components in
aggregated pixels (Hornero et al., 2021a; Zarco-Tejada et al., 2013b), and iii) evaluating the
sensitivity of SIF for describing plant physiological processes at high spatial resolutions (e.g., as an

early indicator of biotic and abiotic stress in precision agriculture and forestry).

Modelling studies (Damm et al., 2011; Liu et al., 2015) of FLD-based SIF retrieval have

shown that sensor SR and the signal-to-noise ratio (SNR) (collectively accounting for more than 80%
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of the retrieval error) strongly affect SIF measurement accuracy. Several studies have demonstrated
the potential of sub-nanometer airborne hyperspectral imagers for precise SIF quantification in a
variety of contexts, including estimating gross primary productivity (GPP) (Wieneke et al., 2016),
validating satellite-based SIF retrievals (Sun ef al., 2017), assessing the physiological effects of age
on loblolly pine forest (Colombo et al., 2018) and quantifying functional diversity of terrestrial
ecosystems (Tagliabue et al., 2020). Although sub-nanometer-resolution imaging sensors are
recommended for obtaining absolute measurements of SIF, relative SIF measurements from narrow-
band sensors are useful in a variety of settings, including water stress detection (Camino et al., 2018a;
Panigada et al., 2014; Zarco-Tejada et al., 2012), plant phenotyping (Camino et al., 2019; 2018b;
Gonzalez-Dugo et al., 2015), biotic-induced stress detection (Calderon et al., 2015; 2013; Hernandez-
Clemente et al., 2017; Hornero et al., 2021b; Poblete et al., 2020; 2021; Zarco-Tejada et al., 2018)
and linking canopy-level SIF760 and GPP using sensors such as the Airborne Prism Experiment
(APEX) with a full width at half-maximum resolution (FWHM) of 5.7 nm over perennial grassland,
cropland and mixed temperate forest (Damm et al., 2015). In these studies, the reported higher levels
of the quantified SIF7¢0 were consistent with other modelling and experimental studies (Julitta et al.,

2016; Nakashima et al., 2021; Nichol et al., 2019; SiiB3 et al., 2016).

The impacts of SR on FLD-based SIF retrievals have been previously assessed with models
(Damm et al., 2011; Dechant et al., 2017; Hernandez-Clemente et al., 2017; Liu et al., 2015) and
experiments (Julitta et al., 2016). Julitta et al. (2016) compared SIF retrievals at both the O>-A and
0O-B bands using four portable field spectrometers with different spectral sampling intervals (SSIs),
SRs, and SNRs simultaneously measuring the same vegetation target. SIF estimates at the O2-A band
from three of the four spectrometers with sub-nanometer resolution (FWHM < 1 nm) were consistent
with the expected ranges from ground-based SIF observations over lawn grassland reported by
Rossini et al. (2016). In contrast, the average SIF from the coarsest-resolution spectrometer (FWHM

= 5.5 nm) was six times higher than the values obtained from the other three spectrometers, reaching
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values above 4 mW/m?*/nm/sr. Our study expands on this previous work by assessing the effects of
SR and flight altitude on airborne-based SIF retrievals, which are commonly used in precision
agriculture applications. This is, to the best of our knowledge, the first study to do so. Aspects
regarding the effects of the atmosphere, flight altitude, and performance of imaging sensors on SIF
retrievals need to be studied in addition to the theoretical work and the assessments carried out using

close-range spectrometer data.

The need for sub-nanometer imagers for the accurate quantification of SIF brings important
challenges in precision agriculture, plant phenotyping and biosecurity applications due to their
complexity, higher cost and increased operational difficulties. Standard narrow-band hyperspectral
imagers (i.e., with SR in the range of 4-6 nm FWHM) are an appealing alternative that are
increasingly being used with drones and lightweight aircraft to collect high-spatial-resolution imagery
(Aasen et al., 2018). However, it is unclear how useful SIF760 estimates from these imagers are for
plant physiological assessments when compared to ground-based or sub-nanometer airborne SIF760
estimates. Such assessment is critical, particularly when the relative quantification of fluorescence
across the landscape could be readily used to detect biotic- and abiotic-induced vegetation stress.
Empirical work is needed to evaluate whether SIF760 retrievals from these narrow-band hyperspectral
imagers are sufficient for detecting physiological stress in crops, relative to measurements from sub-

nanometer instruments.

Monitoring crop nutrient status is one potentially important application of airborne SIF760
quantification (Camino et al., 2018b; Wang et al., 2021). Accurate assessments of plant nutrition
across a field can help to ensure crop yields by allowing for more efficient use of N-fertilisers.
Excessive N fertiliser application can result in the loss of reactive forms of N (ammonia, nitrate, and
nitrogen oxides) to the environment, causing water pollution, climate forcing, and biodiversity loss.
As a result, assessing crop response to N-fertilisers is critical for ensuring resource efficiency while

optimising yields.

48



1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

In this study, we compared SIF760 measured from a 5.8-nm FWHM narrow-band hyperspectral
imager to a sub-nanometer hyperspectral imager of <0.2 nm FWHM flown in tandem at multiple
sensor altitudes and across two wheat and maize trials grown under different nitrogen application
rates and for three growing seasons. We validated airborne measures with sub-nanometer ground
retrievals and evaluated results against SCOPE simulations. We then assessed the performance of
sub-nanometer and narrow-band SI1F760 estimates for predicting nitrogen concentration using machine
learning models. Our findings provide important insights that support the operational use of standard,
commercially available narrow-band hyperspectral imagers for quantifying relative SIF levels. This
is especially important for precision agriculture and plant physiology monitoring purposes that

require accurate assessment of the SIF variability within and across experimental fields.

2.2 Materials and methods

2.2.1 Study sites and field data collection

Experiments took place at two field trial sites in Victoria, Australia, in 2019, 2020 and 2021
(Fig. 2-1a and 2-1b). Experiment 1 was conducted over 15 plots of dryland wheat (cv. Scepter) (Yang
et al., 2018) located at site 1 in Yarrawonga (36°02'55"S, 145°59'02"E). Plots were 26 m?> (2 m x 13
m) and planted in May 2019. Plots were grown with five different rates of nitrogen fertiliser in the
form of urea (46% N) (T1: 0 kg N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg
N/ha). The surrounding areas were planted with several varieties of wheat grown under various

physiological conditions and nitrogen fertiliser application rates (Fig. 2-1a).

Experiments 2 and 3 were conducted in 2020 and 2021 at site 2 in Peechelba East (36°10'04"S,
146°16'23"E) over irrigated maize plots. Experiment 2 consisted of 8 plots and experiment 3
consisted of 20 plots. Plots were sown in October 2019 and October 2020 with two urea application

rates for experiment 2 (T1: 207 kg N/ha, T2: 387 kg N/ha) and three for experiment 3 (T1: 0 kg N/ha,
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T2: 180 kg N/ha, T3: 315 kg N/ha). The plot sizes were 15 m? (3 m x 5 m) for experiment 2 and 36

m? (3 m x 12 m) for experiment 3. The climate at both field trial sites is humid subtropical (Cfa)

according to the Koppen classification. At site 1, the mean annual temperature is 16.3 °C and average

rainfall is 559 mm. At site 2, the mean annual temperature is 15.2 °C and average rainfall is 642 mm.
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Fig. 2-1. Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the
corresponding irradiance (E) spectra for experimental plots subjected to different nitrogen treatments
at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band
hyperspectral imager (d) and sub-nanometer hyperspectral imager (e) corresponding to the same
vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager (composite:
760 (R), 710 (G) and 680 (B) nm). (b) was obtained with the sub-nanometer hyperspectral imager
(composite: 760 (R), 710 (G) and 680 (B) nm). The solid yellow boxes in (a) and (b) show the location
of the plots across the three experiments and the dashed yellow box in (a) shows the location of plots
across the entire field. The transparent grey box in (d) shows the spectral region covered by the sub-

nanometer hyperspectral imager.
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For experiment-3, field measurements of top-of-canopy (TOC) spectral radiances for the
computation of ground-based SIF760 were collected from all 20 plots on 20 January 2021 at midday
from 11:45 to 16:30 solar time under clear sky conditions. TOC spectral radiance was measured using
a 0.065-nm FWHM HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA). The total incoming
irradiance was calculated using the radiance reflected from a white reference panel (Labsphere Inc.,
North Sutton, NH, USA) measured by the spectrometer. The spectral measurements were acquired
from the nadir using bare optical fiber, with an angular field of view of 25°, mounted on a tripod of
2.5 m height. The vegetation targets were measured at a distance of 1 m above the canopy. Radiance
measurements were recorded at five different locations within each plot and then averaged to reduce
noise. Incident solar radiation was measured prior to radiance measurements, and radiance/irradiance
measurements were completed within 3 minutes for each plot. Examples of radiance and irradiance
measurements are shown in Fig. 2-1c, with visible differences in spectra associated with applied

nitrogen rate.

A summary of the physiological measurements performed at each experiment is shown in
Table 2-1. The growth stages during the airborne campaigns corresponded to 1) grain filling (milking
stage) for wheat in 2019, i1) dough stage for maize in 2020, and iii) silking stage for maize in 2021.
A portable weather station (model WXTS510, Vaisala, Helsinki, Finland) was installed in the field for
concurrent readings of meteorological conditions at the time of hyperspectral image acquisitions. For
experiments 1 and 3, leaf measurements were carried out under field conditions, coincident with the
airborne campaigns. For experiment 2, leaf measurements were performed 4 days prior to the airborne
campaign under similar meteorological conditions (Table 2-1). Measurements were made on 10—15
leaves per plot for experiment 1 and 5-10 leaves per plot for experiments 2 and 3. Measurements
were made on leaves at the top of the canopy at noon, under clear skies. Chlorophyll content, nitrogen
balance index (NBI), flavonols and anthocyanin content were measured using a handheld Dualex

leaf-clip sensor (FORCE-A, Orsay, France). Steady-state leaf fluorescence yield (Ft) was measured
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using the FluorPen FP110-LM (Photon Systems Instruments, Drasov, Czech Republic) handheld
fluorometer. Random samples of 10—15 leaves per plot for experiment 1 and 4-5 leaves per plot for
experiments 2 and 3 from the top of the canopy were selected for determining the total N
concentration (%) destructively in the laboratory, following the Kjeldahl method (Kjeldahl, 1883).
To verify the impacts of fertilisation rate on leaf physiological traits, measurements were evaluated
using analysis of variance (ANOVA) followed by a Dunnett’s test at o < 0.05. In addition to the 15
plots at site 1, leaf-level measurements from more than 100 adjacent plots within the entire
experimental field (dashed yellow box in Fig. 2-1a) were also conducted to investigate the intra-field

variability.

Table 2-1. Field measurements and meteorological conditions coincident with flights.

Field trial Experiment Treatment Growth Field Meteorological
site # (kg N/ha) stage  measurements conditions
T. RH Pa
T1:0,
T2:46 :
Yarrawonga oS Grain Ft, Chl, NBI,
(Site 1) ! TT£'1932§, filing Flav, Anth, TN 12 301 10028
T5:184
T1:207, Ft, Chl, NBI,
pecchelba 2 T2:387 Dough Flav, Anth, TN 23.3 36.2 1008.5
(Site 2) T1:0, . Ft, Chl, NBI,
3 T2:180, Silking Flav, Anth, 25.3 33.5 1003.6
T3:315 TN, TOCL

Ft = Steady-state chlorophyll fluorescence, Chl = Chlorophyll content (ug/cm?), NBI = Nitrogen

balanced index (Dualex unit (d.u)), Flav = Flavonols (Dualex unit), Anth = Anthocyanins (Dualex
unit), TN = Total Nitrogen concentration (%), TOC L = Top-of-canopy radiance (mW/m?/nm/sr)
from HR-2000, T.= Average air temperature (°C), RH = Relative humidity (%) and P.= Average
air pressure (mBar).

2.2.2 Airborne hyperspectral campaigns

Airborne campaigns were conducted in 2019, 2020 and 2021 (Table 2-2), flying with the
aircraft’s heading on the solar plane. Two hyperspectral imagers were installed in tandem on a
Cessna-172 aircraft operated by the HyperSens Laboratory, University of Melbourne’s Airborne

Remote Sensing Facility. The first hyperspectral imager was a Hyperspec VNIR E-Series model

52



1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608
1609

1610

1611

1612

1613

(Headwall Photonics, Fitchburg, MA, USA) and the second hyperspectral imager was a high-
resolution Hyperspec Fluorescence sensor (Headwall Photonics, Fitchburg, MA, USA). The spectral
characteristics of both hyperspectral imagers are shown in Table 2-3. Both hyperspectral imagers
were radiometrically calibrated in the laboratory using an integrating sphere (Labsphere XTH2000C,
Labsphere Inc., North Sutton, NH, USA); as a result, coefficients derived from the constant light
source at four different illumination levels were calculated for the flight configuration of each imager.
The atmospheric correction for the VNIR imager was performed using the SMARTS model
(Gueymard, 2001), with the aerosol optical depth measured at 550 nm with a Microtops II
sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA), allowing the conversion of the radiance
values to reflectance. Image orthorectification was conducted with PARGE (ReSe Applications
Schldpfer, Wil, Switzerland) using inputs from the solidly installed and synchronized inertial
measurement units (VN-300-VectorNav Technologies LLC, Dallas, TX, USA for VNIR imager and
Trimble APX-15 UAV, Applanix Corporation, Ontario, Canada for Fluorescence imager); more

information on data preprocessing and image correction can be found in Zarco-Tejada ef al. (2016).

Table 2-2. Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral images
during the three airborne campaigns.

Flight date Flight time (local) Experiment AGL (m) resoSlE?it(:zl (m)
NB SN NB SN

09/10/19 15:40 - 16:30 1 400 900 0.25 0.20
16/03/20 12:50 - 13:50 2 700 850 0.50 0.20
900 900 0.65 0.20

20/01/21 11:40 - 12:20 3 1200 1200 0.9 0.30

2200 2200 1.7 0.55

NB = Narrow-band hyperspectral imager
SN = Sub-nanometer hyperspectral imager
AGL=above ground level

Differences in radiance spectra corresponding to vegetation and soil targets acquired from the
two hyperspectral imagers were visually identified as a function of spectral configurations (Fig. 2-1d

and le). Above-ground-level (AGL) altitudes and spatial resolutions of the imagery are detailed in
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Table 2-2. The spatial resolution of imagery from both airborne hyperspectral imagers was sufficient
for identification of individual plots over the experimental sites (Fig. 2-2). Differences in fertilisation
rate could be visually discriminated based on radiance spectra acquired from both the hyperspectral
imagers over the entire spectral range (Fig. 2-3a and 2-3c) and in the O2-A absorption feature (Fig.

2-3b and 2-3d) for experiment 1.

Table 2-3. Spectral characteristics of the airborne hyperspectral imagers.

Configuration Fluorescence sensor VNIR E-Series sensor
(Sub-nanometer imager) (Narrow-band imager)

Spectral range 670-780 nm 400-1000 nm

Number of spectral bands 2160 371

Spectral sampling interval 0.051 nm 1.626 nm

FWHM <0.2 nm 5.8 nm

Number of un-binned spatial 1600 1600

pixels

SNR >300:1" >300:1"

Field of view 23.5° 66°

Aperture /2.5 /2.5

Bit depth 16 16

“with spatial binning

To investigate the impact of sensor altitude on the inter-comparison of airborne-quantified
SIF760 from both hyperspectral imagers and with ground-based SIF76, images from both
hyperspectral imagers were acquired at three different altitudes (900 m, 1200 m and 2200 m) for
experiment 3 (Table 2-2). All images were acquired within a 20-minute time interval to minimize the
impact of sun-sensor geometry and changes in atmospheric conditions on the SIF7¢o retrievals. The
effect of sensor height on O»-A absorption feature depth and SIF760 quantifications was assessed using
ANOVA followed by Tukey’s honest significant difference (HSD) post-hoc test at a < 0.05. Fig. 2-4
shows the impact of the sensor altitude on the radiance spectra for the sub-nanometer imager. The
radiance imagery acquired from the sub-nanometer imager at three different altitudes over the entire
field (Fig. 2-4a, 2-4b and 2-4c) and over the experimental plots (Fig. 2-4d, 2-4e and 2-4f) differed in
the 670- to 780-nm spectral region (Fig. 2-4g) and in the oxygen absorption features (Fig. 2-4h and

2-4i).
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Fig. 2-2. Hyperspectral imagery showing zoomed-in plots from identical locations in experiments 1
(a, b) and 3 (c, d). Images (a) and (c) were acquired with the sub-nanometer hyperspectral imager
(composite: 760 (R), 710 (G) and 680 (B) nm). Images (b) and (d) were acquired with the narrow-
band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Green polygons indicate
plots under different nitrogen treatments, and yellow polygons indicate the selected plots
corresponding to five and three nitrogen treatments, respectively, for experiments 1 and 3.

2.2.3 SIF quantification from field data and airborne hyperspectral imagery

A thresholding approach based on the normalised difference vegetation index (NDVI) was
used to select the pixels corresponding to vegetation in each individual plot. To ensure that only pure
vegetation pixels were considered for the analysis, all pixels with an NDVI greater than 0.6 were
selected. For each plot, mean radiance spectra were calculated by averaging spectra from all_pure
vegetation pixels within the plot, excluding boundary pixels, from hyperspectral images acquired
from both imagers. This object-based analysis strategy was used to reduce the uncertainty when using
pixel-based SIF retrievals due to the SNR of the instrument. For experiment 1, the total incoming
irradiance at the flight time was measured using the HR-2000 spectrometer with a CC-3 VIS-NIR

cosine corrector diffuser. Due to the unavailability of cosine corrector diffuser for experiments 2 and
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3, the total incoming irradiance at the flight time was calculated by measuring the radiance reflected
from the white reference panel by the spectrometer. Ground-based SIF760 from eight plots measured
concurrently with airborne image acquisition were used to validate the airborne SIF760 calculated
from both imagers. The relative root mean square error (rRMSE) was calculated between the airborne

and ground-based SIF7¢0 following Eq. (2.1):

2

n (Fairborne,i - Fground,i)

i=1 F

rRMSE = g
n

2.1)

round,i

X 100%

where Fuirporne,i and Fgrouna,i are the SIF7eo values retrieved from airborne and ground-based

spectrometers, respectively, for plot i, with n representing the number of plots.
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Fig. 2-3. Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the
sub-nanometer imager in the 670- to 780-nm region, (b) the sub-nanometer imager in the O2-A
absorption region, (¢) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band
imager in the O2-A absorption region. The transparent grey box in (c) shows the spectral region
covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied nitrogen
fertilisation rates shown in Table 2-1.
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Fig. 2-4. Hyperspectral imagery from experiment 3. (a—f) Sub-nanometer composite imagery (760
(R), 710 (G) and 680 (B) nm) at various altitudes. (g—1) Average radiance spectra acquired for one of
the experimental plots in the 670- to 780-nm region (g), O2-A absorption region (h) and O»-B
absorption region (i). Area of yellow filled polygons (a, b, ¢) shown in detail in (d), (e) and (f),
respectively. Green polygons indicate plots under different nitrogen treatments, and yellow polygons
indicate the selected plots corresponding to three nitrogen treatments.

Field spectrometer radiances/irradiances were calibrated using coefficients derived from a
uniform calibrated light source and an integrating sphere (Labsphere XTH2000C). To match the SR
of the radiance images acquired from both sensors, the high-resolution irradiance spectra acquired
with the HR-2000 spectrometer was resampled through Gaussian convolution (Hornero et al., 2021b;
Suarez et al., 2021) corresponding to the SR of the airborne hyperspectral imagers. As the spectral
characteristics of the narrow-band hyperspectral imager do not meet the requirements (Drusch et al.,

2017; ESA, 2015) for quantifying SIF at the O»-B (SIFgs7) absorption feature, SIFes7 values for
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hyperspectral imagers were not compared. This limitation also affects the applicability of SFMs with
the narrow-band hyperspectral imager, as it requires sub-nanometer resolution for accurate SIF
quantification. Thus, the retrieval of SIF760 using irradiance derived from HR-2000 measurements
and average radiance derived from airborne hyperspectral images and ground-based HR-2000
measurements was performed using the O2-A-band in-filling method through the FLD principle,
based on a total of three spectral bands (3FLD) (Maier et al., 2003). The spectral window for ‘in’ and
‘out’ irradiance (E) and radiance (L) used in 3FLD computation was selected based on the spectral
characteristics of the measuring instruments. For the narrow-band imager, Ein/Lin corresponds to the
E/L minima in the 755-765 nm region. The minima for both E and L was observed at 762 nm, and
this was consistent for all datasets. Eou/Lout corresponds to the weighted mean of E/LL maxima in the
spectral regions of 750—755 nm and 771-776 nm, respectively following the methodology proposed
in Damm et al. (2011). The spectral window for both ground-based and airborne sub-nanometer
sensors was selected using the methodology proposed in Julitta et al. (2017)!, which considers the
FWHM of the sub-nanometer resolution instrument and uses the mean of E/L in the left and right
shoulder regions to reduce noise. An additional data quality check was performed for the matching
of the in' band for E/L, and in the event of a mismatch, Ein/Li, was defined as the mean of E;n/Lin of
adjacent wavelengths. The absolute depth (in radiance units) and relative depth (in percent) of the O»-
A band feature were calculated in addition to the airborne SIF760 quantification. The absolute depth
was calculated as the difference between the solar radiance at the left shoulder wavelength and the
wavelength at the bottom of the O-A absorption feature, and the relative depth was calculated as the
ratio of absolute depth and the solar radiance at the left shoulder wavelength. The wavelength

providing the highest radiance in the 750759 nm range was selected as the left shoulder wavelength.

In the absence of atmospheric correction, SIF760 values could be negative even for fluorescent

targets (see Fig. 6 in Marrs ef al., 2021). The atmospheric correction process involves estimating

1R code available on GitHub platform at https://github.com/tommasojulitta
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several atmospheric parameters such as upwelling transmittance, path scattered radiance, and
spherical albedo using atmospheric RTMs. Additionally, to account for uncertainties in the estimation
of atmospheric parameters, the transmittance correction technique (Damm et al., 2014; Guanter et
al.,2010; Siegmann et al. 2019) is a commonly used approach that forces the non-fluorescent targets
to give zero SIF760. Due to the complexities involved in accurately estimating the atmospheric
parameters, RTM-based atmospheric correction was not performed in the current study. Instead, on
account of the successful implementation of a rescaling scheme to correct negative airborne SIF7¢0
and SIFss7 values in Bandopadhyay ef al. (2019), we used a simplified correction technique based on
the same principle of using non-fluorescent targets (i.e., bare soil) as in the widely used transmittance
correction technique, to compensate for negative SIF760 values related to calibration and atmospheric
factors such as aerosol scattering and surface pressure. Any deviation from the non-fluorescent
behaviour of bare soil targets identified in each image was attributed to spectral miscalibration or
atmospheric effects. The method relies on forcing the non-fluorescent target to give zero SIF760, and
the non-zero SIF760 served as an offset to correct the SIF760 from vegetation targets following Eq.

(2.2):

SIFcorrected = SIFvegetation target — SIFnon—fluorescent target (2~2)

To minimize the directional effects on the airborne-quantified SIF7¢0, the corrected SIF760 was
normalised to a reference-viewing angle using a reflectance-based angular correction approach (Hao
et al., 2021). The normalisation method employs a reference SIF760 corresponding to a reference
viewing angle, as well as near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), to
normalise SIF760 quantified at any viewing direction to a reference viewing angle. Two different
approaches were used to compute the reference SIF760 for normalisation. In the first approach, a single
plot located at the centre of each hyperspectral image was selected as the reference SIF760 on account
of being a nadir-view. In the second approach, locations of the ground-based spectral measurements

were identified in the hyperspectral images and used for calculating the reference SIF760. Since the
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ground-based spectral measurements were primarily conducted along the plot's centre, only pure
vegetation pixels located along the plot's centre were used to compute mean radiance for the reference
SIF760 calculation. This differs from the airborne SIF760 corresponding to individual plots, which was
calculated using mean radiance from all pure vegetation pixels excluding the boundaries. The second
approach was only applied for experiment 3 to validate the airborne-quantified SIF7¢0 with the
ground-based HR-2000 SIF760 measurements so that the reference viewing direction remained
identical for ground-based and airborne SIF760. Normalisation was conducted according to the nadir-

viewing angle for all inter-comparisons of airborne SIF7¢0 from both imagers.

The study focused on assessing the spectral configuration of the two instruments, with
attempts made to reduce distortions caused by other factors. We used pixels close to the nadir-viewing
angle and avoided evaluating areas close to the image borders to reduce the potential effects of
instrument 'smile' on assessment of the two instruments. Moreover, the angular correction used to
normalise SIF760 minimizes the potential instrument smile effects (detailed above). Further work and
a corresponding paper will evaluate sensor smile effects and corrections needed when using narrow-
band instruments for SIF76 retrievals. This additional work is important because entire images, rather

than just nadir pixels, are needed for practical applications in precision agriculture.

2.2.4 Modelling the spectral resolution effects on SIF quantification using SCOPE

The SCOPE model integrates three radiative transfer modules and an energy balance module
to estimate outgoing radiation spectra, turbulent heat fluxes, photosynthesis rates and chlorophyll
fluorescence (Van der Tol et al., 2009). Surface reflectance and fluorescence spectra are simulated
by linking several energy balance, photosynthesis and canopy biophysical parameters with TOC
radiance, with SSI and SR of 1.0 nm each. The model assumes a homogenous canopy structure, and
the canopy radiative transfer equations are based on the widely used SAIL model (Verhoef, 1984).
Net radiation over the canopy is calculated by integrating the contribution from the individual layers

with shaded and sunlit leaves at different leaf angles over the canopy depth. The canopy reflectance
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modelling is conducted based on four different Bidirectional Reflectance Distribution Function
(BRDF) terms representing direct and diffused hemispherical contribution from the surrounding and
the direct and diffused reflectance in the viewing direction. The leaf-level fluorescence spectra are
modelled within the 640- to 850-nm spectral region based on the FLUSPECT model (Vilfan et al.,
2016) by using the leaf reflectance and fluorescence outputs derived from the PROSPECT model

(Jacquemoud and Baret, 1990).

A simulated dataset using the SCOPE model (version 2.0) was generated to evaluate the
influence of the SR of the airborne hyperspectral sensors on the 3FLD-based SIF760 quantification.
The dataset consisted of 400,000 simulations generated by randomly varying specific input
parameters, drawing from a uniform distribution within ranges shown in Table 2-4. All other SCOPE
input parameters were kept at their default values. The air temperature and air pressure inputs for the
SCOPE model were measured with a portable weather station during the airborne campaign at field
trial site 1. Details regarding the definition and ranges of all input parameters can be found in Table
A-1 (Appendix A). For each case, the TOC spectra of total upwelling radiance, SIF radiance and the
corresponding irradiance were simulated using the default 1.0-nm SR and 1.0-nm SSI obtained from
SCOPE. To compare the SIF7¢0 retrieval performance for SR corresponding to the narrow-band
hyperspectral imager, SCOPE-simulated spectra were resampled to 5.8-nm FWHM through Gaussian
convolution matching the SSI with the narrow-band imager. The resampled radiance spectra in the
400- to 1000-nm spectral region were compared with the average radiance spectra obtained from the
narrow-band imager at experimental field trial site 1 using RMSE as the cost function. For each
narrow-band airborne radiance spectrum, we selected the 10 closest resampled radiance spectra from
the 400,000 simulations along with their corresponding resampled-irradiance for the analysis. Fig. 2-
5a shows the measured radiance spectra from the narrow-band imager. Fig. 2-5b and 2-5c show the
SCOPE-simulated SIF and radiance spectra at 1-nm FWHM corresponding to the selected

simulations. A comparison of the simulated SCOPE radiance spectra against the narrow-band imager
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is shown in Fig. 2-5d. Additionally, radiance and irradiance spectra corresponding to SRs of 2.0 nm,
3.0 nm, 4.0 nm and 5.0 nm were generated by resampling SCOPE-simulated 1.0-nm SR spectra with
Gaussian convolution but keeping the SSI at 1.0-nm. Fig. 2-5¢ and 2-5f show the comparison
between the radiance spectra simulated by SCOPE at different SRs in the O»-B and O»-A absorption
regions, respectively. The O-B absorption feature could only be identified at the default 1.0-nm SR.
The decrease of SR from the default 1 nm to 5.8 nm resulted in O>-A-band depth reduction and an

increment in the radiance signal corresponding to the absorption minima.

Table 2-4. Range of the SCOPE input parameters used in this study.

Parameter | Range/Value | Unit Description

Catb 10-50 pg-cm 2 Chlorophyll a+b content

Cdm 0.001-0.05 g'm? Dry matter content

Cw 0.001-0.05 cm Leaf water equivalent layer

N 1.2-1.8 — Leaf thickness parameters

Vcemax 20-120 umol-m-s™! | Maximum carboxylation capacity at
25°C

fqe 0.001-0.015 — Fluorescence quantum yield efficiency
at photosystem level

LAI 2-6 m?-m 2 Leaf area index

LIDF. -1-0 - Leaf inclination

LIDFy 0 — Variation in leaf inclination

Rin 600-1000 W-m 2 Broadband incoming shortwave
radiation

Ta 19.2 °C Air temperature

p 1002.8 hPa Air pressure

tts 35.42 deg. Solar zenith angle

2.2.5 Nitrogen assessments using narrow-band and sub-nanometer SIF retrievals

The effects of sensor SR on nitrogen estimation were assessed using models with chlorophyll
content and SIF traits as inputs (Camino et al., 2018b). Nitrogen content was predicted using Random
Forest (RF) (Breiman, 2001) models fit to data from field trial site 1, using i) Ca+p derived from the
narrow-band hyperspectral imagery through the inversion of PRO4SAIL RTM and ii) SIF7e0
quantified from each of the hyperspectral imagers as inputs. The PRO4SAIL model used coupled
PROSPECT-D (Féret et al., 2021) and 4SAIL (Verhoef et al., 2007) to retrieve the biochemical

constituents and canopy structural parameters, respectively. A look-up table with 200,000 simulations
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was built by randomly varying the biochemical and biophysical parameters with a uniform

distribution within the ranges shown in Table 2-5.
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Fig. 2-5. (a) Measured radiance from the narrow-band imager. (b) SCOPE-simulated SIF at 1.0-nm
FWHM. (c) SCOPE-simulated radiance at 1.0-nm FWHM. (d) SCOPE-simulated radiance
corresponding to the narrow-band imager’s spectral characteristics (FWHM = 5.8 nm, SSI = 1.626
nm). SCOPE-simulated radiance at different SRs in the O>-B (e) and O»-A absorption regions (f).

Support vector machines (SVMs) were trained using simulated reflectance as inputs.
Reflectance spectra were matched with the spectral resolution of the narrow-band hyperspectral
imager (5.8-nm FWHM). SVMs were first trained in parallel (MATLAB parallel computing toolbox)

using a radial basis function and optimising the hyperparameters during training to predict Ca+p. Then,

using the average reflectance spectra extracted from pure-vegetation pixels, Ca+, was estimated for
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each experimental plot. Subsequently, RF regression models were fit for each hyperspectral sensor,
using crop N concentration as a response variable and the estimated Ca+, from the narrow-band VNIR
reflectance spectra (Ca+b-narrow) and SIF760 derived from each hyperspectral imager (i.e., Catb-narrow +

SIF760-narrow VS. Ca+b-narrow + SIF760—sub—nan0meter) as prediCtorS.

Table 2-5. Parameters and ranges used for the look-up table generation for the PRO4SAIL RTM.

Parameter Abbreviation Value/range
Chlorophyll a+b content [pg/cm?] Catp 4-70
Carotenoid content [pg/cm?] Cxte 1-20
Anthocyanin content [pg/cm?] Anth 0-15

Dry matter content [g/cm?] Cm 0.007

Water content [g/cm?] Cw 0.001
Mesophyll structure Coeft. N 0.5-3

Leaf area index [m?/m?] LAI 0.3-5
Average leaf angle [deg.] LIDF. 0-90

Hot spot parameter h 0.01

Soil reflectance Risoil PROA4SAIL dry soil spectra
Observer angle [deg.] tto 0

Sun zenith angle [deg.] tts 35.42
Relative azimuth angle [deg.] Y 0

2.3 Results

In experiment 1, leaf physiological traits were significantly different in plots fertilised at
different rates (p < 0.05; Fig. 2-6). For experiments 2 and 3, differences were non-significant, but
there was visible variation in leaf physiological variables among plots receiving different nitrogen
treatments (Fig. 2-6). Differences in leaf total N concentration measured by destructive sampling
were generally consistent with the trends observed in leaf steady-state fluorescence (Ft) with minor
exceptions (e.g., values observed for T3 in experiment 1). Ft was lower in plots with the least N

applied compared to other plots in all the experiments (Fig. 2-6, Ft and Total N panels). Fertilisation
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rate was positively associated with chlorophyll a+b content and the leaf nitrogen balance index (NBI),
while leaf flavonols and anthocyanins were inversely associated with fertilisation rate. Leaf
physiological values were more variable in experiment 1 (T1-T5: 0-184 kg N/ha) than in experiments

2 (T1-T2: 207-387 kg N/ha) or 3 (T1-T3: 0-315 kg N/ha).
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Fig. 2-6. Leaf physiological traits by fertilisation rate across experiments. Average values indicated
by red points. The black lines within boxes represent medians, and the top and bottom of each box
represent the 75" and 25" quartile, respectively. Whiskers represent + 1.5 x Inter Quartile Range.
Asterisks indicate significant differences from the treatment 1 plots according to Dunnett's test at a. <
0.05. *p <0.05; **p < 0.01.

The absorption features at O»-A and O»-B absorption regions were evident in the radiance
spectra from both airborne hyperspectral imagers (Fig. 2-7). However, their shape and depth were
strongly influenced by the SR. As a result of the coarser SR of the narrow-band imager, the absorption
feature at the O»-B band in the 685- to 690-nm spectral region could not be identified in the narrow-
band radiance spectra (Fig. 2-7, inset). This result restricts the comparison between the narrow-band
and sub-nanometer hyperspectral imagers for the calculation of SIF at the O>-B band. Moreover, a
reduction in the depth of the O-A absorption feature in the 750- to 780-nm spectral region and the

corresponding increment in the radiance signal at the absorption minima were observed for the
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narrow-band radiance spectra, as expected (Fig. 2-7, inset). The wavelength corresponding to the
radiance minimum was shifted towards higher wavelengths when compared to sub-nanometer
radiance spectra, as shown in several studies (Cendrero-Mateo et al., 2019; Damm et al., 2011; Julitta

etal., 2016; Liu et al., 2015).
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Fig. 2-7. Comparison of average radiance spectra from one of the plots within experiment-3 in the
670- to 780-nm region obtained from both hyperspectral imagers. The insets show the comparison
within O2-A and O»-B absorption features in the 750- to 780-nm region and 685- to 690-nm region,
respectively.

Atsite 1, the depths of the O»-A absorption feature from each of the two imagers were strongly
correlated (R? = 0.90, p < 0.001; Fig. 2-8a), when using data from the full set of >100 plots.
Nevertheless, the range of SIF76 values quantified with the 3FLD method (SIF760-3rLp) differed
between sub-nanometer imager (0.05—-1.95 mW/m?/nm/sr) and the narrow-band imager (0.37-8.12
mW/m?/nm/sr; Fig. 2-8b). Although there was some lack of correspondence in SIF760-3rLp between
the two imagers (RMSE = 3.86 mW/m?/nm/sr), the two were significantly correlated (R?>=0.85, p <

0.001; Fig. 2-8b).
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Fig. 2-8. Relationship between depth at the O2-A absorption feature (a) and SIF760-3rLD (b) over the
experimental field at site 1 from both hyperspectral imagers. The range of absolute SIF760-3rLD levels
derived from the narrow-band imager was higher than the typical range of 0-3 mW/m?*/nm/sr
quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.

Airborne SIF760-3rLD estimates from both hyperspectral imagers are compared in Fig. 2-9. The
best agreement between measures was observed in experiment 3 (R?> = 0.9, RMSE = 3.28
mW/m?/nm/sr, p < 0.001). Measures from each sensor were also well correlated in experiments 1 (R?
= 0.87, RMSE = 4.69 mW/m?nm/sr, p < 0.001; Fig. 2-9a) and 2 (R®> = 0.77, RMSE = 3.95
mW/m?/nm/sr, p < 0.01; Fig. 2-9b). The error between estimates was consistent across experiments,

yielding RMSEs within 3.28-4.69 mW/m?/nm/st.

Low-resolution SCOPE-simulated SIF760-3rLp  values (2- to 5.8-nm FWHM) were
significantly correlated with SIF760-3rLp simulated at 1-nm FWHM (p < 0.001, R? 0.70-0.99; Fig. 2-
10). RMSE values tended to increase with decreasing SR (Fig. 2-10). The pattern of differing
absolute SIF760-3rLp values but stable relative differences across SRs observed with the SCOPE-

simulated data was consistent with the experimental results from the airborne hyperspectral imagers.
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Fig. 2-10. Relationships between SIF7603rLp for SCOPE simulations with different SRs against
SIF760-3rLD quantified at 1-nm FWHM. The dotted line represents the 1:1 line.

A comparison of airborne SIF7¢0 retrievals to ground-based SIF7e0-3rLp retrievals in
experiment 3 is shown in Fig. 2-11. Ground-based measures were significantly correlated with both
the sub-nanometer (R? = 0.90, p < 0.001; Fig. 2-11a) and the narrow-band (R*>= 0.88, p < 0.001)
hyperspectral imagers (Fig. 2-11b). SIF7603rLp from the sub-nanometer imager showed strong
agreement with the ground-based SIF7¢03rLp values (RMSE = 0.07 mW/m?/nm/sr, rRMSE = 3.7%),
whereas the narrow-band imager exhibited greater overall differences from ground-based measures

(RMSE = 3.26 mW/m*nm/sr, rRMSE = 170.5%). SIF-yield, which was estimated by normalising
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the corrected SIF760-3rLD by the average NIR radiance in the 776—780-nm spectral region, was also
significantly correlated with the leaf-level steady-state chlorophyll fluorescence in experiment 1 (R?

=0.53, p <0.01 for sub-nanometer imager; R? = 0.34, p < 0.05 for narrow-band imager).
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Fig. 2-11. Relationship between ground-based SIF760-3rLp quantified from the HR-2000 field
spectrometer and airborne SIF760-3rLp quantified from the sub-nanometer (a) and the narrow-band (b)
hyperspectral imagers for experiment 3. The dotted line represents the 1:1 line. The range of absolute
SIF760-3rLD levels derived from the narrow-band imager was higher than the typical range of 0-3
mW/m?/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the
instrument.

Measures of O2-A band depth and airborne SIF760-3rLp at different altitudes are presented in
Fig. 2-12. SIF760-3rLp measures with the narrow-band imager at 2200 m AGL were excluded because
pixels were too coarse (1.7 m) relative to plot size (3 m X 12 m). O2-A absorption feature depth and
SIF760-3rLp differed significantly with altitude (Fig. 2-12). The depth of the O2-A absorption feature
increased with sensor altitude, and SIF760-3rLp decreased with sensor altitude for both airborne

imagers (Fig. 2-12).

Sub-nanometer SIF760-3rLD retrievals were significantly correlated with narrow-band imager
retrievals in experiment 3 at both 900 m AGL (R? = 0.85, p < 0.001; Fig. 2-13a) and 1200 AGL (R?
=0.9, p <0.001; Fig. 2-13a). The slope of the relationship between sub-nanometer and narrow-band
retrievals was steeper for 900 m AGL than for 1200 m AGL. RMSE at 900 m AGL (4.29
mW/m?/nm/sr) was higher than that of 1200 m AGL (3.28 mW/m?/nm/sr), possibly explained by

larger SIF760-3rLD values at lower altitudes. SIF760-3rLp at 900 m AGL was significantly correlated with
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SIF760-3kLp at 1200 m AGL (R? = 0.92, p < 0.001; Fig. 2-13b) and 2200 m AGL (R?=0.8, p <0.001;
Fig. 2-13b) using the sub-nanometer imager. SIF760-3rLD values decreased with imager altitude, and
the relationship between low-altitude and high-altitude measurements also changed, with shallower
slopes at higher altitudes (Fig. 2-13b). RMSE was higher at 2200 m AGL than at 1200 m AGL
altitude, when compared to 900 m AGL. A similar pattern was observed for narrow-band SIF760-3rLD
retrievals, with an overall significant correlation (R? = 0.82, RMSE = 1.36 mW/m?*nm/sr, p < 0.001;

Fig. 2-13c) and lower SIF760-3rLD values at higher altitudes.
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Fig. 2-12. Effect of sensor altitude on O>-A band depth and SIF760-3rLD in experiment 3. Letters (a, b
and c) within each plot represent the results of Tukey’s honest significant difference (HSD) post-hoc
comparisons of group means with a < 0.05. Groups sharing the same letter are not significantly
different. In the boxplots, the average values are shown with a red circle. The black line within the
box is the median, and the top and bottom of the box is the 75™ and 25% quartile, respectively. The
whiskers represent + 1.5 x Interquartile range. The outliers are represented as diamonds. The range
of absolute SIF760-3rLD levels derived from the narrow-band imager was higher than the typical range
of 0-3 mW/m?/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution
of the instrument. SIF760-3rLp measures with the narrow-band imager at 2200 m AGL were excluded
because pixels were too coarse (1.7 m) relative to plot size (3 m x 12 m).

Sub-nanometer SIF760-3rLp Was significantly correlated with ground-based SIF760-3r1p at all
sensor altitudes (p < 0.001, all R? > 0.9; Fig. 2-14a). RMSEs between airborne and ground-based SIF

retrievals at 900 and 1200 m AGL were lower than 0.1 mW/m?/nm/sr and rRMSEs were lower than
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4%. SlF760-3rLp at 2200 m AGL consistently underestimated ground-based SIF (RMSE = 0.5
mW/m?*/nm/sr and rRMSE = 28.2%; Fig. 2-14a). Ground-based SIF760-3rLp Was also significantly
correlated with airborne SIF7603rLp from the narrow-band imager (p < 0.001, R? > 0.85) at both
altitudes (Fig. 2-14b). Narrow-band imager SIF760-3rLD estimates at 1200 m AGL tended to be smaller
than ground-based measures (Fig. 2-14b), and error was high for both 900 m AGL (RMSE = 3.77

mW/m?*/nm/sr, rRMSE = 200.8%) and 1200 m AGL (RMSE = 3.26 mW/m?/nm/sr, IRMSE =

170.5%).
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Fig. 2-13. (a) Relationships between SIF760-3rLp estimates from narrow-band and sub-nanometer
hyperspectral imagers by sensor altitude. (b) Relationships between airborne SIF7603rLp from sub-
nanometer imager at 1200 and 2200 m AGL compared to the SIF760-3rLp quantified at 900 m AGL.
(c) Relationship between airborne SIF760-3rLp from the narrow-band hyperspectral imager at 900 and
1200 m AGL. The range of absolute SIF760-3rLD levels derived from the narrow-band imager was
higher than the typical range of 0-3 mW/m?*/nm/sr quantified from healthy vegetation due to the
impact of the spectral resolution of the instrument. SIF760-3r.p measures with the narrow-band imager
at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m x 12
m).

Nitrogen predictions from both RF models were significantly correlated (p < 0.01) with the
field-level nitrogen content measurements obtained by destructive sampling (Fig. 2-15). SIF760-rLD
from the sub-nanometer hyperspectral imager by itself was significantly correlated with field-level
nitrogen content (R> = 0.71, p < 0.001; Fig. 2-15a), as was SIF7¢ quantified from the narrow-band
imager (R? = 0.67, p < 0.001; Fig. 2-15b). The RF algorithm using SIF760-sub-nanometer performed

slightly better (R? = 0.93, RMSE = 0.09%; Fig. 2-15c) than the RF using SIF760-narrow-band (R* = 0.87,

RMSE = 0.12 %; Fig. 2-15d).
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Fig. 2-14. Relationship between ground-based SIF760-3rLp quantified with a HR-2000 field
spectrometer and airborne SIF760-3rLp at 900 m, 1200 m and 2200 m AGL retrieved from the sub-
nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF760-3rLp levels
derived from the narrow-band imager was higher than the typical range of 0-3 mW/m?*/nm/sr
quantified from healthy vegetation due to the impact of the spectral resolution of the instrument.
SIF760-3rLp measures with the narrow-band imager at 2200 m AGL were excluded because pixels were
too coarse (1.7 m) relative to plot size (3 m x 12 m).

2.4 Discussion

In this study we examined the relationship between airborne SIF760-3rLp quantified using sub-
nanometer resolution (i.e., <0.2 nm FWHM) and narrow-band resolution (i.e., 5.8-nm FWHM)
hyperspectral imagers in the context of plant phenotyping for homogenous crop canopies. Our results
support the assertion that airborne SIF retrievals from narrow-band hyperspectral imagers can
successfully track small physiological changes induced by plant pathogens and environmental
stresses, as reported elsewhere (Calderon et al., 2015; 2013; Camino et al., 2021; 2018a; Hernandez-
Clemente et al., 2017; Panigada et al., 2014; Poblete et al., 2021; 2020; Zarco-Tejada et al., 2018;
2012). Precise SIF760 quantification at absolute scales was not essential for detecting plant stress in
these studies. In our study, narrow-band airborne SIF760.3rLp Was significantly associated with both

sub-nanometer airborne and ground-based SIF observations. Our results particularly illustrate the
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capability of these narrow-band hyperspectral imagers for characterising the intra-field SIF7¢0

variability induced by different nitrogen fertilisation rates.
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Fig. 2-15. Relationships between N concentration and airborne SIF760-3rLD quantified from a sub-
nanometer (a) and narrow-band imager (b). Measured vs. estimated N concentration using Random
Forest regression models, which included RTM-based Ca+, and SIF760-3rLp generated from either a
sub-nanometer (c) or narrow-band imager (d). The dotted line represents the 1:1 line. The range of
absolute SIF760-3rLD levels derived from the narrow-band imager was higher than the typical range of
0-3 mW/m?/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of
the instrument.

Previous studies have highlighted the importance of sensor configuration for detecting
spectral absorption features occurring over very narrow spectral ranges, particularly the need for high
SR and SNR when quantifying SIF (Mohammed ef al., 2019). The literature has emphasised the need
for instruments with sub-nanometer resolutions to accurately characterise narrow absorption features
for reliable SIF estimates in physical units (Cogliati et al., 2015; Julitta et al., 2016; Meroni and

Colombo, 2006; Meroni et al., 2011; Rossini et al., 2010). The experimental results from these studies
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are consistent with modelling studies based on FluorSAIL3 (Damm et al., 2011; Cendrero-Mateo et
al., 2019) and SCOPE (Liu et al., 2015), which showed an increase in the SIF7¢0 retrieval accuracy
with increasing sensor SR. These modelling studies also found strong correlations between modelled
and estimated SIF7¢0 for low SR (5 nm) instruments using 3FLD (r = 0.78, RMSE = 0.31
mW/m?/nm/sr) and iFLD (r = 0.81, RMSE = 0.081 mW/m?/nm/sr) (Damm et al., 2011). The SCOPE
modelling results presented in this study support the findings of previous modelling efforts,
illustrating statistically significant relationships (p < 0.001, R? = 0.70-0.99, RMSE = 0.24-1.25
mW/m?/nm/sr; Fig. 2-10) between SIF760-3rLp at 1 nm and SIF760-3kLp at coarser SRs ranging from 2-
nm to 5.8-nm FWHM. The offset of the linear relationship with SIF760-3rLp at 1 nm increased steadily
as the SR decreased from 2 to 5.8 nm, while the slope remained close to 1. This offset increase can
be attributed to differences in radiance corresponding to the O>-A band minima, which showed a
200% increase (Fig. 2-5f) when resampling radiance spectra from_1 to 5.8 nm SR. Our modelling
results and those of previous studies suggest that narrow-band resolution sensors (4- to 6-nm FWHM)
with sufficient SNR can sufficiently characterise relative SIF760 levels despite their inability to

provide reliable absolute SIF760 estimates.

Differential nitrogen application rates in the three experiments were associated with
variability of leaf physiological measurements (Fig. 2-6) and airborne SIF760-3rLp. Narrow-band and
sub-nanometer SIF760-3rLp estimates were strongly correlated across experiments, and both differed
by nitrogen fertilisation level. The best correlation, observed in experiment 3, may be attributed to
the identical flight altitude at which the narrow-band and the sub-nanometer hyperspectral images
were collected for this experiment (site 2; Table 2-2) in addition to the higher relative SIF760-3rLD
variability observed within the experimental plots compared to experiments 1 and 2 (Fig. 2-9). The
results demonstrated consistency across experimental sites and airborne campaigns carried out at
different times, flight altitudes and years, showing robust relationships in terms of the relative SIF760-

srLp variability quantified by the two hyperspectral imagers. The differences obtained in absolute
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levels of SIF760-3rLD quantified in the three experiments can be associated with the differences in crop
varieties, crop growth stages and the slightly different acquisition times of the airborne hyperspectral
images. These results are consistent with previous studies showing differences in both ground-based
and airborne SIF7¢0 measurements according to nitrogen treatment (Cendrero-Mateo et al., 2016; Jia

etal.,2018; 2021; Quemada et al., 2014; Watt et al., 2020a; 2020b).

Sensor altitude was identified as a critical factor in determining SIF accuracy (Daumard et al.,
2015; Ni et al., 2016). MODTRAN (Berk et al., 2014) was used in these studies to show that the
depth of the O»-A absorption feature increases with sensor altitude. This is consistent with our
findings, which show that the O»-A band depth increased with altitude for both airborne hyperspectral
imagers (Fig. 2-12) due to an increase in the radiance of the O;-A band minima (Fig. 2-4h). Despite
correcting for the atmospheric effects, SIF7603rLp decreased with altitude for both airborne
hyperspectral imagers. Such a decrease is linked to the correction method used, which relies on non-
fluorescent targets. The relative increase in O2-A band depth with increasing altitude is greater for
vegetation targets than for bare soil targets (Daumard et al. 2015). This difference results in a bias in
the corrected SIF760-3rLp. Although SIF760-3rLp Was overestimated at higher altitudes with both
hyperspectral imagers, airborne estimates remained well correlated with ground-based measurements
across altitudes (Fig. 2-12 and 2-14). This result has important implications for drone and airborne-
based SIF quantifications in plant phenotyping studies and precision agriculture applications, in
which sensor altitude is generally adapted depending on the flight efficiency and areal coverage.
Although the relative variability needs to be assessed for detecting physiological changes induced by
biotic or abiotic factors, understanding the effects of sensor altitude on SIF retrievals is critical for

accurately interpreting SIF when used as input in stress-detection models.

Few studies have validated airborne-quantified SIF7¢0 from narrow-band hyperspectral
imagers against ground-based observations from high-resolution field spectrometers, due to the

challenges associated with complex and heterogenous canopies including forest areas and cash crops
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such as vineyards and tree orchards. Damm et al. (2015) demonstrated the relationship between the
medium-resolution Airborne Prism Experiment (APEX) sensor and a ground-based ASD
(PANalytical, Boulder, US) field spectrometer for three different types of ecosystems. Measures were
correlated (R? = 0.71), but airborne SIF760 systematically overestimated ground-based SIF7¢0 by a
proportionality factor (slope of airborne vs. ground SIF7s0 relationship) of 1.93 and an rRMSE of
28.9%. Guanter et al. (2007) found good agreement (R? = 0.85) between airborne SIF76 derived from
the Compact Airborne Spectrographic Imager (CASI, Itres Research Ltd., Canada) and ground-based
SIF760 derived from the ASD FieldSpec FR spectroradiometer. The airborne vs. ground-based
relationship found in the current study (R? = 0.88, proportionality factor = 4.76) is consistent with the
results from both studies above. Due to the impact of SR on the absolute SIF760-3rLp quantification,
larger deviations in terms of rRMSE and proportionality factor were observed compared with the
results from Damm et al. (2015), which can be attributed to the sub-nanometer resolution (0.065-nm
FWHM) of the reference ground-based HR-2000 spectrometer used in our study as compared to the

moderate spectral resolution of ASD spectrometers (>1.0-nm FWHM) used elsewhere.

The potential effects of the canopy structure are important to consider when comparing the
narrow-band vs. sub-nanometer SIF retrievals. The TOC SIF observations from ground-based,
airborne and spaceborne platforms are strongly affected by plant canopy structure due to the re-
absorption and scattering of light within the canopy (Fournier ef al., 2012; Porcar-Castell et al., 2014;
Dechant et al., 2020; Yang and Van der Tol, 2018; Zeng et al., 2019). This structure is usually
characterised by parameters such as leaf area index and the leaf inclination distribution function and
may be approximated with vegetation indices such as Modified Triangular Vegetation Index
(MTVI12) (Haboudane et al., 2004) and Enhanced Vegetation Index (EVI) (Huete et al., 2002) when
assessing the effects of structure on SIF. In our study, the structural differences across experimental
plots were generally small as structural changes were generally not associated with experimental

treatments. Nevertheless, we tested whether treatment-associated variability in canopy structure could
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be related to SIF760-3rp from the narrow-band hyperspectral imager. We found that the relationships
of both MTVI2 and EVI with narrow-band airborne SIF760-3rLp Were weak and non-significantly
correlated at both field trial sites (p > 0.1, R> = 0 — 0.11; Fig. 2-16). These results suggest that the
SIF760-3rLD Vvariability captured by the narrow-band imager in the experiments was not driven by
changes arising from structural effects. Moreover, it shows that the fluorescence in-filling at the O»-
A band was unaffected by structure, with the variability across experimental plots due to subtle

physiological differences.
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Fig. 2-16. Relationships between airborne SIF760-3rLp from the narrow-band hyperspectral imager and
MTVI2 (a) and EVI (b). The range of absolute SIF760-3rLp levels derived from the narrow-band imager
was higher than the typical range of 0-3 mW/m?/nm/sr quantified from healthy vegetation due to the
impact of the spectral resolution of the instrument.

Predictive models of leaf N concentration improved only slightly when using SIF760 from the
sub-nanometer imager compared to the narrow-band imager, with a marginal increase in the model
performance (R? = 0.87 vs. 0.93) and a decrease in the error (RMSE = 0.12% vs. 0.09%). The
direction of this improvement is consistent with the greater accuracy of the sub-nanometer SR imager.
Nevertheless, these results suggest that data from the narrow-band hyperspectral imager may be
sufficient for predicting N concentration in plant phenotyping and precision agriculture applications.
Narrow-band imagery may be particularly suitable since relative changes in SIF linked to

physiological conditions, nutritional deficiencies and stress levels are often the focus of such studies.
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For assessing crop physiological status, standard commercially available hyperspectral

imagers with 4- to 6-nm FWHM and SNRs greater than 300:1 can provide reliable relative SIF7¢0

estimates (Zarco-Tejada et al., 2012; 2013a). These sensors are lightweight and can be carried on

drone platforms that provide very high spatial resolution images due to low flying altitude. This

capacity to generate very high spatial resolution imagery with narrow spectral bands is particularly

important for plant phenotyping and precision agriculture applications for mapping physiological

condition (Mohammed et al., 2019). Additional work using RTMs such as SCOPE and others is

needed for improving the interpretation of SIF quantified using broader resolutions in precision

agriculture.

2.5

Conclusions

Strong significant relationships were observed between SIF760 quantified with narrow-band
and sub-nanometer hyperspectral imagers flown in tandem across experimental sites and
airborne campaigns conducted at different times, flight altitudes and years. These results
demonstrate robust quantification of relative SIF760 variability at lower spectral resolution,
demonstrating its validity for detecting stress levels.

The experimental results obtained for SIF760 from the two hyperspectral imagers were
successfully validated via SCOPE modelling, confirming the reliability of narrow-band SIF7¢0
estimates for stress-detection applications requiring the assessment of the relative variability
across the experimental field.

The estimation of leaf nitrogen concentration using SIF7¢0 obtained similar results at both
spectral resolutions (i.e. sub-nanometer vs. narrow-band SI1F760), suggesting that the relative
SIF760 levels obtained from narrow-band hyperspectral imagers enable the prediction of

nitrogen concentration for plant phenotyping and precision agriculture applications.
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4. The SIF760 variability detected by the narrow-band hyperspectral imager was not related to
canopy structural alterations, but rather to distinct physiological responses to various nitrogen
fertilisation levels across the experimental plots. These results demonstrate the potential of

narrow-band SIF7eo to track small physiological changes caused due to nutrient variability.
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Abstract

Hyperspectral imaging of solar-induced chlorophyll fluorescence (SIF) is useful for large-
scale plant phenotyping and stress detection. However, the most accurate instruments for SIF
quantification, such as sub-nanometer (<1-nm full-width at half-maximum, FWHM) airborne
hyperspectral imagers, are expensive and complex to use. Previous studies have demonstrated that
standard narrow-band hyperspectral imagers (i.e., 4—6-nm FWHM) are more cost-effective and are
able to provide far-red SIF (SIF760) estimations that correlate strongly with precise sub-nanometer
resolution measurements. Nevertheless, narrow-band SIF7¢ estimates are subject to systematic
overestimation due to the influence of spectral resolution (SR) on SIF760 levels. In this study, we
investigated ways to address this bias using simulations from the Soil Canopy Observation,
Photochemistry and Energy fluxes (SCOPE) model with Support Vector Regression (SVR) to
estimate SIF760 at 1-nm SR from narrow-band resolution spectra. The performance of the proposed
approach was evaluated using SCOPE model simulations and airborne imagery acquired from the
two airborne hyperspectral imagers (FWHM <0.2 nm and 5.8 nm) flown in tandem on board an
aircraft that collected data from two different wheat and maize phenotyping trials. The estimated
SIF760 at 1-nm SR matched well with the reference SIF760 for both simulated (normalised root mean
square error (NRMSE) 2.45-5.28%) and airborne hyperspectral (nRMSE = 4.5-16%) datasets. These
results suggest that the proposed SIF760 modelling approach could be a useful strategy for improving
the interpretation of relative SIF7¢0 levels quantified from narrow-band hyperspectral imagers in

studies focused on stress detection assessing plant physiological conditions.

Keywords: Solar-induced chlorophyll fluorescence, SIF, narrow-band, SCOPE, SVR, airborne,

hyperspectral, hyperspectral imager
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3.1 Introduction

Solar-induced chlorophyll fluorescence (SIF) is a weak electromagnetic signal emitted by
chlorophyll a that provides useful information about plant photosynthetic activity and stress
(Lichtenthaler and Rinderle, 1988; Campbell et al., 2008; Malenovsky et al., 2009; Zarco-Tejada et
al., 2016; 2021). Direct measurement of the SIF signal is complex due to its superimposition on the
reflected solar radiation and small magnitude (1-5% of total upwelling radiance in the near infrared)
(Meroni et al., 2009). Since sensor capabilities impact the shape of absorption features commonly
used for SIF estimation, instruments with sufficient spectral resolution (SR) and signal-to-noise ratio
(SNR) are required for detecting subtle variations across narrow absorption features for accurate SIF
quantification (Mohammed et al., 2019). Sensors with a sub-nanometer resolution are thus

recommended for obtaining SIF estimates in precise physical units and absolute terms.

SIF signal can be retrieved using a range of platforms, including ground-based spectrometers
(Acebron et al., 2021; Cogliati ef al., 2015; Damm et al., 2021; Grossmann et al., 2018; Hao et al.,
2022; Kim et al., 2021; Li et al., 2020; Pacheco-Labrador et al., 2019), drones (Bendig et al., 2019;
Chang et al., 2020; Suarez et al., 2021; N. Wang et al., 2021; Xu et al., 2021; Zarco-Tejada et al.,
2012), piloted aircrafts (Damm et al., 2015; 2022; Poblete et al., 2020; Rascher et al., 2015; Siegmann
et al.,2021), and satellites (Braghiere ef al., 2021; Kohler et al., 2018; Sun et al., 2018). For airborne
SIF estimation, there are several imaging sensors with sub-nanometer resolution capabilities, such as
the chlorophyll fluorescence imaging spectrometer (CFIS) (Frankenberg et al., 2018), the high-
resolution airborne imaging spectrometer HyPlant (Rascher ef al., 2015), the AISA IBIS Fluorescence
Imager (SPECIM, Spectral Imaging Ltd., Oulu, Finland) (R. Wang et al., 2022), and the Hyperspec
Solar-Induced Fluorescence Imaging sensor (Headwall Photonics, Fitchburg, MA, USA) (Paynter et
al., 2020) with SRs of 0.07, 0.28, 0.245, and <0.2 nm, respectively. These sub-nanometer imaging
sensors can precisely characterise narrow absorption features needed for the accurate quantification

of SIF in physical units.
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Despite their potential, sub-nanometer imaging sensors pose significant challenges that
restrict their widespread use for plant physiology monitoring, precision agriculture, and plant
phenotyping applications. Their radiometric calibration is among the most challenging aspects. Since
these sensors have narrow contiguous bands with a spectral sampling interval (SSI) on the order of
10! nm, a sophisticated calibration facility is required for accurate characterisation of the detector's
spectral response (Brown et al., 2006). A further obstacle is the difficulty in processing different flight
lines, which is primarily due to the large amount of data generated, which makes mosaicking multiple
flight lines a challenging task. Furthermore, these sensors have a spectral range limited to the SIF
emission region (650-800 nm). Consequently, they cannot be used to simultaneously estimate SIF,
plant traits, and vegetation indices, necessitating the integration of an additional sensor into the
airborne platform. In addition, their weights make these sensors incompatible with drones, requiring
lightweight aircraft to be used as the aerial platform (Frankenberg ef al., 2018; Headwall Photonics,

2021; Specim, 2022).

In recent years, there has been rapid progress in the use of hyperspectral imaging sensors with
narrow-band SRs in the 4—-6-nm FWHM range, in conjunction with drones and lightweight aircraft
(Aasen et al., 2018). A variety of compact, lightweight, and low-cost narrow-band hyperspectral
imaging sensors in the visible and near-infrared spectral range (400—-1000 nm) are now widely
available, such as Specim FX10 (5.5-nm FWHM, SPECIM, Spectral Imaging Ltd., Oulu, Finland),
Micro- and Nano-Hyperspec (5.8- and 6-nm FWHM, respectively, Headwall Photonics Inc., Boston,
MA, USA), Pika L and Pika XC2 (3.3- and 1.9-nm FWHM, respectively, Resonon Inc., Bozeman,
MT, USA), and FireflEYE 185 (8-nm FWHM, Cubert GmbH, Ulm, Baden-Wiirttemberg, Germany),
among others. These sensors have the capability of retrieving narrow-band hyperspectral vegetation
indices and estimating numerous plant functional traits, which could provide substantial insight into
the health of the plant. Furthermore, these sensors can be mounted on either piloted or non-piloted

airborne platforms. These standard narrow-band hyperspectral imagers could provide a cost-effective
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and more operationally viable alternative to sub-nanometer imagers for quantifying far-red SIF,
hereafter SIF760. Several past studies have demonstrated the utility of relative SIF760 levels derived
from narrow-band imaging sensors for a variety of applications, such as biotic-induced stress
detection (Calderon et al., 2015; 2013; Hernandez-Clemente et al., 2017; Hornero et al., 2021,
Poblete ef al., 2021; 2020; Zarco-Tejada et al., 2021; 2018), water stress detection (Camino et al.,
2018a; Panigada et al., 2014; Zarco-Tejada et al., 2012), plant phenotyping (Camino ef al., 2019;
2018b; Gonzalez-Dugo et al., 2015), nutrient assessment (Longmire et al., 2022; Y. Wang et al.,
2022; Watt et al., 2020) and its link with gross primary production (GPP) (Damm et al., 2015; Zarco-
Tejada et al., 2013). More recently, Belwalkar et al. (2022) found strong correlations between
airborne SIF7¢0 estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM and sub-
nanometer SIF760 estimates acquired concurrently using an airborne sub-nanometer hyperspectral
imager with <0.2-nm FWHM and a ground-based spectrometer with 0.065-nm FWHM. Although
narrow-band SIF7¢0 estimates were larger than sub-nanometer SIF760 estimates (root mean square
error, RMSE = 3.28-4.69 mW/m?/nm/sr), SIF760 levels estimated from both airborne sensors were
strongly correlated (R? = 0.77-0.9) across multiple experimental sites. Thus, we hypothesise that
spectrally scaling narrow-band SIF760 imaging to finer resolutions using physically-based models

could facilitate the quantification of absolute SIF7¢0 levels at finer spatial resolutions.

Due to the re-absorption and scattering of light within the leaves and canopy, plant pigments
and canopy structure have strong effects on top-of-canopy (TOC) SIF (Dechant et al., 2020;
Migliavacca et al., 2017; Porcar-Castell et al., 2014; Van der Tol et al., 2016; Yang and Van der Tol,
2018; Zeng et al., 2019). Previous studies using physically-based models successfully accounted for
these light re-absorption and scattering effects when downscaling SIF from the canopy level to the
leaf level (Liu et al., 2019; Romero et al., 2020; 2018; Yang and Van der Tol, 2018). In addition,
prior studies have demonstrated that SIF spectra and vegetation biophysical traits can be retrieved

simultaneously, either with radiative transfer model (RTM) inversion alone (Celesti et al., 2018;
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Verhoef et al., 2018) or through RTM combined with machine learning modelling (Scodellaro et al.,
2022). The widely used RTM Soil-Canopy-Observation of Photosynthesis and Energy fluxes
(SCOPE) (Van der Tol et al., 2009) can model light re-absorption and scattering mechanisms while
taking canopy structure into consideration. A sensitivity analysis of the SCOPE model revealed that
canopy structure and leaf optical properties primarily determine TOC SIF variability when
considering only vegetation parameters (Verrelst et al., 2015). Consequently, the interpretation of
narrow-band SIF7¢0 estimates could be improved by including plant trait information derived from
RTMs, such as SCOPE. We hypothesise that incorporating canopy structure and pigment content
parameters through the SCOPE-based modelling approach could potentially aid in the estimation of
SIF760 at finer spectral resolution from narrow-band resolution sensors, enabling retrieval of

appropriate absolute SIF760 levels in physical units.

Although Belwalkar et al. (2022) demonstrated significant correlations between SIF7¢0
estimates derived from narrow-band and sub-nanometer airborne hyperspectral imagers flown in
tandem, these narrow-band SIF7¢0 estimates were accurate only in relative terms, and their conversion
to absolute SIF760 levels in physical units required further investigation. Furthermore, several prior
studies have demonstrated that sensors with broader spectral specifications overestimate SIF7e0
(Damm et al., 2015; Julitta et al., 2016; Maimaitiyiming et al., 2020; Nichol et al., 2019; SiB et al.,
2016). The magnitude of this bias depends on both the spectral resolution and the spectral sampling
interval of the instrument, and additional modelling is needed for accurate SIF quantification in
practical applications. Although previous studies have demonstrated the impact of the spectral
resolution on SIF (Belwalkar et al., 2022; Cendrero-Mateo et al., 2019; Damm et al., 2011; Julitta et
al., 2016; Liu et al., 2015), they have mostly focused on modelling efforts and on hand-held
spectrometer data collected at the near-field scale. There is a lack of research focusing on assessing
the impact of SR and SSI on SIF from airborne narrow-band imaging sensors under ambient field

conditions. Studies carried out under such conditions with operational sensors will make progress on
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the operational use of cost-efficient and simpler sensors for fluorescence quantification and

photosynthesis assessment.

Our study extends the prior work of Belwalkar et al. (2022) by modelling the effect of SR on
narrow-band SIF760 estimations to optimise their interpretation, with the intention of addressing the
limitations associated with the absolute SIF760 levels quantified from narrow-band airborne
hyperspectral imagers. We used an empirical approach based on SCOPE modelling and Support
Vector Regression (SVR) to estimate SIF760 at a finer target resolution. Due to SCOPE's default
spectral characteristics and the experimental results of Julitta et al. (2016) indicating that
spectrometers with FWHM < 1 nm can estimate the absolute value of SIF760, we selected 1-nm
FWHM as the target resolution for validation purposes. Input data consisted of 5.8-nm FWHM
resolution narrow-band airborne hyperspectral imager data deriving SIF760 and SCOPE model

inverted leaf biochemical and structural traits as predictor variables.

3.2 Materials and methods

3.2.1 Study sites

The study was conducted at two sites in Victoria, Australia (Fig. 3-1). Site 1 was located in
Yarrawonga (36°02'55"S, 145°59'02") and was planted with several varieties of rainfed wheat grown
under various physiological conditions and fertilisation treatments. The airborne campaign was
conducted during grain filling in 2019 (Fig. 3-1a). Plots were 26 m? (2 m x 13 m) in size and were
planted in May 2019. The second trial site (Site 2) was managed under irrigated conditions using an
overhead pivot in Peechelba East (36°10'04"S, 146°16'23"E) in 2021. A single variety of maize
(Pioneer Hybrid 1756) was grown across the entire experimental field under different nitrogen
fertiliser application rates. The growth stage during the airborne campaign corresponded to silking

(Fig. 3-1b). Plots measured 36 m? (3 m x 12 m) and were planted in October 2020.
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Fig. 3-1. Overview of experimental fields at Sites 1 (a) and 2 (b) acquired with the narrow-band
hyperspectral imager (composite: 760 (R), 710 (G), and 680 (B) nm). The black lines correspond to
the average radiance spectra in the O»-A absorption region used for SIF quantification and the average
reflectance spectra in the 400-800-nm spectral region used for plant trait estimation for all plots.
Shaded areas in the reflectance and radiance plots represent the +1 standard deviation of the average
reflectance and radiance.
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At both trial sites, leaf measurements were carried out in the field simultaneously with
airborne campaigns. Handheld leaf-clip sensors (Dualex, FORCE-A, Orsay, France and FluorPen
FP110-LM, Photon Systems Instruments, Drasov, Czech Republic) were used to measure leaf
chlorophyll content, nitrogen balance index (NBI), flavonol content, anthocyanin content, and steady-
state leaf fluorescence yield (F¢). Details of leaf-level measurements can be found in Belwalkar et al.
(2022). A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was set up for
concurrent readings of meteorological conditions (air temperature and air pressure) during the
hyperspectral image acquisition over both of the trial sites. The total incoming irradiance (E) was
measured continuously during flights with a 0.065-nm FWHM HR-2000 spectrometer (Ocean
Insight, Dunedin, FL, USA) set up at each field site. The spectrometer at Site 1 was equipped with a
CC-3 VIS-NIR cosine corrector-diffuser probe, whereas at Site 2, irradiance was measured using the
radiance (L) reflected from a white reference panel (Labsphere Inc., North Sutton, NH, USA). The
irradiance measured from the HR-2000 spectrometer was calibrated using coefficients derived from
a uniform calibrated light source and an integrating sphere (Labsphere XTH2000C, Labsphere Inc.,

North Sutton, NH, USA).

3.2.2 Hyperspectral airborne campaigns

For both airborne campaigns, two hyperspectral imagers were flown in tandem on a Cessna
172R operated by the HyperSens Laboratory, the University of Melbourne's Airborne Remote
Sensing Facility, to acquire high-resolution hyperspectral imagery over the two study sites. The first
hyperspectral imager (Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA)
captured images in the 400—1000-nm spectral range with 5.8-nm FWHM resolution, and the second
hyperspectral imager (Hyperspec Solar-Induced Fluorescence Imaging sensor, Headwall Photonics,
Fitchburg, MA, USA) operated in the 670—780-nm spectral range with <0.2-nm FWHM resolution.

Further technical details of the imaging and flight data can be found in Table 3-1.
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Table 3-1. Spectral characteristics of hyperspectral imagers and acquisition details

Characteristics of hyperspectral imagers

VNIR E-Series Solar-Induced Fluorescence
(Narrow-band) Imaging (Sub-nanometer)
Spectral range 400-1000 nm 670-780 nm
Number of spectral bands 371 2160
Spectral sampling 1.626 nm 0.051 nm
interval (SSI)
FWHM 5.8 nm <0.2 nm
Number of un-binned 1600 1600
spatial pixels
Signal-to-noise ratio >300:1%* >300:1*
(SNR)
Field of view 66° 23.5°
Radiometric resolution 16 16
Image acquisition details
Site 1 Site 2
Acquisition dates 9th October 2019, 15:40 — 20" January 2021, 11:40 — 12:20
16:30 (local time) (local time)
Flight altitude (above 400 m (VNIR imager) 1200 m (both imagers)
ground level) 900 m (Fluorescence
imager)
Mean spatial resolution 0.2 m (both imagers) 0.7 m (VNIR imager)

0.3 m (Fluorescence imager)

* Applicable only for plot-level mean radiance/reflectance computation

The radiometric calibration of the two hyperspectral imagers was performed by means of an
integrating sphere (Labsphere XTH2000C) using coefficients derived from the calibrated light source
at four different illumination levels. The SMARTS model (Gueymard, 2001) was used to perform
atmospheric correction for the VNIR E-Series (narrow-band) imager to convert radiance images to
reflectance images. Aerosol optical depth measurements in the 440-, 500-, 675-, 870-, and 936-nm
spectral bands obtained from a Microtops II sun photometer (Solar Light Co., Philadelphia, PA, USA)
and meteorological measurements from the portable weather station were used for input parameters.
Hyperspectral images were ortho-rectified using inertial measurement units and GPS data (VN-300-
VectorNav Technologies LLC, Dallas, TX, USA for the narrow-band imager and Trimble APX-15
UAYV, Applanix Corporation, Ontario, Canada for the sub-nanometer imager) recorded during the

flights using the Parametric Geocoding & Ortho-rectification for Airborne Optical Scanner Data
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software (PARGE, ReSe Applications Schldpfer, Wil, Switzerland). Additional information on data

pre-processing and image correction can be found in Zarco-Tejada et al. (2016).

We used the Normalised Difference Vegetation Index (NDVI) as a thresholding strategy to
identify vegetational pixels within each plot, as described in Belwalkar et al. (2022). Mean radiance
from both narrow-band and sub-nanometer imagers and reflectance spectra from the narrow-band
imager were calculated for each plot by averaging all selected vegetation pixels, excluding the
boundary pixels (Belwalkar et al., 2022). The average radiance spectra from the narrow-band
hyperspectral imager (Fig. 3-1) were used to quantify SIF760 using the O2-A band in-filling approach,
employing the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975) and a total of three spectral
bands (3FLD) (Maier et al., 2003), named here as SIF760-3rLp. The irradiance measured from HR-
2000 spectrometer was convolved assuming a Gaussian band spectral response function of 5.8-nm
FWHM resolution to match the spectral characteristics of the narrow-band hyperspectral imager. The
‘in” E and L were selected as the E/L minima in the 755-765-nm spectral region, while the ‘out’ E
and L were selected as the weighted mean of E/L local maxima in the 750-759-nm and 771-780-nm
spectral regions, respectively. In case of multiple local maxima within the spectral regions, the local
maximum closest to the ‘in’ band was selected (Cendrero-Mateo et al., 2019). The airborne SIF76o-
srLp was further corrected using non-fluorescent soil targets identified in the imagery and then
normalised using a reflectance-based angular normalisation approach (Hao ef al., 2021) to account

for atmospheric and directional effects as described in Belwalkar ez al. (2022).

3.2.3 Modelling methods

3.2.3.1 SCOPE model simulations

The SCOPE model (version 2.0) (Yang et al., 2021) was used to account for the effect of the
sensor's spectral resolution on SIF760 quantification. SCOPE simulations were used in two stages: 1)

a theoretical sensitivity analysis of the effect of plant traits on the inter-relationship between SIF760-
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srep and SR, and 2) the development of a machine learning—based estimation model to scale narrow-

band SIF760-3rLD estimates to 1-nm FWHM resolution.

In the first stage, a local sensitivity analysis was used to determine how individual plant traits
independently affect SIF760-3rLD estimates from narrow-band hyperspectral imagery. This differs from
previous modelling-based studies (Damm et al., 2011; Liu et al., 2015) that varied multiple plant
traits simultaneously. In simulations for Stage 1, the plant traits leaf chlorophyll content (Cav), leaf
area index (LAI), leaf inclination distribution function (LIDF,), and maximum rate of carboxylation
(Vemax) were selected for analysis based on their association with SIF variability in a global SCOPE-
sensitivity study (Verrelst ef al., 2015). SCOPE simulations at the default 1-nm FWHM and 1-nm
SSI were generated by randomly varying input parameters drawn from a uniform distribution within
the following ranges: Ca+b, (10-50), LAI (1-5), LIDF, (-0.8-0.8), and Vcmax (40-200). A total of
1000 simulations (Simulated Dataset-1) were obtained for each trait while holding other parameters
constant. All other SCOPE inputs were set at their default values. SCOPE simulations were then
convolved to match the SR, SSI, and band centres of the narrow-band hyperspectral image, assuming
a Gaussian band spectral response function. SIF760-3rLp Was estimated from simulated irradiance and
TOC total upwelling radiance at both 1- and 5.8-nm FWHM resolutions following the same
methodology outlined in Section 2.2 and compared across simulations of the four leaf biochemical

and structural traits.

Stage 2 consisted of using SCOPE model simulations to develop prediction models for
estimating SIF760 at 1-nm FWHM resolution from narrow-band resolution spectra (Fig. 3-2). Due to
differences in crop type, crop growth stage, image acquisition time, and meteorological conditions
between the two study sites, SCOPE simulations were conducted separately for each study site. An
alternative strategy would have been to generate a global SCOPE-simulated data set that could be
applied to any study site. However, due to the complexity of SCOPE input parameters that would be

needed for such a model (leaf, canopy, soil, and micrometeorology), we used site-specific simulations
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2820  sensor acquisition in practice (Verrelst ef al., 2015).

Run simulations :
SCOPE model > Spectral convolution

adiance and
irradiance at
different SRs

Plant traits and

reflectance

Stage 2A o o
¥ y
Plot level
reflectance SIF
mm ________ " _: Random Forest qu antiﬁ?cﬁaution
Radiance and reflectance at 5 8-nm e einversion model Usina 3ELD
FWHM resolution I g
|
|
| ! Inverted |eaf
: P[Et. level : biochemical and Ng{lrFow-band | Stage 2B
I R | structural traits o0-35LL
| Y
|
SIF760 Moo -
guantification using Support Vector Regression model
JFID @ [~ -~
l
1
]
1
]
Y
ES!iITIQtiOf‘I results
Airborne SIF g at 1-nm FWHM resolution
* 100,000 simulations **10,000 simulations

2821  Fig. 3-2. Overview of the methodology used for estimating SIF760 at I-nm FWHM from the narrow-
2822  band airborne hyperspectral imager.
2823

101



2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

Two distinct sets of simulations were generated for each study site, using parameter values
drawn from random uniform distributions detailed in Table 3-2. The ranges of input parameters for
the simulated datasets were determined using field measurements from each study site as well as
estimates from the existing literature (detailed in Table B-1, Appendix B). The meteorological
variables (air temperature and air pressure) were determined from the portable weather station.
SCOPE defaults were used for other parameters and spectral characteristics. One dataset of 100,000
simulations (Simulated Dataset-2si 1 and Simulated Dataset-2sitc 2) was used for the estimation of
plant traits (Stage 2A, Section 2.3.2). A second dataset of 10,000 simulations (Simulated Dataset-3site
1 and Simulated Dataset-3siic 2) was used for SIF760 estimation at 1-nm FWHM resolution (Stage 2B,
Section 2.3.3). As with other simulations, 1-nm SR outputs were convolved to match the spectral
resolution of the narrow-band hyperspectral imager using a Gaussian spectral response function.
Additionally, radiance and irradiance spectra were convolved to 2-, 3-, 4-, 5-, and 6-nm SR for
Simulated Dataset-2sic 1 and Simulated Dataset-3si 1 While maintaining the Nyquist criterion (SSI =
SR/2) (Damm et al., 2011). A list of the SCOPE simulations used at each stage is provided in Table

3-3.

3.2.3.2 Plant trait estimation using RTM-based hybrid approach

In Stage 2A (Fig. 3-2), an RTM-based hybrid inversion method was used to estimate leaf
biochemical and structural traits using the TOC reflectance spectra from the narrow-band imagery at
both study sites. Only traits with the highest variable importance scores as determined by the predictor
screening approach (detailed in Section 3.2.3.3) were estimated. A similar method combining RTMs
and machine learning regression models, such as Gaussian process regression (GPR), support vector
machines (SVMs), and random forest (RF), have successfully been used in previous studies to obtain
plant traits from airborne and spaceborne hyperspectral imagery (Camino ef al., 2021; Danner et al.,
2021; De Grave et al. 2020; Poblete et al., 2021). A set of RF regression models (Camino et al., 2021;

S. Wang et al., 2021) was trained using a look-up table containing 100,000 simulations corresponding
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to Simulated Dataset-2 (Table-3-3) for each site. The simulated 5.8-nm FWHM reflectance spectra
were used as inputs to the RF-inversion models, with each plant trait as output. RF-inversion models
were also trained using 2-, 3-, 4-, 5-, and 6-nm SR data from Simulated Dataset-2s;. 1. RF-inversion
models were trained in parallel (MATLAB parallel computing toolbox) with 10-fold cross-validation.
Hyperparameters were optimised using Bayesian optimisation (Mockus, 2012) in MATLAB during
training (MATLAB; Statistics and Machine Learning toolbox; MathWorks Inc., Natick, MA, USA).
Finally, the trained RF-inversion models were used to predict plant traits using narrow-band airborne

reflectance imagery (Fig. 3-1) at the plot level.

Table 3-2. Range of SCOPE input parameters used in this study

Parameter Range/Value Unit Description
Site 1 Site 2
Catv 10-70 40-80 pg-cm 2 Leaf chlorophyll concentration
Cea 1-20 1-20 pg-cm 2 Leaf carotenoid concentration
Cant 0-8 0-8 pg-cm 2 Anthocyanin content
Cdm 0.001- 0-0.001 gm? Dry matter content
0.05
Cw 0.001- 0.001- Cm Leaf water equivalent layer
0.05 0.05
N 1-1.5 1-2.5 — Leaf thickness parameters
Vemax 30-110 40250  umol'm !'s7!  Maximum carboxylation capacity at
25°C
LAI 0.5-5 2-6 m?-m 2 Leaf area index
LIDF, -1-1 -1-1 — Leaf inclination parameter for the
mean leaf zenith angle
LIDFy 0 0 — Bimodality of the leaf angle
distribution
Rin 700 900 W-m?2 Broadband incoming shortwave
radiation
Ta* 19.2 253 °C Air temperature
p* 1002.8 1003.6 hPa Air pressure
tts 35.42 34.93 deg. Solar zenith angle

* Meteorological variables retrieved from portable weather station during the airborne campaign

3.2.3.3. SIF estimation at 1-nm FWHM using the support vector regression model

In Stage 2B (Fig. 3-2), a simulated SIF training dataset comprising SIF7e03rLp values
corresponding to 1-, 2-, 3-, 4-, 5-, 6-, and 5.8-nm FWHM for Site 1 and SIF760-3rLp values

corresponding to 1- and 5.8-nm FWHM for Site 2 was generated using TOC radiance and irradiance
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corresponding to Simulated Dataset-3sie 1 and Simulated Dataset-3site 2, respectively (Table 3-3).
SIF760-3rLD for all SCOPE simulated data was computed following the same methodology as outlined
in section 2.2. We evaluated two sets of models for estimating 1-nm SR SIF7¢0 from the narrow-band
resolution spectra. The first model, referred to as the linear model, used the slope and intercept of the
linear relationship between convolved coarse-SR SIF7603rLp and 1-nm SR SIF7603rp from the

simulated SIF training dataset. The second model used an SVR algorithm as detailed below.

Table 3-3. Description of the SCOPE simulations used in this study
Dataset

Stage (Simulation count) Data type Objective
Assessment of the impact of leaf
1 Simulated Dataset-1 Radiance and biochemical and structural traits on
(1,000) irradiance SIF760-3rLD relationships across two
different SRs
Simulated Dataset-2 Development of hybrid inversion
2A (100,000) Reflectance models for plant traits estimation
B Simulated Dataset-3 inlzgfe:r??ecz’n d Development of SVR models to
(10,000) estimate SIF760 at 1-nm FWHM
reflectance
Dy Simulated Dataset-4 . Ra.d 1ance, Quantitative evaluation of different
Validation irradiance and N
(50,000) SIF760 estimation models
reflectance

First, for each of the six SRs corresponding to the Simulated Dataset-3si« 1, we selected inputs
for SVR models from a pool of eight potential predictor variables: seven SCOPE plant traits and the
corresponding narrow-band SIF760-3rLp. Candidate plant traits included leaf water content (Cy), leaf
dry matter content (Cam), the mesophyll structural parameter (N), Cawv, LAIL, LIDF,, and Vcmax.
Potential predictors were screened using variable importance scores from an RF model fit to 1-nm
SR SIF760 data using the 'oobPermutedPredictorlmportance' function in MATLAB (Schneider et al.,
2020; Thomas et al., 2021), which generates permutations of out-of-bag (OOB) observations from
regression trees and evaluates their impact on prediction. The four predictors with the highest scores
were selected as SVR model inputs. Several SVR models were then built with all possible
permutations of this subset of predictors, with the inclusion of narrow-band SIF760-3rLD as a required

predictor variable for each model. Plant trait inputs required for SVR models were derived from the
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simulated reflectance corresponding to Simulated dataset-3 using the RF-inversion models built in
Stage 2A. SVR models were trained in parallel using the MATLAB parallel computing toolbox with
10-fold cross-validation, and the hyperparameters were optimised during training using Bayesian

optimisation.

For each site, an independent test dataset using 50,000 SCOPE simulations (Simulated
Dataset-4) was used to evaluate the SIF760 estimation models (Table 3-3). This dataset was generated
using the same input parameter ranges (Table 3-2) and methodology described in sections 2.3.1 and
2.3.2. Plot-level 1-nm SR SIF760 estimated from regression models was compared to the SCOPE-
simulated reference SIF760-3rLp using coefficient of determination (R?), root mean square error
(RMSE), and normalised root mean square error (nRMSE) as evaluation metrics. The nRMSE was
computed as the ratio of RMSE and mean of reference SIF760-3rLp. Regression model predictions were
also generated for the airborne datasets at both study sites, using the estimated plant traits and SIF760-
srLp quantified from 5.8-nm FWHM narrow-band imagery as inputs. The performance evaluation of
the regression models for the airborne datasets was conducted using sub-nanometer-resolution
airborne hyperspectral imagery acquired concurrently with narrow-band resolution imagery. The sub-
nanometer resolution radiance spectra corresponding to the selected validation plots (as in Belwalkar
et al., 2022) were convolved to the default SCOPE spectral characteristics to compute 1-nm SR
SIF760-3rD, Which served as a reference to validate the estimated 1-nm SR SIF760 from the 5.8-nm
FWHM resolution narrow-band hyperspectral imager. The computation of 1-nm SR SIF760-3rLp from
the convolved sub-nanometer-resolution airborne spectra was carried out following the same
procedure as outlined in Section 2.2 for quantifying SIF760-3rLp from the narrow-band hyperspectral

imager.

Airborne datasets corresponding to the other five narrow-band SRs were not available for the
evaluation of best-performing regression models for SIF7¢0 estimation at 1-nm FWHM resolution.

Therefore, sub-nanometer resolution airborne radiance spectra and ground-based irradiance spectra
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for Site 1 were convolved to generate SIF7603rLp at these SRs, with SSI following the Nyquist
criterion. Because the sub-nanometer and narrow-band hyperspectral imagers were flown in tandem,
the estimates of plant traits that were obtained from the narrow-band hyperspectral imager at Site 1

were used as the other three inputs in the SVR model.

3.3 Results

The sensitivity of the relationship between SCOPE-derived SIF760-3rLp at different SRs to leaf
biochemical and structural traits is presented in Fig. 3-3. Overall, SIF7603rLp increased with
increasing values of Caw, LAIL LIDF,, and Vcmax for all scenarios; however, the relationship
between SIF at 1- and 5.8-nm SRs varied widely across simulations. Narrow-band SIF760-3rLp tended
to be overestimated as plant trait parameters increased, with a non-linear response to changing Ca+p
(Fig. 3-3a-c) and LAI (Fig. 3-3d-f), but a linear response to varying LIDF. (Fig. 3-3g-i) and Vemax

(Fig. 3-3j-1).

Narrow-band SIF760-3rLp, LIDFa, Cat+b, and LAI were identified as the most important
parameters for 1-nm SR SIF7¢p estimation, with a combined importance of close to 95% (Fig. 3-4).
The ranges of values for the three most important plant traits (Ca+b, LAI and LIDF,) estimated via
the SCOPE-based hybrid inversion approach are shown in Fig. 3-5. The substantial differences in
estimated plant traits between the two study sites can be attributed to differences in crop type,
irrigation regime, and weather. All three estimated plant traits were more variable at Site 1 than at
Site 2, as expected, given the use of multiple cultivars and a wider range of nitrogen treatments. The
resulting plot-scale spatial variability associated with the estimated Ca+», and LAI within the entire

experimental field at Site 1 is depicted in Fig. 3-6.

Validation statistics for models estimating 1-nm SR SIF760 based on SCOPE-simulated data

are shown in Table 3-4A. The SVR model using 5.8-nm SR SIF760-3rLD and all three plant traits as
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inputs performed the best at both Site 1 (nRMSE = 5.28%) and Site 2 (nRMSE = 2.45%). The subset
of SVR models that included LIDF, as a predictor (Models 4, 6, 7, and 8 in Table 3-4A) performed
best at Site 1 (nRMSE < 7%), while the subset of SVR models that included LAI as a predictor

(Models 3, 5, 7, and 8 in Table 3-4A) performed best at Site 2 (nRMSE < 6%).
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Fig. 3-3. Effects of leaf biochemical and structural traits on the relationship between SCOPE-
simulated SIF760-3rLD at two different spectral resolutions. Traits include Ca+p (a-c), LAI (d-f), LIDF,

(g-1), and Vcmax (j-1). All other SCOPE input parameters were left at their default settings. The
dashed red line depicts the 1:1 line.
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Fig. 3-4. Relative importance of the eight potential predictor variables at different SRs for estimating
SIF760 at 1-nm FWHM using Simulated Dataset-3site 1. The relative importance score was obtained
using out-of-bag (OOB) error.
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Fig. 3-5. Ranges of variation for the leaf biochemical and structural traits estimated from the narrow-
band hyperspectral imagery at the two study sites: Ca+b (a), LAI (b), and LIDF, (c).

The performance of the linear and SVR models using airborne data corresponding to the
validation plots is presented in Table 3-4B. As observed with the simulated datasets, the set of SVR
models that included LIDF, at Site 1 and LAI at Site 2 performed better than models without these
predictors. At Site 1, the SVR model including all four predictors (Model 8 in Table 3-4B) did not
have the lowest nRMSE, unlike the results for the simulated datasets. However, the best-performing
SVR model at Site 1 (Model 6 in Table 3-4B) had an nRMSE within 0.5% of the full model.

Nevertheless, results for the full SVR model (Model 8 in Table 3-4) were relatively consistent for
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simulated and airborne data across study sites. Thus, Model 8 was deemed the best-performing SVR

model and was used exclusively for the remainder of the analysis.

—

[P
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— !

Estimated Cyy, (pg/cm?)

@

Fig. 3-6. Maps of estimated C,+b (ng/cm?) (a) and LAI (m?*/m?) (b) at plot scale depicting the within-
field variability at Site 1.

29

Comparisons between estimated and reference 1-nm SR SIF760 for the linear and the SVR
models using SCOPE-simulated data are shown in Fig. 3-7. Both model estimates were significantly
correlated with the reference values (R* > 0.91; p < 0.001; Fig. 3-7a and b), with most points located
close to the 1:1 line. The SVR model performed better than the linear model, with an RMSE of less
than 0.1 mW/m?/nm/sr (Fig. 3-7c and d). We further evaluated the performance of the SIF7¢0 scaling
methodology using five other narrow-band SRs for Simulated Dataset-4 at Site 1. The estimates from
both models were significantly correlated with reference values across narrow-band SRs (R? > 0.94;
p <0.001) (Fig. 3-8). RMSE values tended to increase as SR decreased for both linear (Fig. 3-8a-e)

and SVR (Fig. 3-8f-j) models. The SVR model outperformed the linear model for all five narrow-
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band SRs, with RMSEs ranging from 0.037-0.136 mW/m?/nm/sr for the linear model and 0.027—

0.076 mW/m?/nm/sr for the SVR model.

Table 3-4. Performance of linear and SVR models built to estimate SIF760 at 1-nm FWHM resolution
from the 5.8-nm FWHM resolution SCOPE-simulated and airborne datasets

Estimation model Site 1 Site 2
A: Simulated data RMSE nRMSE RMSE nRMSE
Linear Model: SIF| nm = f (SIF5.8 1m) 0.114 9.52% 0.243 7.13%
SVR Model 1: SIF; sm =f (SIF5.8 1m) 0.104 8.69% 0.229 6.72%
SVR Model 2: SIFi nm =f (SIF5.8 nm, Ca+b) 0.091 7.65% 0.216 6.33%
SVR Model 3: SIF| nm = f (SIFs.8 nm, LAI) 0.100 8.40% 0.199 5.85%
SVR Model 4: SIF| nm = f (SIF 5.8 nm, LIDF3) 0.076 6.39% 0.235 6.88%

SVR Model 5: SIF} nm = £ (SIFs 8 nm, Cab, LAI) 0.085  7.09%  0.124  3.63%
SVR Model 6: SIF) um = f(SIFs 8 nm, Casv, LIDF)) ~ 0.068  5.72% 0212 6.22%
SVR Model 7: SIF) um =/ (SIFs s om, LAL, LIDF)) ~ 0.076  6.39%  0.178  5.22%
SVR Model 8: SIF} nm = /' (SIFs 8 nm, Casb, LAL 0.063  528%  0.084  2.45%
LIDF,)

B: Airborne data

Linear Model: SIF1 nm = f (SIF5.8 nm) 0.517  30.35%  0.308 11.76%
SVR Model 1: SIF1 nm = f (SIF5.8 nm) 0.413 24.25%  0.168 6.42%
SVR Model 2: SIF; am = f (SIF5.8 nm, Ca+b) 0.387  22.70%  0.149 5.69%
SVR Model 3: SIFi am = f (SIFs 8 nm, LAI) 0.435 25.53%  0.151 5.79%
SVR Model 4: SIFi nm = f (SIF 5.8 nm, LIDF,) 0.270 15.86%  0.141 5.39%

SVR Model 5: SIF) um = f(SIFsgmm, Casv, LA) 0426 24.96%  0.154  5.88%
SVR Model 6: SIF) um = f(SIFsgmm, Casv, LIDFs) 0265  15.53%  0.145  5.56%
SVR Model 7: SIF) um = /(SIFsgmm, LAL LIDFy) 0266  15.60%  0.123  4.70%
SVR Model 8: SIF} um = £ (SIF58 nm, Casb, LAL 0273  16.00%  0.118  4.50%
LIDF,)

The relationships between reference airborne 1-nm SR SIF760-3rLp and SIF760 estimated by the
linear and SVR models are shown in Fig. 3-9. SIF7603rLp estimates derived from the narrow-band
imager were overestimated compared to the 1-nm SR reference (RMSE = 2.23 mW/m?/nm/sr for Site
1 and RMSE = 2.117 mW/m?/nm/sr for site 2) due to the spectral characteristics of the narrow-band
imager. Nevertheless, narrow-band SIF7e0-3rLp was significantly correlated with the high-SR
reference at both Site 1 (R2=0.93, p < 0.001; Fig. 3-9a) and Site 2 (R>= 0.95, p < 0.001; Fig. 3-9b).
The RMSEs for narrow-band SIF760 estimates scaled with both the linear and SVR models were less

than 0.6 mW/m?/nm/sr. The linear model overestimated 1-nm SR SIF7¢ at Site 1 (nRMSE = 30.35%;
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Fig. 3-9¢) and underestimated it at Site 2 (nRMSE = 11.76%; Fig. 3-9d). SIF760 estimated using the
SVR model was more accurate at both sites (nRMSE = 16% for Site 1 and nRMSE = 4.5% for Site
2; Fig. 3-9e and f), with the majority of points near the 1:1 line. A plot-scale visualization of scaled

SVR estimates from the narrow-band hyperspectral imager for the entire field at Site 1 is shown in

Fig. 3-10.
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Fig. 3-7. Relationships between the SIF760-3rLp at the default 1-nm FWHM simulated by SCOPE
(used here as the reference SIF) and the SIF7¢0 estimated at 1-nm FWHM by the linear model (a, b)
and by the SVR model (c, d) from 5.8-nm FWHM spectra for SCOPE-simulated test datasets

corresponding to Site 1 and Site 2. The red dashed and black solid lines depict the 1:1 line and
regression line, respectively. ***p-value < 0.001.
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Fig. 3-8. Relationships between SIF7¢03rLp at 1-nm FWHM simulated by SCOPE (used here as the
reference SIF) and SIF76 estimated by the linear model (a-e) and by the SVR model (f-j) from
different SRs for SCOPE-simulated test datasets corresponding to Site 1. SSI was related to SR
according to the Nyquist criterion (SR = SSIx2). The red dashed and black solid lines depict the 1:1
line and regression line, respectively. ***p-value < 0.001.
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Fig. 3-9. Relationships between the airborne SIF7603rLp quantified from the sub-nanometer imager
(used here as the reference SIF) and narrow-band imager (5.8-nm FWHM) for validation plots
corresponding to both sites (a,b). Relationships between the airborne SIF760-3rp quantified from the
sub-nanometer imager and the airborne 1-nm SR SIF760 estimated by the linear model (c,d) and SVR
model (e,f) from the 5.8-nm SR narrow-band airborne spectra for both sites. The reference 1-nm SR
SIF760-3rLD Was obtained by convolving the sub-nanometer resolution spectra to 1-nm FWHM. The

red dashed and black solid lines depict the 1:1 line and regression line, respectively. ***p-value <
0.001.

The relationships between the reference airborne 1-nm SR SIF760-3rLp and SIF760 estimated
from multiple SRs are shown in Fig. 3-11. Significant correlations were found at all SRs (R* = 0.88—

0.97, p<0.001). At coarser resolutions, SIF760-3rLp estimates tended to be larger than reference values
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(RMSE = 0.36-3.88 mW/m?*/nm/sr; Fig. 3-11a-e) and relationships to reference SIF760-3rLD Were less
linear. This non-linearity and higher absolute SIF760-3rLD values at coarser SRs can be attributed to
sensor noise from the convolution of the 0.065-nm FWHM irradiance spectra from the ground-based
HR-2000 spectrometer and the <0.2-nm FWHM radiance spectra from the sub-nanometer airborne
imager. The process of Gaussian convolution influences the absolute SIF760-3rLp levels at narrow-
band resolution and produces higher SIF760-3rLp levels in absolute units. Both linear (Fig. 3-11a-¢)
and SVR models reduced this bias (reduction in slope). The SVR model (nRMSE = 8.19-43.30%;
Fig. 3-11k—o) outperformed the linear model (nRMSE = 8.30-68.64%; Fig. 3-11f—j) for all SRs.
However, the estimated SIF760 from both models was higher than the reference SIF760-3rLp, €xcept for

2-nm SR, for which the points were close to the 1:1 line.
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Fig. 3-10. Plot-scale maps of reference SIF760-3rLp from sub-nanometer imager (a) and estimated
SIF760 from narrow-band imager (b) using the SVR model at 1-nm FWHM for Site 1. The reference
I-nm SR SIF760-3rLp Was obtained by convolving the sub-nanometer resolution spectra to 1-nm
FWHM.
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3022  Fig. 3-11. Relationships between the airborne SIF760-3r.p quantified from the sub-nanometer imager
3023 by convolving to different SRs against SIF760-3rLp convolved to 1-nm FWHM (used here as the
3024 reference SIF) for validation plots corresponding to Site 1 (a-e). Relationships between the reference
3025  SIF760-3rLp and the airborne SIF7¢0 at 1-nm FWHM estimated by the linear model (f-j) and SVR model
3026  (k-o) from the sub-nanometer airborne spectra convolved to different SRs. The red dashed and black
3027  solid lines depict the 1:1 line and regression line, respectively. ***p-value < 0.001.
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3.4 Discussion

In precision agriculture, plant phenotyping studies, and other high-throughput applications,
the complexity and operational costs of sub-nanometer airborne imaging sensors make alternative
sensors appealing, if SIF can be measured accurately. Previous theoretical work using the SCOPE
model has evaluated the most critical parameters affecting SIF via global sensitivity analysis (Verrelst
etal.,2015). Our study builds on this theoretical work by considering how narrow-band sensors affect
SIF retrieval and by validating theoretical estimates against high-resolution experimental field data.
Extending recent work by Belwalkar et al. (2022), we evaluated a novel modelling methodology to
accurately quantify SIF76 at 1-nm FWHM from narrow-band-resolution imaging sensors using

SCOPE RTM and support vector regression.

Our results revealed that the SIF760 quantified from broader SR hyperspectral imager (5.8-nm
FWHM) aligned well (R?> = 0.91-0.93; RMSE = 0.118-0.273 mW/m?/nm/sr) with SIF760-3rLD
quantified at 1-nm FWHM from the sub-nanometer airborne imager flown in tandem and used for
validation across two plant phenotyping experimental sites showing nutrient stress variability. Our
findings support the operational viability of using standard, commercially accessible, low-cost
narrow-band hyperspectral imaging sensors to obtain accurate absolute SIF7¢0 levels in phenotyping

trials of homogeneous and uniform canopies.

In our approach, we found that site-specific parameters were required to generate SCOPE-
simulated datasets that could characterise the correct structural and ambient conditions of the fields
under study for the accurate estimation of SIF760 (Table 3-4). This highlights the need for precise
parametrization of SCOPE, or any other physically-based model, to generate site-specific training
datasets reflecting the actual field conditions observed at a given study site. The global SCOPE-
sensitivity study (Verrelst et al., 2015) has identified a set of SCOPE model inputs related to leaf,
canopy, soil, and micrometeorology as having outsized impact on SIF quantification. Future research

could consider ways to account for all these inputs at scale to enable generalized applications for any
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location and set of ambient conditions. However, the development of such a training dataset is still in
progress owing to the extensive effort and computational cost required in the parametrization of the

SCOPE model to meet a wide range of field and ambient conditions.

Interpreting SIF760 from narrow-band sensors requires careful consideration of the scaling
approach employed to account for sensor spectral specification. The combination of incoming
photosynthetically active radiation (PAR) and SIF7¢0-based indices such as near-infrared reflectance
of vegetation (NIRv) (Badgley et al., 2017) and the Fluorescence Correction Vegetation Index (FCVI)
(Yang et al., 2020), denoted NIRVP and FCVIP, respectively, has recently been demonstrated to
provide reliable structural proxies for photosynthesis and SIF (Dechant et al., 2022). These indices
could be used to scale SIF760 through a less complex approach than that proposed in this paper. Using
SCOPE-simulated datasets, we examined whether these indices could provide more accurate SIF760
estimates than the proposed approach. SIF7¢ estimates obtained from the two indices were found to
be inferior to those obtained using the proposed linear and SVR models, suggesting that SIF760-3rLD
calculated with 5.8-nm FWHM radiance is preferable to FCVIP and NIRvVP as a predictor variable

(detailed in Appendix B).

The effect of sensor noise on the SIF76 scaling methodology proposed in this study is
important to consider in an operational context, as SIF is strongly influenced by sensor SNR. Because
the SVR model was trained on noise-free simulated SCOPE spectra in this study, this method is not
recommended for pixel-based analysis using sensors with low SNR levels. Instead, analyses should
be limited to an object-based scale in which pixels are averaged across individual areas. Future
research could characterise the effect of sensor noise on the simulated training dataset, thereby
enabling the estimation of SIF760 at the pixel scale and the generation of SIF760 pixel-level maps from
narrow-band imaging sensors with low SNR. In the current study, the SIF760 scaling approach was
designed and validated for phenotyping experiments involving nutrient variability as part of nitrogen

application treatments, causing nutrient deficiency and stress. Future research will focus on
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evaluating the proposed scaling approach for canopies subjected to other abiotic stresses, such as
under water limiting conditions, and under biotic-induced stress (see Zarco-Tejada et al. (2021) for
the significance of SIF for separating biotic from abiotic stress). Such research will be critical for
understanding the potential of narrow-band imaging sensors for estimating accurate SIF760 across a

wide range of ecosystems.

Although a recent version of the SCOPE model (version 2.0) accounts for the vertical
heterogeneity of the canopy biophysical and biochemical properties, it retains the assumption of
homogeneity in the horizontal direction (Yang ef al., 2021). Thus, our methods based on SCOPE
parametrization are most applicable in experimental fields with homogeneous crop canopies. It will
also be important to further investigate the scaling approach described in this study over complex and
heterogeneous canopies, such as forests, and row-structured and grid-based crop canopies such as
vineyards and tree orchards. Such efforts will require the extraction of crown spectra from pure
vegetation pixels from very-high-spatial-resolution hyperspectral imagery to minimize the impact of
the structural heterogeneity. Alternatively, three-dimensional canopy RTMs capable of directly
simulating canopies with tree crowns, such as FluorFLIGHT (Hernandez-Clemente et al., 2017), the
Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao et al., 2016), and the Discrete
Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2017), could be
employed. Such studies would be relevant for future missions such as the FLuorescence EXplorer
(FLEX) (Drusch et al., 2017) when attempting to monitor the fluorescence emission in forests and

heterogeneous crops.

In summary, the need for an accurate estimation of SIF is critical from an operational
perspective, and dedicated sub-nanometer hyperspectral imagers may not be readily available in many
agronomic settings. Consequently, it is essential to consider the adoption of suitable airborne imaging
sensors, as well as the development of methods based on physically-based models for correctly

interpreting SIF from the selected sensor, particularly in cases where sensors have coarser spectral
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resolutions (greater than 1-nm FWHM). The selection of appropriate physically-based models based

on the type of ecosystem under consideration, especially for complex heterogeneous canopies, and

the proper modelling approach are additional factors to consider. Accounting for the aforementioned

considerations will facilitate the use of accurately quantified SIF from imaging sensors onboard

piloted and unmanned airborne platforms for the advancement of research on photosynthesis,

physiological assessment and pre-visual stress detection.

3.5

Conclusions

The overestimated SIF760 levels obtained from narrow-band resolution imaging sensors can
be scaled to the appropriate absolute SIF76 levels quantified from sub-nanometer
(FWHM<Inm) resolution imagers. A modelling framework integrating SCOPE RTM and a
machine learning method was proposed and validated.

Following extensive testing with SCOPE simulations covering a wide range of spectral
characteristics, it was determined that the best results could be achieved with an SVR model
employing SIF760-3rLp at narrow-band resolution and the SCOPE-derived leaf biochemical
and structural traits (Ca+b, LAI, and LIDF,) as predictor variables.

The robustness of the proposed approach was demonstrated by the high degree of agreement
between the estimated SIF760 at 1-nm FWHM and the reference SIF760-3rLp quantified from
the airborne sub-nanometer resolution imager at two experimental sites with different crop
types, irrigation regimes, and weather conditions.

The findings of this study pave the way for the widespread adoption of hyperspectral imagers
with FWHM > 1 nm for operational applications of SIF requiring retrievals of chlorophyll

fluorescence emission in absolute physical units.
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Abstract

With the advent of sub-nanometer resolution imaging sensors capable of characterising
narrow absorption features, Fraunhofer lines (FLs) can now potentially be identified. This opens up
a promising avenue for the exploration of these FLs for vegetation monitoring and precision
agriculture applications. This study is an exploratory analysis which seeks to examine the prospects
of using individual FL depths derived from sub-nanometer airborne hyperspectral imagery for a
potential improvement of leaf nitrogen (N) estimates and to detect biotic-induced stress in infected
vegetation. A sub-nanometer hyperspectral imager with <0.2 nm full-width at half-maximum
(FWHM) resolution and a narrow-band hyperspectral imager with 5.8-nm FWHM were flown in
tandem over a rainfed winter wheat field for leaf N estimation (Experiment-1) and over a commercial
olive orchard infected with the fungus Verticillium dahliae (Vd) for biotic stress detection
(Experiment-2). For Experiment-1, wheat plots were fertilised with variable concentrations of N to
produce nutrient variability. To estimate leaf N concentration, regression models using Gaussian
process regression (GPR) were built with different permutations of solar-induced chlorophyll
fluorescence (SIF), leaf chlorophyll content (Ca+v), and depths of individual FLs. For Experiment-2,
the sensitivity of different FLs and the two oxygen absorption features (O2-A and O»-B) for detecting
disease progression at different stages was examined by comparing the absorption depths of
asymptomatic trees with those of symptomatic trees with increasing levels of disease severity. The
results for Experiment-1 showed that GPR models incorporating the depth of distinct Fraunhofer lines
as predictor variables performed better than the benchmark model constructed using Ca+ and far-red
SIF (SIF760) alone. The best leaf N-estimation model built with FLs from the red and far-red regions
(Ca+b, FL682.97 nm, FL757.002 nm) yielded an R? of 0.71, outperforming the standard approach used in
previous works (Catb, SIF760) (R* = 0.56). The results of the biotic-induced stress detection
experiment demonstrated that the depth of individual FLs could distinguish between different stages
of disease progression. FLe71.73 nm and FL7s6.90 nm, as well as oxygen-based O2-B (686.86 nm), were
found to be responsive throughout all stages of disease progression. Further FLs were found to be
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sensitive as disease severity progressed. These results from both experiments suggest that narrow FLs
derived from sub-nanometer resolution imagery are useful for vegetation stress detection, providing

the foundation for future research into the utility of FLs for plant physiology monitoring applications.

Keywords: Solar-induced chlorophyll fluorescence, SIF, airborne, hyperspectral, leaf nitrogen, sub-

nanometer, Fraunhofer lines, stress detection, Verticillium dahlia

4.1 Introduction

The frequency of extreme weather events and large fluctuations in precipitation and
temperature patterns are predicted to rise globally because of climate change (Cogato et al., 2019;
Schmidhuber et al., 2007; Zampieri et al., 2017). Consequently, biotic and/or abiotic vegetation
stresses will become more common and, without prompt and efficient management responses, may
result in declines in global food production (Atzberger, 2013). It is thus increasingly crucial to detect
signs of vegetation stress as early as possible, before any permanent damage is done, so that corrective

agrotechnical actions can be taken to prevent production loss (Berger et al., 2022).

Olive trees are infected by more than a hundred different pests and pathogens which cause
decreased yields and higher overall production costs (Fernandez-Escobar et al., 2013). The soil-borne
fungus Verticillium dahliae (Vd) Kleb, responsible for Verticillium wilt (VW), is one of the major
threats to olive production around the world (Jiménez-Diaz et al., 2012). In more than 400 plant
species, this pathogen colonises the vascular system, restricting water flow and leading to water stress

(Pegg and Brady, 2002).

Traditional methods for detecting Vd infections have relied on in situ observations followed
by laboratory studies. While these methods are effective, they are also too laborious, costly, and time-

consuming to be practical for widespread monitoring (Gramaje et al., 2013). Hence, developing
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robust methods for large-scale plant scanning is crucial for detecting detrimental crop pathogens and
ensuring they are eradicated quickly or contained in an effective manner (Stokstad, 2015). In this
context, multi-sensor strategies involving airborne narrow-band hyperspectral and thermal imaging
sensors have demonstrated encouraging findings for the early detection of infectious plant diseases
at large scales (Calderon et al., 2015; 2013; Camino ef al., 2021; Poblete et al., 2023; 2021; Zarco-

Tejada et al., 2021; 2018).

Thermal imagery-derived normalised canopy temperature, Crop Water Stress Index (CWSI),
and narrow-band hyperspectral imagery-derived SIF760 and vegetation indices related to structure,
xanthophyll, chlorophyll, carotenoid, and disease indices have been demonstrated to be the best
indicators for detecting symptoms in Vd-infected olive trees (Calderdn ef al., 2015; 2013). Zarco-
Tejada et al. (2018) used a machine learning framework that considered pigment, structural,
fluorescence, and thermal-based plant traits (PSFTs) to detect infection caused by the bacterium
Xylella fastidiosa (Xf) in olive trees with an overall accuracy of over 80%. In a subsequent study,
Poblete et al. (2021) demonstrated that hyperspectral and thermal traits can be used to detect and
differentiate symptoms in olive trees caused by Vd and Xf infection from a mixed (Xf+ Vd) dataset,
which can exhibit visually similar symptoms, using a three-stage machine learning-based approach.
In a subsequent study, Zarco-Tejada et al. (2021) demonstrated the capability of hyperspectral and
thermal traits to distinguish between symptoms caused by Vd and Xf infections and those caused by
water stress, thereby reducing the uncertainty of Xf detections across different hosts to less than 6%.
In all the aforementioned studies, narrow-band SIF760 was found to be one of the most important
indicators for detecting biotic stress. Due to the limitations regarding the spectral characteristics of
narrow-band hyperspectral imagers used in these studies, only the capability of SIF76o for biotic stress
detection was investigated. It would be beneficial to explore other spectral regions within the SIF

emission regions, as those regions may provide valuable insights for pre-visual stress detection.
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Nitrogen (N) is a macronutrient which plays a crucial role in plant development, yield and
grain quality, and which is often the dominant limiting factor in photosynthesis (Evans, 1989;
Lemaire et al., 2008). Accurate field-wide assessments of leaf N concentration (N%) enable more
targeted use of N-fertilisers, thereby mitigating the environmental effects of N-overfertilisation while
improving crop yields. Standard destructive sampling for leaf N determination relies on the laboratory
analysis of leaf tissue using methods such as Kjeldahl digestion and Dumas combustion. Although
accurate, these techniques are time-consuming and expensive for monitoring the leaf N status of large
areas. In recent decades, the use of remote sensing technologies has increased, particularly through
hyperspectral imagery, for mapping the spatial and temporal variations of crop leaf N concentration

at paddock-scale (Berger et al., 2020).

Recent studies using narrow-band airborne and spaceborne hyperspectral imagers have
demonstrated that accurate determination of leaf N concentration can be achieved by combining the
radiative transfer model (RTM)-derived leaf biochemical constituents with SIF7¢0 acquired from
high-resolution airborne hyperspectral imagery (Camino et al., 2018; Y. Wang et al., 2022a; 2022b).
Even though these studies have demonstrated improved leaf N retrievals when including SIF7¢, the
potential of other spectral features within the 650-800 nm SIF emission region to characterise both
PSI and PSII photosystems has not yet been explored. Moreover, the potential information extracted
from the red spectral region, i.e. SIF quantified at the O2-B absorption band centred around 687 nm
(SIFeg7), and from the depth of solar Fraunhofer lines (FLs), which are absorption lines in the solar
spectrum, could provide valuable insights for improved characterisation of photosynthesis and leaf N

variability.

The depth of FLs within particular spectral windows devoid of significant terrestrial
absorptions (‘pure FLs’ hereafter) is practically unaffected by atmospheric scattering, making SIF
retrieval at individual pure FLs in these spectral windows nearly insensitive to atmospheric effects

(Frankenberg et al., 2011; 2018; Guanter et al., 2013). With the recently developed sub-nanometer
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resolution airborne hyperspectral imagers, it is now possible to investigate the potential of these
narrow pure FLs within the SIF emission region. However, the quantification of in-filling at
individual FLs and its conversion to SIF would require accurate characterisation of the shape of
individual FLs in the reference solar irradiance spectrum. This irradiance spectrum either needs to be
acquired from the sub-nanometer imager using ground-based reference targets (Wang et al., 2022) or
from the explicit modelling of the instrument spectral response function (Guanter et al., 2012; Sun et
al., 2018). However, reference irradiance spectrum may not be always available, preventing the
quantification of SIF at individual FLs. Since the depths of solar FLs decrease in the presence of SIF
(Plascyk and Gabriel, 1975), we hypothesise that, under identical solar conditions, the depth of the
distinct pure FLs detected from different vegetation targets within the sub-nanometer airborne
hyperspectral imagery can be used as a proxy for SIF, i.e. by assessing the FL depth in relative terms

within a single image.

The first part of this study aims to assess the relative contribution of the SIF emitted by each
of the two photosystems (PSI and PSII) in explaining leaf N variability across the field. SIF760, SIFes7
and the depth of distinct pure solar FLs inside PSI and PSII emission regions derived from sub-
nanometer airborne hyperspectral imagery were all evaluated. The second part of this study
investigates the sensitivity of distinct pure FLs derived from sub-nanometer imagery to differentiate
between asymptomatic and symptomatic trees with different stages of disease progression caused by
Vd infections, comparing their performance against standard methods of SIF quantification using

oxygen absorption features.
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4.2 Materials and methods

4.2.1 Study sites and field data collection

The first experiment regarding the estimation of leaf nitrogen concentration was conducted at
a phenotyping trial site located in Yarrawonga, northeast Victoria, Australia (36°02'55"S,
145°59'02"E) in 2019. According to the Koppen climate classification system, the climate at the field
trial location is humid subtropical (Cfa), with average temperature of 16.3 °C and average annual
rainfall of 559 mm. The plot sizes were 26 m? (2 m x 13 m) and were planted in May 2019. Several
cultivated varieties of rainfed wheat were grown under varying physiological conditions and N

fertilisation treatments. More details about the study site can be found in Belwalkar ez al. (2022a).

The second experiment, regarding biotic stress detection, was carried out at a Vd infected
commercial olive orchard located in Boundary Bend, northwest Victoria, Australia (34°44'23"S,
143°1027"E) in 2023 (Fig. 4-1a). The region has a Mediterranean climate, with warm dry summers
and cool wet winters, and average annual rainfall of 335.8 mm. In December 2022, visual disease
severity (SEV) assessments were performed using a scale of 0-3 depending on the proportion of the
tree canopy displaying symptoms of the disease. Of the 111 olive trees examined, 32 were deemed to
be asymptomatic (SEV = 0), whereas 79 showed signs of disease and were reported as symptomatic

(21 trees, SEV = 1; 26 trees, SEV = 2; and 32 trees, SEV = 3; Fig. 4-1c¢).
4.2.2 Airborne campaigns using hyperspectral imagers

Airborne campaigns operated by the HyperSens Laboratory at the University of Melbourne's
Airborne Remote Sensing Facility corresponding to Experiment-1 and Experiment-2 under clear sky
conditions were conducted on 9 October 2019 and 31 January 2023, respectively. For both
experiments, a sub-nanometer hyperspectral imager (FWHM <0.2 nm; 670—780 nm) and a narrow-
band hyperspectral imager (FWHM = 5.8 nm; 400—-1000 nm) (Headwall Photonics Inc., Fitchburg,

MA, USA) were used to acquire airborne hyperspectral imagery with spatial resolutions of 20 cm and
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3738 30 cm for Experiment-1 and Experiment-2, respectively (Fig. 4-2). Further details regarding the

3739  spectral configuration of the two hyperspectral imagers can be found in Belwalkar et al. (2022a).

698500 6990

Disease severity/
®

3740

3741  Fig. 4-1. (a) Overview of Experiment-2 at the Boundary Bend study site. (b) Zoomed-in view of tree
3742  crowns identified in the scene within the green rectangle in (a). (c) Spatial distribution of visual
3743  assessments of Verticillium dahliae (Vd) infection.

3744

136



3745

3746
3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

100 - — Experiment-1 EJf.ptern'ler1t-2ﬂ‘nlilr wm,%,fﬁ
5 sl M ‘ -
E L
& Al oy
% 60 y 'I'W‘mi A -
3 AP
g 40 f w\"’ ’T‘N
E N M-.,w 4 r’w‘wﬂﬁ

_wa_uwp’wWﬂwv
%TD ?60 730 TéD 780

Wavelength (nm)

Fig. 4-2. Sample radiance spectra acquired from the sub-nanometer imaging sensor at the two
experimental sites.

For Experiment-1, ground spectral measurements were taken concurrently with the flight,
using a CC-3 VIS-NIR cosine corrector diffuser attached to an HR-2000 spectrometer (Ocean Insight,
Dunedin, FL, USA) with a 0.065-nm FWHM, for continuous measurement of the total incident
radiation (Fig. 4-3a). Pure vegetation pixels were extracted within individual wheat plots using a
thresholding approach based on the normalised difference vegetation index (NDVI), and mean
radiance spectra corresponding to the sub-nanometer imager and mean reflectance spectra from the
narrow-band hyperspectral imager were retrieved. Belwalkar et al. (2022a) provide a full description
of the airborne campaign, data preprocessing, and image correction. In addition, the total leaf N
concentration (%) was determined in the laboratory using the Kjeldahl method of destructive testing,

with samples consisting of 10—15 leaves randomly selected per plot.

For Experiment-2, four different sets of sub-nanometer resolution radiance imagery covering
the entire orchard were acquired within a 40-minute time interval. The total incoming irradiance
concurrent with the airborne campaign was calculated using the radiance reflected from a white
reference panel (Labsphere Inc., North Sutton, NH, USA) measured by the HR-2000 spectrometer
(Fig. 4-3b). Sunlit tree-crown pixels corresponding to individual trees were extracted from each sub-
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nanometer radiance imagery using a two-stage approach. In the first stage, automatic object-based
segmentation of the sub-nanometer radiance imagery was carried out using Fiji (Abramoff et al.,
2004) combining Sauvola's binarisation (Sauvola and Pietikdinen, 2000) methods on the near-infrared
band (mean of 774-776 nm), and Phansalkar's thresholding method (Phansalkar ez al., 2011) on the
Normalised Difference Red Edge (NDRE) index. This stage allowed for the separation of pure sunlit
tree-crowns from the soil background, as well as within-crown shadows. In the second stage,
following Zarco-Tejada et al. (2018), a binary watershed-based segmentation using the Euclidean
distance map was applied to individual objects obtained in the first stage to extract sunlit tree-crown
pixels corresponding to individual trees. Using NDVI and the near-infrared band (800 nm), we
followed a similar procedure to extract sunlit tree-crown pixels for individual trees from narrow-band
radiance imagery. The sunlit tree-crown pixels were then used to obtain mean radiance spectra for

each individual tree from both sub-nanometer and narrow-band imagery.
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Fig. 4-3. Irradiance spectra obtained from ground-based HR-2000 spectrometer concurrently with the
acquisition of sub-nanometer imagery for (a) Experiment-1 and (b) Experiment-2.
4.2.3 Methodology for estimating leaf nitrogen concentration

The irradiance spectra obtained from the HR-2000 spectrometer were convolved to the
spectral characteristics of the sub-nanometer imager using Gaussian convolution (Fig. 4-4). Using

this convolved irradiance and the mean radiance derived from each plot, SIF760 and red SIF (SIFeg7)

138



3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796
3797
3798

3799

3800

3801

3802

3803

were quantified using the in-filling approach, employing the Fraunhofer Line Depth (FLD) principle
with a total of three spectral bands (3FLD) (Maier et al., 2003). Furthermore, we identified 17 pure
FLs across the 670—780 nm spectral range of the sub-nanometer imager, excluding regions with
significant water vapour and oxygen absorption (Albert et al., 2023). The FLs identified were divided
into two groups according to their positions in the spectral region. Five of these FLs were located in
the red region of the spectrum (670685 nm, named ‘red FLs’ here), while the remaining twelve were
located in the far-red region (740-759 nm and 770-780 nm, named first and second ‘far-red FLs’
groups, respectively). The exact locations of the band centres corresponding to all FLs, and the O>-A
and O2-B oxygen absorption bands are illustrated in Fig. 4-5. The positions of band centres
corresponding to all FLs, and oxygen absorption features were computed as the mode of band centres

corresponding to all the plots used for the analysis.
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Fig. 4-4. Comparison of original and convolved HR-2000 derived irradiance spectra for Experiment-
1: (a) in the entire 680-773 nm spectral region; (b) in the O2-A absorption region; (c) in the O>-B
absorption region (c).

Unlike the O-A absorption feature, the detected FLs are quite narrow, so the assumption of
a Gaussian spectral response function for convolving the solar irradiance spectra corresponding to
individual FLs is not valid. Hence, instead of SIF, we computed the depth of individual FLs and used

FL depth as a proxy for SIF. For each FL, the absolute depth in radiance units was computed as the
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difference between the radiance at the left shoulder wavelength and the wavelength at the bottom of
the FL. The left shoulder wavelength was selected by searching for the wavelength providing highest

radiance within 1 nm of the bottom wavelength (Fig. 4-6).
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Fig. 4-5. Locations of the band centres corresponding to red FLs (a), group-1 far-red FLs (b), and
group-2 far-red FLs (c) shown in dashed black, and oxygen absorption lines (a, b) shown in dashed
red identified from the average radiance spectra of one of the plots imaged by the sub-nanometer

hyperspectral imager.

140



3813

3814
3815
3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

) 66
L(’-ﬂm}
65T

[=2] =2} =7}
S [ &

Radiance (mW/m2/nm/sr
[+7]

) 60
.L()‘,f”)

50 : : 1

750.2 750.4 750.6 750.8 ?5‘] ?5'1_.2 791.4
Wavelength (nm) #onr Lin

Fig. 4-6. Example of selection of left shoulder wavelength (40./) and the wavelength at the bottom of
the FL (4in) for calculating absolute FL depth corresponding to FL751 224 nm using sub-nanometer mean
radiance extracted from one of the plots in Experiment-1.

Regression models based on GPR were trained to empirically estimate leaf N concentration
using Ca+p, SIF760, SIFss7 and the depth of distinct FLs as a pool of potential predictor variables. Ca+,
SIF760, and depth corresponding to a single FL were used to initially train GPR models. Subsequently,
GPR models were trained on leaf N estimation using Ca+b, and one FL depth each from the red and
far-red FL groups to further examine the effect of using FL depths corresponding to both the red and
far-red FL groups as predictor variables. The GPR models were trained in parallel (MATLAB parallel
computing toolbox) and the hyperparameters were optimised by incorporating Bayesian optimisation
into the leave-one-out cross-validation (LOOCYV). The performance evaluation of the trained GPR
models was carried out using the coefficient of determination (R?), root-mean-square error (RMSE),
and normalised root-mean-square error (nRMSE). To limit random errors, for each possible
combination of predictor variables, five GPR models were independently trained, and the average

estimate was then used to determine R?, RMSE, and nRMSE.

Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) (Van der Tol et al., 2009)

RTM-based hybrid inversion with random forest regression (Belwalkar et al., 2022b) was used to
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estimate Ca+, from the mean reflectance spectra obtained from the narrow-band hyperspectral imager
in the 400-800 nm spectral region. To determine if the leaf N estimates could be further improved by
including SIF emission regions other than the O»-A absorption band, we used the GPR model
developed with Ca+ and SIF760 as a benchmark. Then we compared against this benchmark by adding
the depth of distinct solar FLs into the models. Since PSII largely influences the red spectral region,
the contributions of SIF¢g7 and red FLs are attributed only to PSIIL. In contrast, the contributions of

SIF760 and far-red FLs are attributed to both photosystems.

4.2.4 Methodology for assessing the sensitivity of distinct FLs for biotic stress detection

Similarly to the identification of distinct FLs in Experiment-1, 16 FLs (5 in the red region and
11 in the far-red region) were identified across the 670—776 nm spectral range in Experiment-2. Due
to recalibration of the sub-nanometer hyperspectral imager in 2020, the band centres for experiment-
2's 16 FLs and Experiment-1's 17 FLs were not identical. The absolute depths for all red and far-red
FLs were computed using the methodology described in section 4.2.3. In addition, absolute depths
corresponding to both O2-A and O»-B absorption features were computed, and the wavelengths with
the maximum radiance in the ranges of 755—-759 nm for O»-A and 685—686 nm for O»-B were chosen
as the left shoulder wavelengths. The absorption depths were further normalised using a proxy for
photosynthetically absorbed radiation (PAR), which was calculated by spectrally integrating the HR-
2000 derived irradiance spectra within the 680—700 nm spectral region corresponding to the
acquisition time of each radiance image. This normalisation was required to account for the effect of
incoming solar radiation on the absolute depth of the absorption features derived from the four sub-

nanometer resolution radiance images at varying acquisition times.

The sensitivity of different absorption features (16 FLs and 2 oxygen features) for detecting
Vd-induced symptoms was investigated for three different stages of disease progression — early,
intermediate, and all. The trees were categorised as either asymptomatic (SEV = 0) or symptomatic

(SEV > 1) if they exhibited one of three rising disease progression levels. Trees with early-stage
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disease were those rated as symptomatic with a SEV of 1; trees in the intermediate stage were those
rated as symptomatic with a SEV of 1-2; and trees in all stages were those rated as symptomatic with
a SEV of 1-3. To determine if disease symptoms affect absorption features differently over the course
of disease, the depths of absorption features of asymptomatic trees were compared to those of
symptomatic trees with three levels of severity — SEV =0 vs. SEV = 1; SEV =0 vs. SEV <2; and
SEV = 0 vs. SEV >1 — using an Analysis of Variance (ANOVA) statistical test. This analysis of
absorption feature depths enabled the assessment of the capability of different absorption features to
detect disease progression in relation to the intensity of pathogen-induced stress. Additionally, using
the narrow-band radiance imagery, absolute depths corresponding to the O2-A absorption features
were computed to examine the sensitivity of narrow-band derived O»-A depth for detecting different
stages of disease progression and to compare its performance against sub-nanometer derived O»-A

band depth.

4.3 Results and discussion

4.3.1 Leaf N estimation using depths of distinct FLs

GPR models trained with a single FL as one of the three predictor variables produced a total
of 17 distinct GPR models (5 models for the red FL group and 12 models for the far-red FL group).
Among the red FL group, the performance of the GPR model with FL1 depth was comparable with
the benchmark (R? = 0.56; RMSE = 0.229%; nRMSE = 5.89%; Fig. 4-7a and 4-7b), whereas the
performance of the other four red FL depths did not improve prediction. Among the far-red FLs, the
model that included FL13 depth showed the highest performance, outperforming the benchmark (R?

=0.63; RMSE = 0.21%; nRMSE = 5.41%; Fig. 4-7c¢).

Since FL13 performed the best among all red and far-red FLs, for the next set of GPR models

with two FLs and Ca+b, as predictors, we selected FLi3 among the far-red FLs and independently
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evaluated all five red FLs as potential GPR model predictors. When compared to the benchmark
model, the GPR model trained with FLs (682.97 nm) and FL3 (757.002 nm) had substantially
improved leaf N estimation (R? = 0.71; RMSE = 0.188%; nRMSE = 4.84%; Fig. 4-7d), with more
data points closer to the 1:1 line. The model's performance did not improve further after including

more FLs from either of the two FL groups.
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Fig. 4-7. Measured vs estimated mean leaf N concentration using the best GPR models as a function
of: (a) Ca+b and SIF760; (b) Ca+b, SIF760, and best-performing red FL; (c) Ca+b, SIF760, and best-
performing far-red FL; (d) Ca+b and best-performing combination of one red and one far-red FL. The
dashed line indicates the 1:1 line. The error bars indicate the standard deviation based on five runs of
the GPR model. The GPR model as a function of Ca+ and SIF760 was used as a benchmark. ***p-
value <0.05.

Furthermore, we found that the model's performance decreased when it included SIFeg7 with
any combination of predictor variables. This result could possibly be attributed to the high collinearity

observed between Ca+b and SIFsg7. Our results suggest that FL depths corresponding to 757.002 nm
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(FL13) and 682.97 nm (FLs), in conjunction with Cap estimated by RTM simulations, provided
improved estimation of leaf N concentration. These findings of the current exploratory study for the
investigation of individual FLs provide a foundation for future research into the use of FLs identified

in sub-nanometer imagery for plant phenotyping and precision agriculture applications.

4.3.2 Sensitivity of distinct FLs for biotic stress detection

Firstly, the evaluation of the distribution of relative absorption feature depths corresponding
to red FLs, the two far-red FLs groups, and the two oxygen absorption features was carried out using
Dunnett’s test, comparing them with the asymptomatic trees for early, intermediate, and all stages of
disease progression (Figs. C1-C4, Appendix C). The sensitivity of different absorption features
identified from sub-nanometer hyperspectral imagery to detect different stages of disease progression
caused by Vd infection is shown in Fig. 4-8. Only FL¢71.73 nm, FL756.90 nm, and the O2-B (686.86 nm)
absorption feature were found to be sensitive for detecting the early stage of disease progression. The
same three absorption features, along with one additional FL in the red spectral region (FL676.74 nm),
were found to be sensitive for both the intermediate and all stages of disease progression. With
increasing stress severity levels, the O2-A (760.48 nm) feature, an additional red FL (FL6g0.95 nm) and
three additional far-red FLs (FL74622 nm, FL751.12 nm, FL77428 nm) could detect all stages of disease
progression. Among the 16 FLs investigated, nine FLs including two red FLs (FL672.65 nm, FL682.87 nm)
and seven far-red FLs (FL744.58 nm, FL749.54 nm, FL752.30 nm, FL753.12 nm, FL755.52 nm, FL772.80 nm, FL774.90
am) Were found to be incapable of distinguishing asymptomatic trees from symptomatic trees at any
level of infection (Fig. 4-8). The O2-A band depth quantified from the narrow-band imagery could
only detect all stages of disease progression showing agreement with the trend observed for the O»-

A band depth quantified from the sub-nanometer imagery.
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Fig. 4-8. Sensitivity of different absorption features (FLs, O2-A and O:-B band depths) identified
from sub-nanometer hyperspectral imagery to distinguish asymptomatic trees from symptomatic trees
with varying stages of disease progression caused by Vd infection. The comparison between
symptomatic and asymptomatic trees was conducted using a one-way ANOVA test with a
significance level of 0.05.

Some individual FLs detected from sub-nanometer imagery were found to be sensitive to Vd-
induced symptoms at varying stages of disease progression, suggesting that further research into their
potential is needed. Specifically, FLs71.73 nm and FL756.90 nm Were able to distinguish asymptomatic
trees from those in the early stage of disease progression, which is crucial to allow producers to make
decisions for successful containment of disease. Although it would be most beneficial to quantify SIF

levels corresponding to these distinct FLs to better understand biotic stress-induced dynamics, our
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exploratory analysis using FL depth is the first step towards realising the potential of these narrow

Fraunhofer lines for biotic and abiotic stress detection.

4.4

Conclusions

The quantification of the depth of narrow Fraunhofer lines in the SIF emission region
improves leaf N estimations and the detection of biotic stress in vegetation.

With RMSE:s of less than 0.19%, the best results for leaf N estimation were achieved by the
regression model constructed using Ca+p, red FL closest to O2-B band (682.97 nm), and far-
red FL closest to O2-A band (757.002 nm).

It was found that the red FL furthest from the O>-B band (671.73 nm) and one far-red FL
closest to the O2-A band (756.90 nm), along with the O>-B absorption feature, could detect
the three stages of disease progression (early, intermediate, and all). As expected, more FLs
were found to be sensitive as levels of disease progression increased.

The results of this exploratory investigation of FL’s potential provides a foundation for future
research on the use of FLs identified from sub-nanometer imagery in the context of precision
agriculture, plant physiology monitoring, and for the detection of biotic and abiotic vegetation

stress.
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Chapter 5

Conclusions

The results of each study have been thoroughly and specifically discussed in the preceding
chapters. This chapter's objective is to provide a concise overview of the research, contextualise the

findings, emphasise their applications and limitations, and suggest future research directions.

5.1 Salient features and research outcomes

The research undertaken for this thesis establishes the utility of SIF760 quantified by airborne
narrow-band imaging sensors for plant physiology monitoring, plant phenotyping, and precision
agriculture applications. It also outlines the potential for these purposes of using narrow solar
Fraunhofer lines detected from sub-nanometer resolution imaging sensors. Some of the salient

features of this research are:

e Airborne SIF76 derived from a narrow-band imaging sensor (5.8-nm FWHM) exhibited
strong correlations with both ground-based and airborne sub-nanometer resolution SIF7e0
estimates, demonstrating its utility for stress-detection applications requiring the
quantification of relative SIF7¢ differences.

e A modelling framework integrating SCOPE RTM and machine learning methods was
proposed to scale the overestimated narrow-band SIF7¢0 levels to appropriate absolute levels,
which allow the use of narrow-band quantified SIF7¢ for applications that require SIF760
estimates in absolute physical units.

e The inclusion of the depth quantity calculated at the Fraunhofer lines derived from sub-

nanometer imagery (<0.2 nm FWHM) around the two oxygen absorption bands improved the
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estimates of leaf nitrogen concentration as compared to standard methods based on SIF760 and
chlorophyll content.

e The depth of individual Fraunhofer lines derived from sub-nanometer imagery demonstrated
sensitivity to the different stages of disease progression caused by Verticillium dahlia
infections. This finding lays the framework for further investigation into the utility of FLs for

plant physiology monitoring applications.

5.2 General conclusions

Hyperspectral imaging of SIF can be used as a proxy for vegetation stress and an indicator of
crop photosynthetic activity for large-scale plant phenotyping and stress detection applications. The
extremely low strength of the SIF signal (1-2% of the total incoming solar radiation) necessitates the
use of sub-nanometer resolution sensors for its accurate estimation. Improving the spectral resolution
of imaging sensors onboard airborne platforms has been a focus of technological development over
the past decade, leading to the development of sub-nanometer resolution imaging sensors for accurate
SIF quantification. However, their high cost and operational complexity prevent their widespread use

in the context of precision agriculture, plant physiology monitoring and stress detection applications.

Although a few theoretical studies have evaluated the impact of the spectral configuration of
sensors on SIF accuracy, the literature lacks studies focusing on such assessments in practical
applications with airborne hyperspectral imaging sensors. This thesis examined the applicability of
cost-effective narrow-band imaging sensors as an alternative to sub-nanometer imaging sensors for
the precise estimation of SIF760 in physical units and absolute levels. In particular, the application of
a modelling methodology integrating RTM and machine learning algorithms resulted in improved
SIF760 estimates derived from a narrow-band imaging sensor in absolute physical units. Improved leaf

nitrogen estimates and the ability to differentiate between disease stages when detecting biotic-
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induced stress in infected vegetation were additional outcomes of an exploratory study designed to

evaluate the prospects of using individual FL depths derived from the sub-nanometer imaging sensor.

First, a dataset from three plant phenotyping experiments integrating narrow-band
hyperspectral imagery, sub-nanometer imagery, field observations, and radiative transfer modelling
demonstrated the reliability of narrow-band imagery for detecting relative SIF7¢0 variability induced
by variable nitrogen fertiliser application across a field. Strong significant correlations were found
between SIF760 quantified by both narrow-band and sub-nanometer imaging sensors flown in tandem,
demonstrating consistency across experimental wheat and maize phenotyping sites and airborne
campaigns conducted at different times and flight altitudes, and in different years. Although strongly
correlated with both ground-based and sub-nanometer resolution SIF760 estimates, the narrow-band
imaging sensor yielded larger SIF760 estimates than the typical range of 0-3 mW/m?/nm/sr expected
from healthy vegetation. The effect of spectral configuration on SIF accuracy was observed in the
elevated SIF760 values obtained from the narrow-band imagery. This limits the applicability of
narrow-band SIF7e0 levels to only those investigations that require relative assessment of SIF
variability in the field. However, if the overestimated narrow-band SIF7¢ estimates are readjusted to
appropriate absolute physical levels via modelling, narrow-band imaging sensor’s low cost and light
weight could enable the operational collection of high-spatial resolution fluorescence data for diverse
applications. The next part of this thesis was therefore focused on improving the absolute SIF760 levels
derived from narrow-band imaging sensors using modelling methods based on the integration of

machine learning and radiative transfer models.

Since plant pigments and canopy structure greatly affect TOC SIF, there was a need for
research into the role that leaf-biochemical and structural traits might play in improving narrow-band
SIF760 estimations. Of the seven-leaf biochemical and structural traits evaluated using simulated data
corresponding to resolutions ranging from 2—6 nm FWHM, Ca+b, LAIL and LIDF, showed the highest

sensitivity for estimating SIF760 at 1-nm FWHM. Incorporating leaf biochemical and structural traits
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could be a useful strategy for enhancing the interpretation of relative SIF760 levels derived from
narrow-band imaging sensors, as evidenced by validations performed for the two airborne datasets
with simultaneously acquired sub-nanometer resolution airborne data with a RMSE of 4.5-16%.
Extensive validations conducted for SCOPE-simulated datasets corresponding to other resolutions
ranging from 2—6 nm demonstrated consistency with the results obtained from the narrow-band

imaging sensor, illustrating the robustness of the modelling approach.

The concluding work for this thesis focused on an exploratory analysis of the prospects of
individual Fraunhofer lines derived from sub-nanometer imagery, which had not been explored to
date and could potentially yield important insights into the physiological status of vegetation. It was
demonstrated that incorporating the depths of two distinct FLs proximal to oxygen absorption features
improved leaf nitrogen estimations, as compared to recently proposed approaches involving RTM-
derived leaf-biochemical constituents and SIF760. Furthermore, the activation of separate FLs in the
red and far-red spectral range was found to be correlated with three stages of disease progression due
to Verticilium dahliae infections. The O»-B feature, one red FL, and one far-red FL were all found to
be sensitive for the early, intermediate, and all stages. As the level of disease stress increased from
early to intermediate and from intermediate to all, more FLs became sensitive for differentiating

symptomatic from asymptomatic trees.

The first results from this exploratory research suggest that it would be worthwhile to dive
deeper into the potential benefits of these narrow FLs, in particular by quantifying the SIF associated
with specific FLs, in order to better understand and manage the factors that influence plant health.
This is particularly important in the context of stress detection and plant physiology monitoring
applications using airborne imaging sensors. In such studies, SIF760 has typically been used as a proxy
for stress. However, the need for accurate characterisation of atmospheric effects in the O2-A
absorption region introduces uncertainties into the retrieval of SIF760. Since pure FLs are insensitive

to atmospheric effects, quantifying SIF at individual FLs provides an appealing alternative to the use
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of SIF7¢0. However, it remains challenging to achieve the high SNR needed for accurate SIF

estimation with FLD-based approaches at such narrow absorption features.

5.3

Limitations

This research has the following limitations:

Narrow-band SIF760 estimates were compared to ground-based and airborne sub-nanometer
SIF760 estimates at plant phenotyping experimental sites growing wheat and maize under
nutritional variability. Further research is needed to evaluate the robustness of narrow-band
SIF760 quantification in complex heterogenous canopies due to the potentially increased
effects of shadows and within-crown multiple scattering processes.

Due to the use of SCOPE RTM, which is a one-dimensional model, the narrow-band SIF760
scaling methodology cannot be readily applied to complex heterogeneous canopies. Further
validation is required for complex canopies using 3-D modelling approaches.

Narrow-band SIF760 estimates were scaled using a modelling strategy that involved creating
RTM-based simulated training datasets that reflected the actual field conditions observed at a
given study site. As a result, the trained model is not transferable to new environments due to
a lack of generalisation capabilities.

The need for accurate characterisation of the shape of distinct narrow Fraunhofer line
absorption features in the solar irradiance spectrum prevents the quantification of SIF
corresponding to distinct narrow Fraunhofer lines, so this research used the depth of the

Fraunhofer lines as proxy for SIF.
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5.4

Future directions

The following are some possible avenues for additional research:

To better understand how canopy structure, plant physiological status, and meteorological
factors influence narrow-band SIF76 levels and its relationship with sub-nanometer SIF70
estimates, large-scale airborne campaigns could be conducted over a variety of canopies under
varying physiological and environmental conditions. Such assessment is particularly
important for canopies impacted by biotic- and abiotic-induced stress.

More research is needed to identify a methodology based on three-dimensional RTMs to
properly characterise heterogenous canopies that will enable understanding of the impact of
the clumping effect in the context of scaling narrow-band SIF760 estimates.

Developing a novel retrieval method targeting SIF estimation at distinct Fraunhofer lines
found to be sensitive for biotic and abiotic stress detection.

Evaluating the capability of SIF derived from distinct Fraunhofer lines detected from sub-
nanometer resolution airborne imagery to distinguish between pre-visual biotic- and abiotic-

induced stress.
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Appendices

Appendix A: Supplementary Material for Chapter-2

Table A-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy
Observation, Photochemistry and Energy fluxes (SCOPE) model.

Parameter Definition Range/Value  Unit
FLUSPECT
Cab Leaf chlorophyll concentration 10-50 ng-cm>
Cea Leaf carotenoid concentration (2C5?1;/142)5 ng-em?
Cdm Leaf dry matter content 0.001-0.05 g-cm™?
Cw Equivalent water thickness in leaves 0.001-0.05 cm
Cs Leaf senescence parameters 0 -
Cant Anthocyanin content 1 pg-cm—2
N Leaf structure parameter 1.2-1.8 -
p(thermal) Broadband leaf thermal reflectance 0.01 -
7(thermal) Broadband leaf thermal transmittance 0.01 -
Leaf biochemical
o
Vemo Maximum carboxylation capacity 20-120 fl mol'ms
m Ball-Berry stomatal parameter (slope) 8 -
Bo Ball-Berry stomatal parameter (intercept) 0.01 -
Type Photochemical pathway 0(C3) -
Kv Extinction coefficient for vertical Vemax — 0.64
profile )
Rdparam Parameter for dark respiration 0.015 -
Tyear Mean annual temperature 15 °C
B Fraction of photons partitioned to PSII 0.51 -
kNPQs Rate constant of sustained thermal 0 5!
dissipation
qlLs Fraction of functional reaction centers 1 -
stress factor Stress factor to reduce Vemax 1 -
Fluorescence
fqe Fluorescence quantum yield efficiency at 0.001-0.015 )
photosystem level
Soil
spectrum Type of soil reflectance spectrum 1 (type 1) -
1SS Soil resistance for evaporation from the 500 sm!
pore space
IS¢ Broadband soil thermal reflectance 0.06 -
cs Specific heat capacity of the soil 1180 J kg 'K
Ps Specific mass of the soil 1800 kg'm™
As Heat conductivity of the soil 1.55 Jm K
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SMC Volumetric soil moisture content in the 25 -

root zone
BSMBrightness BSM model parameter for soil brightness 0.5 -
BSMlat BSM model parameter 'lat' 25 -
BSMlon BSM model parameter 'long' 45 -
Canopy
LAI Leaf area index 2-6 m?m 2
hc Vegetation height 2 m
LIDF, Leaf inglination parameter for the mean 1.0 ]

leaf zenith angle
LIDFy Bimodality of the leaf angle distribution 0 -
leafwidth Leaf width 0.1 m
Meteorological

Measurement height of meteorological
z 5 m

data

Broadband incoming shortwave radiation
Rin (0.4-2.5 um) 600-1000 W-m™
Ta Air temperature 19.2 °C
Rli Broadband incoming longwave radiation 300 W-m™
P Air pressure 1002.8" hPa
ea Atmospheric vapor pressure 15 hPa
u Wind speed at height z 2 m-s!
Ca Atmospheric CO; concentration 410 ppm
(0N Atmospheric O2 concentration 209 per mile
Angles
tts Solar zenith angle 3542 deg.
tto Observation zenith angle 0 deg.
\ Azimuthal difference between solarand 0 deg

observation angle

*Meteorological variables retrieved from portable weather station during the airborne campaign

158



4249

4250
4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263
4264
4265
4266
4267

Appendix B: Supplementary Material for Chapter-3

We assessed the feasibility of using narrow-band derived FCVIP and NIRvVP as predictor
variables for estimating SIF760 at 1-nm FWHM using SCOPE-simulated datasets. The method
consisted of building two linear models with NIRvP and FCVIP as the predictor variables to estimate
SIF760 at I-nm FWHM from 5.8-nm FWHM data (denoted Simulated Dataset-3site 1 and Simulated
Dataset-3site 2 in this study). The performance of these linear models was then validated using another
independent dataset (Simulated Dataset-4) for both sites and then compared with that of the linear
models built using SIF760-3rp at 5.8-nm FWHM as the predictor variable. PAR was estimated by
spectrally integrating irradiance spectra at 1-nm FWHM from 400-700 nm to replicate field
conditions. In this assessment, the linear model built using SIF7603rp at 5.8-nm FWHM
outperformed the two linear models based on NIRvP and FCVIP (Fig. B-1). The differences in model
performance may be attributed to the stronger correlation between 1-nm FWHM SIF760-3rp and 5.8-

nm FWHM SIF760-3rLp than NIRvP and FCVIP calculated at 5.8-nm FWHM (Fig. B-2).
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Fig. B-1. Relationships between the SIF760-3rLp at the default 1-nm FWHM simulated by SCOPE
(used here as the reference SIF) and the SIF760 estimated at 1-nm FWHM by the linear model using
NIRVP (a, b), FCVIP (c, d) and SIF760-3rLp at 5.8-nm FWHM (e, f) as the predictor for SCOPE-
simulated test datasets corresponding to Site 1 and Site 2. The red dashed and black solid lines depict
the 1:1 line and regression line, respectively. ***p-value < 0.001.
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4268  Fig. B-2. Relationships between SCOPE-derived SIF760-3rLp at 1-nm and NIRVP (a, d), FCVIP (b, e)
4269  and SCOPE-derived SIF760-3rLD (c, f) at 5.8-nm for simulated training datasets corresponding to Site
4270 1 and Site 2.

4271

Table B-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy
Observation, Photochemistry and Energy fluxes (SCOPE) model.

Parameter Definition Range/Value Unit
Site 1 Site 2

FLUSPECT

Catp Leaf chlorophyll concentration  10-70 40-80 pg-cm2

Cea Leaf carotenoid concentration ~ 1-20 1-20 pg-cm2

Cdm Leaf dry matter content 0.001-0.05  0-0.001 g-cm™

C Equivalent water thickness in ~ 0.001-0.05  0.001-0.05 cm

v leaves

Cs Leaf senescence parameters 0 0 -

Cant Anthocyanin content 0-8 0-8 pg-cm2

N Leaf structure parameter 1-1.5 1-2.5 -

p(thermal) Broadband leaf thermal 001 0.01 i
reflectance

(thermal) Broadband leaf thermal 001 0.01 i
transmittance

Leaf

biochemical
Maximum carboxylation 30-110 40-250 pmol-m

Vcmax . 1
capacity S

m Ball-Berry stomatal parameter 8 8
(slope) i

Bo Ball-Berry stomatal parameter  0.01 0.01

(intercept)
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Type Photochemical pathway 0 0 -
Ky Extinction coefficient for 0.64 0.64
vertical Vemax profile )
Rdparam Parameter for dark respiration ~ 0.015 0.015 -
Tyear Mean annual temperature 15 15 °C
B Fraction of photons partitioned 0.51 0.51 -
to PSII
kNPQs Rate constant of sustained 0 0 s!
thermal dissipation
qlLs Fraction of functional reaction 1 1 -
centers
stress factor Stress factor to reduce Vemax 1 1 -
Fluorescence
Fluorescence quantum yield
fqe efficiency at pclllotosyste};n level 0.01 0.01 i
Soil
spectrum Type of soil reflectance 1 1
spectrum i
ISs Soil resistance for evaporation 500 500 s'm!
from the pore space
ISt Broadband soil thermal 0.06 0.06 -
reflectance
cs Specific heat capacity of the 1180 1180 J kg K
soil
Ps Specific mass of the soil 1800 1800 kg'm™
As Heat conductivity of the soil 1.55 1.55 Jm K
SMC Volumetric soil moisture 25 25 -
content in the root zone
BSMBrightness BSM model parameter for soil 0.5 0.5 -
brightness
BSMlat BSM model parameter 'lat' 25 25 -
BSMlon BSM model parameter 'long' 45 45 -
Canopy
LAI Leaf area index 0.5-5 2-6 m?-m 2
hc Vegetation height 1.2 1.2 m
LIDF Leaf inclination parameter for — —1-1 -1-1 i
‘ the mean leaf zenith angle
LIDF, B.imgdal'ity of the leaf angle 0 0 i
distribution
leafwidth Leaf width 0.07 0.07 m
Meteorological
Measurement height of
z . 5 5 m
meteorological data
Broadband incoming
Rin shortwave radiation (0.4-2.5 700 900 W-m 2

pm)
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Ta Air temperature 19.2 25.3" °C

Rli Broadband incoming longwave 300 300 W-m™
radiation

P Air pressure 1002.8° 1003.6" hPa

ea Atmospheric vapor pressure 15 15 hPa

u Wind speed at height z 2 2 m-s!

Ca Atmospheric CO> 380 380 ppm
concentration

Oa Atmospheric O> concentration 209 209 per mile

Angles

tts Solar zenith angle 35.42 34.93 deg.

tto Observation zenith angle 0 0 deg.

U Azimuthal difference between 0 0 deg

solar and observation angle

*Meteorological variables retrieved from portable weather station during the airborne campaign
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4275  Fig. C-1. Histograms for the assessment of the relationship between asymptomatic trees and those in
4276  the three stages of disease progression for the absorption feature depths corresponding to red FLs.
4277  Asterisks indicate significant differences from the asymptomatic trees according to Dunnett's test at

4278 . <0.05.
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4280  Fig. C-2. Histograms for the assessment of the relationship between asymptomatic trees and those in
4281  the three stages of disease progression for the absorption feature depths corresponding to first far-red
4282  FLs group. Asterisks indicate significant differences from the asymptomatic trees according to
4283  Dunnett's test at a < 0.05.
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Fig. C-3. Histograms for the assessment of the relationship between asymptomatic trees and those in
the three stages of disease progression for the absorption feature depths corresponding to second far-
red FLs group.
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Appendix D: Journal paper for Chapter-2

This appendix contains the author-accepted manuscript of the Remote Sensing of

Environment paper used for Chapter 2. Below is the bibliographic detail.

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-
Tejada, P.J., 2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer
airborne hyperspectral imagers flown in tandem: modelling and validation in the
context of plant phenotyping. Remote Sens. Environ. 273, 112986.

https://doi.org/10.1016/j.rse.2022.112986.
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Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne
hyperspectral imagers flown in tandem: Modelling and validation in the
context of plant phenotyping
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ARTICLE INFO ABSTRACT

Editor: Jing M. Chen Solar-induced chlorophyll fluorescence (SIF) can be used as an indicator of crop photosynthetic activity and a
proxy for vegetation stress in plant phenotyping and precision agriculture applications. SIF quantification is
Keywords: sensitive to the spectral resolution (SR), and its accurate retrieval requires sensors with sub-nanometer resolu-
Solar-induced chlorophyl fluorescence tions. However, for accurate SIF quantification from imaging sensors onboard airborne platforms, sub-nanometer
lsi'gnt E—— imagers are costly and more difficult to operate than the commonly available narrow-band imagers (i.e., 4- to 6-
Stress detection nm bandwidths), which can also be installed on drones and lightweight aircraft. Although a few theoretical and
Airborme experimental studies have evaluated narrow-band spectra for SIF quantification, there is a lack of research
Hyperspectral focused on comparing the effects of the SR on SIF from airborne hyperspectral imagers in practical applications.
Hyperspectral imager This study investigates the effects of SR and sensor altitude on SIF accuracy, comparing SIF quantified at the 760-
nm O»-A band (SIFy6p) from two hyperspectral imagers with different spectral configurations (full width at half-
maximum resolutions of 0.1-0.2 nm and 5.8 nm) flown in tandem on board an aircraft. SIF;4q retrievals were
compared from two different wheat and maize phenotyping trials grown under different nitrogen fertilizer
application rates over the 2019-2021 growing seasons. SIF;¢p from the two sensors were correlated ®R? =
0.77-0.9, p < 0.01), with the narrow-band imager producing larger SIF7o estimates than the sub-nanometer
imager (root mean square error (RMSE) 3.28-4.69 mW/m?%/nm/sr). Ground-level SIF7¢0 showed strong re-
lationships with both sub-nanometer (RZ = 0.90, p < 0.001, RMSE = 0.07 mW/mZ/nm/sr] and narrow-band (R2
= 0.88, p < 0.001, RMSE = 3.26 mW,/m?/nm/st) airborne retrievals. Simulation-based assessments of SIF7g for
SRs ranging from 1 to 5.8 nm using the SCOPE model were consistent with experimental results showing sig-
nificant relationships among SIFygo quantified at different SRs. Predictive algorithms of leaf nitrogen concen-
tration using SIF7so from either the narrow-band or sub-nanometer sensor yielded similar performance,
supporting the use of narrow-band resolution imagery for assessing the spatial variability of SIF in plant phe-
notyping, vegetation stress detection and precision agriculture contexts.

1. Introduction flux originates from photosystem II (PSII) and has a spectral range of
650-800 nm with one peak at 685 nm (SIFsgs) and a second peak at 740
Solar radiation reaching a plant canopy cannot be fully utilized for nm (SIF740). The SIF energy dissipation pathway directly competes with

photosynthesis, and the resulting excess radiation is partly re-emitted as the PSII photochemistry and heat dissipation (Krause and Weis, 1984;
a weak electromagnetic signal termed solar-induced chlorophyll fluo- Lichtenthaler and Rinderle, 1988). Thus, SIF is a proxy for plant
rescence (SIF) (see a full review on SIF in Mohammed et al., 2019). SIF photosynthetic rate, which may be related to plant stress levels (Genty

* Corresponding author at: Department of Infrastructure Engineering, Faculty of Engineering and Information Technology (FEIT), University of Melbourne,
Melbourne, Victoria, Australia.
E-mail address: pablo.zarco@unimelb.edu.au (P.J. Zarco-Tejada).

https://doi.org/10.1016/j.rse.2022.112986
Received 20 August 2021; Received in revised form 28 February 2022; Accepted 2 March 2022
0034-4257/© 2022 Elsevier Inc. All rights reserved.
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et al., 1989; Weis and Berry, 1987; Zarco-Tejada et al., 2016). However,
SIF emitted from the canopy constitutes a small fraction (1-5%) of the
total reflected solar radiation, making it difficult to quantify (Meroni
et al., 2009).

Specialized algorithms are necessary for decoupling SIF from total
reflected solar radiation. These algorithms are classified based on
whether SIF is retrieved within specific absorption bands or over the
whole SIF emission region (Mohammed et al., 2019), Most methods
utilize discrete solar or telluric absorption lines of the solar spectrum,
where the contribution of SIF to the total radiance signal is relatively
higher. The terrestrial oxygen absorption bands (O»-A and O,-B) centred
around 760 nm and 687 nm, respectively, are broader and deeper than
the other absorption features and, therefore, commonly used for quan-
tifying SIF (Meroni et al., 2009). The fluorescence in-filling method,
based on the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975),
depends on a few discrete spectral bands inside and outside the oxygen
absorption features and is the most widely used method for SIF retrieval
due to its ease of implementation. By contrast, spectral fitting methods
(SFMs) model the fluorescence and reflectance spectrum by spectral
curve fitting, utilizing all the contiguous wavelengths within a fixed
spectral window mostly centred around oxygen absorption bands
(Meroni et al., 2010; Meroni and Colombo, 2006).

The earliest attempt to incorporate leaf fluorescence into a radiative
transfer model (RTM) was the Fluorescence-Reflectance-Transmittance
(FRT) model (Zarco-Tejada et al., 2000a, 2000b). This attempt led to the
development of the leaf model FluorMODleaf (Pedros et al., 2008) and a
canopy-level RTM named FluorSAIL (Verhoef, 2004). These models
prompted the development of an integrated, vertical, one-dimensional,
leaf-canopy fluorescence-temperature-photosynthesis model named
Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE)
(Van der Tol et al., 2009), which is widely used to assess the linkage
between fluorescence-reflectance and photosynthesis (Camino et al.,
2019; Celesti et al., 2018; Verhoef et al., 2018). SCOPE simulates top-of-
canopy radiance, chlorophyll fluorescence and reflectance for homoge-
nous canopies. It has been used to quantify the effects of the leaf
biochemistry, maximum carboxylation rate (Vemax), and canopy
structure on apparent reflectance, including fluorescence effects.
Recently, three-dimensional canopy RTMs integrating fluorescence have
been developed, such as FluorFLIGHT (Hernandez-Clemente et al.,
2017), the Fluorescence model with Weight Photon Spread (FluorWPS)
(Zhao et al., 2016), and the Discrete Anisotropic Radiative Transfer
(DART) model (Gastellu-Etchegorry et al., 2017). These models simulate
scattering within the canopy components and thus account for canopy
structural heterogeneity.

The earliest experiments involving ground-based sub-nanometer-
resolution spectrometers quantified SIF at both leaf (Meroni and
Colombo, 2006) and canopy levels (Pérez-Priego et al., 2005), detecting
herbicide- and water-induced stress, respectively. The development of
sub-nanometer-resolution hyperspectral sensors in the past decade has
enabled SIF retrievals from airborne platforms. Sensors include the
Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg
etal., 2018), the high-resolution airborne imaging spectrometer HyPlant
(Rascher et al., 2015), and the Hyperspec High-Resolution Chlorophyll
Fluorescence Sensor (Headwall Photonics, Fitchburg, MA, USA) (Bel-
walkar et al., 2021) with spectral resolutions (SRs) of 0.1, 0.28 and
0.1-0.2 nm, respectively. Sub-nanometer-resolution SIF observations at
the global scale are available from satellite sensors such as OCO-2
(Orbiting Carbon Observatory-2) (Frankenberg et al., 2014), GOSAT
(Greenhouse gases Observing SATellite) (Guanter et al., 2012), and
TROPOMI (TROPOspheric Monitoring Instrument) (Guanter et al.,
2015) with spatial resolutions of 1.29 km x 2.25 km, 50 km x 50 km and
5.5 km x 3.5 km, respectively. The European Space Agency is also set to
launch the FLuorescence EXplorer (FLEX) (Drusch et al., 2017) in 2024,
a mission solely dedicated to measuring SIF at a high SR of 0.3 nm across
the globe at 300-m spatial resolution.

As a result of these technical and methodological advances, SIF is
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frequently used for monitoring crop photosynthesis. SIF is measured
from a variety of platforms, including ground-based spectrometers
(Cogliati et al., 2015; Daumard et al., 2012; Grossmann et al., 2018; Kim
et al., 2021; Li et al., 2020; Pérez-Priego et al., 2005; Rossini et al.,
2016), drones and manned aircraft (Bandopadhyay et al., 2019; Damm
et al., 2014, 2015; Siegmann et al., 2019; Tagliabue et al., 2020; Zarco-
Tejada et al., 2012, 2013a) and satellite platforms (Frankenberg et al.,
2014; Guanter et al.,, 2012, 2015). SIF observations at intermediate
scales obtained from airborne platforms are important for i) improving
the interpretation of SIF at coarser spatial resolutions and thus bridging
the gap between field and global scales, ii) disentangling the contribu-
tion of different scene components in aggregated pixels (Hornero et al.,
2021a; Zarco-Tejada et al., 2013b), and iii) evaluating the sensitivity of
SIF for describing plant physiological processes at high spatial resolu-
tions (e.g., as an early indicator of biotic and abiotic stress in precision
agriculture and forestry).

Modelling studies (Damm et al., 2011; Liu et al., 2015) of FLD-based
SIF retrieval have shown that sensor SR and the signal-to-noise ratio
(SNR) (collectively accounting for more than 80% of the retrieval error)
strongly affect SIF measurement accuracy. Several studies have
demonstrated the potential of sub-nanometer airborne hyperspectral
imagers for precise SIF quantification in a variety of contexts, including
estimating gross primary productivity (GPP) (Wieneke et al., 2016),
validating satellite-based SIF retrievals (Sun et al., 2017), assessing the
physiological effects of age on loblolly pine forest (Colombo et al., 2018)
and quantifying functional diversity of terrestrial ecosystems (Tagliabue
et al., 2020). Although sub-nanometer-resolution imaging sensors are
recommended for obtaining absolute measurements of SIF, relative SIF
measurements from narrow-band sensors are useful in a variety of set-
tings, including water stress detection (Camino et al., 2018a; Panigada
et al., 2014; Zarco-Tejada et al.,, 2012), plant phenotyping (Camino
et al., 2019, 2018b; Gonzalez-Dugo et al., 2015), biotic-induced stress
detection (Calderon et al.,, 2015, 2013; Hernandez-Clemente et al.,
2017; Hornero et al., 2021b; Poblete et al., 2020, 2021; Zarco-Tejada
et al., 2018) and linking canopy-level SIF76y and GPP using sensors such
as the Airborne Prism Experiment (APEX) with a full width at half-
maximum resolution (FWHM) of 5.7 nm over perennial grassland,
cropland and mixed temperate forest (Damm et al., 2015). In these
studies, the reported higher levels of the quantified SIF7¢o were consis-
tent with other modelling and experimental studies (Julitta et al., 2016;
Nakashima et al., 2021; Nichol et al., 2019; Siif et al., 2016).

The impacts of SR on FLD-based SIF retrievals have been previously
assessed with models (Damm et al., 2011; Dechant et al.,, 2017;
Hernandez-Clemente et al., 2017; Liu et al., 2015) and experiments
(Julitta et al., 2016). Julitta et al. (2016) compared SIF retrievals at both
the O2-A and O3-B bands using four portable field spectrometers with
different spectral sampling intervals (SSIs), SRs, and SNRs simulta-
neously measuring the same vegetation target. SIF estimates at the Oz-A
band from three of the four spectrometers with sub-nanometer resolu-
tion (FWHM <1 nm) were consistent with the expected ranges from
ground-based SIF observations over lawn grassland reported by Rossini
et al. (2016). In contrast, the average SIF from the coarsest-resolution
spectrometer (FWHM = 5.5 nm) was six times higher than the values
obtained from the other three spectrometers, reaching values above 4
mW/m?/nm/sr. Our study expands on this previous work by assessing
the effects of SR and flight altitude on airborne-based SIF retrievals,
which are commonly used in precision agriculture applications. This is,
to the best of our knowledge, the first study to do so. Aspects regarding
the effects of the atmosphere, flight altitude, and performance of im-
aging sensors on SIF retrievals need to be studied in addition to the
theoretical work and the assessments carried out using close-range
spectrometer data.

The need for sub-nanometer imagers for the accurate quantification
of SIF brings important challenges in precision agriculture, plant phe-
notyping and biosecurity applications due to their complexity, higher
cost and increased operational difficulties. Standard narrow-band
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hyperspectral imagers (i.e., with SR in the range of 4-6 nm FWHM) are
an appealing alternative that are increasingly being used with drones
and lightweight aircraft to collect high-spatial-resolution imagery
(Aasen et al., 2018). However, it is unclear how useful SIF7go estimates
from these imagers are for plant physiological assessments when
compared to ground-based or sub-nanometer airborne SIF7¢, estimates.
Such assessment is critical, particularly when the relative quantification
of fluorescence across the landscape could be readily used to detect bi-
otic- and abiotic-induced vegetation stress. Empirical work is needed to
evaluate whether SIF7go retrievals from these narrow-band hyper-
spectral imagers are sufficient for detecting physiological stress in crops,
relative to measurements from sub-nanometer instruments.
Monitoring crop nutrient status is one potentially important appli-
cation of airborne SIF7¢o quantification (Camino et al., 2018b; Wang
et al., 2021). Accurate assessments of plant nutrition across a field can
help to ensure crop yields by allowing for more efficient use of N-
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fertilizers. Excessive N fertilizer application can result in the loss of
reactive forms of N (ammonia, nitrate, and nitrogen oxides) to the
environment, causing water pollution, climate forcing, and biodiversity
loss. As a result, assessing crop response to N-fertilizers is critical for
ensuring resource efficiency while optimizing yields.

In this study, we compared SIF;¢o measured from a 5.8-nm FWHM
narrow-band hyperspectral imager to a sub-nanometer hyperspectral
imager of 0.1- to 0.2-nm FWHM flown in tandem at multiple sensor
altitudes and across two wheat and maize trials grown under different
nitrogen application rates and for three growing seasons. We validated
airborne measures with sub-nanometer ground retrievals and evaluated
results against SCOPE simulations. We then assessed the performance of
sub-nanometer and narrow-band SIF7e estimates for predicting nitro-
gen concentration using machine learning models. Our findings provide
important insights that support the operational use of standard,
commercially available narrow-band hyperspectral imagers for
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Fig. 1. Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the corresponding irradiance (E) spectra for experimental plots
subjected to different nitrogen treatments at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band hyperspectral imager
(d) and sub-nanometer hyperspectral imager (e) corresponding to the same vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager
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quantifying relative SIF levels. This is especially important for precision
agriculture and plant physiology monitoring purposes that require ac-
curate assessment of the SIF variability within and across experimental
fields.

2. Materials and methods
2.1. Study sites and field data collection

Experiments took place at two field trial sites in Victoria, Australia,
in 2019, 2020 and 2021 (Fig. 1a and b). Experiment 1 was conducted
over 15 plots of dryland wheat (cv. Scepter) (Yang et al., 2018) located
at site 1 in Yarrawonga (36°02'55"S, 145°59'02"E). Plots were 26 m? 2
m x 13 m) and planted in May 2019. Plots were grown with five
different rates of nitrogen fertilizer in the form of urea (46% N) (T1: 0 kg
N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg N/
ha). The surrounding areas were planted with several varieties of wheat
grown under various physiological conditions and nitrogen fertilizer
application rates (Fig. 1a).

Experiments 2 and 3 were conducted in 2020 and 2021 at site 2 in
Peechelba East (36°10'04"S, 146°16'23"E) over irrigated maize plots.
Experiment 2 consisted of 8 plots and experiment 3 consisted of 20 plots.
Plots were sown in October 2019 and October 2020 with two urea
application rates for experiment 2 (T1: 207 kg N/ha, T2: 387 kg N/ha)
and three for experiment 3 (T1: 0 kg N/ha, T2: 180 kg N/ha, T3: 315 kg
N/ha). The plot sizes were 15 m? (3 m x 5 m) for experiment 2 and 36
m? (3 m x 12 m) for experiment 3. The climate at both field trial sites is
humid subtropical (Cfa) according to the Koppen classification. Atsite 1,
the mean annual temperature is 16.3 °C and average rainfall is 559 mm.
At site 2, the mean annual temperature is 15.2 °C and average rainfall is
642 mm.

For experiment-3, field measurements of top-of-canopy (TOC) spec-
tral radiances for the computation of ground-based SIF;¢o were collected
from all 20 plots on 20 January 2021 at midday from 11:45 to 16:30
solar time under clear sky conditions. TOC spectral radiance was
measured using a 0.065-nm FWHM HR-2000 spectrometer (Ocean
Insight, Dunedin, FL, USA). The total incoming irradiance was calcu-
lated using the radiance reflected from a white reference panel (Lab-
sphere Inc., North Sutton, NH, USA) measured by the spectrometer. The
spectral measurements were acquired from the nadir using bare optical
fiber, with an angular field of view of 25°, mounted on a tripod of 2.5 m
height. The vegetation targets were measured at a distance of 1 m above
the canopy. Radiance measurements were recorded at five different lo-
cations within each plot and then averaged to reduce noise. Incident
solar radiation was measured prior to radiance measurements, and
radiance/irradiance measurements were completed within 3 min for
each plot. Examples of radiance and irradiance measurements are shown
in Fig. le, with visible differences in spectra associated with applied
nitrogen rate.

A summary of the physiological measurements performed at each
experiment is shown in Table 1. The growth stages during the airborne
campaigns corresponded to i) grain filling (milking stage) for wheat in
2019, ii) dough stage for maize in 2020, and iii) silking stage for maize in
2021. A portable weather station (model WXT510, Vaisala, Helsinki,
Finland) was installed in the field for concurrent readings of meteoro-
logical conditions at the time of hyperspectral image acquisitions. For
experiments 1 and 3, leaf measurements were carried out under field
conditions, coincident with the airborne campaigns. For experiment 2,
leaf measurements were performed 4 days prior to the airborne
campaign under similar meteorological conditions (Table 1). Measure-
ments were made on 10-15 leaves per plot for experiment 1 and 5-10
leaves per plot for experiments 2 and 3. Measurements were made on
leaves at the top of the canopy at noon, under clear skies. Chlorophyll
content, nitrogen balance index (NBI), flavonols and anthocyanin con-
tent were measured using a handheld Dualex leaf-clip sensor (FORCE-A,
Orsay, France). Steady-state leaf fluorescence yield (Ft) was measured
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using the FluorPen FP110-LM (Photon Systems Instruments, Drasov,
Czech Republic) handheld fluorometer. Random samples of 10-15
leaves per plot for experiment 1 and 4-5 leaves per plot for experiments
2 and 3 from the top of the canopy were selected for determining the
total N concentration (%) destructively in the laboratory, following the
Kjeldahl method (Kjeldahl, 1883). To verify the impacts of fertilization
rate on leaf physiological traits, measurements were evaluated using
analysis of variance (ANOVA) followed by a Dunnett's test at « < 0.05. In
addition to the 15 plots at site 1, leaf-level measurements from more
than 100 adjacent plots within the entire experimental field (dashed
yellow box in Fig. 1a) were also conducted to investigate the intra-field
variability.

2.2. Airborne hyperspectral campaigns

Airborne campaigns were conducted in 2019, 2020 and 2021
(Table 2), flying with the aircraft's heading on the solar plane. Two
hyperspectral imagers were installed in tandem on a Cessna-172 aircraft
operated by the HyperSens Laboratory, University of Melbourne's
Airborne Remote Sensing Facility. The first hyperspectral imager was a
Hyperspec VNIR E-Series model (Headwall Photonics, Fitchburg, MA,
USA) and the second hyperspectral imager was a high-resolution
Hyperspec Fluorescence sensor (Headwall Photonics, Fitchburg, MA,
USA). The spectral characteristics of both hyperspectral imagers are
shown in Table 3. Both hyperspectral imagers were radiometrically
calibrated in the laboratory using an integrating sphere (Labsphere
XTH2000C, Labsphere Inc., North Sutton, NH, USA); as a result, co-
efficients derived from the constant light source at four different illu-
mination levels were calculated for the flight configuration of each
imager. The atmospheric correction for the VNIR imager was performed
using the SMARTS model (Gueymard, 2001), with the aerosol optical
depth measured at 550 nm with a Microtops II sunphotometer (Solar
LIGHT Co., Philadelphia, PA, USA), allowing the conversion of the
radiance values to reflectance. Image orthorectification was conducted
with PARGE (ReSe Applications Schlapfer, Wil, Switzerland) using in-
puts from the solidly installed and synchronized inertial measurement
units (VN-300-VectorNav Technologies LLC, Dallas, TX, USA for VNIR
imager and Trimble APX-15 UAV, Applanix Corporation, Ontario,
Canada for Fluorescence imager); more information on data pre-
processing and image correction can be found in Zarco-Tejada et al.
(2016).

Differences in radiance spectra corresponding to vegetation and soil
targets acquired from the two hyperspectral imagers were visually
identified as a function of spectral configurations (Fig. 1d and e). Above-
ground-level (AGL) altitudes and spatial resolutions of the imagery are
detailed in Table 2. The spatial resolution of imagery from both airborne
hyperspectral imagers was sufficient for identification of individual
plots over the experimental sites (Fig. 2). Differences in fertilization rate
could be visually discriminated based on radiance spectra acquired from
both the hyperspectral imagers over the entire spectral range (Fig. 3a
and ¢) and in the O,-A absorption feature (Fig. 3b and d) for experiment
1.

To investigate the impact of sensor altitude on the inter-comparison
of airborne-quantified SIF7¢p from both hyperspectral imagers and with
ground-based SIF;¢g, images from both hyperspectral imagers were ac-
quired at three different altitudes (900 m, 1200 m and 2200 m) for
experiment 3 (Table 2). All images were acquired within a 20-min time
interval to minimize the impact of sun-sensor geometry and changes in
atmospheric conditions on the SIF¢ retrievals. The effect of sensor
height on Og-A absorption feature depth and SIFy¢( quantifications was
assessed using ANOVA followed by Tukey's honest significant difference
(HSD) post-hoc test at a < 0.05. Fig. 4 shows the impact of the sensor
altitude on the radiance spectra for the sub-nanometer imager. The
radiance imagery acquired from the sub-nanometer imager at three
different altitudes over the entire field (Fig. 4a, b and ¢) and over the
experimental plots (Fig. 4d, e and f) differed in the 670- to 780-nm
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Table 1
Field measurements and meteorological conditions coincident with flights.

Field trial site Experiment # Treatment (kg N/ha) Growth stage Field measurements Meteorological conditions

Ta RH Py
Yarrawonga (Site 1) 1 T1:0, T2:46, T3:92, T4:138, T5:184 Grain filling Ft, Chl, NBI, Flav, Anth, TN 19.2 30.1 1002.8
Peechelba (Site 2) 2 T1:207, T2:387 Dough Ft, Chl, NBI, Flav, Anth, TN 23.3 36.2 1008.5
3 T1:0, T2:180, T3:315 Silking Ft, Chl, NBI, Flav, Anth, TN, TOC L 25.3 33.5 1003.6

Ft = Steady-state chlorophyll fluorescence, Chl = Chlorophyll content (ug/cm?),
NBI = Nitrogen balanced index (Dualex unit (d.u)), Flav = Flavonols (Dualex unit),

Anth = Anthocyanins (Dualex unit), TN = Total Nitrogen concentration (%),

TOC L = Top-of-canopy radiance (mW/m?/nm/sr) from HR-2000, T, = Average air temperature (°C),

RH = Relative humidity (%) and P, = Average air pressure (mBar).

Table 2
Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral
images during the three airborne campaigns.

Flight date  Flight time (local) ~ Experiment  AGL (m) Spatial
resolution
(m)
NB SN NB SN
09/10/19 15:40-16:30 1 400 900 0.25 0.20
16/03/20 12:50-13:50 2 700 850 050 0.20
20/01/21 11:40-12:20 3 900 900 0.65 0.20

1200 1200 0.9 0.30
2200 2200 1.7 0.55

NB = Narrow-band hyperspectral imager.
SN = Sub-nanometer hyperspectral imager.
AGL = above ground level.

Table 3
Spectral characteristics of the airborne hyperspectral imagers.

Configuration Fluorescence sensor (Sub- VNIR E-Series sensor
nanometer imager) (Narrow-band imager)
Spectral range 670-780 nm 400-1000 nm
Number of spectral 2160 371
bands
Spectral sampling 0.051 nm 1.626 nm
interval
FWHM 0.1-0.2 nm 5.8 nm
Number of un-binned 1600 1600
spatial pixels
SNR >300:1" >300:1"
Field of view 23.5° 66"
Aperture /2.5 /2.5
Bit depth 16 16

" With spatial binning.

spectral region (Fig. 4g) and in the oxygen absorption features (Fig. 4h
and i).

2.3. SIF quantification from field data and airborne hyperspectral
imagery

A thresholding approach based on the normalized difference vege-
tation index (NDVI) was used to select the pixels corresponding to
vegetation in each individual plot. To ensure that only pure vegetation
pixels were considered for the analysis, all pixels with an NDVI greater
than 0.6 were selected. For each plot, mean radiance spectra were
calculated by averaging spectra from all pure vegetation pixels within
the plot, excluding boundary pixels, from hyperspectral images acquired
from both imagers. This object-based analysis strategy was used to
reduce the uncertainty when using pixel-based SIF retrievals due to the
SNR of the instrument. For experiment 1, the total incoming irradiance
at the flight time was measured using the HR-2000 spectrometer with a
CC-3 VIS-NIR cosine corrector diffuser. Due to the unavailability of

cosine corrector diffuser for experiments 2 and 3, the total incoming
irradiance at the flight time was calculated by measuring the radiance
reflected from the white reference panel by the spectrometer. Ground-
based SIFpgy from eight plots measured concurrently with airborne
image acquisition were used to validate the airborne SIF¢o calculated
from both imagers. The relative root mean square error (rRMSE) was
calculated between the airborne and ground-based SIF;¢q following Eq.
1)

ainbarne, n’l'lmmvm! i
Foroma

n

2
rRMSE = ) % 100% 1

where Fgirborne, 1 and Fground, i are the SIF7go values retrieved from
airborne and ground-based spectrometers, respectively, for plot i, with n
representing the number of plots.

Field spectrometer radiances/irradiances were calibrated using co-
efficients derived from a uniform calibrated light source and an inte-
grating sphere (Labsphere XTH2000C). To match the SR of the radiance
images acquired from both sensors, the high-resolution irradiance
spectra acquired with the HR-2000 spectrometer was resampled through
Gaussian convolution (Hornero et al., 2021b; Suarez et al., 2021) cor-
responding to the SR of the airborne hyperspectral imagers. As the
spectral characteristics of the narrow-band hyperspectral imager do not
meet the requirements (Drusch et al., 2017; ESA, 2015) for quantifying
SIF at the Oy-B (SIFggy) absorption feature, SIFegy values were not
compared. This limitation also affects the applicability of SFMs with the
narrow-band hyperspectral imager, as it requires sub-nanometer reso-
lution for accurate SIF quantification. Thus, the retrieval of SIF¢( using
irradiance derived from HR-2000 measurements and average radiance
derived from airborne hyperspectral images and ground-based HR-2000
measurements was performed using the Oj-A-band in-filling method
through the FLD principle, based on a total of three spectral bands
(3FLD) (Maier et al., 2003). The spectral window for ‘in’ and ‘out’ irra-
diance (E) and radiance (L) used in 3FLD computation was selected
based on the spectral characteristics of the measuring instruments. For
the narrow-band imager, Ej,/Li, corresponds to the E/L minima in the
755-765 nm region. The minima for both E and L was observed at 762
nm, and this was consistent for all datasets. Eoyt/Lout corresponds to the
weighted mean of E/L maxima in the spectral regions of 750-755 nm
and 771-776 nm, respectively following the methodology proposed in
Damm et al. (2011). The spectral window for both ground-based and
airborne sub-nanometer sensors was selected using the methodology
proposed in Julitta et al. (2017)," which considers the FWHM of the sub-
nanometer resolution instrument and uses the mean of E/L in the left
and right shoulder regions to reduce noise. An additional data quality
check was performed for the matching of the ‘in’ band for E/L, and in the
event of a mismatch, Ej,/Li, was defined as the mean of Ej,/Li, of
adjacent wavelengths. The absolute depth (in radiance units) and

! R code available on GitHub platform at https://github.com/tommasojulitta
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relative depth (in percent) of the O»-A band feature were calculated in
addition to the airborne SIF7¢o quantification. The absolute depth was
calculated as the difference between the solar radiance at the left
shoulder wavelength and the wavelength at the bottom of the Oy-A
absorption feature, and the relative depth was calculated as the ratio of
absolute depth and the solar radiance at the left shoulder wavelength.
The wavelength providing the highest radiance in the 750-759 nm
range was selected as the left shoulder wavelength.

In the absence of atmospheric correction, SIF76p values could be
negative even for fluorescent targets (see Fig. 6 in Marrs et al., 2021).
The atmospheric correction process involves estimating several atmo-
spheric parameters such as upwelling transmittance, path scattered
radiance, and spherical albedo using atmospheric RTMs. Additionally,
to account for uncertainties in the estimation of atmospheric parame-
ters, the transmittance correction technique (Damm et al, 2014;
Guanter et al,, 2010; Siegmann et al., 2019) is a commonly used
approach that forces the non-fluorescent targets to give zero SIF7go. Due
to the complexities involved in accurately estimating the atmospheric
parameters, RTM-based atmospheric correction was not performed in
the current study. Instead, on account of the successful implementation
of a rescaling scheme to correct negative airborne SIF7¢p and SIFggy
values in Bandopadhyay et al. (2019), we used a simplified correction
technique based on the same principle of using non-fluorescent targets
(i.e., bare soil) as in the widely used transmittance correction technique,
to compensate for negative SIF¢o values related to calibration and at-
mospheric factors such as aerosol scattering and surface pressure. Any
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Fig. 2. Hyperspectral imagery showing zoomed-in
plots from identical locations in experiments 1 (a,
b) and 3 (c, d). Images (a) and (¢) were acquired with
the sub-nanometer hyperspectral imager (composite:
760 (R), 710 (G) and 680 (B) nm). Images (b) and (d)
were acquired with the narrow-band hyperspectral
imager (composite: 760 (R), 710 (G) and 680 (B)
nm). Green polygons indicate plots under different
nitrogen treatments, and yellow polygons indicate
the selected plots corresponding to five and three
nitrogen treatments, respectively, for experiments 1
and 3. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)

deviation from the non-fluorescent behaviour of bare soil targets iden-
tified in each image was attributed to spectral miscalibration or atmo-
spheric effects. The method relies on forcing the non-fluorescent target
to give zero SIF;49, and the non-zero SIF7¢, served as an offset to correct
the SIFygo from vegetation targets following Eq. (2):

SIF corrected = SIF vegeration rarger — SIF pon—ptworescent arger (@

To minimize the directional effects on the airborne-quantified SIF740,
the corrected SIF76 was normalized to a reference-viewing angle using a
reflectance-based angular correction approach (Hao et al., 2021). The
normalization method employs a reference SIF7go corresponding to a
reference viewing angle, as well as near-infrared reflectance of vegeta-
tion (NIRv) (Badgley et al., 2017), to normalize SIF7¢¢ quantified at any
viewing direction to a reference viewing angle. Two different ap-
proaches were used to compute the reference SIFy¢p for normalization.
In the first approach, a single plot located at the centre of each hyper-
spectral image was selected as the reference SIF;¢, on account of being a
nadir-view. In the second approach, locations of the ground-based
spectral measurements were identified in the hyperspectral images
and used for calculating the reference SIF74o. Since the ground-based
spectral measurements were primarily conducted along the plot's
centre, only pure vegetation pixels located along the plot's centre were
used to compute mean radiance for the reference SIFy¢p calculation. This
differs from the airborne SIF7¢q corresponding to individual plots, which
was calculated using mean radiance from all pure vegetation pixels
excluding the boundaries. The second approach was only applied for
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Fig. 3. Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the sub-nanometer imager in the 670- to 780-nm region, (b) the sub-
nanometer imager in the Ox-A absorption region, (c) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band imager in the O,-A absorption
region. The transparent grey box in (c) shows the spectral region covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied ni-

trogen fertilization rates shown in Table-1.

experiment 3 to validate the airborne-quantified SIF;6o with the ground-
based HR-2000 SIF;¢ measurements so that the reference viewing di-
rection remained identical for ground-based and airborne SIF7gp.
Normalization was conducted according to the nadir-viewing angle for
all inter-comparisons of airborne SIF;¢ from both imagers.

The study focused on assessing the spectral configuration of the two
instruments, with attempts made to reduce distortions caused by other
factors. We used pixels close to the nadir-viewing angle and avoided
evaluating areas close to the image borders to reduce the potential ef-
fects of instrument ‘smile’ on assessment of the two instruments.
Moreover, the angular correction used to normalize SIF76p minimizes
the potential instrument smile effects (detailed above). Further work
and a corresponding paper will evaluate sensor smile effects and cor-
rections needed when using narrow-band instruments for SIFzeg re-
trievals. This additional work is important because entire images, rather
than just nadir pixels, are needed for practical applications in precision
agriculture.

2.4. Modelling the spectral resolution effects on SIF quantification using
SCOPE simulations

The SCOPE model integrates three radiative transfer modules and an
energy balance module to estimate outgoing radiation spectra, turbulent
heat fluxes, photosynthesis rates and chlorophyll fluorescence (Van der

Tol et al.,, 2009). Surface reflectance and fluorescence spectra are
simulated by linking several energy balance, photosynthesis and canopy
biophysical parameters with TOC radiance, with SSI and SR of 1.0 nm
each. The model assumes a homogenous canopy structure, and the
canopy radiative transfer equations are based on the widely used SAIL
model (Verhoef, 1984). Net radiation over the canopy is calculated by
integrating the contribution from the individual layers with shaded and
sunlit leaves at different leaf angles over the canopy depth. The canopy
reflectance modelling is conducted based on four different Bidirectional
Reflectance Distribution Function (BRDF) terms representing direct and
diffused hemispherical contribution from the surrounding and the direct
and diffused reflectance in the viewing direction. The leaf-level fluo-
rescence spectra are modelled within the 640- to 850-nm spectral region
based on the FLUSPECT model (Vilfan et al., 2016) by utilizing the leaf
reflectance and fluorescence outputs derived from the PROSPECT model
(Jacquemoud and Baret, 1990).

A simulated dataset using the SCOPE model (version 2.0) was
generated to evaluate the influence of the SR of the airborne hyper-
spectral sensors on the 3FLD-based SIF7g quantification. The dataset
consisted of 400,000 simulations generated by randomly varying spe-
cific input parameters, drawing from a uniform distribution within
ranges shown in Table 4. All other SCOPE input parameters were kept at
their default values. The air temperature and air pressure inputs for the
SCOPE model were measured with a portable weather station during the
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airborne campaign at field trial site 1. Details regarding the definition
and ranges of all input parameters can be found in Supplementary Data
S1. For each case, the TOC spectra of total upwelling radiance, SIF
radiance and the corresponding irradiance were simulated using the
default 1.0-nm SR and 1.0-nm SSI obtained from SCOPE. To compare the
SIFygp retrieval performance for SR corresponding to the narrow-band
hyperspectral imager, SCOPE-simulated spectra were resampled to
5.8-nm FWHM through Gaussian convolution matching the SSI with the
narrow-band imager. The resampled radiance spectra in the 400- to
1000-nm spectral region were compared with the average radiance

spectra obtained from the narrow-band imager at experimental field
trial site 1 using RMSE as the cost function. For each narrow-band
airborne radiance spectrum, we selected the 10 closest resampled radi-
ance spectra from the 400,000 simulations along with their corre-
sponding resampled-irradiance for the analysis. Fig. 5a shows the
measured radiance spectra from the narrow-band imager. Fig. 5b and ¢
show the SCOPE-simulated SIF and radiance spectra at 1-nm FWHM
corresponding to the selected simulations. A comparison of the simu-
lated SCOPE radiance spectra against the narrow-band imager is shown
in Fig. 5d. Additionally, radiance and irradiance spectra corresponding
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Table 4
Range of the SCOPE input parameters used in this study.
Parameter ~ Range/ Unit Description
Value

Ca 10-50 pg-em 2 Chlorophyll a + b content

Cam 0.001-0.05 gm? Dry matter content

Cw 0.001-0.05 cm Leaf water equivalent layer

N 1.2-1.8 - Leaf thickness parameters

Vemax 20-120 pmol:-m~.s™!  Maximum carboxylation capacity at
25°C

fqe 0.001-0.015 - Fluorescence quantum yield
efficiency at photosystem level

LAI 2-6 m>m~? Leaf area index

LIDF, -1-0 - Leaf inclination

LIDF, 0 - Variation in leaf inclination

Rin 600-1000 Wm2 Broadband incoming shortwave
radiation

Ta 19.2 C Air temperature

] 1002.8 hPa Air pressure

s 35.42 deg. Solar zenith angle

to SRs of 2.0 nm, 3.0 nm, 4.0 nm and 5.0 nm were generated by
resampling SCOPE-simulated 1.0-nm SR spectra with Gaussian convo-
lution but keeping the 8SIat 1.0-nm. Fig. 5e and f show the comparison
between the radiance spectra simulated by SCOPE at different SRs in the
05-B and O3-A absorption regions, respectively. The O2-B absorption
feature could only be identified at the default 1.0-nm SR. The decrease of
SR from the default 1 nm to 5.8 nm resulted in Oy-A-band depth
reduction and an increment in the radiance signal corresponding to the
absorption minima.

2.5. Nitrogen assessments using narrow-band and sub-nanometer SIF
retrievals

The effects of sensor SR on nitrogen estimation was assessed using
models with chlorophyll content and SIF traits as inputs (Camino et al.,
2018b). Nitrogen content was predicted using Random Forest (RF)
(Breiman, 2001) models fit to data from field trial site 1, using i) Cy,
derived from the narrow-band hyperspectral imagery through the
inversion of PRO4SAIL RTM and ii) SIF;6o quantified from each of the
hyperspectral imagers as inputs. The PRO4SAIL model used coupled
PROSPECT-D (Féret et al., 2021) and 4SAIL (Verhoef et al., 2007) to
retrieve the biochemical constituents and canopy structural parameters,
respectively. A look-up table with 200,000 simulations was built by
randomly varying the biochemical and biophysical parameters with a
uniform distribution within the ranges shown in Table 5.

Support vector machines (SVMs) were trained using simulated
reflectance as inputs. Reflectance spectra were matched with the spec-
tral resolution of the narrow-band hyperspectral imager (5.8-nm
FWHM). SVMs were first trained in parallel (MATLAB parallel
computing toolbox) using a radial basis function and optimizing the
hyperparameters during training to predict C,p_Then, using the average
reflectance spectra extracted from pure-vegetation pixels, C,, was esti-
mated for each experimental plot. Subsequently, RF regression models
were fit for each hyperspectral sensor, using crop N concentration as a
response variable and the estimated C,, from the narrow-band VNIR
reflectance spectra (Cap-narrow) and SIFz¢o derived from each hyper-
spectral imager (i.e., Cab-narrow + SIF760-narrow VS Cab-narrow + SIF760-sub-
nanometer) as predictors.

3. Results

In experiment 1, leaf physiological traits were significantly different
in plots fertilized at different rates (p < 0.05; Fig. 6). For experiments 2
and 3, differences were non-significant, but there was visible variation
in leaf physiological variables among plots receiving different nitrogen
treatments (Fig. 6). Differences in leaf total N concentration measured
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by destructive sampling were generally consistent with the trends
observed in leaf steady-state fluorescence (Ft) with minor exceptions (e.
g., values observed for T3 in experiment 1). Ft was lower in plots with
the least N applied compared to other plots in all the experiments (Fig. 6,
Ft and Total N panels). Fertilization rate was positively associated with
chlorophyll a+b content and the leaf nitrogen balance index (NBI),
while leaf flavonols and anthocyanins were inversely associated with
fertilization rate. Leaf physiological values were more variable in
experiment 1 (T1-T5: 0-184 kg N/ha) than in experiments 2 (T1-T2:
207-387 kg N/ha) or 3 (T1-T3: 0-315 kg N/ha).

The absorption features at Oy-A and O-B absorption regions were
evident in the radiance spectra from both airborne hyperspectral im-
agers (Fig. 7). However, their shape and depth were strongly influenced
by the SR. As a result of the coarser SR of the narrow-band imager, the
absorption feature at the O,-B band in the 685- to 690-nm spectral re-
gion could not be identified in the narrow-band radiance spectra (Fig. 7,
inset). This result restricts the comparison between the narrow-band and
sub-nanometer hyperspectral imagers for the calculation of SIF at the
0,-B band. Moreover, a reduction in the depth of the O,-A absorption
feature in the 750- to 780-nm spectral region and the corresponding
increment in the radiance signal at the absorption minima were
observed for the narrow-band radiance spectra, as expected (Fig. 7,
inset). The wavelength corresponding to the radiance minimum was
shifted towards higher wavelengths when compared to sub-nanometer
radiance spectra, as shown in several studies (Cendrero-Mateo et al.,
2019; Damm et al., 2011; Julitta et al., 2016; Liu et al., 2015).

At site 1, the depths of the O3-A absorption feature from each of the
two imagers were strongly correlated (R2 = 0.90, p < 0.001; Fig. 8a),
when using data from the full set of >100 plots. Nevertheless, the range
of SIF760 values quantified with the 3FLD method (SIF76¢.3r1p) differed
between sub-nanometer imager (0.05-1.95 mW/mz/n.m/sr) and the
narrow-band imager (0.37-8.12 mW/m?%/nm/sr; Fig. 8b). Although
there was some lack of correspondence in SIF76o app between the two
imagers (RMSE = 3.86 mW/mz/nm/sr), the two were significantly
correlated (R* = 0.85, p < 0.001; Fig. 8b).

Airborne SIF7¢¢.3pp estimates from both hyperspectral imagers are
compared in Fig. 9. The best agreement between measures was observed
in experiment 3 (R* = 0.9, RMSE = 3.28 mW/m?/nm/sr, p < 0.001).
Measures from each sensor were also well correlated in experiments 1
(R? = 0.87, RMSE = 4.69 mW/m?/nm/sr, p < 0.001; Fig. 9a) and 2 (R®
= 0.77, RMSE = 3.95 mW/mZ/nm/sr, p < 0.01; Fig. 9b). The error be-
tween estimates was consistent across experiments, yielding RMSEs
within 3.28-4.69 mW/m?>/nm/sr.

Low-resolution SCOPE-simulated SIF7gq.3pp values (2- to 5.8-nm
FWHM) were significantly correlated with SIF7g0.3pp Simulated at 1-
nm FWHM (p < 0.001, R? 0.70-0.99; Fig. 10). RMSE values tended to
increase with decreasing SR (Fig. 10). The pattern of differing absolute
SIF760.3r.p values but stable relative differences across SRs observed
with the SCOPE-simulated data was consistent with the experimental
results from the airborne hyperspectral imagers.

A comparison of airborne SIF7¢p.3pp retrievals to ground-based
SIF760.3p1p retrievals in experiment 3 is shown in Fig. 11. Ground-
based measures were significantly correlated with both the sub-
nanometer (R2 = 0.90, p < 0.001; Fig. 11a) and the narrow-band (R2
= 0.88, p < 0.001) hyperspectral imagers (Fig. 11b). SIF;¢¢.3pLp from the
sub-nanometer imager showed strong agreement with the ground-based
SIF760.3r1p values (RMSE = 0.07 mW/m%*/nm/sr, rRMSE = 3.7%),
whereas the narrow-band imager exhibited greater overall differences
from ground-based measures (RMSE = 3.26 mW/m?/nm/sr, rRMSE =
170.5%). SIF-yield, which was estimated by normalizing the corrected
SIF760.3rLp by the average NIR radiance in the 776-780-nm spectral
region, was also significantly correlated with the leaf-level steady-state
chlorophyll fluorescence in experiment 1 (R? = 0.53, p < 0.01 for sub-
nanometer imager; R* = 0.34, p < 0.05 for narrow-band imager).

Measures of O3-A band depth and airborne SIF760.371p at different
altitudes are presented in Fig. 12. SIF7go.3p.p measures with the narrow-
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SRs in the O,-B (e) and O,-A absorption regions (f).

band imager at 2200 m AGL were excluded because pixels were too
coarse (1.7 m) relative to plot size (3 m x 12 m). O,-A absorption feature
depth and SIF7go.3r1p differed significantly with altitude (Fig. 12). The
depth of the O,-A absorption feature increased with sensor altitude, and
SIF760-3r.p decreased with sensor altitude for both airborne imagers
(Fig. 12).

Sub-nanometer SIF7ep.3p1p retrievals were significantly correlated
with narrow-band imager retrievals in experiment 3 at both 900 m AGL
(R? = 0.85, p < 0.001; Fig. 13a) and 1200 AGL (R? = 0.9, p < 0.001;
Fig. 13a). The slope of the relationship between sub-nanometer and
narrow-band retrievals was steeper for 900 m AGL than for 1200 m AGL.

10

RMSE at 900 m AGL (4.29 mW/m2/nm/sr) was higher than that of 1200
m AGL (3.28 mW/m?/nm/sr), possibly explained by larger SIF760.3r1.0
values at lower altitudes. SIF760.3r.p at 900 m AGL was significantly
correlated with SIF;6p.3rp at 1200 m AGL (R? = 0.92, p < 0.001;
Fig. 13b) and 2200 m AGL (R? = 0.8, p < 0.001; Fig. 13b) using the sub-
nanometer imager. SIF760.3p.p values decreased with imager altitude,
and the relationship between low-altitude and high-altitude measure-
ments also changed, with shallower slopes at higher altitudes (Fig. 13b).
RMSE was higher at 2200 m AGL than at 1200 m AGL altitude, when
compared to 900 m AGL. A similar pattern was observed for narrow-
band SIF7¢q.3p1p retrievals, with an overall significant correlation (R?
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Table 5
Parameters and ranges used for the look-up table generation for the PRO4SAIL
RTM.

Parameter Abbreviation Value/range
Chlorophyll a + b content [pg/cm2] Cab 4-70
Carotenoid content [pg/cm?] Cric 1-20
Anthocyanin content [pg/cm?] Anth 0-15

Dry matter content [g/cm?] Cp 0.007

Water content [g/c1|12] Cw 0.001
Mesophyll structure Coeff. N 0.5-3

Leaf area index [m*/m?] LAL 0.3-5
Average leaf angle [deg.] LIDF, 0-90

Hot spot parameter h 0.01

Soil reflectance Rsoil PRO4SAIL dry soil spectra
Observer angle [deg.] tt, 0

Sun zenith angle [deg.] ttg 35.42
Relative azimuth angle [deg.] W 0

= 0.82, RMSE = 1.36 mW/mz/nm/sr, p < 0.001; Fig. 13c) and lower
SIF760-3rLp Values at higher altitudes.

Sub-nanometer SIF;¢ 3p1p Was significantly correlated with ground-
based SIFyeo-3rip at all sensor altitudes (p < 0.001, all R? > 0.9;
Fig. 14a). RMSEs between airborne and ground-based SIF retrievals at
900 and 1200 m AGL were lower than 0.1 mW/m?/nm/sr and rRMSEs
were lower than 4%. SIF760-3rip at 2200 m AGL consistently under-
estimated ground-based SIF (RMSE = 0.5 mW/m?/nm/sr and rRMSE =
28.2%; Fig. 14a). Ground-based SIFygpspp was also significantly
correlated with airborne SIF7¢0-3rp from the narrow-band imager (p <
0.001, R? > 0.85) at both altitudes (Fig. 14b). Narrow-band imager
SIF760-3p1p estimates at 1200 m AGL tended to be smaller than ground-
based measures (Fig. 14b), and error was high for both 900 m AGL
(RMSE = 3.77 mW/mz/nm/sr, rRMSE = 200.8%) and 1200 m AGL
(RMSE = 3.26 mW/mz/nm/sr, rRMSE = 170.5%).

Nitrogen predictions from both RF models were significantly corre-
lated (p < 0.01) with the field-level nitrogen content measurements
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obtained by destructive sampling (Fig. 15). SIF7¢0.r.p from the sub-
nanometer hyperspectral imager by itself was significantly correlated
with field-level nitrogen content ®R?=0.71, p <0.001; Fig. 15a), as was
SIF760 quantified from the narrow-band imager (R? = 0.67, p < 0.001;
Fig. 15b). The RF algorithm using SIF760-sub-nanometer Performed slightly
better (R2 = 0.93, RMSE = 0.09%; Fig. 15c) than the RF using SIF760-
narrow-band (RZ = 0.87, RMSE = 0.12%; Fig. 15d).

4. Discussion

In this study we examined the relationship between airborne SIF74(-
spp quantified using sub-nanometer resolution (i.e., 0.1- to 0.2-nm
FWHM) and narrow-band resolution (i.e., 5.8-nm FWHM) hyper-
spectral imagers in the context of plant phenotyping for homogenous
crop canopies. Our results support the assertion that airborne SIF re-
trievals from narrow-band hyperspectral imagers can successfully track
small physiological changes induced by plant pathogens and environ-
mental stresses, as reported elsewhere (Calderon et al., 2015, 2013;
Camino et al., 2021, 2018a; Hernandez-Clemente et al., 2017; Panigada
etal., 2014; Poblete et al., 2021, 2020; Zarco-Tejada et al., 2018, 2012).
Precise SIF760 quantification at absolute scales was not essential for
detecting plant stress in these studies. In our study, narrow-band
airborne SIF7603r1p Was significantly associated with both sub-
nanometer airborne and ground-based SIF observations. Our results
particularly illustrate the capability of these narrow-band hyperspectral
imagers for characterizing the intra-field SIF7¢o variability induced by
different nitrogen fertilization rates.

Previous studies have highlighted the importance of sensor config-
uration for detecting spectral absorption features occurring over very
narrow spectral ranges, particularly the need for high SR and SNR when
quantifying SIF (Mohammed et al., 2019). The literature has emphasized
the need for instruments with sub-nanometer resolutions to accurately
characterize narrow absorption features for reliable SIF estimates in
physical units (Cogliati et al., 2015; Julitta et al., 2016; Meroni and
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Fig. 13. (a) Relationships between SIF¢.app estimates from narrow-band and sub-nanometer hyperspectral imagers by sensor altitude. (b) Relationships between
airborne SIF;¢.35.p from sub-nanometer imager at 1200 and 2200 m AGL compared to the SIF;6q.3r.p quantified at 900 m AGL. (¢) Relationship between airborne
SIF760.35.p from the narrow-band hyperspectral imager at 900 and 1200 m AGL. The range of absolute SIF7¢0.3r1p levels derived from the narrow-band imager was
higher than the typical range of 0-3 mW/m?/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. SIF;6o.5r10
measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m x 12 m).

® AGL900m ©'AGL 1200m * AGL2200m ® AGL900m © AGL1200m
. 24 ]
2200 m AGL -
. y=058x+1.06 _ 1200 m AGL P
% 25| RZ=ggr+ B g y=021x+081
= RMSE = 0.5 Ay 9105’3"' Ai"y E 21} R2=088" s :
£ ; o + £ :
€ ,| rRWsE=282% s 9/ YEUXTRA e RMSE = 3.26
S p<0001 % & 4 R =091 s rRMSE = 170.5%
E 2 * o RMSE = 0.07 = p <0.001 [
245 2 IRMSE=39% | g 18 1
8 s p<0.001 8 900 m AGL
Qg ,-" 1200 m AGL Q% y=0.26x +0.43
.7 y=089x+002
g 1 E Y £, R? =087
[32] s =0 (7] - 1
7 RMSE = 0.07 RMSE =3.77
05 - rRMSE = 3.7% ; rRMSE = 200.8%
a p<0.001 p<0.001
05 1 15 2 25 3 3 4 5 6 7
2 2
3FLD,, . ometer (MW/m?/nmisr) 3FLD (mW/m?/nm/sr)

(a)

narrow-band

Fig. 14. Relationship between ground-based SIF740.spip quantified with a HR-2000 field spectrometer and airborne SIF760 3pp at 900 m, 1200 m and 2200 m AGL
retrieved from the sub-nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF76g.3r1p levels derived from the narrow-band imager was
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measures with the narrow-band imager at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m x 12 m).

Colombo, 2006; Meroni et al., 2011; Rossini et al., 2010). The experi-
mental results from these studies are consistent with modelling studies
based on FluorSAIL3 (Damm et al., 2011; Cendrero-Mateo et al., 2019)
and SCOPE (Liu et al., 2015), which showed an increase in the SIF¢
retrieval accuracy with increasing sensor SR. These modelling studies
also found strong correlations between modelled and estimated SIF7eo
for low SR (5 nm) instruments using 3FLD (r = 0.78, RMSE = 0.31 mW/
mz/nm/sr) and iFLD (r = 0.81, RMSE = 0.081 mW/mZ/nm/sr) (Damm
et al., 2011). The SCOPE modelling results presented in this study sup-
port the findings of previous modelling efforts, illustrating statistically
significant relationships (p < 0.001, R” = 0.70-0.99, RMSE — 0.24-1.25
mW,/m2/nm/sr; Fig. 10) between SIF;¢g.3p1p at 1 nm and SIF¢.3p1p at
coarser SRs ranging from 2-nm to 5.8-nm FWHM. The offset of the linear
relationship with SIF7ep.3rp at 1 nm increased steadily as the SR
decreased from 2 to 5.8 nm, while the slope remained close to 1. This
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offset increase can be attributed to differences in radiance correspond-
ing to the Oz-A band minima, which showed a 200% increase (Fig. 5f)
when resampling radiance spectra from 1 to 5.8 nm SR. Our modelling
results and those of previous studies suggest that narrow-band resolu-
tion sensors (4- to 6-nm FWHM) with sufficient SNR can sufficiently
characterize relative SIF7gp levels despite their inability to provide
reliable absolute SIF74 estimates.

Differential nitrogen application rates in the three experiments were
associated with variability of leaf physiclogical measurements (Fig. 6)
and airborne SIF7gg.3pp. Narrow-band and sub-nanometer SIF76¢0.3r1D
estimates were strongly correlated across experiments, and both differed
by nitrogen fertilization level. The best correlation, observed in exper-
iment 3, may be attributed to the identical flight altitude at which the
narrow-band and the sub-nanometer hyperspectral images were
collected for this experiment (site 2; Table 2) in addition to the higher
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relative SIFyeo3pp variability observed within the experimental plots
compared to experiments 1 and 2 (Fig. 9). The results demonstrated
consistency across experimental sites and airborne campaigns carried
out at different times, flight altitudes and years, showing robust re-
lationships in terms of the relative SIF7¢0.ap.p Variability quantified by
the two hyperspectral imagers. The differences obtained in absolute
levels of SIF760-3r.p quantified in the three experiments can be associ-
ated with the differences in crop varieties, crop growth stages and the
slightly different acquisition times of the airborne hyperspectral images.
These results are consistent with previous studies showing differences in
both ground-based and airborne SIF7¢y measurements according to ni-
trogen treatment (Cendrero-Mateo et al., 2016; Jia et al., 2018, 2021;
Quemada et al., 2014; Watt et al., 2020a, 2020b).

Sensor altitude was identified as a critical factor in determining SIF
accuracy (Daumard et al., 2015; Ni et al., 2016). MODTRAN (Berk et al.,
2014) was used in these studies to show that the depth of the O5-A ab-
sorption feature increases with sensor altitude. This is consistent with
our findings, which show that the Oz-A band depth increased with
altitude for both airborne hyperspectral imagers (Fig. 12) due to an in-
crease in the radiance of the Oz-A band minima (Fig. 4h). Despite cor-
recting for the atmospheric effects, SIF760.3r.p decreased with altitude
for both airborne hyperspectral imagers. Such a decrease is linked to the
correction method used, which relies on non-fluorescent targets. The
relative increase in O»-A band depth with increasing altitude is greater
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for vegetation targets than for bare soil targets (Daumard et al., 2015).
This difference results in a bias in the corrected SIF76¢.3r.p. Although
SIF760.3r.p Was overestimated at higher altitudes with both hyper-
spectral imagers, airborne estimates remained well correlated with
ground-based measurements across altitudes (Figs. 12 and 14). This
result has important implications for drone and airborne-based SIF
quantifications in plant phenotyping studies and precision agriculture
applications, in which sensor altitude is generally adapted depending on
the flight efficiency and areal coverage. Although the relative variability
needs to be assessed for detecting physiological changes induced by
biotic or abiotic factors, understanding the effects of sensor altitude on
SIF retrievals is critical for accurately interpreting SIF when used as
input in stress-detection models.

Few studies have validated airborne-quantified SIF;¢o from narrow-
band hyperspectral imagers against ground-based observations from
high-resolution field spectrometers, due to the challenges associated
with complex and heterogenous canopies including forest areas and cash
crops such as vineyards and tree orchards. Damm et al. (2015) demon-
strated the relationship between the medium-resolution Airborne Prism
Experiment (APEX) sensor and a ground-based ASD (PANalytical,
Boulder, US) field spectrometer for three different types of ecosystems.
Measures were correlated (R% = 0.71), but airborne SIF7s( systemati-
cally overestimated ground-based SIF7¢o by a proportionality factor
(slope of airborne vs. ground SIFy relationship) of 1.93 and an rRMSE
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of 28.9%. Guanter et al. (2007) found good agreement (R2 = 0.85) be-
tween airborne SIF;¢¢ derived from the Compact Airborne Spectro-
graphic Imager (CASI, Itres Research Ltd., Canada) and ground-based
SIF760 derived from the ASD FieldSpec FR spectroradiometer. The
airborne vs. ground-based relationship found in the current study (R® =
0.88, proportionality factor = 4.76) is consistent with the results from
both studies above. Due to the impact of SR on the absolute SIF7¢0.3r1.n
quantification, larger deviations in terms of rRMSE and proportionality
factor were observed compared with the results from Damm et al.
(2015), which can be attributed to the sub-nanometer resolution (0.065-
nm FWHM) of the reference ground-based HR-2000 spectrometer used
in our study as compared to the moderate spectral resolution of ASD
spectrometers (>1.0-nm FWHM) used elsewhere.

The potential effects of the canopy structure are important to
consider when comparing the narrow-band vs. sub-nanometer SIF re-
trievals. The TOC SIF observations from ground-based, airborne and
spaceborne platforms are strongly affected by plant canopy structure
due to the re-absorption and scattering of light within the canopy
(Fournier et al., 2012; Porcar-Castell et al., 2014; Dechant et al., 2020;
Yang and Van der Tol, 2018; Zeng et al., 2019). This structure is usually
characterized by parameters such as leaf area index and the leaf incli-
nation distribution function and may be approximated with vegetation
indices such as Modified Triangular Vegetation Index (MTVI2)
(Haboudane et al., 2004) and Enhanced Vegetation Index (EVI) (Huete
et al., 2002) when assessing the effects of structure on SIF. In our study,
the structural differences across experimental plots were generally small
as structural changes were generally not associated with experimental
treatments. Nevertheless, we tested whether treatment-associated vari-
ability in canopy structure could be related to SIF;go.3pp from the
narrow-band hyperspectral imager. We found that the relationships of
both MTVI2 and EVI with narrow-band airborne SIF;¢.3r.p Were weak
and non-significantly correlated at both field trial sites (p > 0.1, R =
0-0.11; Fig. 16). These results suggest that the SIF7gp.ap.p variability
captured by the narrow-band imager in the experiments was not driven
by changes arising from structural effects. Moreover, it shows that the
fluorescence in-filling at the O3-A band was unaffected by structure, with
the variability across experimental plots due to subtle physiological
differences.

Predictive models of leaf N concentration improved only slightly
when using SIF;¢¢ from the sub-nanometer imager compared to the
narrow-band imager, with a marginal increase in the model perfor-
mance (R® = 0.87 vs. 0.93) and a decrease in the error (RMSE = 0.12%
vs. 0.09%). The direction of this improvement is consistent with the
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greater accuracy of the sub-nanometer SR imager. Nevertheless, these
results suggest that data from the narrow-band hyperspectral imager
may be sufficient for predicting N concentration in plant phenotyping
and precision agriculture applications. Narrow-band imagery may be
particularly suitable since relative changes in SIF linked to physiological
conditions, nutritional deficiencies and stress levels are often the focus
of such studies.

For assessing crop physiological status, standard commercially
available hyperspectral imagers with 4- to 6-nm FWHM and SNRs
greater than 300:1 can provide reliable relative SIF7¢( estimates (Zarco-
Tejada et al., 2012, 2013a). These sensors are lightweight and can be
carried on drone platforms that provide very high spatial resolution
images due to low flying altitude. This capacity to generate very high
spatial resolution imagery with narrow spectral bands is particularly
important for plant phenotyping and precision agriculture applications
for mapping physiological condition (Mohammed et al., 2019). Addi-
tional work using RTMs such as SCOPE and others is needed for
improving the interpretation of SIF quantified using broader resolutions
in precision agriculture.

5. Conclusions

We assessed the relationships between airborne SIFzg0.3p1p quanti-
fied from narrow-band (5.8-nm FWHM) and sub-nanometer (0.1- to 0.2-
nm FWHM) hyperspectral imagers flown in tandem over three experi-
mental fields with varying nitrogen application rates across 3 years.
SIF760.3pp estimates derived from each imager were significantly
correlated with each other for all the three experiments (p < 0.01, R? =
0.77-0.90). Ground-level HR-2000 SIF;¢¢.3r.p Was significantly corre-
lated with that of the sub-nanometer (p < 0.001, R* = 0.9) and the
narrow-band hyperspectral imager (p < 0.001, R* = 0.88). These strong
correlations among the narrow-band, sub-nanometer and ground-based
SIF760.app retrievals support the use of narrow-band hyperspectral
sensors for detecting relative SIF differences in the context of plant
phenotyping, vegetation stress detection and plant physiological con-
dition. Although sub-nanometer SR is required for the accurate retrieval
of SIF in absolute units, broader-band hyperspectral imaging technology
of 4- to 6-nm bandwidth used in this study provides reliable assessment
of relative SIF7go variability. The broader-band hyperspectral technol-
ogy is also cost-effective, compact and facilitates the collection of high-
spatial resolution fluorescence data required in precision agriculture.

% 7 ® Site-1 O Site-2
E 65l ¥=021x+467
N R? =0.00 o
S 6f p=094
=
555
S Awy 4
454 @ y=-13.25x+ 17.17
g o R?=0.11 o
L 4 p=0.15 P
03 04 05 06 07 08 09
EVi narrow-band
(b)

Fig. 16. Relationships between airborne SIFzgo.3r1,p from the narrow-band hyperspectral imager and MTVI2 (a) and EVI (b). The range of absolute SIF740.351p levels
derived from the narrow-band imager was higher than the typical range of 0-3 mW/m?/nm/sr quantified from healthy vegetation due to the impact of the spectral

resolution of the instrument.
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ABSTRACT

Several studies have demonstrated the influence of the
spectral resolution (SR) on the retrieval of solar-induced
chlorophyll fluorescence (SIF) from ground-based sensors
with different spectral configurations. However, research
studying the implications of the SR of airborne hyperspectral
imagers on the retrieved SIF is lacking, and its interpretation
is critical for precision agriculture, plant stress detection and
phenotyping studies. This work investigates the effects of
SR on SIF performance through the Fraunhofer Line Depth
(FLD) principle at the O,-A absorption feature (760.4 nm)
using two airborne hyperspectral imagers with different
spectral characteristics. A sub-nanometer hyperspectral
imager with 0.1-02 nm full-width at half-maximum
(FWHM) resolution and a broader-band hyperspectral
imager of 5.8 nm FWHM were flown in tandem. The
campaigns were conducted over a winter wheat field with
randomized experimental design, with plots receiving
different nitrogen rates to ensure SIF variability. Results
showed a bias on the SIF levels quantified by both airborne
imagers (RMSE=3.7 mW/m*nm/sr), but a strong
relationship between both sensors at the O,-A absorption
feature (R?=0.84, p<0.001). Results confirm the utility of
hyperspectral imagers ca. 5 nm FWHM resolution for stress
detection and plant phenotyping where assessing the relative
variability of SIF across experimental plots is sought.

Index Terms— Airborne, hyperspectral, SIF, FLD,
chlorophyll fluorescence, plant phenotyping

1. INTRODUCTION
The energy dissipation pathway by the photosynthetic

apparatus in the form of SIF serves as a direct indicator of
the physiological state of plants and can assist understanding

978-1-6654-0369-6/21/$31.00 ©2021 IEEE
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of plant functioning, crop performance and the early
symptoms of biotic and abiotic stress. Over the last two
decades, top-of-canopy (TOC) SIF has been retrieved at
various scales and spatial resolutions using ground-based,
airborne and satellite platforms [1]-[3]. SIF has largely been
retrieved using leaf and ground-based canopy-level sensors,
gradually scaling up to satellite platforms for global
vegetation monitoring purposes. However, the intermediate
scales provided by airborne platforms are critical to bridge
the gap between field and satellite-based SIF observations
and to disentangle the contribution by the different scene
components in aggregated pixels [4], [5]. In this context,
assessing the spectral configurations and spatial
requirements for the operational use of SIF in precision
agriculture and plant phenotyping trials is crucial.

The SR of the sensor is a critical factor that influences
the accuracy of the quantified SIF. Modelling based studies
[6], [7] have demonstrated that the use of broader-band
sensors leads to a higher SIF retrieval bias from FLD-based
approaches. As a result, very high-resolution imaging
sensors are needed to quantify SIF in absolute terms
accurately. Although broader-band sensors (e.g. in the range
of 5-6 nm FWHM SR) are sub-optimal for the absolute
quantification of SIF at the O,-A feature, several studies
have demonstrated that the relative SIF variability captured
by such sensors is a valuable plant trait in the context of
plant physiology, gross primary productivity monitoring and
for the early detection of biotic and abiotic stress [2], [8]-
[10]. Studies comparing SIF retrievals from narrow-band
(i.e. below 1 nm FWHM) vs. broader-band hyperspectral
imagers (ca. 5-6 nm FWHM) flown in tandem over
experimental fields displaying a range of physiological
condition are therefore needed. This study aims to evaluate
the SIF quantification from broader-band vs. sub-nanometer
airborne imagers for stress detection and assessment of crop
physiological conditions.
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Fig. 1: Subset of the imagery acquired from the aircraft yielding 20 cm pixel resolution and the corresponding sample
radiance spectra from the narrow-band hyperspectral imager (a; b) and from the broader-band hyperspectral imager (d; e).
Comparison of the radiance spectra for treatment 1 plot with no N applied vs. treatment 5 with the highest levels of N applied
(184 kg N/ha) extracted from the narrow-band (c) and broader-band imagers (f). The vertical lines in (f) indicate the location
of the 18 spectral bands within the O»-A absorption region for SIF quantification with the broader-band hyperspectral imager.

2. MATERIALS AND METHODS
2.1. Study sites, field experiment and airborne campaign

The experiment was conducted over fifteen dryland wheat
(cv. Scepter) [11] plots located at Yarrawonga, Victoria,
Australia. The 2 m x 13 m plots were planted in May 2019
and treated with five different nitrogen (N) application rates
in the form of Urea (46% N) fertilizer (T1: 0 kg N/ha, T2:
46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg
N/ha). Leaf-level measurements of steady-state chlorophyll
fluorescence (Fi) were performed in the field on ten leaves
per plot using the FluorPen device (PSI, Czech Republic) at
the time of the airborne campaign.

The airborne campaign to collect TOC spectral
radiances was carried out under clear sky conditions on 9
October 2019 from 15:40 to 16:30 local time flying with the
heading of the aircraft on the solar plane. The payload
consisted of two hyperspectral imagers installed in tandem
on a Cessna aircraft operated by the HyperSens Laboratory,
University of Melbourne’s Airborne Remote Sensing
Facility. The first linear-array hyperspectral camera used in
this study was the Micro-Hyperspec VNIR E-Series model

(Headwall Photonics, Fitchburg, MA, USA) operated with a
configuration of 371 spectral bands acquired at 1.626
nm/pixel in the 400-1000 nm region, yielding 5.8 nm
FWHM. The second hyperspectral camera was the high-
resolution chlorophyll fluorescence imager (Headwall
Photonics, Fitchburg, MA, USA) operated with a
configuration of 2160 spectral bands acquired at 0.051
nm/pixel in the 670-780 nm region, yielding 0.1-0.2 nm
FWHM. Fig. 1 shows a portion of the imagery along with
sample radiance spectra acquired from both imagers.
Differences in the radiance spectra and the O:-A feature
were visually detected as a function of the nitrogen rates
applied over the experimental fields (Fig. 1c and Fig. 11).

2.2. SIF quantification from field data and airborne
hyperspectral imagery

The mean radiance spectra from each plot were calculated
by computing the average of all pixels within each region of
interest, excluding the boundaries and non-vegetation pixels.
The total incoming irradiance at the time of the flight was
measured using a 0.065 nm FWHM Ocean Optics HR2000
fiber-optics spectrometer (Ocean Optics, Dunedin, FL,
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USA) with a CC-3 VIS-NIR cosine corrector diffuser
(Ocean Optics, Dunedin, FL, USA).

The radiometric calibration of the spectrometer was
carried out using the coefficients derived from a uniform
calibrated light source and an integrating sphere (model
XTH2000C, Labsphere Inc., North Sutton, NH, USA) using
six different levels of illumination. To match the spectral
resolution of the radiance images acquired from both
imagers, the high-resolution irradiance spectra collected
with the HR2000 spectrometer was resampled through
Gaussian convolution corresponding to the spectral
resolution of the airborne imagers. The SIF quantification
from both instruments was conducted using the O»-A band
in-filling method through the FLD principle [12], using a
total of three spectral bands (3FLD) [13]. SIF was scaled
based on an offset derived from non-fluorescence targets
extracted from the imagery to account for the effects of
negative values due to atmospheric and calibration factors.
In addition to the SIF quantification through the 3FLD
method, the depth at the O,-A absorption feature captured
by the two imagers was also quantified.

3. RESULTS

The different spectral characteristics of the two
hyperspectral imagers caused significant effects in the
measured radiances (Fig. 2). As expected, the depth and
shape of the absorption features at the O2-A (760.4 nm) and
02-B (687.0 nm) were strongly influenced by the SR. The
0>-B absorption feature could not be identified in the
broader-band radiance spectra. A reduction in the O2-A band
depth and an increase in the radiance signal of the
absorption minimum were also observed. As reported in
other studies, the wavelength corresponding to the radiance
minimum was shifted towards higher wavelengths when
compared to the narrow-band imager.

100
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Fig. 2: Comparison of radiance spectra acquired from the
narrow-band and broader-band airborne hyperspectral
imagers for the same experimental plot.

The O,-A absorption band depth calculated from the
two hyperspectral imagers from radiance spectra extracted
from the experimental plots with nitrogen variability
exhibited a strong relationship (R*=0.84, p<0.001; Fig. 3a).
Results obtained when comparing SIF quantified through
3FLD from the two airborne hyperspectral imagers is
illustrated in Fig 3b. As the retrieval of SIF at O»-A band
using the FLD principle is primarily affected by the depth of
the measured O,-A absorption feature (shown in Fig. 2 &
3a), large differences in the range of SIF levels from both
imagers as a function of the spectral resolution were
observed. Although in absolute terms the SIF levels were
affected by the spectral resolution of both imagers
(RMSE=3.7 mW/m*nm/sr), a significant relationship was
obtained (R>=0.71, p<0.001) which demonstrates the
agreement in the relative variability of SIF quantified by the
two imagers at the O»-A feature.
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Fig. 3: Relationship between O2-A band depth captured by
the two imagers (a). Relationship between the airborne SIF
quantified using the 3FLD method from the two imagers (b).

The assessment of the TOC airborne SIF quantified by
both imagers was conducted by comparing against
fluorescence measurements carried out at the leaf-level
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across the experimental field. The relationships obtained
between leaf-level fluorescence and airborne SIF yielded
significant results (R>=0.65, p<0.001 for the narrow-band
imager, and R?>=0.42, p<0.01 for broader-band imager).

Our results demonstrate the link between the airborne-
retrieved SIF from two hyperspectral imagers with different
spectral resolutions. These results obtained by sensors flying
in tandem support the findings of past studies [2], [9], [10]
that showed the capability of broader-band hyperspectral
imagers for SIF quantification in the context of early

detection of vegetation stress symptoms and plant
physiological assessment.
4. CONCLUSIONS

This study assessed the effects of varying spectral resolution
from two airborne hyperspectral imagers on the
quantification of SIF at the O:-A absorption feature for
vegetation stress detection and plant phenotyping purposes
when flown over experimental wheat plots with variable
nitrogen rates. The airborne hyperspectral images acquired
at 20 cm spatial resolution from a sub-nanometer (0.1-0.2
nm FWHM) and a broader-band imager (5.8 nm FWHM)
flown in tandem yielded a bias (RMSE=3.7 mW/m?/nm/sr)
in the absolute SIF levels quantified by both imagers, but a
good agreement when comparing the O»>-A feature depth
(R’>=0.84) and the 3FLD quantification (R?>=0.71). These
results demonstrate the potentials of using broader-band
hyperspectral imagers for operational retrievals of SIF in the
context of plant phenotyping and precision agriculture,
where quantification of relative stress levels is required. This
study also makes progress toward future work to model the
effect of sensor spectral resolution on the retrieved SIF from
piloted and drone-based airborne hyperspectral imagers for
vegetation stress detection.
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ABSTRACT

Sub-nanometer hyperspectral imagers are increasingly being
used to quantify solar-induced chlorophyll fluorescence
(SIF) due to their ability to characterize narrow absorption
features accurately. However, some limitations prevent their
wide use in the operational context due to their high cost,
weight, and complexity. On the other hand, more widely-
used narrow-band hyperspectral imagers with 4-6 nm full
width at half-maximum (FWHM) resolution could be a cost-
effective alternative for acquiring high-spatial-resolution
hyperspectral imagery to derive SIF. Due to the large effects
of the spectral resolution (SR) on the quantified
fluorescence, the SIF levels derived from such airborne
imagers with 4-6 nm FWHM are overestimated, requiring
careful interpretation. In this study, we flew in tandem two
airborne hyperspectral imagers with different spectral
characteristics. These sensors' imagery was used to model
the impact of SR on the SIF quantification using the Soil-
Canopy Observation of Photosynthesis and Energy (SCOPE)
model. A Support Vector Machine regression (SVR) model
trained via SCOPE simulations was employed to quantify
SIF at I nm SR from the original 5.8 nm FWHM resolution.
The performance of the SIF quantification was evaluated
theoretically with SCOPE and tested against airborne
hyperspectral radiance and the derived SIF. Results showed
that the estimated SIF at 1 nm SR agreed well with the
reference SCOPE simulations (RMSE=0.097 mW/m?/nm/sr)
and with  airborne-quantified SIF  (RMSE=0.094
mW/m?/nm/sr).

Index Terms— Airborne, hyperspectral, SIF, 3FLD,
solar-induced fluorescence, SCOPE, radiative transfer.
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1. INTRODUCTION

The quantification of SIF using imaging sensors onboard
airborne platforms has made significant progress in the last
decade. SR has improved from narrow-band hyperspectral
imagers (i.c., 46 nm FWHM) to sub-nanometer sensors
specifically designed for accurate SIF retrievals [1]. These
airborne imaging spectroscopy sensors provide spatial
patterns of fluorescence across the landscape, enabling the
development of indicators of photosynthetic functioning
used for pre-visual vegetation stress [2], [3]. Although SIF
quantification in absolute physical units requires sub-
nanometer resolutions [1], the availability of airborne
imaging sensors with such capabilities is limited due to their
high cost and operational complexity. On the other hand,
narrow-band imaging sensors characterized by spectral
resolutions ranging from 4-6 nm FWHM are widely
available. They can be installed onboard lightweight
platforms for operational SIF retrievals needed in precision
agriculture applications. Previous studies [4]-[6] have
demonstrated the relevance of retrieving SIF from narrow-
band sensors in the context of plant physiology, and
particularly for the pre-visual detection of biotic and abiotic
stress. Recent research [7] found that SIF estimates derived
from a narrow-band hyperspectral imager with a 5.8 nm
FWHM correlated strongly with ground-based and sub-
nanometer airborne SIF estimates acquired simultaneously.
However, such narrow-band SIF  estimates are
overestimated, and their correct interpretation is critical,
particularly in applications of plant phenotyping and
precision agriculture. Therefore, work is needed to develop
methods based on radiative transfer models (RTMs) to
accurately quantify SIF from narrow-band hyperspectral
imagers.

Light re-absorption and scattering within the canopy, which
is driven by vegetation structure and plant pigments, have a
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strong influence on the top of canopy (TOC) SIF [8], [9].
Global sensitivity analyses using SCOPE [10] identified leaf
chlorophyll content (Casp), leaf area index (LAI), and the
leaf inclination distribution parameter (LIDF,) as key
variables driving the majority of SIF variability [11]. The
current study makes progress on the development of
modelling methods that account for the spectral resolution
when estimating SIF at 1 nm resolution from narrow-band
hyperspectral imagery. Leaf biochemistry and structural
traits derived from SCOPE model inversions were used as
inputs in a modelling approach to assess their impact on the
SIF estimates obtained from a narrow-band imager. Sub-
nanometer imagery collected concurrently was used for
validation purposes to assess the model performance.

2. MATERIALS AND METHODS
2.1. Experimental and simulated datasets

2.1.1. Airborne hyperspectral imagery

On 9 October 2019 an airborne campaign was conducted
over a field trial site in Yarrawonga (36°02'55"S,
145°59'02"E), Australia, under clear sky conditions. Several
varieties of dryland wheat were grown under varying
physiological conditions induced by a range of nitrogen
fertilizer application rates. A narrow-band hyperspectral
imager (Hyperspec VNIR E-Series model, Headwall
Photonics, Fitchburg, MA, USA) in the 400-1000 nm
spectral region with 5.8 nm FWHM resolution and a sub-
nanometer hyperspectral imager (Hyperspec Fluorescence
sensor, Headwall Photonics, Fitchburg, MA, USA) in the
670-780 nm spectral region with 0.1-0.2 nm FWHM were
installed in tandem on a Cessna 172R aircraft operated by
the HyperSens Laboratory, University of Melbourne’s
Airborne Remote Sensing Facility. The total incoming
irradiance was measured with a 0.065-nm FWHM HR-2000
spectrometer (Ocean Insight, Dunedin, FL, USA) equipped
with a CC-3 VIS-NIR cosine corrector diffuser. Mean
radiance spectra corresponding to both hyperspectral
imagers and reflectance spectra from the narrow-band
hyperspectral imager were extracted from pure vegetation
pixels identified within individual plots. Radiance and
reflectance spectra were used to quantify SIF and estimate
plant traits by radiative transfer, respectively (Fig. 1). A full
description of the airborne campaign, data preprocessing and
image correction can be found in Belwalkar et al. [7].

2.1.2. SCOPE model simulations

Simulations were carried out using the SCOPE model
(version 2.0), which integrates three radiative transfer
modules and an energy balance module to estimate outgoing
radiation spectra, reflectance and chlorophyll fluorescence
[10]. A training dataset of 10,000 simulations and a test
dataset of 1,000 simulations were generated independently
by randomly varying specific input parameters drawn from a

uniform distribution. The following ranges were set based on
field measurements and from the existing literature: Cgsp
[10-70] pg/cm?, LAI [0.5-5] m*m?, LIDF, [-1 to 1], leaf
carotenoid content (Cy:c) [1-20] pg/cm?, leaf anthocyanins
content (Anth.) [0-8] pg/cm?, leaf dry matter content (Cym)
[0.001-0.05] g/cm?, leaf water content (Cw) [0.001-0.05]
cm, leaf structure parameter (N) [1-1.5], maximum
carboxylation capacity (Vemo) [30-110], and the bimodality
of the leaf angle distribution (LIDFy) as 0. All other SCOPE
input parameters were left at their default settings. The air
temperature and air pressure inputs were obtained from a
portable weather station during the airborne campaign at the
field trial site. The TOC spectra of total upwelling radiance,
reflectance, SIF radiance, and corresponding irradiance were
simulated for each case using SCOPE at the default 1.0-nm
SR and 1.0-nm spectral sampling interval (SSI). All
simulations were convolved to the narrow-band
hyperspectral imager's wavelength range, SSI, and SR
assuming a gaussian band spectral response function.
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Fig. 1: Airborne hyperspectral image acquired over the field
trial site. Airborne radiance (b) and reflectance (c) were used
for SIF quantification and plant traits estimation using
SCOPE model inversions. The 1.0 nm FWHM radiance
shown in (b) were obtained by convolving the original sub-
nanometer resolution (0.1-0.2 nm FWHM) spectra.

2.2. SIF quantification and inversion of plant traits

The radiance spectra extracted from the sub-nanometer
imager were convolved to the default 1.0-nm SR and 1.0-nm
SSI used in SCOPE (Fig. 1b). The resampled sub-
nanometer-derived radiance was used to calculate the SIF
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used as a reference against the SIF quantified from the
narrow-band hyperspectral imager using the modelling
approach proposed in this study. The O2-A band in-filling
approach was used to quantify SIF from both simulated and
airborne datasets, employing the Fraunhofer Line Depth
(FLD) principle with a total of three spectral bands (3FLD)
[12]. The airborne SIF was further corrected and normalized
to account for the atmospheric and directional effects, as
described in Belwalkar et al. [7]. A look-up table with
100,000 simulations was built by randomly varying the
SCOPE input parameters with a uniform distribution within
the ranges described in section 2.1.2. Reflectance spectra
were matched with the spectral resolution of the narrow-
band hyperspectral imager. The reflectance spectra from the
SCOPE simulations and the narrow-band hyperspectral
imager in the 400-800 nm spectral range (Fig. 1¢) were used
to estimate Ca:, LAIL and LIDF. using an RTM-based
hybrid inversion with random forest regression [13].

2.3. Estimation of SIF at 1 nm resolution from narrow-
band airborne spectra

We evaluated two models for estimating SIF at 1 nm
resolution from narrow-band 5.8 nm spectra. The slope and
coefficient obtained from the linear relationship between
3FLD retrievals at 1 nm and 5.8 nm from the SCOPE
simulated training dataset were used to scale narrow-band
SIF retrievals to 1 nm SR in the first model, named here as
the linear model. The second model was based on an SVR
built using the simulated training dataset, with i) narrow-
band SIF quantified using the 3FLD method, and ii)
SCOPE-derived Ca, LAI, and LIDF, as inputs. The SVR
model was first trained in parallel (MATLAB parallel
computing toolbox) using a radial basis function and
optimizing the hyperparameters during training to predict
SIF at 1 nm SR. A 10-fold cross-validation strategy was
employed to avoid overfitting on the training samples.

The performance of both models was evaluated using root
mean square error (RMSE) and normalized root mean
square error (nRMSE) as metrics. The estimated SIF from
the simulated test dataset was compared against the
reference SCOPE modelled STF. Additionally, both models
were evaluated on the airborne datasets to test the
applicability of the models on the experimental data. The
SCOPE-based hybrid inversion retrieved the three leaf
biochemistry and structural traits. Airborne SIF estimated at
1 nm FWHM from the 5.8 nm spectra was compared against
the resampled sub-nanometer SIF, and error metrics were
calculated.

3. RESULTS

Fig. 2 shows the range of variation for the leaf traits
estimated from the airborne reflectance data using the

SCOPE-based hybrid inversion approach. Ca+ exhibited the
most significant variability across the experimental plots,
attributed to the changes in physiological conditions and
nitrogen fertilizer application rates.
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Fig. 2: Range of variation associated with Ca:p, LAI and
LIDF. estimated from airborne hyperspectral reflectance.
The median and mean values are denoted by a black line
within the box, and the marker 'x', respectively.

The predicted SIF using both linear and SVR models from
SCOPE simulated data showed significant relationships with
the reference 1 nm FWHM SIF (R*>0.9, p<0.001; Fig. 3a
and 3b). The SVR model outperformed (nRMSE=8.82%)
the linear model (nRMSE=12.16%), but the slope of the
linear relationship remained close to 1 for both models.
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Fig. 3: Relationships between the 1 nm FWHM SIF
simulated by SCOPE (used here as the reference SIF) and
the SIF estimated by the linear model (a) and by the SVR
model (b) from 5.8 nm FWHM spectra. Relationships
between the airborne SIF quantified from the sub-nanometer
imager and the airborne SIF at 1 nm FWHM estimated by
the linear model (c) and SVR model (d) from the 5.8 nm
narrow-band airborne spectra.  *p-value<0.05; **p-
value<0.01; ***p-value<0.001.
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The linear model consistently overestimated the SIF
estimated from the narrow-band airborne hyperspectral data,
as expected, which was more pronounced for higher SIF
values (NnRMSE=17.97%, p<0.001; Fig. 3c). In contrast, the
predicted airborne SIF at 1 nm FWHM from the airborne 5.8
nm FWHM spectra using the SVR model demonstrated
strong agreement with the sub-nanometer derived airborne
SIF used as reference (nRMSE=4.93%, p<0.001; Fig. 3d)
and was closer to the 1:1 line.

These results suggest that the 5.8 nm FWHM SIF estimates
can be scaled to 1 nm resolution using SCOPE radiative
transfer ~modelling  techniques and plant-retrieved
parameters. These findings also indicate that machine
learning models built with leaf and canopy biochemistry and
structural  traits in addition to narrow-band SIF
quantification can improve the SIF retrieval to match the
absolute levels of fluorescence expected at 1-nm resolution.

4. CONCLUSIONS

This study investigated the estimation of SIF at 1 nm
FWHM from narrow-band airborne hyperspectral radiance
collected at 5.8 nm FWHM using RTM modelling
techniques. SIF predictions at 1 nm resolution were carried
out with an SVR regression model using SCOPE-simulated
narrow-band SIF data and leaf biochemical and canopy
structural traits as inputs. The model was validated using
simulated and experimental airborne SIF imagery acquired
at 0.1-0.2 nm FWHM resolution. Results showed strong
agreement with both simulated and experimental airborne
datasets, with RMSEs lower than 0.1 mW/m?*nm/sr. These
findings suggest that RTM-based modelling methods applied
to airborne hyperspectral imagers with >1 nm FWHM
resolution, which are commonly used in precision
agriculture, enable the retrieval of SIF at appropriate
absolute physical levels, avoiding the overestimation
typically obtained by lower spectral resolution instruments.
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ABSTRACT

Integrating far-red solar-induced chlorophyll fluorescence
(SIF760) and leaf biochemical constituents (primarily leaf
chlorophyll content (Casp)) has recently been demonstrated
to improve the estimation of leaf nitrogen (N) concentration
from airborne and spaceborne hyperspectral imagery in
homogenous and heterogeneous crop canopies. The advent
of sub-nanometer resolution imagers capable of detecting
narrow solar Fraunhofer lines (FLs) has enabled a novel
opportunity to investigate the prospect of leaf N estimation
using individual FLs in addition to SIF7s and Cap traits.
This study seeks to determine whether incorporating distinct
FL depth derived from sub-nanometer airborne
hyperspectral imagery could improve leaf N estimates. A
sub-nanometer hyperspectral imager with <0.2 nm full-
width at half-maximum (FWHM) resolution was flown in
tandem with a narrow-band hyperspectral imager with 5.8
nm FWHM over a winter wheat field. Plots were fertilized
with variable concentrations of nitrogen to enable nutrient
variability. Regression models utilizing Gaussian process
regression (GPR) were built with different permutations of
SIF, Caspb and depths of individual FLs for estimating leaf N
concentration. Laboratory-determined leaf N estimates were
obtained by destructive sampling. Results show that GPR
models incorporating the depth of distinct Fraunhofer lines
as predictor variables performed better than the benchmark
model constructed using Ca+ and SIF760 alone. The best leaf
N-estimation model built with FLs from the red and far-red
regions (Casb, FL682.97 nm, FL757.002 nm) yielded an R? of 0.71,
outperforming the standard approach used in previous works
(Catb, SIF750) (R?=0.56).

Index Terms— Airborne, Hyperspectral, SIF, GPR,
leaf Nitrogen, Fraunhofer lines, sub-nanometer
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1. INTRODUCTION

Nitrogen is a macronutrient that plays a crucial role in plant
development, yield and grain quality, whilst it is often the
dominant limiting factor in photosynthesis [1], [2]. Accurate
field-wide assessments of leaf N concentration (N%) enable
more targeted use of N-fertilizers, thereby mitigating the
environmental effects of N-overfertilization  while
improving crop yields. Standard destructive sampling for
leaf N determination relies on the laboratory analysis of leaf
tissue using methods such as Kjeldahl digestion and Dumas
combustion. Although accurate, these techniques are time-
consuming and expensive for monitoring the leaf N status of
large areas. In recent decades, the use of remote sensing
technologies  has  increased, particularly  through
hyperspectral imagery, for mapping the spatial and temporal
variations of crop leaf N concentration at the paddock scale
[3]. There are three main categories of leaf N estimation
approaches: 1) empirical methods, 2) physically-based
model inversion methods, and 3) hybrid regression methods.
Among these approaches, hybrid regression methods
integrate physically-based models with advanced machine
learning (ML) algorithms taking advantage of both the
physical basis provided by radiative transfer models (RTMs)
and the adaptability and efficiency of ML methods [4].

Recent studies utilizing narrow-band airborne and
spaceborne hyperspectral imagers have demonstrated that
accurate determination of leaf N concentration is feasible by
combining the RTM-derived leaf biochemical constituents
with SIF76 acquired from high-resolution airborne
hyperspectral imagery [5]-[7]. Even though these studies
have demonstrated improved leaf N retrievals when
including SIF7e0, the potential of other spectral regions
within the 650-800 nm SIF emission region to characterize
both PSI and PSII photosystems has not yet been explored.
Moreover, the potential information extracted from the red
spectral region, i.e. SIF quantified at the O»-B absorption
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band centered around 687 nm (SIFes7) and the depth of solar
FLs, which are absorption lines in the solar spectrum, could
provide valuable insights for improved characterization of
photosynthesis and leaf N variability. With the recently
developed sub-nanometer resolution airborne hyperspectral
imagers, it is now possible to investigate the potential of
these narrow FLs within the SIF emission region. This study
aims to assess the relative contribution of the solar-induced
chlorophyll fluorescence emitted by each of the two
photosystems (PSI and PSII) in explaining leaf N variability
across the field. SIF7e0, SIFss7 and the fractional depth of
distinct solar FLs inside PSI and PSII emission regions
derived from sub-nanometer airborne hyperspectral imagery
are evaluated.

2. MATERIALS AND METHODS
2.1. Study site and airborne hyperspectral imagery

An airborne campaign operated by the HyperSens
Laboratory at the University of Melbourne's Airborne
Remote Sensing Facility was conducted on 9 October 2019
over a phenotyping trial site in Yarrawonga (36°02'55"S,
145°59'02"E), Australia. Several cultivated varieties of
rainfed wheat were grown under varying physiological
conditions and N fertilization treatments. A sub-nanometer
hyperspectral imager (FWHM <0.2 nm; 670-780 nm) and a
narrow-band hyperspectral imager (FWHM = 5.8 nm; 400—
1000 nm) (Headwall Photonics Inc., Fitchburg, MA, USA)
were used to collect airborne hyperspectral imagery at 20
cm spatial resolution. Concurrent with the flights, ground
measurements were conducted using a CC-3 VIS-NIR
cosine corrector diffuser attached to an HR-2000
spectrometer (Ocean Insight, Dunedin, FL, USA) with a
0.065-nm FWHM for continuous measurement of the total
incident radiation at the trial site. Pure vegetation pixels
were extracted within individual plots, and mean radiance
spectra corresponding to the sub-nanometer imager and
reflectance spectra from the narrow-band hyperspectral
imager were retrieved. Belwalkar et al. [8] provide a full
description of the airborne campaign, data preprocessing,
and image correction. In addition, the total leaf N
concentration (%) was destructively determined in the
laboratory using the Kjeldahl method, with samples
consisting of 1015 leaves randomly selected per plot.

2.2. SIF quantification and identification of Fraunhofer
lines

The irradiance spectra obtained from the HR-2000
spectrometer were convolved to the spectral characteristics
of the sub-nanometer imager using Gaussian convolution.
Using this convolved irradiance and the mean radiance
derived from each plot, SIF7s and SIF7 were quantified
using the in-filling approach, employing the Fraunhofer Line
Depth (FLD) principle with a total of three spectral bands

(3FLD) [9]. Furthermore, we identified 17 FLs across the
670—780 nm spectral range of the sub-nanometer imager,
excluding regions of significant water vapour and oxygen
absorption [10]. The identified FLs were divided into two
groups according to their positions in the spectral region.
Five of these FLs were located in the red region of the
spectrum (named here as red FLs), while the remaining
twelve were located within the far-red region (named here
as far-red FLs). The exact location of the band centres
corresponding to all FLs, and the O:-A and O;-B oxygen
absorption bands is illustrated in Fig. 1. For each FL, the
absolute depth in radiance units was computed as the
difference between the radiance at the left shoulder
wavelength and the wavelength at the bottom of the FL. The
left shoulder wavelength was selected by searching for the
local maxima closest to the bottom FL wavelength within 1
nm.
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Fig. 1: Locations of the band centres corresponding to red
FLs (a) and far-red FLs (b,c) shown in dashed black, and
oxygen absorption lines (a,b) shown in dashed red identified
from the average radiance spectra of one of the plots imaged
by the sub-nanometer hyperspectral imager.
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2.3. Regression model for N concentration estimation

We trained regression models based on GPR to empirically
estimate leaf N concentration using Ca+p, SIF760, SIFes7 and
the depth of distinct FLs as a pool of potential predictor
variables. Cqas, SIF760, and depth corresponding to a single
FL were used to initially train GPR models. Subsequently,
GPR models were trained using C,+b, and one FL depth each
from the red and far-red FL groups on leaf N estimation to
further examine the effect of using FL depths corresponding
to both the red and far-red FL groups as predictor variables.
The GPR models were trained in parallel (MATLAB
parallel computing toolbox), and the hyperparameters were
optimized by incorporating Bayesian optimization into the
leave-one-out cross-validation (LOOCYV). The performance
evaluation of the trained GPR models was carried out using
the coefficient of determination (R?), root-mean-square error
(RMSE) and normalized root-mean-square error (nRMSE).
To limit random errors, for each possible combination of
predictor variables, five GPR models were independently
trained, and the average estimate was then used to determine
R?, RMSE and nRMSE.

Soil-Canopy Observation of Photosynthesis and Energy
(SCOPE) [11] RTM-based hybrid inversion with random
forest regression [12] was used to estimate Caip from the
mean reflectance spectra obtained from the narrow-band
hyperspectral imager in the 400-800 nm spectral region. To
determine if the leaf N estimates could be further improved
by including SIF emission regions other than the Oz-A
absorption band, we used the GPR model developed with
Carp and SIF7s0 as a benchmark. Then, we compared this
benchmark by adding the depth of distinct solar FLs into the
models. Since PSII largely influences the red spectral
region, the contributions of SIFs7 and red FLs would be
attributed only to PSIL In contrast, the contributions of
SIF760 and far-red FLs would be attributed to both
photosystems.

3. RESULTS

GPR models trained with a single FL as one of the three
predictor variables produced a total of 17 distinct GPR
models (5 models for the red FL group and 12 models for
the far-red FL group). Among the red FL group, the
performance of the GPR model with FL; depth was
comparable with the benchmark (R? = 0.56; RMSE =
0.229%; nRMSE = 5.89%; Fig. 2a and 2b), whereas the
performance of the other four red FL depths did not improve
the prediction. From the far-red FLs, the model that
included FLi; depth showed the highest performance,
outperforming the benchmark model (R? = 0.63; RMSE =
0.21%; nRMSE = 5.41%; Fig. 2¢). Since FL,; performed the
best among all red and far-red FLs, for the next set of GPR
models with two FLs and Ca.b as predictors, we selected
FL3 among the far-red FLs and independently evaluated all

five red FLs as potential GPR model predictors. When
compared to the benchmark model, the GPR model trained
with FLs (682.97 nm) and FL;3 (757.002 nm) substantially
improved the leaf N estimation (R? = 0.71; RMSE =
0.188%; nRMSE = 4.84%; Fig. 2d) with more data points
closer to the 1:1 line. The model's performance did not
improve further after including more FLs from either of the
two FL groups. Furthermore, we found that the model's
performance decreased by including SIFs; with any
combination of predictor variables. This result could be
potentially attributed to the high collinearity observed
between Caand SIFesr.
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Fig. 2: Measured vs estimated mean leaf N concentration
using the best GPR models as a function of Cy and SIF760
(a), Casp, SIF70 and best performing red FL (b), Ca:p, SIF760
and best performing far-red FL (c), Ca+, and best-performing
combination of one red and one far-red FL (d). The dashed
line indicates the 1:1 line. The error bars indicate the
standard deviation based on five runs of the GPR model.
The GPR model as a function of C,., and STF7¢) was used as
a benchmark. ***p-value<0.05.

Our results suggest that FL depths corresponding to 757.002
nm (FL;3) and 682.97 nm (FLs), in conjunction with Cg:p
estimated by RTM simulations, provided improved
estimates of leaf N concentration. These results provide a
foundation for future research into the use of FLs identified
in sub-nanometer imagery in the context of precision
agriculture and plant physiology monitoring. Future work
will focus on evaluating their potential for identifying pre-
visual signs of vegetation stress.

4. CONCLUSIONS

This study evaluated the capability of 17 narrow solar
Fraunhofer lines depth derived from sub-nanometer imagery
to estimate leaf N concentration when combined with Ca
and SIF7. With an RMSE of less than 0.19%, the best

2821

199



results were achieved by the regression model constructed
using Cg:p, red FL closest to Os-B band (682.97 nm), and
far-red FL closest to O»-A band (757.002 nm). These results
highlight the importance of integrating FLs around the two
oxygen absorption bands for more accurate leaf N estimates.
Furthermore, the proposed approach based on the depth of
distinct FLs demonstrates the importance of sub-nanometer
resolution imaging sensors for vegetation trait retrievals,
supporting the need for future research focused on the entire
SIF emission region for physiological assessment and
vegetation stress detection.
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