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Abstract 1 

Climate change has devastated agriculture and food production. In recent decades heatwaves 2 

and droughts have made it harder to meet global food demand. Understanding photosynthesis, plant 3 

adaptation, and how photosynthetic efficiency affects crop yields is essential for developing stress-4 

resistant plants and increasing crop production. This climate crisis underlines the need for systems 5 

that evaluate photosynthetic efficiency to monitor plant health and increase efficiency. Solar-induced 6 

chlorophyll fluorescence (SIF) is a faint electromagnetic signal that can indicate plant stress and 7 

photosynthetic efficiency. Accurate SIF quantification requires sub-nanometer resolution sensors. 8 

However, sub-nanometer resolution imaging sensors onboard airborne platforms are expensive and 9 

difficult to operate, hindering their widespread operational use for plant phenotyping, stress detection, 10 

and precision agriculture applications. Consideration should therefore turn towards development of 11 

adequate airborne imaging sensors and approaches that use physically-based models to accurately 12 

interpret SIF from the sensor. 13 

This PhD thesis investigates whether commonly accessible narrow-band imaging sensors 14 

could potentially substitute for sub-nanometer imaging sensors in operational SIF retrieval for plant 15 

phenotyping, stress detection, and precision agriculture applications. A narrow-band imaging sensor 16 

and a sub-nanometer imaging sensor flown in tandem were compared for SIF. Physically-based 17 

models and machine learning were used to model the effect of spectral resolution (SR) on narrow-18 

band far-red SIF (SIF760) estimates. Furthermore, an exploratory analysis was conducted to 19 

investigate the potential of solar Fraunhofer lines in the SIF emission region for estimating leaf 20 

nitrogen concentration across a field and detecting biotic stress in infected trees, using airborne sub-21 

nanometer hyperspectral imagery. 22 

Airborne SIF760 retrievals from a narrow-band imaging sensor (5.8-nm FWHM) and a sub-23 

nanometer imaging sensor (0.2-nm FWHM) were compared across two wheat and maize phenotyping 24 
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trials grown under varied nitrogen fertiliser rates over the 2019–2021 growing seasons. The 25 

correlation between SIF760 values obtained from the two sensors was found to be significant (R2 = 26 

0.77–0.9, p < 0.01). Notably, the narrow-band imager yielded higher estimates of SIF760 than the sub-27 

nanometer imager did. The findings of this study suggest that narrow-band imaging sensors may 28 

accurately detect field-wide variations in relative SIF760, particularly when nitrogen fertilisation levels 29 

vary. The next part of this study focused on improving narrow-band-derived absolute SIF760 levels to 30 

reduce systematic bias. A Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE) 31 

model with Support Vector Regression (SVR) scaling airborne narrow-band SIF760 values to 1-nm 32 

FWHM was used. As shown by the normalised root-mean-square error (nRMSE) values of 2.45–33 

5.28% for the SCOPE simulated dataset and 4.5–16% for the airborne hyperspectral dataset, the 34 

estimated SIF760 at 1-nm FWHM showed good agreement with the reference SIF760. This study 35 

suggests that the proposed SIF760 modelling approach can improve the understanding of relative 36 

SIF760 levels quantified by narrow-band hyperspectral imaging sensors in stress detection and plant 37 

physiological monitoring applications. 38 

An exploratory investigation of sub-nanometer imagery-derived Fraunhofer lines (FLs) 39 

concludes the thesis. The study found that including depths for two FLs near oxygen absorption 40 

features improved leaf nitrogen estimation. In addition, it was observed that biotic-induced stress was 41 

linked to FL activation in the red and far-red spectral regions. As biotic-induced stress level increased, 42 

the sensitivity of FLs in the discernment of and differentiation between symptomatic and 43 

asymptomatic trees also increased. These findings indicate the need for additional research on these 44 

specialised potential benefits of FLs, which would allow better understanding and more efficient 45 

management of the various factors that affect the physiological status of plants. 46 
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Preface 

This thesis is comprised of three main research chapters (Chapters 2-4) that are all presented in 

manuscript format. Chapter two has been published in an international journal as a research article, 

Chapter three has been submitted for publication, Chapter four is currently being drafted for 

submission to a journal. These three research Chapters are co-authored with supervisors and research 

collaborators. The use of 'we' and 'our' in these research chapters reflects the contributions of 

coauthors. In each publication, I was responsible for over 60% of the authorship, including research 

conceptualization, modelling, statistical analysis, interpretation of results, and drafting and finalising 

the manuscripts. Below are the bibliographic details for the three research chapters.  

1. Chapter 2 (Paper 1) - Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-

Clemente, R., Zarco-Tejada, P.J., 2022. Evaluation of SIF retrievals from narrow-band 

and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and 

validation in the context of plant phenotyping. Remote Sens. Environ. 273, 112986. 

https://doi.org/10.1016/j.rse.2022.112986. 

2. Chapter 3 (Paper 2) - Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., 

Zarco-Tejada, P.J. Accurate SIF quantification from a narrow-band airborne 

hyperspectral imager using SCOPE: assessment with sub-nanometer imagery (under 

review in the journal Remote Sensing of Environment). 

3. Chapter 4 (Paper 3) - Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., 

Zarco-Tejada, P.J. Prospects of solar Fraunhofer lines derived from sub-nanometer 

hyperspectral imagery for assessing a/biotic stress (currently being drafted for submission 

to the journal Remote Sensing of Environment). 

The original version of the published research article is included in Appendix D. In addition to 

the journal articles, this thesis also produced three conference publications, which are included in 
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Appendices E through G. The three conference publications correspond to the three research chapters. 

Below are the bibliographic specifications of the conference publications: 

1. Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. Comparing 

the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with 

different spectral resolutions for plant phenotyping studies. In: Proc. IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, 

Belgium, pp. 5845–5848. https://doi.org/10.1109/IGARSS47720.2021.9553265. 

2. Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. Accounting for the 

spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE. 

In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 17–22 

July 2022, Kuala Lumpur, Malaysia, pp. 5440–5443. 

https://doi.org/10.1109/IGARSS46834.2022.9884564. 

3. Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. Evaluating the relative 

contribution of Photosystems I and II for leaf nitrogen estimation using fractional depth 

of Fraunhofer lines and SIF derived from sub-nanometer airborne hyperspectral 

imagery. In: Proc. IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 16–21 July 2023, Pasadena, CA, USA, pp. 2819–2822. 

 

Further, during the PhD, I was involved in another research project outside this thesis scope, in 

which I was the joint first author for a published journal article as follows: 

Deshpande, P., Belwalkar, A., Dikshit, O., Tripathi, S., 2021. Historical land cover 

classification from CORONA imagery using convolutional neural networks and geometric 

moments. Int. J. Remote Sens., 42, 5144-5171. https://doi.org/10.1080/01431161.2021.1910365. 
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Chapter 1  48 

 49 

Introduction 50 
  51 
 52 

1.1 Photosynthesis: principles and regulations 53 

The global population is projected to reach 9.7 billion by the year 2050 (United Nations, 54 

2022). A 70% increase in food production will be required to keep up with the demands of the world's 55 

expanding population, which equates to an additional 44 million metric tonnes of food per year 56 

(Tester and Langridge, 2010). Furthermore, climate change – including varying greenhouse gas 57 

concentrations in the atmosphere, rising temperatures, altered precipitation patterns, and increased 58 

frequency of extreme weather events – is having a substantial impact on agricultural production and 59 

food security (Asseng et al., 2015; Cogato et al., 2019; Hasegawa et al., 2018).  60 

Photosynthesis is the fundamental mechanism governing plant growth and productivity, 61 

enabling plants to accumulate biomass (Hofius and Börnke, 2007; Simkin et al., 2019; Van Bel et al., 62 

2003). It is the process by which plants transform solar energy into the biochemical energy which 63 

supports the vast majority of life on earth. As photosynthesis is the primary regulator of plant growth 64 

and productivity, it is vital to understand its functioning and plant adaptations to changing 65 

environmental conditions, as well as the effects of photosynthetic efficiency on crop yields, in order 66 

to increase crop production and develop stress-tolerant plants to meet global food demands (Hussain 67 

et al., 2021). 68 

Photosynthesis is initiated by the absorption of light by plant photosynthetic pigments, 69 

primarily chlorophylls, and involves two distinct sets of reactions: (1) light reactions and (2) carbon 70 

fixation reactions (Porcar-Castell et al., 2014). The light reactions involve the conversion of absorbed 71 

solar radiation into chemical energy in the form of two biochemical products, adenosine triphosphate 72 

(ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). The carbon fixation reactions, 73 
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on the other hand, involve the synthesis of complex energy-rich biomolecules from the ATP and 74 

NADPH using atmospheric CO2. The overall sequence of carbon fixation reactions is called the 75 

Calvin-Benson cycle (Stiller, 1962). 76 

The light absorption and energy conversion reactions occur in the photosynthetic apparatus, 77 

which consists of four different complexes – two photosystems (PSI and PSII), the cytochrome b6f, 78 

and ATP synthase (F-type ATPase) – encapsulated within the thylakoid membrane of the chloroplasts 79 

(Frigerio et al., 2008). A photosystem is the collective term for the antenna complex and reaction 80 

centre. Antenna complexes are composed of photosynthetic pigments – including chlorophylls, 81 

carotenoids, phycoerythrin, and phycocyanin – bound to proteins. The antenna system absorbs light 82 

energy and transfers it to the reaction centres. The transferred energy is then used by the reaction 83 

centres to drive electron transfer reactions (photochemistry), resulting in charge separation within the 84 

thylakoid membrane driven by the transfer of electrons from chlorophyll to pheophytin (Blankenship, 85 

2014). The cytochrome b6f complex functions as an electron transfer bridge between the two 86 

photosystems, enabling the transfer of electrons from PSII to PSI. Additionally, the electron transfer 87 

energy is used by the cytochrome b6f complex for transferring protons from the stroma to the 88 

thylakoid lumen. The proton concentration gradient resulting from the accumulation of protons in the 89 

thylakoid lumen is then used by the final complex of the photosynthetic apparatus, ATP synthase, to 90 

synthesise ATP (Kramer et al., 2004). 91 

The rates of production of the two biochemical products, ATP and NADPH, by light reactions 92 

and the rate of their consumption by carbon fixation reactions may not always be equivalent, due to 93 

the influence of environmental factors like water and sunlight availability, temperature, or pathogen 94 

infection (Hatfield and Prueger, 2011; Huner et al., 1996; Thiele et al., 1998). Consequently, to 95 

compensate for these differential rates, plants have evolved a variety of mechanisms to regulate the 96 

energy balance between light reactions and carbon fixation reactions (Anderson et al., 1995; Walters, 97 

2005). These include changes in chlorophyll concentrations (Giardi et al., 1996; Murchie and Horton, 98 
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1997), photorespiration (Kozaki and Takeba, 1996), chloroplast and leaf movements (Arena et al., 99 

2008; Haupt 1990; Ludlow and Bjorkman 1984; Sarvikas et al., 2010), anthocyanin concentrations 100 

(Close and Beadle, 2003; Merzlyak et al., 2008). Typically, these regulatory mechanisms are able to 101 

compensate for detrimental environmental conditions, but prolonged stress can weaken them and 102 

cause a substantial decrease in plant productivity. Hence, the quantification of photosynthetic 103 

efficiency is critical for monitoring the health of plants and advancing our understanding of how the 104 

photosynthetic machinery operates. 105 

 106 

1.2 Chlorophyll fluorescence 107 

There are three possible outcomes when chlorophyll pigments within the photosynthetic 108 

apparatus absorb solar radiation: (i) the energy can be used to drive photochemistry; (ii) the energy 109 

can be dissipated as heat; or (iii) the energy can be re-emitted as an electromagnetic signal known as 110 

chlorophyll fluorescence (ChlF) (Krause and Weis, 1984; Maxwell and Johnson, 2000). ChlF 111 

originates primarily from the antenna complexes and reaction centres of PSII, with a minor 112 

contribution from PSI. The three energy dissipation pathways compete with one another, and 113 

therefore any increase in the efficiency of one pathway lowers the yield of the other two (Maxwell 114 

and Johnson, 2000).  115 

At the molecular level, light absorption by chlorophyll excites electrons from their ground 116 

state (S0) to a higher energy level known as a ‘singlet’. Each electronic energy level has the energy 117 

levels of the various rotation and vibration states superimposed on it. There are two major singlet 118 

states that exist, depending on the energy of the absorbed photon. The absorption of red light causes 119 

excitation of the first singlet (S1), while blue light causes excitation of the second singlet (S2). As S2 120 

is extremely unstable, with a half-life in the order of 10-12–10-14 seconds, the excitation energy is 121 

exclusively lost as heat through rotations and vibrations until S1 is attained. The loss of excitation 122 
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energy from S1 to S0 occurs via a number of pathways: the excitation energy could be used to drive 123 

photochemistry; the excitation energy could be transferred to a nearby pigment (Forster energy 124 

transfer) (Forster, 1948); the excitation energy could be emitted as ChlF signal (Porcar-Castell et al., 125 

2014); the excitation energy could be dissipated as heat (Heldt and Piechulla, 2011). Furthermore, S1 126 

can attain a lower excitation state, known as the triplet state, by releasing energy as heat via a process 127 

known as intersystem crossing (Clegg, 2004). The relaxation of energy from the triplet state to the 128 

ground state, S0, then occurs via the emission of phosphorescent light. A schematic representation of 129 

the entire absorption and energy partitioning process is shown in Fig. 1-1.  130 

1.2.1 Relationship between Chlorophyll Fluorescence and photochemistry 131 

For PSII, the quantum yield (𝛷) of an ith process competing against n other de-excitation 132 

pathways with 𝑘௜ as the first-order rate constant can be expressed as (Govindjee, 2004): 133 

 𝛷௜ =  
𝑘௜

∑ 𝑘௜
௜ୀ௡
௜ୀ଴

 (1.1) 

When all PSII reaction centres are open, owing to the dark-adapted leaf, the quantum yield of 134 

ChlF (𝛷ி೚
) will be at its minimum, resulting in the lowest ChlF emission (𝐹௢), while the quantum 135 

yield of photochemistry (𝛷௣) will be at its maximum, denoted as 𝛷௉೚
. Both quantum yields can be 136 

expressed with Eq. (1.1) as (Butler, 1978): 137 

 𝛷௉೚
=  

𝑘௣

𝑘௉ + 𝑘ி + 𝑘ை
 

 

(1.2) 

 𝛷ி೚
=  

𝑘ி

𝑘௉ + 𝑘ி + 𝑘ை
 (1.3) 

 138 
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In Eq. (1.2) and Eq. (1.3), 𝑘௉, 𝑘ி and 𝑘ை represent, respectively, the rate constants for 139 

photochemistry, ChlF and the other de-excitation pathways, mainly regulated and constitutive heat 140 

dissipation, as illustrated in Fig. 1-1. Likewise, when the PSII reaction centres are closed due to the 141 

exposure of a dark-adapted leaf to a short actinic pulse of high photosynthetically active photon flux 142 

density (PPFD) after reaching 𝐹௢, the rate constant for photochemistry is almost zero, resulting in the 143 

highest ChlF emission (𝐹ெ) and the maximum quantum yield of chlorophyll fluorescence (𝛷ிಾ
): 144 

 
𝛷ிಾ

=  
𝑘ி

𝑘ி + 𝑘ை
 (1.4) 

Rearranging Equations (1.3) and (1.4) by calculating their difference and dividing by Equation 145 

(1.4) yields: 146 

 𝛷ிಾ
− 𝛷ி೚

𝛷ிಾ

=  
𝑘௉

𝑘௉ + 𝑘ி + 𝑘ை
= 𝛷௉೚

 (1.5) 

 147 

As the ChlF intensity is proportional to the quantum yield with additional terms related to the 148 

intensity of the incident light and the absorption cross-section of the leaf, the quantum yield can be 149 

substituted for by the corresponding ChlF intensity levels by assuming that the additional terms are 150 

constant (Govindjee, 2004) which simplifies Eq. (1.5) as follows: 151 

 𝐹௠ − 𝐹௢

𝐹௠
=

𝐹௩

𝐹௠
= 𝛷௉೚

 (1.6) 

 152 

In Eq. (1.6), 𝐹௩ denotes the difference between 𝐹௠ and 𝐹௢ in dark-adapted vegetation and is 153 

referred to as variable fluorescence. This theoretical derivation (Eq. 1.1 – 1.6) suggests that 
ிೡ

ி೘
 could 154 

serve as an indicator of the PSII photochemistry efficiency, enabling the assessment of plant health 155 
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with measurements of variations in ChlF parameters. However, 𝛷௉೚
 computed using 𝐹௠ and 𝐹௩ cannot 156 

be considered a rigorous quantitative measure of the quantum yield of PSII photochemistry because 157 

some of the assumptions made to derive Eq. (1.6) may not be applicable under all conditions 158 

(Blankenship, 2014). Nevertheless, 
ிೡ

ி೘
 provides a reasonable estimation of PSII photochemistry 159 

efficiency with a consistent mean value of 0.83 for non-stressed leaves (Björkman and Demmig, 160 

1987). 161 

 162 

Fig. 1-1. Perrin-Jablonski diagram illustrating the entire absorption and energy partitioning process 163 
in a chlorophyll molecule. Fine lines represent various rotational and vibrational energy levels, and 164 
solid lines represent electronic energy levels (modified after Heldt and Piechulla, 2011). 165 

 166 
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On exposing a dark-adapted leaf to strong light, the PSII reaction centres gradually close, 167 

resulting in an increase in ChlF yield up to maximum ChlF intensity 𝐹௠, but ChlF yield then begins 168 

to decrease within a few minutes. This phenomenon of decreased ChlF yield is referred to as 169 

fluorescence quenching and can be explained by two concurrent processes: photochemical quenching 170 

(PQ), which indicates the availability of open PSII reaction centres for photochemistry; and non-171 

photochemical quenching (NPQ), which indicates the efficiency of energy conversion to heat via 172 

regulated non-radiative heat dissipation (Maxwell and Johnson, 2000). Within several minutes of 173 

illumination, ChlF attains a steady-state level at intensity 𝐹௧. Consequently, in order to estimate PSII 174 

photochemistry from ChlF measurements, disentangling these two quenching mechanisms is crucial. 175 

1.2.2 Chlorophyll fluorescence quantification 176 

Based on the light source employed, ChlF estimation methods can be broadly divided into 177 

two groups – (1) active methods and (2) passive methods. Active methods rely on an artificial light 178 

source, such as pulse-amplitude modulation (PAM) fluorometry or high-power laser diodes, and are 179 

typically restricted to leaf-scale. In contrast, passive techniques use solar irradiance and the radiance 180 

emitted by vegetation and are generally applicable at canopy-scale. 181 

1.2.2.1 Chlorophyll fluorescence quantification using active methods 182 

PAM fluorometry (Schreiber et al., 1986), which makes use of high-tech electronic 183 

instruments called PAM fluorometers, is one of the most popular active methods for estimating ChlF 184 

at leaf-scale. PAM fluorometers enable the quantification and isolation of the variations in ChlF yield 185 

induced by the pulse-modulating measuring light against a background of ChlF intensity fluctuations 186 

originating from actinic and saturating lights that are orders of magnitude larger. This makes 187 

fluorometers suitable for experiments under both controlled laboratory conditions and field 188 

conditions. There are four types of light sources that are used in PAM fluorometers for their specific 189 

functions: a low-intensity pulsed measuring light (ML); a moderate-intensity actinic light (AL); a 190 
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high-intensity saturating pulse (SP); and far-red radiation (FR). The measurement is initiated by the 191 

application of ML under a dark-adapted state to obtain 𝐹௢. Then, 𝐹௠ is measured in the dark-adapted 192 

state with the application of SP for a short duration (usually less than 1 s). The application of SP 193 

activates AL, resulting in a rapid increase in ChlF followed by a slow drop to a steady-state intensity, 194 

𝐹௧. Both photochemical and non-photochemical mechanisms contribute to these ChlF intensity 195 

changes. The application of SP at this precise moment eliminates the contribution of PQ and produces 196 

the light-adapted maximal ChlF intensity 𝐹௠
ᇱ  which is lower than 𝐹௠. Since the difference between 197 

𝐹௠ and 𝐹௠
ᇱ  is accounted for by non-photochemical processes, and the difference between 𝐹௠

ᇱ  and 𝐹௧ 198 

is accounted for by photochemical processes, these ChlF parameters can be used to differentiate 199 

between the PQ and NPQ contributions (Brooks and Niyogi, 2011). The quantum yield of 200 

photochemistry (defined as optimal quantum yield) and of NPQ can be defined as: 201 

 
𝛷௉ =  

𝐹௠
ᇱ − 𝐹௧

𝐹௠
ᇱ

 (1.7) 

 
𝑁𝑃𝑄 =  

𝐹௠ − 𝐹௠
ᇱ

𝐹௠
ᇱ

 (1.8) 

 202 

Using Eq. (1.7) eliminates the need to determine 𝐹௢, allowing measurements to be conducted 203 

under actual field conditions without the need to fully dark-adapt the sample (Genty et al., 1989). The 204 

actinic light is subsequently turned off and FR is activated to permit the re-oxidation of PSII in order 205 

to obtain the minimal ChlF in the light-adapted state (𝐹௢
ᇱ). The ChlF induction kinetics recorded using 206 

a typical PAM fluorometer, are shown in Fig. 1-2. 207 

In addition to PAM fluorometry, laser-induced fluorescence transient (LIFT) is a newly 208 

developed active approach for measuring ChlF. In contrast to PAM fluorometers, which require close 209 

proximity to the leaf for ChlF yield estimation, the LIFT method can be used at target distances 210 

between 5 and 50 m. LIFT is based on the principle of fast repetition rate fluorometry (FRRF) (Kolber 211 
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et al., 1998) and employs a pulsed laser excitation source with a variable duty cycle to modulate the 212 

extent of photosynthetic activity and quantify the resulting variations in ChlF yield (Kolber et al., 213 

2005). 214 

 215 

 216 

Fig. 1-2. ChlF induction kinetic curve recorded by a typical PAM fluorometer (modified after 217 
Schreiber, 2004). 218 

 219 

1.2.2.2 Chlorophyll fluorescence quantification using passive methods 220 

Since ChlF is an electromagnetic signal emitted as a by-product of photosynthesis, it can be 221 

remotely sensed. Using solar radiation as its energy source, solar-induced chlorophyll fluorescence 222 

(SIF) refers to the passive estimation of ChlF primarily at canopy-scale. SIF is a faint electromagnetic 223 

signal that superimposes onto reflected solar radiation and accounts for a very small fraction (< 1-224 

2%) of the total upwelling radiance (L) from the vegetation target (Frankenberg and Berry, 2018). 225 

Consequently, isolating the SIF signal from the L signal is challenging because of SIF's negligible 226 

contribution. 227 
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Spectral emission of SIF ranges from 650–800 nm, with peaks in the red and near-infrared 228 

(far-red) spectral regions at approximately 685 nm (SIF685) and 740 nm (SIF740), respectively 229 

(Mohammed et al., 2019). SIF originates from both PSI and PSII, with PSII being the primary 230 

contributor to the complete SIF emission range and PSI contributing mostly in the near-infrared 231 

region (Fig. 1-3a). Assuming that both SIF emission and surface reflectance (r) follow Lambert's law, 232 

the top-of-canopy (TOC) L detected by a ground-based sensor include contributions from both solar-233 

reflected and SIF emitted radiations and can be represented as follows (Meroni et al., 2009): 234 

 
𝐿(𝜆) =

𝑟(𝜆). 𝐸(𝜆)

𝜋
+ 𝑆𝐼𝐹(𝜆) 

(1.9) 

 235 

where 𝜆 and 𝐸 represent the wavelength and total irradiance (sum of direct and diffused 236 

components) incident on the target, respectively. All the terms in Eq. 1.9 are spectrally variable, with 237 

ground-based sensors only providing quantifications for E and L, leaving r and SIF to be determined. 238 

Since there are these two unknown terms in Eq. 1.9, assumptions regarding the spectral shape of r 239 

and SIF are leveraged for SIF estimation. 240 

Reflectance-based approaches and radiance-based approaches can be broadly categorised as 241 

the two types of SIF retrieval techniques (Meroni et al., 2009). Reflectance-based approaches were 242 

the earliest attempt to explore the effects of SIF on the apparent reflectance spectra (r*) using 243 

conventional remote sensing techniques, paving the way for future advances. Since these approaches 244 

used r* to derive spectral indices linked to SIF, they could not retrieve SIF in physical units. The link 245 

between SIF and apparent reflectance r* (Fig. 1-3b) was computed as the ratio between the upwelling 246 

and incident fluxes as related to pure reflectance r: 247 

 
𝑟∗(𝜆) =

𝜋. 𝐿(𝜆)

𝐸(𝜆)
= 𝑟(𝜆) +

𝜋. 𝑆𝐼𝐹(𝜆)

𝐸(𝜆)
 (1.10) 

 248 
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The several spectral indices proposed for SIF retrieval (Dobrowski et al., 2006; Pérez-Priego 249 

et al., 2005; Zarco-Tejada et al., 2000a; 2000b) can be grouped into three distinct classes: reflectance 250 

ratios (e.g., r685/r630 and r740/r800); derivatives (e.g., D730/D706); and subtraction metrics (e.g., r760.59-251 

r759.5). With the emergence of sensors with sub-nanometer resolution capabilities for estimating SIF 252 

in precise physical units, reflectance-based methodologies have been rendered obsolete and replaced 253 

with radiance-based approaches. 254 

 255 

Fig. 1-3. SIF spectra based on the contributions from the two photosystems, PSI and PSII (a) and 256 
reflectance spectra (b) in the 650–800 nm SIF emission region, simulated using the Soil-Canopy 257 
Observation of Photosynthesis and Energy (SCOPE) radiative transfer model. The insets in (b) show 258 
comparisons of r and r* in the far-red (750–780 nm) and red (685–690 nm) spectral regions, 259 
respectively. 260 

 261 

Radiance-based approaches retrieve SIF in radiance units from radiometrically calibrated 262 

downwelling irradiance and upwelling radiance reflected from vegetation canopies. Several 263 

algorithms have been proposed to disentangle the contribution of SIF from that of the reflected solar 264 

radiation (see a full review in Mohammed et al., 2019). Using these algorithms, SIF can be estimated 265 

within specific absorption bands or across the entire emission region. As SIF is a relatively faint 266 

signal, its precise estimation requires the use of spectral regions where SIF's proportional contribution 267 

to the total reflected radiance is high. Opportunities exist in solar Fraunhofer Lines (FLs) and telluric 268 

absorption lines of the solar spectrum, where irradiance is drastically reduced (Mohammed et al., 269 

2019). Since these absorption features are quite narrow, their proper characterisation is needed for 270 
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the accurate estimation of SIF, which necessitates the use of sub-nanometer resolution (full-width-at-271 

half-maximum (FWHM) ≤1-nm) instruments.  272 

The majority of SIF quantification methods use oxygen absorption bands (O2-A and O2-B) 273 

centred around 760 nm (SIF760) and 687 nm (SIF687), respectively, since they are wider and deeper 274 

than other absorption features (Meroni et al., 2009). The oldest and most extensively used approach 275 

for SIF quantification is based on the Fraunhofer Line Depth (FLD) (Plascyk, 1975) principle, which 276 

uses the fluorescence in-filling effect. Although originally intended for FLs, this approach is currently 277 

used for SIF quantification in oxygen absorption bands. Using two flux measurements, one inside 278 

and one outside the absorption line, the FLD approach estimates SIF by comparing the depth of 279 

absorption lines obtained simultaneously from a fluorescence-free reference and a vegetation target 280 

(Fig. 1-4). Assuming both reflectance and SIF remain constant within the narrow absorption region 281 

encompassed by the inside (𝜆௜௡) and outside (𝜆௢௨௧) wavelengths, Eq. (1.9) can be written as: 282 

𝐿(𝜆௜௡) =
𝑟. 𝐸(𝜆௜௡)

𝜋
+ 𝑆𝐼𝐹  

  (1.11) 

𝐿(𝜆௢௨௧) =
𝑟. 𝐸(𝜆௢௨௧)

𝜋
+ 𝑆𝐼𝐹 

(1.12) 

 283 

The above system of equations can be solved using the measurements of E and L at the two 284 

wavelengths from the ground-based sensor to obtain estimates of r and SIF: 285 

𝑟 =
𝐿(𝜆௢௨௧) − 𝐿(𝜆௜௡)

𝐸(𝜆௢௨௧) − 𝐸(𝜆௜௡)
 .  𝜋 (1.13) 

𝑆𝐼𝐹 =
𝐸(𝜆௢௨௧). 𝐿(𝜆௜௡) − 𝐸(𝜆௜௡). 𝐿(𝜆௢௨௧)

𝐸(𝜆௢௨௧) − 𝐸(𝜆௜௡)
 (1.14) 

 286 
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Although SIF quantification using the FLD method is simple because it requires only two 287 

wavelengths, the assumption of constant r and SIF within the narrow absorption line is inadequate. 288 

Consequently, numerous variations of the conventional 2-band FLD method have been proposed, 289 

including 3-band FLD (3FLD) (Maier et al., 2003), corrected FLD (cFLD) (Gómez-Chova et al., 290 

2006), extended FLD (eFLD) (Mazzoni et al., 2007) and improved FLD (iFLD) (Alonso et al., 2008). 291 

In particular, 3FLD and iFLD are the most often used FLD-based methods for SIF quantification at 292 

oxygen absorption features. 293 

 294 

Fig. 1-4. Fraunhofer Line Depth (FLD) principle within the O2-A absorption region. The spectra were 295 
simulated using the SCOPE model. 296 

 297 

The 3FLD method assumes that both r and SIF vary linearly along the narrow absorption line 298 

considered. Rather than employing a single reference band outside the absorption line (𝜆௢௨௧), the 299 

weighted mean of two reference bands located at the left (𝜆௢௨௧
௟ ) and right (𝜆௢௨௧

௥ ) shoulders of the 300 

reference band inside the absorption line is used. By substituting for the outside fluxes with the 301 

interpolated values in Eq. 1.14, SIF can be quantified as: 302 

𝑆𝐼𝐹ଷி௅஽ =
൫𝑤௟. 𝐸(𝜆௢௨௧

௟ ) + 𝑤௥ . 𝐸(𝜆௢௨௧
௥ )൯. 𝐿(𝜆௜௡) − 𝐸(𝜆௜௡). ൫𝑤௟. 𝐿(𝜆௢௨௧

௟ ) + 𝑤௥ . 𝐿(𝜆௢௨௧
௥ )൯

𝑤௟. 𝐸൫𝜆௢௨௧
௟ ൯ + 𝑤௥ . 𝐸(𝜆௢௨௧

௥ ) − 𝐸(𝜆௜௡)
 (1.15) 

                                        where  𝑤௟ =
ఒ೚ೠ೟

ೝ ିఒ೔೙

ఒ೚ೠ೟
ೝ ିఒ೚ೠ೟

೗  , 𝑤௥ =
ఒ೔೙ିఒ೚ೠ೟

೗

ఒ೚ೠ೟
ೝ ିఒ೚ೠ೟

೗  (1.16) 
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 303 

The iFLD method makes use of two correction factors (𝛼௥
∗ and 𝛼ி

∗ ) to relate r and SIF inside 304 

and outside the narrow absorption line. The correction factors are computed as: 305 

𝛼௥
∗ =

𝑟∗(𝜆௢௨௧) 

𝑟̃(𝜆௜௡)
 ,            𝛼ி

∗ ≈
𝐸(𝜆௢௨௧) 

𝐸෨(𝜆௜௡)
 . 𝛼௥

∗ (1.17) 

 306 

In Eq. (1.17), 𝑟̃(𝜆௜௡) denotes the interpolated apparent reflectance inside the absorption line 307 

obtained by either using cubic or spline interpolation to eliminate the in-filling effect on apparent 308 

reflectance (Alonso et al., 2008). 𝐸෨(𝜆௜௡) represents the absorption free interpolated irradiance inside 309 

the absorption line. Interpolations are performed using numerous contiguous, absorption-unaffected 310 

bands surrounding the absorption line. Using both the correction factors, SIF can be quantified as: 311 

𝑆𝐼𝐹௜ி௅஽ =
𝛼௥

∗. 𝐸(𝜆௢௨௧). 𝐿(𝜆௜௡) − 𝐸(𝜆௜௡). 𝐿(𝜆௢௨௧)

𝛼௥
∗. 𝐸(𝜆௢௨௧) − 𝛼ி

∗ . 𝐸(𝜆௜௡)
 (1.18) 

 312 

Spectral Fitting Methods (SFMs) are a more recent, improved technique for SIF quantification 313 

(Cogliati et al., 2015; 2019; Meroni et al., 2010; Zhao et al., 2018). In SFM, the spectral shapes of 314 

both r and SIF are modelled as smooth mathematical functions employing all available bands within 315 

a constrained spectral region known as the fitting window. The most widely used mathematical 316 

functions are polynomial functions of orders 1 to 3 and the Gaussian function. The upwelling radiance 317 

recorded by the sensor can be expressed as (Meroni et al., 2010): 318 

 
𝐿(𝜆) =

𝑟௠௢ௗ(𝜆). 𝐸(𝜆)

𝜋
+ 𝑆𝐼𝐹௠௢ௗ(𝜆) + 𝜀௠௢ௗ(𝜆) = 𝐿௠௢ௗ(𝜆) + 𝜀௠௢ௗ(𝜆) 

(1.19) 

 319 
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In Eq. (1.19),  𝑟௠௢ௗ(𝜆) and 𝑆𝐼𝐹௠௢ௗ(𝜆) represents the modelled reflectance and SIF within the 320 

fitting window, respectively. 𝐿௠௢ௗ(𝜆) and 𝜀௠௢ௗ(𝜆) represents the modelled upwelling radiance and 321 

modelling error at each wavelength. The mathematical system generated using all wavelengths within 322 

the fitting window is then solved to obtain the coefficients associated with the parametric functions 323 

of modelled reflectance and SIF using least-squares fitting. 324 

Apart from FLD-based approaches and SFM methods, data-driven statistical approaches 325 

based on Principal Component Analysis or Singular Value Decomposition (Guanter et al., 2013; 326 

Joiner et al., 2013; Köhler et al., 2015) have also been developed for SIF quantification. These 327 

approaches have been developed particularly for spaceborne SIF retrievals within the narrow solar 328 

Fraunhofer lines around the O2-A absorption region. Other recent SIF quantification methods include 329 

physically-based approaches using numerical inversion of canopy radiative transfer models (RTM) 330 

(Celesti et al., 2018; Verhoef et al., 2018), Partial Least Squares (PLS) regression-based approach 331 

exploiting solar Fraunhofer lines (Naethe et al., 2022), hybrid machine learning phasor-based 332 

approach (Scodellaro et al., 2022) and a band shape fitting approach based on the measured shape of 333 

the oxygen absorption feature (Van der Tol et al., 2023). 334 

 335 

1.3 Quantification of SIF at different scales and platforms 336 

The instrumentation used for SIF quantification has undergone significant advances over the 337 

past few decades. Sensors capable of quantifying SIF can be deployed on a variety of platforms, 338 

including fixed or mobile platforms for ground-based SIF, unmanned aerial vehicles (UAVs) and 339 

conventional aircraft for airborne SIF, and spacecraft for spaceborne SIF. 340 

1.3.1 SIF quantification by ground-based spectrometers  341 

 SIF has been primarily quantified at ground-level due to the wide availability of ground-based 342 

spectrometers that can measure both downwelling irradiance and upwelling radiance and thereby 343 
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validate, interpret, and provide data inputs to models for airborne and spaceborne SIF measurements. 344 

In conjunction with additional field measurements collected at comparable temporal and spatial 345 

scales, ground-based SIF measurements can aid in the interpretation and comprehension of the SIF 346 

signal. Several in situ automated SIF systems are currently available, in either a bi-hemispherical or 347 

hemispherical-conical configuration, with the capacity to acquire continuous high temporal resolution 348 

TOC SIF data. Bi-hemispherical configuration systems include Fluorescence Auto-Measurement 349 

Equipment (FAME) (Gu et al., 2019) and 4S-SIF (Kim et al., 2022) whereas hemispherical-conical 350 

configuration systems include FLOX (JB Hyperspectral Devices, Düsseldorf, Germany), FluoSpec2 351 

(Yang et al., 2018), PhotoSpec (Grossmann et al., 2018), AutoSIF (Zhou et al., 2016) and SIFSpec 352 

(Du et al., 2019).  353 

Due to its extremely high signal-to-noise ratio (SNR) of 1000:1 and FWHM of 0.3-nm, QE-354 

Pro (Ocean Insight, Dunedin, FL, USA) has become the most widely used spectrometer for ground-355 

based SIF studies in recent years. Ground-based SIF studies using automated SIF systems have 356 

primarily examined the link between far-red SIF and gross primary productivity (GPP), the factors 357 

affecting this relationship and the viability of predicting GPP precisely using long-term ground-based 358 

SIF measurements based on modelling methods (Chen et al., 2022; Damm et al., 2010; Dechant et 359 

al., 2020; Hao et al., 2022; Li et al., 2020; Liu et al., 2017; 2021; Morozumi et al., 2023; Yang et al., 360 

2015). The detection of vegetation stress caused by factors like, water stress (Butterfield et al., 2023; 361 

Pérez-Priego et al., 2005; De Cannière et al., 2021; 2022; Xu et al., 2018; 2021), biotic-induced stress 362 

(Du et al., 2023; Jing et al., 2022), heat stress (Kimm et al., 2021, and herbicide-induced stress (Carter 363 

et al., 2004; Meroni and Colombo, 2006), is yet another prominent application for ground-based SIF 364 

studies.  365 

1.3.2 SIF quantification from sensors onboard spaceborne platforms 366 

The practical implementation of satellite-based SIF estimation has been facilitated by new 367 

insights into the impact of fluorescence on apparent reflectance, along with advances in modelling, 368 
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estimation methods, and sensor capabilities, leading to an expansion of SIF's applicability across a 369 

wide range of research domains (Mohammed et al., 2019; Sun et al., 2023b). In 2007, the first 370 

retrievals of SIF760 were made using the Medium Resolution Imaging Spectrometer (MERIS) 371 

(Guanter et al., 2007). SIF760 quantification from space was confirmed by this regional-scale study, 372 

leading to the development of the first global maps of SIF from the Thermal And Near-infrared Sensor 373 

for Carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) on the Japanese 374 

Greenhouse gases Observing SATellite (GOSAT) (Joiner et al., 2011). Since then, a number of 375 

satellite sensors that were originally intended for measuring atmospheric trace gases and greenhouse 376 

gases (eg., methane, sulphur dioxide, carbon dioxide) have been used to quantify SIF on both a 377 

regional and global scale at coarse spatial scales. These satellites include Global Ozone Monitoring 378 

Experiment 2 (GOME-2) (Joiner et al., 2013), Scanning Imaging Absorption SpectroMeter for 379 

Atmospheric CHartographY (SCIAMACHY) (Joiner et al., 2012), Orbiting Carbon Observatory 2 380 

(OCO-2) (Frankenberg et al., 2014), TROPOspheric Monitoring Instrument (TROPOMI) (Guanter 381 

et al., 2015), and Chinese Carbon Dioxide Observation Satellite Mission (TanSat) (Du et al., 2018).  382 

In addition to the existing satellite missions, in 2024, the European Space Agency (ESA) aims 383 

to launch the FLuorescence EXplorer (FLEX) (Drusch et al., 2017), designed specifically to measure 384 

SIF at a high spectral resolution of 0.3 nm, globally, with a spatial resolution of 300 m. The primary 385 

research goal of FLEX is to advance our understanding of physiological signs of plant stress and 386 

global seasonal variations in photosynthetic activity and efficiency. Specific outputs expected from 387 

the mission include: (1) SIF estimates at the two peaks and at the O2-A and O2-B bands (SIF685, SIF740, 388 

SIF760, SIF687); (2) estimates of total fluorescence emission; and (3) reflectance-derived indices and 389 

biophysical traits (ESA, 2018). 390 

1.3.3 SIF quantification from sensors onboard airborne platforms 391 

Observations of SIF at intermediate scales from airborne platforms are vital for bridging the 392 

gap between the field and global scales, allowing for improved interpretation of SIF at high spatial 393 



 
18 

 

resolutions. Airborne SIF measurements can be classified based on whether the sensor deployed on 394 

the airborne platform is an imaging sensor or a non-imaging spectrometer. Fluorescence mapping 395 

using airborne imaging sensors can reveal photosynthetic efficiency and detect early indicators of 396 

stress at scales significant for ecology and resource management. Moreover, airborne SIF 397 

measurements have gradually become an integral component of the process of calibrating and 398 

validating SIF measurements obtained from spaceborne sensors. 399 

The past decade has seen significant technological advances in airborne hyperspectral 400 

imagers, particularly the introduction of sub-nanometer imagers that can accurately characterise the 401 

narrow absorption features for accurate SIF quantification in physical units. These imagers have now 402 

replaced the initially employed coarser resolution narrow-band imagers, which had FWHM greater 403 

than 1 nm and could only provide SIF in relative units because of constraints imposed by their spectral 404 

configuration. Despite these technological advances, there are still certain challenges to overcome 405 

when estimating SIF from airborne platforms. Among these challenges, a precise characterisation of 406 

atmospheric effects within the SIF emission region remains the most critical. Atmospheric RTMs are 407 

typically used to estimate atmospheric parameters like upwelling transmittance, path scattered 408 

radiance, and spherical albedo to account for atmospheric influences, followed by transmittance 409 

correction strategy (Damm et al., 2015; Siegmann et al., 2019) to account for the high uncertainty 410 

associated with the estimates. Non-linearity correction, sensor-stray light correction, point-spread-411 

function artefacts, and illumination artefacts arising from geometric optical scattering in high-spatial-412 

resolution data are challenging areas in which improvements need to be made (Mohammed et al., 413 

2019). 414 

1.3.3.1 Airborne SIF studies with narrow-band imaging sensors 415 

Before the advent of sub-nanometer imaging sensors capable of accurately quantifying SIF, 416 

it could only be quantified in relative units using narrow-band imaging sensors. The Reflective Optics 417 

System Imaging Spectrometer (ROSIS, 7-nm FWHM) (Maier et al., 2003), Compact Airborne 418 
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Spectrographic Imager (CASI, 2.4–14.4 nm FWHM) (Guanter et al., 2007; Rossini et al., 2015b; 419 

Zarco-Tejada et al., 2002; 2001), Airborne Imaging Spectrometer (AISA Eagle, 3.3-nm FWHM) 420 

(Panigada et al., 2014), Airborne Prism Experiment (APEX, 5.7-nm FWHM) (Damm et al., 2015), 421 

AISA (1.6-nm FWHM) (Corp et al., 2006), MCA-6 (Tetracam, Inc., California, USA, 1.57-1.6 nm 422 

FWHM with custom-made filters) (Zarco Tejada et al., 2009), and AIRFLEX (0.5–5.8 nm FWHM) 423 

(Moya et al., 2003; 2006) were the earliest narrow-band hyperspectral and multispectral imagers used 424 

to quantify SIF760. Currently operational narrow-band hyperspectral imaging sensors for SIF760 425 

quantification include micro- and nano-hyperspec VNIR imagers (Headwall Photonics Inc., Boston, 426 

MA, USA) with 5.8–6.5 nm FWHM (Pancorbo et al., 2023; Poblete et al., 2023; Suarez et al., 2021; 427 

Zarco-Tejada et al., 2012). 428 

Several studies have demonstrated the utility of relative SIF levels derived from narrow-band 429 

imaging sensors, despite their inability to precisely characterise narrow absorption features within the 430 

SIF emission region. Narrow-band SIF estimates have shown the most promising results for the 431 

detection of biotic- (Calderón et al., 2015; 2013; Camino et al., 2021; Hernández-Clemente et al., 432 

2017; Hornero et al., 2021b; Poblete et al., 2020; 2021; 2023; Zarco-Tejada et al., 2018; 2021) and 433 

abiotic-induced stress (Camino et al., 2018a; Panigada et al., 2014; Rossini et al., 2015b; Zarco-434 

Tejada et al., 2009; 2012). By integrating traits related to thermal, fluorescence, and spectral 435 

indicators of chlorophyll concentration and structural changes into a machine learning framework, 436 

Zarco-Tejada et al. (2018) demonstrated that prediction accuracies of over 80% can be achieved for 437 

the early detection of infection in olive trees caused by the pathogen Xylella fastidiosa (Xf). In a 438 

subsequent investigation, Zarco-Tejada et al. (2021) demonstrated that the degree of infection, which 439 

is crucial for distinguishing between biotic- and abiotic-induced stress, affects SIF. Other application 440 

areas include assessment of grain protein concentrations (Longmire et al., 2022), estimation of leaf 441 

nitrogen concentration (Camino et al., 2018b; Wang et al., 2022), link with GPP (Damm et al., 2015; 442 

Zarco-Tejada et al., 2013) and plant phenotyping (Camino et al., 2019; Gonzalez-Dugo et al., 2015). 443 
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Narrow-band SIF estimates were shown to be useful in the aforementioned studies. However, 444 

in absolute terms, narrow-band SIF estimates are overestimated and require careful validation using 445 

reliable ground-based and airborne sub-nanometer resolution SIF to investigate their reliability. 446 

Furthermore, an efficient modelling strategy needs to be developed to account for the effects of 447 

spectral configuration on the absolute SIF levels. Addressing these two factors will pave the way for 448 

the widespread adoption of narrow-band quantified SIF in operational settings for plant phenotyping, 449 

precision agriculture, and plant physiology monitoring applications. 450 

1.3.3.2 Airborne SIF studies with sub-nanometer imaging sensors 451 

 The Hyplant sensor developed by the Finnish company Specim in collaboration with 452 

Forschungszentrum Jülich (Germany) was the first sub-nanometer imaging sensor specifically 453 

designed for accurate SIF estimation (Rascher et al., 2015). It is serving as a demonstrator for the 454 

FLEX satellite mission and consists of two modules, DUAL (380–2500 nm) and FLUO (670–780 455 

nm), with spectral resolutions of 0.28 nm for O2-A and 0.29 nm for O2-B in the FLUO module 456 

allowing for accurate SIF estimation (Siegmann et al., 2019). Other sub-nanometer imaging sensors 457 

available for accurate SIF estimation include the AISA IBIS Fluorescence Imager (SPECIM, Spectral 458 

Imaging Ltd., Oulu, Finland), Hyperspec Solar-Induced Fluorescence Imaging sensor (Headwall 459 

Photonics, Fitchburg, MA, USA) (Paynter et al., 2020), and chlorophyll fluorescence imaging 460 

spectrometer (CFIS) (Frankenberg et al., 2018) with SRs of 0.245, ≤0.2, and 0.07 nm respectively. 461 

 Rossini et al. (2015a) demonstrated for the first time that a sub-nanometer imaging sensor is 462 

capable of precisely mapping the two peaks of SIF. Both SIF687 and SIF760 increased significantly 463 

when treated with an herbicide known to selectively elevate fluorescence levels, demonstrating the 464 

ability of airborne sub-nanometer SIF observations to accurately monitor photosynthetic efficiency. 465 

Rascher et al. (2015) presented the first validated maps over diverse land cover types of SIF from 466 

Hyplant, showing that SIF varies between crop varieties. Accurate SIF estimation from sub-467 

nanometer imaging sensor has been demonstrated as valuable in a number of subsequent studies for 468 
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a wide range of applications, including GPP estimation (Wieneke et al., 2016), herbicide stress 469 

detection (Pinto et al., 2020), downscaling SIF from canopy-level to leaf- and photosystem-level (Liu 470 

et al., 2019; Siegmann et al., 2021), assessing the wide heterogeneity of  peatland vegetation traits 471 

(Bandopadhyay et al., 2019), assessing sensitivity of SIF to heat stress and water stress (Zeng et al., 472 

2022), validating the contribution of understory SIF modelled via 3-D RTMs (Hornero et al., 2021), 473 

assessing SIF responses to soil water-limitation (Damm et al., 2022), and validating spaceborne SIF 474 

estimates (Sun et al., 2017). More recently, R. Wang et al. (2022) investigated how sensor type, 475 

quantification approach, and atmospheric correction affect SIF values, enabling an improved 476 

understanding of spatial and temporal GPP patterns by harmonising SIF products across airborne, 477 

stationary, and mobile ground-based platforms. The study presented for the first time the retrieval of 478 

the full SIF spectrum with a sub-nanometer imaging sensor (AISA IBIS Fluorescence Imager) and 479 

investigated the effect on the accuracy of retrieved spectrum by removing from consideration the 480 

715–740 nm water absorption bands. 481 

Recently, Albert et al. (2023) simulated several spectral stray light scenarios and used near-482 

ground-level observations from the Hyperspec Solar-Induced Fluorescence Imaging sensor to 483 

examine the sensitivity of SIF retrieval methods to stray light. The O2-A band and 12 Fraunhofer 484 

lines (FLs) without prominent water and oxygen absorption bands were used to quantify SIF with 485 

FLD and 3FLD techniques. Although this was the first study to use distinct FLs for SIF quantification 486 

with a sub-nanometer imager, as opposed to the more common telluric absorption bands, additional 487 

tests are necessary to determine the potential of these narrow FLs when the sensor is onboarding an 488 

airborne platform under actual field conditions. The promising opportunity offered by sub-nanometer 489 

imaging sensors to detect narrow FLs within the SIF spectrum must be exploited further to investigate 490 

their potential for a variety of applications, including biotic and abiotic stress detection, plant 491 

physiology monitoring, and nutrient assessment. 492 

  493 
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1.4 Radiative transfer modelling of SIF 494 

Vegetation RTMs describe the interaction between the incident solar radiation and vegetation 495 

(primarily absorption and scattering) using radiative transfer equations to, account for the effect of 496 

canopy structure (Jacquemoud et al., 2009). The advancements in SIF instrumentation and retrieval 497 

methods have been accompanied by progress in modelling methods for SIF estimation. The earliest 498 

modelling efforts to incorporate fluorescence into RTMs involved the development of leaf RTMs like 499 

the FLSAIL model (Rosema et al., 1991) and Fluorescence–Reflectance–Transmittance (FRT) model 500 

(Zarco-Tejada et al., 2000a, 2000b). The first model simulated the effects of fluorescence caused by 501 

laser-induced fluorescence, whereas the second model demonstrated the contribution of fluorescence 502 

to apparent reflectance spectra. These earlier attempts laid the foundation for the development of 503 

more advanced leaf-level models such as FluorMODleaf (Pedrós et al., 2010), Fluspect (Vilfan et al., 504 

2016) and Fluorescence Leaf Canopy Vector Radiative Transfer (FluLCVRT) (Kallel, 2020). 505 

To accurately model fluorescence emission at canopy-scale, a canopy-level fluorescence 506 

RTM must describe the following three primary processes: (1) incident radiation absorption; (2) 507 

subsequent fluorescence emission; and (3) post-emission fluorescence scattering and re-absorption 508 

within the canopy typically accomplished by incorporating a leaf-fluorescence model into a canopy 509 

reflectance model (Disney, 2016; Mohammed et al., 2019). FluorSAIL (Verhoef, 2004) and the Soil- 510 

Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol et al., 2009) were 511 

the first canopy-scale models to be developed. Because these models consider the vegetation canopy 512 

as a series of uniform layers, they are referred to as one-dimensional (1-D) models and are suitable 513 

only for homogenous and uniform canopies. Recent modelling efforts have used more rigorous 514 

mathematical frameworks to account for the re-absorption and scattering of chlorophyll fluorescence 515 

within the homogenous canopy (Atherton et al., 2019; Romero et al., 2020; Yang and van der Tol, 516 

2018; Zeng et al., 2019). 517 
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SCOPE is the most extensively used fluorescence RTM and has undergone numerous 518 

enhancements in recent years. Yang et al. (2021) provides additional information regarding the 519 

enhancements of SCOPE and the new features of the current version (SCOPE 2.0). SCOPE has 520 

proven beneficial in numerous studies aimed at elucidating the relationship between photosynthesis 521 

and fluorescence-reflectance (Camino et al., 2019; Damm et al., 2015; Migliavacca et al., 2017; 522 

Pacheco-Labrador et al., 2019; Verrelst et al., 2016; Yang et al., 2022; Zhang et al., 2022; Zhu et al., 523 

2023), understanding the impact of spectral resolution and SNR on FLD-based SIF quantification 524 

(Liu et al., 2015), developing and validating new SIF quantification approaches (Celesti et al., 2018; 525 

Cogliati et al., 2015; 2019; Naethe et al., 2022; Scodellaro et al., 2022; Van der Tol et al., 2023; 526 

Verhoef et al., 2018; Zhao et al., 2019), and disentangling the physiological and non-physiological 527 

components of SIF (Wang et al. 2023; Xu et al., 2021; Yang et al., 2020; Zeng et al., 2019; 2022). 528 

To address the limitations of 1-D canopy-level fluorescence RTMs in modelling 529 

heterogeneous, non-uniform, and complex canopies like forests and row-structured, grid-based crop 530 

canopies like vineyards and tree orchards, several ray-tracing-based three-dimensional (3-D) canopy-531 

level fluorescence models have been developed. These include the Fluorescence model with Weight 532 

Photon Spread (FluorWPS) for row crops (Zhao et al., 2016), the Discrete Anisotropic Radiative 533 

Transfer (DART) model for any 3-D vegetation architecture (Gastellu-Etchegorry et al., 2017), Forest 534 

Light Environmental Simulator for SIF (FLiES-SIF), and FluorFLIGHT for forest canopies (Sakai et 535 

al., 2020; Hernández-Clemente et al., 2017). Although the capacity of these ray-tracing-based 3-D 536 

models to provide spatially precise modelling could give valuable insights into the interplay of 537 

fluorescence fluxes within complex canopy structures, their high computational costs limit their 538 

application at landscape-scale (Mohammed et al., 2019; Sun et al., 2023a). The newly developed 3-539 

D models FluorRTER (Zeng et al., 2020), based on spectral invariant theory, and FluorESRT (Li et 540 

al., 2022), targeted at pest-damaged forests, are analytically simple, computationally less intensive, 541 

and have the potential for large-scale application. 542 
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1.5 Research gaps 543 

The following research gaps were identified in the literature reviewed: 544 

1. A number of studies have demonstrated the feasibility of quantifying SIF760 using widely 545 

available narrow-band hyperspectral sensors, but none have assessed the performance and 546 

reliability of narrow-band SIF760 measurements by comparing them to estimates of sub-547 

nanometer SIF760 acquired simultaneously from ground-based and airborne sensors. 548 

2. Although narrow-band SIF760 estimates in absolute physical units are typically overestimated 549 

due to the impact of sensor’s spectral configurations, no studies have been conducted to 550 

investigate how the impact of sensor spectral resolution can be accounted for using RTM-551 

based approaches for retrieving SIF760 from narrow-band imaging sensors at appropriate 552 

absolute physical levels. 553 

3. While previous studies have demonstrated the significance of SIF760 for biotic and abiotic 554 

vegetation stress detection and for improving the retrieval of leaf N concentrations, further 555 

research on the viability of using the depth of solar Fraunhofer lines within the SIF emission 556 

region is required to harness the full potential of the entire SIF emission region. 557 

 558 

1.6 Objectives and thesis structure 559 

This thesis focuses primarily on improving the interpretation of SIF760 estimates obtained 560 

from widely available narrow-band imaging sensors by spectrally scaling narrow-band SIF760 561 

estimates with radiative transfer modelling and machine learning approaches. In addition, the 562 

potential of solar Fraunhofer lines within the SIF emission region for the estimation of N 563 

concentration across the field and for the detection of both biotic and abiotic stress using 564 

sub-nanometer hyperspectral imagery is investigated. Based on the research gaps identified, the 565 

following specific objectives were defined and addressed in this research: 566 
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1. Assessing the impact of using a narrow-band hyperspectral imager (5.8-nm FWHM), as 567 

compared to using a sub-nanometer hyperspectral imager (≤0.2 nm FWHM) for SIF760 568 

quantification using existing methods. 569 

2. Developing and evaluating a methodology for modelling the effect of sensor spectral 570 

resolution on SIF760 quantification from narrow-band hyperspectral imagery by integrating 571 

RTM-based approaches with machine learning algorithms. 572 

3. Assessing of the capability of the fractional depth of narrow solar Fraunhofer lines within the 573 

SIF emission region for estimating leaf nitrogen concentration across the field and for the 574 

detection of biotic stress using sub-nanometer resolution (≤0.2 nm FWHM) airborne 575 

hyperspectral imagery.  576 

This thesis comprises five chapters. The first chapter provides a general overview, and the last 577 

chapter summarises the findings and implications of this study and discusses possible future 578 

applications. The middle three chapters 2, 3, and 4 address research objectives 1, 2 and 3, respectively. 579 

 580 

Chapter 2 attends to objective 1, focusing on the evaluation of SIF760 retrievals from narrow-581 

band and sub-nanometer airborne hyperspectral imagers flown in tandem. The effects of SR and 582 

sensor altitude on SIF760 accuracy were investigated across three years, comparing SIF760 quantified 583 

from two hyperspectral imagers with different spectral configurations over three experimental fields 584 

with varying nitrogen application rates. Additionally, simulations using the SCOPE model were 585 

conducted for theoretical assessment of the effect of SR on absolute SIF levels. Strong significant 586 

relationships were obtained among the narrow-band, sub-nanometer, and ground-based SIF760 587 

estimates, demonstrating the capability of narrow-band imaging sensors for plant phenotyping, 588 

vegetation stress detection and plant physiological condition monitoring applications, all of which 589 

require reliable assessment of relative SIF760 variability across the experimental field. This chapter 590 

has been published in the journal Remote Sensing of Environment: 591 
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Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J., 592 

2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne 593 

hyperspectral imagers flown in tandem: modelling and validation in the context of plant 594 

phenotyping. Remote Sens. Environ. 273, 112986. https://doi.org/10.1016/j.rse.2022.112986. 595 

 596 

Chapter 3 addresses objective 2 by proposing a methodology for spectrally scaling SIF760 597 

estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM to 1-nm FWHM using an 598 

empirical approach based on a Support Vector Regression (SVR) algorithm with SIF760 at 5.8-nm 599 

FWHM and SCOPE-derived leaf biochemical and structural traits as model inputs. The SVR model 600 

was evaluated using SCOPE model simulations and airborne data obtained from two airborne 601 

hyperspectral imagers flown in tandem on board an aircraft during two distinct wheat and maize 602 

phenotyping studies.  For both simulated and airborne datasets, the estimated SIF760 at 1-nm FWHM 603 

matched well with the reference SIF760, implying that this SIF scaling mechanism could be a viable 604 

technique for enhancing the interpretation of relative SIF760 levels assessed by narrow-band 605 

hyperspectral imagers. This chapter is currently under review by the journal Remote Sensing of 606 

Environment: 607 

Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Accurate 608 

SIF quantification from a narrow-band airborne hyperspectral imager using SCOPE: 609 

assessment with sub-nanometer imagery (under review by the journal Remote Sensing of 610 

Environment). 611 

 612 

Chapter 4 targets objective 3. Using sub-nanometer hyperspectral imagery, a set of distinct 613 

Fraunhofer lines devoid of water and oxygen absorptions was firstly identified within the SIF 614 

emission region. In the subsequent stage, the sensitivity of the depth of these narrow lines for the 615 
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identification of biotic-induced stress caused by pathogen infections at varying levels of stress was 616 

investigated. Furthermore, the potential of these lines for improved estimation of leaf nitrogen 617 

concentration in conjunction with leaf chlorophyll content and SIF760 estimations was explored. This 618 

chapter is currently being drafted for submission to the journal Remote Sensing of Environment.  619 

Belwalkar, A., Poblete, T., A., Hornero, A., Hernandez-Clemente, R., Zarco-Tejada, P.J. Prospects 620 

of solar Fraunhofer lines derived from sub-nanometer hyperspectral imagery for assessing 621 

a/biotic stress (currently being drafted for submission to the journal Remote Sensing of 622 

Environment). 623 
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Chapter 2  1340 
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SIF quantification from narrow-band and sub-1342 

nanometer airborne hyperspectral imagers for 1343 
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Abstract 1366 

Solar-induced chlorophyll fluorescence (SIF) can be used as an indicator of crop 1367 

photosynthetic activity and a proxy for vegetation stress in plant phenotyping and precision 1368 

agriculture applications. SIF quantification is sensitive to the spectral resolution (SR), and its accurate 1369 

retrieval requires sensors with sub-nanometer resolutions. However, for accurate SIF quantification 1370 

from imaging sensors onboard airborne platforms, sub-nanometer imagers are costly and more 1371 

difficult to operate than the commonly available narrow-band imagers (i.e., 4- to 6-nm bandwidths), 1372 

which can also be installed on drones and lightweight aircraft. Although a few theoretical and 1373 

experimental studies have evaluated narrow-band spectra for SIF quantification, there is a lack of 1374 

research focused on comparing the effects of the SR on SIF from airborne hyperspectral imagers in 1375 

practical applications. This study investigates the effects of SR and sensor altitude on SIF accuracy, 1376 

comparing SIF quantified at the 760-nm O2-A band (SIF760) from two hyperspectral imagers with 1377 

different spectral configurations (full width at half-maximum resolutions of ≤0.2 nm and 5.8 nm) 1378 

flown in tandem on board an aircraft. SIF760 retrievals were compared from two different wheat and 1379 

maize phenotyping trials grown under different nitrogen fertiliser application rates over the 2019–1380 

2021 growing seasons. SIF760 from the two sensors were correlated (R2 = 0.77–0.9, p < 0.01), with 1381 

the narrow-band imager producing larger SIF760 estimates than the sub-nanometer imager (root mean 1382 

square error (RMSE) 3.28–4.69 mW/m2/nm/sr). Ground-level SIF760 showed strong relationships 1383 

with both sub-nanometer (R2 = 0.90, p < 0.001, RMSE = 0.07 mW/m2/nm/sr) and narrow-band (R2 = 1384 

0.88, p < 0.001, RMSE = 3.26 mW/m2/nm/sr) airborne retrievals. Simulation-based assessments of 1385 

SIF760 for SRs ranging from 1 to 5.8 nm using the SCOPE model were consistent with experimental 1386 

results showing significant relationships among SIF760 quantified at different SRs. Predictive 1387 

algorithms of leaf nitrogen concentration using SIF760 from either the narrow-band or sub-nanometer 1388 

sensor yielded similar performance, supporting the use of narrow-band resolution imagery for 1389 
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assessing the spatial variability of SIF in plant phenotyping, vegetation stress detection and precision 1390 

agriculture contexts. 1391 

Keywords: Solar-induced chlorophyll fluorescence, SIF, plant phenotyping, stress detection, 1392 

airborne, hyperspectral, hyperspectral imager 1393 

 1394 

2.1 Introduction 1395 

Solar radiation reaching a plant canopy cannot be fully used for photosynthesis, and the 1396 

resulting excess radiation is partly re-emitted as a weak electromagnetic signal termed solar-induced 1397 

chlorophyll fluorescence (SIF) (see a full review on SIF in Mohammed et al., 2019). SIF flux 1398 

originates from photosystem II (PSII) and has a spectral range of 650–800 nm with one peak at 685 1399 

nm (SIF685) and a second peak at 740 nm (SIF740). The SIF energy dissipation pathway directly 1400 

competes with the PSII photochemistry and heat dissipation (Krause and Weis, 1984; Lichtenthaler 1401 

and Rinderle, 1988). Thus, SIF is a proxy for plant photosynthetic rate, which may be related to plant 1402 

stress levels (Genty et al., 1989; Weis and Berry, 1987; Zarco-Tejada et al., 2016). However, SIF 1403 

emitted from the canopy constitutes a small fraction (1–5%) of the total reflected solar radiation, 1404 

making it difficult to quantify (Meroni et al., 2009). 1405 

Specialised algorithms are necessary for decoupling SIF from total reflected solar radiation. 1406 

These algorithms are classified based on whether SIF is retrieved within specific absorption bands or 1407 

over the whole SIF emission region (Mohammed et al., 2019). Most methods use discrete solar or 1408 

telluric absorption lines of the solar spectrum, where the contribution of SIF to the total radiance 1409 

signal is relatively higher. The terrestrial oxygen absorption bands (O2-A and O2-B) centred around 1410 

760 nm and 687 nm, respectively, are broader and deeper than the other absorption features and, 1411 

therefore, commonly used for quantifying SIF (Meroni et al., 2009). The fluorescence in-filling 1412 

method, based on the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975), depends on a few 1413 
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discrete spectral bands inside and outside the oxygen absorption features and is the most widely used 1414 

method for SIF retrieval due to its ease of implementation. By contrast, spectral fitting methods 1415 

(SFMs) model the fluorescence and reflectance spectrum by spectral curve fitting, using all the 1416 

contiguous wavelengths within a fixed spectral window mostly centered around oxygen absorption 1417 

bands (Meroni et al., 2010; Meroni and Colombo, 2006).  1418 

The earliest attempt to incorporate leaf fluorescence into a radiative transfer model (RTM) 1419 

was the Fluorescence–Reflectance–Transmittance (FRT) model (Zarco-Tejada et al., 2000a; 2000b). 1420 

This attempt led to the development of the leaf model FluorMODleaf (Pedrós et al., 2008) and a 1421 

canopy-level RTM named FluorSAIL (Verhoef, 2004). These models prompted the development of 1422 

an integrated, vertical, one-dimensional, leaf-canopy fluorescence–temperature–photosynthesis 1423 

model named Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE) (Van der Tol 1424 

et al., 2009), which is widely used to assess the linkage between fluorescence–reflectance and 1425 

photosynthesis (Camino et al., 2019; Celesti et al., 2018; Verhoef et al., 2018). SCOPE simulates 1426 

top-of-canopy radiance, chlorophyll fluorescence and reflectance for homogenous canopies. It has 1427 

been used to quantify the effects of the leaf biochemistry, maximum carboxylation rate (Vcmax), and 1428 

canopy structure on apparent reflectance, including fluorescence effects. Recently, three-dimensional 1429 

canopy RTMs integrating fluorescence have been developed, such as FluorFLIGHT (Hernández-1430 

Clemente et al., 2017), the Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao et al., 1431 

2016), and the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 1432 

2017). These models simulate scattering within the canopy components and thus account for canopy 1433 

structural heterogeneity.  1434 

The earliest experiments involving ground-based sub-nanometer-resolution spectrometers 1435 

quantified SIF at both leaf (Meroni and Colombo, 2006) and canopy levels (Pérez-Priego et al., 2005), 1436 

detecting herbicide- and water-induced stress, respectively. The development of sub-nanometer-1437 

resolution hyperspectral sensors in the past decade has enabled SIF retrievals from airborne platforms. 1438 
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Sensors include the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg et al., 1439 

2018), the high-resolution airborne imaging spectrometer HyPlant (Rascher et al., 2015), and the 1440 

Hyperspec High-Resolution Chlorophyll Fluorescence Sensor (Headwall Photonics, Fitchburg, MA, 1441 

USA) (Belwalkar et al., 2021) with spectral resolutions (SRs) of 0.1, 0.28 and ≤0.2 nm, respectively. 1442 

Sub-nanometer-resolution SIF observations at the global scale are available from satellite sensors 1443 

such as OCO-2 (Orbiting Carbon Observatory-2) (Frankenberg et al., 2014), GOSAT (Greenhouse 1444 

gases Observing SATellite) (Guanter et al., 2012), and TROPOMI (TROPOspheric Monitoring 1445 

Instrument) (Guanter et al., 2015) with spatial resolutions of 1.29 km × 2.25 km, 50 km × 50 km and 1446 

5.5 km × 3.5 km, respectively. The European Space Agency is also set to launch the FLuorescence 1447 

EXplorer (FLEX) (Drusch et al., 2017) in 2024, a mission solely dedicated to measuring SIF at a high 1448 

SR of 0.3 nm across the globe at 300-m spatial resolution. 1449 

As a result of these technical and methodological advances, SIF is frequently used for 1450 

monitoring crop photosynthesis. SIF is measured from a variety of platforms, including ground-based 1451 

spectrometers (Cogliati et al., 2015; Daumard et al., 2012; Grossmann et al., 2018; Kim et al., 2021; 1452 

Li et al., 2020; Pérez-Priego et al., 2005; Rossini et al., 2016), drones and manned aircraft 1453 

(Bandopadhyay et al., 2019; Damm et al., 2014; 2015; Siegmann et al., 2019; Tagliabue et al., 2020; 1454 

Zarco-Tejada et al., 2012; 2013a) and satellite platforms (Frankenberg et al., 2014; Guanter et al., 1455 

2012; 2015). SIF observations at intermediate scales obtained from airborne platforms are important 1456 

for i) improving the interpretation of SIF at coarser spatial resolutions and thus bridging the gap 1457 

between field and global scales, ii) disentangling the contribution of different scene components in 1458 

aggregated pixels (Hornero et al., 2021a; Zarco-Tejada et al., 2013b), and iii) evaluating the 1459 

sensitivity of SIF for describing plant physiological processes at high spatial resolutions (e.g., as an 1460 

early indicator of biotic and abiotic stress in precision agriculture and forestry). 1461 

Modelling studies (Damm et al., 2011; Liu et al., 2015) of FLD-based SIF retrieval have 1462 

shown that sensor SR and the signal-to-noise ratio (SNR) (collectively accounting for more than 80% 1463 
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of the retrieval error) strongly affect SIF measurement accuracy. Several studies have demonstrated 1464 

the potential of sub-nanometer airborne hyperspectral imagers for precise SIF quantification in a 1465 

variety of contexts, including estimating gross primary productivity (GPP) (Wieneke et al., 2016), 1466 

validating satellite-based SIF retrievals (Sun et al., 2017), assessing the physiological effects of age 1467 

on loblolly pine forest (Colombo et al., 2018) and quantifying functional diversity of terrestrial 1468 

ecosystems (Tagliabue et al., 2020). Although sub-nanometer-resolution imaging sensors are 1469 

recommended for obtaining absolute measurements of SIF, relative SIF measurements from narrow-1470 

band sensors are useful in a variety of settings, including water stress detection (Camino et al., 2018a; 1471 

Panigada et al., 2014; Zarco-Tejada et al., 2012), plant phenotyping (Camino et al., 2019; 2018b; 1472 

Gonzalez-Dugo et al., 2015), biotic-induced stress detection (Calderón et al., 2015; 2013; Hernández-1473 

Clemente et al., 2017; Hornero et al., 2021b; Poblete et al., 2020; 2021; Zarco-Tejada et al., 2018) 1474 

and linking canopy-level SIF760 and GPP using sensors such as the Airborne Prism Experiment 1475 

(APEX) with a full width at half-maximum resolution (FWHM) of 5.7 nm over perennial grassland, 1476 

cropland and mixed temperate forest (Damm et al., 2015). In these studies, the reported higher levels 1477 

of the quantified SIF760 were consistent with other modelling and experimental studies (Julitta et al., 1478 

2016; Nakashima et al., 2021; Nichol et al., 2019; Süß et al., 2016). 1479 

The impacts of SR on FLD-based SIF retrievals have been previously assessed with models 1480 

(Damm et al., 2011; Dechant et al., 2017; Hernández-Clemente et al., 2017; Liu et al., 2015) and 1481 

experiments (Julitta et al., 2016).  Julitta et al. (2016) compared SIF retrievals at both the O2-A and 1482 

O2-B bands using four portable field spectrometers with different spectral sampling intervals (SSIs), 1483 

SRs, and SNRs simultaneously measuring the same vegetation target. SIF estimates at the O2-A band 1484 

from three of the four spectrometers with sub-nanometer resolution (FWHM ≤ 1 nm) were consistent 1485 

with the expected ranges from ground-based SIF observations over lawn grassland reported by 1486 

Rossini et al. (2016). In contrast, the average SIF from the coarsest-resolution spectrometer (FWHM 1487 

= 5.5 nm) was six times higher than the values obtained from the other three spectrometers, reaching 1488 
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values above 4 mW/m2/nm/sr. Our study expands on this previous work by assessing the effects of 1489 

SR and flight altitude on airborne-based SIF retrievals, which are commonly used in precision 1490 

agriculture applications. This is, to the best of our knowledge, the first study to do so. Aspects 1491 

regarding the effects of the atmosphere, flight altitude, and performance of imaging sensors on SIF 1492 

retrievals need to be studied in addition to the theoretical work and the assessments carried out using 1493 

close-range spectrometer data. 1494 

The need for sub-nanometer imagers for the accurate quantification of SIF brings important 1495 

challenges in precision agriculture, plant phenotyping and biosecurity applications due to their 1496 

complexity, higher cost and increased operational difficulties. Standard narrow-band hyperspectral 1497 

imagers (i.e., with SR in the range of 4–6 nm FWHM) are an appealing alternative that are 1498 

increasingly being used with drones and lightweight aircraft to collect high-spatial-resolution imagery 1499 

(Aasen et al., 2018). However, it is unclear how useful SIF760 estimates from these imagers are for 1500 

plant physiological assessments when compared to ground-based or sub-nanometer airborne SIF760 1501 

estimates. Such assessment is critical, particularly when the relative quantification of fluorescence 1502 

across the landscape could be readily used to detect biotic- and abiotic-induced vegetation stress. 1503 

Empirical work is needed to evaluate whether SIF760 retrievals from these narrow-band hyperspectral 1504 

imagers are sufficient for detecting physiological stress in crops, relative to measurements from sub-1505 

nanometer instruments. 1506 

Monitoring crop nutrient status is one potentially important application of airborne SIF760 1507 

quantification (Camino et al., 2018b; Wang et al., 2021). Accurate assessments of plant nutrition 1508 

across a field can help to ensure crop yields by allowing for more efficient use of N-fertilisers. 1509 

Excessive N fertiliser application can result in the loss of reactive forms of N (ammonia, nitrate, and 1510 

nitrogen oxides) to the environment, causing water pollution, climate forcing, and biodiversity loss. 1511 

As a result, assessing crop response to N-fertilisers is critical for ensuring resource efficiency while 1512 

optimising yields. 1513 
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In this study, we compared SIF760 measured from a 5.8-nm FWHM narrow-band hyperspectral 1514 

imager to a sub-nanometer hyperspectral imager of ≤0.2 nm FWHM flown in tandem at multiple 1515 

sensor altitudes and across two wheat and maize trials grown under different nitrogen application 1516 

rates and for three growing seasons. We validated airborne measures with sub-nanometer ground 1517 

retrievals and evaluated results against SCOPE simulations. We then assessed the performance of 1518 

sub-nanometer and narrow-band SIF760 estimates for predicting nitrogen concentration using machine 1519 

learning models. Our findings provide important insights that support the operational use of standard, 1520 

commercially available narrow-band hyperspectral imagers for quantifying relative SIF levels. This 1521 

is especially important for precision agriculture and plant physiology monitoring purposes that 1522 

require accurate assessment of the SIF variability within and across experimental fields. 1523 

 1524 

2.2 Materials and methods 1525 

2.2.1 Study sites and field data collection  1526 

Experiments took place at two field trial sites in Victoria, Australia, in 2019, 2020 and 2021 1527 

(Fig. 2-1a and 2-1b). Experiment 1 was conducted over 15 plots of dryland wheat (cv. Scepter) (Yang 1528 

et al., 2018) located at site 1 in Yarrawonga (36°02ʹ55"S, 145°59ʹ02"E). Plots were 26 m2 (2 m × 13 1529 

m) and planted in May 2019. Plots were grown with five different rates of nitrogen fertiliser in the 1530 

form of urea (46% N) (T1: 0 kg N/ha, T2: 46 kg N/ha, T3: 92 kg N/ha, T4: 138 kg N/ha, T5: 184 kg 1531 

N/ha). The surrounding areas were planted with several varieties of wheat grown under various 1532 

physiological conditions and nitrogen fertiliser application rates (Fig. 2-1a). 1533 

Experiments 2 and 3 were conducted in 2020 and 2021 at site 2 in Peechelba East (36°10ʹ04"S, 1534 

146°16ʹ23"E) over irrigated maize plots. Experiment 2 consisted of 8 plots and experiment 3 1535 

consisted of 20 plots. Plots were sown in October 2019 and October 2020 with two urea application 1536 

rates for experiment 2 (T1: 207 kg N/ha, T2: 387 kg N/ha) and three for experiment 3 (T1: 0 kg N/ha, 1537 



 
50 

 

T2: 180 kg N/ha, T3: 315 kg N/ha). The plot sizes were 15 m2 (3 m × 5 m) for experiment 2 and 36 1538 

m2 (3 m × 12 m) for experiment 3. The climate at both field trial sites is humid subtropical (Cfa) 1539 

according to the Köppen classification. At site 1, the mean annual temperature is 16.3 °C and average 1540 

rainfall is 559 mm. At site 2, the mean annual temperature is 15.2 °C and average rainfall is 642 mm. 1541 

 

Fig. 2-1. Overview of experiments at field trial sites 1 (a) and 2 (b). Sample average radiance and the 1542 
corresponding irradiance (E) spectra for experimental plots subjected to different nitrogen treatments 1543 
at experiment 3 obtained from HR-2000 (c). Sample radiance spectra acquired from the narrow-band 1544 
hyperspectral imager (d) and sub-nanometer hyperspectral imager (e) corresponding to the same 1545 
vegetation and soil targets. (a) was acquired with the narrow-band hyperspectral imager (composite: 1546 
760 (R), 710 (G) and 680 (B) nm). (b) was obtained with the sub-nanometer hyperspectral imager 1547 
(composite: 760 (R), 710 (G) and 680 (B) nm). The solid yellow boxes in (a) and (b) show the location 1548 
of the plots across the three experiments and the dashed yellow box in (a) shows the location of plots 1549 
across the entire field. The transparent grey box in (d) shows the spectral region covered by the sub-1550 
nanometer hyperspectral imager. 1551 

 1552 
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For experiment-3, field measurements of top-of-canopy (TOC) spectral radiances for the 1553 

computation of ground-based SIF760 were collected from all 20 plots on 20 January 2021 at midday 1554 

from 11:45 to 16:30 solar time under clear sky conditions. TOC spectral radiance was measured using 1555 

a 0.065-nm FWHM HR-2000 spectrometer (Ocean Insight, Dunedin, FL, USA). The total incoming 1556 

irradiance was calculated using the radiance reflected from a white reference panel (Labsphere Inc., 1557 

North Sutton, NH, USA) measured by the spectrometer. The spectral measurements were acquired 1558 

from the nadir using bare optical fiber, with an angular field of view of 25°, mounted on a tripod of 1559 

2.5 m height. The vegetation targets were measured at a distance of 1 m above the canopy. Radiance 1560 

measurements were recorded at five different locations within each plot and then averaged to reduce 1561 

noise. Incident solar radiation was measured prior to radiance measurements, and radiance/irradiance 1562 

measurements were completed within 3 minutes for each plot. Examples of radiance and irradiance 1563 

measurements are shown in Fig. 2-1c, with visible differences in spectra associated with applied 1564 

nitrogen rate. 1565 

A summary of the physiological measurements performed at each experiment is shown in 1566 

Table 2-1. The growth stages during the airborne campaigns corresponded to i) grain filling (milking 1567 

stage) for wheat in 2019, ii) dough stage for maize in 2020, and iii) silking stage for maize in 2021. 1568 

A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was installed in the field for 1569 

concurrent readings of meteorological conditions at the time of hyperspectral image acquisitions.  For 1570 

experiments 1 and 3, leaf measurements were carried out under field conditions, coincident with the 1571 

airborne campaigns. For experiment 2, leaf measurements were performed 4 days prior to the airborne 1572 

campaign under similar meteorological conditions (Table 2-1). Measurements were made on 10–15 1573 

leaves per plot for experiment 1 and 5–10 leaves per plot for experiments 2 and 3. Measurements 1574 

were made on leaves at the top of the canopy at noon, under clear skies. Chlorophyll content, nitrogen 1575 

balance index (NBI), flavonols and anthocyanin content were measured using a handheld Dualex 1576 

leaf-clip sensor (FORCE-A, Orsay, France). Steady-state leaf fluorescence yield (Ft) was measured 1577 
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using the FluorPen FP110-LM (Photon Systems Instruments, Drásov, Czech Republic) handheld 1578 

fluorometer. Random samples of 10–15 leaves per plot for experiment 1 and 4–5 leaves per plot for 1579 

experiments 2 and 3 from the top of the canopy were selected for determining the total N 1580 

concentration (%) destructively in the laboratory, following the Kjeldahl method (Kjeldahl, 1883). 1581 

To verify the impacts of fertilisation rate on leaf physiological traits, measurements were evaluated 1582 

using analysis of variance (ANOVA) followed by a Dunnett’s test at α < 0.05. In addition to the 15 1583 

plots at site 1, leaf-level measurements from more than 100 adjacent plots within the entire 1584 

experimental field (dashed yellow box in Fig. 2-1a) were also conducted to investigate the intra-field 1585 

variability. 1586 

Table 2-1. Field measurements and meteorological conditions coincident with flights. 1587 
Field trial 

site 
Experiment 

# 
Treatment 
(kg N/ha) 

Growth 
stage 

Field 
measurements 

Meteorological 
conditions 

     Ta RH Pa 

Yarrawonga 
(Site 1) 

1 

T1:0, 
T2:46, 
T3:92, 
T4:138, 
T5:184 

Grain 
filling 

Ft, Chl, NBI, 
Flav, Anth, TN 

19.2 30.1 1002.8 

Peechelba 
(Site 2) 

2 
T1:207, 
T2:387 

Dough 
Ft, Chl, NBI, 

Flav, Anth, TN 
23.3 36.2 1008.5 

3 
T1:0, 

T2:180, 
T3:315 

Silking 
Ft, Chl, NBI, 
Flav, Anth, 
TN, TOC L 

25.3 33.5 1003.6 

 

Ft = Steady-state chlorophyll fluorescence, Chl = Chlorophyll content (μg/cm2),  NBI = Nitrogen 
balanced index (Dualex unit (d.u)), Flav = Flavonols (Dualex unit), Anth = Anthocyanins (Dualex 
unit), TN = Total Nitrogen concentration (%),  TOC L = Top-of-canopy radiance (mW/m2/nm/sr) 
from HR-2000, Ta = Average air temperature (°C), RH = Relative humidity (%) and Pa = Average 
air pressure (mBar). 
 1588 

2.2.2 Airborne hyperspectral campaigns 1589 

Airborne campaigns were conducted in 2019, 2020 and 2021 (Table 2-2), flying with the 1590 

aircraft’s heading on the solar plane. Two hyperspectral imagers were installed in tandem on a 1591 

Cessna-172 aircraft operated by the HyperSens Laboratory, University of Melbourne’s Airborne 1592 

Remote Sensing Facility. The first hyperspectral imager was a Hyperspec VNIR E-Series model 1593 
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(Headwall Photonics, Fitchburg, MA, USA) and the second hyperspectral imager was a high-1594 

resolution Hyperspec Fluorescence sensor (Headwall Photonics, Fitchburg, MA, USA). The spectral 1595 

characteristics of both hyperspectral imagers are shown in Table 2-3. Both hyperspectral imagers 1596 

were radiometrically calibrated in the laboratory using an integrating sphere (Labsphere XTH2000C, 1597 

Labsphere Inc., North Sutton, NH, USA); as a result, coefficients derived from the constant light 1598 

source at four different illumination levels were calculated for the flight configuration of each imager. 1599 

The atmospheric correction for the VNIR imager was performed using the SMARTS model 1600 

(Gueymard, 2001), with the aerosol optical depth measured at 550 nm with a Microtops II 1601 

sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA), allowing the conversion of the radiance 1602 

values to reflectance. Image orthorectification was conducted with PARGE (ReSe Applications 1603 

Schläpfer, Wil, Switzerland) using inputs from the solidly installed and synchronized inertial 1604 

measurement units (VN-300-VectorNav Technologies LLC, Dallas, TX, USA for VNIR imager and 1605 

Trimble APX-15 UAV, Applanix Corporation, Ontario, Canada for Fluorescence imager); more 1606 

information on data preprocessing and image correction can be found in Zarco-Tejada et al. (2016). 1607 

Table 2-2. Flight dates, flight altitudes and spatial resolution of the acquired hyperspectral images 1608 
during the three airborne campaigns. 1609 

Flight date Flight time (local) Experiment AGL (m) 
Spatial 

resolution (m) 
   NB SN NB SN 

09/10/19 15:40 - 16:30 1 400 900 0.25 0.20 
16/03/20 12:50 - 13:50 2 700 850 0.50 0.20 

20/01/21 11:40 - 12:20 3 
900 900 0.65 0.20 
1200 1200 0.9 0.30 
2200 2200 1.7 0.55 

NB = Narrow-band hyperspectral imager 
SN = Sub-nanometer hyperspectral imager 
AGL= above ground level 

 1610 

Differences in radiance spectra corresponding to vegetation and soil targets acquired from the 1611 

two hyperspectral imagers were visually identified as a function of spectral configurations (Fig. 2-1d 1612 

and 1e). Above-ground-level (AGL) altitudes and spatial resolutions of the imagery are detailed in 1613 
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Table 2-2. The spatial resolution of imagery from both airborne hyperspectral imagers was sufficient 1614 

for identification of individual plots over the experimental sites (Fig. 2-2). Differences in fertilisation 1615 

rate could be visually discriminated based on radiance spectra acquired from both the hyperspectral 1616 

imagers over the entire spectral range (Fig. 2-3a and 2-3c) and in the O2-A absorption feature (Fig. 1617 

2-3b and 2-3d) for experiment 1. 1618 

Table 2-3. Spectral characteristics of the airborne hyperspectral imagers. 1619 
Configuration Fluorescence sensor  

(Sub-nanometer imager) 
VNIR E-Series sensor 
(Narrow-band imager) 

Spectral range 670-780 nm 400-1000 nm 
Number of spectral bands 2160 371 
Spectral sampling interval 0.051 nm 1.626 nm 
FWHM ≤0.2 nm 5.8 nm 
Number of un-binned spatial 
pixels 

1600 1600 

SNR >300:1* >300:1* 
Field of view 23.5° 66° 
Aperture f/2.5 f/2.5 
Bit depth 16 16 
*with spatial binning   

 1620 

To investigate the impact of sensor altitude on the inter-comparison of airborne-quantified 1621 

SIF760 from both hyperspectral imagers and with ground-based SIF760, images from both 1622 

hyperspectral imagers were acquired at three different altitudes (900 m, 1200 m and 2200 m) for 1623 

experiment 3 (Table 2-2). All images were acquired within a 20-minute time interval to minimize the 1624 

impact of sun-sensor geometry and changes in atmospheric conditions on the SIF760 retrievals. The 1625 

effect of sensor height on O2-A absorption feature depth and SIF760 quantifications was assessed using 1626 

ANOVA followed by Tukey’s honest significant difference (HSD) post-hoc test at α < 0.05. Fig. 2-4 1627 

shows the impact of the sensor altitude on the radiance spectra for the sub-nanometer imager. The 1628 

radiance imagery acquired from the sub-nanometer imager at three different altitudes over the entire 1629 

field (Fig. 2-4a, 2-4b and 2-4c) and over the experimental plots (Fig. 2-4d, 2-4e and 2-4f) differed in 1630 

the 670- to 780-nm spectral region (Fig. 2-4g) and in the oxygen absorption features (Fig. 2-4h and 1631 

2-4i). 1632 
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Fig. 2-2. Hyperspectral imagery showing zoomed-in plots from identical locations in experiments 1 1633 
(a, b) and 3 (c, d). Images (a) and (c) were acquired with the sub-nanometer hyperspectral imager 1634 
(composite: 760 (R), 710 (G) and 680 (B) nm). Images (b) and (d) were acquired with the narrow-1635 
band hyperspectral imager (composite: 760 (R), 710 (G) and 680 (B) nm). Green polygons indicate 1636 
plots under different nitrogen treatments, and yellow polygons indicate the selected plots 1637 
corresponding to five and three nitrogen treatments, respectively, for experiments 1 and 3. 1638 

 

2.2.3 SIF quantification from field data and airborne hyperspectral imagery 1639 

A thresholding approach based on the normalised difference vegetation index (NDVI) was 1640 

used to select the pixels corresponding to vegetation in each individual plot. To ensure that only pure 1641 

vegetation pixels were considered for the analysis, all pixels with an NDVI greater than 0.6 were 1642 

selected. For each plot, mean radiance spectra were calculated by averaging spectra from all pure 1643 

vegetation pixels within the plot, excluding boundary pixels, from hyperspectral images acquired 1644 

from both imagers. This object-based analysis strategy was used to reduce the uncertainty when using 1645 

pixel-based SIF retrievals due to the SNR of the instrument. For experiment 1, the total incoming 1646 

irradiance at the flight time was measured using the HR-2000 spectrometer with a CC-3 VIS-NIR 1647 

cosine corrector diffuser. Due to the unavailability of cosine corrector diffuser for experiments 2 and 1648 
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3, the total incoming irradiance at the flight time was calculated by measuring the radiance reflected 1649 

from the white reference panel by the spectrometer. Ground-based SIF760 from eight plots measured 1650 

concurrently with airborne image acquisition were used to validate the airborne SIF760 calculated 1651 

from both imagers. The relative root mean square error (rRMSE) was calculated between the airborne 1652 

and ground-based SIF760 following Eq. (2.1): 1653 

 
𝑟𝑅𝑀𝑆𝐸 =  

ඩ∑ ൬
𝐹௔௜௥௕௢௥௡௘,௜ − 𝐹௚௥௢௨௡ௗ,௜

𝐹௚௥௢௨௡ௗ,௜
൰

ଶ
௡
௜ୀଵ

𝑛
 × 100% 

(2.1) 

where 𝐹௔௜௥௕௢௥௡௘,௜ and 𝐹௚௥௢௨௡ௗ,௜ are the SIF760 values retrieved from airborne and ground-based 1654 

spectrometers, respectively, for plot i, with n representing the number of plots. 1655 

 

Fig. 2-3. Average radiance spectra for treated plots in experiment 1. Spectra obtained from (a) the 1656 
sub-nanometer imager in the 670- to 780-nm region, (b) the sub-nanometer imager in the O2-A 1657 
absorption region, (c) the narrow-band imager in the 400- to 1000-nm region and (d) the narrow-band 1658 
imager in the O2-A absorption region. The transparent grey box in (c) shows the spectral region 1659 
covered by the sub-nanometer hyperspectral imager. Codes T1-T5 correspond to the applied nitrogen 1660 
fertilisation rates shown in Table 2-1. 1661 
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Fig. 2-4. Hyperspectral imagery from experiment 3. (a–f) Sub-nanometer composite imagery (760 1662 
(R), 710 (G) and 680 (B) nm) at various altitudes. (g–i) Average radiance spectra acquired for one of 1663 
the experimental plots in the 670- to 780-nm region (g), O2-A absorption region (h) and O2-B 1664 
absorption region (i). Area of yellow filled polygons (a, b, c) shown in detail in (d), (e) and (f), 1665 
respectively. Green polygons indicate plots under different nitrogen treatments, and yellow polygons 1666 
indicate the selected plots corresponding to three nitrogen treatments.  1667 

 1668 

Field spectrometer radiances/irradiances were calibrated using coefficients derived from a 1669 

uniform calibrated light source and an integrating sphere (Labsphere XTH2000C). To match the SR 1670 

of the radiance images acquired from both sensors, the high-resolution irradiance spectra acquired 1671 

with the HR-2000 spectrometer was resampled through Gaussian convolution (Hornero et al., 2021b; 1672 

Suarez et al., 2021) corresponding to the SR of the airborne hyperspectral imagers. As the spectral 1673 

characteristics of the narrow-band hyperspectral imager do not meet the requirements (Drusch et al., 1674 

2017; ESA, 2015) for quantifying SIF at the O2-B (SIF687) absorption feature, SIF687 values for 1675 
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hyperspectral imagers were not compared. This limitation also affects the applicability of SFMs with 1676 

the narrow-band hyperspectral imager, as it requires sub-nanometer resolution for accurate SIF 1677 

quantification. Thus, the retrieval of SIF760 using irradiance derived from HR-2000 measurements 1678 

and average radiance derived from airborne hyperspectral images and ground-based HR-2000 1679 

measurements was performed using the O2-A-band in-filling method through the FLD principle, 1680 

based on a total of three spectral bands (3FLD) (Maier et al., 2003). The spectral window for ‘in’ and 1681 

‘out’ irradiance (E) and radiance (L) used in 3FLD computation was selected based on the spectral 1682 

characteristics of the measuring instruments. For the narrow-band imager, Ein/Lin corresponds to the 1683 

E/L minima in the 755–765 nm region. The minima for both E and L was observed at 762 nm, and 1684 

this was consistent for all datasets. Eout/Lout corresponds to the weighted mean of E/L maxima in the 1685 

spectral regions of 750–755 nm and 771–776 nm, respectively following the methodology proposed 1686 

in Damm et al. (2011). The spectral window for both ground-based and airborne sub-nanometer 1687 

sensors was selected using the methodology proposed in Julitta et al. (2017)1, which considers the 1688 

FWHM of the sub-nanometer resolution instrument and uses the mean of E/L in the left and right 1689 

shoulder regions to reduce noise. An additional data quality check was performed for the matching 1690 

of the 'in' band for E/L, and in the event of a mismatch, Ein/Lin was defined as the mean of Ein/Lin of 1691 

adjacent wavelengths. The absolute depth (in radiance units) and relative depth (in percent) of the O2-1692 

A band feature were calculated in addition to the airborne SIF760 quantification. The absolute depth 1693 

was calculated as the difference between the solar radiance at the left shoulder wavelength and the 1694 

wavelength at the bottom of the O2-A absorption feature, and the relative depth was calculated as the 1695 

ratio of absolute depth and the solar radiance at the left shoulder wavelength. The wavelength 1696 

providing the highest radiance in the 750–759 nm range was selected as the left shoulder wavelength.   1697 

In the absence of atmospheric correction, SIF760 values could be negative even for fluorescent 1698 

targets (see Fig. 6 in Marrs et al., 2021). The atmospheric correction process involves estimating 1699 

 
1 R code available on GitHub platform at https://github.com/tommasojulitta 
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several atmospheric parameters such as upwelling transmittance, path scattered radiance, and 1700 

spherical albedo using atmospheric RTMs. Additionally, to account for uncertainties in the estimation 1701 

of atmospheric parameters, the transmittance correction technique (Damm et al., 2014; Guanter et 1702 

al., 2010; Siegmann et al. 2019) is a commonly used approach that forces the non-fluorescent targets 1703 

to give zero SIF760. Due to the complexities involved in accurately estimating the atmospheric 1704 

parameters, RTM-based atmospheric correction was not performed in the current study. Instead, on 1705 

account of the successful implementation of a rescaling scheme to correct negative airborne SIF760 1706 

and SIF687 values in Bandopadhyay et al. (2019), we used a simplified correction technique based on 1707 

the same principle of using non-fluorescent targets (i.e., bare soil) as in the widely used transmittance 1708 

correction technique, to compensate for negative SIF760 values related to calibration and atmospheric 1709 

factors such as aerosol scattering and surface pressure. Any deviation from the non-fluorescent 1710 

behaviour of bare soil targets identified in each image was attributed to spectral miscalibration or 1711 

atmospheric effects. The method relies on forcing the non-fluorescent target to give zero SIF760, and 1712 

the non-zero SIF760 served as an offset to correct the SIF760 from vegetation targets following Eq. 1713 

(2.2): 1714 

 𝑆𝐼𝐹௖௢௥௥௘௖௧௘ௗ = 𝑆𝐼𝐹௩௘௚௘௧௔௧௜௢௡ ௧௔௥௚௘௧ − 𝑆𝐼𝐹௡௢௡ି௙௟௨௢௥௘௦௖௘௡௧ ௧௔௥௚௘௧  (2.2) 

To minimize the directional effects on the airborne-quantified SIF760, the corrected SIF760 was 1715 

normalised to a reference-viewing angle using a reflectance-based angular correction approach (Hao 1716 

et al., 2021). The normalisation method employs a reference SIF760 corresponding to a reference 1717 

viewing angle, as well as near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), to 1718 

normalise SIF760 quantified at any viewing direction to a reference viewing angle. Two different 1719 

approaches were used to compute the reference SIF760 for normalisation. In the first approach, a single 1720 

plot located at the centre of each hyperspectral image was selected as the reference SIF760 on account 1721 

of being a nadir-view. In the second approach, locations of the ground-based spectral measurements 1722 

were identified in the hyperspectral images and used for calculating the reference SIF760. Since the 1723 
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ground-based spectral measurements were primarily conducted along the plot's centre, only pure 1724 

vegetation pixels located along the plot's centre were used to compute mean radiance for the reference 1725 

SIF760 calculation. This differs from the airborne SIF760 corresponding to individual plots, which was 1726 

calculated using mean radiance from all pure vegetation pixels excluding the boundaries. The second 1727 

approach was only applied for experiment 3 to validate the airborne-quantified SIF760 with the 1728 

ground-based HR-2000 SIF760 measurements so that the reference viewing direction remained 1729 

identical for ground-based and airborne SIF760. Normalisation was conducted according to the nadir-1730 

viewing angle for all inter-comparisons of airborne SIF760 from both imagers. 1731 

The study focused on assessing the spectral configuration of the two instruments, with 1732 

attempts made to reduce distortions caused by other factors. We used pixels close to the nadir-viewing 1733 

angle and avoided evaluating areas close to the image borders to reduce the potential effects of 1734 

instrument 'smile' on assessment of the two instruments. Moreover, the angular correction used to 1735 

normalise SIF760 minimizes the potential instrument smile effects (detailed above). Further work and 1736 

a corresponding paper will evaluate sensor smile effects and corrections needed when using narrow-1737 

band instruments for SIF760 retrievals. This additional work is important because entire images, rather 1738 

than just nadir pixels, are needed for practical applications in precision agriculture. 1739 

2.2.4 Modelling the spectral resolution effects on SIF quantification using SCOPE  1740 

The SCOPE model integrates three radiative transfer modules and an energy balance module 1741 

to estimate outgoing radiation spectra, turbulent heat fluxes, photosynthesis rates and chlorophyll 1742 

fluorescence (Van der Tol et al., 2009). Surface reflectance and fluorescence spectra are simulated 1743 

by linking several energy balance, photosynthesis and canopy biophysical parameters with TOC 1744 

radiance, with SSI and SR of 1.0 nm each. The model assumes a homogenous canopy structure, and 1745 

the canopy radiative transfer equations are based on the widely used SAIL model (Verhoef, 1984). 1746 

Net radiation over the canopy is calculated by integrating the contribution from the individual layers 1747 

with shaded and sunlit leaves at different leaf angles over the canopy depth. The canopy reflectance 1748 
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modelling is conducted based on four different Bidirectional Reflectance Distribution Function 1749 

(BRDF) terms representing direct and diffused hemispherical contribution from the surrounding and 1750 

the direct and diffused reflectance in the viewing direction. The leaf-level fluorescence spectra are 1751 

modelled within the 640- to 850-nm spectral region based on the FLUSPECT model (Vilfan et al., 1752 

2016) by using the leaf reflectance and fluorescence outputs derived from the PROSPECT model 1753 

(Jacquemoud and Baret, 1990). 1754 

A simulated dataset using the SCOPE model (version 2.0) was generated to evaluate the 1755 

influence of the SR of the airborne hyperspectral sensors on the 3FLD-based SIF760 quantification. 1756 

The dataset consisted of 400,000 simulations generated by randomly varying specific input 1757 

parameters, drawing from a uniform distribution within ranges shown in Table 2-4. All other SCOPE 1758 

input parameters were kept at their default values. The air temperature and air pressure inputs for the 1759 

SCOPE model were measured with a portable weather station during the airborne campaign at field 1760 

trial site 1. Details regarding the definition and ranges of all input parameters can be found in Table 1761 

A-1 (Appendix A). For each case, the TOC spectra of total upwelling radiance, SIF radiance and the 1762 

corresponding irradiance were simulated using the default 1.0-nm SR and 1.0-nm SSI obtained from 1763 

SCOPE. To compare the SIF760 retrieval performance for SR corresponding to the narrow-band 1764 

hyperspectral imager, SCOPE-simulated spectra were resampled to 5.8-nm FWHM through Gaussian 1765 

convolution matching the SSI with the narrow-band imager. The resampled radiance spectra in the 1766 

400- to 1000-nm spectral region were compared with the average radiance spectra obtained from the 1767 

narrow-band imager at experimental field trial site 1 using RMSE as the cost function. For each 1768 

narrow-band airborne radiance spectrum, we selected the 10 closest resampled radiance spectra from 1769 

the 400,000 simulations along with their corresponding resampled-irradiance for the analysis. Fig. 2-1770 

5a shows the measured radiance spectra from the narrow-band imager. Fig. 2-5b and 2-5c show the 1771 

SCOPE-simulated SIF and radiance spectra at 1-nm FWHM corresponding to the selected 1772 

simulations. A comparison of the simulated SCOPE radiance spectra against the narrow-band imager 1773 
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is shown in Fig. 2-5d. Additionally, radiance and irradiance spectra corresponding to SRs of 2.0 nm, 1774 

3.0 nm, 4.0 nm and 5.0 nm were generated by resampling SCOPE-simulated 1.0-nm SR spectra with 1775 

Gaussian convolution but keeping the SSI at 1.0-nm.  Fig. 2-5e and 2-5f show the comparison 1776 

between the radiance spectra simulated by SCOPE at different SRs in the O2-B and O2-A absorption 1777 

regions, respectively. The O2-B absorption feature could only be identified at the default 1.0-nm SR. 1778 

The decrease of SR from the default 1 nm to 5.8 nm resulted in O2-A-band depth reduction and an 1779 

increment in the radiance signal corresponding to the absorption minima. 1780 

Table 2-4. Range of the SCOPE input parameters used in this study. 1781 
Parameter Range/Value Unit Description 
Ca+b 10–50 μg·cm−2 Chlorophyll a+b content 
Cdm 0.001–0.05 g·m−2 Dry matter content 
Cw 0.001–0.05 cm Leaf water equivalent layer 
N 1.2–1.8 – Leaf thickness parameters 
Vcmax 20–120 μmol·m−1·s−1 Maximum carboxylation capacity at 

25 °C 
fqe 0.001–0.015 – Fluorescence quantum yield efficiency 

at photosystem level 
LAI 2–6 m2·m−2 Leaf area index 
LIDFa −1–0 – Leaf inclination 
LIDFb 0 – Variation in leaf inclination 
Rin 600–1000 W·m−2 Broadband incoming shortwave 

radiation  
Ta 19.2 °C Air temperature 
p 1002.8 hPa Air pressure 
tts 35.42 deg. Solar zenith angle 
 1782 

2.2.5 Nitrogen assessments using narrow-band and sub-nanometer SIF retrievals  1783 

The effects of sensor SR on nitrogen estimation were assessed using models with chlorophyll 1784 

content and SIF traits as inputs (Camino et al., 2018b). Nitrogen content was predicted using Random 1785 

Forest (RF) (Breiman, 2001) models fit to data from field trial site 1, using i) Ca+b derived from the 1786 

narrow-band hyperspectral imagery through the inversion of PRO4SAIL RTM and ii) SIF760 1787 

quantified from each of the hyperspectral imagers as inputs. The PRO4SAIL model used coupled 1788 

PROSPECT-D (Féret et al., 2021) and 4SAIL (Verhoef et al., 2007) to retrieve the biochemical 1789 

constituents and canopy structural parameters, respectively. A look-up table with 200,000 simulations 1790 
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was built by randomly varying the biochemical and biophysical parameters with a uniform 1791 

distribution within the ranges shown in Table 2-5. 1792 

 

Fig. 2-5. (a) Measured radiance from the narrow-band imager. (b) SCOPE-simulated SIF at 1.0-nm 1793 
FWHM. (c) SCOPE-simulated radiance at 1.0-nm FWHM. (d) SCOPE-simulated radiance 1794 
corresponding to the narrow-band imager’s spectral characteristics (FWHM = 5.8 nm, SSI = 1.626 1795 
nm). SCOPE-simulated radiance at different SRs in the O2-B (e) and O2-A absorption regions (f).  1796 

 1797 

Support vector machines (SVMs) were trained using simulated reflectance as inputs. 1798 

Reflectance spectra were matched with the spectral resolution of the narrow-band hyperspectral 1799 

imager (5.8-nm FWHM). SVMs were first trained in parallel (MATLAB parallel computing toolbox) 1800 

using a radial basis function and optimising the hyperparameters during training to predict Ca+b. Then, 1801 

using the average reflectance spectra extracted from pure-vegetation pixels, Ca+b was estimated for 1802 
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each experimental plot. Subsequently, RF regression models were fit for each hyperspectral sensor, 1803 

using crop N concentration as a response variable and the estimated Ca+b from the narrow-band VNIR 1804 

reflectance spectra (Ca+b-narrow) and SIF760 derived from each hyperspectral imager (i.e., Ca+b-narrow + 1805 

SIF760-narrow vs. Ca+b-narrow + SIF760-sub-nanometer) as predictors. 1806 

Table 2-5. Parameters and ranges used for the look-up table generation for the PRO4SAIL RTM.  1807 

Parameter Abbreviation Value/range 

Chlorophyll a+b content [μg/cm²] Ca+b 4–70 

Carotenoid content [μg/cm²] Cx+c 1–20 

Anthocyanin content [μg/cm²] Anth 0–15 

Dry matter content [g/cm²] Cm 0.007 

Water content [g/cm²] Cw 0.001 

Mesophyll structure Coeff. N 0.5–3 

Leaf area index [m²/m²] LAI 0.3–5 

Average leaf angle [deg.] LIDFa 0–90 

Hot spot parameter  h 0.01 

Soil reflectance Rsoil PRO4SAIL dry soil spectra 

Observer angle [deg.] tto 0 

Sun zenith angle [deg.] tts 35.42 

Relative azimuth angle [deg.] Ѱ 0 

 1808 

2.3 Results 1809 

In experiment 1, leaf physiological traits were significantly different in plots fertilised at 1810 

different rates (p < 0.05; Fig. 2-6). For experiments 2 and 3, differences were non-significant, but 1811 

there was visible variation in leaf physiological variables among plots receiving different nitrogen 1812 

treatments (Fig. 2-6). Differences in leaf total N concentration measured by destructive sampling 1813 

were generally consistent with the trends observed in leaf steady-state fluorescence (Ft) with minor 1814 

exceptions (e.g., values observed for T3 in experiment 1). Ft was lower in plots with the least N 1815 

applied compared to other plots in all the experiments (Fig. 2-6, Ft and Total N panels). Fertilisation 1816 
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rate was positively associated with chlorophyll a+b content and the leaf nitrogen balance index (NBI), 1817 

while leaf flavonols and anthocyanins were inversely associated with fertilisation rate. Leaf 1818 

physiological values were more variable in experiment 1 (T1–T5: 0–184 kg N/ha) than in experiments 1819 

2 (T1–T2: 207–387 kg N/ha) or 3 (T1–T3: 0–315 kg N/ha). 1820 

 
 

Fig. 2-6. Leaf physiological traits by fertilisation rate across experiments. Average values indicated 1821 
by red points. The black lines within boxes represent medians, and the top and bottom of each box 1822 
represent the 75th and 25th quartile, respectively. Whiskers represent ± 1.5 × Inter Quartile Range. 1823 
Asterisks indicate significant differences from the treatment 1 plots according to Dunnett's test at α < 1824 
0.05. *p ≤ 0.05; **p ≤ 0.01. 1825 

 1826 

The absorption features at O2-A and O2-B absorption regions were evident in the radiance 1827 

spectra from both airborne hyperspectral imagers (Fig. 2-7). However, their shape and depth were 1828 

strongly influenced by the SR. As a result of the coarser SR of the narrow-band imager, the absorption 1829 

feature at the O2-B band in the 685- to 690-nm spectral region could not be identified in the narrow-1830 

band radiance spectra (Fig. 2-7, inset). This result restricts the comparison between the narrow-band 1831 

and sub-nanometer hyperspectral imagers for the calculation of SIF at the O2-B band. Moreover, a 1832 

reduction in the depth of the O2-A absorption feature in the 750- to 780-nm spectral region and the 1833 

corresponding increment in the radiance signal at the absorption minima were observed for the 1834 
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narrow-band radiance spectra, as expected (Fig. 2-7, inset). The wavelength corresponding to the 1835 

radiance minimum was shifted towards higher wavelengths when compared to sub-nanometer 1836 

radiance spectra, as shown in several studies (Cendrero-Mateo et al., 2019; Damm et al., 2011; Julitta 1837 

et al., 2016; Liu et al., 2015). 1838 

 
Fig. 2-7. Comparison of average radiance spectra from one of the plots within experiment-3 in the 1839 
670- to 780-nm region obtained from both hyperspectral imagers. The insets show the comparison 1840 
within O2-A and O2-B absorption features in the 750- to 780-nm region and 685- to 690-nm region, 1841 
respectively. 1842 

 1843 

At site 1, the depths of the O2-A absorption feature from each of the two imagers were strongly 1844 

correlated (R2 = 0.90, p < 0.001; Fig. 2-8a), when using data from the full set of >100 plots. 1845 

Nevertheless, the range of SIF760 values quantified with the 3FLD method (SIF760-3FLD) differed 1846 

between sub-nanometer imager (0.05–1.95 mW/m2/nm/sr) and the narrow-band imager (0.37–8.12 1847 

mW/m2/nm/sr; Fig. 2-8b). Although there was some lack of correspondence in SIF760-3FLD between 1848 

the two imagers (RMSE = 3.86 mW/m2/nm/sr), the two were significantly correlated (R2 = 0.85, p < 1849 

0.001; Fig. 2-8b). 1850 
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Fig. 2-8. Relationship between depth at the O2-A absorption feature (a) and SIF760-3FLD (b) over the 1851 
experimental field at site 1 from both hyperspectral imagers. The range of absolute SIF760-3FLD levels 1852 
derived from the narrow-band imager was higher than the typical range of 0–3 mW/m2/nm/sr 1853 
quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. 1854 

 1855 

Airborne SIF760-3FLD estimates from both hyperspectral imagers are compared in Fig. 2-9. The 1856 

best agreement between measures was observed in experiment 3 (R2 = 0.9, RMSE = 3.28 1857 

mW/m2/nm/sr, p < 0.001). Measures from each sensor were also well correlated in experiments 1 (R2 1858 

= 0.87, RMSE = 4.69 mW/m2/nm/sr, p < 0.001; Fig. 2-9a) and 2 (R2 = 0.77, RMSE = 3.95 1859 

mW/m2/nm/sr, p < 0.01; Fig. 2-9b). The error between estimates was consistent across experiments, 1860 

yielding RMSEs within 3.28–4.69 mW/m2/nm/sr. 1861 

Low-resolution SCOPE-simulated SIF760-3FLD values (2- to 5.8-nm FWHM) were 1862 

significantly correlated with SIF760-3FLD simulated at 1-nm FWHM (p < 0.001, R2 0.70–0.99; Fig. 2-1863 

10).  RMSE values tended to increase with decreasing SR (Fig. 2-10). The pattern of differing 1864 

absolute SIF760-3FLD values but stable relative differences across SRs observed with the SCOPE-1865 

simulated data was consistent with the experimental results from the airborne hyperspectral imagers. 1866 
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Fig. 2-9. Relationship between airborne SIF760-3FLD measures from different hyperspectral imagers 1867 
across experiments 1 (a), 2 (b) and 3 (c). The range of absolute SIF760-3FLD levels derived from the 1868 
narrow-band imager was higher than the typical range of 0–3 mW/m2/nm/sr quantified from healthy 1869 
vegetation due to the impact of the spectral resolution of the instrument. 1870 

 1871 

 1872 

 
Fig. 2-10. Relationships between SIF760-3FLD for SCOPE simulations with different SRs against 1873 
SIF760-3FLD quantified at 1-nm FWHM. The dotted line represents the 1:1 line. 1874 

 1875 

A comparison of airborne SIF760 retrievals to ground-based SIF760-3FLD retrievals in 1876 

experiment 3 is shown in Fig. 2-11. Ground-based measures were significantly correlated with both 1877 

the sub-nanometer (R2 = 0.90, p < 0.001; Fig. 2-11a) and the narrow-band (R2 = 0.88, p < 0.001) 1878 

hyperspectral imagers (Fig. 2-11b). SIF760-3FLD from the sub-nanometer imager showed strong 1879 

agreement with the ground-based SIF760-3FLD values (RMSE = 0.07 mW/m2/nm/sr, rRMSE = 3.7%), 1880 

whereas the narrow-band imager exhibited greater overall differences from ground-based measures 1881 

(RMSE = 3.26 mW/m2/nm/sr, rRMSE = 170.5%). SIF-yield, which was estimated by normalising 1882 
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the corrected SIF760-3FLD by the average NIR radiance in the 776–780-nm spectral region, was also 1883 

significantly correlated with the leaf-level steady-state chlorophyll fluorescence in experiment 1 (R2 1884 

= 0.53, p < 0.01 for sub-nanometer imager; R2 = 0.34, p < 0.05 for narrow-band imager). 1885 

 
Fig. 2-11. Relationship between ground-based SIF760-3FLD quantified from the HR-2000 field 1886 
spectrometer and airborne SIF760-3FLD quantified from the sub-nanometer (a) and the narrow-band (b) 1887 
hyperspectral imagers for experiment 3. The dotted line represents the 1:1 line. The range of absolute 1888 
SIF760-3FLD levels derived from the narrow-band imager was higher than the typical range of 0–3 1889 
mW/m2/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of the 1890 
instrument. 1891 

 1892 

Measures of O2-A band depth and airborne SIF760-3FLD at different altitudes are presented in 1893 

Fig. 2-12. SIF760-3FLD measures with the narrow-band imager at 2200 m AGL were excluded because 1894 

pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m). O2-A absorption feature depth and 1895 

SIF760-3FLD differed significantly with altitude (Fig. 2-12). The depth of the O2-A absorption feature 1896 

increased with sensor altitude, and SIF760-3FLD decreased with sensor altitude for both airborne 1897 

imagers (Fig. 2-12).  1898 

Sub-nanometer SIF760-3FLD retrievals were significantly correlated with narrow-band imager 1899 

retrievals in experiment 3 at both 900 m AGL (R2 = 0.85, p < 0.001; Fig. 2-13a) and 1200 AGL (R2 1900 

= 0.9, p < 0.001; Fig. 2-13a). The slope of the relationship between sub-nanometer and narrow-band 1901 

retrievals was steeper for 900 m AGL than for 1200 m AGL. RMSE at 900 m AGL (4.29 1902 

mW/m2/nm/sr) was higher than that of 1200 m AGL (3.28 mW/m2/nm/sr), possibly explained by 1903 

larger SIF760-3FLD values at lower altitudes. SIF760-3FLD at 900 m AGL was significantly correlated with 1904 
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SIF760-3FLD at 1200 m AGL (R2 = 0.92, p < 0.001; Fig. 2-13b) and 2200 m AGL (R2 = 0.8, p < 0.001; 1905 

Fig. 2-13b) using the sub-nanometer imager. SIF760-3FLD values decreased with imager altitude, and 1906 

the relationship between low-altitude and high-altitude measurements also changed, with shallower 1907 

slopes at higher altitudes (Fig. 2-13b). RMSE was higher at 2200 m AGL than at 1200 m AGL 1908 

altitude, when compared to 900 m AGL. A similar pattern was observed for narrow-band SIF760-3FLD 1909 

retrievals, with an overall significant correlation (R2 = 0.82, RMSE = 1.36 mW/m2/nm/sr, p < 0.001; 1910 

Fig. 2-13c) and lower SIF760-3FLD values at higher altitudes. 1911 

 
Fig. 2-12. Effect of sensor altitude on O2-A band depth and SIF760-3FLD in experiment 3. Letters (a, b 1912 
and c) within each plot represent the results of Tukey’s honest significant difference (HSD) post-hoc 1913 
comparisons of group means with α < 0.05. Groups sharing the same letter are not significantly 1914 
different. In the boxplots, the average values are shown with a red circle. The black line within the 1915 
box is the median, and the top and bottom of the box is the 75th and 25th quartile, respectively. The 1916 
whiskers represent ± 1.5 × Interquartile range. The outliers are represented as diamonds. The range 1917 
of absolute SIF760-3FLD levels derived from the narrow-band imager was higher than the typical range 1918 
of 0–3 mW/m2/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution 1919 
of the instrument. SIF760-3FLD measures with the narrow-band imager at 2200 m AGL were excluded 1920 
because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 m). 1921 

 1922 

Sub-nanometer SIF760-3FLD was significantly correlated with ground-based SIF760-3FLD at all 1923 

sensor altitudes (p < 0.001, all R2 > 0.9; Fig. 2-14a). RMSEs between airborne and ground-based SIF 1924 

retrievals at 900 and 1200 m AGL were lower than 0.1 mW/m2/nm/sr and rRMSEs were lower than 1925 
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4%. SIF760-3FLD at 2200 m AGL consistently underestimated ground-based SIF (RMSE = 0.5 1926 

mW/m2/nm/sr and rRMSE = 28.2%; Fig. 2-14a). Ground-based SIF760-3FLD was also significantly 1927 

correlated with airborne SIF760-3FLD from the narrow-band imager (p < 0.001, R2 > 0.85) at both 1928 

altitudes (Fig. 2-14b). Narrow-band imager SIF760-3FLD estimates at 1200 m AGL tended to be smaller 1929 

than ground-based measures (Fig. 2-14b), and error was high for both 900 m AGL (RMSE = 3.77 1930 

mW/m2/nm/sr, rRMSE = 200.8%) and 1200 m AGL (RMSE = 3.26 mW/m2/nm/sr, rRMSE = 1931 

170.5%). 1932 

 
Fig. 2-13. (a) Relationships between SIF760-3FLD estimates from narrow-band and sub-nanometer 1933 
hyperspectral imagers by sensor altitude. (b) Relationships between airborne SIF760-3FLD from sub-1934 
nanometer imager at 1200 and 2200 m AGL compared to the SIF760-3FLD quantified at 900 m AGL. 1935 
(c) Relationship between airborne SIF760-3FLD from the narrow-band hyperspectral imager at 900 and 1936 
1200 m AGL. The range of absolute SIF760-3FLD levels derived from the narrow-band imager was 1937 
higher than the typical range of 0–3 mW/m2/nm/sr quantified from healthy vegetation due to the 1938 
impact of the spectral resolution of the instrument. SIF760-3FLD measures with the narrow-band imager 1939 
at 2200 m AGL were excluded because pixels were too coarse (1.7 m) relative to plot size (3 m × 12 1940 
m). 1941 

 1942 

Nitrogen predictions from both RF models were significantly correlated (p < 0.01) with the 1943 

field-level nitrogen content measurements obtained by destructive sampling (Fig. 2-15). SIF760-FLD 1944 

from the sub-nanometer hyperspectral imager by itself was significantly correlated with field-level 1945 

nitrogen content (R2 = 0.71, p < 0.001; Fig. 2-15a), as was SIF760 quantified from the narrow-band 1946 

imager (R2 = 0.67, p < 0.001; Fig. 2-15b). The RF algorithm using SIF760-sub-nanometer performed 1947 

slightly better (R2 = 0.93, RMSE = 0.09%; Fig. 2-15c) than the RF using SIF760-narrow-band (R2 = 0.87, 1948 

RMSE = 0.12 %; Fig. 2-15d). 1949 
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Fig. 2-14. Relationship between ground-based SIF760-3FLD quantified with a HR-2000 field 1950 
spectrometer and airborne SIF760-3FLD at 900 m, 1200 m and 2200 m AGL retrieved from the sub-1951 
nanometer imager (a) and the narrow-band imager (b). The range of absolute SIF760-3FLD levels 1952 
derived from the narrow-band imager was higher than the typical range of 0–3 mW/m2/nm/sr 1953 
quantified from healthy vegetation due to the impact of the spectral resolution of the instrument. 1954 
SIF760-3FLD measures with the narrow-band imager at 2200 m AGL were excluded because pixels were 1955 
too coarse (1.7 m) relative to plot size (3 m × 12 m). 1956 

 1957 

2.4 Discussion 1958 

In this study we examined the relationship between airborne SIF760-3FLD quantified using sub-1959 

nanometer resolution (i.e., ≤0.2 nm FWHM) and narrow-band resolution (i.e., 5.8-nm FWHM) 1960 

hyperspectral imagers in the context of plant phenotyping for homogenous crop canopies. Our results 1961 

support the assertion that airborne SIF retrievals from narrow-band hyperspectral imagers can 1962 

successfully track small physiological changes induced by plant pathogens and environmental 1963 

stresses, as reported elsewhere (Calderon et al., 2015; 2013; Camino et al., 2021; 2018a; Hernandez-1964 

Clemente et al., 2017; Panigada et al., 2014; Poblete et al., 2021; 2020; Zarco-Tejada et al., 2018; 1965 

2012). Precise SIF760 quantification at absolute scales was not essential for detecting plant stress in 1966 

these studies. In our study, narrow-band airborne SIF760-3FLD was significantly associated with both 1967 

sub-nanometer airborne and ground-based SIF observations. Our results particularly illustrate the 1968 
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capability of these narrow-band hyperspectral imagers for characterising the intra-field SIF760 1969 

variability induced by different nitrogen fertilisation rates. 1970 

 

Fig. 2-15. Relationships between N concentration and airborne SIF760-3FLD quantified from a sub-1971 
nanometer (a) and narrow-band imager (b). Measured vs. estimated N concentration using Random 1972 
Forest regression models, which included RTM-based Ca+b and SIF760-3FLD generated from either a 1973 
sub-nanometer (c) or narrow-band imager (d). The dotted line represents the 1:1 line. The range of 1974 
absolute SIF760-3FLD levels derived from the narrow-band imager was higher than the typical range of 1975 
0–3 mW/m2/nm/sr quantified from healthy vegetation due to the impact of the spectral resolution of 1976 
the instrument.  1977 

 1978 

Previous studies have highlighted the importance of sensor configuration for detecting 1979 

spectral absorption features occurring over very narrow spectral ranges, particularly the need for high 1980 

SR and SNR when quantifying SIF (Mohammed et al., 2019). The literature has emphasised the need 1981 

for instruments with sub-nanometer resolutions to accurately characterise narrow absorption features 1982 

for reliable SIF estimates in physical units (Cogliati et al., 2015; Julitta et al., 2016; Meroni and 1983 

Colombo, 2006; Meroni et al., 2011; Rossini et al., 2010). The experimental results from these studies 1984 
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are consistent with modelling studies based on FluorSAIL3 (Damm et al., 2011; Cendrero-Mateo et 1985 

al., 2019) and SCOPE (Liu et al., 2015), which showed an increase in the SIF760 retrieval accuracy 1986 

with increasing sensor SR. These modelling studies also found strong correlations between modelled 1987 

and estimated SIF760 for low SR (5 nm) instruments using 3FLD (r = 0.78, RMSE = 0.31 1988 

mW/m2/nm/sr) and iFLD (r = 0.81, RMSE = 0.081 mW/m2/nm/sr) (Damm et al., 2011). The SCOPE 1989 

modelling results presented in this study support the findings of previous modelling efforts, 1990 

illustrating statistically significant relationships (p < 0.001, R2 = 0.70–0.99, RMSE = 0.24–1.25 1991 

mW/m2/nm/sr; Fig. 2-10) between SIF760-3FLD at 1 nm and SIF760-3FLD at coarser SRs ranging from 2-1992 

nm to 5.8-nm FWHM. The offset of the linear relationship with SIF760-3FLD at 1 nm increased steadily 1993 

as the SR decreased from 2 to 5.8 nm, while the slope remained close to 1. This offset increase can 1994 

be attributed to differences in radiance corresponding to the O2-A band minima, which showed a 1995 

200% increase (Fig. 2-5f) when resampling radiance spectra from 1 to 5.8 nm SR. Our modelling 1996 

results and those of previous studies suggest that narrow-band resolution sensors (4- to 6-nm FWHM) 1997 

with sufficient SNR can sufficiently characterise relative SIF760 levels despite their inability to 1998 

provide reliable absolute SIF760 estimates.    1999 

Differential nitrogen application rates in the three experiments were associated with 2000 

variability of leaf physiological measurements (Fig. 2-6) and airborne SIF760-3FLD. Narrow-band and 2001 

sub-nanometer SIF760-3FLD estimates were strongly correlated across experiments, and both differed 2002 

by nitrogen fertilisation level. The best correlation, observed in experiment 3, may be attributed to 2003 

the identical flight altitude at which the narrow-band and the sub-nanometer hyperspectral images 2004 

were collected for this experiment (site 2; Table 2-2) in addition to the higher relative SIF760-3FLD 2005 

variability observed within the experimental plots compared to experiments 1 and 2 (Fig. 2-9). The 2006 

results demonstrated consistency across experimental sites and airborne campaigns carried out at 2007 

different times, flight altitudes and years, showing robust relationships in terms of the relative SIF760-2008 

3FLD variability quantified by the two hyperspectral imagers. The differences obtained in absolute 2009 
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levels of SIF760-3FLD quantified in the three experiments can be associated with the differences in crop 2010 

varieties, crop growth stages and the slightly different acquisition times of the airborne hyperspectral 2011 

images. These results are consistent with previous studies showing differences in both ground-based 2012 

and airborne SIF760 measurements according to nitrogen treatment (Cendrero-Mateo et al., 2016; Jia 2013 

et al., 2018; 2021; Quemada et al., 2014; Watt et al., 2020a; 2020b).  2014 

Sensor altitude was identified as a critical factor in determining SIF accuracy (Daumard et al., 2015 

2015; Ni et al., 2016). MODTRAN (Berk et al., 2014) was used in these studies to show that the 2016 

depth of the O2-A absorption feature increases with sensor altitude. This is consistent with our 2017 

findings, which show that the O2-A band depth increased with altitude for both airborne hyperspectral 2018 

imagers (Fig. 2-12) due to an increase in the radiance of the O2-A band minima (Fig. 2-4h). Despite 2019 

correcting for the atmospheric effects, SIF760-3FLD decreased with altitude for both airborne 2020 

hyperspectral imagers. Such a decrease is linked to the correction method used, which relies on non-2021 

fluorescent targets. The relative increase in O2-A band depth with increasing altitude is greater for 2022 

vegetation targets than for bare soil targets (Daumard et al. 2015). This difference results in a bias in 2023 

the corrected SIF760-3FLD. Although SIF760-3FLD was overestimated at higher altitudes with both 2024 

hyperspectral imagers, airborne estimates remained well correlated with ground-based measurements 2025 

across altitudes (Fig. 2-12 and 2-14). This result has important implications for drone and airborne-2026 

based SIF quantifications in plant phenotyping studies and precision agriculture applications, in 2027 

which sensor altitude is generally adapted depending on the flight efficiency and areal coverage. 2028 

Although the relative variability needs to be assessed for detecting physiological changes induced by 2029 

biotic or abiotic factors, understanding the effects of sensor altitude on SIF retrievals is critical for 2030 

accurately interpreting SIF when used as input in stress-detection models. 2031 

Few studies have validated airborne-quantified SIF760 from narrow-band hyperspectral 2032 

imagers against ground-based observations from high-resolution field spectrometers, due to the 2033 

challenges associated with complex and heterogenous canopies including forest areas and cash crops 2034 
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such as vineyards and tree orchards. Damm et al. (2015) demonstrated the relationship between the 2035 

medium-resolution Airborne Prism Experiment (APEX) sensor and a ground-based ASD 2036 

(PANalytical, Boulder, US) field spectrometer for three different types of ecosystems. Measures were 2037 

correlated (R2 = 0.71), but airborne SIF760 systematically overestimated ground-based SIF760 by a 2038 

proportionality factor (slope of airborne vs. ground SIF760 relationship) of 1.93 and an rRMSE of 2039 

28.9%. Guanter et al. (2007) found good agreement (R2 = 0.85) between airborne SIF760 derived from 2040 

the Compact Airborne Spectrographic Imager (CASI, Itres Research Ltd., Canada) and ground-based 2041 

SIF760 derived from the ASD FieldSpec FR spectroradiometer. The airborne vs. ground-based 2042 

relationship found in the current study (R2 = 0.88, proportionality factor = 4.76) is consistent with the 2043 

results from both studies above. Due to the impact of SR on the absolute SIF760-3FLD quantification, 2044 

larger deviations in terms of rRMSE and proportionality factor were observed compared with the 2045 

results from Damm et al. (2015), which can be attributed to the sub-nanometer resolution (0.065-nm 2046 

FWHM) of the reference ground-based HR-2000 spectrometer used in our study as compared to the 2047 

moderate spectral resolution of ASD spectrometers (>1.0-nm FWHM) used elsewhere. 2048 

The potential effects of the canopy structure are important to consider when comparing the 2049 

narrow-band vs. sub-nanometer SIF retrievals. The TOC SIF observations from ground-based, 2050 

airborne and spaceborne platforms are strongly affected by plant canopy structure due to the re-2051 

absorption and scattering of light within the canopy (Fournier et al., 2012; Porcar-Castell et al., 2014; 2052 

Dechant et al., 2020; Yang and Van der Tol, 2018; Zeng et al., 2019). This structure is usually 2053 

characterised by parameters such as leaf area index and the leaf inclination distribution function and 2054 

may be approximated with vegetation indices such as Modified Triangular Vegetation Index 2055 

(MTVI2) (Haboudane et al., 2004) and Enhanced Vegetation Index (EVI) (Huete et al., 2002) when 2056 

assessing the effects of structure on SIF. In our study, the structural differences across experimental 2057 

plots were generally small as structural changes were generally not associated with experimental 2058 

treatments. Nevertheless, we tested whether treatment-associated variability in canopy structure could 2059 
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be related to SIF760-3FLD from the narrow-band hyperspectral imager. We found that the relationships 2060 

of both MTVI2 and EVI with narrow-band airborne SIF760-3FLD were weak and non-significantly 2061 

correlated at both field trial sites (p > 0.1, R2 = 0 – 0.11; Fig. 2-16). These results suggest that the 2062 

SIF760-3FLD variability captured by the narrow-band imager in the experiments was not driven by 2063 

changes arising from structural effects. Moreover, it shows that the fluorescence in-filling at the O2-2064 

A band was unaffected by structure, with the variability across experimental plots due to subtle 2065 

physiological differences. 2066 

 

 
Fig. 2-16. Relationships between airborne SIF760-3FLD from the narrow-band hyperspectral imager and 2067 
MTVI2 (a) and EVI (b). The range of absolute SIF760-3FLD levels derived from the narrow-band imager 2068 
was higher than the typical range of 0–3 mW/m2/nm/sr quantified from healthy vegetation due to the 2069 
impact of the spectral resolution of the instrument. 2070 

 2071 

Predictive models of leaf N concentration improved only slightly when using SIF760 from the 2072 

sub-nanometer imager compared to the narrow-band imager, with a marginal increase in the model 2073 

performance (R2 = 0.87 vs. 0.93) and a decrease in the error (RMSE = 0.12% vs. 0.09%). The 2074 

direction of this improvement is consistent with the greater accuracy of the sub-nanometer SR imager. 2075 

Nevertheless, these results suggest that data from the narrow-band hyperspectral imager may be 2076 

sufficient for predicting N concentration in plant phenotyping and precision agriculture applications. 2077 

Narrow-band imagery may be particularly suitable since relative changes in SIF linked to 2078 

physiological conditions, nutritional deficiencies and stress levels are often the focus of such studies. 2079 
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For assessing crop physiological status, standard commercially available hyperspectral 2080 

imagers with 4- to 6-nm FWHM and SNRs greater than 300:1 can provide reliable relative SIF760 2081 

estimates (Zarco-Tejada et al., 2012; 2013a). These sensors are lightweight and can be carried on 2082 

drone platforms that provide very high spatial resolution images due to low flying altitude. This 2083 

capacity to generate very high spatial resolution imagery with narrow spectral bands is particularly 2084 

important for plant phenotyping and precision agriculture applications for mapping physiological 2085 

condition (Mohammed et al., 2019). Additional work using RTMs such as SCOPE and others is 2086 

needed for improving the interpretation of SIF quantified using broader resolutions in precision 2087 

agriculture.  2088 

 2089 

2.5 Conclusions 2090 

1. Strong significant relationships were observed between SIF760 quantified with narrow-band 2091 

and sub-nanometer hyperspectral imagers flown in tandem across experimental sites and 2092 

airborne campaigns conducted at different times, flight altitudes and years. These results 2093 

demonstrate robust quantification of relative SIF760 variability at lower spectral resolution, 2094 

demonstrating its validity for detecting stress levels. 2095 

2. The experimental results obtained for SIF760 from the two hyperspectral imagers were 2096 

successfully validated via SCOPE modelling, confirming the reliability of narrow-band SIF760 2097 

estimates for stress-detection applications requiring the assessment of the relative variability 2098 

across the experimental field. 2099 

3. The estimation of leaf nitrogen concentration using SIF760 obtained similar results at both 2100 

spectral resolutions (i.e. sub-nanometer vs. narrow-band SIF760), suggesting that the relative 2101 

SIF760 levels obtained from narrow-band hyperspectral imagers enable the prediction of 2102 

nitrogen concentration for plant phenotyping and precision agriculture applications. 2103 
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4. The SIF760 variability detected by the narrow-band hyperspectral imager was not related to 2104 

canopy structural alterations, but rather to distinct physiological responses to various nitrogen 2105 

fertilisation levels across the experimental plots. These results demonstrate the potential of 2106 

narrow-band SIF760 to track small physiological changes caused due to nutrient variability. 2107 
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Abstract 2579 

Hyperspectral imaging of solar-induced chlorophyll fluorescence (SIF) is useful for large-2580 

scale plant phenotyping and stress detection. However, the most accurate instruments for SIF 2581 

quantification, such as sub-nanometer (≤1-nm full-width at half-maximum, FWHM) airborne 2582 

hyperspectral imagers, are expensive and complex to use. Previous studies have demonstrated that 2583 

standard narrow-band hyperspectral imagers (i.e., 4–6-nm FWHM) are more cost-effective and are 2584 

able to provide far-red SIF (SIF760) estimations that correlate strongly with precise sub-nanometer 2585 

resolution measurements. Nevertheless, narrow-band SIF760 estimates are subject to systematic 2586 

overestimation due to the influence of spectral resolution (SR) on SIF760 levels. In this study, we 2587 

investigated ways to address this bias using simulations from the Soil Canopy Observation, 2588 

Photochemistry and Energy fluxes (SCOPE) model with Support Vector Regression (SVR) to 2589 

estimate SIF760 at 1-nm SR from narrow-band resolution spectra. The performance of the proposed 2590 

approach was evaluated using SCOPE model simulations and airborne imagery acquired from the 2591 

two airborne hyperspectral imagers (FWHM ≤0.2 nm and 5.8 nm) flown in tandem on board an 2592 

aircraft that collected data from two different wheat and maize phenotyping trials. The estimated 2593 

SIF760 at 1-nm SR matched well with the reference SIF760 for both simulated (normalised root mean 2594 

square error (nRMSE) 2.45–5.28%) and airborne hyperspectral (nRMSE = 4.5–16%) datasets. These 2595 

results suggest that the proposed SIF760 modelling approach could be a useful strategy for improving 2596 

the interpretation of relative SIF760 levels quantified from narrow-band hyperspectral imagers in 2597 

studies focused on stress detection assessing plant physiological conditions. 2598 

 

Keywords: Solar-induced chlorophyll fluorescence, SIF, narrow-band, SCOPE, SVR, airborne, 2599 

hyperspectral, hyperspectral imager 2600 

 2601 

 2602 



 
91 

 

3.1 Introduction 2603 

Solar-induced chlorophyll fluorescence (SIF) is a weak electromagnetic signal emitted by 2604 

chlorophyll a that provides useful information about plant photosynthetic activity and stress 2605 

(Lichtenthaler and Rinderle, 1988; Campbell et al., 2008; Malenovský et al., 2009; Zarco-Tejada et 2606 

al., 2016; 2021). Direct measurement of the SIF signal is complex due to its superimposition on the 2607 

reflected solar radiation and small magnitude (1–5% of total upwelling radiance in the near infrared) 2608 

(Meroni et al., 2009). Since sensor capabilities impact the shape of absorption features commonly 2609 

used for SIF estimation, instruments with sufficient spectral resolution (SR) and signal-to-noise ratio 2610 

(SNR) are required for detecting subtle variations across narrow absorption features for accurate SIF 2611 

quantification (Mohammed et al., 2019). Sensors with a sub-nanometer resolution are thus 2612 

recommended for obtaining SIF estimates in precise physical units and absolute terms. 2613 

SIF signal can be retrieved using a range of platforms, including ground-based spectrometers 2614 

(Acebron et al., 2021; Cogliati et al., 2015; Damm et al., 2021; Grossmann et al., 2018; Hao et al., 2615 

2022; Kim et al., 2021; Li et al., 2020; Pacheco-Labrador et al., 2019), drones (Bendig et al., 2019; 2616 

Chang et al., 2020; Suarez et al., 2021; N. Wang et al., 2021; Xu et al., 2021; Zarco-Tejada et al., 2617 

2012), piloted aircrafts (Damm et al., 2015; 2022; Poblete et al., 2020; Rascher et al., 2015; Siegmann 2618 

et al., 2021), and satellites (Braghiere et al., 2021; Köhler et al., 2018; Sun et al., 2018). For airborne 2619 

SIF estimation, there are several imaging sensors with sub-nanometer resolution capabilities, such as 2620 

the chlorophyll fluorescence imaging spectrometer (CFIS) (Frankenberg et al., 2018), the high-2621 

resolution airborne imaging spectrometer HyPlant (Rascher et al., 2015), the AISA IBIS Fluorescence 2622 

Imager (SPECIM, Spectral Imaging Ltd., Oulu, Finland) (R. Wang et al., 2022), and the Hyperspec 2623 

Solar-Induced Fluorescence Imaging sensor (Headwall Photonics, Fitchburg, MA, USA) (Paynter et 2624 

al., 2020) with SRs of 0.07, 0.28, 0.245, and ≤0.2 nm, respectively. These sub-nanometer imaging 2625 

sensors can precisely characterise narrow absorption features needed for the accurate quantification 2626 

of SIF in physical units.  2627 
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Despite their potential, sub-nanometer imaging sensors pose significant challenges that 2628 

restrict their widespread use for plant physiology monitoring, precision agriculture, and plant 2629 

phenotyping applications. Their radiometric calibration is among the most challenging aspects. Since 2630 

these sensors have narrow contiguous bands with a spectral sampling interval (SSI) on the order of 2631 

101 nm, a sophisticated calibration facility is required for accurate characterisation of the detector's 2632 

spectral response (Brown et al., 2006). A further obstacle is the difficulty in processing different flight 2633 

lines, which is primarily due to the large amount of data generated, which makes mosaicking multiple 2634 

flight lines a challenging task. Furthermore, these sensors have a spectral range limited to the SIF 2635 

emission region (650–800 nm). Consequently, they cannot be used to simultaneously estimate SIF, 2636 

plant traits, and vegetation indices, necessitating the integration of an additional sensor into the 2637 

airborne platform. In addition, their weights make these sensors incompatible with drones, requiring 2638 

lightweight aircraft to be used as the aerial platform (Frankenberg et al., 2018; Headwall Photonics, 2639 

2021; Specim, 2022).  2640 

In recent years, there has been rapid progress in the use of hyperspectral imaging sensors with 2641 

narrow-band SRs in the 4–6-nm FWHM range, in conjunction with drones and lightweight aircraft 2642 

(Aasen et al., 2018). A variety of compact, lightweight, and low-cost narrow-band hyperspectral 2643 

imaging sensors in the visible and near-infrared spectral range (400–1000 nm) are now widely 2644 

available, such as Specim FX10 (5.5-nm FWHM, SPECIM, Spectral Imaging Ltd., Oulu, Finland), 2645 

Micro- and Nano-Hyperspec (5.8- and 6-nm FWHM, respectively, Headwall Photonics Inc., Boston, 2646 

MA, USA), Pika L and Pika XC2 (3.3- and 1.9-nm FWHM, respectively, Resonon Inc., Bozeman, 2647 

MT, USA), and FireflEYE 185 (8-nm FWHM, Cubert GmbH, Ulm, Baden-Württemberg, Germany), 2648 

among others. These sensors have the capability of retrieving narrow-band hyperspectral vegetation 2649 

indices and estimating numerous plant functional traits, which could provide substantial insight into 2650 

the health of the plant. Furthermore, these sensors can be mounted on either piloted or non-piloted 2651 

airborne platforms. These standard narrow-band hyperspectral imagers could provide a cost-effective 2652 
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and more operationally viable alternative to sub-nanometer imagers for quantifying far-red SIF, 2653 

hereafter SIF760. Several past studies have demonstrated the utility of relative SIF760 levels derived 2654 

from narrow-band imaging sensors for a variety of applications, such as biotic-induced stress 2655 

detection (Calderón et al., 2015; 2013; Hernández-Clemente et al., 2017; Hornero et al., 2021; 2656 

Poblete et al., 2021; 2020; Zarco-Tejada et al., 2021; 2018), water stress detection (Camino et al., 2657 

2018a; Panigada et al., 2014; Zarco-Tejada et al., 2012), plant phenotyping (Camino et al., 2019; 2658 

2018b; Gonzalez-Dugo et al., 2015), nutrient assessment (Longmire et al., 2022; Y. Wang et al., 2659 

2022; Watt et al., 2020) and its link with gross primary production (GPP) (Damm et al., 2015; Zarco-2660 

Tejada et al., 2013). More recently, Belwalkar et al. (2022) found strong correlations between 2661 

airborne SIF760 estimates from a narrow-band hyperspectral imager with 5.8-nm FWHM and sub-2662 

nanometer SIF760 estimates acquired concurrently using an airborne sub-nanometer hyperspectral 2663 

imager with ≤0.2-nm FWHM and a ground-based spectrometer with 0.065-nm FWHM. Although 2664 

narrow-band SIF760 estimates were larger than sub-nanometer SIF760 estimates (root mean square 2665 

error, RMSE = 3.28–4.69 mW/m2/nm/sr), SIF760 levels estimated from both airborne sensors were 2666 

strongly correlated (R2 = 0.77–0.9) across multiple experimental sites. Thus, we hypothesise that 2667 

spectrally scaling narrow-band SIF760 imaging to finer resolutions using physically-based models 2668 

could facilitate the quantification of absolute SIF760 levels at finer spatial resolutions. 2669 

Due to the re-absorption and scattering of light within the leaves and canopy, plant pigments 2670 

and canopy structure have strong effects on top-of-canopy (TOC) SIF (Dechant et al., 2020; 2671 

Migliavacca et al., 2017; Porcar-Castell et al., 2014; Van der Tol et al., 2016; Yang and Van der Tol, 2672 

2018; Zeng et al., 2019). Previous studies using physically-based models successfully accounted for 2673 

these light re-absorption and scattering effects when downscaling SIF from the canopy level to the 2674 

leaf level (Liu et al., 2019; Romero et al., 2020; 2018; Yang and Van der Tol, 2018). In addition, 2675 

prior studies have demonstrated that SIF spectra and vegetation biophysical traits can be retrieved 2676 

simultaneously, either with radiative transfer model (RTM) inversion alone (Celesti et al., 2018; 2677 
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Verhoef et al., 2018) or through RTM combined with machine learning modelling (Scodellaro et al., 2678 

2022). The widely used RTM Soil-Canopy-Observation of Photosynthesis and Energy fluxes 2679 

(SCOPE) (Van der Tol et al., 2009) can model light re-absorption and scattering mechanisms while 2680 

taking canopy structure into consideration. A sensitivity analysis of the SCOPE model revealed that 2681 

canopy structure and leaf optical properties primarily determine TOC SIF variability when 2682 

considering only vegetation parameters (Verrelst et al., 2015). Consequently, the interpretation of 2683 

narrow-band SIF760 estimates could be improved by including plant trait information derived from 2684 

RTMs, such as SCOPE. We hypothesise that incorporating canopy structure and pigment content 2685 

parameters through the SCOPE-based modelling approach could potentially aid in the estimation of 2686 

SIF760 at finer spectral resolution from narrow-band resolution sensors, enabling retrieval of 2687 

appropriate absolute SIF760 levels in physical units. 2688 

Although Belwalkar et al. (2022) demonstrated significant correlations between SIF760 2689 

estimates derived from narrow-band and sub-nanometer airborne hyperspectral imagers flown in 2690 

tandem, these narrow-band SIF760 estimates were accurate only in relative terms, and their conversion 2691 

to absolute SIF760 levels in physical units required further investigation. Furthermore, several prior 2692 

studies have demonstrated that sensors with broader spectral specifications overestimate SIF760 2693 

(Damm et al., 2015; Julitta et al., 2016; Maimaitiyiming et al., 2020; Nichol et al., 2019; Süß et al., 2694 

2016). The magnitude of this bias depends on both the spectral resolution and the spectral sampling 2695 

interval of the instrument, and additional modelling is needed for accurate SIF quantification in 2696 

practical applications. Although previous studies have demonstrated the impact of the spectral 2697 

resolution on SIF (Belwalkar et al., 2022; Cendrero-Mateo et al., 2019; Damm et al., 2011; Julitta et 2698 

al., 2016; Liu et al., 2015), they have mostly focused on modelling efforts and on hand-held 2699 

spectrometer data collected at the near-field scale. There is a lack of research focusing on assessing 2700 

the impact of SR and SSI on SIF from airborne narrow-band imaging sensors under ambient field 2701 

conditions. Studies carried out under such conditions with operational sensors will make progress on 2702 
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the operational use of cost-efficient and simpler sensors for fluorescence quantification and 2703 

photosynthesis assessment.   2704 

Our study extends the prior work of Belwalkar et al. (2022) by modelling the effect of SR on 2705 

narrow-band SIF760 estimations to optimise their interpretation, with the intention of addressing the 2706 

limitations associated with the absolute SIF760 levels quantified from narrow-band airborne 2707 

hyperspectral imagers. We used an empirical approach based on SCOPE modelling and Support 2708 

Vector Regression (SVR) to estimate SIF760 at a finer target resolution. Due to SCOPE's default 2709 

spectral characteristics and the experimental results of Julitta et al. (2016) indicating that 2710 

spectrometers with FWHM ≤ 1 nm can estimate the absolute value of SIF760, we selected 1-nm 2711 

FWHM as the target resolution for validation purposes. Input data consisted of 5.8-nm FWHM 2712 

resolution narrow-band airborne hyperspectral imager data deriving SIF760 and SCOPE model 2713 

inverted leaf biochemical and structural traits as predictor variables.  2714 

 2715 

3.2 Materials and methods 2716 

3.2.1 Study sites  2717 

The study was conducted at two sites in Victoria, Australia (Fig. 3-1). Site 1 was located in 2718 

Yarrawonga (36°02ʹ55ʹʹS, 145°59ʹ02ʹʹ) and was planted with several varieties of rainfed wheat grown 2719 

under various physiological conditions and fertilisation treatments. The airborne campaign was 2720 

conducted during grain filling in 2019 (Fig. 3-1a). Plots were 26 m2 (2 m × 13 m) in size and were 2721 

planted in May 2019. The second trial site (Site 2) was managed under irrigated conditions using an 2722 

overhead pivot in Peechelba East (36°10ʹ04"S, 146°16ʹ23"E) in 2021. A single variety of maize 2723 

(Pioneer Hybrid 1756) was grown across the entire experimental field under different nitrogen 2724 

fertiliser application rates. The growth stage during the airborne campaign corresponded to silking 2725 

(Fig. 3-1b). Plots measured 36 m2 (3 m × 12 m) and were planted in October 2020. 2726 
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Fig. 3-1. Overview of experimental fields at Sites 1 (a) and 2 (b) acquired with the narrow-band 2727 
hyperspectral imager (composite: 760 (R), 710 (G), and 680 (B) nm). The black lines correspond to 2728 
the average radiance spectra in the O2-A absorption region used for SIF quantification and the average 2729 
reflectance spectra in the 400–800-nm spectral region used for plant trait estimation for all plots. 2730 
Shaded areas in the reflectance and radiance plots represent the ±1 standard deviation of the average 2731 
reflectance and radiance. 2732 
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At both trial sites, leaf measurements were carried out in the field simultaneously with 2733 

airborne campaigns. Handheld leaf-clip sensors (Dualex, FORCE-A, Orsay, France and FluorPen 2734 

FP110-LM, Photon Systems Instruments, Drásov, Czech Republic) were used to measure leaf 2735 

chlorophyll content, nitrogen balance index (NBI), flavonol content, anthocyanin content, and steady-2736 

state leaf fluorescence yield (Ft). Details of leaf-level measurements can be found in Belwalkar et al. 2737 

(2022). A portable weather station (model WXT510, Vaisala, Helsinki, Finland) was set up for 2738 

concurrent readings of meteorological conditions (air temperature and air pressure) during the 2739 

hyperspectral image acquisition over both of the trial sites. The total incoming irradiance (E) was 2740 

measured continuously during flights with a 0.065-nm FWHM HR-2000 spectrometer (Ocean 2741 

Insight, Dunedin, FL, USA) set up at each field site. The spectrometer at Site 1 was equipped with a 2742 

CC-3 VIS-NIR cosine corrector-diffuser probe, whereas at Site 2, irradiance was measured using the 2743 

radiance (L) reflected from a white reference panel (Labsphere Inc., North Sutton, NH, USA). The 2744 

irradiance measured from the HR-2000 spectrometer was calibrated using coefficients derived from 2745 

a uniform calibrated light source and an integrating sphere (Labsphere XTH2000C, Labsphere Inc., 2746 

North Sutton, NH, USA). 2747 

3.2.2 Hyperspectral airborne campaigns  2748 

For both airborne campaigns, two hyperspectral imagers were flown in tandem on a Cessna 2749 

172R operated by the HyperSens Laboratory, the University of Melbourne's Airborne Remote 2750 

Sensing Facility, to acquire high-resolution hyperspectral imagery over the two study sites. The first 2751 

hyperspectral imager (Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) 2752 

captured images in the 400–1000-nm spectral range with 5.8-nm FWHM resolution, and the second 2753 

hyperspectral imager (Hyperspec Solar-Induced Fluorescence Imaging sensor, Headwall Photonics, 2754 

Fitchburg, MA, USA) operated in the 670–780-nm spectral range with ≤0.2-nm FWHM resolution. 2755 

Further technical details of the imaging and flight data can be found in Table 3-1. 2756 
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Table 3-1. Spectral characteristics of hyperspectral imagers and acquisition details 2757 
Characteristics of hyperspectral imagers 
 VNIR E-Series  

(Narrow-band) 
Solar-Induced Fluorescence 
Imaging (Sub-nanometer) 

Spectral range  400–1000 nm 670–780 nm 
Number of spectral bands 371 2160 
Spectral sampling 
interval (SSI)  

1.626 nm 0.051 nm 

FWHM  5.8 nm ≤0.2 nm 
Number of un-binned 
spatial pixels  

1600 1600 

Signal-to-noise ratio 
(SNR)  

>300:1*  >300:1*  

Field of view  66° 23.5° 
Radiometric resolution 16 16 
Image acquisition details 
 Site 1 Site 2 
Acquisition dates   9th October 2019, 15:40 – 

16:30 (local time)   
20th January 2021, 11:40 – 12:20 
(local time)   

Flight altitude (above 
ground level) 

400 m (VNIR imager) 
900 m (Fluorescence 
imager) 

1200 m (both imagers) 

Mean spatial resolution  0.2 m (both imagers) 0.7 m (VNIR imager)  
0.3 m (Fluorescence imager) 

 *Applicable only for plot-level mean radiance/reflectance computation 

 2758 

The radiometric calibration of the two hyperspectral imagers was performed by means of an 2759 

integrating sphere (Labsphere XTH2000C) using coefficients derived from the calibrated light source 2760 

at four different illumination levels. The SMARTS model (Gueymard, 2001) was used to perform 2761 

atmospheric correction for the VNIR E-Series (narrow-band) imager to convert radiance images to 2762 

reflectance images. Aerosol optical depth measurements in the 440-, 500-, 675-, 870-, and 936-nm 2763 

spectral bands obtained from a Microtops II sun photometer (Solar Light Co., Philadelphia, PA, USA) 2764 

and meteorological measurements from the portable weather station were used for input parameters. 2765 

Hyperspectral images were ortho-rectified using inertial measurement units and GPS data (VN-300-2766 

VectorNav Technologies LLC, Dallas, TX, USA for the narrow-band imager and Trimble APX-15 2767 

UAV, Applanix Corporation, Ontario, Canada for the sub-nanometer imager) recorded during the 2768 

flights using the Parametric Geocoding & Ortho-rectification for Airborne Optical Scanner Data 2769 
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software (PARGE, ReSe Applications Schläpfer, Wil, Switzerland). Additional information on data 2770 

pre-processing and image correction can be found in Zarco-Tejada et al. (2016).  2771 

We used the Normalised Difference Vegetation Index (NDVI) as a thresholding strategy to 2772 

identify vegetational pixels within each plot, as described in Belwalkar et al. (2022). Mean radiance 2773 

from both narrow-band and sub-nanometer imagers and reflectance spectra from the narrow-band 2774 

imager were calculated for each plot by averaging all selected vegetation pixels, excluding the 2775 

boundary pixels (Belwalkar et al., 2022). The average radiance spectra from the narrow-band 2776 

hyperspectral imager (Fig. 3-1) were used to quantify SIF760 using the O2-A band in-filling approach, 2777 

employing the Fraunhofer Line Depth (FLD) principle (Plascyk, 1975) and a total of three spectral 2778 

bands (3FLD) (Maier et al., 2003), named here as SIF760-3FLD. The irradiance measured from HR-2779 

2000 spectrometer was convolved assuming a Gaussian band spectral response function of 5.8-nm 2780 

FWHM resolution to match the spectral characteristics of the narrow-band hyperspectral imager. The 2781 

‘in’ E and L were selected as the E/L minima in the 755–765-nm spectral region, while the ‘out’ E 2782 

and L were selected as the weighted mean of E/L local maxima in the 750–759-nm and 771–780-nm 2783 

spectral regions, respectively. In case of multiple local maxima within the spectral regions, the local 2784 

maximum closest to the ‘in’ band was selected (Cendrero-Mateo et al., 2019). The airborne SIF760-2785 

3FLD was further corrected using non-fluorescent soil targets identified in the imagery and then 2786 

normalised using a reflectance-based angular normalisation approach (Hao et al., 2021) to account 2787 

for atmospheric and directional effects as described in Belwalkar et al. (2022). 2788 

3.2.3 Modelling methods  2789 

3.2.3.1 SCOPE model simulations 2790 

The SCOPE model (version 2.0) (Yang et al., 2021) was used to account for the effect of the 2791 

sensor's spectral resolution on SIF760 quantification. SCOPE simulations were used in two stages: 1) 2792 

a theoretical sensitivity analysis of the effect of plant traits on the inter-relationship between SIF760-2793 
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3FLD and SR, and 2) the development of a machine learning–based estimation model to scale narrow-2794 

band SIF760-3FLD estimates to 1-nm FWHM resolution. 2795 

In the first stage, a local sensitivity analysis was used to determine how individual plant traits 2796 

independently affect SIF760-3FLD estimates from narrow-band hyperspectral imagery. This differs from 2797 

previous modelling-based studies (Damm et al., 2011; Liu et al., 2015) that varied multiple plant 2798 

traits simultaneously. In simulations for Stage 1, the plant traits leaf chlorophyll content (Ca+b), leaf 2799 

area index (LAI), leaf inclination distribution function (LIDFa), and maximum rate of carboxylation 2800 

(Vcmax) were selected for analysis based on their association with SIF variability in a global SCOPE-2801 

sensitivity study (Verrelst et al., 2015). SCOPE simulations at the default 1-nm FWHM and 1-nm 2802 

SSI were generated by randomly varying input parameters drawn from a uniform distribution within 2803 

the following ranges: Ca+b (10–50), LAI (1–5), LIDFa (0.8–0.8), and Vcmax (40–200). A total of 2804 

1000 simulations (Simulated Dataset-1) were obtained for each trait while holding other parameters 2805 

constant. All other SCOPE inputs were set at their default values. SCOPE simulations were then 2806 

convolved to match the SR, SSI, and band centres of the narrow-band hyperspectral image, assuming 2807 

a Gaussian band spectral response function. SIF760-3FLD was estimated from simulated irradiance and 2808 

TOC total upwelling radiance at both 1- and 5.8-nm FWHM resolutions following the same 2809 

methodology outlined in Section 2.2 and compared across simulations of the four leaf biochemical 2810 

and structural traits.  2811 

Stage 2 consisted of using SCOPE model simulations to develop prediction models for 2812 

estimating SIF760 at 1-nm FWHM resolution from narrow-band resolution spectra (Fig. 3-2). Due to 2813 

differences in crop type, crop growth stage, image acquisition time, and meteorological conditions 2814 

between the two study sites, SCOPE simulations were conducted separately for each study site. An 2815 

alternative strategy would have been to generate a global SCOPE-simulated data set that could be 2816 

applied to any study site. However, due to the complexity of SCOPE input parameters that would be 2817 

needed for such a model (leaf, canopy, soil, and micrometeorology), we used site-specific simulations 2818 
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based on spatially stable micrometeorological conditions likely to occur during airborne imaging 2819 

sensor acquisition in practice (Verrelst et al., 2015).  2820 

 

Fig. 3-2. Overview of the methodology used for estimating SIF760 at 1-nm FWHM from the narrow-2821 
band airborne hyperspectral imager. 2822 

 2823 



 
102 

 

Two distinct sets of simulations were generated for each study site, using parameter values 2824 

drawn from random uniform distributions detailed in Table 3-2. The ranges of input parameters for 2825 

the simulated datasets were determined using field measurements from each study site as well as 2826 

estimates from the existing literature (detailed in Table B-1, Appendix B). The meteorological 2827 

variables (air temperature and air pressure) were determined from the portable weather station. 2828 

SCOPE defaults were used for other parameters and spectral characteristics. One dataset of 100,000 2829 

simulations (Simulated Dataset-2site 1 and Simulated Dataset-2site 2) was used for the estimation of 2830 

plant traits (Stage 2A, Section 2.3.2). A second dataset of 10,000 simulations (Simulated Dataset-3site 2831 

1 and Simulated Dataset-3site 2) was used for SIF760 estimation at 1-nm FWHM resolution (Stage 2B, 2832 

Section 2.3.3). As with other simulations, 1-nm SR outputs were convolved to match the spectral 2833 

resolution of the narrow-band hyperspectral imager using a Gaussian spectral response function. 2834 

Additionally, radiance and irradiance spectra were convolved to 2-, 3-, 4-, 5-, and 6-nm SR for 2835 

Simulated Dataset-2site 1 and Simulated Dataset-3site 1 while maintaining the Nyquist criterion (SSI = 2836 

SR/2) (Damm et al., 2011). A list of the SCOPE simulations used at each stage is provided in Table 2837 

3-3.  2838 

3.2.3.2 Plant trait estimation using RTM-based hybrid approach 2839 

In Stage 2A (Fig. 3-2), an RTM-based hybrid inversion method was used to estimate leaf 2840 

biochemical and structural traits using the TOC reflectance spectra from the narrow-band imagery at 2841 

both study sites. Only traits with the highest variable importance scores as determined by the predictor 2842 

screening approach (detailed in Section 3.2.3.3) were estimated. A similar method combining RTMs 2843 

and machine learning regression models, such as Gaussian process regression (GPR), support vector 2844 

machines (SVMs), and random forest (RF), have successfully been used in previous studies to obtain 2845 

plant traits from airborne and spaceborne hyperspectral imagery (Camino et al., 2021; Danner et al., 2846 

2021; De Grave et al. 2020; Poblete et al., 2021). A set of RF regression models (Camino et al., 2021; 2847 

S. Wang et al., 2021) was trained using a look-up table containing 100,000 simulations corresponding 2848 
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to Simulated Dataset-2 (Table-3-3) for each site. The simulated 5.8-nm FWHM reflectance spectra 2849 

were used as inputs to the RF-inversion models, with each plant trait as output. RF-inversion models 2850 

were also trained using 2-, 3-, 4-, 5-, and 6-nm SR data from Simulated Dataset-2site 1. RF-inversion 2851 

models were trained in parallel (MATLAB parallel computing toolbox) with 10-fold cross-validation. 2852 

Hyperparameters were optimised using Bayesian optimisation (Mockus, 2012) in MATLAB during 2853 

training (MATLAB; Statistics and Machine Learning toolbox; MathWorks Inc., Natick, MA, USA). 2854 

Finally, the trained RF-inversion models were used to predict plant traits using narrow-band airborne 2855 

reflectance imagery (Fig. 3-1) at the plot level.  2856 

Table 3-2. Range of SCOPE input parameters used in this study 2857 
Parameter Range/Value Unit Description 
 Site 1 Site 2   
Ca+b 10–70 40–80 μg·cm−2 Leaf chlorophyll concentration 
Cca 1–20 1–20 μg·cm−2 Leaf carotenoid concentration 
Cant 0–8 0–8 μg·cm−2 Anthocyanin content 
Cdm 0.001–

0.05 
0–0.001 g·m−2 Dry matter content 

Cw 0.001–
0.05 

0.001–
0.05 

Cm Leaf water equivalent layer 

N 1–1.5 1–2.5 – Leaf thickness parameters 
Vcmax 30–110 40–250 μmol·m−1·s−1 Maximum carboxylation capacity at 

25°C 
LAI 0.5–5 2–6 m2·m−2 Leaf area index 
LIDFa −1–1 −1–1 – Leaf inclination parameter for the 

mean leaf zenith angle 
LIDFb 0 0 – Bimodality of the leaf angle 

distribution 
Rin 700 900 W·m−2 Broadband incoming shortwave 

radiation  
Ta* 19.2 25.3 °C Air temperature 
p* 1002.8 1003.6 hPa Air pressure 
tts 35.42 34.93 deg. Solar zenith angle 

    * Meteorological variables retrieved from portable weather station during the airborne campaign 
 2858 

3.2.3.3. SIF estimation at 1-nm FWHM using the support vector regression model 2859 

In Stage 2B (Fig. 3-2), a simulated SIF training dataset comprising SIF760-3FLD values 2860 

corresponding to 1-, 2-, 3-, 4-, 5-, 6-, and 5.8-nm FWHM for Site 1 and SIF760-3FLD values 2861 

corresponding to 1- and 5.8-nm FWHM for Site 2 was generated using TOC radiance and irradiance 2862 
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corresponding to Simulated Dataset-3site 1 and Simulated Dataset-3site 2, respectively (Table 3-3). 2863 

SIF760-3FLD for all SCOPE simulated data was computed following the same methodology as outlined 2864 

in section 2.2. We evaluated two sets of models for estimating 1-nm SR SIF760 from the narrow-band 2865 

resolution spectra. The first model, referred to as the linear model, used the slope and intercept of the 2866 

linear relationship between convolved coarse-SR SIF760-3FLD and 1-nm SR SIF760-3FLD from the 2867 

simulated SIF training dataset. The second model used an SVR algorithm as detailed below.  2868 

    Table 3-3. Description of the SCOPE simulations used in this study 2869 

Stage 
Dataset 

(Simulation count) 
Data type Objective 

1 
Simulated Dataset-1 

(1,000) 
Radiance and 

irradiance 

Assessment of the impact of leaf 
biochemical and structural traits on 
SIF760-3FLD relationships across two 
different SRs 

2A 
Simulated Dataset-2 

(100,000) 
Reflectance 

Development of hybrid inversion 
models for plant traits estimation 

2B 
Simulated Dataset-3 

(10,000) 

Radiance, 
irradiance and 

reflectance 

Development of SVR models to 
estimate SIF760 at 1-nm FWHM 

Validation 
Simulated Dataset-4 

(50,000) 

Radiance, 
irradiance and 

reflectance 

Quantitative evaluation of different 
SIF760 estimation models  

 2870 

First, for each of the six SRs corresponding to the Simulated Dataset-3site 1, we selected inputs 2871 

for SVR models from a pool of eight potential predictor variables: seven SCOPE plant traits and the 2872 

corresponding narrow-band SIF760-3FLD. Candidate plant traits included leaf water content (Cw), leaf 2873 

dry matter content (Cdm), the mesophyll structural parameter (N), Ca+b, LAI, LIDFa, and Vcmax. 2874 

Potential predictors were screened using variable importance scores from an RF model fit to 1-nm 2875 

SR SIF760 data using the 'oobPermutedPredictorImportance' function in MATLAB (Schneider et al., 2876 

2020; Thomas et al., 2021), which generates permutations of out-of-bag (OOB) observations from 2877 

regression trees and evaluates their impact on prediction. The four predictors with the highest scores 2878 

were selected as SVR model inputs. Several SVR models were then built with all possible 2879 

permutations of this subset of predictors, with the inclusion of narrow-band SIF760-3FLD as a required 2880 

predictor variable for each model. Plant trait inputs required for SVR models were derived from the 2881 
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simulated reflectance corresponding to Simulated dataset-3 using the RF-inversion models built in 2882 

Stage 2A. SVR models were trained in parallel using the MATLAB parallel computing toolbox with 2883 

10-fold cross-validation, and the hyperparameters were optimised during training using Bayesian 2884 

optimisation. 2885 

For each site, an independent test dataset using 50,000 SCOPE simulations (Simulated 2886 

Dataset-4) was used to evaluate the SIF760 estimation models (Table 3-3). This dataset was generated 2887 

using the same input parameter ranges (Table 3-2) and methodology described in sections 2.3.1 and 2888 

2.3.2. Plot-level 1-nm SR SIF760 estimated from regression models was compared to the SCOPE-2889 

simulated reference SIF760-3FLD using coefficient of determination (R2), root mean square error 2890 

(RMSE), and normalised root mean square error (nRMSE) as evaluation metrics. The nRMSE was 2891 

computed as the ratio of RMSE and mean of reference SIF760-3FLD. Regression model predictions were 2892 

also generated for the airborne datasets at both study sites, using the estimated plant traits and SIF760-2893 

3FLD quantified from 5.8-nm FWHM narrow-band imagery as inputs. The performance evaluation of 2894 

the regression models for the airborne datasets was conducted using sub-nanometer-resolution 2895 

airborne hyperspectral imagery acquired concurrently with narrow-band resolution imagery. The sub-2896 

nanometer resolution radiance spectra corresponding to the selected validation plots (as in Belwalkar 2897 

et al., 2022) were convolved to the default SCOPE spectral characteristics to compute 1-nm SR 2898 

SIF760-3FLD, which served as a reference to validate the estimated 1-nm SR SIF760 from the 5.8-nm 2899 

FWHM resolution narrow-band hyperspectral imager. The computation of 1-nm SR SIF760-3FLD from 2900 

the convolved sub-nanometer-resolution airborne spectra was carried out following the same 2901 

procedure as outlined in Section 2.2 for quantifying SIF760-3FLD from the narrow-band hyperspectral 2902 

imager. 2903 

Airborne datasets corresponding to the other five narrow-band SRs were not available for the 2904 

evaluation of best-performing regression models for SIF760 estimation at 1-nm FWHM resolution. 2905 

Therefore, sub-nanometer resolution airborne radiance spectra and ground-based irradiance spectra 2906 
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for Site 1 were convolved to generate SIF760-3FLD at these SRs, with SSI following the Nyquist 2907 

criterion. Because the sub-nanometer and narrow-band hyperspectral imagers were flown in tandem, 2908 

the estimates of plant traits that were obtained from the narrow-band hyperspectral imager at Site 1 2909 

were used as the other three inputs in the SVR model. 2910 

 2911 

3.3 Results 2912 

The sensitivity of the relationship between SCOPE-derived SIF760-3FLD at different SRs to leaf 2913 

biochemical and structural traits is presented in Fig. 3-3. Overall, SIF760-3FLD increased with 2914 

increasing values of Ca+b, LAI, LIDFa, and Vcmax for all scenarios; however, the relationship 2915 

between SIF at 1- and 5.8-nm SRs varied widely across simulations. Narrow-band SIF760-3FLD tended 2916 

to be overestimated as plant trait parameters increased, with a non-linear response to changing Ca+b 2917 

(Fig. 3-3a-c) and LAI (Fig. 3-3d-f), but a linear response to varying LIDFa (Fig. 3-3g-i) and Vcmax 2918 

(Fig. 3-3j-l).  2919 

Narrow-band SIF760-3FLD, LIDFa, Ca+b, and LAI were identified as the most important 2920 

parameters for 1-nm SR SIF760 estimation, with a combined importance of close to 95% (Fig. 3-4). 2921 

The ranges of values for the three most important plant traits (Ca+b, LAI, and LIDFa) estimated via 2922 

the SCOPE-based hybrid inversion approach are shown in Fig. 3-5. The substantial differences in 2923 

estimated plant traits between the two study sites can be attributed to differences in crop type, 2924 

irrigation regime, and weather. All three estimated plant traits were more variable at Site 1 than at 2925 

Site 2, as expected, given the use of multiple cultivars and a wider range of nitrogen treatments. The 2926 

resulting plot-scale spatial variability associated with the estimated Ca+b and LAI within the entire 2927 

experimental field at Site 1 is depicted in Fig. 3-6.  2928 

Validation statistics for models estimating 1-nm SR SIF760 based on SCOPE-simulated data 2929 

are shown in Table 3-4A. The SVR model using 5.8-nm SR SIF760-3FLD and all three plant traits as 2930 



 
107 

 

inputs performed the best at both Site 1 (nRMSE = 5.28%) and Site 2 (nRMSE = 2.45%). The subset 2931 

of SVR models that included LIDFa as a predictor (Models 4, 6, 7, and 8 in Table 3-4A) performed 2932 

best at Site 1 (nRMSE < 7%), while the subset of SVR models that included LAI as a predictor 2933 

(Models 3, 5, 7, and 8 in Table 3-4A) performed best at Site 2 (nRMSE < 6%). 2934 

 

Fig. 3-3. Effects of leaf biochemical and structural traits on the relationship between SCOPE-2935 
simulated SIF760-3FLD at two different spectral resolutions. Traits include Ca+b (a-c), LAI (d-f), LIDFa 2936 
(g-i), and Vcmax (j-l). All other SCOPE input parameters were left at their default settings. The 2937 
dashed red line depicts the 1:1 line. 2938 

 2939 
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Fig. 3-4. Relative importance of the eight potential predictor variables at different SRs for estimating 2940 
SIF760 at 1-nm FWHM using Simulated Dataset-3site 1. The relative importance score was obtained 2941 
using out-of-bag (OOB) error. 2942 

 

 

Fig. 3-5. Ranges of variation for the leaf biochemical and structural traits estimated from the narrow-2943 
band hyperspectral imagery at the two study sites: Ca+b (a), LAI (b), and LIDFa (c).  2944 

 2945 

The performance of the linear and SVR models using airborne data corresponding to the 2946 

validation plots is presented in Table 3-4B. As observed with the simulated datasets, the set of SVR 2947 

models that included LIDFa at Site 1 and LAI at Site 2 performed better than models without these 2948 

predictors. At Site 1, the SVR model including all four predictors (Model 8 in Table 3-4B) did not 2949 

have the lowest nRMSE, unlike the results for the simulated datasets. However, the best-performing 2950 

SVR model at Site 1 (Model 6 in Table 3-4B) had an nRMSE within 0.5% of the full model. 2951 

Nevertheless, results for the full SVR model (Model 8 in Table 3-4) were relatively consistent for 2952 
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simulated and airborne data across study sites. Thus, Model 8 was deemed the best-performing SVR 2953 

model and was used exclusively for the remainder of the analysis.  2954 

 

Fig. 3-6. Maps of estimated Ca+b (µg/cm2) (a) and LAI (m2/m2) (b) at plot scale depicting the within-2955 
field variability at Site 1. 2956 

 2957 

Comparisons between estimated and reference 1-nm SR SIF760 for the linear and the SVR 2958 

models using SCOPE-simulated data are shown in Fig. 3-7. Both model estimates were significantly 2959 

correlated with the reference values (R2 ≥ 0.91; p < 0.001; Fig. 3-7a and b), with most points located 2960 

close to the 1:1 line. The SVR model performed better than the linear model, with an RMSE of less 2961 

than 0.1 mW/m2/nm/sr (Fig. 3-7c and d). We further evaluated the performance of the SIF760 scaling 2962 

methodology using five other narrow-band SRs for Simulated Dataset-4 at Site 1. The estimates from 2963 

both models were significantly correlated with reference values across narrow-band SRs (R2 ≥ 0.94; 2964 

p < 0.001) (Fig. 3-8). RMSE values tended to increase as SR decreased for both linear (Fig. 3-8a-e) 2965 

and SVR (Fig. 3-8f-j) models. The SVR model outperformed the linear model for all five narrow-2966 
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band SRs, with RMSEs ranging from 0.037–0.136 mW/m2/nm/sr for the linear model and 0.027–2967 

0.076 mW/m2/nm/sr for the SVR model. 2968 

Table 3-4. Performance of linear and SVR models built to estimate SIF760 at 1-nm FWHM resolution 2969 
from the 5.8-nm FWHM resolution SCOPE-simulated and airborne datasets 2970 
 

Estimation model Site 1 Site 2 
A: Simulated data RMSE nRMSE RMSE nRMSE 
Linear Model: SIF1 nm = f (SIF5.8 nm) 0.114 9.52% 0.243 7.13% 
SVR Model 1: SIF1 nm = f (SIF5.8 nm) 0.104 8.69% 0.229 6.72% 
SVR Model 2: SIF1 nm = f (SIF5.8 nm, Ca+b) 0.091 7.65% 0.216 6.33% 
SVR Model 3: SIF1 nm = f (SIF5.8 nm, LAI) 0.100 8.40% 0.199 5.85% 
SVR Model 4: SIF1 nm = f (SIF 5.8 nm, LIDFa) 0.076 6.39% 0.235 6.88% 
SVR Model 5: SIF1 nm = f (SIF5.8 nm, Ca+b, LAI) 0.085 7.09% 0.124 3.63% 
SVR Model 6: SIF1 nm = f (SIF5.8 nm, Ca+b, LIDFa) 0.068 5.72% 0.212 6.22% 
SVR Model 7: SIF1 nm = f (SIF5.8 nm, LAI, LIDFa) 0.076 6.39% 0.178 5.22% 
SVR Model 8: SIF1 nm = f (SIF5.8 nm, Ca+b, LAI, 
LIDFa) 

0.063 5.28% 0.084 2.45% 

 
B: Airborne data 
Linear Model: SIF1 nm = f (SIF5.8 nm) 0.517 30.35% 0.308 11.76% 
SVR Model 1: SIF1 nm = f (SIF5.8 nm) 0.413 24.25% 0.168 6.42% 
SVR Model 2: SIF1 nm = f (SIF5.8 nm, Ca+b) 0.387 22.70% 0.149 5.69% 
SVR Model 3: SIF1 nm = f (SIF5.8 nm, LAI) 0.435 25.53% 0.151 5.79% 
SVR Model 4: SIF1 nm = f (SIF 5.8 nm, LIDFa) 0.270 15.86% 0.141 5.39% 
SVR Model 5: SIF1 nm = f (SIF5.8 nm, Ca+b, LAI) 0.426 24.96% 0.154 5.88% 
SVR Model 6: SIF1 nm = f (SIF5.8 nm, Ca+b, LIDFa) 0.265 15.53% 0.145 5.56% 
SVR Model 7: SIF1 nm = f (SIF5.8 nm, LAI, LIDFa) 0.266 15.60% 0.123 4.70% 
SVR Model 8: SIF1 nm = f (SIF5.8 nm, Ca+b, LAI, 
LIDFa) 

0.273 16.00% 0.118 4.50% 

 2971 

The relationships between reference airborne 1-nm SR SIF760-3FLD and SIF760 estimated by the 2972 

linear and SVR models are shown in Fig. 3-9. SIF760-3FLD estimates derived from the narrow-band 2973 

imager were overestimated compared to the 1-nm SR reference (RMSE = 2.23 mW/m2/nm/sr for Site 2974 

1 and RMSE = 2.117 mW/m2/nm/sr for site 2) due to the spectral characteristics of the narrow-band 2975 

imager. Nevertheless, narrow-band SIF760-3FLD was significantly correlated with the high-SR 2976 

reference at both Site 1 (R2 = 0.93, p < 0.001; Fig. 3-9a) and Site 2 (R2 = 0.95, p < 0.001; Fig. 3-9b). 2977 

The RMSEs for narrow-band SIF760 estimates scaled with both the linear and SVR models were less 2978 

than 0.6 mW/m2/nm/sr. The linear model overestimated 1-nm SR SIF760 at Site 1 (nRMSE = 30.35%; 2979 
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Fig. 3-9c) and underestimated it at Site 2 (nRMSE = 11.76%; Fig. 3-9d). SIF760 estimated using the 2980 

SVR model was more accurate at both sites (nRMSE = 16% for Site 1 and nRMSE = 4.5% for Site 2981 

2; Fig. 3-9e and f), with the majority of points near the 1:1 line. A plot-scale visualization of scaled 2982 

SVR estimates from the narrow-band hyperspectral imager for the entire field at Site 1 is shown in 2983 

Fig. 3-10. 2984 

 

Fig. 3-7. Relationships between the SIF760-3FLD at the default 1-nm FWHM simulated by SCOPE 2985 
(used here as the reference SIF) and the SIF760 estimated at 1-nm FWHM by the linear model (a, b) 2986 
and by the SVR model (c, d) from 5.8-nm FWHM spectra for SCOPE-simulated test datasets 2987 
corresponding to Site 1 and Site 2. The red dashed and black solid lines depict the 1:1 line and 2988 
regression line, respectively. ***p-value < 0.001. 2989 

 2990 
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Fig. 3-8. Relationships between SIF760-3FLD at 1-nm FWHM simulated by SCOPE (used here as the 2991 
reference SIF) and SIF760 estimated by the linear model (a-e) and by the SVR model (f-j) from 2992 
different SRs for SCOPE-simulated test datasets corresponding to Site 1. SSI was related to SR 2993 
according to the Nyquist criterion (SR = SSI×2). The red dashed and black solid lines depict the 1:1 2994 
line and regression line, respectively. ***p-value < 0.001. 2995 
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Fig. 3-9. Relationships between the airborne SIF760-3FLD quantified from the sub-nanometer imager 2996 
(used here as the reference SIF) and narrow-band imager (5.8-nm FWHM) for validation plots 2997 
corresponding to both sites (a,b). Relationships between the airborne SIF760-3FLD quantified from the 2998 
sub-nanometer imager and the airborne 1-nm SR SIF760 estimated by the linear model (c,d) and SVR 2999 
model (e,f) from the 5.8-nm SR narrow-band airborne spectra for both sites. The reference 1-nm SR 3000 
SIF760-3FLD was obtained by convolving the sub-nanometer resolution spectra to 1-nm FWHM. The 3001 
red dashed and black solid lines depict the 1:1 line and regression line, respectively. ***p-value < 3002 
0.001. 3003 

 3004 

The relationships between the reference airborne 1-nm SR SIF760-3FLD and SIF760 estimated 3005 

from multiple SRs are shown in Fig. 3-11. Significant correlations were found at all SRs (R2 = 0.88–3006 

0.97, p < 0.001). At coarser resolutions, SIF760-3FLD estimates tended to be larger than reference values 3007 
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(RMSE = 0.36–3.88 mW/m2/nm/sr; Fig. 3-11a-e) and relationships to reference SIF760-3FLD were less 3008 

linear. This non-linearity and higher absolute SIF760-3FLD values at coarser SRs can be attributed to 3009 

sensor noise from the convolution of the 0.065-nm FWHM irradiance spectra from the ground-based 3010 

HR-2000 spectrometer and the ≤0.2-nm FWHM radiance spectra from the sub-nanometer airborne 3011 

imager. The process of Gaussian convolution influences the absolute SIF760-3FLD levels at narrow-3012 

band resolution and produces higher SIF760-3FLD levels in absolute units. Both linear (Fig. 3-11a-e) 3013 

and SVR models reduced this bias (reduction in slope). The SVR model (nRMSE = 8.19–43.30%; 3014 

Fig. 3-11k–o) outperformed the linear model (nRMSE = 8.30–68.64%; Fig. 3-11f–j) for all SRs. 3015 

However, the estimated SIF760 from both models was higher than the reference SIF760-3FLD, except for 3016 

2-nm SR, for which the points were close to the 1:1 line. 3017 

 

Fig. 3-10. Plot-scale maps of reference SIF760-3FLD from sub-nanometer imager (a) and estimated 3018 
SIF760 from narrow-band imager (b) using the SVR model at 1-nm FWHM for Site 1. The reference 3019 
1-nm SR SIF760-3FLD was obtained by convolving the sub-nanometer resolution spectra to 1-nm 3020 
FWHM. 3021 
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Fig. 3-11. Relationships between the airborne SIF760-3FLD quantified from the sub-nanometer imager 3022 
by convolving to different SRs against SIF760-3FLD convolved to 1-nm FWHM (used here as the 3023 
reference SIF) for validation plots corresponding to Site 1 (a-e). Relationships between the reference 3024 
SIF760-3FLD and the airborne SIF760 at 1-nm FWHM estimated by the linear model (f-j) and SVR model 3025 
(k-o) from the sub-nanometer airborne spectra convolved to different SRs. The red dashed and black 3026 
solid lines depict the 1:1 line and regression line, respectively. ***p-value < 0.001. 3027 
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3.4 Discussion 3028 

In precision agriculture, plant phenotyping studies, and other high-throughput applications, 3029 

the complexity and operational costs of sub-nanometer airborne imaging sensors make alternative 3030 

sensors appealing, if SIF can be measured accurately. Previous theoretical work using the SCOPE 3031 

model has evaluated the most critical parameters affecting SIF via global sensitivity analysis (Verrelst 3032 

et al., 2015). Our study builds on this theoretical work by considering how narrow-band sensors affect 3033 

SIF retrieval and by validating theoretical estimates against high-resolution experimental field data. 3034 

Extending recent work by Belwalkar et al. (2022), we evaluated a novel modelling methodology to 3035 

accurately quantify SIF760 at 1-nm FWHM from narrow-band-resolution imaging sensors using 3036 

SCOPE RTM and support vector regression.  3037 

Our results revealed that the SIF760 quantified from broader SR hyperspectral imager (5.8-nm 3038 

FWHM) aligned well (R2 = 0.91–0.93; RMSE = 0.118–0.273 mW/m2/nm/sr) with SIF760-3FLD 3039 

quantified at 1-nm FWHM from the sub-nanometer airborne imager flown in tandem and used for 3040 

validation across two plant phenotyping experimental sites showing nutrient stress variability. Our 3041 

findings support the operational viability of using standard, commercially accessible, low-cost 3042 

narrow-band hyperspectral imaging sensors to obtain accurate absolute SIF760 levels in phenotyping 3043 

trials of homogeneous and uniform canopies. 3044 

In our approach, we found that site-specific parameters were required to generate SCOPE-3045 

simulated datasets that could characterise the correct structural and ambient conditions of the fields 3046 

under study for the accurate estimation of SIF760 (Table 3-4). This highlights the need for precise 3047 

parametrization of SCOPE, or any other physically-based model, to generate site-specific training 3048 

datasets reflecting the actual field conditions observed at a given study site. The global SCOPE-3049 

sensitivity study (Verrelst et al., 2015) has identified a set of SCOPE model inputs related to leaf, 3050 

canopy, soil, and micrometeorology as having outsized impact on SIF quantification. Future research 3051 

could consider ways to account for all these inputs at scale to enable generalized applications for any 3052 
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location and set of ambient conditions. However, the development of such a training dataset is still in 3053 

progress owing to the extensive effort and computational cost required in the parametrization of the 3054 

SCOPE model to meet a wide range of field and ambient conditions.  3055 

Interpreting SIF760 from narrow-band sensors requires careful consideration of the scaling 3056 

approach employed to account for sensor spectral specification. The combination of incoming 3057 

photosynthetically active radiation (PAR) and SIF760-based indices such as near-infrared reflectance 3058 

of vegetation (NIRv) (Badgley et al., 2017) and the Fluorescence Correction Vegetation Index (FCVI) 3059 

(Yang et al., 2020), denoted NIRvP and FCVIP, respectively, has recently been demonstrated to 3060 

provide reliable structural proxies for photosynthesis and SIF (Dechant et al., 2022). These indices 3061 

could be used to scale SIF760 through a less complex approach than that proposed in this paper. Using 3062 

SCOPE-simulated datasets, we examined whether these indices could provide more accurate SIF760 3063 

estimates than the proposed approach. SIF760 estimates obtained from the two indices were found to 3064 

be inferior to those obtained using the proposed linear and SVR models, suggesting that SIF760-3FLD 3065 

calculated with 5.8-nm FWHM radiance is preferable to FCVIP and NIRvP as a predictor variable 3066 

(detailed in Appendix B). 3067 

The effect of sensor noise on the SIF760 scaling methodology proposed in this study is 3068 

important to consider in an operational context, as SIF is strongly influenced by sensor SNR.  Because 3069 

the SVR model was trained on noise-free simulated SCOPE spectra in this study, this method is not 3070 

recommended for pixel-based analysis using sensors with low SNR levels. Instead, analyses should 3071 

be limited to an object-based scale in which pixels are averaged across individual areas. Future 3072 

research could characterise the effect of sensor noise on the simulated training dataset, thereby 3073 

enabling the estimation of SIF760 at the pixel scale and the generation of SIF760 pixel-level maps from 3074 

narrow-band imaging sensors with low SNR. In the current study, the SIF760 scaling approach was 3075 

designed and validated for phenotyping experiments involving nutrient variability as part of nitrogen 3076 

application treatments, causing nutrient deficiency and stress. Future research will focus on 3077 
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evaluating the proposed scaling approach for canopies subjected to other abiotic stresses, such as 3078 

under water limiting conditions, and under biotic-induced stress (see Zarco-Tejada et al. (2021) for 3079 

the significance of SIF for separating biotic from abiotic stress). Such research will be critical for 3080 

understanding the potential of narrow-band imaging sensors for estimating accurate SIF760 across a 3081 

wide range of ecosystems. 3082 

Although a recent version of the SCOPE model (version 2.0) accounts for the vertical 3083 

heterogeneity of the canopy biophysical and biochemical properties, it retains the assumption of 3084 

homogeneity in the horizontal direction (Yang et al., 2021). Thus, our methods based on SCOPE 3085 

parametrization are most applicable in experimental fields with homogeneous crop canopies. It will 3086 

also be important to further investigate the scaling approach described in this study over complex and 3087 

heterogeneous canopies, such as forests, and row-structured and grid-based crop canopies such as 3088 

vineyards and tree orchards. Such efforts will require the extraction of crown spectra from pure 3089 

vegetation pixels from very-high-spatial-resolution hyperspectral imagery to minimize the impact of 3090 

the structural heterogeneity. Alternatively, three-dimensional canopy RTMs capable of directly 3091 

simulating canopies with tree crowns, such as FluorFLIGHT (Hernández-Clemente et al., 2017), the 3092 

Fluorescence model with Weight Photon Spread (FluorWPS) (Zhao et al., 2016), and the Discrete 3093 

Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2017), could be 3094 

employed. Such studies would be relevant for future missions such as the FLuorescence EXplorer 3095 

(FLEX) (Drusch et al., 2017) when attempting to monitor the fluorescence emission in forests and 3096 

heterogeneous crops. 3097 

In summary, the need for an accurate estimation of SIF is critical from an operational 3098 

perspective, and dedicated sub-nanometer hyperspectral imagers may not be readily available in many 3099 

agronomic settings. Consequently, it is essential to consider the adoption of suitable airborne imaging 3100 

sensors, as well as the development of methods based on physically-based models for correctly 3101 

interpreting SIF from the selected sensor, particularly in cases where sensors have coarser spectral 3102 
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resolutions (greater than 1-nm FWHM). The selection of appropriate physically-based models based 3103 

on the type of ecosystem under consideration, especially for complex heterogeneous canopies, and 3104 

the proper modelling approach are additional factors to consider. Accounting for the aforementioned 3105 

considerations will facilitate the use of accurately quantified SIF from imaging sensors onboard 3106 

piloted and unmanned airborne platforms for the advancement of research on photosynthesis, 3107 

physiological assessment and pre-visual stress detection. 3108 

  3109 

3.5 Conclusions 3110 

1. The overestimated SIF760 levels obtained from narrow-band resolution imaging sensors can 3111 

be scaled to the appropriate absolute SIF760 levels quantified from sub-nanometer 3112 

(FWHM≤1nm) resolution imagers. A modelling framework integrating SCOPE RTM and a 3113 

machine learning method was proposed and validated. 3114 

2. Following extensive testing with SCOPE simulations covering a wide range of spectral 3115 

characteristics, it was determined that the best results could be achieved with an SVR model 3116 

employing SIF760-3FLD at narrow-band resolution and the SCOPE-derived leaf biochemical 3117 

and structural traits (Ca+b, LAI, and LIDFa) as predictor variables. 3118 

3. The robustness of the proposed approach was demonstrated by the high degree of agreement 3119 

between the estimated SIF760 at 1-nm FWHM and the reference SIF760-3FLD quantified from 3120 

the airborne sub-nanometer resolution imager at two experimental sites with different crop 3121 

types, irrigation regimes, and weather conditions. 3122 

4. The findings of this study pave the way for the widespread adoption of hyperspectral imagers 3123 

with FWHM > 1 nm for operational applications of SIF requiring retrievals of chlorophyll 3124 

fluorescence emission in absolute physical units. 3125 

 3126 

 3127 
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Abstract 3591 

 With the advent of sub-nanometer resolution imaging sensors capable of characterising 3592 

narrow absorption features, Fraunhofer lines (FLs) can now potentially be identified. This opens up 3593 

a promising avenue for the exploration of these FLs for vegetation monitoring and precision 3594 

agriculture applications. This study is an exploratory analysis which seeks to examine the prospects 3595 

of using individual FL depths derived from sub-nanometer airborne hyperspectral imagery for a 3596 

potential improvement of leaf nitrogen (N) estimates and to detect biotic-induced stress in infected 3597 

vegetation. A sub-nanometer hyperspectral imager with ≤0.2 nm full-width at half-maximum 3598 

(FWHM) resolution and a narrow-band hyperspectral imager with 5.8-nm FWHM were flown in 3599 

tandem over a rainfed winter wheat field for leaf N estimation (Experiment-1) and over a commercial 3600 

olive orchard infected with the fungus Verticillium dahliae (Vd) for biotic stress detection 3601 

(Experiment-2). For Experiment-1, wheat plots were fertilised with variable concentrations of N to 3602 

produce nutrient variability. To estimate leaf N concentration, regression models using Gaussian 3603 

process regression (GPR) were built with different permutations of solar-induced chlorophyll 3604 

fluorescence (SIF), leaf chlorophyll content (Ca+b), and depths of individual FLs. For Experiment-2, 3605 

the sensitivity of different FLs and the two oxygen absorption features (O2-A and O2-B) for detecting 3606 

disease progression at different stages was examined by comparing the absorption depths of 3607 

asymptomatic trees with those of symptomatic trees with increasing levels of disease severity. The 3608 

results for Experiment-1 showed that GPR models incorporating the depth of distinct Fraunhofer lines 3609 

as predictor variables performed better than the benchmark model constructed using Ca+b and far-red 3610 

SIF (SIF760) alone. The best leaf N-estimation model built with FLs from the red and far-red regions 3611 

(Ca+b, FL682.97 nm, FL757.002 nm) yielded an R2 of 0.71, outperforming the standard approach used in 3612 

previous works (Ca+b, SIF760) (R2 = 0.56). The results of the biotic-induced stress detection 3613 

experiment demonstrated that the depth of individual FLs could distinguish between different stages 3614 

of disease progression. FL671.73 nm and FL756.90 nm, as well as oxygen-based O2-B (686.86 nm), were 3615 

found to be responsive throughout all stages of disease progression. Further FLs were found to be 3616 
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sensitive as disease severity progressed. These results from both experiments suggest that narrow FLs 3617 

derived from sub-nanometer resolution imagery are useful for vegetation stress detection, providing 3618 

the foundation for future research into the utility of FLs for plant physiology monitoring applications. 3619 

 3620 

Keywords: Solar-induced chlorophyll fluorescence, SIF, airborne, hyperspectral, leaf nitrogen, sub-3621 

nanometer, Fraunhofer lines, stress detection, Verticillium dahlia 3622 

 3623 

4.1 Introduction 3624 

The frequency of extreme weather events and large fluctuations in precipitation and 3625 

temperature patterns are predicted to rise globally because of climate change (Cogato et al., 2019; 3626 

Schmidhuber et al., 2007; Zampieri et al., 2017). Consequently, biotic and/or abiotic vegetation 3627 

stresses will become more common and, without prompt and efficient management responses, may 3628 

result in declines in global food production (Atzberger, 2013). It is thus increasingly crucial to detect 3629 

signs of vegetation stress as early as possible, before any permanent damage is done, so that corrective 3630 

agrotechnical actions can be taken to prevent production loss (Berger et al., 2022). 3631 

Olive trees are infected by more than a hundred different pests and pathogens which cause 3632 

decreased yields and higher overall production costs (Fernández-Escobar et al., 2013). The soil-borne 3633 

fungus Verticillium dahliae (Vd) Kleb, responsible for Verticillium wilt (VW), is one of the major 3634 

threats to olive production around the world (Jiménez-Díaz et al., 2012). In more than 400 plant 3635 

species, this pathogen colonises the vascular system, restricting water flow and leading to water stress 3636 

(Pegg and Brady, 2002). 3637 

Traditional methods for detecting Vd infections have relied on in situ observations followed 3638 

by laboratory studies. While these methods are effective, they are also too laborious, costly, and time-3639 

consuming to be practical for widespread monitoring (Gramaje et al., 2013). Hence, developing 3640 
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robust methods for large-scale plant scanning is crucial for detecting detrimental crop pathogens and 3641 

ensuring they are eradicated quickly or contained in an effective manner (Stokstad, 2015). In this 3642 

context, multi-sensor strategies involving airborne narrow-band hyperspectral and thermal imaging 3643 

sensors have demonstrated encouraging findings for the early detection of infectious plant diseases 3644 

at large scales (Calderón et al., 2015; 2013; Camino et al., 2021; Poblete et al., 2023; 2021; Zarco-3645 

Tejada et al., 2021; 2018).  3646 

Thermal imagery-derived normalised canopy temperature, Crop Water Stress Index (CWSI), 3647 

and narrow-band hyperspectral imagery-derived SIF760 and vegetation indices related to structure, 3648 

xanthophyll, chlorophyll, carotenoid, and disease indices have been demonstrated to be the best 3649 

indicators for detecting symptoms in Vd-infected olive trees (Calderón et al., 2015; 2013). Zarco-3650 

Tejada et al. (2018) used a machine learning framework that considered pigment, structural, 3651 

fluorescence, and thermal-based plant traits (PSFTs) to detect infection caused by the bacterium 3652 

Xylella fastidiosa (Xf) in olive trees with an overall accuracy of over 80%. In a subsequent study, 3653 

Poblete et al. (2021) demonstrated that hyperspectral and thermal traits can be used to detect and 3654 

differentiate symptoms in olive trees caused by Vd and Xf infection from a mixed (Xf + Vd) dataset, 3655 

which can exhibit visually similar symptoms, using a three-stage machine learning-based approach. 3656 

In a subsequent study, Zarco-Tejada et al. (2021) demonstrated the capability of hyperspectral and 3657 

thermal traits to distinguish between symptoms caused by Vd and Xf infections and those caused by 3658 

water stress, thereby reducing the uncertainty of Xf detections across different hosts to less than 6%. 3659 

In all the aforementioned studies, narrow-band SIF760 was found to be one of the most important 3660 

indicators for detecting biotic stress. Due to the limitations regarding the spectral characteristics of 3661 

narrow-band hyperspectral imagers used in these studies, only the capability of SIF760 for biotic stress 3662 

detection was investigated. It would be beneficial to explore other spectral regions within the SIF 3663 

emission regions, as those regions may provide valuable insights for pre-visual stress detection. 3664 
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Nitrogen (N) is a macronutrient which plays a crucial role in plant development, yield and 3665 

grain quality, and which is often the dominant limiting factor in photosynthesis (Evans, 1989; 3666 

Lemaire et al., 2008). Accurate field-wide assessments of leaf N concentration (N%) enable more 3667 

targeted use of N-fertilisers, thereby mitigating the environmental effects of N-overfertilisation while 3668 

improving crop yields. Standard destructive sampling for leaf N determination relies on the laboratory 3669 

analysis of leaf tissue using methods such as Kjeldahl digestion and Dumas combustion. Although 3670 

accurate, these techniques are time-consuming and expensive for monitoring the leaf N status of large 3671 

areas. In recent decades, the use of remote sensing technologies has increased, particularly through 3672 

hyperspectral imagery, for mapping the spatial and temporal variations of crop leaf N concentration 3673 

at paddock-scale (Berger et al., 2020).  3674 

Recent studies using narrow-band airborne and spaceborne hyperspectral imagers have 3675 

demonstrated that accurate determination of leaf N concentration can be achieved by combining the 3676 

radiative transfer model (RTM)-derived leaf biochemical constituents with SIF760 acquired from 3677 

high-resolution airborne hyperspectral imagery (Camino et al., 2018; Y. Wang et al., 2022a; 2022b). 3678 

Even though these studies have demonstrated improved leaf N retrievals when including SIF760, the 3679 

potential of other spectral features within the 650-800 nm SIF emission region to characterise both 3680 

PSI and PSII photosystems has not yet been explored. Moreover, the potential information extracted 3681 

from the red spectral region, i.e. SIF quantified at the O2-B absorption band centred around 687 nm 3682 

(SIF687), and from the depth of solar Fraunhofer lines (FLs), which are absorption lines in the solar 3683 

spectrum, could provide valuable insights for improved characterisation of photosynthesis and leaf N 3684 

variability.  3685 

The depth of FLs within particular spectral windows devoid of significant terrestrial 3686 

absorptions (‘pure FLs’ hereafter) is practically unaffected by atmospheric scattering, making SIF 3687 

retrieval at individual pure FLs in these spectral windows nearly insensitive to atmospheric effects 3688 

(Frankenberg et al., 2011; 2018; Guanter et al., 2013). With the recently developed sub-nanometer 3689 
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resolution airborne hyperspectral imagers, it is now possible to investigate the potential of these 3690 

narrow pure FLs within the SIF emission region. However, the quantification of in-filling at 3691 

individual FLs and its conversion to SIF would require accurate characterisation of the shape of 3692 

individual FLs in the reference solar irradiance spectrum. This irradiance spectrum either needs to be 3693 

acquired from the sub-nanometer imager using ground-based reference targets (Wang et al., 2022) or 3694 

from the explicit modelling of the instrument spectral response function (Guanter et al., 2012; Sun et 3695 

al., 2018). However, reference irradiance spectrum may not be always available, preventing the 3696 

quantification of SIF at individual FLs. Since the depths of solar FLs decrease in the presence of SIF 3697 

(Plascyk and Gabriel, 1975), we hypothesise that, under identical solar conditions, the depth of the 3698 

distinct pure FLs detected from different vegetation targets within the sub-nanometer airborne 3699 

hyperspectral imagery can be used as a proxy for SIF, i.e. by assessing the FL depth in relative terms 3700 

within a single image. 3701 

The first part of this study aims to assess the relative contribution of the SIF emitted by each 3702 

of the two photosystems (PSI and PSII) in explaining leaf N variability across the field. SIF760, SIF687 3703 

and the depth of distinct pure solar FLs inside PSI and PSII emission regions derived from sub-3704 

nanometer airborne hyperspectral imagery were all evaluated. The second part of this study 3705 

investigates the sensitivity of distinct pure FLs derived from sub-nanometer imagery to differentiate 3706 

between asymptomatic and symptomatic trees with different stages of disease progression caused by 3707 

Vd infections, comparing their performance against standard methods of SIF quantification using 3708 

oxygen absorption features. 3709 

 3710 

 3711 

 3712 

 3713 
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4.2 Materials and methods 3714 

4.2.1 Study sites and field data collection  3715 

The first experiment regarding the estimation of leaf nitrogen concentration was conducted at 3716 

a phenotyping trial site located in Yarrawonga, northeast Victoria, Australia (36°02′55″S, 3717 

145°59′02″E) in 2019. According to the Köppen climate classification system, the climate at the field 3718 

trial location is humid subtropical (Cfa), with average temperature of 16.3 °C and average annual 3719 

rainfall of 559 mm. The plot sizes were 26 m2 (2 m × 13 m) and were planted in May 2019.  Several 3720 

cultivated varieties of rainfed wheat were grown under varying physiological conditions and N 3721 

fertilisation treatments. More details about the study site can be found in Belwalkar et al. (2022a). 3722 

The second experiment, regarding biotic stress detection, was carried out at a Vd infected 3723 

commercial olive orchard located in Boundary Bend, northwest Victoria, Australia (34°44′23″S, 3724 

143°10′27″E) in 2023 (Fig. 4-1a). The region has a Mediterranean climate, with warm dry summers 3725 

and cool wet winters, and average annual rainfall of 335.8 mm. In December 2022, visual disease 3726 

severity (SEV) assessments were performed using a scale of 0–3 depending on the proportion of the 3727 

tree canopy displaying symptoms of the disease. Of the 111 olive trees examined, 32 were deemed to 3728 

be asymptomatic (SEV = 0), whereas 79 showed signs of disease and were reported as symptomatic 3729 

(21 trees, SEV = 1; 26 trees, SEV = 2; and 32 trees, SEV = 3; Fig. 4-1c). 3730 

4.2.2 Airborne campaigns using hyperspectral imagers 3731 

Airborne campaigns operated by the HyperSens Laboratory at the University of Melbourne's 3732 

Airborne Remote Sensing Facility corresponding to Experiment-1 and Experiment-2 under clear sky 3733 

conditions were conducted on 9 October 2019 and 31 January 2023, respectively. For both 3734 

experiments, a sub-nanometer hyperspectral imager (FWHM ≤0.2 nm; 670–780 nm) and a narrow-3735 

band hyperspectral imager (FWHM = 5.8 nm; 400–1000 nm) (Headwall Photonics Inc., Fitchburg, 3736 

MA, USA) were used to acquire airborne hyperspectral imagery with spatial resolutions of 20 cm and 3737 
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30 cm for Experiment-1 and Experiment-2, respectively (Fig. 4-2). Further details regarding the 3738 

spectral configuration of the two hyperspectral imagers can be found in Belwalkar et al. (2022a).   3739 

 3740 

Fig. 4-1. (a) Overview of Experiment-2 at the Boundary Bend study site. (b) Zoomed-in view of tree 3741 
crowns identified in the scene within the green rectangle in (a). (c) Spatial distribution of visual 3742 
assessments of Verticillium dahliae (Vd) infection. 3743 

 3744 
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 3745 

Fig. 4-2. Sample radiance spectra acquired from the sub-nanometer imaging sensor at the two 3746 
experimental sites.  3747 

 3748 

For Experiment-1, ground spectral measurements were taken concurrently with the flight, 3749 

using a CC-3 VIS-NIR cosine corrector diffuser attached to an HR-2000 spectrometer (Ocean Insight, 3750 

Dunedin, FL, USA) with a 0.065-nm FWHM, for continuous measurement of the total incident 3751 

radiation (Fig. 4-3a). Pure vegetation pixels were extracted within individual wheat plots using a 3752 

thresholding approach based on the normalised difference vegetation index (NDVI), and mean 3753 

radiance spectra corresponding to the sub-nanometer imager and mean reflectance spectra from the 3754 

narrow-band hyperspectral imager were retrieved. Belwalkar et al. (2022a) provide a full description 3755 

of the airborne campaign, data preprocessing, and image correction. In addition, the total leaf N 3756 

concentration (%) was determined in the laboratory using the Kjeldahl method of destructive testing, 3757 

with samples consisting of 10–15 leaves randomly selected per plot. 3758 

For Experiment-2, four different sets of sub-nanometer resolution radiance imagery covering 3759 

the entire orchard were acquired within a 40-minute time interval. The total incoming irradiance 3760 

concurrent with the airborne campaign was calculated using the radiance reflected from a white 3761 

reference panel (Labsphere Inc., North Sutton, NH, USA) measured by the HR-2000 spectrometer 3762 

(Fig. 4-3b). Sunlit tree-crown pixels corresponding to individual trees were extracted from each sub-3763 
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nanometer radiance imagery using a two-stage approach. In the first stage, automatic object-based 3764 

segmentation of the sub-nanometer radiance imagery was carried out using Fiji (Abràmoff et al., 3765 

2004) combining Sauvola's binarisation (Sauvola and Pietikäinen, 2000) methods on the near-infrared 3766 

band (mean of 774-776 nm), and Phansalkar's thresholding method (Phansalkar et al., 2011) on the 3767 

Normalised Difference Red Edge (NDRE) index. This stage allowed for the separation of pure sunlit 3768 

tree-crowns from the soil background, as well as within-crown shadows. In the second stage, 3769 

following Zarco-Tejada et al. (2018), a binary watershed-based segmentation using the Euclidean 3770 

distance map was applied to individual objects obtained in the first stage to extract sunlit tree-crown 3771 

pixels corresponding to individual trees. Using NDVI and the near-infrared band (800 nm), we 3772 

followed a similar procedure to extract sunlit tree-crown pixels for individual trees from narrow-band 3773 

radiance imagery. The sunlit tree-crown pixels were then used to obtain mean radiance spectra for 3774 

each individual tree from both sub-nanometer and narrow-band imagery. 3775 

 3776 

Fig. 4-3. Irradiance spectra obtained from ground-based HR-2000 spectrometer concurrently with the 3777 
acquisition of sub-nanometer imagery for (a) Experiment-1 and (b) Experiment-2.  3778 

 3779 

4.2.3 Methodology for estimating leaf nitrogen concentration 3780 

The irradiance spectra obtained from the HR-2000 spectrometer were convolved to the 3781 

spectral characteristics of the sub-nanometer imager using Gaussian convolution (Fig. 4-4). Using 3782 

this convolved irradiance and the mean radiance derived from each plot, SIF760 and red SIF (SIF687) 3783 
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were quantified using the in-filling approach, employing the Fraunhofer Line Depth (FLD) principle 3784 

with a total of three spectral bands (3FLD) (Maier et al., 2003). Furthermore, we identified 17 pure 3785 

FLs across the 670–780 nm spectral range of the sub-nanometer imager, excluding regions with 3786 

significant water vapour and oxygen absorption (Albert et al., 2023). The FLs identified were divided 3787 

into two groups according to their positions in the spectral region. Five of these FLs were located in 3788 

the red region of the spectrum (670–685 nm, named ‘red FLs’ here), while the remaining twelve were 3789 

located in the far-red region (740–759 nm and 770–780 nm, named first and second ‘far-red FLs’ 3790 

groups, respectively). The exact locations of the band centres corresponding to all FLs, and the O2-A 3791 

and O2-B oxygen absorption bands are illustrated in Fig. 4-5. The positions of band centres 3792 

corresponding to all FLs, and oxygen absorption features were computed as the mode of band centres 3793 

corresponding to all the plots used for the analysis.  3794 

 3795 

Fig. 4-4. Comparison of original and convolved HR-2000 derived irradiance spectra for Experiment-3796 
1: (a) in the entire 680-773 nm spectral region; (b) in the O2-A absorption region; (c) in the O2-B 3797 
absorption region (c).   3798 

 3799 

Unlike the O2-A absorption feature, the detected FLs are quite narrow, so the assumption of 3800 

a Gaussian spectral response function for convolving the solar irradiance spectra corresponding to 3801 

individual FLs is not valid. Hence, instead of SIF, we computed the depth of individual FLs and used 3802 

FL depth as a proxy for SIF. For each FL, the absolute depth in radiance units was computed as the 3803 
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difference between the radiance at the left shoulder wavelength and the wavelength at the bottom of 3804 

the FL. The left shoulder wavelength was selected by searching for the wavelength providing highest 3805 

radiance within 1 nm of the bottom wavelength (Fig. 4-6). 3806 

 3807 

Fig. 4-5. Locations of the band centres corresponding to red FLs (a), group-1 far-red FLs (b), and 3808 
group-2 far-red FLs (c) shown in dashed black, and oxygen absorption lines (a, b) shown in dashed 3809 
red identified from the average radiance spectra of one of the plots imaged by the sub-nanometer 3810 
hyperspectral imager.  3811 

 3812 
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 3813 

Fig. 4-6. Example of selection of left shoulder wavelength (λout) and the wavelength at the bottom of 3814 
the FL (λin) for calculating absolute FL depth corresponding to FL751.224 nm using sub-nanometer mean 3815 
radiance extracted from one of the plots in Experiment-1.  3816 

 3817 

Regression models based on GPR were trained to empirically estimate leaf N concentration 3818 

using Ca+b, SIF760, SIF687 and the depth of distinct FLs as a pool of potential predictor variables. Ca+b, 3819 

SIF760, and depth corresponding to a single FL were used to initially train GPR models. Subsequently, 3820 

GPR models were trained on leaf N estimation using Ca+b, and one FL depth each from the red and 3821 

far-red FL groups to further examine the effect of using FL depths corresponding to both the red and 3822 

far-red FL groups as predictor variables. The GPR models were trained in parallel (MATLAB parallel 3823 

computing toolbox) and the hyperparameters were optimised by incorporating Bayesian optimisation 3824 

into the leave-one-out cross-validation (LOOCV). The performance evaluation of the trained GPR 3825 

models was carried out using the coefficient of determination (R2), root-mean-square error (RMSE), 3826 

and normalised root-mean-square error (nRMSE). To limit random errors, for each possible 3827 

combination of predictor variables, five GPR models were independently trained, and the average 3828 

estimate was then used to determine R2, RMSE, and nRMSE. 3829 

Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) (Van der Tol et al., 2009) 3830 

RTM-based hybrid inversion with random forest regression (Belwalkar et al., 2022b) was used to 3831 
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estimate Ca+b from the mean reflectance spectra obtained from the narrow-band hyperspectral imager 3832 

in the 400-800 nm spectral region. To determine if the leaf N estimates could be further improved by 3833 

including SIF emission regions other than the O2-A absorption band, we used the GPR model 3834 

developed with Ca+b and SIF760 as a benchmark. Then we compared against this benchmark by adding 3835 

the depth of distinct solar FLs into the models. Since PSII largely influences the red spectral region, 3836 

the contributions of SIF687 and red FLs are attributed only to PSII. In contrast, the contributions of 3837 

SIF760 and far-red FLs are attributed to both photosystems. 3838 

4.2.4 Methodology for assessing the sensitivity of distinct FLs for biotic stress detection 3839 

Similarly to the identification of distinct FLs in Experiment-1, 16 FLs (5 in the red region and 3840 

11 in the far-red region) were identified across the 670–776 nm spectral range in Experiment-2. Due 3841 

to recalibration of the sub-nanometer hyperspectral imager in 2020, the band centres for experiment-3842 

2's 16 FLs and Experiment-1's 17 FLs were not identical. The absolute depths for all red and far-red 3843 

FLs were computed using the methodology described in section 4.2.3. In addition, absolute depths 3844 

corresponding to both O2-A and O2-B absorption features were computed, and the wavelengths with 3845 

the maximum radiance in the ranges of 755–759 nm for O2-A and 685–686 nm for O2-B were chosen 3846 

as the left shoulder wavelengths. The absorption depths were further normalised using a proxy for 3847 

photosynthetically absorbed radiation (PAR), which was calculated by spectrally integrating the HR-3848 

2000 derived irradiance spectra within the 680–700 nm spectral region corresponding to the 3849 

acquisition time of each radiance image. This normalisation was required to account for the effect of 3850 

incoming solar radiation on the absolute depth of the absorption features derived from the four sub-3851 

nanometer resolution radiance images at varying acquisition times. 3852 

The sensitivity of different absorption features (16 FLs and 2 oxygen features) for detecting 3853 

Vd-induced symptoms was investigated for three different stages of disease progression – early, 3854 

intermediate, and all. The trees were categorised as either asymptomatic (SEV = 0) or symptomatic 3855 

(SEV ≥ 1) if they exhibited one of three rising disease progression levels. Trees with early-stage 3856 
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disease were those rated as symptomatic with a SEV of 1; trees in the intermediate stage were those 3857 

rated as symptomatic with a SEV of 1-2; and trees in all stages were those rated as symptomatic with 3858 

a SEV of 1-3. To determine if disease symptoms affect absorption features differently over the course 3859 

of disease, the depths of absorption features of asymptomatic trees were compared to those of 3860 

symptomatic trees with three levels of severity – SEV = 0 vs. SEV = 1; SEV = 0 vs. SEV ≤2; and 3861 

SEV = 0 vs. SEV ≥1 – using an Analysis of Variance (ANOVA) statistical test. This analysis of 3862 

absorption feature depths enabled the assessment of the capability of different absorption features to 3863 

detect disease progression in relation to the intensity of pathogen-induced stress. Additionally, using 3864 

the narrow-band radiance imagery, absolute depths corresponding to the O2-A absorption features 3865 

were computed to examine the sensitivity of narrow-band derived O2-A depth for detecting different 3866 

stages of disease progression and to compare its performance against sub-nanometer derived O2-A 3867 

band depth. 3868 

 3869 

4.3 Results and discussion 3870 

4.3.1 Leaf N estimation using depths of distinct FLs 3871 

GPR models trained with a single FL as one of the three predictor variables produced a total 3872 

of 17 distinct GPR models (5 models for the red FL group and 12 models for the far-red FL group). 3873 

Among the red FL group, the performance of the GPR model with FL1 depth was comparable with 3874 

the benchmark (R2 = 0.56; RMSE = 0.229%; nRMSE = 5.89%; Fig. 4-7a and 4-7b), whereas the 3875 

performance of the other four red FL depths did not improve prediction. Among the far-red FLs, the 3876 

model that included FL13 depth showed the highest performance, outperforming the benchmark (R2 3877 

= 0.63; RMSE = 0.21%; nRMSE = 5.41%; Fig. 4-7c).  3878 

Since FL13 performed the best among all red and far-red FLs, for the next set of GPR models 3879 

with two FLs and Ca+b as predictors, we selected FL13 among the far-red FLs and independently 3880 
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evaluated all five red FLs as potential GPR model predictors. When compared to the benchmark 3881 

model, the GPR model trained with FL5 (682.97 nm) and FL13 (757.002 nm) had substantially 3882 

improved leaf N estimation (R2 = 0.71; RMSE = 0.188%; nRMSE = 4.84%; Fig. 4-7d), with more 3883 

data points closer to the 1:1 line. The model's performance did not improve further after including 3884 

more FLs from either of the two FL groups.  3885 

 3886 

Fig. 4-7. Measured vs estimated mean leaf N concentration using the best GPR models as a function 3887 
of: (a) Ca+b and SIF760; (b) Ca+b, SIF760, and best-performing red FL; (c) Ca+b, SIF760, and best-3888 
performing far-red FL; (d) Ca+b and best-performing combination of one red and one far-red FL. The 3889 
dashed line indicates the 1:1 line. The error bars indicate the standard deviation based on five runs of 3890 
the GPR model. The GPR model as a function of Ca+b and SIF760 was used as a benchmark. ***p-3891 
value <0.05. 3892 

 3893 

Furthermore, we found that the model's performance decreased when it included SIF687 with 3894 

any combination of predictor variables. This result could possibly be attributed to the high collinearity 3895 

observed between Ca+b and SIF687. Our results suggest that FL depths corresponding to 757.002 nm 3896 
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(FL13) and 682.97 nm (FL5), in conjunction with Ca+b estimated by RTM simulations, provided 3897 

improved estimation of leaf N concentration. These findings of the current exploratory study for the 3898 

investigation of individual FLs provide a foundation for future research into the use of FLs identified 3899 

in sub-nanometer imagery for plant phenotyping and precision agriculture applications. 3900 

4.3.2 Sensitivity of distinct FLs for biotic stress detection 3901 

Firstly, the evaluation of the distribution of relative absorption feature depths corresponding 3902 

to red FLs, the two far-red FLs groups, and the two oxygen absorption features was carried out using 3903 

Dunnett’s test, comparing them with the asymptomatic trees for early, intermediate, and all stages of 3904 

disease progression (Figs. C1-C4, Appendix C). The sensitivity of different absorption features 3905 

identified from sub-nanometer hyperspectral imagery to detect different stages of disease progression 3906 

caused by Vd infection is shown in Fig. 4-8. Only FL671.73 nm, FL756.90 nm, and the O2-B (686.86 nm) 3907 

absorption feature were found to be sensitive for detecting the early stage of disease progression. The 3908 

same three absorption features, along with one additional FL in the red spectral region (FL676.74 nm), 3909 

were found to be sensitive for both the intermediate and all stages of disease progression. With 3910 

increasing stress severity levels, the O2-A (760.48 nm) feature, an additional red FL (FL680.95 nm) and 3911 

three additional far-red FLs (FL746.22 nm, FL751.12 nm, FL774.28 nm) could detect all stages of disease 3912 

progression. Among the 16 FLs investigated, nine FLs including two red FLs (FL672.65 nm, FL682.87 nm) 3913 

and seven far-red FLs (FL744.58 nm, FL749.54 nm, FL752.30 nm, FL753.12 nm, FL755.52 nm, FL772.80 nm, FL774.90 3914 

nm) were found to be incapable of distinguishing asymptomatic trees from symptomatic trees at any 3915 

level of infection (Fig. 4-8). The O2-A band depth quantified from the narrow-band imagery could 3916 

only detect all stages of disease progression showing agreement with the trend observed for the O2-3917 

A band depth quantified from the sub-nanometer imagery. 3918 
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 3919 

Fig. 4-8. Sensitivity of different absorption features (FLs, O2-A and O2-B band depths) identified 3920 
from sub-nanometer hyperspectral imagery to distinguish asymptomatic trees from symptomatic trees 3921 
with varying stages of disease progression caused by Vd infection. The comparison between 3922 
symptomatic and asymptomatic trees was conducted using a one-way ANOVA test with a 3923 
significance level of 0.05. 3924 

 3925 

Some individual FLs detected from sub-nanometer imagery were found to be sensitive to Vd-3926 

induced symptoms at varying stages of disease progression, suggesting that further research into their 3927 

potential is needed. Specifically, FL671.73 nm and FL756.90 nm were able to distinguish asymptomatic 3928 

trees from those in the early stage of disease progression, which is crucial to allow producers to make 3929 

decisions for successful containment of disease. Although it would be most beneficial to quantify SIF 3930 

levels corresponding to these distinct FLs to better understand biotic stress-induced dynamics, our 3931 
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exploratory analysis using FL depth is the first step towards realising the potential of these narrow 3932 

Fraunhofer lines for biotic and abiotic stress detection. 3933 

 3934 

4.4 Conclusions 3935 

1. The quantification of the depth of narrow Fraunhofer lines in the SIF emission region 3936 

improves leaf N estimations and the detection of biotic stress in vegetation. 3937 

2. With RMSEs of less than 0.19%, the best results for leaf N estimation were achieved by the 3938 

regression model constructed using Ca+b, red FL closest to O2-B band (682.97 nm), and far-3939 

red FL closest to O2-A band (757.002 nm). 3940 

3. It was found that the red FL furthest from the O2-B band (671.73 nm) and one far-red FL 3941 

closest to the O2-A band (756.90 nm), along with the O2-B absorption feature, could detect 3942 

the three stages of disease progression (early, intermediate, and all). As expected, more FLs 3943 

were found to be sensitive as levels of disease progression increased.  3944 

4. The results of this exploratory investigation of FL’s potential provides a foundation for future 3945 

research on the use of FLs identified from sub-nanometer imagery in the context of precision 3946 

agriculture, plant physiology monitoring, and for the detection of biotic and abiotic vegetation 3947 

stress. 3948 
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Chapter 5  4099 

 4100 

Conclusions 4101 
  4102 
 4103 

The results of each study have been thoroughly and specifically discussed in the preceding 4104 

chapters. This chapter's objective is to provide a concise overview of the research, contextualise the 4105 

findings, emphasise their applications and limitations, and suggest future research directions. 4106 

 4107 

5.1 Salient features and research outcomes 4108 

The research undertaken for this thesis establishes the utility of SIF760 quantified by airborne 4109 

narrow-band imaging sensors for plant physiology monitoring, plant phenotyping, and precision 4110 

agriculture applications. It also outlines the potential for these purposes of using narrow solar 4111 

Fraunhofer lines detected from sub-nanometer resolution imaging sensors. Some of the salient 4112 

features of this research are: 4113 

 Airborne SIF760 derived from a narrow-band imaging sensor (5.8-nm FWHM) exhibited 4114 

strong correlations with both ground-based and airborne sub-nanometer resolution SIF760 4115 

estimates, demonstrating its utility for stress-detection applications requiring the 4116 

quantification of relative SIF760 differences. 4117 

 A modelling framework integrating SCOPE RTM and machine learning methods was 4118 

proposed to scale the overestimated narrow-band SIF760 levels to appropriate absolute levels, 4119 

which allow the use of narrow-band quantified SIF760 for applications that require SIF760 4120 

estimates in absolute physical units. 4121 

 The inclusion of the depth quantity calculated at the Fraunhofer lines derived from sub-4122 

nanometer imagery (≤0.2 nm FWHM) around the two oxygen absorption bands improved the 4123 
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estimates of leaf nitrogen concentration as compared to standard methods based on SIF760 and 4124 

chlorophyll content. 4125 

 The depth of individual Fraunhofer lines derived from sub-nanometer imagery demonstrated 4126 

sensitivity to the different stages of disease progression caused by Verticillium dahlia 4127 

infections. This finding lays the framework for further investigation into the utility of FLs for 4128 

plant physiology monitoring applications. 4129 

 4130 

5.2 General conclusions 4131 

Hyperspectral imaging of SIF can be used as a proxy for vegetation stress and an indicator of 4132 

crop photosynthetic activity for large-scale plant phenotyping and stress detection applications. The 4133 

extremely low strength of the SIF signal (1-2% of the total incoming solar radiation) necessitates the 4134 

use of sub-nanometer resolution sensors for its accurate estimation. Improving the spectral resolution 4135 

of imaging sensors onboard airborne platforms has been a focus of technological development over 4136 

the past decade, leading to the development of sub-nanometer resolution imaging sensors for accurate 4137 

SIF quantification. However, their high cost and operational complexity prevent their widespread use 4138 

in the context of precision agriculture, plant physiology monitoring and stress detection applications.  4139 

Although a few theoretical studies have evaluated the impact of the spectral configuration of 4140 

sensors on SIF accuracy, the literature lacks studies focusing on such assessments in practical 4141 

applications with airborne hyperspectral imaging sensors. This thesis examined the applicability of 4142 

cost-effective narrow-band imaging sensors as an alternative to sub-nanometer imaging sensors for 4143 

the precise estimation of SIF760 in physical units and absolute levels. In particular, the application of 4144 

a modelling methodology integrating RTM and machine learning algorithms resulted in improved 4145 

SIF760 estimates derived from a narrow-band imaging sensor in absolute physical units. Improved leaf 4146 

nitrogen estimates and the ability to differentiate between disease stages when detecting biotic-4147 
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induced stress in infected vegetation were additional outcomes of an exploratory study designed to 4148 

evaluate the prospects of using individual FL depths derived from the sub-nanometer imaging sensor. 4149 

First, a dataset from three plant phenotyping experiments integrating narrow-band 4150 

hyperspectral imagery, sub-nanometer imagery, field observations, and radiative transfer modelling 4151 

demonstrated the reliability of narrow-band imagery for detecting relative SIF760 variability induced 4152 

by variable nitrogen fertiliser application across a field. Strong significant correlations were found 4153 

between SIF760 quantified by both narrow-band and sub-nanometer imaging sensors flown in tandem, 4154 

demonstrating consistency across experimental wheat and maize phenotyping sites and airborne 4155 

campaigns conducted at different times and flight altitudes, and in different years. Although strongly 4156 

correlated with both ground-based and sub-nanometer resolution SIF760 estimates, the narrow-band 4157 

imaging sensor yielded larger SIF760 estimates than the typical range of 0–3 mW/m2/nm/sr expected 4158 

from healthy vegetation. The effect of spectral configuration on SIF accuracy was observed in the 4159 

elevated SIF760 values obtained from the narrow-band imagery. This limits the applicability of 4160 

narrow-band SIF760 levels to only those investigations that require relative assessment of SIF 4161 

variability in the field. However, if the overestimated narrow-band SIF760 estimates are readjusted to 4162 

appropriate absolute physical levels via modelling, narrow-band imaging sensor’s low cost and light 4163 

weight could enable the operational collection of high-spatial resolution fluorescence data for diverse 4164 

applications. The next part of this thesis was therefore focused on improving the absolute SIF760 levels 4165 

derived from narrow-band imaging sensors using modelling methods based on the integration of 4166 

machine learning and radiative transfer models.  4167 

Since plant pigments and canopy structure greatly affect TOC SIF, there was a need for 4168 

research into the role that leaf-biochemical and structural traits might play in improving narrow-band 4169 

SIF760 estimations. Of the seven-leaf biochemical and structural traits evaluated using simulated data 4170 

corresponding to resolutions ranging from 2–6 nm FWHM, Ca+b, LAI, and LIDFa showed the highest 4171 

sensitivity for estimating SIF760 at 1-nm FWHM. Incorporating leaf biochemical and structural traits 4172 
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could be a useful strategy for enhancing the interpretation of relative SIF760 levels derived from 4173 

narrow-band imaging sensors, as evidenced by validations performed for the two airborne datasets 4174 

with simultaneously acquired sub-nanometer resolution airborne data with a RMSE of 4.5–16%. 4175 

Extensive validations conducted for SCOPE-simulated datasets corresponding to other resolutions 4176 

ranging from 2–6 nm demonstrated consistency with the results obtained from the narrow-band 4177 

imaging sensor, illustrating the robustness of the modelling approach.  4178 

The concluding work for this thesis focused on an exploratory analysis of the prospects of 4179 

individual Fraunhofer lines derived from sub-nanometer imagery, which had not been explored to 4180 

date and could potentially yield important insights into the physiological status of vegetation. It was 4181 

demonstrated that incorporating the depths of two distinct FLs proximal to oxygen absorption features 4182 

improved leaf nitrogen estimations, as compared to recently proposed approaches involving RTM-4183 

derived leaf-biochemical constituents and SIF760. Furthermore, the activation of separate FLs in the 4184 

red and far-red spectral range was found to be correlated with three stages of disease progression due 4185 

to Verticilium dahliae infections. The O2-B feature, one red FL, and one far-red FL were all found to 4186 

be sensitive for the early, intermediate, and all stages. As the level of disease stress increased from 4187 

early to intermediate and from intermediate to all, more FLs became sensitive for differentiating 4188 

symptomatic from asymptomatic trees.  4189 

The first results from this exploratory research suggest that it would be worthwhile to dive 4190 

deeper into the potential benefits of these narrow FLs, in particular by quantifying the SIF associated 4191 

with specific FLs, in order to better understand and manage the factors that influence plant health. 4192 

This is particularly important in the context of stress detection and plant physiology monitoring 4193 

applications using airborne imaging sensors. In such studies, SIF760 has typically been used as a proxy 4194 

for stress. However, the need for accurate characterisation of atmospheric effects in the O2-A 4195 

absorption region introduces uncertainties into the retrieval of SIF760. Since pure FLs are insensitive 4196 

to atmospheric effects, quantifying SIF at individual FLs provides an appealing alternative to the use 4197 
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of SIF760. However, it remains challenging to achieve the high SNR needed for accurate SIF 4198 

estimation with FLD-based approaches at such narrow absorption features. 4199 

 4200 

5.3 Limitations 4201 

This research has the following limitations:  4202 

 Narrow-band SIF760 estimates were compared to ground-based and airborne sub-nanometer 4203 

SIF760 estimates at plant phenotyping experimental sites growing wheat and maize under 4204 

nutritional variability. Further research is needed to evaluate the robustness of narrow-band 4205 

SIF760 quantification in complex heterogenous canopies due to the potentially increased 4206 

effects of shadows and within-crown multiple scattering processes. 4207 

 Due to the use of SCOPE RTM, which is a one-dimensional model, the narrow-band SIF760 4208 

scaling methodology cannot be readily applied to complex heterogeneous canopies. Further 4209 

validation is required for complex canopies using 3-D modelling approaches. 4210 

 Narrow-band SIF760 estimates were scaled using a modelling strategy that involved creating 4211 

RTM-based simulated training datasets that reflected the actual field conditions observed at a 4212 

given study site. As a result, the trained model is not transferable to new environments due to 4213 

a lack of generalisation capabilities.  4214 

 The need for accurate characterisation of the shape of distinct narrow Fraunhofer line 4215 

absorption features in the solar irradiance spectrum prevents the quantification of SIF 4216 

corresponding to distinct narrow Fraunhofer lines, so this research used the depth of the 4217 

Fraunhofer lines as proxy for SIF. 4218 

 4219 

 4220 
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5.4 Future directions 4221 

The following are some possible avenues for additional research: 4222 

 To better understand how canopy structure, plant physiological status, and meteorological 4223 

factors influence narrow-band SIF760 levels and its relationship with sub-nanometer SIF760 4224 

estimates, large-scale airborne campaigns could be conducted over a variety of canopies under 4225 

varying physiological and environmental conditions. Such assessment is particularly 4226 

important for canopies impacted by biotic- and abiotic-induced stress. 4227 

 More research is needed to identify a methodology based on three-dimensional RTMs to 4228 

properly characterise heterogenous canopies that will enable understanding of the impact of 4229 

the clumping effect in the context of scaling narrow-band SIF760 estimates. 4230 

 Developing a novel retrieval method targeting SIF estimation at distinct Fraunhofer lines 4231 

found to be sensitive for biotic and abiotic stress detection.  4232 

 Evaluating the capability of SIF derived from distinct Fraunhofer lines detected from sub-4233 

nanometer resolution airborne imagery to distinguish between pre-visual biotic- and abiotic-4234 

induced stress. 4235 

 4236 

 4237 

 4238 

 4239 

 4240 

 4241 

 4242 

 4243 
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Appendices 4244 

 4245 

Appendix A: Supplementary Material for Chapter-2 4246 
  4247 

 4248 

Table A-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy 
Observation, Photochemistry and Energy fluxes (SCOPE) model.  

Parameter Definition Range/Value Unit 

FLUSPECT    
Cab Leaf chlorophyll concentration 10–50 μg·cm–2 

Cca Leaf carotenoid concentration 
2.5–12.5 
(Cab/4) 

μg·cm–2 

Cdm Leaf dry matter content 0.001–0.05 g·cm–2 
Cw Equivalent water thickness in leaves 0.001–0.05 cm 
Cs Leaf senescence parameters 0 - 
Cant Anthocyanin content 1 μg·cm–2 
N Leaf structure parameter 1.2–1.8 - 
ρ(thermal) Broadband leaf thermal reflectance 0.01 - 
τ(thermal) Broadband leaf thermal transmittance 0.01 - 

 
Leaf biochemical 

   

Vcmo Maximum carboxylation capacity 20–120 
μmol·m–2 s–

1 
m Ball-Berry stomatal parameter (slope) 8 - 
B0 Ball-Berry stomatal parameter (intercept) 0.01 - 

Type Photochemical pathway 0 (C3) - 

Kv Extinction coefficient for vertical Vcmax 
profile 

0.64 
- 

Rdparam Parameter for dark respiration 0.015 - 

Tyear Mean annual temperature 15 ºC 

β Fraction of photons partitioned to PSII  0.51 - 

kNPQs Rate constant of sustained thermal 
dissipation  

0 s–1 

qLs Fraction of functional reaction centers 1 - 

stress factor Stress factor to reduce Vcmax  1 - 

 
Fluorescence 

   

fqe 
Fluorescence quantum yield efficiency at 
photosystem level 

0.001–0.015 - 

Soil    

spectrum Type of soil reflectance spectrum 1 (type 1) - 

rss Soil resistance for evaporation from the 
pore space 

500 s·m–1 

rst Broadband soil thermal reflectance 0.06 - 

cs Specific heat capacity of the soil 1180 J·kg–1·K–1 

ρs Specific mass of the soil 1800 kg·m–3 

λs Heat conductivity of the soil 1.55 J·m–1·K–1 
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SMC Volumetric soil moisture content in the 
root zone 

25 - 

BSMBrightness BSM model parameter for soil brightness 0.5 - 

BSMlat BSM model parameter 'lat' 25 - 

BSMlon BSM model parameter 'long' 45 - 

 
Canopy 

   

LAI Leaf area index 2–6 m2·m−2 

hc Vegetation height 2 m 

LIDFa 
Leaf inclination parameter for the mean 
leaf zenith angle 

-1–0 - 

LIDFb Bimodality of the leaf angle distribution 0 - 
leafwidth Leaf width 0.1 m 

 
Meteorological 

   

z 
Measurement height of meteorological 
data 

5 m 

Rin 
Broadband incoming shortwave radiation 
(0.4–2.5 um) 600–1000 W·m–2 

Ta Air temperature 19.2* °C 
Rli Broadband incoming longwave radiation  300 W·m–2 
p Air pressure 1002.8* hPa 
ea Atmospheric vapor pressure 15 hPa 
u Wind speed at height z 2 m·s–1 
Ca Atmospheric CO2 concentration 410 ppm 
Oa Atmospheric O2 concentration 209 per mile 
 
Angles 

   

tts Solar zenith angle 35.42 deg. 
tto Observation zenith angle 0 deg. 
ψ Azimuthal difference between solar and 

observation angle 
0 

deg. 

*Meteorological variables retrieved from portable weather station during the airborne campaign  
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Appendix B: Supplementary Material for Chapter-3 4249 

 4250 
We assessed the feasibility of using narrow-band derived FCVIP and NIRvP as predictor 4251 

variables for estimating SIF760 at 1-nm FWHM using SCOPE-simulated datasets. The method 4252 

consisted of building two linear models with NIRvP and FCVIP as the predictor variables to estimate 4253 

SIF760 at 1-nm FWHM from 5.8-nm FWHM data (denoted Simulated Dataset-3site 1 and Simulated 4254 

Dataset-3site 2 in this study). The performance of these linear models was then validated using another 4255 

independent dataset (Simulated Dataset-4) for both sites and then compared with that of the linear 4256 

models built using SIF760-3FLD at 5.8-nm FWHM as the predictor variable. PAR was estimated by 4257 

spectrally integrating irradiance spectra at 1-nm FWHM from 400–700 nm to replicate field 4258 

conditions. In this assessment, the linear model built using SIF760-3FLD at 5.8-nm FWHM 4259 

outperformed the two linear models based on NIRvP and FCVIP (Fig. B-1). The differences in model 4260 

performance may be attributed to the stronger correlation between 1-nm FWHM SIF760-3FLD and 5.8-4261 

nm FWHM SIF760-3FLD than NIRvP and FCVIP calculated at 5.8-nm FWHM (Fig. B-2).  4262 

 

Fig. B-1. Relationships between the SIF760-3FLD at the default 1-nm FWHM simulated by SCOPE 4263 
(used here as the reference SIF) and the SIF760 estimated at 1-nm FWHM by the linear model using 4264 
NIRvP (a, b), FCVIP (c, d) and SIF760-3FLD at 5.8-nm FWHM (e, f) as the predictor for SCOPE-4265 
simulated test datasets corresponding to Site 1 and Site 2. The red dashed and black solid lines depict 4266 
the 1:1 line and regression line, respectively. ***p-value < 0.001. 4267 



 
160 

 

 

Fig. B-2. Relationships between SCOPE-derived SIF760-3FLD at 1-nm and NIRvP (a, d), FCVIP (b, e) 4268 
and SCOPE-derived SIF760-3FLD (c, f) at 5.8-nm for simulated training datasets corresponding to Site 4269 
1 and Site 2.  4270 

 4271 

Table B-1. Definitions and the assigned variation ranges of all input parameters of the Soil Canopy 
Observation, Photochemistry and Energy fluxes (SCOPE) model.  

Parameter Definition Range/Value Unit 

  Site 1 Site 2  

FLUSPECT     
Ca+b Leaf chlorophyll concentration 10–70 40–80 μg·cm–2 
Cca Leaf carotenoid concentration 1–20 1–20 μg·cm–2 
Cdm Leaf dry matter content 0.001–0.05 0–0.001 g·cm–2 

Cw 
Equivalent water thickness in 
leaves 

0.001–0.05 0.001–0.05 
cm 

Cs Leaf senescence parameters 0 0 - 
Cant Anthocyanin content 0–8 0–8 μg·cm–2 
N Leaf structure parameter 1–1.5 1–2.5 - 

ρ(thermal) 
Broadband leaf thermal 
reflectance 

0.01 0.01 - 

τ(thermal) 
Broadband leaf thermal 
transmittance 

0.01 0.01 - 

 
Leaf 
biochemical 

    

Vcmax 
Maximum carboxylation 
capacity 

30–110 40–250 μmol·m–2 
s–1 

m Ball-Berry stomatal parameter 
(slope) 

8 8 
- 

B0 Ball-Berry stomatal parameter 
(intercept) 

0.01 0.01 
- 
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Type Photochemical pathway 0 0 - 
Kv Extinction coefficient for 

vertical Vcmax profile 
0.64 0.64 

- 

Rdparam Parameter for dark respiration 0.015 0.015 - 
Tyear Mean annual temperature 15 15 ºC 
β Fraction of photons partitioned 

to PSII  
0.51 0.51 - 

kNPQs Rate constant of sustained 
thermal dissipation  

0 0 s–1 

qLs Fraction of functional reaction 
centers 

1 1 - 

stress factor Stress factor to reduce Vcmax  1 1 - 
 
Fluorescence 

    

fqe 
Fluorescence quantum yield 
efficiency at photosystem level 

0.01 0.01 - 

 
Soil 

    

spectrum Type of soil reflectance 
spectrum 

1 1 
- 

rss Soil resistance for evaporation 
from the pore space 

500 500 s·m–1 

rst Broadband soil thermal 
reflectance 

0.06 0.06 - 

cs Specific heat capacity of the 
soil 

1180 1180 J·kg–1·K–1 

ρs Specific mass of the soil 1800 1800 kg·m–3 
λs Heat conductivity of the soil 1.55 1.55 J·m–1·K–1 
SMC Volumetric soil moisture 

content in the root zone 
25 25 - 

BSMBrightness BSM model parameter for soil 
brightness 

0.5 0.5 - 

BSMlat BSM model parameter 'lat' 25 25 - 
BSMlon BSM model parameter 'long' 45 45 - 
 
Canopy 

    

LAI Leaf area index 0.5–5 2–6 m2·m−2 
hc Vegetation height 1.2 1.2 m 

LIDFa 
Leaf inclination parameter for 
the mean leaf zenith angle 

−1–1 −1–1 
- 

LIDFb 
Bimodality of the leaf angle 
distribution 

0 0 - 

leafwidth Leaf width 0.07 0.07 m 
 
Meteorological 

    

z 
Measurement height of 
meteorological data 

5 5 m 

Rin 

Broadband incoming 
shortwave radiation (0.4–2.5 
µm) 

700 900 W·m–2 
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Ta Air temperature 19.2* 25.3* °C 
Rli Broadband incoming longwave 

radiation  
300 300 W·m–2 

p Air pressure 1002.8* 1003.6* hPa 
ea Atmospheric vapor pressure 15 15 hPa 
u Wind speed at height z 2 2 m·s–1 
Ca Atmospheric CO2 

concentration 
380 380 ppm 

Oa Atmospheric O2 concentration 209 209 per mile 
 
Angles 

    

tts Solar zenith angle 35.42 34.93 deg. 
tto Observation zenith angle 0 0 deg. 
ψ Azimuthal difference between 

solar and observation angle 
0 0 

deg. 

*Meteorological variables retrieved from portable weather station during the airborne campaign  
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Appendix C: Supplementary Material for Chapter-4 4272 

 4273 

 4274 

Fig. C-1. Histograms for the assessment of the relationship between asymptomatic trees and those in 4275 
the three stages of disease progression for the absorption feature depths corresponding to red FLs. 4276 
Asterisks indicate significant differences from the asymptomatic trees according to Dunnett's test at 4277 
α < 0.05. 4278 
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 4279 

Fig. C-2. Histograms for the assessment of the relationship between asymptomatic trees and those in 4280 
the three stages of disease progression for the absorption feature depths corresponding to first far-red 4281 
FLs group. Asterisks indicate significant differences from the asymptomatic trees according to 4282 
Dunnett's test at α < 0.05. 4283 
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 4284 

Fig. C-3. Histograms for the assessment of the relationship between asymptomatic trees and those in 4285 
the three stages of disease progression for the absorption feature depths corresponding to second far-4286 
red FLs group.  4287 

 4288 

 4289 

 4290 

Fig. C-4. Histograms for the assessment of the relationship between asymptomatic trees and those in 4291 
the three stages of disease progression for the absorption feature depths corresponding to the two 4292 
oxygen absorption features. Asterisks indicate significant differences from the asymptomatic trees 4293 
according to Dunnett's test at α < 0.05. 4294 
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Appendix D: Journal paper for Chapter-2 
 
 

This appendix contains the author-accepted manuscript of the Remote Sensing of 

Environment paper used for Chapter 2. Below is the bibliographic detail.  

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Hernandez-Clemente, R., Zarco-

Tejada, P.J., 2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer 

airborne hyperspectral imagers flown in tandem: modelling and validation in the 

context of plant phenotyping. Remote Sens. Environ. 273, 112986. 

https://doi.org/10.1016/j.rse.2022.112986. 
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Appendix E: Conference paper 1 
 

 
This appendix contains the author-accepted manuscript of the IGARSS Conference paper 1. 

Below is the bibliographic detail.  

Belwalkar, A., Poblete, T., Longmire, A., Hornero, A., Zarco-Tejada, P.J., 2021. Comparing 

the retrieval of chlorophyll fluorescence from two airborne hyperspectral imagers with 

different spectral resolutions for plant phenotyping studies. In: Proc. IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), 12–16 July 2021, Brussels, 

Belgium, pp. 5845–5848. https://doi.org/10.1109/IGARSS47720.2021.9553265. 
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Appendix F: Conference paper 2 
 

 
This appendix contains the author-accepted manuscript of the IGARSS Conference paper 2. 

Below is the bibliographic detail.  

 

Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2022. Accounting for the 

spectral resolution on SIF retrieval from a narrow-band airborne imager using SCOPE. 

In: Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 17–22 

July 2022, Kuala Lumpur, Malaysia, pp. 5440–5443. 

https://doi.org/10.1109/IGARSS46834.2022.9884564. 
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Appendix G: Conference paper 3 
 

 
This appendix contains the author-accepted manuscript of the IGARSS Conference paper 3. 

Below is the bibliographic detail.  

 
Belwalkar, A., Poblete, T., Hornero, A., Zarco-Tejada, P.J., 2023. Evaluating the relative 

contribution of Photosystems I and II for leaf nitrogen estimation using fractional depth 

of Fraunhofer lines and SIF derived from sub-nanometer airborne hyperspectral 

imagery. In: Proc. IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 16–21 July 2023, Pasadena, CA, USA, pp. 2819–2822. 
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