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Abstract

Macro- and micro-nutrients are essential for plants to function efficiently, resist disease, and
produce high yields and quality fruits. These nutrients are involved in various aspects of almond
growth and development throughout the phenological cycle. High levels of nitrogen, phosphorus,
and potassium are the most important inputs for almond production. Micro-nutrients, although
needed at much lower levels, also play an important role in supporting growth, especially in key
tissues. The most important aspect of fertilizer management is balancing the fertilizer program in
order to maximize yields while minimizing environmental impacts. In precision agricultural
management, a precise assessment of nutrient status is crucial to determine the optimal application
of fertilizers. The traditional method of assessing nutrients is tissue testing in biochemical

laboratories, but this is not cost- or time-effective for continuous monitoring over a large area.

The use of remote sensing techniques has been explored in recent decades as a method of obtaining
indicators for those nutrients, most notably nitrogen, in terms of their spatial orientation, efficiency,
and rapidness. In remote sensing of leaf N assessment, empirical algorithms using chlorophyll a+b
sensitive vegetation indices, as well as radiative transfer model (RTM) inversion of plant pigments,
are applied. In recent years, advances in leaf N estimation have relied on the assessment of leaf
biochemistry and spectral characteristics linked to photosynthesis, such as solar-induced
fluorescence (SIF), which has been demonstrated to be an indicator of stress caused by nutrient
deficiencies in a wide range of crop species. As a result of the sensitive nature of SIF and the
complexity of tree orchard canopy architecture, its performance and sensitivity to plant condition
need to be evaluated in tree-structured almond orchards. In spite of this, there is still a lack of
understanding of proxies for other macro- and micro-nutrients and their interactions, an area which

requires further investigation.
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This research investigates the response of spectral-based plant parameters to different nutrient
elements in almond trees at both the leaf and canopy levels. It is intended that this study not only
provides an improved assessment of N using a combination of robust proxies, but also it examines
its evaluation at various spatial and spectral resolutions, from high-resolution airborne to coarser-
resolution spaceborne platforms. The results from two years of data indicate that chlorophyll
fluorescence can serve as a reliable proxy for the primary macro-nutrients (i.e., N, P, and K) across
the two years, yielding r? = 0.74 (p-values < 0.005) for both leaf steady-state measurements and
canopy SIF with leaf N. Moreover, the biochemical constituents derived from radiative transfer
modeling exhibited strong correlations with the primary macro-nutrients for both years, whereas
vegetation indices exhibited generally inferior relationships with nutrients. Taking leaf N as an
example, SIF and Cab derived from RTM inversion were found to be the most significant non-
collinear indicators at both the airborne (0.4 m) and spaceborne (30 m) scales. An airborne-based
model predicted field-measured leaf N with an r? of 0.95 and RMSE of 0.05% over the course of
two years. The newly developed spectrometer DESIS onboard the International Space Station (ISS)
provided a model with an r? of 0.83 and RMSE of 0.06% in 2021, while Sentinel-2 provided an
inferior result (r? = 0.72, RMSE = 0.08%). An emphasis has been placed in this research on the
importance of Cab, SIF, and other plant pigments in determining the nutrient status of discontinuous
tree-structured almond orchards. Moreover, this work provides a step forward towards achieving

accurate and large-scale nutrient monitoring in precision agriculture.
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Preface

This thesis is comprised of three core chapters (Chapters 2 to 4), which have been published or are
in the process of being published in two journal papers, three conference proceedings, and one

conference abstract, as follows:
Chapter 2 is planned for a journal publication.
Chapter 3 has been published in Remote Sensing of Environment:

e Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., Evaluating
the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen
assessment in almond using airborne hyperspectral imagery, Remote Sensing of Environment,

279, 113141.
Chapter 4 is under review in IEEE Transactions on Geoscience and Remote Sensing:

e Wang, Y., Suarez, L., Hornero, A., Ryu, D., Moar, P., Zarco-Tejada, P.J., Quantification of
leaf nitrogen in almond orchards from the spaceborne DESIS Hyperspectral Sensor: modeling
and assessment with airborne hyperspectral and Sentinel-2 imagery, under review in IEEE

Transactions on Geoscience and Remote Sensing.

The study has also been published in international conferences such as IGARSS and the 1% DESIS

User Workshop attached in Appendix, as follows:

e Wang, Y., Suarez, L., Qian, X., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J.,

Assessing the Contribution of Airborne-retrieved Chlorophyll Fluorescence for Nitrogen



86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Assessment in Almond Orchards, IEEE International Geoscience and Remote Sensing

Symposium IGARSS, 2021, pp. 5853-5856, doi: 10.1109/IGARSS47720.2021.9554648.

Wang, Y., Suarez, L., Gonzalez-Dugo, V., Ryu, D., Moar, P., Zarco-Tejada, P.J., Leaf
Nitrogen Assessment with ISS DESIS Imaging Spectrometer as Compared to High-Resolution
Airborne Hyperspectral Imagery, IGARSS 2022 - 2022 IEEE International Geoscience and
Remote Sensing Symposium, 2022, pp. 5444-5447, doi:

10.1109/1IGARSS46834.2022.9884759.

Wang, Y., Suarez, L., Ryu, D., Zarco-Tejada, P.J., Evaluating the Contribution of Cx to Leaf
Nitrogen Quantification using Fluspect and Airborne Imaging Spectroscopy in Almond
Orchards, accepted in IGARSS 2023 - 2023 IEEE International Geoscience and Remote

Sensing Symposium.

Wang, Y., Suarez, L., Ryu, D., Moar, P., Zarco-Tejada, P.J., Nitrogen Estimation in Almond
Orchards from DESIS Imaging Spectrometer Onboard the International Space Station, ISPRS
International Society for Photogrammetry and Remote Sensing, 1st DESIS User Workshop,

28th Sep-1st Oct, 2021.



101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Acknowledgements

In appreciation of the support that has been provided to me throughout my PhD journey towards
the completion of my thesis, I wish to express my deepest and sincere gratitude to many people.
First and foremost, my thanks go to the most attentive, patient, and considerate supervisory team
ever encountered — Prof. Pablo J. Zarco-Tejada, Dr Lola Suarez, and Prof. Dongryeol Ryu. Thank
you for giving me the opportunity to learn from and work with you. Throughout this journey, you
have taught me more about fishing rather than giving me a fish, encouraging me to think critically
and supporting my ideas. The advice and constructive criticism you provided were always
extremely helpful and motivating. Your guidance was always there for me whenever | needed it,
you encouraged me to strive for the best and gave me opportunities that few others are fortunate
enough to have. Your inspiring examples and your contributions to my personal and professional
growth have been extremely valuable.

To the funding partners who made this research possible — the McPherson family and the
Invergowrie Foundation, as well as the University of Melbourne scholarship. Your generosity,
vision, and commitment to this important work are greatly appreciated.

To my advisory committee member, A/Prof. Glenn Fitzgerald, and committee chairs, A/Prof.
Kourosh Khoshelham and Prof. Michael Stewardson, thank you for your professional and
constructive feedback during my progress review meetings. My progress has been kept on track
due to your valuable contributions and my tasks have been completed efficiently.

To my co-authors — Dr Tomas Poblete, Dr Victoria Gonzalez-Dugo, Dr Alberto Hornero, Prof.
Peter Moar, and Dr Xiaojin Qian — thank you for the opportunity to collaborate. Thank you for
sharing your considerable expertise, insight, and perspectives with me, which have enriched the

quality of my work.



124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

To the partners in the Mallee and Rebecca Wells from the Mallee Regional Innovation Centre
(MRIC), thank you for your assistance with arranging possible collaborations with growers. Thank
you to the owner of Aroona Farms, Brian Slater, for permission to conduct this research.

To the lab staff at QuantaLab IAS-CSIC (Spain), thank you for the laboratory support, particularly
Rafael Romero and David Notario. To my fellow PhD students, thank you for your scientific
discussions and company throughout these years, particularly Anirudh Belwalkar, Jie Jian, Dr
Shuci Liu, Huazhen Li, Zitian Gao, Manish Kumar Patel, Dr Chih-chung Chou, Shirui Hao,
Lilangi Wijesinghe, Peiye Li, Jia Xu, Zhiyuan Yang, and many others at the HyperSens Remote
Sensing Laboratory and the MESM lab. It was a pleasure to have such informative conversations
with you and | appreciate you sharing experience and including me in your research journeys.

To my parents, my family, and my other friends (e.g., Dr Yan Li, Jessie Xie, Vivian Shen, and
Sarah Huang), who supported me throughout this journey, thank you for your unwavering love
and for helping me to enjoy life. In particular, | am grateful to my parents and my parents-in-law
for their unconditional love and for instilling the importance of education in me. Your sacrifices,
love, encouragement, and support have enabled me to pursue my PhD studies.

And, last but not least, the most special mention goes to my husband, Evan Liu, who has been by
my side all along my PhD journey, providing love, support, encouragement, and understanding as
always. You have been a tremendous support to me throughout the past ten years of our marriage.
My life is brightened by your presence and filled with love. Your support has been a constant
source of my motivation.

Acknowledgements also go to all those who have contributed to this PhD project whom I may not
have mentioned above, and to my own perseverance despite challenges. Without all your support,

I would not have been able to progress as far as | have and achieve what | have achieved.



147

148
149
150
151
152
153
154

155

156
157
158
159
160
161
162
163
164
165

166
167
168

169
170
171
172
173
174
175

176
177
178

179
180
181
182
183
184
185

Table of Contents

F N2 7Y o LSRR PPRT I
DECLARATION 1.1ttt ettt e e ettt ettt ettt e ekttt e e sttt e e e s ab bt e e e aa b bt e e e e bbb et e e e bt et e e e anbbe e e e e anbbeeeeennbneeenans i
PREFACE ..tttk e et e ekt e e e kRt oo h bt e e R R e e e bR e e R et e b e e e e be e e e be e e nbe e e nnreeea v
ACKNOWLEDGEMENTS ...vt.tttttattestestestestesseseessessesseasesssessessessessessessessessessssssessessessessessessessessssenees VI
TABLE OF CONTENTS .oveutiuteuttstestestteseaseeseessessessessessessesseassessessessessessessessssssssssssessessessessessessenseens Wi
LIST OF TABLES. ...etitttteittte ettt et etttk e ettt ettt ekt e ettt e e ab et e e n b e e an b e e e bt e e e abb e e e bt e e e bn e e enneeennnes X
LIST OF FIGURES .. uttieiiite ittt ettt ettt et e e sttt e ebb e e bt e e e e e e e e e enbe e e nnne e e e Xl
CHAPTER 1 : GENERAL INTRODUCTION ....ooiiiiiiiitcceeeeee e 1
1.1 BACKGIOUNT......eiiiiiieieteite sttt bbb bbbt et bbb b b 1
1.2 Roles of nutrients in plant groWth ... 3
1.3 Traditional methods for leaf nutrient asseSSMENL.............ccvvevveriiiieie e 11
1.4 Airborne remote sensing platforms for assessing leaf nutrients ............c.cccooveveieiiinns 12
1.5 Standard remote sensing methods for monitoring nutrient status.............ccccceeevveveenne 14
1.6 Plant traits retrieval from radiative transfer models ...........ccccooovviiiiiiie i 18
1.7 Chlorophyll fIUOFESCENCE.........eeiiieieciece et sre e 20
1.8 Spaceborne platforms for assessing leaf NULFIENTS.............ccooveiiiiciicce e 24
1.9 Objectives and theSIS SETUCTUIE.........eciii it reas 27
=] (=] (=] o0 TP PPP S 32

CHAPTER 2 : ASSESSING THE PERFORMANCE OF SOLAR-INDUCED FLUORESCENCE
(SIF) AND VEGETATION PLANT TRAITS FOR LEAF MACRO- AND MICRO-NUTRIENT

CONCENTRATIONS ...ttt st e st e e bt e e e e bt e e e sb b e e s eb b e s s ebeessbaeesbeeeans 45
Y 4] £ = (o A 46
22 R 111 (o Yo [N Tt o o OO 47
2.2 Material and MENOGS.........coocuiiie e e e s e e s s erbae e e e aans 50
G B ST UL TR 58
2.4, DISCUSSIONS ....eeeeieteiee e eetteee e e ettt e e s ettt e e e sttt eeseabeeeessabaeeeesasbbaeeesbbaaeessaseaesssasbbenessssbeneesanns 75
R T O g Tod [ 1Y o] 1T 77
Ry =] (= 1011 79

CHAPTER 3 : EVALUATING THE ROLE OF SOLAR-INDUCED FLUORESCENCE (SIF)
AND PLANT PHYSIOLOGICAL TRAITS FOR LEAF NITROGEN ASSESSMENT IN

ALMOND USING AIRBORNE HYPERSPECTRAL IMAGERY ...oovvviiiiiiiveeneeeninens 84
Y 43 £ = (o1 85
K200 11 0o [U Tt (o] o ISR 87
3.2 Material and MEINOUS .........ooiiuiii it ebae e sree e 91
TG (T V1L <SR 104
T 1Yo 1] (o] o SR 119
KRN O0 4 o1 [V TSYTo] o LSO 122

R (=] (] (01 TR 123



186
187
188

189
190
191
192
193
194
195

196

197
198
199
200
201
202
203
204

CHAPTER 4 : QUANTIFICATION OF LEAF NITROGEN IN ALMOND ORCHARDS FROM
THE SPACEBORNE DESIS HYPERSPECTRAL SENSOR: MODELING AND ASSESSMENT

WITH AIRBORNE HYPERSPECTRAL AND SENTINEL-2 IMAGERY .....cccoccoeviviiieeinen, 131
FY 4] £ = (o TR 132

O 11 o To LU X T 134

4.2 Material and METNOAS.........ooi i e 137

B (=T U1 151

O B T Yo 1XS] (o] P 161

YO0 o1 [V 1] o] 1 165

R =] (= (01T 166
CHAPTER 5 : CONCLUSIONS ...ttt ettt ettt e sttt a s st a e e s sbaa e e s sanaanee s 171
5.1 Summary and main CONCIUSIONS .......c.coiviiiiiiiiiirieeeee e 171

5.2 Implications and CONtIIDULIONS .........couiiiiiieii i 173

5.3 Recommendations for further reSearch ............cocvve i iicie e 176

PN == N 5T ) TR 177
PN == N 5T )T 196
PN == N 5T ) J TR 201
PN == N 5T ) SO 206
PN aT= N 5T D TSR 211



205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

List of Tables

Table 1.1. Common symptoms associated with nutrient deficiencies. A bold orange X indicates the most
likely elements corresponding to the symptoms of deficiency (modified based on an image source:

https://www.agrowtronics.com/nutrients-for-hydroponics/)........ccccovvevieiii i 11
Table 2.1. Spectral vegetation index equations used in this StUAY. .........ccccceeveeieiii i 56
Table 2.2. Descriptive data from the biochemical laboratory analysis of macro- and micro-nutrient
concentrations and their ratios in almond leaves from the 15 study plots in 2020 and 2021...................... 59

Table 2.3. Correlations (r?) between leaf measurements and nutrient concentrations and their ratios for the
15 study plots in 2020 and 2021. Field measurements include leaf chlorophyll a+b (Cab), flavonoids (Flav),
anthocyanins (Anth), nitrogen balance index (NBI) measured with Dualex, and steady-state chlorophyll
fluorescence (Ft) measured with FluorPen. Background color represents the p-value — dark green for p <
0.005, medium green for 0.005 < p < 0.01, light green for 0.01 < p < 0.05, and white for p > 0.05 (not
o AT L= o] TSSO 63
Table 2.4. Correlations (r?) between vegetation indices at the leaf level and nutrient concentrations for the
15 study plots in 2020 and 2021. Background color represents the p-value — dark green for p < 0.005,
medium green for 0.005 < p <0.01, light green for 0.01 <p < 0.05, and white for p > 0.05 (not significant).

Table 2.5. Correlations (r?) between vegetation indices calculated from airborne hyperspectral imagery and
nutrient concentrations for the 15 study plots in 2020 and 2021. Background color represents the p-value —
dark green for p < 0.005, medium green for 0.005 <p <0.01, light green for 0.01 <p < 0.05, and white for
P > 0.05 (NOt STZNITICANL). ....viiieieiieieee sttt e b e be e sb e e ae e et e e nbe e nbeenbeenenennnes 70
Table 2.6. Correlations (r?) between RTM-inverted plant traits from airborne hyperspectral imagery and
nutrient concentrations and ratios for the 15 study plots in 2020 and 2021. Traits derived from airborne data
include leaf chlorophyll a+b (Ca), carotenoids (Cca), anthocyanin (Anth), photochemical reflectance
parameter (Cy), dry matter content (Cam), leaf area index (LAI) by inversion algorithm, and solar-induced
fluorescence (SIF). Background color represents the p-value: dark green for p < 0.005, medium green for

0.005 <p <0.01, light green for 0.01 < p <0.05, and white for p > 0.05 (not significant). ............ccocu..... 72
Table 3.1. Spectral vegetation index equations used in this StUdY........ccccceirviiiiiiiiiii e, 101
Table 3.2. Ranges of input parameters for the LUT of FIUSAIL model. ..., 103

Table 3.3. Coefficients of determination (r?) for the intercorrelations among standard indices at canopy level
from the same 15 study plots in two consecutive years and leaf N concentration (%), Dualex-derived leaf
chlorophyll content (Ca), nitrogen balance index (NBI), and steady-state chlorophyll fluorescence (Ft)
MEASUrEd WIth FIUOIPEN. .. .o ettt ste et et sae e ebeeneeneenns 110
Table 3.4. Coefficients of determination (r?) for correlations among model-derived estimates from the same
15 study plots in two consecutive years, including leaf chlorophyll a+b (Cab), carotenoids (Cear), anthocyanin
(Anth), dry matter content (Cam), photochemical reflectance parameter (Cx), leaf area index (LAI),
measured leaf N concentration (%), Dualex-measured chlorophyll content, canopy SIF, and canopy

photochemical reflectance INAEX (PRISIS). cvvcvciiiiiiiiiciec et 114
Table 4.1. Specifications of the sensors used iN this STUAY. .......cccoririiiiiiii s 140
Table 4.2. Ranges of input parameters for the LUT of the FIUSAIL Model.........c..cccovveviviiiiicineien, 145
Table 4.3. Vegetation indices calculated in this study from Sentinel-2 data. .............cccccooniniiniieicnenns 148

Table 4.4. Correlations (r?) between image-derived spectral traits and field measurements. Rows indicate
modeled traits, and columns indicate pairing of field data source (top row), year (second row), and HSI
Lo 0 Lot (1 T (o N (0111 TS 153
Table 4.5. Correlations (r?) between model-derived plant traits and vegetation indices from Sentinel-2
againSt field MEASUIEIMENTS. .......ii e e be et e e st e ane e e ee e eeesreenreesneesneas 156



251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

List of Figures

Fig. 1.1. The use of nitrogen fertilizer in Australia and around the world from 1960 to 2020 (data source:
FAOSTAT https://WWW.TA0.01Q). ..eveiiieiiiieiie ettt te s e e e ee e ste e sreesreesneesnaeaneeenteenreenrnens 2
Fig. 1.2. Water quality risks of global river basins, based on 2000-2010 data from Damania et al. (2019).
Red or yellow show areas where biological oxygen demand, nitrogen fertilizer runoff, and electrical
conductivity have significant impacts on freshwater and present a high risk of water pollution. Gray areas

have no data fOr ONE OF MO PAFAMETEIS. .......oviieieiieieie ettt bbbttt 3
Fig. 1.3. Visible symptoms of nutrient deficiency (image source: https://www.agrowtronics.com/nutrients-
FOT-NYATOPONICS/). ...ttt b bttt b bt 10

Fig. 1.4. Representation of xanthophyll cycles in photosynthetic microbes. Violaxanthin-antheraxanthin-
zeaxanthin (VAZ) cycles are modulated by light conditions (modified based on Saini et al. (2019))...... 17
Fig. 1.5. At the top of the canopy, the total upwelling radiance (orange) and solar-induced fluorescence
(SIF) spectra (blue) were collected in the range of 650-800 nm, with two oxygen absorption features marked

WIEN GFEY FECIANGIES. ..eviiie ettt et e st e st e e r e et e s te e saesbees b e sbeeteesbesteensesteaneeseenes 22
Fig. 1.6. Spaceborne imaging spectrometers recently launched or planned/approved (Rast and Painter,
20709). ettt bR b E ARt R £ R £ R e £ Rt R R e b e R e R e R e b et bRt e b e ekt et et Re b be et reneas 26

Fig. 1.7. Observations of solar-induced chlorophyll fluorescence (SIF) made by past missions (gray),
current missions (pink), and future missions (light blue). The font colors distinguish geostationary (green)
from low-earth orbit (black) missions. The dashed-line boxes indicate the spatial and temporal resolution

of value-added SIF products (purple) (Sun et al., 2023). ‘p.” denotes present. ..........ccoceevereeeerereaeenennn 27
Fig. 1.8. The flow between the main chapters demonstrates how the research development of this doctoral
thesis is motivated by the KeY CONNECLIONS. .........ccuciiiicic i sre s 31

Fig. 2.1. a) The area of the 1200-ha almond orchard where the study was conducted. b) The location of the
study site (magenta pointer) in Victoria, Australia. c) The landscape and row structure of the almond trees
in the study area. d)-e) Close-ups of almond trees and the gap Detween rows. ..........cccocvvvieneneneincnnn 51
Fig. 2.2. In situ leaf measurements of: a) leaf chlorophyll (Ca,), anthocyanins (Anth), flavonoid (Flav)
content, and nitrogen balance index (NBI) using a Dualex 4 Scientific sensor; b) leaf reflectance spectra in
the visible and near-infrared regions with a PolyPen RP 410 instrument; c) leaf steady-state chlorophyll
fluorescence (Ft) with a FluorPen FP 110 instrument; and d) leaf sample collection and leaf measurements
of sunlit leaves from the top Of the [adder. .........cooiiiiiie e 53
Fig. 2.3. a) High-resolution airborne hyperspectral image (color-infrared overview) over the study area at
40-cm spatial resolution collected with 371 spectral bands on 31 January 2021. The yellow areas represent
the locations of the 15 study plots. b) Segmentation of sunlit crown area, the yellow rectangle representing
an 8-tree x 6-row study plot. ¢) The reflectance spectra for two tree crowns segmented from a study plot.
d) The radiance (L, green colors) spectra for two tree crowns and the irradiance (E, orange color) spectra
for SIF calculation. Crosses indicate the spectral positions of the sensor bands. .........c.ccccoevvviiiiieiinennnns 54
Fig. 2.4. Ranges of variation for biochemical laboratory-derived leaf macro-nutrients of: a) Nitrogen; b)
Phosphorus; d) Calcium; e) Magnesium; f) Sulphur; g) Carbon concentration (%w/w); and leaf micro-
nutrients of: h) Iron; i) Manganese; j) Zinc; k) Copper; 1) Boron concentration (mg/kg); and nutrient ratios
of m) N/(N+P+K), n) K/(Ca+Mg), 0) Fe/Mn in almond leaves for the 15 study plots in 2020 (green) and
2021 (brown). The crossed line and the line through the box indicate the median and mean values,
respectively. Q1, Q2, and Q3 represent the limits of the first, second, and third quartiles, with 15 samples
(o0 1 [=Tod tcTo =T Tod TR SRR 60
Fig. 2.5. Ranges of variation of leaf: a) chlorophyll (Ca); b) flavonoids (Flav); ¢) nitrogen balance index
(NBI) measured using Dualex; and d) steady-state chlorophyll fluorescence (Ft) using FluorPen in almond
leaves for the 15 study plots in 2020 (green) and 2021 (brown). The crossed line and the line through the



297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

box indicate the median and mean values, respectively. Q1, Q2, and Q3 represent the limits of the first,
second, and third quartiles, with 15 samples collected each year. ...........ccooveiveii i 61
Fig. 2.6. Relationships between in situ Dualex-measured: a) leaf chlorophyll (Ca); b) flavonoid (Flav)
content; ¢) nitrogen balance index (NBI) and biochemically derived leaf Nitrogen concentration (Yow/w) in
2020 (hollow gray circle) and 2021 (solid black circle). Relationships between leaf steady-state
fluorescence (Ft) and biochemically derived leaf macro-nutrients of: d) Nitrogen; e) Phosphorus; f)
Potassium concentration (%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). All p-values
are less than 0.005, except for the one marked n.s. (NOt SIGNITICANE). .......coviiviiiiiic e 64
Fig. 2.7. Relationships between leaf CTRI1, BGI1, PRIm4, PRI, and biochemically derived leaf nitrogen
concentration (%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). All p-values<0.005....68
Fig. 2.8. Relationships between canopy solar-induced fluorescence (SIF) and biochemically derived leaf
macro-nutrient levels of: a) Nitrogen; b) Phosphorus; c) Potassium concentration (%w/w) in 2020 (hollow
gray circle) and 2021 (solid black circle). The highlighted text represents the p-value — below 0.005 (white),
0.01 (light gray), up to 0.05 (MEAIUM GFAY).....cuereririeriirierieieieiee ettt enes 74
Fig. 3.1. Color-infrared (CIR) overview of the hyperspectral mosaic acquired with the VNIR hyperspectral
sensor over the 1,200-ha study site collected on January 31, 2021. Spectral bands at 860 (R), 650 (G), and
550 (B) nm are shown with a spatial resolution of 40 cm per pixel. ... 95
Fig. 3.2. (a) Study plot consisting of six rows by eight trees within the blue solid line. Leaves from four
trees within the yellow dashed rectangle were measured in the field. (b) The reflectance spectra of different
scene components extracted from the airborne hyperspectral imager, including sunlit (green solid line) and

Fig. 3.3. Thermal mosaic collected over the entire study area captured on January 31, 2021 at a spatial
resolution of 60 cm. Cooler colors (purple and blue) indicate plant canopies, and yellow/brown colors
1T [ToF: Y 5o 1 TSR 97
Fig. 3.4. Overview of the tree-crown segmentation applied to the hyperspectral mosaic (a, upper image in
color-infrared, crown in green outline) and the thermal mosaic (c, bottom image displaying cooler canopy
in blue and hot soil in red color, crown in yellow outline). Right column contains zoomed-in views (b and
d) of the scenes within the white rectangle on the 1eft. ..........oooiiii s 98
Fig. 3.5. Segmentation of the sunlit crown area for SIF quantification on two study plots (a) higher nutrient
level and (b) lower nutrient level. The irradiance spectrum (orange color) was used along with the radiance
spectra (example shown in (c) for two study plots (green and grey lines) to calculate SIF. Crosses denote
the spectral position of the SENSOr DANAS (C). ..vvovveeieeiie i nreenree s 99
Fig. 3.6. Ranges of variation based on leaf steady-state chlorophyll fluorescence (Ft) quartiles for leaf
phenotypes measured at the pre-harvest stage in 2020 (green) and 2021 (orange): a) nitrogen concentration,
b) chlorophyll a+b (Ca), ¢) flavonoid (Flav), d) Nitrogen Balance Index (NBI), e) anthocyanins (Anth), f)
CTRI1, g) PRI, h) PRI-CI, and i) NPQI. The line through the box and marker ‘x’ refer to the median and
MEAN ValUE, TESPECTIVEIY. ....eiuiiiiiieiiei bbbttt bbb 106
Fig. 3.7. Relationships between leaf N concentration (%) and a) leaf chlorophyll content, b) Nitrogen
Balance Index (NBI), c) photochemical reflectance index (PRI), and d) steady-state chlorophyll
fluorescence (Ft). Green and orange represent data in 2020 and 2021, respectively. Grey is used to represent
correlation when combining data of 2 years. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.005; n.s. =
00T B o g T =1 o TSP S 107
Fig. 3.8. Relationships between canopy SIF and a) leaf steady-state chlorophyll fluorescence (Ft) and b)
leaf N concentration (%) in 2020 (green), 2021 (orange), and the combined years (grey). *p-value < 0.5;
**p-value < 0.05; ***P-value < 0.005. ......cociiiiiiiiiieie e 111
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Fig. 3.9. Leaf N against a) NDVI, b) MCARI, c¢) CTRI1, and d) PRIss calculated from hyperspectral
imagery acquired in 2020 (green) and 2021 (orange). *p-value < 0.05; **p-value < 0.01; ***p-value <
0.005; N.S. = NOL SIGNITICANT. .. .ecvviiiie e et re et e s e e e be e e srenrs 112
Fig. 3.10. Comparison of the average hyperspectral image spectrum (orange dashed line) and the
corresponding spectrum obtained from the FIUSAIL model inversion (blue solid line) for one monitored
plot. The simulated FIUSAIL spectral range is shown in the shaded grey area. .........cc.ccceovveveveiviverene. 113
Fig. 3.11. The relative contribution from OOB importance scores of each variable to the predicted N
concentration from a) all plant traits estimated from hyperspectral and thermal imagery and b) a non-
collinear subset Of Variables (VIF < 5) ...t snee e 116
Fig. 3.12. Correlations between leaf N concentration (%) and predicted N using models based on a)
chlorophyll a+b content alone, b) chlorophyll a+b content with canopy SIF, ¢) chlorophyll a+b content with
leaf area index (LAI), and d) LAI with canopy SIF. The grey diagonal line is the 1:1 line. All p-values <
0,000, oo e e e —e et —e e be e e bee e e be e et eeea—e e e beeeahbeeabeeeateeeanbeeearreearrees 117
Fig. 3.13. Interpolated map of a) chlorophyll a+b content, ¢) solar-induced fluorescence, and e) predicted
N concentration derived from Cgy, and SIF in 2021. Right column contains zoomed-in views (b, d and f) of
the scenes on the left in the northeast blocks. Block numbers are displayed in the centers. .................... 118
Fig. 4.1. Two adjacent scenes from the spaceborne DESIS hyperspectral sensor (30-m spatial resolution).
The radiance spectra from randomly chosen fields are shown in the inset. The study site is demarcated by
the YEITOW daSEd TINE.. ..o e e et te e e et e s re s te et sbeere et e 138
Fig. 4.2. Colour-infrared (CIR-R: 860, G: 650, B: 550) overview of a) airborne VNIR hyperspectral image
(HSI) acquired at 0.4-m pixel size on January 31, 2021 and b) spaceborne DESIS VNIR HSI collected at
30-m pixel size on January 23, 2021 over the 1200-ha study site. (c-f) The irradiance (E) spectrum at each
data collection date and the radiance (L) spectra of vegetation and soil from c) airborne HSI and d)
spaceborne DESIS HSI over the 700-800 nm spectral region and e-f) their spectra over the O,-A feature
Y010 ] To TN o PSSP 141
Fig. 4.3. Comparison of colour-infrared a) airborne and b) DESIS hyperspectral image (HSI), and the
reflectance spectra for c) vegetation and d) soil, from the original spaceborne DESIS HSI (solid orange
line), post-calibrated spaceborne DESIS HSI (solid green line), and airborne HSI (grey dashed line).... 143
Fig. 4.4. Colour-infrared image from the a) airborne VNIR hyperspectral image (HSI) acquired at 0.4 m
per pixel on January 31, 2021, b) post-calibrated DESIS HSI acquired at 30 m per pixel on January 23,
2021, and c) Sentinel-2 multispectral image at 10 m per pixel collected on January 23, 2021, with the
reflectance spectra of vegetation (in green) and soil (in brown) within the DESIS pixel in the VNIR region.

Fig. 4.5. Colour-infrared overview of a 5-by-5 DESIS pixel window of a) the tree-crown segmentation in
yellow colour and the average tree-crown reflectance spectrum (in orange) from an airborne hyperspectral
image (HSI) at 0.4-m resolution, b) airborne HSI resampled to 30-m per pixel, c) post-calibrated DESIS
HSI at 30 m per pixel, and d) Sentinel-2 multispectral image at 10 m per pixel. VNIR reflectance spectra
within each green box are shown below each image. The solid green line represents the reflectance spectrum
within the central DESIS pixel (in green) from different images compared with the tree-crown reflectance
spectrum (0range dashed TINE). .......c.oiiiiiiiiei et 146
Fig. 4.6. Schematic representation of the leaf N assessment from airborne hyperspectral, spaceborne DESIS
hyperspectral imagery, and Sentinel-2 multispectral image in a dense canopy almond orchard. Underlined
parameters were retrieved and used in the Sentinel-2 model..........c.cccooveiiiiieiiicc v 150
Fig. 4.7. Relationships between estimates of plant characteristics by measurement methodology. Top row:
spatially resampled (aggregated to 30 m) airborne hyperspectral vs. tree crown-based estimates for a) Cap,
and b) SIF in 2020 (12 points in the hollow grey circle) and 2021 (24 points in solid black circle). The solid
blue line represents correlation when combining data from 2 years. Middle row: DESIS hyperspectral vs.
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Fig. 4.8. Importance of FIUSAIL RTM-inverted traits and SIF used as predictors for leaf N. Models used
traits derived from either DESIS (in orange) or airborne (in green) hyperspectral imagery in 2021. The two
most important variables (non-collinear) are marked in a grey dashed rectangle............cc.ccocvvnerrinennn. 154
Fig. 4.9. Relationships between a) RTM-derived Ca, content from Sentinel-2 and leaf Ca, measured by
Dualex, and b) Cleg-cqge Calculated from Sentinel-2 and leaf N concentration (%) in 2021 (24 points). The

grey dashed diagonal [iNe IS the L:1 HINE. ....ccvr it sneas 155
Fig. 4.10. Importance of model-derived plant traits and vegetation indices (non-collinear, VIF < 5)
calculated from Sentinel-2 in 2020 and 2021. .........cocoiiiiiiiereieieeee e 157

Fig. 4.11. Relationships between leaf N concentration model predictions based on a) airborne hyperspectral-
derived N (Cas, SIF) from tree crowns, b) Sentinel-2-derived N (Ca, Cw, Cam), and c¢) spaceborne DESIS
hyperspectral-derived N (Ca, SIF). Data from 2020 (12 points) are shown as hollow grey circles, and data
from 2021 (24 points) are shown as solid black circles. The solid blue line represents the linear fit when
combining data from 2 years. The orange dashed diagonal line isthe 1:1 line. ........cccocvovniiiinincicnennns 159
Fig. 4.12. Estimated leaf N maps for the 2021 pre-harvest season based on models using a) airborne
hyperspectral-derived Ca, and SIF from tree crowns, b) spatially resampled airborne hyperspectral imagery-
derived C4 and SIF, c) spaceborne DESIS hyperspectral imagery-derived Ca, and SIF, and d) Sentinel-2-
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Chapter 1 : General introduction

1.1 Background

Agricultural fertilizers are used to provide plants with nutrients that they may not be able to obtain
from the soil alone, thereby increasing crop yields and enhancing agricultural productivity (Chen,
2006). Over the past few decades, steady growth in fertilizer use has occurred in Australia and
around the world (Fig. 1.1) due to increasing agricultural intensity and a growing emphasis on
maximizing yields for economic and food-security reasons. Since the 1960s, fertilizer use in
Australia has increased significantly, with nitrogen and phosphorus fertilizers the most commonly
used (MacDonald et al., 2011, Lambers et al., 2008). This is mainly due to the country’s focus on
agricultural exports, which has led to a need for higher yields and more intensive farming practices
for high-value crops like horticultural crops and sugar cane (Angus, 2001, Angus and Grace, 2016).
Since the mid-1990s, a significant increase in fertilizer use has also been observed for wheat and
other dryland crops (Angus and Grace, 2016). The use of fertilizers has increased globally, with
developing countries, in particular, experiencing significant increases in fertilizer consumption
over the past few decades (Heffer and Prud’homme, 2016). This trend is expected to continue in
the coming years as global food demand increases and agricultural productivity becomes

increasingly important (Schmidhuber and Tubiello, 2007).

In addition to the effects on plant growth, plant nutrition has a profound impact on most other
living organisms because plants are the foundation of many food chains. Various minerals are
involved in different processes of the human body, so their abundance and distribution in plants
affect human diets. According to White and Broadley (2005), iron, zinc, calcium, magnesium, and
copper deficiencies are very common, especially in developing regions, and this is a result of the

lack of minerals in natural sources (i.e., crops, food, water). Agricultural production and food
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security are thus concerns all over the world and are subject to national regulations (Roy et al.,

2006).
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Fig. 1.1. The use of nitrogen fertilizer in Australia and around the world from 1960 to 2020 (data
source: FAOSTAT https://www.fao.org).

The use of fertilizers has undoubtedly improved agricultural productivity and increased food
production, but it appears that over-fertilization has become a common practice. Excess
fertilization can sometimes damage plants, adversely impacting overall plant development and
performance, and can lead to environmental problems like soil contamination, atmospheric
pollution, algal blooms, biodiversity threats, and greenhouse gas emissions, thus prompting
resource and economic concerns (Stewart et al., 2005, Stevenson and Cole, 1999, Matson et al.,
1998, Sutton et al., 2013, Skiba and Rees, 2014). Fig. 1.2 illustrates the global water pollution
risks associated with fertilizer runoff, showing Australia among the high-risk countries. Therefore,
it is imperative that fertilizers and other inputs are applied within the constraints and conditions of

sustainable agricultural practices in order to effectively promote yields while minimizing
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environmental impacts (Muhammad et al., 2015). In fact, globally, about 47% of synthetic N
fertilization fails to increase yield (Lassaletta et al., 2014) due to various factors, including crop
species and varieties, the form of N used, soil types, water availability, supply technology (e.g.,
timing, forms, placement), availability of other nutrients, and prevalent insect pests (EI-Sharkawy
et al., 1998, Ospina et al., 2014, Dobermann, 2005, Fageria and Baligar, 2005). In the context of
precision agriculture management, nutrient status needs to be accurately assessed to enable optimal

and sustainable application of fertilizers.

Low risk High risk
Fig. 1.2. Water quality risks of global river basins, based on 2000-2010 data from Damania et al.
(2019). Red or yellow show areas where biological oxygen demand, nitrogen fertilizer runoff, and

electrical conductivity have significant impacts on freshwater and present a high risk of water
pollution. Gray areas have no data for one or more parameters.

1.2 Roles of nutrients in plant growth

To complete their life cycle, plants require numerous nutrients in varying amounts throughout the
growing season. Carbon (C), hydrogen (H), and oxygen (O) are considered the three primary

elements taken up through both air and water, whereas the other necessary elements are absorbed
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from soil and fertilizers through plant roots (Marschner, 1986). Nutrients are usually classified into
macro-nutrients and micro-nutrients, based on their rate of absorption by plants (Stewart, 1988).
It is widely accepted that macro-nutrients are often essential for the structure of molecules, which
explains the need of plants for large quantities. Plant macro-nutrients are divided into two groups
based on their functions — primary macro-nutrients (i.e., nitrogen, phosphorus, potassium) and
secondary macro-nutrients (i.e., calcium, magnesium, sulfur). The role of plant micro-nutrients is
generally described as catalytic or regulatory (Carrow et al., 2002, Ryan et al., 2001). As the plant
moves through different stages of development, each nutrient plays a distinctive role in different
metabolic processes, such as constituting structural components or redox-sensitive components, as
well as protecting plants from various abiotic and biotic stresses (White and Brown, 2010, Morgan

and Connolly, 2013, Shanker and Venkateswarlu, 2011, Roy et al., 2006, Tripathi et al., 2014).

Nitrogen (N) is required by plants in large amounts throughout all phases of plant development
because it constitutes both structural (cell membranes) and nonstructural (amino acids, enzymes,
protein, nucleic acids, and chlorophyll) components (Chism, 2002, Mengel and Kirkby, 2012). For
example, N constitutes about 16% of total plant protein (Frink et al., 1999) and approximately 1.5-
2.0% of plant dry matter (Lima et al., 2007). Furthermore, N enhances fruit and seed production,
and produces rapid plant growth and high-quality forage crops (Mengel and Kirkby, 2012,
Marschner, 2011). Thus, N is regarded as the essential plant nutrient. In almonds, N is an extremely
important nutrient throughout the entire growth cycle. N is essential for building the tree canopy
and stimulating vegetation growth (e.g., promoting the growth of stems, full leaf expansion, and
hardening of nut shells), resulting in improved bud formation, higher yields, and higher protein
levels in nuts. Insufficient N stops leaf elongation (Marschner, 2011), inhibits photosynthesis

(Gregoriou et al., 2007), reduces the size of chloroplasts (Li et al., 2013), and produces plants
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lacking vigor. Itis common for plants that are deficient in N to show signs of chlorosis or yellowing
leaves. On the other hand, the application of excessive N impairs hydraulics, limits photosynthesis,

and alters the metabolic processes of almond trees (Sperling et al., 2019).

Phosphorus (P) plays a vital role as the constituent of nucleic acids (i.e., DNA, RNA), adenosine
triphosphate (ATP), and other plant components (e.g., teichoic acids and phospholipids), as well
as being a central component of intermediary metabolism (Mills and WT, 1994, Hopkins and
Hiner, 1995). The concentration of P in plants is approximately 0.05% to 0.5% of total dry weight.
The presence of P contributes to the development of root and stem strength, flower initiation, seed
formation, and fruit quality and production (He et al., 1992, Malhotra et al., 2018, Zhu and Smith,
2001). It is thus regarded as an essential nutrient for plant growth and development. There is much
evidence that P aids in the photosynthetic process (Raaimakers et al., 1995, Stitt, 1990), assists
with plant maturation and stress resistance (Tripathi et al., 2014), and increases crop Yield
(Hopkins and Hansen, 2019, Schlegel and Havlin, 2017, Hopkins et al., 2010). When P is deficient,
the growth of the plant is markedly restricted, resulting in retarded growth, tillering, root
development, and delayed ripening. Conversely, excessive levels of P can cause toxic symptoms

or the death of the plant in very severe cases (Roy et al., 2006).

Potassium (K) is closely involved in many physiological processes (e.g., protein synthesis) and
plays a major role as a cationic inorganic element in plants, helping to improve photosynthesis,
enzyme activity, water balance, assimilation, and transportation (Barker and Pilbeam, 2015,
Mengel and Kirkby, 2012, Pettigrew, 2008). More specifically, K is crucial in maintaining the
water homeostasis of plants because it regulates stomatal opening and closing in plants and thus
minimizes drought stress (Mahouachi et al., 2006). K enhances fruit quality and yield, increases

disease resistance, and reduces lodging in plants (Nursu’aidah et al., 2014, Barker and Pilbeam,
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2015, Pettigrew, 2008). Therefore, K is considered essential to all plant life. To be more specific,
K is particularly important for nut-fill and is required in large quantities to achieve the highest
yields. A sufficient supply of K leads to higher kernel weights, more split shells, and fewer blank
nuts. There is evidence that K accounts for between 1% and 5% of plant dry matter. The fact that
K, like N and P, is highly mobile in plant tissues explains why symptoms of primary macro-nutrient
deficiency usually appear in the older leaves of a plant. Nevertheless, when K levels are low, the
symptoms of deficiency are not as easily visually detectable as deficiencies of N or P are. At an
advanced stage of K deficiency, chloroplasts and mitochondria collapse (Barker and Pilbeam,

2015).

Calcium (Ca) plays an essential role in plants as a structural component of cell walls and
membranes and as a second intracellular messenger (Maathuis, 2009, Marschner, 2011). Critical
for plant growth and development, it aids in activating enzymes, regulating water movement, and
balancing salt levels in plant cells, and it also activates K to control the process of the opening and
closing of stomata (Hepler, 2005). In this regard, Ca facilitates the response to biotic and abiotic
stresses (e.g., salt stress, hyperosmotic stress), stomatal regulation, and physical damage (e.g., cold
shock) (McAinsh and Pittman, 2009, Drgbak and Watkins, 2000, Kiegle et al., 2000, Thor, 2019,
Kudla et al., 2010). In almond crops, Ca plays an important role in maintaining the integrity of cell
membranes and building strong cell walls. Ca enables greater physiological stability of plant
tissues, reducing the risk of physical damage and disorders. It also provides growth support for
pollen tubes and aids in pollination. Ca constitutes between 0.1% and 5% of plant dry matter
(White and Broadley, 2003). Deficiency of Ca is characterized by yellow coloration and black
spots on leaves (Hepler, 2005), symptoms which first appear on growing tips and young leaves

because Ca is immobile.
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Magnesium (Mg) is known as one of the essential nutrient elements for plants because it is a
central atom in chlorophyll and an important regulator of enzymes (Hopkins and Huner, 1995,
Wilkinson et al., 1990). Additionally, it plays a significant role in plant photosynthesis, particularly
in promoting light reactions in the stroma (Marschner, 2011, Maathuis, 2009). It has been found
that Mg constitutes approximately 0.05-0.5% of total plant dry matter. Mg is a movable element
in plants, which results in chlorophyll decreasing first in old leaves and the remaining Mg being
transferred to younger leaves. It is commonly known that chlorosis (yellowing of the leaves) is a
sign of Mg deficiency (Hermans et al., 2010). Conversely, an adequate supply of Mg means that
plants display resistance to diseases like root rot, bacterial spot, and early blight disease (Ishfaq et

al., 2022, Huber and Jones, 2013).

Sulfur (S) is an important constituent of proteins and coenzymes and is implicated in oil
biosynthesis (Hopkins and Huner, 1995, Fazili et al., 2008), with a typical range of 0.1-0.4% in
plant dry matter and a N/S ratio of approximately 15 (Roy et al., 2006). Furthermore, S is a key
component of legume N fixation and its application greatly enhances legume N fixation, plant
growth, and yield (Jamal et al., 2005, Jamal et al., 2010, Zhao et al., 1999). There is also evidence
that S compounds are effective for the detoxification of heavy metals (Jones, 1985, Ernst et al.,
2008). S is mobile in plants. Nevertheless, the symptoms of S deficiency may not be recognized
easily in the field, as they are only obvious in severely deficient plants, and they often resemble

the symptoms of N deficiency, with yellowish leaves first observable on the younger leaves.

In comparison to macro-nutrients, micro-nutrients are required at much lower levels to promote
plant growth and boost yield, all of which are crucial to the growth of key tissues, the biosynthesis
of proteins, stress tolerance, and the formation of chlorophyll and secondary metabolites

(Marschner and Rengel, 2007, Jatav et al., 2020).
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Manganese (Mn) serves as an enzyme cofactor as well as part of the oxygen-evolving complex
in chloroplast (Hopkins and Huner, 1995). It is known that Mn is a primary component of the
water-splitting enzyme associated with photosystem II, with a typical concentration of 20-300
mg/kg (Aftab and Hakeem, 2020, Havlin et al., 2016). It exhibits certain properties similar to Mg,
although Mn-deficiency symptoms appear first on the younger leaves, whereas Mg-deficiency

symptoms are evident first on the older leaves (Roy et al., 2006).

Iron (Fe) is crucial for chlorophyll synthesis and electron transfer, as well as for N fixation (Aftab
and Hakeem, 2020, Hopkins and Hiiner, 1995). Fe is generally the most abundant of the micro-
nutrients, with a dry matter concentration of 100-500 mg/kg (Havlin et al., 2016). Similarly to Mn,
Fe is generally immobile in the phloem and the symptoms of Fe deficiency are comparable to those
of Mn deficiency because both deficiencies lead to a reduction in chlorophyll production. In cases

of severe deficiency, leaves become almost pale white due to loss of chlorophyll (Roy et al., 2006).

Zinc (Zn) is an enzyme activator (Hopkins and Hiner, 1995) and is normally found in volumes
ranging from 27 to 150 mg/kg of dry matter (Havlin et al., 2016). According to Cakmak (2008), a
deficiency of Zn impairs ribonucleic acid (RNA) and protein production due to its significant role
in photosynthesis and N metabolism. Further, Zn is essential for maintaining plant growth,
especially for new tissue development, with increased seed viability and seedling vigor, as well as
resistance to abiotic and biotic stresses. The mobility of Zn is low. Zn is commonly used as a
defoliant after harvesting to promote budding, pollination, and fruiting in the following season (Bi

et al., 2005, Lin and Agehara, 2021).

Boron (B) contributes to cell division and elongation by maintaining the structural integrity and
thickness of the cell wall (Hopkins and Huner, 1995). In addition, B promotes flower production

and retention, the elongation and germination of pollen tubes, and the development of seed and
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fruit, and hence it promotes yield (Aftab and Hakeem, 2020, Roy et al., 2006). Furthermore, it
improves the drought tolerance of crops. B is essential for flowering and pollination to ensure
successful fruit development. B constitutes about 10-20 mg/kg of plant dry matter (Havlin et al.,
2016). Any deficiency of B is usually observed on the growing points of roots, shoots, and young
leaves and may result in stunting, distortion, and brittle foliage, as well as yellowing of lower leaf

tips.

Copper (Cu) is a necessary cofactor of oxidative enzymes (Hopkins and Huner, 1995) and is
involved in chlorophyll formation (Roy et al., 2006). In addition to protecting plants from disease
and improving the fertility of male flowers, Cu also contributes to the oxidation of iron in plants
(Aftab and Hakeem, 2020). Cu constitutes approximately 5-30mg/kg of plant dry matter (Havlin
etal., 2016). The first signs of a Cu deficiency include narrow, twisted leaves and pale white shoot

tips (Roy et al., 2006).

In conclusion, it is evident that nutrients play significant roles in plant growth and development
and have an impact on every stage of plant life. When plants do not have access to enough nutrients,
they will show signs of deficiency, such as discolorations, spotting on leaves, wilting, or drooping
(see Fig. 1.3 and Table 1.1 for further details). When these symptoms are observed on younger
leaves, it indicates that the deficient elements are immobile, such as B, Ca, Cu, Fe, Mn, S, and Zn.
However, plant growth, yield, and fruit quality can be enhanced by the application of adequate
nutrients (Morgan and Connolly, 2013). Nevertheless, determining specific nutrient deficiencies
is often challenging due to the possibility of similar symptoms being caused by different nutrient
deficiencies (Table 1). The interrelationships between nutrients and their deficiencies which affect
plant growth are complex and difficult to define. Consequently, beyond examinations of a single

nutrient, interactions between nutrients are poorly understood and require further study.



600 Furthermore, visible symptoms of water deficiency and pathogenic infections may be similar.
601  Consequently, visual observation alone may vyield a flawed diagnosis, resulting in delayed
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604  Fig. 1.3.  Visible symptoms of nutrient deficiency (image source:
605 https://www.agrowtronics.com/nutrients-for-hydroponics/).
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Table 1.1. Common symptoms associated with nutrient deficiencies. A bold orange X indicates
the most likely elements corresponding to the symptoms of deficiency (modified based on an
image source: https://www.agrowtronics.com/nutrients-for-hydroponics/).

Symptoms Suspected nutrient element
N P K Ca Mg S Mn Fe 2Zn B Cu
Necrosis (tissue death) X X X X
Stunted growth X X X X X
Wilting/drooping X X X
Thin stems X X X
Leafdrop X X
Deformed leaves X X X X
Chlorosis X X
Tip burn X X
Blossom end rot
Brittle/weak stems X X X X
Chlorosis between veins X X X
Spotting/mottling
Dark green or purple color X

1.3 Traditional methods for leaf nutrient assessment

The analysis of leaf tissues has traditionally been regarded as an effective method of determining
a plant's nutrient status and determining the best fertilization strategy (Smith, 1962, Ulrich, 1952,
Embleton et al., 1973, Jones and Janick, 1984). Destructive sampling techniques that use chemical
analysis of leaf tissue have been widely used. There are two common laboratory methods, Kjeldahl
digestion (Kjeldahl, 1883b, Kjeldahl, 1883a) and Dumas combustion (Dumas, 1831), which are
accurate and reliable as reference methods for determining different macro- and micro-nutrient
contents in leaf samples. Using the Kjeldahl digestion method, organic nitrogen is converted into
ammonium by boiling in sulfuric acid and distilling with alkali to liberate ammonia, which is then
determined by titration (Amin and Flowers, 2004). However, this method can only measure N
which is bound to the organic components (proteins, amino acids, nucleic acids) and ammonium

in the sample, while other N forms, such as nitrate and nitrite, are not amenable to measurement
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and will thus produce a slightly lower value when using this procedure (Mufioz-Huerta et al., 2013).
The Dumas method overcomes this limitation and does not require toxic reagents, thus producing
less pollution than the Kjeldahl method (Mufioz-Huerta et al., 2013). Nevertheless, incomplete
combustion results in the loss of nitrogen in the sample, and therefore a small sample weight is

required for this method (Unkovich et al., 2008).

However, this is not an efficient nor affordable approach to the continuous monitoring of nutrient
status for large areas, especially when considering seasonal and within-field spatial variations. In
contrast, non-destructive remote sensing (RS) techniques can determine spatial variability of
photosynthesis-related proxies and plant physiological conditions over large areas in a rapid and
cost-effective manner (Menesatti et al., 2010, Prananto et al., 2021, Wessman et al., 1988, Martin

and Aber, 1997, Smith et al., 2002).

1.4 Airborne remote sensing platforms for assessing leaf nutrients

As most of the absorption features of green vegetation are located in the optical domain (400-2500
nm), optical sensing is generally used in remote sensing studies to analyze vegetation
characteristics (Schaepman-Strub et al., 2006). Hank et al. (2019a) outlined the spectral domain,
in which reflectance is categorized into three major regions — visible (400-700 nm, VIS), near-
infrared (700-1300 nm, NIR), and shortwave (1300-2500 nm, SWIR). VIS covers the spectral
region of the absorption of foliar photosynthetic pigments, primarily chlorophylls, carotenoids,
anthocyanins, and xanthophylls. In the NIR region, scattering occurs at both the leaf and the

canopy scales, mainly determined by leaf structure, leaf area index (LAI), and plant density. Water,
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lignin, cellulose, and proteins are the dominant absorption components in the SWIR range. For

nutrient assessment of extensive areas, optical sensors and cameras are usually mounted on aircraft.

Although drones are capable of capturing images with high spatial resolution, they are limited by
their flight altitude (normally less than 150 meters when keeping the platform within the line of
sight) and coverage capacity, consequently needing much more time to cover large areas than
aircraft-based platforms do. Due to the limited discrete spectral bands visible with multispectral
sensors (Landgrebe, 2003), these sensors typically make use of empirical methods based on
vegetation indices to assess nutrients (Maresma et al., 2016, Tilling et al., 2007, Boegh et al.,
2002). On the other hand, advances in hyperspectral sensors (Bioucas-Dias et al., 2013) fitted to
manned/unmanned vehicles have enabled more accurate determination of pigment content (e.g.,
chlorophyll, carotenoids, anthocyanins, and xanthophyll cycle status) and other spectral traits (e.qg.,
chlorophyll fluorescence, dry matter, and structural traits) as a result of their detailed contiguous
and narrow spectral information (Goetz, 2009), which is much better for determining the nutrient
status of large areas (Thenkabail and Lyon, 2016, Blackburn, 2007, Clevers and Kooistra, 2011).
In the past 20 years, the most widely used airborne imaging spectrometers include the NASA
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane et al., 1993), the Australian
HyMAP (Cocks et al., 1998), the Compact Airborne Spectrographic Imager (CASI) (Babey and
Anger, 1989), and the Airborne Prism Experiment (APEX) (Schaepman et al., 2015). See the

review paper by Rast and Painter (2019).
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1.5 Standard remote sensing methods for monitoring nutrient status

Typically, nutrient estimation, particularly for N, has been extensively investigated with optical
RS techniques which rely on proxy-based empirical methods. An early study by Evans (1989)
demonstrated a strong correlation between N and chlorophyll (Lee et al., 2015) content. In practice,
handheld leaf-scanning instruments typically calculate Cab in situ based on greenness readings
using two or more spectral bands, for instance, the SPAD-502 Chlorophyll Meter (Minolta Camera
Co. Ltd., Tokyo, Japan) and Dualex 4 Scientific (FORCE-A, Orsay, France). More specifically,
the SPAD-502 leaf chlorophyll meter is a non-destructive hand-held leaf-clip that measures
transmission through leaves with two light-emitting diodes in the red and infrared spectral regions
(650nm and 940nm) and a photodiode (Wood et al., 1993, Markwell et al., 1995). Other more
recently developed optical leaf-clip meters, like the Dualex 4 Scientific (FORCE-A, Orsay,
France), add flavonol (Flav) detection and the nitrogen balance index (NBI) (Goulas et al., 2004).
These handheld leaf clips are widely used for rapid in situ leaf N status assessment of a wide range
of crops (e.g., rice, maize, wheat, cotton) (Cerovic et al., 2012, Bullock and Anderson, 1998, Wood
et al., 1992b, Wood et al., 1992a) and also various different hardwood species (Netto et al., 2005,
Chang and Robison, 2003, Cerovic et al., 2012). Nevertheless, it has been demonstrated that
chlorophyll meter readings across species, varieties, cultivation practices, and growing stages vary
according to genetic and environmental factors and have limited sensitivity to high Cab values,
thereby limiting the in situ assessment of leaf N (Houborg et al., 2007, Xiong et al., 2015, Cerovic

etal., 2015).

Numerous studies have described different kinds of spectroscopic estimation of N using several
indices calculated from reflectance, particularly focusing on the visible and near-infrared (VNIR)

spectral domain. Close-range active spectral sensors are flexible in varying illumination conditions
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because they are equipped with light-emitting components which provide radiation in specific
wavebands (Hatfield et al., 2008). For example, Crop Circle (Holland Scientific Inc., Lincoln,
Nebraska) and GreenSeeker (NTech Industries Inc., Ukiah, California) can determine green
biomass and nitrogen uptake by detecting reflection in the VIS and NIR spectral regions. The N-
Sensor ALS® (YARA International, ASA, Dulmen, Germany) detects canopy reflectance by
flashing a xenon light source in the red-edge (730 nm) and NIR (760 nm) (Erdle et al., 2011)
spectral regions. These field instruments provide simple canopy spectral ratios or indices from
specific spectral bands and can be installed on vehicles used for routine management. However,

the saturation occurs as a result of the biomass increase (Mufioz-Huerta et al., 2013).

As an alternative to active sensors with spectral limitations, passive sensors (i.e., optical imagers
or spectral radiometers) have long been advocated as a useful means of characterizing spatial
variability in farm fields (Bhatti et al., 1991). Due to strong chlorophyll absorption in the visible
and red-edge regions (Gitelson and Merzlyak, 1994), field spectrometers like the FieldSpec
(Analytical Spectral Devices, Boulder, CO, USA) and airborne imagers have made it possible to
estimate N content via canopy reflectance. The estimation of leaf N is typically based on empirical
relationships based on plant structure and Cab content, which can be characterized using vegetation
indices derived from VNIR spectroscopy in a simple, speedy, and straightforward way. As
indicators of plant canopy structure, Normalized Difference Vegetation Index (NDVI) (Rouse et
al., 1974) and its variants (e.g., RDVI, Green NDVI) (Roujean and Breon, 1995, Gitelson et al.,
1996) are most commonly used because chlorophyll strongly absorbs visible light while the cell
structure of leaves and the entire canopy scattering strongly reflects near-infrared radiation.
However, the indirect link between vegetation density and leaf N often results in an ineffective

response to leaf N variability, particularly when plants reach a certain height and density
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(Thenkabail et al., 2000, Scotford and Miller, 2003). Chlorophyll indices using the red-edge
spectral regions, which have much lower chlorophyll absorption, have thus been proposed and
successfully applied to determination of chlorophyll content (Gitelson and Merzlyak, 1994,
Haboudane et al., 2002). An investigation by Schlemmer et al. (2013) revealed a strong linear
relationship between the red-edge chlorophyll index ((NIR/Red Edge)-1) and nitrogen content.
Chlorophyll a+b alone, however, is not sufficient to estimate nitrogen under nitrogen-rich
conditions because the chlorophyll-nitrogen relationship saturates at high nitrogen levels (Uddling
et al., 2007, Padilla et al., 2018) and shows a less robust correlation when other factors are taken
into account, such as leaf thickness, species, canopy shape, nutrient status, and water content
(Hatfield et al., 2008). Moreover, the combination of chlorophyll and structural index is found to
perform better to assess leaf N, such as with TCARI/OSAVI (Haboudane et al., 2002) and CCCI
(Fitzgerald et al., 2010). Furthermore, indices calculated from the SWIR region add additional
capacity to determine crop water status and protein content, such as with TCARI1510/OSAV 1510
(Herrmann et al., 2010). However, determining protein and nitrogen content independently of
water is difficult because protein absorptions are very shallow and are largely obscured by water
absorption features (Hank et al., 2019b). Despite that, although spectral indices are functional and
widely accepted, they still encounter problems with transferability across different crop types and
are unstable across growth stages and varying environmental conditions (Li et al., 2014, Basso et

al., 2004, Li et al., 2010).

Additionally, carotenoids play a role in the light-harvesting complex of the photosystem, which
plays a role in non-photochemical quenching. Xanthophylls, a specific group of carotenoids, are
known to be associated with these light-harvesting complexes (Siefermann-Harms, 1985). The

xanthophyll cycle refers to the process of interconversion of three specific xanthophylls —
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violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) — in the chloroplast membrane of higher
plants and algae (Yamamoto, 1979). During this cycle, excessive levels of light that cannot be used
for photosynthesis induce the enzymatic de-epoxidation of V, resulting in the rapid conversion of
this pool of energy into A and Z. In contrast, limiting light levels or adapting photosynthetic
membranes to darkness reverses the process, resulting in the reformation of V via the epoxidation
of Z and A (Fig. 1.4). In this context, certain vegetation indices based on the xanthophyll cycle
and carotenoids are also used to assess nutrients, among them the PRI (photochemical reflectance
index) families (Patel et al., 2021, Strachan et al., 2002, Pefiuelas et al., 1994, Wang et al., 2017,
Moran et al., 2000), including PRI, (Gamon et al., 1992), PRIm1 and PRIm4 (Herndndez-Clemente
et al., 2011), PRIs1s (Hernandez-Clemente et al., 2011), PRIn (Zarco-Tejada et al., 2013b), and
PRI-CI (Garrity et al., 2011). However, these indices are associated with light utilization efficiency

but are only indirectly associated with nutrients.

Xanthophyll cycle

VAZ cycle
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Fig. 1.4. Representation of xanthophyll cycles in photosynthetic microbes. Violaxanthin-
antheraxanthin-zeaxanthin (VAZ) cycles are modulated by light conditions (modified based on
Saini et al. (2019)).
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1.6 Plant traits retrieval from radiative transfer models

In empirical approaches, the relationship between nutrients and indices can be greatly influenced
by a number of leaf- and canopy-level factors. Because nutrients and leaf physiological traits are
closely related in the context of plant photosynthesis, other studies using radiative transfer models
(RTM) have explored the retrieval of Cab contents, as well as other leaf and canopy traits (e.g.,
carotenoid (Ccar), anthocyanins (Anth), dry matter (Cam), water content (Cw), and leaf area index
(LALI)) (Baret et al., 2007, Jay et al., 2017, Kimm et al., 2020, Wang et al., 2021, Zarco-Tejada et
al., 2004, Clevers and Kooistra, 2011). With RTMs, it is possible to simulate the absorption and
scattering of light within vegetation canopies while also accounting for leaf biochemical
constituents and canopy structural properties (Jacquemoud et al., 2009), enabling a better
understanding of how light interacts with plants at both leaf and canopy level. In this physical
approach, leaf optical property models are combined with canopy bidirectional reflectance models

like PROSAIL (Verhoef, 1984).

The simpler approximations of canopy RTMs have been developed from one-dimensional models,
such as Scattering by Arbitrary Inclined Leaves (SAIL), which accounts for canopy scattering and
extinction coefficients by using a 2-D turbid medium with horizontal and vertical leaf facets.
Following this, several versions have been developed, including SAILH (Verhoef, 1998) with the
foliage hotspot effects incorporated, and 4SAIL (Verhoef et al., 2007), which provides numerically
robust and speed-optimized simulations of thermal-infrared radiation scattering and emission in a
geometrically homogeneous canopy with thermodynamic heterogeneity. This approach is more
robust and transferable than index-based empirical models. Consequently, it is widely used for
retrieving biochemical constituents with remote sensing data (Le Maire et al., 2004). From local

to regional spatial scales, these models have been extensively used to simulate homogeneous
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canopies, such as wheat (Camino et al., 2018b, Zhang et al., 2016, Danner et al., 2017), corn
(Haboudane et al., 2002), rice (Wan et al., 2021, Darvishzadeh et al., 2012), soybean (Verrelst et
al., 2016), potato (Clevers and Kooistra, 2011, Botha et al., 2007), maize (Chakhvashvili et al.,
2022, Koetz et al., 2005), sugar beet (Baret et al., 1995, Jay et al., 2017, Richter et al., 2009), and
even closed forest canopies (Zarco-Tejada et al., 2001). Further, other studies have demonstrated
that these models could also be inverted for discontinuous tree canopy/vineyard attribution with
enough image spatial resolution for the extraction of pure canopy vegetation pixels (Suarez et al.,

2021b, Camino et al., 2021, Suarez et al., 2021a).

In contrast, more complex approximations focus on 3-D ray-tracing models incorporating three-
dimensional structures simulating discontinuous and heterogeneous canopy structures (North,
1996, Gastellu-Etchegorry et al., 1996, Li et al., 1995). As an example, the Discrete Anisotropic
Radiative Transfer (DART) model simulates radiative transfer in 3-D scenes that contain a variety
of landscape features by dividing the scene into a rectangular cell matrix. In addition to topography
and hot spots, leaf specularity and first-order polarization mechanisms are also modeled (Gastellu-
Etchegorry et al., 1996). The 3-D Forest Light Interaction Model (FLIGHT) is another example.
Based on the Monte Carlo ray-tracing (MCRT) method, it simulates bidirectional reflectance in
forest scenes using geometric envelopes that constrain the 3-D distribution of foliage elements
(North, 1996). The use of these 3-D RTMs has been proven for heterogeneous canopies (Janoutova
et al., 2021, Banskota et al., 2015, Herndndez-Clemente et al., 2017, Zarco-Tejada et al., 2018),
but they require complex input variables and heavy computational load (Gastellu-Etchegorry et
al., 2017, Miraglio et al., 2019, Verrelst et al., 2019). Hence, the feasibility and cost-effectiveness

of complex 3-D RTMs with coarse spatial resolution imagery needs to be considered.
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Inversion algorithms are often used to retrieve plant traits from reflectance spectra from RTM, and
then regression models are developed using these traits to estimate nutrient content (Camino et al.,
2018a, Nevalainen et al., 2013). Although this approach is promising, it has been validated mainly
on relatively uniform and row-structured crops that grow into full canopy closure, such as wheat
(Camino et al., 2018a), potato (Clevers and Kooistra, 2011, Botha et al., 2007), sugar beet (Jay et
al., 2017), and meadow (Clevers and Kooistra, 2011). As a result of extensive structural effects
caused by clumping, crown shadows, and soil background, these model inversion methods present
considerable challenges when applied to tree crowns (Camino et al., 2018c), resulting in a lack of

robust studies on orchard trees.

1.7 Chlorophyll fluorescence

Chlorophyll fluorescence is a re-emission of light by chlorophyll molecules during their transition
from an excited state to a non-excited state (Rosengvist and van Kooten, 2003). Chlorophyll
fluorescence is generally considered to be a direct indicator of electron transport rates and thus of
photosynthetic activity (Genty et al., 1989). Plants under different types of stress require different
amounts of light energy for photosynthetic quantum conversion, chlorophyll fluorescence, and
heat production. In the absence of stress, the light energy is effectively used in plant
photochemistry, thus reducing the fluorescence yield. Considering that the energy is dissipated in
a short period of time, de-excitation is primarily accomplished through three competing processes
— photochemistry, chlorophyll fluorescence (only 2-3%), and non-radiative thermal dissipation
(Krause and Weis, 1991, Maxwell and Johnson, 2000). Due to the interdependence of these three
pathways, any increase in the efficiency of one will result in a decrease in the efficiency of the

other two. These competing processes change as a result of physiological and environmental
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changes. Consequently, recent years have seen an increase in the use of chlorophyll fluorescence
as a proxy for monitoring crop photosynthesis status. With the aid of remote sensing methods, we
can determine changes in the efficiency of photochemistry and thermal dissipation by measuring
chlorophyll fluorescence emissions (Maxwell and Johnson, 2000). Furthermore, the maximum
carboxylation rate (Vcmax) has been shown to be highly correlated with SIF (Rascher et al., 2015)
via its strong connections to chlorophyll content and photosynthetic activity (Walker et al., 2014,
Camino et al., 2019).

In the field, it has been proven that pulse amplitude modulation (PAM) fluorometers, along with
saturation pulse methods, can be used for leaf-level measurement (Schreiber et al., 1986, Schreiber,
2004). For example, the Li-Cor device (Li-Cor, Lincoln, NE, USA), PAM-2500 (Heinz Walz
GmbH, Effeltrich, Germany), and FluorPen (Photon Systems Instruments, Brno, Czech Republic)
are commonly used leaf-level measurement instruments that require active manipulation of the
light environment. Scaling from leaf level to canopy level, however, presents many challenges.
Rather than simply applying existing models to a large area, it is necessary to account for all
photosynthetic processes, including light absorption, emission, scattering, and reabsorption by the
canopy (Porcar-Castell et al., 2014). In the past few decades, significant progress has been made
since chlorophyll fluorescence was first demonstrated experimentally and analytically, with
airborne hyperspectral data and model simulations as a signal superimposed upon apparent
reflectance spectra in leaves and canopies (Zarco-Tejada et al., 2000a, Zarco-Tejada et al., 2000Db).
A number of advances have been made since then regarding sensor technology, retrieval
algorithms, and modelling of leaf and canopy fluorescence. A full recent review on this topic can

be found in Mohammed et al. (2019).
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The typical method for retrieving SIF from passive sensors (i.e., hyperspectral imagery) is based
on the Fraunhofer Line Depth (FLD) principle (Plascyk and Gabriel, 1975). In conceptual terms,
FLD approaches use the different relative contributions of fluorescence to the upwelling radiance
and the downwelling irradiance spectra, inside and outside of an absorption feature. As a result of
the implementation of narrow-band hyperspectral sensors (generally with bandwidths less than 10
nm) on airborne platforms, SIF occurs in the 650-850 nm range with two peaks in the red (centered
around 685 nm) and far-red regions (centered around 740nm), which can be quantified within the
Oz absorption features (Fig. 1.5). Due to the greater reabsorption of red fluorescence by
chlorophyll during the transit of fluorescence to the leaf surface, the red peak typically appears
lower than the far-red peak of healthy green leaves (Mohammed et al., 2019). In addition, the Oz-
B absorption features at 687 nm are much shallower and narrower than O2-A absorption features
at 760 nm, adding additional challenges for detecting chlorophyll fluorescence signal. In addition,
SIF is dynamic and highly sensitive to a range of environmental factors, including atmospheric
conditions, irradiance, structural characteristics, stress effects, and light absorption by chlorophyll
(Buschmann, 2007). Due to the weak signal of SIF, all these factors contribute to the complexity

of the retrieval and interpretation of SIF data.

180 a
. SIF Radiance
5
< 135 3T
= )
[ ~
o~ £
= c
- -~
% 90 2 £
= 2
g E
= o
2 45 1@
.Z'T.

0 0

650 662 673 684 695 706 717 728 739 750 761 772 783 794
Wavelength (nm)

Fig. 1.5. At the top of the canopy, the total upwelling radiance (orange) and solar-induced
fluorescence (SIF) spectra (blue) were collected in the range of 650-800 nm, with two oxygen
absorption features marked with grey rectangles.
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Since chlorophyll fluorescence emission is closely connected to photosynthetic status and is
sensitive to plant stress (e.g., water, heat, biotic stresses) (Krause and Weis, 1991, Baker, 2008,
Zarco-Tejada et al., 2013a, Camino et al., 2019, Mohammed et al., 2019, Lang et al., 1996), SIF
has been used to detect nutrient deficiency in numerous studies (Tremblay et al., 2012, Schéchtl
etal., 2005). In a study conducted by Wei et al. (2016), it was shown that nitrogen has a significant
impact on photosynthetic rate and thus on leaf fluorescence emission. The relationship is based on
the fact that chlorophyll fluorescence emissions are dependent on chlorophyll concentration and
PSI and PSII efficiency (Lichtenthaler et al., 1996). Lu and Zhang (2000) demonstrated that
nitrogen deficiency affects PSII photochemistry by reducing electron transport quantum yield and
photochemical efficiency, thereby decreasing the net assimilation rate. Tremblay et al. (2012)
investigated the use of SIF data to improve nitrogen quantification. Camino et al. (2018a)
demonstrated the correlation between airborne-quantified chlorophyll fluorescence and nitrogen
content in wheat. More importantly, the accuracy of nitrogen estimates for wheat improved
significantly, yielding r? = 0.93 when SIF was added to the model based on the leaf biochemistry
identified by RTM inversion. However, these results have only been demonstrated in
homogeneous crops. It is therefore necessary to further investigate the contributions of SIF when
explaining the variability of N and other nutrients in complex vegetation structures, such as fruit
orchards. Besides N levels, Carstensen et al. (2019) demonstrated that chlorophyll fluorescence
transients also allow the detection of latent P deficiency, crucial so that P deficiency can be
speedily remediated to restore plant growth and development. This study was in agreement with
those by Carstensen et al. (2018) and Goltsev et al. (2016) in demonstrating that chlorophyll

fluorescence is a valuable proxy for P deficiency.



874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

1.8 Spaceborne platforms for assessing leaf nutrients

On a regional or global scale, satellite remote sensing technologies are becoming increasingly
significant tools supporting plant monitoring and management in a spatially, temporally, and cost-
effective manner. A number of satellites equipped with multispectral imaging systems, such as
Landsat, Sentinel, RapidEye, QuickBird, GeoEye, Worldview-2, and SPOT, have been used to
assess chlorophyll and nutrient status based on reflectance indices and red-edge spectral band data
(Alietal., 2016, Bausch et al., 2008, Wong and He, 2013). In addition, two imaging spectrometers
have been in orbit as demonstrations for nutrient status assessments — Hyperion (220 contiguous
spectral bands in VIS-SWIR range with a 30-m spatial resolution) onboard NASA's Earth
Observing-1 (EO-1) satellite (active between November 2000 and March 2017) (Datt et al., 2003,
Abdel-Rahman et al., 2013, Sims et al., 2013, Townsend et al., 2003), and the Compact High
Resolution Imaging Spectrometer (CHRIS, 19 spectral bands in VNIR range with an 18-m spatial
resolution, operating between October 2001 and December 2022) onboard ESA's Proba-1 satellite
(Castaldi et al., 2016, Huber et al., 2007, Vincini et al., 2006, Huber et al., 2010). A study
conducted by Marshall and Thenkabail (2015) compared N uptake calculated from multispectral
and crop biomass estimates with narrowband indices from EO-1 Hyperion. Crop biomass was
derived using spectral indices from IKONOS, GeoEye-1, Landsat ETM+, MODIS, and
WorldView-2. The performance of hyperspectral narrowband indices was found to explain a 5-
31% greater variability of biomass than broadband indices from multispectral sensors could,
emphasizing the need to use satellite data with higher spectral resolution. These studies
demonstrate that imaging spectroscopy is a necessary tool for monitoring different plant traits

throughout phenological stages.
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The technology for spaceborne sensors is advancing rapidly and a number of narrow-band
hyperspectral sensors are being developed for use on spaceborne systems (Fig. 1.6). For example,
the PRecursore IperSpettrale della Missione Applicativa (PRISMA, with 250 spectral bands,
launched in March 2019) (Labate et al., 2009), and the Environmental Mapping and Analysis
Program (EnMAP, with 228 spectral bands, launched in April 2022) (Guanter et al., 2015), are
two of the most recent spaceborne hyperspectral sensors launched in the VIS-SWIR range with a
30-m spatial resolution. In addition, the new-generation German Aerospace Center (DLR) Earth
Sensing Imaging Spectrometer (DESIS), which has been operating onboard the International
Space Station (ISS) since August 2018, collects hyperspectral imagery over 235 narrow spectral
bands in the VNIR range at a spatial resolution of 30 m (Krutz et al., 2019, Eckardt et al., 2015).
There are several more missions under development, including the Hyperspectral Infrared Imager
(HyspIRI, with a 150-km swath) (Team, 2018) onboard NASA’s EO-1, now part of NASA’s
Surface Biology and Geology (SBG) mission, as well as the Copernicus Hyperspectral Imaging
Mission for the Environment (CHIME, with 20-30 m spatial resolution) satellite (Rast et al., 2021)
of the European Space Agency (ESA). A satellite developed specifically for detecting chlorophyll
fluorescence is the ESA’s high-spectral-resolution (around 0.3 nm) Fluorescence Explorer FLEX
(Drusch et al., 2016), which covers the spectral range between 500 and 780 nm. Using HyspIRI
(SBG) mission and EnMAP within the VIS-SWIR spectral range, Pellissier et al. (2015) (Berger
et al., 2020) have successfully estimated N concentration in homogeneous crops. It should be noted,
however, that spaceborne imagery often has limited spatial and/or spectral resolution.
Consequently, it is necessary to validate the performance of these spaceborne sensors in assessing
nutrients, especially in heterogeneous orchards, in terms of a spatial and spectral resolution trade-

off.
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Fig. 1.6. Spaceborne imaging spectrometers recently launched or planned/approved (Rast and
Painter, 2019).

It is noteworthy that breakthroughs in understanding the potential contribution of chlorophyll
fluorescence, as well as in SIF retrieval methodologies, have enabled satellite-based SIF detection
for global monitoring (Mohammed et al., 2019). SIF was first identified globally in the far-red
wavelengths with high spectral resolution spectrometers (i.e., 0.025 nm) by the Greenhouse gasses
Observing SATellite (GOSAT) (Joiner et al. (2011)) at a 10.5-km spatial resolution with a revisit
time of 3 days. Since then, retrievals have also been made possible by satellites with lower spectral
resolution, such as the Global Ozone Experiment 2 (GOME-2, Joiner et al. (2013)) at a 0.5-nm
FWHM and the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY
(SCIAMACHY, Joiner et al. (2012)) at the FWHM of 0.2-0.5 nm. In addition, there are more
recent instruments with higher spatial resolution, such as the Orbiting Carbon Observatory 2
(OCO-2, Frankenberg et al. (2014)) and the Chinese Carbon Dioxide Observation Satellite
Mission (TanSat) (Du et al. (2018)), which provide spatial resolution of approximately two
kilometers and spectral resolution of 0.04 nm. With the increasing attraction of SIF and sensor

capability development, a specific satellite mission designed for SIF measurement, FLEX, is



935

936

937

938

939

940

941
942
943
944
945

946

947

948

949

expected to be launched in 2025 with a single payload, the FluORescence Imaging Spectrometer
(FLORIS), which has a 0.3 km x 0.3 km footprint, 0.3-2 nm FWHM, and 27-day repetition time
(Drusch et al., 2016). Nevertheless, the spatial resolution of these satellite sensors is not optimal
for precision agriculture and nutrient assessment of crops. Fig. 1.7 illustrates past, present, and

future missions based on spatial and temporal resolution (specifications from Mohammed et al.

(2019)).
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Fig. 1.7. Observations of solar-induced chlorophyll fluorescence (SIF) made by past missions
(gray), current missions (pink), and future missions (light blue). The font colors distinguish
geostationary (green) from low-earth orbit (black) missions. The dashed-line boxes indicate the
spatial and temporal resolution of value-added SIF products (purple) (Sun et al., 2023). ‘p.
denotes present.

1.9 Objectives and thesis structure
1.9.1 Research objectives

According to the literature review, most studies have concentrated on homogenous and dense crops

(e.g., wheat, maize) for nitrogen estimation, using vegetation indices, biochemistry quantification
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from RTMs, and more recently SIF. It should be noted, however, that methods of estimating N
using chlorophyll as a proxy for nitrogen content are strongly affected by the saturation of spectral
indices at high N levels, as well as by canopy structure, varying leaf densities, and mixtures of
sunlit and shaded canopy and soil background conditions (Camino et al., 2018c). These effects are
particularly evident in heterogeneous tree orchards, where the tree crowns’ structural heterogeneity
is a significant factor limiting the transferability of algorithms within and across tree species. In
addition, there are large physiological differences between orchard trees and annual crops, and it
is difficult to apply such methods across an extremely wide range of plant species. On the other
hand, other macro- and micro-nutrients have been less thoroughly studied. Furthermore, at the
outer space level, the global visibility of satellite images is negatively impacted by their spectral
and spatial resolution, so it would be beneficial to assess the proposed methods for larger-scale
application and determine the significance of spectral and spatial resolution for N assessment. In
particular, the following objectives need to be addressed regarding discontinuous tree-structured

orchards:

1. To investigate the links of chlorophyll fluorescence and plant pigments with the main
macro- and micro-nutrients at the leaf and canopy levels in almond orchards;

2. To study biochemistry estimation using radiative transfer models (i.e., Fluspect-Cx and
4SAIL) by implementing inversion algorithms in almond orchards;

3. To assess the contribution of tree-level SIF quantification to explaining leaf N variability
observed at the orchard level with airborne hyperspectral imagery;

4. To validate the accuracy and robustness of the proposed modeling methods for leaf N
quantification in large almond orchards using the DESIS hyperspectral imager onboard the

International Space Station (ISS);
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5. To evaluate the effects of the spectral and spatial resolution of hyperspectral and

multispectral sensors for the assessment of leaf N.

1.9.2 Research questions

The objectives of this research are to investigate robust methods for an assessment of nutrients and
to develop algorithms for retrieving leaf nitrogen concentration from high-resolution airborne and
spaceborne sensors in almond orchards by using SIF and leaf plant traits derived from physical

models. The following questions will be addressed in accordance with the research objectives:

1. What are the robust proxies available for explaining nutrient (especially N, P, and K)
variations in almond orchards?

2. What is the performance of the coupled Fluspect-Cx and 4SAIL models in retrieving
biochemical constituents?

3. What is the performance of SIF quantification from high-resolution hyperspectral imagery,
and how does it contribute to the assessment of leaf N in almond trees?

4. How effective is the DESIS imaging spectrometer onboard ISS for deriving plant traits and
quantifying SIF for leaf N prediction?

5. How does DESIS compare to airborne hyperspectral and Sentinel-2 multispectral imagery

in terms of spectral and spatial resolution for the assessment of leaf N?
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1.9.3 Thesis structure

This doctoral thesis is presented in chapters that address the objectives previously described. Each
of the main chapters (Chapters 2, 3, and 4) has been constructed as a stand-alone research article,

and their connections are illustrated in Fig. 1.8.

Chapter 2 examines Objective 1 for different macro- and micro-nutrients and compares the
performance of different spectral traits at the leaf level (field measurements) and the canopy level
(estimation of traits based on RTM and SIF quantification from airborne hyperspectral imagery)

over two growing seasons.

Chapter 3 addresses Objectives 2 and 3, focusing on the estimation of N based on tree crowns
using RTM-derived plant traits and SIF quantified from high-resolution airborne hyperspectral
imagery. In this chapter, we examine how different spectral traits (e.g., Cab, Ccar, Anth, Cx, Cadm,
SIF, LAI) contributed to N assessment over the course of two years with different fertigation

applications.

Chapter 4 addresses Objectives 4 and 5, applying methods for large-scale estimation, with the
newly developed sensor DESIS onboard the International Space Station, which account for the
mixed features of canopy, shadow, and soil background. In this chapter, space-based spectral traits
are compared with those at airborne level. Furthermore, Sentinel-2, an open-source sensor with a
medium spatial resolution and low spectral resolution, is also examined as a comparison for

operational purposes.

Chapter 5 summarizes the key findings of each chapter and the overall conclusion of this doctoral

thesis. Additionally, recommendations are made for future research.
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1011 Fig. 1.8. The flow between the main chapters demonstrates how the research development of this
1012  doctoral thesis is motivated by the key connections.
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Abstract

Macro- and micro-nutrients are essential for plant functioning and to ensure crop growth, high
yields, and quality fruit. Having a comprehensive understanding of nutrient status within the crop
is essential for making effective fertilizer management decisions. EXxisting studies have
demonstrated the feasibility of remote sensing techniques for nutrient assessment, although most
of them have a particular focus on nitrogen status. The methods generally used are chlorophyli-
sensitive indices, biochemical constituents, and fluorescence (SIF) derived from visible and near-
infrared spectral domains. However, fewer studies have assessed other macro- and micro-nutrients
which are critical for the growth and optimal management of crops. This study investigated the
sensitivity of vegetation indices, plant traits, and fluorescence emission to explain the variability
of 12 macro- and micro-nutrients, as well as 10 nutrient ratios at leaf and canopy levels, throughout
two consecutive growing seasons. Results showed that chlorophyll fluorescence was a robust
indicator of the three primary macro-nutrients, N, P, and K, at both leaf and canopy levels across
both years, yielding r2 = 0.74 (p-values < 0.005) for both leaf steady-state measurements and
canopy SIF of leaf N for the two years of data. In addition, the biochemical constituents derived
by radiative transfer modeling demonstrated strong correlations with the primary macro-nutrients
for both years, whereas the vegetation indices exhibited generally weaker relationships with

nutrients.

Keywords: Chlorophyll Fluorescence, SIF, Macro-nutrient, Micro-nutrient, Chlorophyll,

Hyperspectral, Nitrogen (N), Phosphorus (P), Potassium (K), Almond
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2.1 Introduction

Plant growth and development are heavily dependent on essential nutrients which contribute to
different aspects of plant development and functioning at different phenological stages (Aftab and
Hakeem, 2020, Roy et al., 2006). Providing optimal and balanced nutrient inputs is becoming
increasingly important to enhance the quality and yield of almonds in an environmentally friendly,
sustainable, and productive manner (Roy et al., 2006, Muhammad et al., 2015). Thus fine-tuned,
efficient, and sustainable fertilizer applications are critical to ensure optimum yields and quality
while minimizing the impact on the environment.

According to plant uptake, nutrients are classified as: i) macro-nutrients, which are required in
large quantities by plants and living organisms as substances essential for plant cell and tissue
development, including carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P),
potassium (K), sulfur (S), calcium (Ca), and magnesium (Mg); and ii) micro-nutrients, which are
required in lower quantities, like iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and boron (B)
(Maathuis, 2009, George et al., 2008). Among all nutrients, N, P, and K are the primary macro-
nutrients and they are predominantly provided via fertilizer applications during active plant growth,
aiming to achieve high photosynthetic rates. N is a crucial constituent of proteins and contributes
to the formation of chlorophyll. P is essential for the growth of early roots, cell division, and the
development of seed and fruit. K plays an important role in regulating stomatal opening and closing,
which is crucial for the water balance of plants (Roy et al., 2006). Micro-nutrients also play
important roles in plant growth and functioning, even when they are less abundant (Sharma, 2006).
For instance, Mn plays a role in splitting the water molecule during photosynthesis. In addition to
controlling membrane integrity and cell-wall development, B is associated with pollen tube growth,

which affects seed and fruit set and thus yield. More specifically to almonds, B application was
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found to increase nut weight and number, and protein content. S, Cu, Fe, and Mn also assist in the
formation of chlorophyll along with N (Roy et al., 2006).

A number of studies have provided evidence of interactions between nutrient elements and stressed
the importance of an optimal balance of internal reserves (Bloom et al., 1985, Krouk and Kiba,
2020, Kumar et al., 2021). Due to the large number of potential nutrient combinations, monitoring
changes in nutrient status is crucial to maintain a balance between different elements regarding
nutrient intake and usability under changing conditions throughout the phenological stages
(Chapin et al., 1987). For instance, many observations suggest that N affects P uptake positively
(Grunes, 1959, Smith and Jackson, 1987) and that P starvation affects nitrate assimilation and
uptake negatively (Gniazdowska and Rychter, 2000, De Magalhdes et al., 1998, Rufty Jr et al.,
1990). In the light of such interactions, the N/P ratio has been used to monitor the N-P balance in
order to coordinate the application of N and P for growth optimization (Koerselman and Meuleman,
1996, McGroddy et al., 2004, Gusewell, 2004, Tessier and Raynal, 2003). Consequently, an
understanding of nutrient dynamics in almonds is essential, allowing growers to diagnose and
prevent deficiencies throughout the growing season.

Traditionally, leaf analysis has been considered a practical approach to evaluating nutrient status
and determining the best fertilization strategy (Smith, 1962, Ulrich, 1952, Embleton et al., 1973,
Jones and Janick, 1984). As a non-destructive, quicker, and cost-effective tool, remote sensing
(RS) techniques employing spectrometers are capable of detecting photosynthesis-related proxies
and stress indicators (Menesatti et al., 2010, Prananto et al., 2021). Current RS studies on leaf
nutrient monitoring in almonds have focused primarily on leaf N estimation (Saa and Brown, 2014,
Wang et al., 2022, Wang et al., 2021, Saa et al., 2014, Zarate-Valdez et al., 2015, O'Connell et al.,

2014, Morais et al., 2020) due to it being needed in large quantities. Other macro- and micro-
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nutrients seem to be difficult to assess and consequently only very few attempts have been made
to characterize and monitor them together. Different macro-nutrients (e.g., N, P, K, Ca, Mg, and
S) and micro-nutrients (e.g., Fe, Mn, Cu, and B) have been studied with handheld NIR
spectrometers at the leaf level (Prananto et al., 2021). At canopy level, RS approaches to macro-
nutrient detection are typically based on chlorophyll-related indicators in the visible and near-
infrared (VNIR) and the short-wave infrared (SWIR) spectral regions via vegetation indices
derived from specific spectral bands. A few examples are: the Red Edge Chlorophyll Index
(Gitelson et al., 2005) proposed as a proxy for N; the ratio of reflectance difference index (Li et
al., 2018) for P; the three band vegetation index (Lu et al., 2020) using both red-edge and SWIR
for K; and the SWIR ratio index for Ca and Mg (Munyati et al., 2020). In addition, there has been
an increased interest in searching for other physiological traits and proxies, including a set of leaf
biochemical constituents and biophysical traits derived by inverting the radiative transfer model
(RTM), such as carotenoid (Ccar), anthocyanin (Anth), dry matter (Cam), the parameter of de-
epoxidation state of the xanthophyll cycle (Cx), water content (Cw), and leaf area index (LAI). For
instance, the leaf margins of plants with P deficiencies were found to have purple discolorations
due to an increase in the production of Anth (Marschner, 2011). The link between N and Cab and
other pigments makes this physical method more practical for assessing N levels (Wang et al.,
2015, Camino et al., 2018). Furthermore, solar-induced fluorescence (SIF) has attracted great
attention due to its strong link with photosynthesis and its usefulness as an indicator of plant stress.
Using simple image analysis, fluorescence changes can be interpreted by observing the pattern
differences of leaves with N, P, or K deficiencies between their blue-green fluorescence (BGF),
their chlorophyll-a fluorescence (ChlF) intensity induced by UV and blue excitations

(ChlFuv/ChlIFsLug), and their ratio of red and far-red ChlF intensity (RF/FRF) (Cadet and Samson,



1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

2011). The use of SIF for N assessment has already been reported in several studies (Cadet and
Samson, 2011, Wang et al., 2022, Camino et al., 2018).

The present investigation aimed to analyze the relationships of leaf macro- and micro-nutrient
concentrations and their ratios with different spectral traits and vegetation indices at the leaf and
canopy levels across two years, and thus to identify the traits of robust almond trees with better

predictive capacity.

2.2 Material and methods

2.2.1 Study area

This study was conducted in a commercial almond orchard located in Robinvale, situated on the
south bank of the Murray River in Victoria, Australia, as illustrated in Fig. 2.1b. The orchard was
monitored at the pre-harvest stage for two consecutive growing seasons in 2019/2020 and
2020/2021. There was a slight drop in the average maximum temperature for January 2021, 32.6°C,
compared with that of January 2020, which was 33.2°C. As a result of its mediterranean climate,
with annual precipitation of approximately 310 mm, this area is well known for high-volume
production of almonds, olives, grapes etc. The industry statistics for 2019 indicate that 64,416
tonnes of almonds were produced in Victoria, out of a total of 104,437 tonnes in Australia.

This almond orchard (Fig. 2.1a), covering about 1240 hectares, is composed of northern and
southern sites planted on sandy loam soils in 2006 and 2007, respectively. There are 67 blocks
facing north-south on the northern site and 6 blocks facing east-west on the southern site. Nonpareil
(1/2 of the rows), Carmel (1/3), and Price (1/6) were planted alternately in groups of six rows (Fig.
2.1c) at a spacing of 7 m (rows) by 4.4 m (trees). The diameters of the tree crowns typically range

from 4 to 6.5 m, resulting in a dense cluster rather than a separated canopy between trees. Figs.
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2.1d and 2.1e show more detail of the almond tree crowns and planting rows. A drip fertigation
system was used to apply water and nutrients to Nonpareil and Carmel with Price varieties on an
hourly basis. Macro-nutrients N, P, and K were applied throughout the growing season, while Ca
and B nutrients were applied only during the bloom and nut growth stages, and S was applied after
bloom. Fertigation rates were adjusted based on the data observed from the previous growing
season. In 2019/2020, all varieties were fertigated at the same rate, while in 2020/2021, Carmel
and Price varieties were fertigated about 10% more than Nonpareil was. Due to these factors,
Nonpareil was fertigated at 325.6 kg N/ha, 44 kg P/ha, 241.5 kg K/ha, 125.6 kg S/ha, 35.3 kg
Ca/ha, 3.5 kg B/ha, and 11,465 m® water/ha in 2019/2020, whereas in 2020/2021 it was applied at
318.7 kg N/ha, 42.2 kg P/ha, 270.8 kg K/ha, 128 kg S/ha, 35.3 kg Ca/ha, 3.5 kg B/ha, and 12,255

m? water/ha.

Fig. 2.1. a) The area of the 1200-ha almond orchard where the study was conducted. b) The
location of the study site (magenta pointer) in Victoria, Australia. ¢) The landscape and row
structure of the almond trees in the study area. d)-e) Close-ups of almond trees and the gap between
rows.



1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

2.2.2 Leaf-level data collection

In situ leaf measurements (Fig. 2.2) were conducted from the same study plots over 2 years.
Monitoring was carried out on 15 homogeneous plots (presented in the yellow rectangle in Fig.
2.3) with different degrees of variability, planting ages, and orientations, each consisting of 6 rows
with 7-8 trees. Four adjacent trees (two Nonpareil and two Carmel) were sampled in each study
plot. Twenty representative mature sunlit leaves per tree were examined with various handheld
instruments to assess leaf Cab, anthocyanins (Anth), flavonoid (Flav) content, and nitrogen balance
index (NBI) measured using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France) (Fig. 2.2a).
The FluorPen 110 (Fig. 2.2¢) and PolyPen RP 410 (Fig. 2.2b) (PSI, Brno, Czech Republic) were
used to measure leaf steady-state chlorophyll fluorescence (Ft) and leaf reflectance spectrum in
the VNIR regions, respectively. Based on the average spectrum from each study plot, a number of
vegetation indices were calculated, including chlorophyll a+b indices, xanthophyll indices, BGR
indices, and fluorescence reflectance index, as listed in Table 2.1. An additional 20 leaves were
collected along with the 80 leaves measured in order to increase the weight and size of the sample.
The 100 leaves in each sample were used to analyze 12 macro- and micro-nutrient concentrations
in a biochemical laboratory, using Dumas Combustion with a LECO TruMac CNS Macro
Analyzer (LECO Corporation, MI, USA) and an inductively coupled plasma optical emission
spectrometer (ICP-OES Optima 8300, Perkin Elmer, USA). The descriptive statistics for leaf
nutrients and the measured indicators collected over two years were compared and their ranges of
variation were calculated independently for three quartiles. In addition, the coefficients of
determination were compared between in situ leaf measurements and 12 nutrient concentrations

and 10 ratios, following the procedure of Horuz et al. (2013).



1810
1811
1812
1813
1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

Fig. 2.2. In situ leaf measurements of: a) leaf chlorophyll (Cab), anthocyanins (Anth), flavonoid
(Flav) content, and nitrogen balance index (NBI) using a Dualex 4 Scientific sensor; b) leaf
reflectance spectra in the visible and near-infrared regions with a PolyPen RP 410 instrument; c)
leaf steady-state chlorophyll fluorescence (Ft) with a FluorPen FP 110 instrument; and d) leaf
sample collection and leaf measurements of sunlit leaves from the top of the ladder.

2.2.3 Airborne hyperspectral datasets acquisition

In parallel with the collection of field data for image processing and calibration, airborne
campaigns were conducted at solar noon under clear skies on 17 February 2020 and 31 January
2021 prior to harvest. A manned aircraft (Cessna 172R) carrying a hyperspectral line-scanning
sensor (Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) flew
at 550 m above ground level (AGL) and collected data from north to east direction. The aircraft
was operated by the HyperSens Remote Sensing Laboratory, the Airborne Remote Sensing Facility
of the University of Melbourne. There are 371 spectral bands in the VNIR region covered by the
hyperspectral imager with a full width at half maximum (FWHM) of 5.8 nm and a spectral
sampling interval of 1.626 nm. For both years, the hyperspectral imager collected data at 40-cm
spatial resolution with an angular field of view of 66° and an 8-mm focal length. Each
hyperspectral flight line was atmospherically corrected using the SMARTS model (Gueymard,
2001, Gueymard, 1995). At the time of each flight, aerosol optical measurements at 500 nm were
taken using a Microtops Il sunphotometer (Solar Light, PA, USA) connected to a GPS-12

navigator (Garmin, Olathe, KS, USA). The other input parameters (i.e., air temperature and
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humidity) were calculated based on the averages of three nearby weather stations located between
4 and 15 km away. The orthorectification and mosaicking of images were performed using PARGE
(ReSe Applications Schlapfe, Wil, Switzerland) and ENVI (Boulder, Colorado) software,
respectively. To verify and correct the resulting image spectrum, reflectance data collected from
in situ vegetation and soil targets with a FieldSpec Handheld Pro spectrometer (ASD Inc., CO,
USA) was used. A false color composition of the airborne hyperspectral mosaic captured over the

almond orchard in 2021 is shown in Fig. 2.3a.
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Fig. 2.3. a) High-resolution airborne hyperspectral image (color-infrared overview) over the study
area at 40-cm spatial resolution collected with 371 spectral bands on 31 January 2021. The yellow
areas represent the locations of the 15 study plots. b) Segmentation of sunlit crown area, the yellow
rectangle representing an 8-tree x 6-row study plot. c) The reflectance spectra for two tree crowns
segmented from a study plot. d) The radiance (L, green colors) spectra for two tree crowns and the
irradiance (E, orange color) spectra for SIF calculation. Crosses indicate the spectral positions of
the sensor bands.
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2.2.4 Vegetation indices calculation

Due to the fine spatial resolution of the airborne hyperspectral imagery, it is possible to
differentiate between sunlit and shaded canopies and soil background features. This feature
differentiation was achieved by segmenting tree crowns using Fiji (Abramoff et al., 2004),
combining Niblack’s thresholding method (Niblack, 1985) on a NIR band (e.g., 800 nm) and
Phansalkar’s thresholding method (Phansalkar et al., 2011) on a structural index (e.g., NDVI). The
segmentation method was applied to each planting block with varying thresholds; an illustration
of the segmented tree crowns is shown in Fig. 2.3b. The average spectrum of each tree-crown was
calculated. Fig. 2.3 (c & d) shows an example of the reflectance and radiance spectra of two tree
crowns and the irradiance spectra derived by the airborne sensors. Based on these spectra, a
number of vegetation indices (full list in Table 2.1) were calculated and further analysis was carried

out. The coefficients and the determination of these indices and leaf nutrients were then calculated.
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Table 2.1. Spectral vegetation index equations used in this study.

Index Equation Reference
Structural indices

NDVI (Rgoo — Rg70)/(Rgoo + Re70) Rouse et al. (1974)

EVI 2.5 (Rggo — Rg70)/(Rgop + 6 Rg70 — 7.5 Regg + 1) Liu and Huete (1995)
OSAVI (1 + 0.16)* (Rggo — Rg70)/(Rgoo + Rgyo + 0.16) Rondeaux et al. (1996)
Chlorophyll a+b indices

Cl R,50/R710 Zarco-Tejada et al. (2001)
CTRI1 Reos/Ruzo Carter (1994)

SRPI Ru30/Reso Penuelas et al. (1995)
NPOQI (Ra1s — Ruzs)/(Rags + Ryss) Barnes et al. (1992)
NPCI (Rggo — Ruz0)/(Rego + Ruszo) Penuelas et al. (1995)
MCARI ((R790. = Rg70) = 0.2 - (R799 — Rseg)) * (Ry90/Re70) Daughtry et al. (2000)
TCARI 3-((Ry00 — Rg70) — 0.2+ (R700 — Rsso) * (R700/Re70)) Haboudane et al. (2002)

3 ((R700 — Rg70) — 0.2 (Ry00 — Rsso) (R700/R670))

TCARI/OSAVI 1 T 016) (Ryse — Rerg)/(Reos + Reye + 0.16) Haboudane et al. (2002)
PSSRb Rgoo/Reso Blackburn (1998)
DCabCxe Re72/(3 - Rsso * R70g) Datt (1998)

Xanthophyll indices

PRI (Rs70.— Rs31)/(Rs70 + Rssy) Gamon et al. (1992)
PRIs15 (Rs1s — Rszq)/(Rsys + Rszg) Hernandez-Clemente et al. (2011)
PRIm (Rs12. = Rs31)/(Rsy + Rssy) Gamon et al. (1992)
PRIpn4 (Rs70. = Rs31 — Re70)/(Rs70 + Rsay + Revo) Gamon et al. (1992)

PRI, PRIs;o/(RDVI - (R700/Re70)) Zarco-Tejada et al. (2013)
PRI-CI ((Rs7o = Rs31)/(Rsz0 + Rs31)) “ (R760/ R700) = 1) Garrity et al. (2011)

BGR indices

B Ruso/Raogg Calderon et al. (2013)
BGI1 Ra400/Rss0 Zarco-Tejada et al. (2005)
BRI1 R400/Reoo Zarco-Tejada et al. (2012)
Fluorescence reflectance index

CUR (Re7s - Rego)/Rs3 Zarco-Tejada et al. (2000)

2.2.5 Physiological traits retrieval from RTM and SIF quantification from airborne
hyperspectral imagery

By inverting the average reflectance spectra in RTMs, plant physiological traits such as
biochemical constituents and canopy biophysical traits were obtained for each tree-crown. For this
study, the method was based on the leaf optical properties model Fluspect-Cx (Vilfan et al., 2018)
coupled with the canopy bidirectional reflectance model 4SAIL (Verhoef et al., 2007), which is
henceforth referred to as FIUSAIL. Following the input parameter ranges provided by Wang et al.
(2022), a look-up table (LUT) containing 500,000 FIuSAIL model simulations was constructed

using randomly assigned input parameters. With 70%, 15%, and 15% of the LUT samples, training,
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testing, and validation were performed using the Statistics and Machine Learning Toolbox and the
Deep Learning Toolbox in MATLAB version R2020a (MathWorks Inc., Natick, MA, USA).
Using a 10-hidden-layer artificial neural network (ANN) (Hassoun, 1995, Combal et al., 2003),
the de-epoxidation state of the xanthophyll cycle (Cx) and other typical leaf biochemical
constituents (i.e., Cap, Ccar, Anth, Cam), along with canopy structural trait LAI, were identified
simultaneously. Validation was performed with the forward mode of RTM, using the inverted
parameters, and the minimum root mean square error (RMSE) between modeled and image spectra
was used as a cost function for optimal selection.

SIF quantification was undertaken follow the Fraunhofer line depth (FLD) principle (Plascyk and
Gabriel, 1975, Plascyk, 1975) based on three spectral bands (3FLD) (Maier et al., 2004). The
spectral windows for ‘in’ and ‘out’ of the peak irradiance (E) and radiance (L) using an oxygen A-
band in-filling method around 760 nm were compared following Eq. 1. The Ein/Lin ratio
corresponds to the minima of E/L in the 755-776 region, which was 762 nm in our observation.
Eout/Lout is the average value of the maximum E/L from the two shoulder regions (i.e., 744-754 nm
and 770-780 nm), which was the average from 750 nm and 778 nm in our observation. Moreover,
a non-fluorescence offset was applied to SIF, based on the soil features identified by the airborne
hyperspectral imagery, to reduce atmospheric and calibration effects (Belwalkar et al., 2022).
Following this, the inverted plant traits and SIF were assessed using field measurements and the

coefficients of determination with leaf nutrients were also calculated:

SIF = (Eout “Lin — Ein - Lout)/(Eout - Ein) (1)
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2.3 Results

2.3.1 Variability in nutrient concentrations from destructive sampling

Nutrient concentrations of 12 measured leaf macro- and micro-nutrient elements presented a wide
range of variability within the study plots and across two growing seasons, as shown in Table 2.2.
Total C featured the greatest concentration (mean values: 42.9% in 2020, 41.59% in 2021),
followed by Ca (mean values: 2.37% in 2020, 3.09% in 2021), K (mean values: 2.13% in 2020,
2.65% in 2021), and N (mean values: 2.07% in 2020, 2.36% in 2021), which were substantially
higher than Mg (mean values: 0.57% in 2020, 0.66% in 2021), S (mean values: 0.22% in 2020,
0.24% in 2021), and P (mean values: 0.15% both in 2020 and 2021). Among the micro-nutrients,
Mn (mean values: 352.57 mg/kg in 2020, 452.25 mg/kg in 2021) and Fe (mean values: 223.37
mg/kg in 2020, 136.56 mg/kg in 2021) were the most abundant, while the mean values for the rest
were around 100 mg/kg or less. Generally, the concentrations of nutrients were higher in 2021 than
in 2020. For example, the median/mean value for 2021 is similar to the maximum value for 2020
for N, Ca, Zn, and N/P ratio. However, Fe concentrations were much lower in 2021 than in 2020,
with the maximum concentration in 2021 being lower than the minimum value in 2020, which is

also reflected in the Fe/Mn ratio.
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Table 2.2. Descriptive data from the biochemical laboratory analysis of macro- and micro-nutrient
concentrations and their ratios in almond leaves from the 15 study plots in 2020 and 2021.

Minimum Maximum Median Mean Standard Deviation
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
Total Nitrogen (N) | 1.80 2.15 2.36 2.69 2.04 2.33 2.07 2.36 0.17 0.16
Phosphorus (P) 0.13 0.14 0.17 0.18 0.15 0.15 0.15 0.15 0.01 0.01
M?g;it Potassium (K) 153 1.97 3.05 361 191 252 2.13 2.65 0.50 0.60
concentration |calcium (Ca) 1.86 2.33 2.88 4.47 2.37 2.92 2.37 3.09 0.31 0.48
(Obwiw) Magnesium (Mg) 0.47 0.57 0.70 0.80 0.56 0.65 0.57 0.66 0.08 0.06
Sulphur (S) 0.15 0.21 0.28 0.27 0.22 0.25 0.22 0.24 0.04 0.02
Total Carbon (C) 40.50 40.22 44.50 4252 43.00 41.65 42.90 41.59 1.02 0.63
Micro- Iron (Fe) 17650 | 114.87 | 314.00 | 157.60 | 21350 | 136.17 | 223.37 | 13656 | 39.19 15.18
nutrient Manganese (Mn) 18250 | 304.87 | 526.00 | 689.65 | 32250 | 394.75 | 35257 | 452.25 | 109.20 | 125.61
concentration | Zinc (Zn) 64.05 88.55 120.00 170.83 86.65 114.11 89.23 125.56 17.56 26.42
(10°5%, Copper (Cu) 40.25 4539 | 118.80 | 20556 | 67.80 90.14 67.35 90.99 20.83 38.89
mg/kg) Boron (B) 28.90 32.38 40.25 45.91 32.15 37.47 33.59 38.58 3.45 4.60
N/P 12.48 13.70 14.81 16.67 13.36 15.66 13.54 15.51 0.70 0.80
N/K 0.74 0.70 1.27 1.19 1.07 0.93 1.01 0.92 0.21 0.15
N/(N+P+K) 0.41 0.40 0.54 0.53 0.50 0.47 0.48 0.46 0.05 0.04
K/Ca 0.53 0.53 1.46 1.55 0.91 0.90 0.93 0.89 0.29 0.30
Ratios K/(Ca+Mg) 0.43 0.45 1.16 1.22 0.72 0.73 0.74 0.73 0.23 0.24
Ca/Mg 3.62 3.62 5.28 5.62 3.89 478 4.19 4.69 0.58 0.53
Fe/Mn 0.41 0.20 1.04 0.44 0.65 0.31 0.68 0.32 0.18 0.07
Fe/N (106%) 77.41 48.94 | 14917 | 6981 | 10490 | 57.27 | 107.82 | 57.85 17.08 5.24
Zn/N (105%) 29.96 37.99 61.69 66.25 42.20 50.72 43.15 52.81 8.47 7.93
B/N (105%) 13.96 14.46 20.05 18.21 15.85 16.61 16.25 16.31 1.67 1.16

Fig. 2.4 illustrates the ranges of variation and the steady increase of the three quartiles for leaf
macro- and micro-nutrients in the 15 study plots over two years. There was a significant increase
in the mean concentrations of macro- and micro-nutrients (Figs. 2.4a-1) for each quartile in 2021
compared to 2020, except for total C (Fig. 2.4g) and Fe (Fig. 2.4h), whereas leaf P concentration
(Fig. 2.4b) was quite consistent between the two years. Overall, the variation of each element
among the three quartiles was reasonable, with a slightly larger variation in 2020 than in 2021. In
2021, the Q3 class, such as K, Ca, Fe, and Zn, appeared to have a greater range. In contrast to 2020,
leaf Fe concentrations (mg/kg) decreased significantly with a gradual slope in 2021, leading to the
same pattern for the Fe/Mn ratio. It is noteworthy that despite the increased N and K concentrations
(%wiw) in 2021, the N/(N+P+K) ratio (Fig. 2.4m) was higher in 2020 than in 2021, indicating that
the gain of N was lower than the K concentration in 2021. In contrast, the mean value for each

quartile of the K/(Ca+Mg) ratio (Fig. 2.4n) remained stable for two years.



1916
1917
1918
1919
1920
1921
1922

2.8 0.19 4
a) b) c)
26 E 0.18 35
24 0.17 3
B8
22 Q E
25 E

Ll
| i : |« g

=l
[Ix_]
[ xT]

0.16

Leaf Nitrogen (N, %)
Leaf Phosphorus (P, %)

Leaf Potassium(K, %)
w

1.6 0.13 15

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
45 ) 038 ) 03 o
e
o7t 028
_ ¢ = X
B g, 07| — $ 026 Q
S 35 = N L ]
S = z 065 B @ L 024
£ 3 2
3 3 . [5-4] g osf § 02 E
o =]
g 2.5 E é’ 055 | 2 02
© 2 ©
3 =8 w os) @ < 018
:| .
04s | 0.16
15 04 0.14
Q1 Q2 Q3 Ql Q2 Q3 Ql Q2 Q3
45 310 710
45| 8 200} h) = 660 i) I
E;
oy 5 270 S 610
- E;
R 435 B 250 E 560
S s} @ E 130 s o0 g
c ()
5 g o 460
£ a5 = 210 = 2 X
H E < S 410
S a} S o} B g
& Ba e ® 360
3 a5} S 170 8 510
— = == =
af X 150 S 260
205 | l 130 == 2 0
’ B3
40 110 160
Q1 Q2 Q3 Ql Q2 Q3 Q1 Q2 Q3
180 210 48
J) _ 190 k) 46 I)
160 %
E - £ 170 = M B
I B <
® 140 E 150 @ 42F
E 5 E o}
S ™ S 130 X aQ
(SR = =L 5
o & 110 || S Bd
s ] a 5 36|
100 &S 8 w0 sig a
® s %5 34t
2 g 3 70 == K !
20 3 @ 32
5 | @ |
60 30 28
Ql Q2 Qa3 Ql Q2 Q3 Q1l Q2 Q3
055 13 11
053 M) ] 124N 1} o) e
osf
051 | ] 11
< @ 1 08 |
¥ i S c
a 049 X T = 07
2 8 09 S E
< o (3
< 047} E = 2 o6
P2 2 08 ‘©
% 045 5 == g 05F E
g 4 07 04l =
043 |
E} 06 os b B8
041 | 0s é oo b B

0.39 04 0.1
Q1 Q2 Q3 Q1 Q2 Q3 Ql Q2 Q3

2020 B 2021

Fig. 2.4. Ranges of variation for biochemical laboratory-derived leaf macro-nutrients of: a)
Nitrogen; b) Phosphorus; d) Calcium; e) Magnesium; f) Sulphur; g) Carbon concentration (%w/w);
and leaf micro-nutrients of: h) Iron; i) Manganese; j) Zinc; k) Copper; 1) Boron concentration
(mg/kg); and nutrient ratios of m) N/(N+P+K), n) K/(Ca+Mg), 0) Fe/Mn in almond leaves for the
15 study plots in 2020 (green) and 2021 (brown). The crossed line and the line through the box
indicate the median and mean values, respectively. Q1, Q2, and Q3 represent the limits of the first,
second, and third quartiles, with 15 samples collected each year.
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2.3.2 Assessment of leaf spectral measurements

As shown in Fig. 2.5, the ranges of variation of leaf measurements using handheld instruments
over two years were calculated using three quartiles independently. There was a greater range of
variation observed in 2021 than in 2020, with the mean value of each quartile for Ca» (Fig. 2.53)
and Flav (Fig. 2.5b) content in 2020 being higher than in 2021. Furthermore, Anth (data not shown)
increased from a mean value of 0.19 in 2020 to 0.24 in 2021, with a less steep upward slope among
the three classes in 2021. However, the range of variation of NBI (Fig. 2.5¢), defined as the ratio
of Cab to Flav, remained quite stable over the course of the two years. In contrast, Ft measured by
FluorPen (Fig. 2.5d) increased steeply from 2020 to 2021 as a result of both inherent and

environmental factors.
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Fig. 2.5. Ranges of variation of leaf: a) chlorophyll (Cab); b) flavonoids (Flav); c) nitrogen balance
index (NBI) measured using Dualex; and d) steady-state chlorophyll fluorescence (Ft) using
FluorPen in almond leaves for the 15 study plots in 2020 (green) and 2021 (brown). The crossed
line and the line through the box indicate the median and mean values, respectively. Q1, Q2, and
Q3 represent the limits of the first, second, and third quartiles, with 15 samples collected each year.
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A summary of the correlations between in situ leaf measurements using handheld instruments and
various nutrient elements and their ratios can be found in Table 2.3. What stands out in this table
is the consistently significant correlations between Ft and the macro-nutrients of N, P, K (r? > 0.48,
p-values < 0.005) and certain micro-nutrients (i.e., B with r> > 0.47, p-values < 0.005, and Zn with
r? >0.39, p-values < 0.05) and ratios (e.g., K/Ca with r?> > 0.48, p-values < 0.005) across the two
years, followed by Flav and NBI measured with Dualex. In 2020, Anth showed strong correlations
with a number of nutrients, while none were observed in 2021. Despite this, Cap Was not sensitive
to nutrient profile over the two years, except in the B/N ratio (r> > 0.30, p-values < 0.05). Upon
closer inspection, Ca» showed positive and significant correlations with leaf N concentration in
2020 (r? = 0.60, p-value < 0.005), but was not sensitive in 2021 (r?> = 0.04, not significant) (Fig.
2.6a). On the other hand, Flav (r? > 0.52, p-values < 0.005) and NBI (r? > 0.64, p-values < 0.005)
displayed clearly strong relationships with leaf N across the two years, as shown in Figs. 2.6b and
6¢, yielding r?> = 0.68 and 0.50 (p-values < 0.005), respectively. In spite of this, the in situ leaf
measurements were not statistically significantly correlated with other macro-nutrients, i.e., Ca,

Mg, and S.
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Table 2.3. Correlations (r?) between leaf measurements and nutrient concentrations and their ratios
for the 15 study plots in 2020 and 2021. Field measurements include leaf chlorophyll a+b (Ca),
flavonoids (Flav), anthocyanins (Anth), nitrogen balance index (NBI) measured with Dualex, and
steady-state chlorophyll fluorescence (Ft) measured with FluorPen. Background color represents
the p-value — dark green for p < 0.005, medium green for 0.005 < p < 0.01, light green for 0.01 <
p < 0.05, and white for p > 0.05 (not significant).

Field data Cab Flav Anth NBI Ft
Nutrients 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021
Total Nitrogen (N) 0.04 0.01
Macro- Phosphorus (P) 0.43 0.18 0.43 0.42 0.08 0.43 0.32
nutrient Pota§5|um (K) 0.01 | 022 | 044 0.39 | 0.01 | 032 | 046
concentration Calcmm_(Ca) 001 | 019 | 012 | 022 | 010 | 001 | 006 | 0.04 | 024 | 0.05
(%6wiw) Magnesium (Mg) 0.14 0.05 0.06 0.05 0.15 0.01 0.03 0.01 0.08 0.03
Sulphur (S) 0.05 | 001 | 000 | 0.04 | 0.03 | 0.09
Total Carbon (C) 0.02 0.05 0.12 0.43 0.20
Micro-nutrient Iron (Fe) 0.04 | 0.00 0.33 | 0.08
concentration Manganese (Mn) 0.07 | 0.02 | 0.0 0.01
(10°5% Zinc (Zn) 0.02 0.13 0.35 0.36 0.03
mg/kgi Copper (Cu) 0.00 0.07 0.20 0.18 0.05
Boron (B) 0.00 | 0.20 | 0.46 0.30 | 0.00
N/P 0.05 | 0.23 | 0.01 0.04 | 0.15 0.01
N/K 0.18 | 030 | 0.17 0.13 | 0.02 | 0.07 | 031
N/(N+P+K) 0.17 0.30 0.18 0.13 0.01 0.07 0.32
K/Ca 0.00 | 0.26 | 041 035 | 001 | 028 | 0.34
Ratios K/(Ca+Mg) 0.00 | 0.26 | 043 039 | 001 | 030 | 034
Ca/Mg 010 | 019 | 001 | 024 | 001 | 003 | 0.00 | 0.05
Fe/Mn 005 | 004 | 016 | 018 | 030 | 0.04 | 015 | 0.09 .
Fe/N (10%%) 0.03 0.02 0.18 0.00 0.05 0.10 0.11 0.01 0.00 0.06
Zn/N (10°5%) 0.04 [ 0.15 | 0.07 -l 0.06 | 004 | 003 | 024 | 010 | 041
B/N (10%%) 044 030 | 0.01 0.00 | 000 | 001 | 014 | 0.01 | 0.34
[ pvalue<0005 | p-value < 0.01 [ p-value < 0.05 [ not significant |

Comparatively statistically significant correlations were clearly demonstrated between Ft and
macro-nutrients N, P, and K, with a similar slope in both years (Figs. 2.6d-f). A consistent
relationship between Ft and leaf N in both years (r> = 0.54 in 2020 and r? = 0.52 in 2021; p-values
< 0.005) was observed (Fig. 2.6d). Upon combining two years of data, the trendline clustered and
yielded r? = 0.74 (p-value < 0.005). Although Ft produced strong correlations with macro-nutrients
P and K at the 0.005 level for the individual years, the relationship with leaf N was weaker when

the data across the two years was aggregated.
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Fig. 2.6. Relationships between in situ Dualex-measured: a) leaf chlorophyll (Cab); b) flavonoid
(Flav) content; c) nitrogen balance index (NBI) and biochemically derived leaf Nitrogen
concentration (%ow/w) in 2020 (hollow gray circle) and 2021 (solid black circle). Relationships
between leaf steady-state fluorescence (Ft) and biochemically derived leaf macro-nutrients of: d)
Nitrogen; e) Phosphorus; f) Potassium concentration (%w/w) in 2020 (hollow gray circle) and
2021 (solid black circle). All p-values are less than 0.005, except for the one marked n.s. (not
significant).
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Table 2.4 presents the correlations between vegetation indices derived from the leaf reflectance
spectra and leaf nutrient assessments for both years. Results indicate varying degrees of correlation
and, in most cases, relationships were inconsistent between the two years. For both years, the
xanthophyll indices, BGR indices, and fluorescence reflectance index calculated at leaf level
demonstrated stronger relationships with primary macro-nutrient and micro-nutrient levels, but
none of these indices had statistically significant relationships with the levels of macro-nutrients
Ca, Mg, and S. More specifically, CTRI1, NPQI, PRIn, PRI-CI, BGI1, and BRI1 had statistically
significant relationships with the levels of N, P, K, and B for both years. Compared with other
indices, chlorophyll a+b indices showed stronger correlations with N and P levels in 2020,
whereas they were generally poorly correlated in 2021. For example, Cl demonstrated significant
correlation with N (r> = 0.79, p-values < 0.005) and P (r? = 0.62, p-values < 0.005) in 2020, but no
significant correlation (r> < 0.06) was observed in 2021. Although BGI1 and PRIms demonstrated
slightly higher correlations with leaf N for individual years, CTRI1 and PRIn exhibited stable
slopes across both years, leading to a more robust relationship when combined data over two years
are considered (Fig. 2.7). Additionally, NPQI (r> = 0.62 and 0.72 in 2020 and 2021, respectively;
p-values < 0.005) and some xanthophyll indices (i.e., PRI, PRIn, and PRI-CI) were significantly
and consistently correlated with leaf K (r? > 0.48, p-values < 0.005) in both years. At the 0.05 level,
CTRIL displayed reasonably strong relationships with leaf P and K levels over the two years.
Regarding the micro-nutrient B, the NPQI (r? = 0.65 in 2020 and r? = 0.68 in 2021; p-values <
0.005) and PRI (r? = 0.48 in 2020 and r? = 0.54 in 2021; p-values < 0.005) deserve particular
attention. Further, PRImas appears to be a reliable indicator of Fe (r? = 0.67 in 2020 and r> = 0.61 in
2021; p-values < 0.005) and Mn (r? = 0.45, p-values < 0.01 in 2020, and r? = 0.54, p-values < 0.005

in 2021) across years. In both years, the fluorescence reflectance index CUR displayed significant



1996 relationships with N, P, and Mn at the 0.05 level, but these were weaker than those of Ft. On the
1997  other hand, structural indices, such as NDVI, did not present skills to estimate the concentrations

1998  and ratios of nutrients for both years.



1999  Table 2.4. Correlations (r?) between vegetation indices at the leaf level and nutrient concentrations for the 15 study plots in 2020 and
2000 2021. Background color represents the p-value — dark green for p < 0.005, medium green for 0.005 < p < 0.01, light green for 0.01 <p
2001 < 0.05, and white for p > 0.05 (not significant).

Nutrients Macro-nutrient concentration (%ow/w) Micro-nutrient concentration (10°%, mg/kg)
e N P K Ca Mg s c Fe Mn Zn Cu B
ndices al
leaf lovel 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021
Chlorophyll a+b indices
ci [ 0.00 [ 013 | 000 | 000 | 013 | 043 [ 030 | 0.0 [ 003 | 023 | 000 | 014 | 0.0 011 | 0oL [ 016 | 002
CTRIL 034 | 033 | 033 | 043 | 002 | 004 | 013 | 002 | 003 | 0.6 | 021 | 0.04 | 015 | 0.5 0.5 | 048 | 034 | 039
SRPI 021 | 017 | 0.36 | 026 | 0.02 | 001 | 010 | 0.05 | 008 | 019 | 015 | 0.0L | 002 | 0.2 018 | 005 | 029 | 017
NPQI ] 005 | 029 | 0.06 | 009 | 000 | 020 |MNOW@N 000 | 040 | 023 022 | 036
NPCI 016 | 035 | 0.24 | 002 | 001 | 011 | 0.04 | 0.09 | 048 | 0.4 | 00L | 0.0L | 011 0.8 | 004 | 0.28 | 017
MCARI 003 | 007 | 002 | 002 | 0.00 | 009 | 003 | 0.00 | 000 | 014 | 009 | 027 | 013 007 | 023 | 014 | 004
TCARI 022 | 009 | 018 | 003 | 0.4 | 008 | 0.02 | 0.00 | 004 | 019 | 00L | 0.28 | 0.02 012 | 032 | 016 | 020
TCARI/OSAVI 0.07 | 019 | 0.08 | 002 | 0.23 | 003 | 042 | 0.00 | 0.1 | 046 | 008 | 043 0.09 010 | 000 | 0.25 | 008
PSSRD . [ 033 | 011 | 035 | 001 | 033 | 002 | 029 | 001 | 018 | 0.25 | 0.08 | 0.03 | 0.00 001 | 0.1 | 0.08 | 030
DCuCic [045 o012 | 047 | 016 | 014 | 0.00 | 026 | 001 | 019 | 000 | 0.09 | 043 0.2 009 | 014 | 018 | 014
Xanthophyll indices
PRI 042 0.02 | 008 | 008 | 009 | 0.0 | 017 | 0.36 | 006 017 | 0.19
PRIzss 043 016 | 005 | 0.05 | 018 | 0.07 | 0.16 | 0.02 | 0.08 | 022 | 0.8 001 | 000 | 016 | 002
PRImt 0.44 . . 0.06 | 024 | 0.08 | 013 | 002 | 013 | 0.23 | 0.6

004 | 005 | 001 | 000 | 004 | 0.04 0.23
005 | 0.06 | 008 | 006 | 002 | 014 | 029 | 0.9
002 | 010 | 002 | 011 | 001 | 020 | 041 | 0.04

. . 0.01 0.03 0.18 0.09
. 0.03 0.44 0.37
. 0.23 0.21 0.46

0.15 0.15 0.21 0.44

PRI-CI 0.27

BGR indices

B 0.33 ] ] 006 | 009 | 004 [ 002 | 017 | 037 | 0.03 | 019 | 0.22 - 0.20 | 0.16 - 019 | 0.20 | 047 | 0.38
BGIL i ] 008 | 017 | 00L | 001 | 015 | 019 | 0.06 | 024 | 042 032 | 0.10 017 | 0.33 | 0.34

BRIL 0.37 ] 0.45 ) 006 | 0.3 | 004 | 004 | 024 | 026 | 000 | 015 | 0.3 0.15 | 0.10 021 | 017 | 043 | 0.33
Fluorescence reflectance index

CUR 66 033 [ 031 | 041 | 014 | 043 | 001 | 026 | 007 | 003 | 000 | 000 | 015 | 002 | 030 | 017 | 032 | 037 | 003 | 045 | 005 | 037 | 0.23 |06

p-value < 0.01 [ p-value < 0.05 [ not significant |
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Fig. 2.7. Relationships between leaf CTRI1, BGI1, PRIms4, PRIn, and biochemically derived leaf

nitrogen concentration (%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). All p-
values<0.005.

2.3.3 Assessment of vegetation indices and trait retrievals from airborne hyperspectral
datasets

When canopy structural and background effects were taken into account, vegetation indices
calculated at canopy level (Table 2.5) typically showed weaker relationships with nutrients than
those calculated at leaf level. In addition to the results at the leaf level, fluorescence reflectance
index (p-values < 0.005) and xanthophyll indices (p-values < 0.05) derived at the canopy level also
appear to have had significant correlations with macro-nutrients N and P over the two years. In
addition, CTRI1 also demonstrated reasonably strong relationships with leaf N (r? = 0.61 in 2020

and r> = 0.52 in 2021; p-values < 0.005), P (p-values < 0.05), and K (p-values < 0.05) over the two
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years. Additionally, the CUR fluorescence reflectance index presented surprisingly strong and
consistently significant correlations with leaf N (r? = 0.75 in 2020 and r? = 0.58 in 2021) and P (r?
= 0.53 in 2020 and r? = 0.58 in 2021) at the level of 0.005 over the two years, which is even
stronger than the correlations observed at leaf level. In accordance with the leaf level results, CUR
at canopy level also demonstrated a strong correlation with Mn (p-values < 0.05) for both years.
Further, MCARI was able to provide a good estimate of leaf N (r?> = 0.61 in 2020 and r?> = 0.48 in
2021; p-values < 0.005), P (p-values < 0.05), and Zn (p-values < 0.05) at canopy level across both
years. Besides this, the PRI family exhibited a generally stronger relationship with nutrient levels
in 2021 than in 2020. Nevertheless, PRIm1 was statistically significantly correlated at the level of
0.05 with Mn for both years, and the same correlation was recorded for PRI-CI with S. Even though
the structural indices at the canopy level were inferior to nutrients compared to pigment-related
indices, their correlations still outperformed those at the leaf level. For example, EV1 at the canopy
level demonstrated strong relationships with leaf N (r?> = 0.32 in 2020 and r? = 0.31 in 2021; p-
values < 0.05) and the B/N ratio (r> = 0.46 in 2020 and r?> = 0.44 in 2021; p-values < 0.01) for both

years, while no significant relationships were found at the leaf level.
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Table 2.5. Correlations (r?) between vegetation indices calculated from airborne hyperspectral imagery and nutrient concentrations for
the 15 study plots in 2020 and 2021. Background color represents the p-value — dark green for p < 0.005, medium green for 0.005 <p <
0.01, light green for 0.01 < p < 0.05, and white for p > 0.05 (not significant).

Nutrients Macro-nutrient concentration (%ow/w) Micro-nutrient concentration (10°%, mg/kg)
Indices N K Ca Mg S c Fe Mn Zn Cu B
naices a
canopy level 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 \ 2021 | 2020 \ 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 \ 2021 | 2020 \ 2021 | 2020 \ 2021
Structural indices
NDVI 0.05 | 013 | 001 | 015 [ 004 | 021 [ 001 [ 016 [ 024 [ 000 [ 019 [ 0.3 [ 000 [ 0.03 [ 002 [ 004 [ 001 [ 019 [ 003 [ 021 [ 013 | 024 | 008 | 037
EVI 032 | 031 | 017 | 081 | 002 | 038 | 007 [ 020 0.01 | 030 | 001 | 001 | 006 | 001 | 015 | 002 | 027 | 004 | 028 | 001 | 029 [ 005
OSAVI 021 | 022 | 009 | 023 [ 004 | 029 [ 003 [ 018 [ 038 [ 000 [ 025 | 0.00 [ 000 [ 005 [ 001 [ 010 | 001 [ 024 | 004 | 026 | 005 | 028 | 008 | 046
Chlorophyll a+b indices
Cl 0.04 0.05 | 0.02 003 | 000 | 007 | 022 | 000 | 029 | 014 | 040 | 0.04 | 017 | 000 | 013 | 011 | 0.08 | 005 | 025 | 008 [MNOBEN 0.15
045 035 | 035 | 035 | 000 | 005 | 000 | 000 | 000 | 0.29 0.02 | 030 | 024 0.06 | 011 | 031 | 007 | 022 | 041 | 021
0.02 | 002 | 030 | 001 | 010 | 001 | 039 | 000 | 025 | 025 0.00 | 011 [ 006 | 020 [ 004 | 000 | 000 | 003 000 | 039 | 0.02
0.03 | 016 | 004 | 032 [ 004 | 033 | 000 | 019 | 007 | 004 | 003 | 012 | 000 | 022 | 004 | 027 | 001 [ 020 | 001 [ 010 | 0.05
0.02 | 029 | 001 ] 011 [ 001 | 039 | 000 | 025 | 024 000 | 011 | 006 | 019 [ 004 | 000 | 000 | 003 | 000 | 039 | 0.02
046 | 0.18 010 | 0.09 | 017 [ 002 | 004 | 032 | 025 | 001 | 031 | 021 | 031 | 012 | 029 | 034 [ 002 [ 025 [ 013 | 033
TCARI 0.04 | 021 [ 004 | 018 [ 0.00 | 026 | 0.04 | 009 | 027 | 015 | 001 | 023 | 002 | 035 | 000 | 025 | 000 [ 009 [ 000 | 016 [ 0.00
TCARI/OSAVI 0.00 | 041 [ 000 | 018 [ 0.04 | 010 | 002 | 002 | 016 | 023 | 001 | 027 | 000 | 042 004 | 025 | 002 [ 020 | 004 [ 036 | 006
PSSRb 012 | 021 [ 015 | 002 [ 013 | 044 @ 000 | 032 | 007 | 012 | 008 | 000 | 004 | 000 | 022 | 000 | 049 | 007 | 018 [ 020 | 035
DCarCre 0.20 | 008 [ 023 ] 012 [ 002 | 042 | 006 | 023 | 032 | 004 | 001 | 009 | 007 | 021 | 001 | 013 | 010 | 005 [ 005 | 004 [ 0.10
Xanthophyll indices
PRI 0.00 [ 0.00 [ 0.03 ] 003 ] 014 [ 018 | 036 | 003 | 019 | 035 | 018 | 001 | 006 | 015 | 006 | 016 | 0.16 | 0.03
PRIsis 005 | 024 | 007 [ 000 | 002 | 003 | 030 | 004 | 037 | 019 | 043 026 [ 0.23 0.00 0.15
PRIm ! 0.04 | 027 | 008 | 001 | 002 | 001 | 026 | 004 | 035 | 017 | 037 | 027 [ 024 0.00 0.11
PRIm4 0.34 013 | 029 | 019 | 002 | 011 | 004 | 012 | 001 | 022 | 014 | 034 | 023 [ 022 0.00 | 046 | 0.09
PRI, 0.31 ] 0.07 | 0.01 0.04 0.12 | 006 [ 0.07 [ 000 | 041 [ 002 [ 003 | 002 | 024 | 000 | 023 | 007 | 0.09
PRI-CI 013 | 018 | 0.00 | 0.00 | 028 | 0.00 ]| 027 | 032 | 010 | 000 | 001 | 022 | 000 | 000 [ 001 | 006 [ 011 [ 006 | 024 | 0.00 |
BGR indices
B 0.11 [ 006 [ 018 | 0.06 | 038 [ 006 | 0.00 | 0.02 [ 003 [ 012 | 000 | 025 [ 026 | 0.07 | 0.10 [ 0.0 0.03 | 001 [ 000 ] 008 | 001 [ 043 | 0.01
BGI1 0.28 024 | 019 | 031 ] 009 [ 010 | 023 | 004 | 016 | 023 | 014 | 003 | 019 | 006 002 | 014 [ 021 | 010 | 017 | 0.18 | 0.9
BRI1 041 | 007 | 034 | 001 [ 043 | 001 | 000 [ 002 [ 002 [ 000 [ 002 [ 0.29 0.01 | 029 | 007 | 044 003 ]| 011 | 001 | 012 | 0.00 0.02
Fluorescence reflectance index
CUR 007 [OBAN 012 | 019 | 043 | 000 | 021 | 010 | 006 | 005 | 012 | 022 | 031 | 027 | 0.4 [BNOBGN o004 JNOBIN 005 !‘
p-value < 0.01 [ p-value < 0.05 [ not significant |
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Generally speaking, SIF quantified from airborne data and plant traits derived via RTM from
hyperspectral imagery outperformed vegetation indices in nutrient assessment, yielding stronger
correlations with higher significance levels. As shown in Table 2.6, Cab and Ccar had the strongest
relationships with nutrients, closely followed by Cx and SIF. Nevertheless, all of them showed
significant correlations with N at the 0.005 level, whereas Cab and Ccar (p-values < 0.01) had more
significant correlations with P concentration than Cx and SIF (p-values < 0.05) did across both
years. Despite this, these biochemical constituents (i.e., Cab, Ccar, and Cx) also displayed strong
relationships with K (p-values < 0.005) and a number of micro-nutrients and nutrient ratios in 2021.
There are also prominent relationships (p-values < 0.05) between Ccar and Mn, as well as between
Cx and Zn, over the two years. Further, statistically significant correlations were most evident
between Anth and N (r? = 0.58, p-values < 0.005), as well as between Anth and P (r? = 0.46, p-
values < 0.01), in 2020 but their correlations were not significant in 2021, which is consistent with
the results obtained from the in situ leaf measurements. Nonetheless, it appears that Cam was a
reliable indicator of Ca/Mg and B/N ratios (p-values < 0.05) over the two years. No significant

correlation was observed between LAI and nutrients or their ratios for both years.



2047
2048
2049
2050
2051
2052
2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

Table 2.6. Correlations (r?) between RTM-inverted plant traits from airborne hyperspectral
imagery and nutrient concentrations and ratios for the 15 study plots in 2020 and 2021. Traits
derived from airborne data include leaf chlorophyll a+b (Cab), carotenoids (Ccar), anthocyanin
(Anth), photochemical reflectance parameter (Cx), dry matter content (Cam), leaf area index (LAI)
by inversion algorithm, and solar-induced fluorescence (SIF). Background color represents the p-
value: dark green for p <0.005, medium green for 0.005 <p <0.01, light green for 0.01 <p < 0.05,
and white for p > 0.05 (not significant).

. . RTM-derived plant traits SIF
Airborne derived
Nutrien traits | C,, (ng/cm?) Cear (Mg/cm?) | Anth (ug/cm?) Cx Cam (g/cm?) LAI SIF
utrients
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021
N 0.09 036 | 020 | 002 | 005
P 043 043 046 | 0.05 | 0.38 018 | 017 | 0.00 | 0.06 0.29
r']\ﬂ?fl;%t K 0.07 0.12 0.02 | 0.06 | 0.10 008 | 025 | 023 | 009 | 030 | 044
concentration |2 003 | 023 | 004 | 017 | 012 | 001 | 024 | 009 | 000 | 017 | 001 | 011 | 010 | 0.3
(%wiw) Mg 016 | 0.00 | 016 | 0.00 | 034 | 005 | 034 | 000 | 043 | 0.00 | 006 | 000 | 0.5 | 0.00
s 005 | 006 | 0.04 | 001 | 017 | 023 | 007 | 011 | 041 | 001 | 007 | 009 | 007 | 001
c 020 | 006 | 024 | 014 | 002 | 001 | 008 | 012 | 004 | 004 | 017 | 002 | 011 | 0.23
Micro- Fe 020 | 021 | 022 | 018 | 012 | 000 | 019 | 039 | 001 | 008 | 0.00 | 001 | 002 | 017
nutrient Mn 026 | 024 | 026 | 029 | 012 | 002 | 014 | 024 | 000 | 025 | 0.00 | 014 | 033 | 0.28
concentration | Zn 0.16 0.19 017 | 0.04 | 035 JNOBAM| 001 | 026 | 0.0L | 013 | 025 | 0.35
(10%%, Cu 0.02 004 | 036 | 0.04 | 001 | 009 | 042 | 002 | 024 | 012 | 011 | 034 | 030
mg/kg) B 0.07 0.10 0.01 | 004 [ 005 | 046 | 009 | 039 [ 0.09 | 024 | 0.24
N/P 012 | 0.07 | 013 | 0.08 | 002 | 0.00 | 008 | 002 | 010 | 0.00 | 004 | 002 | 001 | 0.00
N/K 000 | 046 | 0.00 002 | 002 | 000 | 034 | 030 | 020 | 018 | 0.09 | 009 | 029
N/(N+P+K) 0.00 000 | 046 | 0.0L | 0.02 | 000 | 034 | 029 | 022 | 016 | 010 | 0.09 | 029
K/Ca 0.08 0.12 006 | 006 | 020 | 044 | 005 | 027 | 0.08 | 011 | 024 | 039
Ratios K/(CatMg) 0.10 0.14 008 | 006 | 023 | 043 | 003 | 026 | 0.08 | 010 | 026 | 0.39
Ca/lMg 007 | 047 | 005 | 038 | 009 | 000 | 002 | 022 |MOB8M 030 | 002 | 025 | 001 | 019
Fe/Mn 012 | 014 | 013 | 015 | 008 | 007 | 006 | 008 | 005 | 020 | 0.00 | 014 | 037 | 015
Fe/N(10°%) | 000 | 000 | 000 | 0.00 | 0.0 | 0.02 | 00L | 003 | 017 | 000 | 001 | 001 | 0.06 | 0.0
Zn/N (10°%) | 0.00 000 | 046 | 001 | 002 | 007 | 041 | 011 | 023 | 000 | 014 | 003 | 022
B/N (10%%) 018 | 027 | 014 | 029 | 023 | 000 | 016 | 0.2 |00 034 | 005 | 033 | 0.02 | 018
[ pvalue<0005 | p-value < 0.01 [ p-value < 0.05 | not significant |

Throughout both years, SIF exhibited significant correlations with leaf K values (p-values < 0.05),
and with N and P values, which is consistent with the leaf-level Ft result, implying that chlorophyll
fluorescence could serve as a more reliable indicator of K than biochemical constituent testing or
vegetation indices. Fig. 2.8 illustrates the relationships and trendlines between SIF and the macro-
nutrients N, P, and K. Despite weaker relationships from SIF than from in situ Ft results, which
may be related to the aggregated pixels representing soil and other background, the clustered
trendlines of SIF vs. N, as well as the similar slopes of SIF vs. K across the two years, stand out.
Likewise, when aggregated data for two years were analyzed, the correlation between SIF and leaf
N (r>=0.74) and K (r? = 0.46) was significant at the 0.005 level, with a better fit than leaf P, which

is in agreement with Ft results at leaf level. Additionally, SIF also demonstrated consistently strong
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relationships with certain micro-nutrients and ratios (i.e., Mn, Cu, K/(Ca+Mg)) for both years, with
p-values less than 0.05. Overall, SIF and the fluorescence reflectance index CUR demonstrated
consistent relationships with nutrients which were stronger than those demonstrated by vegetation

indices.
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Fig. 2.8. Relationships between canopy solar-induced fluorescence (SIF) and biochemically
derived leaf macro-nutrient levels of: a) Nitrogen; b) Phosphorus; c) Potassium concentration
(%wi/w) in 2020 (hollow gray circle) and 2021 (solid black circle). The highlighted text represents
the p-value — below 0.005 (white), 0.01 (light gray), up to 0.05 (medium gray).
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2.4. Discussions

Cab has long been widely used as a measure of plant vigor and health condition (Ciganda et al.,
2008, Xue and Su, 2017, Haboudane et al., 2008), as well as a nutrient deficiency indicator (Wood
et al., 1993, Herrmann et al., 2010, Bojovi¢ and Markovi¢, 2009, Yoder and Pettigrew-Crosby,
1995). However, at leaf level, rapid Cab readings from field-portable chlorophyll meters are based
on a limited number of bands to assess leaf greenness and are affected by several factors,
specifically plant species, fertilizer application timing, phenological stages, and growing seasons
(Schepers et al., 1992, Masoni et al., 1996). Thus, Cab readings fail to consistently explain the
variability of nutrients across years, as found by Xiong et al. (2015). This is also the case with
most of the vegetation indices, which are calculated from only a few spectral bands and are further
constrained by factors like soil background, leaf inclination angle, and atmospheric conditions
(Baret and Guyot, 1991). However, our results demonstrated that, rather than relying upon the Cap
proxy, the actual values for Ca» content and other biochemical constituents derived from physical
models exhibited more consistent relationships with nutrients over both years, considering the
presence of multiple varieties, ages, and management practices within the orchard. These results
are in agreement with other studies that report the superior performance of modeling approaches
compared to the methods based on standard vegetation indices (Camino et al., 2018).

In addition, our results are in accordance with other studies (Parkhill et al., 2001, Kalaji et al.,
2018, Kalaji et al., 2014, Camino et al., 2018) that have suggested that chlorophyll fluorescence
is a good proxy for photosynthesis and is closely related to nutrients, especially nitrogen. The
results of our study reinforce this finding because we found that the measurements of Ft at leaf
level displayed statistically significant correlations with nutrient values (i.e., N, P, and K) at the

level of 0.005 across both years, outperforming Cab readings and vegetation indices. These
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significant relationships and consistent slopes are also found with the SIF quantified at canopy
level for both years. Further, when combining the data from the two years, the relationship with N
is even stronger, yielding r? = 0.74 (p-values < 0.005) at both the leaf and canopy levels. The close
relationship between N and chlorophyll fluorescence indicates that N availability plays a greater
role in photosynthesis and fluorescence emission than P and K availability do. Cab is a pigment
that is crucial to photosynthesis and N is an essential component of Can, whereas chlorophyll
fluorescence is a measure of the amount of light energy emitted by chlorophyll molecules upon
returning to their ground state following light excitation (Bolhar-Nordenkampf and Oquist, 1993).
So, when plants have inadequate nitrogen content, their Ca levels decrease, which results in a
reduction in photosynthetic performance and can negatively impact the amount of chlorophyll
fluorescence emitted by the plant. However, even though P and K are also essential nutrients for
plant growth, they do not have as direct an influence on chlorophyll levels or photosynthetic
efficiency as N does. Therefore, it is unlikely that the presence of these nutrients has the same
significant and consistent impact on chlorophyll fluorescence over time as N does. In addition, the
P concentration (%) is lower (< 0.18%) and displays less variation (standard deviation of 0.01)
than the N and K concentrations do (Table 2.2), resulting in a lower level of sensitivity to N and
K.

In comparison to primary macro-nutrients, the values for secondary macro-nutrients (e.g., Ca, Mg)
and for micro-nutrients (e.g., Fe, Cu) demonstrated weaker relationships with Ca» and chlorophyll
fluorescence. This is generally due to their indirect and secondary roles in the photosynthetic
process interfering with enzyme activity, protein synthesis, and membrane stability (R6mheld and
Marschner, 1991, Maathuis, 2009). These ‘assistant’ roles may not be as closely linked to Cab and

chlorophyll fluorescence as factors like light intensity and water availability, which directly affect
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the photosynthetic process. Furthermore, it is possible that the relationships between these
nutrients and Cab or chlorophyll fluorescence, which are only indirect, do not hold across growth
stages, variations in fertilizer application, or environmental conditions. For example, Cu was only
applied at the beginning of the growing season, so the end of the season might not be the most
appropriate time to assess its effects on the leaf pigment pool.

There is evidence of strong relationships between chlorophyll fluorescence and nutrient ratios (e.g.,
K/(Ca+Mg)), yielding significant results, 0.005 and 0.05 at leaf and canopy levels, respectively.
The robustness of these relationships was not strongly demonstrated in this study over time, so
further testing is needed to determine their validity. The timing of fertilizer applications and
environmental conditions could also contribute to changes in nutrients’ availability in the soil, their
interactions, and plant uptake of them. Therefore, leaf nutrient assessment is not necessarily a
reflection of nutrient availability in the soil. Nevertheless, nutrient ratio measurements can still be
useful in assessing plant nutrient status, potential limitations of photosynthetic performance, and

changes in nutrient availability, which can inform fertilizer application management.

2.5. Conclusions

This study examines the sensitivity of plant traits and vegetation indices to macro- and micro-
nutrient concentrations and their ratios in almond orchards, at both the leaf and canopy levels, over
the course of two years. The RTM-derived biochemical constituent levels (i.e., Cab, Cecar, Cx)
calculated from airborne hyperspectral imagery outperformed vegetation indices in explaining
nutrient variability across both years. In particular, the biochemical constituents showed significant
correlations with leaf N (p-values < 0.005) for both years. Chlorophyll fluorescence emission

demonstrated consistently significant correlations with the primary macro-nutrients (i.e., N, P, and



2140

2141

2142

2143

2144

2145

2146

2147

K) throughout the two years, at both leaf and canopy levels, suggesting it is a reliable indicator of
nutrient variability, especially when considering data across years. For instance, the relationships
of both leaf Ft and canopy SIF with leaf N yielded r?> = 0.74 (p-values < 0.005) when combining
the data from the two years. In addition, the relationships of pigment-related indices with leaf N
were stronger than with structural indices and indices like CTRI1 (p-values < 0.005) and PRIma
(p-values < 0.05), yielding consistently strong correlations over two years at both leaf and canopy
levels. The relationships of leaf P and K with fluorescence and trait identification were weaker

than those of leaf N, but they were still statistically significant (p-values < 0.05).
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Abstract

Accurate, spatially extensive, and frequent assessments of plant nitrogen (N) enabled by remote
sensing allow growers to optimize fertilizer applications and reduce environmental impacts.
Standard remote sensing methods for N assessment typically involve the use of chlorophyll-
sensitive vegetation indices calculated from multispectral or hyperspectral reflectance data.
However, the chlorophyll a+b derived from spectral indices is indirectly related to leaf N and
saturates at high leaf N levels, dramatically reducing the sensitivity with leaf N under these
conditions. Furthermore, these relationships are heavily influenced by canopy structure, variability
in leaf area density, proportion of sunlit-shaded tree-crown components, soil background, and
understory. Recent studies in uniform crops have demonstrated that estimation of plant N can be
improved by considering leaf biochemical constituents derived from radiative transfer model
(RTM) and solar-induced fluorescence (SIF). However, it is unclear whether these methods are
transferable to tree crops due to their intrinsic physiological differences, structural complexity, and
within-tree crown heterogeneity. We investigated how various hyperspectrally derived proxies for
leaf N, including RTM-based traits and SIF, could be combined to assess N status on a 1,200-ha
almond orchard across two growing seasons. RTM-based chlorophyll a+b content (Ca) and SIF
were found to be the most important and consistent predictors for leaf N compared to other leaf
biochemical and biophysical traits. Ca» alone was a modest predictor of leaf N variability (r? =
0.49, RMSE = 0.16%, p-value < 0.001), but when the non-collinear SIF and Cap traits were coupled
together, predictions improved dramatically (r?> = 0.95, RMSE = 0.05%, p-value < 0.001). Leaf
area index (LAI) was poorly associated with leaf N, suggesting that leaf physiological traits may
be more important than structural traits in quantifying leaf N in well-managed orchards

characterized by high N levels. Consistent results across the 2 years suggests the importance of
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airborne SIF coupled with Cab for precision agriculture and leaf N status assessment in almond

orchards.
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3.1 Introduction

Nitrogen (N) is an essential nutrient for plant growth, productivity, and quality and is often the
major limiting factor for photosynthesis (Evans, 1989). However, more N fertilizer than needed is
often applied to maximize yield and quality (Conant et al., 2013). In addition to the economic costs
of N over-fertilization, excess N has detrimental effects on the environment, leading to pollution
of the atmosphere and water systems (Stevenson and Cole, 1999, Shcherbak et al., 2014, Zebarth
et al., 2009). Monitoring crop N status is essential for optimizing N applications and maintaining
productivity while minimizing environmental impacts for sustainable agriculture (Matson et al.,

1998, Snyder et al., 2009, Manna et al., 2005, Panhwar et al., 2019).

The concentration of leaf nitrogen can be determined through various approaches. The chemical
analysis of leaf tissue via destructive sampling, such as the traditional Kjeldahl-digestion method
(Kjeldahl, 1883) or the simpler and faster Dumas combustion method to avoid using toxic
chemicals (Dumas, 1831), has been the standard method for the assessment of leaf N. Although
this approach is very accurate, it is not cost- or time-effective for the continuous monitoring of N
status over large areas. In recent decades, imaging spectroscopy has been used as an alternative to
lab-based assays from the leaf, enabling rapid N monitoring at a range of spatio-temporal scales
(Schepers et al., 1992, Chapman and Barreto, 1997, Nageswara Rao et al., 2001, Dong et al., 2020,
Romina et al., 2019) to canopy level (Pinter Jr et al., 2003, Nigon et al., 2020, Inoue et al., 2012,
Clevers and Kooistra, 2011, Clevers and Gitelson, 2013, Gnyp et al., 2014, Haboudane et al.,

2002).

Most remote sensing (RS) studies of leaf N depend on an assumed strong correlation between leaf
chlorophyll a+b (Cab) and N (Evans, 1989). Thus, Ca has been proposed as a common RS-based

indicator for N assessment (Wood et al., 1992, Yoder and Pettigrew-Crosby, 1995, Schlemmer et
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al., 2013, Clevers and Gitelson, 2013). The conventional approach in these studies has been to
determine an empirical relationship between destructively sampled tissue N and non-destructive
proxy measurements, including hand-held spectral readings at visible, red-edge, and near-infrared
spectral bands (Cerovic et al., 2015, Cerovic et al., 2012, Bullock and Anderson, 1998, Chang and
Robison, 2003, Jongschaap and Booij, 2004, Padilla et al., 2018, Wood et al., 1992) or
chlorophyll-sensitive vegetation indices derived from multispectral or hyperspectral reflectance at
leaf and canopy levels (Filella et al., 1995, Fitzgerald et al., 2010, Cummings et al., 2021, Nigon
et al., 2020, Inoue et al., 2012, Clevers and Gitelson, 2013, Gnyp et al., 2014). Although leaf
chlorophyll meters are valuable tools for quick on-farm determination of leaf N status, the
relationship between chlorophyll meter readings and N content differs across plant genotypes and
environmental contexts (Xiong et al., 2015). Furthermore, these chlorophyll indicators from
chlorophyll meters or vegetation indices are not the actual chlorophyll content, but rather the proxy
for leaf greenness. Although they are generally related to leaf N, these proxies saturate at high N
levels, resulting in reduced sensitivity to increased N values (Padilla et al., 2018, Romina et al.,
2019, Li et al., 2020, Schlemmer et al., 2013). In addition to these leaf greenness indicators,
vegetation indices widely used in RS such as the Normalized Difference Vegetation Index (NDVI)
(Rouse et al., 1974), are also indirectly related to N (Yoder and Pettigrew-Crosby, 1995). They
have been demonstrated to lack sensitivity and to saturate at high plant densities and under
overfertilization levels (Matsushita et al., 2007, Flowers et al., 2003, Nguy-Robertson et al., 2012).
To prevent these effects, proxies directly linked to leaf N through pathways other than via the

quantification of chlorophyll content are required.

Moreover, spectral indices that incorporate red-edge spectra are thought to be improved ways to

derive N status due to the higher sensitivity of this spectral region to moderate and high chlorophyll
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content levels (Gitelson et al., 1996, Gitelson et al., 2003). Fitzgerald et al. (2006) found that the
Normalized Difference Red-Edge (NDRE) index, which is calculated by replacing the red band of
NDVI with the red-edge band, was a reliable indicator of chlorophyll and N status. Another index
termed the Canopy Chlorophyll Content Index (CCCI) is based on a two-dimensional planar
extension of NDVI and NDRE and has been proposed as a method for improved estimation of N
in annual crops (e.g., wheat (Triticum aestivum)) (Fitzgerald et al., 2010, Perry et al., 2012, Li et
al., 2014). Another approach combining the information in the red-edge with a structural index is
the use of the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) with the
Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI) (Haboudane et al., 2002). These
indices tend to be sensitive to chlorophyll a+b induced by N variability while also accounting for
background effects (Gabriel et al., 2017, Wu et al., 2008). Nevertheless, empirical relationships

are required to estimate N from these vegetation indices.

As leaf N content is associated with many other physiological traits besides Cas content, the use of
radiative transfer model (RTM)-based retrievals of plant physiological traits is a promising
alternative to spectral indices for assessing leaf N. Due to the fact that leaf N is not an input in the
RTM, nutrient variability was described through a wide range of model-simulated plant traits,
including leaf constituents (e.g., Can, dry matter (Cam), water content (Cw)), and canopy structural
parameters (Wang et al., 2018, Thorp et al., 2012, Baret et al., 2007, Camino et al., 2018a, Wang
etal., 2021). Traits derived from RTMs are considered more accurate and transferrable than index-
based empirical algorithms (Kimes et al., 2000), although this has only been tested for uniform
crops. For orchards, this method is more complex due to the tree crown heterogeneity and
clumping effects with mixed crown-shadow-soil backgrounds. Radiative transfer model inversion

also allows inverting for other non-photosynthetic plant pigments, such as carotenoids (Ccar) and
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xanthophylls (Cx), which are involved in photosynthetic light-harvesting (Niyogi et al., 1997,
Jacquemoud et al., 2009, Vilfan et al., 2016, Vilfan et al., 2018). Plants prevent photodamage by
deoxidizing the xanthophyll violaxanthin (V) into antheraxanthin (A) and zeaxanthin (Z) in
response to excess excitation energy (Demmig et al., 1987, Gilmore, 1997). Therefore,
xanthophyll composition is linked to photosynthetic efficiency and may thus relate to leaf N status,
particularly under abiotic stress conditions (Verhoeven et al., 1999, T6th et al., 2002, Cheng, 2003,
Ramalho et al., 2000). Thus, based on their links with photosynthesis under stress conditions, the
complete set of photosynthetic and non-photosynthetic pigments, along with structural traits, can

lead to a more informed assessment of N.

In the last few decades, solar-induced fluorescence (SIF) has been proposed as a trait for
monitoring plant physiology, vegetation functioning, and plant biotic and abiotic stress detection
due to the dynamic changes in photochemical and non-photochemical quenching in the
photosynthetic process (see review paper by Mohammed et al. (2019) and studies from
Mohammed et al. (1995), Porcar-Castell et al. (2014), Maxwell and Johnson (2000), Murchie and
Lawson (2013), Sayed (2003), Zarco-Tejada et al. (2018)). It is well known that abiotic-induced
stress conditions such as light intensity, water status, and temperature extremes modulate the
photosynthetic performance (Ashraf and Harris, 2013, Biswal et al., 2011, Saibo et al., 2009).
Most importantly, SIF is considered a direct proxy for electron transport rate and thus a direct
measure of photosynthesis (Krause and Weis, 1991, Walker et al., 2014, Genty et al., 19809,
Middleton et al., 2016). N modulates the fluorescence-photosynthesis link, thus several studies
propose SIF as a potential proxy for the assessment of leaf N status at both the leaf (Lu and Zhang,
2000, Huang et al., 2004) and the canopy levels (Cendrero-Mateo et al., 2016, Middleton et al.,

2016, Corp et al., 2003, Mohammed et al., 2019, Wang et al., 2021). For example, Camino et al.



2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

(2018a) showed that SIF improved predictions of N content in wheat. However, in tree orchards,
SIF is affected by canopy structure and the mixing of within-crown sunlit and shaded components.
This adds complexity to the accurate SIF quantification in tree orchards (Camino et al., 2018b).
The combined use of RTM-based leaf biochemistry estimates with SIF for N assessment is poorly
studied in structurally complex tree orchards. Such a methodology may have important uses in
precision agriculture when using commercial hyperspectral sensors with 5- to 6-nm spectral
resolution, which have been shown to be sensitive to SIF emission and thus are useful for
quantifying abiotic sources of stress (Belwalkar et al., 2022, Zarco-Tejada et al., 2012, Zarco-

Tejada et al., 2016, Zarco-Tejada et al., 2013, Raya-Sereno et al., 2021, Belwalkar et al., 2021).

In this study, we explored the contribution of various hyperspectrally derived proxies for leaf N
status assessment in almond orchards across two consecutive growing seasons, including airborne-
quantified plant physiological traits estimated by RTM inversion and canopy SIF. We evaluated
the accuracy and robustness of the retrieved plant physiological traits and the collinearity among
plant pigments, SIF, and structural traits when assessing leaf N variability across the field. Rather
than a data driven approach, our study advances the mechanistic understanding of the responses

of RS-derived plant traits to leaf N content changes.

3.2 Material and methods

3.2.1 Study area and field data collection
This study was conducted in a commercial almond orchard in northwest Victoria, Australia, at the
pre-harvest stage of the growing season in 2019/2020 and 2020/2021 when the leaves are mature

and have reached their maximum N uptake capacity. The region has a Mediterranean climate with
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hot, dry summers and mild, wet winters. Average annual precipitation is 300 mm. The summer of
2020/2021 was milder than that of 2019/2020, with an average maximum air temperature of
29.5°C in December 2020, compared to 34.3°C in December 2019. The almond orchard (Fig. 3.1)
covers approximately 1,240 hectares with trees planted between 2006 (Northern blocks facing N-
S) and 2007 (Southern blocks mixed in N-S and E-W orientations) on sandy loam soils. Generally,
trees planted in the eastern blocks tend to have larger tree crowns than those in the west. Three
almond varieties were planted in alternating blocks of six rows to facilitate cross-pollination (Hill
etal., 1985, Asai et al., 1996). Varieties included Nonpareil (50%), Carmel (33%), and Price (17%).
A drip fertigation system was used to supply the same amount of water and nutrients to the tree
root zones for each variety at the same time and was established at 1-hour intervals between
varieties across the entire orchard. Fertigation was supplied as needed based on weather and plant
responses over the growing season. In summer of 2020/2021, irrigation volume was 10% higher
(12,795 m®/ha) than in 2019/2020 (11,465 m®ha), but total N fertilizer applications (330 kg/ha in
2020/2021 and 326 kg/ha in 2019/2020) were similar. In summer of 2020/2021, Nonpareil was
treated with 10% less fertigation than Carmel and Price varieties across the orchard based on the
difference observed along the 2019/2020 season.

Fifteen homogeneous plots consisting of six rows of seven to eight trees were monitored
throughout the experiment in 2019/2020 and 2020/2021 (Fig. 3.2). In each plot, four adjacent trees
from Nonpareil and Carmel varieties (two each; yellow dashed rectangle in Fig. 3.2a) were
sampled in situ prior to harvest in both years. Leaf Cab, anthocyanins (Anth), flavonoid (Flav)
content, and the nitrogen balance index (NBI) were measured from 20 representative sunlit mature
leaves per tree using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France). Leaf steady-state

chlorophyll fluorescence (Ft) and leaf reflectance spectra within the visible (VIS) and near-infrared
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(NIR) regions were measured with FluorPen FP 110 and PolyPen RP 410 instruments (PSI, Brno,
Czech Republic) on the same leaves with the Dualex sensor. A series of vegetation pigment indices
(see Table 3.1 for the complete list of indices used in this study) were calculated based on the leaf
reflectance spectra measured from the PolyPen handheld instrument. An additional set of 20 leaves
per plot were collected for biochemical laboratory analyses using Dumas Combustion (Etheridge
et al., 1998, Buckee, 1994, Dumas, 1831) with a LECO TruMac CNS Macro Analyzer (LECO
Corporation, MI, USA) and an inductively coupled plasma optical emission spectrometer (ICP-
OES Optima 8300, Perkin Elmer, USA). Thirteen macro and micro-nutrients (e.g., nitrogen,
carbon, phosphorus, and potassium) were measured. The ranges of variation of field data collected
over 2 years were compared against Ft-measured quartiles. The correlations between leaf

measurement and laboratory N concentration were calculated for both years.

3.2.2 Airborne hyperspectral and thermal imagery

Airborne campaigns were conducted concurrently with the field measurements on February 17,
2020, and January 31, 2021. Both campaigns occurred at solar noon under clear skies. Field
sampling and auxiliary data collection required for the calibration and atmospheric correction of
the images were conducted simultaneously with airborne campaigns. A hyperspectral line-
scanning sensor (Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA,
USA) and a thermal infrared camera (A655sc model, FLIR Systems, Wilsonville, OR, USA) were
flown in tandem on a manned aircraft operated by the HyperSens Remote Sensing Laboratory, the
Airborne Remote Sensing Facility of The University of Melbourne. The hyperspectral imager
covers 371 spectral bands in the visible and near-infrared regions (400-1000 nm) with a full-width

at half-maximum (FWHM) of 5.8 nm and a spectral sampling interval of 1.626 nm. Hyperspectral
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and thermal images with an angular field of view (FOV) of 66° and 45° (8- and 13.1-mm focal
length), respectively, were collected by the aircraft at 550 m above ground level (AGL), yielding
spatial resolutions of 40 and 60 cm, respectively, enabling the differentiation of sunlit and shaded
components of tree crowns and soil areas. SMARTS (Gueymard, 2001, Gueymard et al., 2002,
Gueymard, 1995) irradiance simulations were used to correct for atmospheric effects of the
hyperspectral imagery based on aerosol optical measurements at 500 nm taken with a Microtops
I sunphotometer (Solar Light, PA, USA) connected to a GPS-12 navigator (Garmin, Olathe, KS,
USA) at the time of each flight. Air temperatures and relative humidity were calculated based on
the average of three nearby weather stations (Robinvale, Lake Powell and Wemen) less than 15
km from the study site. Hyperspectral line-scanned image orthorectification was performed using
PARGE software (ReSe Applications Schlépfe, Wil, Switzerland) with readings from the onboard
inertial measuring unit (IMU) (VectorNav VN-300 dual-antenna GNSS/INS, Dallas, TX, USA).
Empirical line calibration was conducted by measuring the reflectance spectra and temperature of
bare soil and green and dry vegetation. Spectra were measured with an ASD Handheld-2 field
spectrometer (FieldSpec Handheld Pro, ASD Inc., CO, USA), and temperature was measured with
a thermal gun (LaserSight, Optris, Germany). Hyperspectral and thermal imagery were mosaicked
(Figs. 3.1 and 3.3) using ENVI (Boulder, Colorado) and Pix4D (Lausanne, Switzerland)

photogrammetry software, respectively.



2591  Fig. 3.1. Color-infrared (CIR) overview of the hyperspectral mosaic acquired with the VNIR
2592  hyperspectral sensor over the 1,200-ha study site collected on January 31, 2021. Spectral bands at
2593 860 (R), 650 (G), and 550 (B) nm are shown with a spatial resolution of 40 cm per pixel.
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Fig. 3.2. (a) Study plot consisting of six rows by eight trees within the blue solid line. Leaves from
four trees within the yellow dashed rectangle were measured in the field. (b) The reflectance
spectra of different scene components extracted from the airborne hyperspectral imager, including
sunlit (green solid line) and shaded (grey dashed line) tree crown, and sunlit (orange dashed line)
and shaded soil (brown dashed line) pixels.

Automatic segmentation of the hyperspectral reflectance imagery was conducted using Fiji
(Abramoff et al., 2004) combining Niblack’s (Niblack, 1985) thresholding method on the NIR
band, and Phansalkar’s thresholding method (Phansalkar et al., 2011) on a structural index (NDVI >
0.72). This method enabled the discrimination of sunlit pure tree crowns from the soil background,
as well as the separation of within-crown shadows (see reflectance spectra in Fig. 3.2b).
Considering the sensitivity of SIF to the illumination levels, a more selective segmentation (10%
restricted) was applied to the hyperspectral radiance data when segmenting the sunlit crown
component. The thermal segmentation of the tree canopy was performed with Niblack’s
thresholding method (Niblack, 1985) to eliminate the soil and background effects. The resulting
pure vegetation pixels obtained in the previous step were clustered into tree-crown features using

a watershed segmentation approach based on Euclidean distance (as in Zarco-Tejada et al. (2018)).



2610 In Fig. 3.4, an example of the segmentation conducted on the hyperspectral and the thermal

2611  mosaics is presented.

Kilometers
1

2612 Fig. 3.3. Thermal mosaic collected over the entire study area captured on January 31, 2021 at a
2613  spatial resolution of 60 cm. Cooler colors (purple and blue) indicate plant canopies, and
2614  yellow/brown colors indicate soil.
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2615 Flg. 3.4. Overview of the tree-crown segmentation applled to the hyperspectral mosaic (a, upper
2616  image in color-infrared, crown in green outline) and the thermal mosaic (c, bottom image
2617  displaying cooler canopy in blue and hot soil in red color, crown in yellow outline). Right column
2618  contains zoomed-in views (b and d) of the scenes within the white rectangle on the left.
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Fig. 3.5. Segmentation of the sunlit crown area for SIF quantification on two study plots (a) higher
nutrient level and (b) lower nutrient level. The irradiance spectrum (orange color) was used along
with the radiance spectra (example shown in (c) for two study plots (green and grey lines) to
calculate SIF. Crosses denote the spectral position of the sensor bands (c).

The mean radiance and reflectance spectra, and temperature were extracted from tree crown pixels
by hyperspectral and thermal imagery for each study plot. The crop water stress index (CWSI)
(Idso et al., 1981) was calculated based on the canopy-air temperature difference and the water
vapor pressure deficit (VPD) at the time of image acquisition for assessing the tree-crown water
stress levels. A non-water-stressed baseline (NWSB) for almond trees suggested by Bellvert et al.
(2018) was used.

SIF was quantified using the Fraunhofer line depth (FLD) principle (Plascyk and Gabriel, 1975)
based on three spectral bands (3FLD) (Maier et al., 2004) located inside and outside the O2-A
absorption features. Specifically, we compared canopy radiance values Lin at 762 nm and Lout at
750 and 778 nm extracted from the hyperspectral imagery to the corresponding incoming
irradiance Ein (E762) and Eout (E7s0, E778) derived from the field measurements during the flight and
resampled to match the spectral specifications of the airborne hyperspectral sensor. To account for
the effects of negative values from atmospheric and calibration factors, SIF was scaled using the

offset from non-fluorescence targets (e.g., soil) extracted from the imagery. Fig. 3.5 shows the
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irradiance and the mean radiance spectra from two study plots (in Figs. 5a and 5b) at the oxygen-
A absorption region around 760 nm. Average tree-crown reflectance (R) spectra extracted from
pure vegetation pixels were used to estimate plant traits through RTM inversion and to calculate
narrow-band hyperspectral indices (Table 3.1) for comparison. The set of indices used comprised
structural indices (e.g., NDVI), pigment indices (e.g., Modified Chlorophyll Absorption in
Reflectance Index (MCARI), TCARI/OSAVI, and Carter Index 1 (CTRI1)), and indices in the
visible region (e.g., Photochemical Reflectance Index (PRI)) that track the dynamics of
photoprotective mechanisms. Indices calculated from airborne imagery were also compared

against leaf N, Cab, NBI, and Ft measured in the field.



2646  Table 3.1. Spectral vegetation index equations used in this study.

Index Equation Reference

Structural indices

NDVI (Rgoo — Reg70)/(Rgoo + Rg70) Rouse et al. (1974)
EVI 25 " (RSOO - R670)/(R800 + 6 . R670 - 75 " RSOO + 1) LIU and Huete (1995)

1.5- (2.5 (R — R — 13- (R — R
MCARI?2 ( ( 800 670) ( 800 550)) Haboudane et al.

V(@2 Rgoo + 12— (6-Rggo — 5 Rg70) — 0.5 (2004)

Roujean and Breon

RDVI (Rgoo — Rg70)/+/Rsoo + Re7o (19915)
OSAVI (1 + 0.16) - (Rggo — Rg70)/(Rgoo + Rg70 + 0.16) Rondeaux et al. (1996)
Chlorophyll a+b indices
MCARI ((R700 — Re70) = 0.2 (R790 — Rss0)) * (R700/Re70) Daughtry et al. (2000)

3 ((R700 — Rg70) — 0.2 (Ry99 — Rss0)  (R700/Re70))  Haboudane et al.

TCARI/OSAVI
(1 + 0.16) - (Rgoo — Re70)/(Rgoo + Re79 + 0.16) (2002)

PSSRa Rgoo/Re7s Blackburn (1998)

PSSRb Rgoo/Reso Blackburn (1998)

PSSRc Rgoo/Rso0 Blackburn (1998)

SIPI (RSOO - R445)/(R800 - R680) PeI"IUG|aS et al (1995)

CTRI1 Rgos/Ry4z0 Carter (1994)

Indices based on the green region

PRI (Rs70 — Rs31)/(Rs70 + Rs31) Gamon et al. (1992)
Hernandez-Clemente

PRIs1s (Rs1s — Rs31)/(Rs1s + Rssq) et al. (2011)

PRI-CI ((Rs70 — Rs31)/(Rs70 + Rs31)) * ((R760/ R700) — 1) Garrity et al. (2011)

Fluorescence quantification

Eout : Lin - Ein : Lout

Eout - Ein Pl K ol
SIF . L ascyk and Gabrie
Where E and L represent the incoming irradiance and (1975)

canopy radiance, ‘in’ band refers to 762 nm, and ‘out’ band
refers to the average value in 750 and 778 nm

Canopy temperature

(TC - Ta) - (Tc - Ta)LL

T. —T, — (T, —T,
CWSI (Te = Ta)ur = (Te = T Jackson et al. (1981)

Where LL and UL represent the upper limit and lower limit
of canopy (T¢) and air (T,) temperatures
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3.2.3 Modeling methods for plant trait retrieval and N assessment

The coupled leaf-level Fluspect-Cx model (Vilfan et al., 2018) and 4SAIL (Verhoef, 1984) canopy
radiative transfer model, referred to here as FIUSAIL, were employed to derive plant biophysical
and biochemical parameters by inverting the average canopy reflectance extracted from pure
vegetation pixels. The de-epoxidation state of the xanthophyll cycle (Cx) as well as Cab, Ccar, and
Anth pigment content were retrieved by the inversion of the Fluspect-Cx model. A look-up table
(LUT) was generated by running 50,000 simulations using randomly generated input parameters
drawn from uniform distributions (Table 3.2). Parameter ranges were adjusted for the viewing
geometries due to the slightly different solar zenith angles (SZAs) for each airborne dataset.
Biochemical constituents and biophysical parameters were estimated simultaneously for all study
plots using a 10-hidden layer artificial neural network (ANN) model (Hassoun, 1995, Combal et
al., 2003). The model was trained using 70% of the LUT spectra and tested using the remaining
30% with the mean squared error (MSE) as a performance measure. The model was fit in
MATLAB (MATLAB; Statistics and Machine Learning Toolbox and Deep Learning Toolbox;
Natick, Massachusetts, USA). Retrieved parameters were used to simulate reflectance spectra with
the FIUSAIL model using the retrieved parameters and compared with the observed reflectance
spectra obtained from the imagery in the 400-900-nm range based upon the root-mean-square
deviation (RMSE) assessment. Additionally, the correlations of field leaf-level measurements
against estimated plant traits derived from the inversion of the FIUSAIL model were compared

with those obtained from hyperspectral indices.
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Table 3.2. Ranges of input parameters for the LUT of FIUSAIL model.

Parameter Symbol Unit Range/Value

Leaf thickness and constituents

Chlorophyll a+b content Ca pg/cm? 20-70
Carotenoid content Cear pg/cm? 3-20
Anthocyanin content Anth pg/cm? 0-10

Leaf water content Cw glcm? 0.001-0.05
Leaf dry matter content Cadm glcm? 0.001-0.05
Brown pigment content Cs pg/cm? 0

Leaf mesophyll structural parameter N-struct - 1.3-25

Leaf dynamic biochemistry

De-epoxidation state of the xanthophyll cycle

(photochemical reflectance parameter) Cx i 0-3
Fraction of photons partitioned to PSI foel - 0.002
Fraction of photons partitioned to PSI|I foell - 0.02
Canopy structural parameters

Leaf area index LAI m?/m? 1-7
Hot spot parameter q - 0.03
Leaf inclination distribution function parameter a LIDF, - -1-1
Leaf inclination distribution function parameter b LIDFy - -1-1

To predict leaf N concentration, a pool of representative plant traits and parameters was considered
as inputs in the N model, including (1) leaf biochemical and canopy biophysical traits retrieved
from pure reflectance spectra with FIUSAIL model inversion, (2) airborne-quantified SIF from
sunlit-crown radiance spectra, and (3) the water stress indicator CWSI calculated from the thermal
imagery. Random Forest (Breiman, 2001) and Gaussian process regression (Williams and
Rasmussen, 1996, Williams and Rasmussen, 2006) algorithms were built with fine-tunning of
hyperparameter optimization with 1,000 iterations incorporated in the leave-one-out-cross-
validation (LOOCYV, 15-fold) training and testing steps for each year’s dataset. Previously, input
collinearity was evaluated using the variance inflation factor (VIF) analysis (O’brien, 2007)

following the approach in Zarco-Tejada et al. (2018) conducted using the ‘fmsb’ package (Gareth
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et al., 2013) in R. Out-of-bag (OOB) predictor importance was implemented to rank the input
relative contribution to the models (as in Zarco-Tejada et al. (2021)). Input parameters with a high
degree of collinearity (VIF > 5) (Akinwande et al., 2015) and therefore less informative
contribution were filtered out to avoid redundancy. Both Random Forest and Gaussian process
regression models were evaluated using the final selection of input parameters. The model
performance was evaluated based on the coefficient of determination (r?) and RMSE. In addition,
models with different combination of any two non-collinear parameters were evaluated. In
particular, models using leaf biochemical constituents and biophysical parameters with and

without SIF were compared to assess the contribution of SIF to N assessments.

A final evaluation was conducted with the LOOCV (30-fold) method using the non-collinear
airborne-quantified Ca» and SIF for N assessment from both datasets. Model performance was
determined using r?> and RMSE against the validation data from the 2 years. The best Gaussian
process regression model was applied at the tree-crown level to obtain the spatial variability of the
tree-based N concentration for the entire 1,200-ha almond orchard using the airborne-quantified
SIF and Cab content from FIUSAIL RTM inversion. The continuous map of N concentration for
each management unit were generated using the Kernel interpolation with barriers (KI1B) algorithm
(Worton, 1989) in ESRI ArcGIS Desktop (Redlands, CA, USA) to visualize the variability across

the entire orchard.

3.3 Results

3.1 Field and laboratory data analyses
Leaf nutrient and pigment content varied widely within the study site and across the two growing

seasons. Mean leaf N concentration was 2.07% in 2020 and 2.36% in 2021. The Dualex measured
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Cab and Flav were more variable in 2021 than in 2020. Mean Cab was 32.53 units in 2020 and 30.71
units in 2021. Mean Flav was 2.04 units in 2020 and 1.84 units in 2021. Anth range was higher in
2021 than in 2020, with a mean value of 0.24 units compared to 0.19 in 2020. NBI was 16.46 in
2020 and 17.18 in 2021. Ft was highly variable throughout the orchard and was higher in 2021

than in 2020, ranging from 1,648 to 2,751 units in 2020 and from 2,574 to 3,970 units in 2021.

The relationships between leaf steady-state chlorophyll fluorescence quartiles and derived spectral
and physiological metrics varied across seasons (Fig. 3.6). Similar linear relationships were
observed across seasons for leaf N concentration (Fig. 3.6a), Flav (Fig. 3.6¢), NBI (Fig. 3.6d), and
leaf spectral indices (Fig. 3.6f-i). By contrast, Anth (Fig. 3.6e) exhibited opposite trends with Ft
quartiles between 2020 (negative) and 2021 (positive). Unexpectedly, leaf Cap (Fig. 3.6b) did not
exhibit consistent trends relative to leaf Ft quartiles, with generally positive and negative trends

for 2020 and 2021 (n.s.), respectively.
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Fig. 3.6. Ranges of variation based on leaf steady-state chlorophyll fluorescence (Ft) quartiles for
leaf phenotypes measured at the pre-harvest stage in 2020 (green) and 2021 (orange): a) nitrogen
concentration, b) chlorophyll a+b (Cab), ) flavonoid (Flav), d) Nitrogen Balance Index (NBI), e)
anthocyanins (Anth), f) CTRII, g) PRI, h) PRI-CI, and i) NPQI. The line through the box and
marker ‘x’ refer to the median and mean value, respectively.

In general, leaf measurements were correlated with each other across years (Fig. 3.7). Chlorophyll
content and leaf N were strongly correlated in 2020 (r? = 0.60, p-value < 0.005, Fig. 3.7a). However,
this correlation was not statistically significant in 2021 (r> = 0.04, n.s.). Leaf N was more

consistently correlated with Dualex-measured NBI (Fig. 3.7b) for both years (r?> = 0.68 for 2020
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and r? = 0.64 for 2021; p-values < 0.005), since the index calculation incorporates both chlorophyll
and flavonoids. Leaf PRI (related to xanthophyll composition changes) was also correlated with
leaf N across seasons (r? = 0.49 in 2020 and r? = 0.58 in 2021; p-values < 0.005, Fig. 3.7¢c) as was
Ft (r> = 0.54 in 2020 and r? = 0.52 in 2021; p-values < 0.005, Fig. 3.7d). Leaf fluorescence (Fig.
3.7d) was strongly correlated with N when using combined 2-year data (r? = 0.74, p-value < 0.005),

outperforming the rest of the leaf traits (e.g., r> = 0.50 for PRI and NBI; p-values < 0.005).
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Fig. 3.7. Relationships between leaf N concentration (%) and a) leaf chlorophyll content, b)
Nitrogen Balance Index (NBI), c) photochemical reflectance index (PRI), and d) steady-state
chlorophyll fluorescence (Ft). Green and orange represent data in 2020 and 2021, respectively.
Grey is used to represent correlation when combining data of 2 years. *p-value < 0.05; **p-value
< 0.01; ***p-value < 0.005; n.s. = not significant.
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3.2 Narrow-band indices calculated from airborne hyperspectral imagery

Relationships between narrow-band reflectance indices, airborne SIF, and field-based leaf
measurements are summarized in Table 3.3. The results present a wide range of correlation and
significance levels between leaf physiological measurements and indicators of canopy structure,
pigments, airborne-quantified fluorescence, and CWSI temperature-based stress indicator.
Airborne-quantified SIF (Fig. 3.8a) was significantly correlated with Ft in both 2020 (r? = 0.73, p-
value < 0.005) and 2021 (r? = 0.30, p-value < 0.05). The relationship was stronger when combining
datasets across 2 years (r> = 0.77, p-value < 0.005; shown by the grey dashed line in Fig. 3.8). SIF
was also significantly correlated with leaf N (r?=0.60 in 2020 and 0.55 in 2021, p-values < 0.005),
and the relationships remained strong when combining data from both years (r?> = 0.74, p-value <
0.005, Fig. 3.8b). Strong correlations were also evident between SIF and leaf NBI (r? = 0.46 and
0.67, p-values < 0.01) in 2020 and 2021, respectively. Fluorescence, as a proxy of photosynthesis,
both at the leaf (Fig. 3.7d) and canopy levels (Fig. 3.8b), achieved steady and strong relationships

with leaf N (r? = 0.74, p-value < 0.005).

Hyperspectral indices related to vegetation structure (e.g., NDVI) and pigment concentration (e.g.,
MCARI) were generally correlated with leaf chlorophyll measured by Dualex in 2020, but not in
2021 (Table 3.3). This pattern was reversed for leaf NBI, where canopy structure (e.g., EVI) and
pigment indices (e.g., MCARI) were more correlated in 2021 than in 2020. Leaf N was more
strongly related to pigment indices (i.e., MCARI and CTRI1, Figs. 9b and 9c) than structural
indices (i.e., NDVI and EVI) in both years. These strong relationships were not always consistent
over 2 years, as illustrated in Table 3.3. For example, the chlorophyll index TCARI/OSAVI was
unable to capture the existing N variability in 2021 (r?> = 0, n.s.) as it did in 2020 (r? = 0.57, p-

value < 0.01).
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Some pigment indices in Table 3.3 stand out in terms of their high correlations with N for both
years. For example, MCARI had an r? of 0.61 and 0.48 (p-values < 0.005, Fig. 3.9b) in 2020 and
2021, respectively. PRIs1s (PRI index using reference band at 515 nm to minimize structural effects)
(Stagakis et al., 2012, Zarco-Tejada et al., 2012, Hernandez-Clemente et al., 2011) was superior

to PRI (at 570 nm) in both 2020 and 2021(Fig. 3.9d).

Many structural and pigment indices showed inconsistent trends across seasons, as shown in Fig.
3.9 and Table 3.3. When looking at data from the 2 years combined, no variables from Fig. 3.9
were significantly correlated with leaf N. NDVI had relatively weak associations with leaf N in
each year throughout this heterogeneous orchard. By contrast, airborne SIF calculated from the
illuminated crown pixels was consistently related to leaf N across years (Fig. 3.8). CWSI was not

consistently correlated with leaf N or pigment content in either year (Table 3.3).



2766  Table 3.3. Coefficients of determination (r?) for the intercorrelations among standard indices at
2767  canopy level from the same 15 study plots in two consecutive years and leaf N concentration (%),
2768  Dualex-derived leaf chlorophyll content (Cab), nitrogen balance index (NBI), and steady-state
2769  chlorophyll fluorescence (Ft) measured with FluorPen.

N (%) Cab NBI Ft

2020 2021 2020 2021 2020 2021 2020 2021

Structural indices

NDVI 0.25* 0.13 0.49*** 0.10 0.07 0.12 0.04 0.05
EVI 0.37**  0.29**  0.56*** 0.01 0.14 0.43***  0.07 0.17
MCARI2 0.40**  0.28**  0.58*** 0.03 0.16 0.36**  0.09 0.15
RDVI 0.36**  0.25* 0.58***  0.01 0.15 0.36**  0.07 0.13
OSAVI 0.34**  0.22* 0.57*** 0.03 0.13 0.29**  0.06 0.10
Chlorophyll a+b indices

MCARI 0.61***  0.48*** (0.54*** 0.00 0.55*** 0.39**  (0.44*** (.31**
TCARI/OSAVI 0.57*** 0.00 0.15 0.04 0.46*** 0.00 0.48*** 0.01
NPQI 0.38**  0.00 0.37**  0.12 0.39**  0.00 0.36**  0.05
PSSRa 0.24* 0.15 0.49***  0.08 0.08 0.16 0.04 0.06
PSSRb 0.14 0.12 0.43***  0.06 0.03 0.14 0.01 0.05
PSSRc 0.23* 0.16 0.58***  0.02 0.12 0.21* 0.02 0.05
SIPI 0.17 0.05 0.37**  0.16 0.02 0.03 0.02 0.02
CTRI1 0.61*** 0.52*** (0.35**  0.03 0.76*** 0.51*** (0.45*** (.18
Indices calculated in the green region

PRI 0.10 0.27**  0.01 0.13 0.24* 0.36**  0.10 0.08
PRIsis 0.69***  0.47*** 0.61*** 0.11 0.43*** 0.38**  0.33**  0.25*
PRI-CI 0.13 0.18 0.49***  0.15 0.03 0.21* 0.00 0.05
Fluorescence quantification

SIF 0.60*** 0.55*** (0.28**  0.00 0.46*** 0.67*** (0.73*** (0.30**
Canopy temperature

CWSI 0.05 0.03 0.00 0.23* 0.31**  0.01 0.10 0.03

*p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
Cab: Chlorophyll a+b content; NBI: Nitrogen Balance Index; Ft: steady-state chlorophyll fluorescence.
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Fig. 3.8. Relationships between canopy SIF and a) leaf steady-state chlorophyll fluorescence (Ft)
and b) leaf N concentration (%) in 2020 (green), 2021 (orange), and the combined years (grey).
*p-value < 0.5; **p-value < 0.05; ***p-value < 0.005.
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Fig. 3.9. Leaf N against a) NDVI, b) MCARI, c¢) CTRI1, and d) PRIsis calculated from
hyperspectral imagery acquired in 2020 (green) and 2021 (orange). *p-value < 0.05; **p-value <
0.01; ***p-value < 0.005; n.s. = not significant.

3.3 Plant trait retrieval from the FIUSAIL radiative transfer model

Modelled reflectance spectra from FIUSAIL showed close agreement with observed spectra
extracted from pure tree crown vegetation pixels in airborne hyperspectral imagery, yielding
average RMSE values of 0.008 and 0.007 for 2020 and 2021, respectively. Fig. 3.10 illustrates a

simulated and observed spectra as well as a range of simulated spectra from the FIUSAIL LUT.
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In 2020, leaf Cab from model inversion was strongly correlated to both the Dualex chlorophyll
measurement (r?> = 0.66, p-value < 0.001) and leaf N (r?> = 0.73, p-value < 0.001). As with the
hyperspectral indices, no model-derived measures were significantly correlated with Dualex
chlorophyll in 2021 (Table 3.4). In addition to Can, other pigments (i.e., Ccar and Cx) also presented

significant relationships with leaf N.

Cx, which is sensitive to the de-epoxidation state of the xanthophyll cycle, was significantly
correlated with canopy PRIsis (r> = 0.68 and 0.60 in 2020 and 2021, p-values < 0.001) and with
leaf N (r?> = 0.61 and 0.62 in 2020 and 2021, p-values < 0.001). Ca» was also closely related to
canopy PRIsis (r?> = 0.80, p-value < 0.001) and SIF (r? = 0.51, p-value < 0.005). No significant
relationship was detected between the retrieved LAl and leaf N throughout the orchard across years.
These results suggest that pigment content and N were highly correlated with biochemical

constituents and SIF but showed little effects on the crown structure.
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Fig. 3.10. Comparison of the average hyperspectral image spectrum (orange dashed line) and the
corresponding spectrum obtained from the FIUSAIL model inversion (blue solid line) for one
monitored plot. The simulated FIUSAIL spectral range is shown in the shaded grey area.
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Table 3.4. Coefficients of determination (r?) for correlations among model-derived estimates from
the same 15 study plots in two consecutive years, including leaf chlorophyll a+b (Cab), carotenoids
(Cecar), anthocyanin (Anth), dry matter content (Cam), photochemical reflectance parameter (Cx),
leaf area index (LAI), measured leaf N concentration (%), Dualex-measured chlorophyll content,
canopy SIF, and canopy photochemical reflectance index (PRIszs).

0]
Estimated N (%0) Leaf Cap Canopy SIF Canopy PRIsss

Parameter 000 2021 2020 2021 2020 2021 2020 2021

Coo(ug/em?)  0.73%%%  0.66*** 0.66*** 0.10 051%%  0.52%%  0.80%** 0.82%**
Cow (ng/em?)  0.75%*% 056%*  0.65%** (.15 0.56%*%  0.43%  0.72%%* 0.50**
Anth (ug/cm?)  0.58***  0.09 0.63***  0.00 0.45%  0.04 0.85%**  0.00

Cx 0.61*** 0.62*** 0.50**  0.01 0.54**  0.57**  0.68*** 0.60***
Cam (g/cm?) 0.36* 0.20 0.58**  0.04 0.20 0.31* 0.59*%**  0.79***
LAI 0.02 0.05 0.02 0.16 0.07 0.06 0.02 0.49**

*p-value < 0.05; **p-value < 0.005; ***p-value < 0.001.

3.4 Leaf N status assessment from the airborne-estimated plant traits and SIF

The final model for leaf N using traits derived from hyperspectral imagery was strongly correlated
to field-measured N across years (r*> = 0.96, p-value < 0.001). FIuSAIL-inverted Cas and airborne-
derived SIF had the greatest OOB predictor scores, followed by other biochemical constituents
(e.g., Cear and Cx), as illustrated in Fig. 3.11a. While the structural trait LAl (p-value > 0.1) and
the thermal-based water stress indicator CWSI (p-value > 0.05) were not statistically significant
predictors of N. VIF analysis revealed that Ca» and SIF were not collinear, but other biochemical
constituents (Ccar, Cx, and Cam) were discarded from further analysis with a VIF > 5 (empty bars
in Fig. 3.11a). Fig. 3.11b shows that Ca» and SIF were the most important predictors of N for both

years, yielding r? and RMSE of 0.95 and 0.05%, respectively.

When using combined data from both years, the Gaussian regression model using chlorophyll
exclusively as a predictor explained 49% (p-value < 0.001) of the variability in N (Fig. 3.12a)

across the almond orchard. A Gaussian process regression model including Ca and SIF
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considerably increased the performance (r? = 0.95, p-value < 0.001, RMSE = 0.05%, Fig. 3.12b).
This model with Ca and SIF outperformed any other combination of traits quantified from the
hyperspectral imagery for predicting leaf N. As an example, the addition of a structural parameter
(LAI) to the model only resulted in a slight increase of 0.02 in r? and a 0.01% reduction in RMSE
(Fig. 3.12c) but yielded reasonable results when coupled to SIF (r?> = 0.81, p-value < 0.001, RMSE
=0.1%, Fig. 3.12d). The consistency in the results obtained from the two growing seasons suggests
the importance of combining Ca, and SIF to assess leaf N status as opposed to standard methods
based on individual traits or single vegetation indices, which are generally affected by management

practices and the changing growing conditions naturally varying across seasons.
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2823  Fig. 3.11. The relative contribution from OOB importance scores of each variable to the predicted
2824 N concentration from a) all plant traits estimated from hyperspectral and thermal imagery and b)
2825  anon-collinear subset of variables (VIF < 5).
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Fig. 3.12. Correlations between leaf N concentration (%) and predicted N using models based on
a) chlorophyll a+b content alone, b) chlorophyll a+b content with canopy SIF, c¢) chlorophyll a+b

content with leaf area index (LAI), and d) LAI with canopy SIF. The grey diagonal line is the 1:1
line. All p-values < 0.001.

The N prediction map based on a model using Ca» and SIF as predictors revealed that tree N was

spatially variable across the orchard in 2021 (Fig. 3.13). As expected, the pattern of N predictions

integrates trends in chlorophyll a+b content and SIF.
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Fig. 3.13. Interpolated map of a) chlorophyll a+b content, c¢) solar-induced fluorescence, and e)
predicted N concentration derived from Cab and SIF in 2021. Right column contains zoomed-in
views (b, d and f) of the scenes on the left in the northeast blocks. Block numbers are displayed in
the centers.
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3.4 Discussion

Previous studies using RS spectroscopy to estimate leaf N have often focused on developing
multispectral indices or proxies from leaf or canopy spectra. These methods usually require the
development of empirical models relating leaf N to chlorophyll-sensitive vegetation indices
(Clevers and Kooistra, 2011, Inoue et al., 2012, Schlemmer et al., 2013, Pancorbo et al., 2021,
Fitzgerald et al., 2010, Gabriel et al., 2017) or combinations of bands and indices (Haboudane et
al., 2002, Fitzgerald et al., 2010). However, these methods fail to explain leaf N variability in
woody crops that are characterized by structurally complex canopies that are managed to increase
productivity. In these highly managed orchard canopies, the relationship between structure and
nutrient levels is uncoupled; therefore, structural index-based models are not appropriate (Table
3.4). In these orchard canopies, the main drivers for the observed structural changes are the
planting density and the fractional cover, which add additional complexity to the use of structural
RS vegetation indices as indicators of nutrient levels. In these structurally complex orchards, the
spectral indices are heavily affected by the canopy architecture and by structural parameters, such
as leaf density, which in turn interact with the illumination and observation geometry within the
canopy (Haboudane et al., 2002, Broge and Leblanc, 2001, Wang et al., 2018). Therefore, the
variability observed with standard vegetation indices such as NDVI and other structurally sensitive
indicators may not necessarily represent the nutrient variability, but instead the heterogeneity due
to different tree ages, crown densities, and planting grids that usually coexist in large well-
managed orchards such as the one used in this study.

The assessment of the physiological status, independent from the structure and canopy architecture
using plant traits through RTM model inversion, is particularly beneficial in the case of structurally

complex canopies (Malenovsky et al., 2013) when trying to capture the within-field spatial
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variability of the leaf nutrient status independent from the structural variability. In this study, we
found that plant physiological estimates derived from RTM inversion using VNIR hyperspectral
imagery were generally stronger and more consistent predictors of leaf N status than the empirical
models built with vegetation indices. In particular, RTM-retrieved pigment Can was the strongest
predictor (Fig. 3.11), consistent with the results of Camino et al. (2018a) for wheat. RTM-based
carotenoid content and the xanthophyll cycle (Cx) parameter were also more strongly related to
leaf N than vegetation indices in our study, as both are involved in light-harvesting regulation that
is associated with photosynthetic efficiency (Ruban et al., 1999). For instance, RTM-based
chlorophyll a+b content was strongly correlated with leaf N for both years of study (r? = 0.73 in
2020 and 0.66 in 2021, p-values < 0.001), whereas the chlorophyll-sensitive index TCARI/OSAVI
was not correlated with N in 2021 (r? = 0, n.s.), suggesting those indices are not reliable indicators
for N assessment across seasons. Spectral indices are greatly affected by management practices
and background changes across orchards and years, leading to inconsistencies that may make them
inappropriate for operational purposes.

The fact that both model-inverted LAI and structural hyperspectral indices were poorly related to
leaf N supports the idea that canopy structure is not driven by nutrient availability in well-managed
intensive orchards. As a consequence, it is not surprising that the widely used structural index
NDVI was inadequate for predicting leaf N in this context. Ground-based leaf chlorophyll
measurements were poorly related to leaf N when leaf N was high in 2021. This is consistent with
the results of Jifon et al. (2005), who found the relationship between chlorophyll meter readings
and leaf N was stronger at low chlorophyll concentrations than at higher chlorophyll
concentrations. At high N concentrations, there is a possibility that some N may be allocated to

soluble protein rather than pigment-protein complexes (Evans, 1989). And the soluble protein and
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pigment complexes in leaves can be imbalanced depending on leaf physical characteristics, plant
age, environmental factors, and management practices (Bondada and Syvertsen, 2003, Evans and
Poorter, 2001, Syvertsen and Smith Jr, 1984, Syvertsen et al., 1995). In our study, leaf nitrogen
balance index was more strongly correlated with leaf N and canopy indices as it incorporated the
ratio of a second pigment flavonoid into the calculation. This phenomenon was also observed at
the canopy level for both chlorophyll-sensitive vegetation indices and RTM-based pigment
concentrations. Cab at the canopy level was more strongly related to leaf N than Cap at the leaf level,
which may be attributed to the fact that the field-collected leaf measurements came from lower
layers of the tree crown, whereas the imagery captured the upper layers. Our results provide
evidence that RTM-based leaf physiological traits provide additional benefits over standard
structural indices for assessing leaf N in orchards, particularly when multiple varieties, ages, and
management practices coexist within the orchard.

Several studies have shown that SIF derived from sub-meter narrow-band imagery, in which the
depth of the oxygen absorption feature can be quantified, is an effective tool for detecting plant
stress in precision agriculture (Zarco-Tejada et al., 2012, Calderdn et al., 2013, Quemada et al.,
2014, Camino et al., 2018b, Camino et al., 2018a, Raya-Sereno et al., 2021). In this study, we also
found a strong association between fluorescence and leaf N, consistent with the literature (Corp et
al., 2003, Cendrero-Mateo et al., 2016, Schachtl et al., 2005), yielding r?> = 0.74 (p-value < 0.005)
over the course of 2 years at both leaf and canopy levels. Airborne-quantified SIF was the second
most important predictor of leaf N after Cap and outperformed any other vegetation index or
structural and temperature-based plant traits in terms of correlation and consistency across years.
When combined with RTM-based traits, SIF significantly improved model performance for

predicting leaf N. The model that included Cab and SIF explained 95% of the leaf N variability (p-
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value < 0.001), improving upon results obtained with Cas alone (r? = 0.49, p-value < 0.001)
accounting for different plant varieties, ages, planting patterns, water status levels, and fertilizer
management practices across 2 years.

CWSI, a thermal canopy water status index, was poorly associated with leaf N and relatively
inconsistent across years. Overall, we found no evidence of a relationship between CWSI and leaf
N, suggesting that leaf N variability was not driven by water status in this well-managed intensive

almond orchard.

3.5 Conclusions

This study demonstrates that leaf N estimation conducted in an almond orchard across 2 years was
significantly improved when SIF was included alongside RTM-based leaf chlorophyll a+b content.
Among all spectral plant traits evaluated from hyperspectral imagery, including all RTM-derived
leaf biochemical constituents, SIF, and structural and water stress traits, the retrieved leaf
chlorophyll a+b and SIF were the two most important predictors to explain leaf N variability. The
model that incorporated both chlorophyll a+b content and SIF traits explained 95% of the
variability in leaf N (p-value < 0.001) consistently across 2 years of airborne hyperspectral data
collection. Together, these results provide important insights into the quantification of leaf N
content in well-managed structurally complex canopies, such as discontinuous tree orchards,
demonstrating that traditional vegetation indices and individual plant traits do not sufficiently track

leaf N content over well-managed intensive crops typically reaching high N levels.
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Abstract

To ensure the quality and yield in almond orchards, it is essential to accurately monitor leaf
nitrogen (N) status both spatially across orchards and temporally throughout the growing season.
Remote sensing approaches are well suited for this need and typically assess leaf N through proxies
such as leaf chlorophyll a+b (Cab) content estimated from vegetation indices or radiative transfer
model (RTM) inversion techniques. Hyperspectral sensors allow the estimation of other
biochemical plant traits besides Cab, which enhance our understanding of plant photosynthetic
performance and physiological condition. Previous work has shown that solar-induced
fluorescence (SIF) and Cab are strong predictors of leaf N, but these assessments were based
exclusively on high-resolution airborne imagery. This study evaluates the performance of leaf N
estimation using hyperspectral imagery collected from the spaceborne DESIS. We compare
spaceborne retrievals to field measurements and the retrievals from both airborne hyperspectral
and spaceborne multispectral imagery (Sentinel-2). We found that Cab and SIF derived from
DESIS were strongly associated with leaf N, consistent with airborne hyperspectral observations.
A DESIS-based model predicted field-measured leaf N with an r2 of 0.83 and RMSE of 0.06%.
Sentinel-2 yielded inferior results (r2 = 0.72, RMSE = 0.08%) to those from hyperspectral imagery,
despite having a higher nominal spatial resolution (up to 10 m) than DESIS (30 m). This work
demonstrates that spaceborne hyperspectral imagery can be useful for the operational monitoring
of N content in almond orchards. It also highlights the importance of Cab, SIF, and other

physiological plant pigments in nutrient assessment.
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4.1 Introduction

Nitrogen (N) is an essential macronutrient for plants (Lemaire et al., 2008). In agricultural settings,
N fertilizer inputs enhance plant growth and yield via improved photosynthetic rate and light use
efficiency (Jones, 1999). However, excessive N inputs lead to resource waste, economic losses,
and environmental problems (e.g., soil contamination, and atmospheric and water pollution)
(Stewart et al., 2005, Stevenson and Cole, 1999, Matson et al., 1998). Leaf N content is typically
determined by destructive sampling followed by laboratoryf-based assays, such as Kjeldahl
digestion (Kjeldahl, 1883) or Dumas combustion (Dumas, 1831). Although reliable, these methods
are costly in terms of time, samples, and laboratory equipment. These costs limit the practical
extent to which N may be measured over an area such as an orchard. For this reason, the accurate
measurement of leaf N via remote sensing (RS) has been widely studied (Peterson et al., 1988,
Pefiuelas et al., 1994, Yoder and Pettigrew-Crosby, 1995). RS imaging spectroscopy techniques
enable the creation of spatially continuous maps of plant traits, including the potential
quantification of leaf N. However, for crop monitoring, these assessments need to be both precise
and repeatable.

Recent advances in RS-based monitoring of plant N have relied on the use of physical models
rather than empirical relationships between plant N and vegetation indices derived from specific
spectra (Verrelst et al., 2016, Kimes et al., 2000). For instance, solar-induced fluorescence (SIF)
has been shown to improve the RS-based quantification of leaf nutrient levels (Wang et al., 2022,
Camino et al., 2018a). Physical models are more capable of adapting local variability in specific
crop fields due to the fitting process involved and thus are arguably more scalable than vegetation

index-based models. Most of these techniques, however, require high-spatial-resolution
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hyperspectral imagery captured from airborne platforms, which is costly and limited in the spatial
extent that can be sampled, particularly when SIF is required.

Spaceborne imaging spectrometers provide valuable RS data at a relatively high temporal
frequency across large spatial scales (Rast and Painter, 2019, Atzberger, 2013). Yet, spaceborne
imagery often has the disadvantage of limited spatial and/or spectral resolution. Trade-offs
between spatial and spectral resolutions limit the applicability of hyperspectral sensors operated at
lower altitudes (Teillet et al., 1997). However, spaceborne sensor technology is rapidly developing,
and several hyperspectral sensors onboard spaceborne systems have recently come online.
Recent spaceborne hyperspectral sensors include the Environmental Mapping and Analysis
Program (EnMAP), launched in April 2022 (Guanter et al., 2015), and the PRecursore
IperSpettrale della Missione Applicativa (PRISMA), launched in March 2019 (Labate et al., 2009).
More missions are under development, including the Hyperspectral Infrared Imager (HysplIRI,
with a 150-km swath) onboard NASA’s Earth Observing-1 (EO-1), now part of NASA’s Surface
Biology and Geology (SBG) mission (Lee et al., 2015, Team, 2018), the Copernicus Hyperspectral
Imaging Mission for the Environment (CHIME, with 20-30 m spatial resolution) satellite from the
European Space Agency (ESA) (Rast et al., 2021), and the ESA’s high-spectral-resolution (around
0.3 nm) Fluorescence explorer FLEX with a 500-780 nm spectral range (Drusch et al., 2016). In
addition, the new-generation German Aerospace Center (DLR) Earth Sensing Imaging
Spectrometer (DESIS) (Eckardt et al., 2015), operating since August 2018 onboard the
International Space Station (ISS), collects hyperspectral imagery (HSI) over 235 narrow spectral
bands in the VNIR at a 30-m spatial resolution (Krutz et al., 2019). In this study, we investigate

the utility of DESIS imagery for plant N monitoring.
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Although DESIS was not explicitly designed for retrieving SIF, it captures spectra within the
Fraunhofer lines centered at photosystem (PS) I (PS-1) and PS-11 emission regions, making SIF
calculations technically possible (Gupana et al., 2021). SIF has been found to correlate with leaf
Cab content and photosynthetic activity and has been considered to be a close proxy for leaf N
(Genty et al., 1989, Weis and Berry, 1987). SIF has been used to detect both biotic and abiotic
plant stress (A¢ et al., 2015, Hernadndez-Clemente et al., 2017) and improve the predictive accuracy
of models estimating leaf N (Camino et al., 2018a, Tremblay et al., 2012, Wang et al., 2021).
Using high-resolution airborne imagery, Camino et al. (2018a) and Wang et al. (2022) assessed
leaf N in wheat and almond, respectively, demonstrating that SIF combined with other leaf traits
outperformed standard models based on leaf Can alone. Despite much previous research using SIF
quantification from airborne platforms, the effectiveness of using spaceborne SIF for stress
detection in precision agriculture, especially in non-homogeneous and discontinuous crop
canopies, has yet to be thoroughly tested (Paul-Limoges et al., 2018).

In this study, we evaluate the potential use of the spaceborne DESIS hyperspectral sensor to assess
leaf N content, photosynthetic pigment content, and SIF in a heterogeneous almond orchard.
Further, we compare the performance of DESIS-based assessment against estimates based on high-
spatial-resolution airborne hyperspectral imagery. We evaluate the influence of image spectral and
spatial resolution, as well as SIF and other physically modeled variables, on the reliability and
consistency of leaf N prediction.

Lastly, we compare leaf N estimates from hyperspectral-based data sources to those from the
ESA’s Sentinel-2 multispectral instrument (MSI), which is increasingly used for agricultural
monitoring. Sentinel-2 data is freely available and provides high-spatial-resolution imagery (up to

10 m) over 13 discrete spectral bands in the visible near-infrared to short-wave infrared (VNIR-
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SWIR) spectral ranges. Most standard Cap» and N estimation methods from Sentinel-2 imagery rely
on vegetation indices derived from red-edge spectral bands (Clevers and Gitelson, 2013), such as
Clred-edge, TCARI/OSAV 705,750, NDRE, and S2REP. Although Sentinel-2 data are insufficient for
quantifying SIF, they include the SWIR spectral domain, which covers features related to leaf
protein and water absorption and hence can potentially be used to model physical parameters
related to leaf N content (Curran, 1989, Kumar et al., 2002) at large spatial scales (Soderstrom et
al., 2017, Clevers and Gitelson, 2013, Delloye et al., 2018). We assess the performance of leaf N
prediction models based on all three data sources (airborne hyperspectral, spaceborne
hyperspectral, and spaceborne multispectral), considering trade-offs of accuracy, resolution, and

scalability.

4.2 Material and methods

4.2.1 Study area and field data collection

This study was carried out in a commercial almond orchard (yellow dashed line in Fig. 4.1) located
on the south bank of the Murray River in northwestern Victoria, Australia. At the study site, the
average annual precipitation is 310 mm, and the climate is Mediterranean, marked by hot, dry
summers and mild, wet winters. These conditions are favorable for almond production, making
northwestern Victoria one of the largest almond-producing regions in Australia. The almond
orchard is 1200 ha with 67 blocks of trees planted in the north-south direction and six blocks in
the east-west direction. Soils at the site are sandy loams. Three varieties were planted between
2006 and 2007 in alternating rows spaced 7 m apart with 4.4 m between trees in a row. Three
varieties were planted in groups of six rows, Nonpareil (1/2 of the rows), Carmel (1/3 of rows),

and Price (1/6 of the rows). Tree crowns typically span 4-6.5 m in diameter, resulting in a nearly



3428  closed canopy between trees. Water and nutrients were optimized for each variety and were applied
3429 via drip fertigation. Fertigation amounts were tuned each year based on species-specific
3430  observation of varietal performance in the previous season. Following this approach, the same rate
3431  of fertigation (325.6 kg N/ha and 11,465 m® water/ha) was applied to all varieties during the
3432 2019/2020 growing season, whereas Nonpareil (318.7 kg N/ha and 12,255 m® water/ha) was
3433  treated with about 10% less fertigation than the Carmel and Price varieties (340.7 kg N/ha and

3434 13,335 m® water/ha) during the growing season of 2020/2021.

1000

600 800
Wavelength (nm)

ih i

3435 Fig. 4.1. Two adjacent scenes from the spaceborne DESIS hyperspectral sensor (30-m spatial
3436  resolution). The radiance spectra from randomly chosen fields are shown in the inset. The study
3437  site is demarcated by the yellow dashed line.
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Field measurements were conducted at the pre-harvest stage over two consecutive growing
seasons: 2019/2020 and 2020/2021. Twelve study plots were monitored in February 2020 and 24
study plots in February 2021. Each plot consisted of six rows of seven to eight trees, of which four
adjacent trees (two Nonpareil and two Carmel) were subject to in situ samplings. Leaf steady-state
chlorophyll fluorescence (Ft) and leaf reflectance spectra within the VNIR region were measured
with a FluorPen FP 110 and a PolyPen RP 410 (PSI, Brno, Czech Republic), respectively, on 20
representative leaves from each tree. Leaf Can, anthocyanin (Anth), flavonoid content, and nitrogen
balance index were measured with a Dualex 4 Scientific sensor (FORCE-A, Orsay, France).
Twenty additional leaves per plot (100 leaves in total) were collected for chemical analysis using
Dumas combustion (Etheridge et al., 1998, Buckee, 1994, Dumas, 1831) with a LECO TruMac
CNS Macro Analyzer (LECO Corporation, MI, USA) and an inductively coupled plasma optical

emission spectrometer (ICP-OES Optima 8300, Perkin Elmer, USA).

4.2.2 Airborne and spaceborne hyperspectral datasets

4.2.2.1 High-spatial-resolution airborne hyperspectral imagery

Airborne campaigns were conducted concurrently with field measurements on February 17, 2020
and January 31, 2021, which were previously conducted by Wang et al. (2022). To minimize
atmospheric effects and tree shading, both campaigns were carried out at solar noon under clear
skies. A manned aircraft operated by the HyperSens Remote Sensing Laboratory, The University
of Melbourne’s Airborne Remote Sensing Facility, carried a hyperspectral line-scanning sensor
(Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) with an
angular field of view of 66° flying at 550 m above ground level. This resulted in a spatial resolution

of 40 cm, enabling the separation of sunlit and shaded components of tree crowns and soil features.
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The hyperspectral sensor collects imagery in the VNIR spectral region (400-1000 nm) with a full-
width at half-maximum (FWHM) of 5.8 nm and a spectral sampling interval of 1.626 nm, resulting
in 371 spectral-band images (detailed specifications in Table 4.1). Auxiliary data were collected
over the same area as the aircraft passed over; these were later used for image calibration and
atmospheric correction. Airborne HSI was atmospherically corrected using the SMARTS model
(Gueymard, 1995, Gueymard, 2001). Aerosol optical measurements were taken with a Microtops
Il sunphotometer (Solar Light, PA, USA) on the ground during the flight, and several other
parameters for the model were derived from the average observations (i.e., air temperature and
relative humidity) from three weather stations (Robinvale, Lake Powell, and Wemen) between 4
and 15 km away. Reflectance was measured in situ for vegetation and soil targets with a FieldSpec
Handheld Pro spectrometer (ASD Inc., CO, USA) to validate and correct imagery. Images were
orthorectified and mosaiced with PARGE (ReSe Applications Schlapfe, Wil, Switzerland) and
ENVI (Boulder, Colorado), respectively. A false-colour airborne hyperspectral mosaic of the study
site from 2021 is shown in Fig. 4.2a. Tree crowns were segmented in the HSI following Wang et
al. (2022) to differentiate the canopy from soil and shade background. Mean spectra were

calculated for each individual tree crown for use in subsequent analyses.

Table 4.1. Specifications of the sensors used in this study.

ESA Sentinel-2 MSI
433-2280 nm (VNIR-SWIR)

Airborne Hyperspectral

400-1000 nm (VNIR)

ISS DESIS Hyperspectral
402—-1000 nm (VNIR)

Spectral range

_FWHM 5.8 nm 3.5nm 15-180 nm

_Spectral sampling distance 1.626 nm 2.55 nm N/A

__Spectral bands 371 235 13

.... Radiometric resolution 16 bits 12 bits + 1 bit gain 12 bits
Spatial resolution 40 cm 30m 10, 20, 60 m
Flight altitude 550 m 400 km 786 km

Image swath 640 m 30 km 290 km

Acquisition date

February 17, 2020
January 31, 2021

January 23,2021

February 13, 2020
January 23, 2021

Flight time (local)

11.30 am—1 pm

Around 12.33 pm

Around 10.33 am
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Fig. 4.2. Colour-infrared (CIR-R: 860, G: 650, B: 550) overview of a) airborne VNIR
hyperspectral image (HSI) acquired at 0.4-m pixel size on January 31, 2021 and b) spaceborne
DESIS VNIR HSI collected at 30-m pixel size on January 23, 2021 over the 1200-ha study site.
(c-f) The irradiance (E) spectrum at each data collection date and the radiance (L) spectra of
vegetation and soil from c) airborne HSI and d) spaceborne DESIS HSI over the 700-800 nm
spectral region and e-f) their spectra over the O2-A feature around 760 nm.
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4.2.2.2 Spaceborne DESIS hyperspectral imagery

Spaceborne HSI was collected by DESIS onboard the ISS (Fig. 4.1). As part of the Multi-User
System for Earth Sensing (MUSES) platform, DESIS was jointly developed by Teledyne Brown
Engineering and DLR and launched on June 29, 2018. A cloud-free DESIS image over the study
area from January 23, 2021 (within one week of the airborne campaign) was selected for analysis
(Fig. 4.2b). DESIS contains 235 spectral bands in the VNIR spectral region (400-1000 nm) with
an FWHM of 3.5 nm and a spectral sampling interval of 2.55 nm (Krutz et al., 2019) (detailed
specifications in Table 4.1). An orbit of the ISS at 400-km altitude results in a 30-m ground
sampling distance (Alonso et al., 2019). Orthorectified top-of-atmosphere (TOA) radiance (L1C)
and reflectance (L2A) DESIS products were used without spectral binning. The DESIS image
together with the radiance spectra from randomly selected vegetation features are depicted in Fig.
4.1. Due to the low surface reflectance in the blue spectral region, DESIS reflectance imagery was
post-calibrated based on airborne HSI via an empirical line for 42 feature targets randomly selected
throughout the orchard consisting of soil, water, and vegetation areas. Fig. 4.3 shows the
reflectance spectrum of one of the targets before and after calibration. The irradiance simulation
for the day of DESIS acquisition (Fig. 4.2d) was produced using the data collected from the three
nearby weather stations. Aerosol optical depth (AOD) data at processing level 1.5 was obtained
from Fowlers Gap, the nearest Aeronet station

(https://aeronet.gsfc.nasa.gov/new web/index.html).
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Fig. 4.3. Comparison of colour-infrared a) airborne and b) DESIS hyperspectral image (HSI), and
the reflectance spectra for c) vegetation and d) soil, from the original spaceborne DESIS HSI (solid
orange line), post-calibrated spaceborne DESIS HSI (solid green line), and airborne HSI (grey
dashed line).

The airborne HSI (see a closed view in Fig. 4.4a) was resampled to 30-m resolution using the Pixel
Aggregate method in ENVI (Boulder, Colorado) by averaging all the surrounding pixels. In this
regard, the resampled airborne hyperspectral pixels maintained all 371 spectral bands,
incorporating soil, vegetation, and shadow features. Spatially resampled airborne pixels were
aligned to the extent of DESIS pixels using the Snap Raster feature in ESRI ArcGIS Desktop

(Redlands, CA, USA). A comparison of pixel sizes and alignments is shown in Figs. 4.5a to 4.5c.
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Fig. 4.4. Colour-infrared image from the a) airborne VNIR hyperspectral image (HSI) acquired at
0.4 m per pixel on January 31, 2021, b) post-calibrated DESIS HSI acquired at 30 m per pixel on
January 23, 2021, and c) Sentinel-2 multispectral image at 10 m per pixel collected on January 23,
2021, with the reflectance spectra of vegetation (in green) and soil (in brown) within the DESIS
pixel in the VNIR region.

4.2.3 Plant trait retrieval and SIF quantification from airborne and DESIS hyperspectral

Plant physiological traits were derived from HSI by inverting canopy reflectance spectra using the
Fluspect-Cx (Vilfan et al., 2018) leaf optical properties model coupled with the 4SAIL (Verhoef
et al., 2007) canopy bidirectional reflectance model (henceforth FIUSAIL). For airborne HSI,
reflectance spectra from pure vegetation pixels were selected for modeling (segmentation shown
in Fig. 4.5a). For imagery with coarser spatial resolution, pixels overlapping the ground
measurements but not edges of the planting blocks were selected. Reflectance spectra from each
study plot were used as inputs for the modeling inversion. To perform the inversion, a synthetic
dataset was first created from the FIUSAIL forward model in order to derive the reflectance
spectrum. The result of this process is the generation of a look-up table (LUT) containing 500,000

simulations, integrating the output spectrum with randomly assigned input parameters drawn from
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uniform distributions (see Table 4.2 for input parameter ranges used by Wang et al. (2022)) along
with the solar zenith and relative azimuth angles for each data source. Based on this LUT, model
training, testing, and validation were conducted using the Statistics and Machine Learning Toolbox
and Deep Learning Toolbox in MATLAB R2020a version (Natick, MA, USA), with 70%, 15%,
and 15% of the LUT samples, respectively (Xie et al., 2019). During the training phase, which is
the backward model, it is intended to determine the relationship between the input reflectance
spectrum and the output plant parameters. Consequently, leaf constituents (i.e., Cab, Ccar, Anth, and
Cdm), the de-epoxidation state of the xanthophyll cycle (Cx), and structural trait LAl were
simultaneously inverted through a 10-hidden layer artificial neural network (ANN) (Hassoun,
1995, Combal et al., 2003) for each data source. The inverted parameters were then compared
using field measurements from all study plots. The FIuSAIL model was also run in the forward
mode for the final inverted parameters to compare against observed image spectra using the root

mean square error (RMSE).

Table 4.2. Ranges of input parameters for the LUT of the FIUSAIL Model.

Parameter Symbol Range/Value
Leaf thickness and constituents

Chlorophyll a+b content (ug/cm?) Ca 20-70
Carotenoid content (pg/cm?) Cear 3-20
Anthocyanin content (pg/cm?) Anth 0-10

Leaf water content (g/cm?) Cw 0.001-0.05
Leaf dry matter content (g/cm?) Cam 0.001-0.05
Brown pigment content (pg/cm?) Cs 0

Leaf mesophyll structural parameter N-struct 1.3-2.5

Leaf dynamic biochemistry

De-epoxidation state of the xanthophyll cycle

(photochemical reflectance parameter) = 0-3
Fraction of photons partitioned to PSI fel 0.002
Fraction of photons partitioned to PSII foell 0.02
Canopy structural parameters

Leaf area index (m?/m?) LAI 1-7
Hot spot parameter q 0.03
Leaf inclination distribution function parameter a LIDF, -1-1

Leaf inclination distribution function parameter b LIDFy -1-1




3542
3543
3544
3545
3546
3547
3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

S AIPGrD € HST @0 7 2] b) Airborne HSI @ 30 m ¢) DESIS HSI @ 30 m d) Sentinel-2 @ 10 m
I IRRILL 3 -

————
Refectanc

L
Betactance
°
—
Reflectanc

— - | S— . 3 -
) ) s L 3 -

0 00 %0 1000 s 0 »0 1000 ey 0 00 3500 s 0 o0 1000
Warvelength (am) Wavelength (nm) Wavelength (sm) Wavelergth (nes)

Fig. 4.5. Colour-infrared overview of a 5-by-5 DESIS pixel window of a) the tree-crown
segmentation in yellow colour and the average tree-crown reflectance spectrum (in orange) from
an airborne hyperspectral image (HSI) at 0.4-m resolution, b) airborne HSI resampled to 30-m per
pixel, ¢) post-calibrated DESIS HSI at 30 m per pixel, and d) Sentinel-2 multispectral image at 10
m per pixel. VNIR reflectance spectra within each green box are shown below each image. The
solid green line represents the reflectance spectrum within the central DESIS pixel (in green) from
different images compared with the tree-crown reflectance spectrum (orange dashed line).

SIF was calculated from the oxygen (O2) A-band absorption feature near 760 nm, following the
Fraunhofer line depth principle (Plascyk and Gabriel, 1975, Plascyk, 1975). For each data source,
SIF quantification using the O2-A in-filling method was performed by comparing the spectral
windows for ‘in’ and ‘out’ of the peak irradiance (E) and radiance (L). It was observed that the
minimum value within the 755-765 nm region of E and L was at 762 nm (used as Ein/Lin) for both
airborne and DESIS HSI, as shown in Figs. 2e and 2f. Here, the Eout/Lout COrresponds to their
maximum E/L values within the spectral regions of 744—754 nm and 770-780 nm, respectively. A
correction based on values of non-fluorescence soil features was added to reduce atmospheric and
calibration effects (Belwalkar et al., 2022). Due to the limited availability of AOD data from the
nearby Aeronet station on the date of the DESIS imagery, SIF values from DESIS were treated as

SIF proxies rather than absolute values.
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4.2.4 Sentinel-2 datasets for vegetation indices calculation and plant traits retrievals
Cloud-free scenes from Sentinel-2B on February 13, 2020, and Sentinel-2A on January 23, 2021
were considered for potential leaf N estimation. Twelve-bit images with a swath width of 290 km
and 13 spectral bands over VNIR-SWIR spectral regions were acquired at three spatial resolutions
of 10, 20, and 60 m (detailed specifications can be found in Table 4.1 and Drusch et al. (2012)).
Level-1C images (orthorectified TOA reflectance) were processed into level-2A (bottom-of-
atmosphere reflectance) using Sen2Cor, version 2.8.0 (Louis et al., 2016). The lower-spatial-
resolution bands (20 and 60 m) were then resampled to 10 m to create a uniform-resolution
multispectral image over the study site. Fig. 4.4 illustrates VNIR images as well as soil and
vegetation spectra from the three sensors used in this study. The comparison of reflectance spectra
(RMSE = 0.01) over the dense canopy of tree crowns from Sentinel-2 (in green) and airborne (in
orange) is shown in Fig. 4.5d.

Sixteen vegetation indices related to canopy structure and pigment content were calculated from
the uniform-resolution images (see Table 4.3 for the list of indices and their formulas). Some of
them were the indices compatible with Sentinel-2 spectral bands proposed by Clevers and Gitelson
(2013), such as Sentinel-2 red-edge position (S2REP) (Frampton et al., 2013). Other indices using
bands in the SWIR were also tested in this study, such as the Aerosol free vegetation index

(AFRI1510 and AFRI2100) (Karnieli et al., 2001).



3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

Table 4.3. Vegetation indices calculated in this study from Sentinel-2 data.

Index

Equation

Reference

VNIR indices for Sentinel-2

NDVI (Resz — Rees)/(Rgaz + Rees) Rouse et al. (1974)
2.5 " (Rge2 — Ress) .
EVI Rom F 6 Ress — 75 Ru 7 1 Liu and Huete (1995)
Clred-edge (R7g3/R705) — 1 Gitelson et al. (2003)
Clgreen (R7g3/Rsgo) — 1 Gitelson et al. (2003)
35-(Rges + R 2—R
S2REP 705 + 22 Rees + Roes)/ 708 Frampton et al. (2013)
R740 = Ryos
MTCI (R740 — Ry05)/(R705 — Rees) Dash and Curran (2007)

MCARI/OSAV 705,750

((R740 — R705) = 0.2 (R749 — Rsep)) (R740/R705)
(1 + 0.16) - (Ryag — Ryg5)/(R749 + Rygs + 0.16)

Wau et al. (2008)

TCARI/OSAV l705,750

3 ((R7a0 — Ryp5) = 0.2 (Ry40 — Rsgo) - (R740/R705))

(1 + 0.16) - (Ryag — Ryg5)/(Rys0 + Rygs + 0.16)

Wau et al. (2008)

NDRE1 (R7s0 = Ry05)/(R740 + Ryos) Sims and Gamon (2002)
NDRE2 (R7s3 — Ry05)/(R7g3 + Ryos) Barnes et al. (2000)
PSSRa R7g3/Ress Blackburn (1998)
PSSRc2 Rg42/Rago Blackburn (1998)

SWIR indices for Sentinel-2

STI Ry610/Rz2190 Van Deventer et al. (1997)
NDWI (Resz — Rip10)/(Reaz + Rip10) Gao (1996)
0.66 - Ryg10 L
AFRI1s10 Rges — m Karnieli et al. (2001)
0.5 Ry199 Al
AFRI2100 Karnieli et al. (2001)

R el
865 Rges + 0.56 - Ry100

As with the other two datasets, a LUT with 500,000 FIuSAIL simulations using the same ranges

of input parameters in Table 4.2 was built for the Sentinel-2 dataset. As Sentinel-2 has only one

band in the green spectral region where most pigments are active, making it difficult to accurately

determine minor pigments and the xanthophyll epoxidation state (Cx), hence only Cab retrieval was

attempted. A selection of plant traits (i.e., Cab, Cw, Cam, and LAI) were extracted using the ANN

from Sentinel-2 LUT.

4.2.5 Leaf N estimation

For HSI-derived data, leaf N prediction models were built using RTM inverted plant traits (i.e.,

Cab, Ccar, Anth, Cam, Cx, and LAI) and SIF as inputs (see STAGE 2 at the bottom of Fig. 4.6). For
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Sentinel-2 data, two separate models were established, one using the estimated plant traits (i.e.,
Cab, Cw, Cam, and LAI) and the other using the vegetation indices (Table 4.3) as inputs. Data were
fit with random forest (RF) (Breiman, 2001) regression models with fine-tuning of
hyperparameters, using leave-one-out cross-validation for the training and testing steps, following
the method described by Wang et al. (2022). Predictions from the model based on airborne imagery
were previously validated by Wang et al. (2022) and explained 95% of the variability of field-
measured leaf N throughout the orchard over 2 years of study. Due to the high resolution and
accuracy of this model, its spatially resolved predictions were used as a baseline for the models
from coarser resolution data. Randomly selected pixels across the orchard were employed for
training (60%) and testing (40%) based on the airborne N map for both DESIS and Sentinel-2.
Finally, all models were compared against field-derived leaf N concentration.

To reduce the redundancy of the inputs, a variance inflation factor (VIF) (O’brien, 2007)
collinearity assessment was conducted when building the regression model. To understand the
relative importance of the inputs to each model, out-of-bag predictor importance scores were
evaluated. The final model was constructed using the most important predictors, which are non-
collinear for each year of data sources. More specifically, the airborne and spaceborne DESIS
hyperspectral models were built with Ca and SIF, whereas Cab, Cam, and Cw were employed for
Sentinel-2-based models. As an alternative to the plant traits, a second N model using non-collinear
VNIR and SWIR vegetation indices was constructed for the Sentinel-2 dataset. Using r2 and RMSE
as performance measures, the models were evaluated against the validation data. To conclude, leaf
N estimation from DESIS hyperspectral and Sentinel-2 were compared with high-resolution
airborne estimates throughout the orchard to determine the RMSE based on individual planting

blocks.
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3611 Fig. 4.6. Schematic representation of the leaf N assessment from airborne hyperspectral,
3612  spaceborne DESIS hyperspectral imagery, and Sentinel-2 multispectral image in a dense canopy
3613  almond orchard. Underlined parameters were retrieved and used in the Sentinel-2 model.



3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

4.3 Results

4.3.1 Assessment of trait retrievals with airborne and spaceborne hyperspectral datasets

A comparison of Ca» and SIF from airborne hyperspectral imagery in native vs. downsampled
resolutions is presented in Figs. 7a and 7b. Values across spatial resolutions were highly correlated
for both Cas (e.9., r> = 0.93, RMSE = 1.99, p-value < 0.001 in 2021) and SIF (e.g., r>=0.97, RMSE
= 0.61, p-value < 0.001 in 2021). When both years of data were considered simultaneously,
associations remained strong for SIF (r?> = 0.93, RMSE = 0.77, p-value < 0.001) and to a lesser
extent for Cap (r? = 0.72, RMSE = 4.81, p-value < 0.001). The structural vegetation indices (e.g.,
NDVI) and SIF and were not correlated with each other (r? < 0.1, not significant for both years),
suggesting that canopy structural effects were not the dominant driver of SIF differences between
years. Associations were weaker between airborne and DESIS-derived Cap (r? = 0.33, RMSE =
8.07, p-value < 0.005 in 2021) and SIF index (r?> = 0.53, p-value < 0.001 in 2021) (Figs. 7c to 7f).
When compared to airborne observations, DESIS-derived Ca» contents were biased towards higher

Cab contents.
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Fig. 4.7. Relationships between estimates of plant characteristics by measurement methodology.
Top row: spatially resampled (aggregated to 30 m) airborne hyperspectral vs. tree crown-based
estimates for a) Cab, and b) SIF in 2020 (12 points in the hollow grey circle) and 2021 (24 points
in solid black circle). The solid blue line represents correlation when combining data from 2 years.
Middle row: DESIS hyperspectral vs. tree crown-based estimates of ¢) Cab and d) SIF in 2021.
Bottom row: e) Cap and f) SIF index between DESIS hyperspectral and the spatially resampled
airborne hyperspectral at 30 m. The orange dashed diagonal line is the 1:1 line.
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SIF and RTM-derived plant traits were strongly correlated with leaf pigment content and leaf N
concentration obtained from in situ measurements (Table 4.4). Statistically significant correlations
were found between HSI-estimated Ca» and both Dualex-measured Cab (all p-values < 0.005) and
laboratory-derived leaf N concentration (all p-values < 0.001). SIF (p-values < 0.005) and Cam (p-
values < 0.005) were also significantly correlated with leaf N. As expected, Cx had greater
correspondence with N measures when estimated from high-spatial-resolution imagery, allowing
the extraction of pure vegetation features from tree crowns rather than mixed features derived from
low-spatial-resolution pixels of DESIS. Airborne-derived traits (esp. SIF, Cab, Ccar, and Cx) were
also more correlated with in situ leaf Ft measurements than spaceborne-derived traits. RTM-
inverted plant traits were more closely correlated with field measurements than vegetation indices
derived from either airborne or DESIS hyperspectral imagery (e.g., TCARI/OSAVI vs. leaf N

concentration: r? < 0.23, data not shown).

Table 4.4. Correlations (r?) between image-derived spectral traits and field measurements. Rows
indicate modeled traits, and columns indicate pairing of field data source (top row), year (second
row), and HSI source (third row).

ield data Leaf C,, (ng/cm?) Leaf Ft (a.u.) Leaf N (%)
2020 2021 2020 2021 2020 2021

Image-derived Airborne | Airborne DESIS Airborne | Airborne DESIS Airborne | Airborne DESIS

spectral traits HSI HSI HSI HSI HSI HSI HSI HSI HSI

Model-derived plant traits from hyperspectral imagery

Ca (ng/cm?) 0.66

Cer (ngfem?) 0.66 0.01

Anth (png/cm?) 0.65 0.17 0.33 0.04 0.18

Cy 0.58 0.28 0.42 0.30 0.16

Can (g/cm?) 0.60 0.20 0.12 0.00 0.14 0.62 037

LAI 0.06 0.09 0.32 0.01 0.08 0.02 0.02 0.11 0.18

Fluorescence quantification from hyperspectral imagery

SIF [ 036 [ ois 034 [ETOAT] 033 025 | oes  [RT0ASTT0S9 ]
_ p-value < 0.005 | p-value <0.05 | not significant |

Field measurements are Dualex-derived leaf Cy, (ng/cm?), FluorPen-derived steady-state chlorophyll fluorescence (Ft, au.), and leaf N
concentration (%o).

Data from 2020 (12 study plots) and 2021 (24 study plots).

Background colour represents the p-value: dark blue for p < 0.001, medium blue for 0.001 < p < 0.005, light blue for 0.005 < p < 0.05, and
white for p > 0.05 (not significant).
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4.3.2 Leaf nitrogen assessment using SIF and plant traits derived from airborne and DESIS
hyperspectral data

Predictor importance scores for models based on spaceborne DESIS HSI and airborne HSI from
2021 are exhibited in Fig. 4.8. DESIS-derived SIF (p-value < 0.001) and FIUSAIL RTM-inverted
Cab (p-value < 0.001) were the highest ranked predictors for both platforms, followed by other leaf
biochemical constituents and biophysical traits. SIF and Ca» were not collinear when assessed for
variance inflation (VIF < 5) for both airborne and spaceborne DESIS and thus were kept in the
final prediction model. However, Cdm, Cca, and Cx were collinear with Cap. The structural trait LAI
was markedly more important in the DESIS-based model than the airborne-based model. As a
result, final models for both HSI datasets were constructed using Ca» and SIF. The DESIS model
yielded an r? of 0.83 (p-value < 0.001) and RMSE of 0.06% when validated against in situ leaf N
in 2021. The prediction against the airborne-based model had an r? of 0.88 (p-value < 0.001) and

RMSE of 0.05% throughout the entire orchard.

Airborne hyperspectral Spaceborne DESIS hyperspectral
SIF ‘ |
Cab | I
C.. | |
C, |
At ]
Cam R
A NI
DI.32 U.JI.G 0 0.I16 0.3:2
Importance

|1 Biochemical constituents F==] Structural traits LsIF

Fig. 4.8. Importance of FIUSAIL RTM-inverted traits and SIF used as predictors for leaf N. Models
used traits derived from either DESIS (in orange) or airborne (in green) hyperspectral imagery in
2021. The two most important variables (non-collinear) are marked in a grey dashed rectangle.
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4.3.3 Performance of Sentinel-2-derived plant traits and vegetation indices

Correlations between Sentinel-2-derived indices and field measurements are presented in Table
4.5. Overall, plant traits (e.g., Cab and Cam) tended to be more consistently significant correlated
with field measures than vegetation indices across the 2 years of study. Vegetation indices were
more correlated with field measures in 2021 than in 2020. RTM-derived Cab from Sentinel-2 was
biased at higher Cab contents compared to in situ measures with an r?of 0.41 (p-value < 0.001) and
RMSE of 1.63 in 2021 (Fig. 4.9a). Nevertheless, RTM-derived Cab was consistently significant
correlated with leaf N for both years (r? = 0.68 and 0.64 in 2020 and 2021, respectively, p-values
<0.001). Clred-edge Was weakly correlated with leaf N in 2020 (r?= 0.18, n.s.) but strongly correlated
in 2021 (r?>= 0.56, p-value < 0.001, Fig. 4.9b). Additionally, indices derived from spectra in the
SWIR region tended to be more correlated with field measurements than those from the VNIR
region. For example, AFRI1s00, a SWIR-based index, was correlated with leaf N in both 2020 (r?

= 0.54, p-value < 0.05) and 2021 (r?> = 0.69, p-value < 0.001).

36 2.8
b)
26
34 .
s\i
3 S
TU - 2.4 I~
5 o
o €
~—32 r [
b e
J
S
5 o 22
g Z
o
Q
—
30 )
2+ R*=0.56
R2=0.41
RMSE = 1.63
@
28 L L L 1.8
28 30 32 34 36 1.3 1.7 2.1 2.5 2.9 3.3
C,, from Sentinel-2 @ 10 m Clegegge from Sentinel-2 @ 10 m

Fig. 4.9. Relationships between a) RTM-derived Cas content from Sentinel-2 and leaf Can measured
by Dualex, and b) Clred-edge calculated from Sentinel-2 and leaf N concentration (%) in 2021 (24
points). The grey dashed diagonal line is the 1:1 line.
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Sentinel-2-based Cab and Cam Were consistently correlated with leaf N across years (Table 4.5), as

with hyperspectral-derived Cap and Cam. However, correlations with Dualex-measured Can Were

lower than those derived from hyperspectral imagery. LAI determined from Sentinel-2 was more

strongly correlated with GNDVI (r?= 0.71, p-value < 0.001) and RDV1 (r?= 0.40, p-value < 0.005)

(data not shown) than LAI obtained from hyperspectral sources in 2021. Sentinel-2-derived LAI

was more correlated with leaf N concentration (r?> = 0.28, p-value < 0.05 in 2021) than DESIS-

derived LAI (r? = 0.18, p-value < 0.05 in 2021). Nevertheless, the structural trait LAI did not

explain much N variability in this well-managed dense orchard compared to other traits.

Table 4.5. Correlations (r?) between model-derived plant traits and vegetation indices from
Sentinel-2 against field measurements.

Field data

Sentinel-2 indicators

Leaf C.p (ng/cm?)

Leaf Ft (a.u.)

Leaf N (%)

2020

2020

‘ 2021

‘ 2021

2020

2021

Model-derived plant traits

Ca (pg/cm?) 0.55

Cw (glem?) 0.37

Cam (g/cm?) 0.33

LAI 0.2§ 0.11 0.44 0.07 0.41 0.28
VINIR vegetation indices

NDVI 0.29 0.08 0.26 0.37
EVI 0.43 0.13 0.47
Clieg-edes 0.11 0.00 0.25 0.18
Claeen 0.28 0.03 0.24 0.33
S2REP 0.20 029 0.06 0.13
MTCI 0.03 023 0.12 0.02
MCARI/OSAVI7ns, 750 0.33 0.07 0.39
TCART/OSAVT0s, 750 0.00 0.04 0.21 0.02
NDRE1 0.15 0.01 0.23 0.21
NDEE2 0.12 0.00 0.22 0.18
PSSRa 0.28 0.08 0.39
PSSRe2 0.41 0.16 0.22 0.54
SWIR vegetation indices

STI 0.16

NDWI 0.21

AFRIis00 0.43

AFRInm 0.44

p-value < 0.05

not significant

Field measurements are Dualex-derived leaf Ca (ug/cm?), FluorPen-derived steady-state chlorophyll fluorescence (Ft, a.u.), and leaf N

concentration (%o).

Data from 2020 (12 study plots) and 2021 (24 study plots).
Background colour represents the p-value: dark blue for p < 0.001, medium blue for 0.001 < p < 0.005, light blue for 0.005 <p < 0.05, and

white for p = 0.05 (not significant).



3692

3693

3694

3695

3696

3697
3698

3699

3700

4.3.4 Leaf nitrogen assessment from Sentinel-2: comparison against hyperspectral imagery

For predictions of leaf N using Sentinel-2 data, Cab, Cam, and Cw were found to be more important
than LAl across years (Fig. 4.10). Importance scores of vegetation indices were inconsistent across
years. Nevertheless, vegetation indices derived from the SWIR region (i.e., 2190 and 1610 nm)

tended to be more important than VNIR vegetation indices.

2020 2021
Cab | | I
Cam [ | |
Cw [ | |
L ST
0.6 0.3 0 0.3 0.6
AFRlis10 [ |
STI
L | J
PSSRc2 [ N
S2REP | | 1
Ml o —
EVI
I | |
Clgreen | I
TCARI/OSAVI :|
GNDVI E|
0.4 0.2 0 0.2 0.4
Importance
[T Biochemical constituents  [_I__] VNIR indices
[CF=57] structural traits [II) SWIR indices

Fig. 4.10. Importance of model-derived plant traits and vegetation indices (non-collinear, VIF <5)
calculated from Sentinel-2 in 2020 and 2021.

The final N prediction model using plant traits from Sentinel-2 (N = f(Cab, Cw, Cam)) had an r? of

0.79 (p-value < 0.001) and RMSE of 0.08% for 2020, and an r? of 0.72 (p-value < 0.001) and
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RMSE of 0.12% for 2021. Similar performance was found for the model based on the non-collinear
vegetation indices (N = f(STI, PSSRc2, S2REP, MTCI, EVI, Clgreen)). Across all models, those
built with hyperspectral-derived datasets (e.g., r? = 0.86, RMSE = 0.05%, p-value < 0.001 from
airborne HSI in 2021, and r? = 0.83, RMSE = 0.06%, p-value < 0.001 from spaceborne DESIS
HSI in 2021) outperformed Sentinel-2-based models (e.g., r> = 0.72, RMSE = 0.08%, p-value <
0.001in 2021, Fig. 4.11) each year. Combining data over both years, the airborne-based regression
model (r?> = 0.91, RMSE = 0.05%, p-value < 0.001) performed much better than Sentinel-2 (r? =

0.82, RMSE = 0.09%, p-value < 0.001).
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Fig. 4.11. Relationships between leaf N concentration model predictions based on a) airborne
hyperspectral-derived N (Cab, SIF) from tree crowns, b) Sentinel-2-derived N (Cab, Cw, Cdm), and
c) spaceborne DESIS hyperspectral-derived N (Cab, SIF). Data from 2020 (12 points) are shown
as hollow grey circles, and data from 2021 (24 points) are shown as solid black circles. The solid
blue line represents the linear fit when combining data from 2 years. The orange dashed diagonal
line is the 1:1 line.
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Spatial patterns in predicted N were similar between models based on spaceborne and airborne
imagery (Fig. 4.12). Pixel values from the airborne-derived N map were highly correlated with
both the DESIS (r? = 0.88 and RMSE = 0.03%, p-value < 0.001, n (number of pixels) = 5030) and
Sentinel-2 (r? = 0.82 and RMSE = 0.07%, p-value < 0.001, n = 54661) N maps. The largest
discrepancies between N maps were observed in areas with extreme N levels, possibly due to the
influence of soil and shadows in coarser imagery and to fewer extreme-valued samples being used
in model training. When using an average aggregated value per management block, DESIS
estimates had greater correspondence with high-resolution airborne estimates than Sentinel-2
estimates, with 67 out of 71 blocks having an RMSE under 0.1% for DESIS (compared to 62 out
of 73 blocks for Sentinel-2). Subsequent examination revealed that blocks with high RMSEs also

tended to have high N levels.
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Fig. 4.12. Estimated leaf N maps for the 2021 pre-harvest season based on models using a) airborne
hyperspectral-derived Cab and SIF from tree crowns, b) spatially resampled airborne hyperspectral
imagery-derived Cab and SIF, c) spaceborne DESIS hyperspectral imagery-derived Ca, and SIF,
and d) Sentinel-2-derived plant traits Cab, Cw, and Cam.

4.4 Discussion

Monitoring and quantification of leaf N at both the local and large-area scales require a

comprehensive understanding of the drivers and plant traits that can best explain N stress. For both
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hyperspectral image datasets (airborne and spaceborne DESIS) tested in this study, SIF and Cab
were the most important spectrally derived traits for predicting leaf N, followed by Ccar and Cx
(Fig. 4.8). By contrast, LAI was only modestly important and only for the model based on the
DESIS dataset. One possible explanation is that at the pre-harvest stage, foliage growth slows
(Clark and Smith, 1990, Brown, 1994) and becomes more uniform, especially in well-managed
orchards. Thus, LAI would not be expected to vary much, especially in pure vegetation pixels.
The spatial resolution of each sensor influenced both trait retrievals and model predictions in this
study. In particular, medium-resolution satellite imagery is known to suffer from greater mixing
effects from shadow and soil backgrounds on vegetation signals within pixels (Zarco-Tejada et al.,
2013). In this study, Cx, a dynamic trait approximating the xanthophyll cycle as a function of stress,
was not found to be important for predicting leaf N at coarse spatial resolutions. According to Jia
et al. (2021), SIF was found to be important for predicting leaf N, outperforming other spectral
indices (e.g., Clred-edge and NDRE). However, this result was somewhat sensitive to the N
measurement technique (area-based vs. mass-based leaf N content). In this study, RTM-derived
Cap and SIF were found to be important for predicting leaf N in models from both airborne (40-cm
resolution) and DESIS (30-m resolution) imagery, suggesting that both Ca» and SIF are strong
candidates for leaf N estimates across spatial resolutions.

Many studies have shown that it is possible to estimate LAI from Sentinel-2 data (Richter et al.,
2009, Verrelst et al., 2015, Herrmann et al., 2011, Atzberger and Richter, 2012); however,
estimates of actual leaf pigment content or other biochemical constituents are more difficult due
to the limited number of spectral bands available in these data. In this study, we found strong
correlations between estimated plant physiological traits and field measurements, suggesting that

it is possible to use RTM inversion with Sentinel-2 data to estimate key physiological traits (i.e.,
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Cab, Cw, Cdm, and LAI). When we compared RTM-derived Cab and Cam to field-measured Can, we
observed relatively strong correlations over both years (p-values < 0.05) and even stronger
correlations with leaf N (p-values < 0.005) (Table 4.5). Although LAI can reflect changes in plant
growth due to nutrient or water availability (Albaugh et al., 2004), sustained stress is uncommon
in well-managed orchards, and it is thus unlikely that LAI will be sensitive to the relatively low
nutrient variability found in production settings. In this study, we found that LAl was not correlated
with leaf Cap or N. Cw was also not consistently associated with leaf N across seasons, which could
be explained by the actual differences in fertigation management between seasons. Li et al. (2010)
found that the utility of vegetation indices for predicting plant N was inconsistent and particularly
contingent on the plant phenological stage. Similarly, there was evidence of a significant
correlation between vegetation indices and in situ leaf measurements in 2021, but not in 2020. This
inconsistency suggests that vegetation indices may not be appropriate for long-term N monitoring.
Regardless, consistent contribution of vegetation indices across years was not observed (Fig. 4.10),
which is important when attempting to monitor Cap and N status over phenological stages across
multiple years.

Sensor spatial and spectral resolution strongly influences the accuracy of any downstream leaf N
predictions, especially in heterogeneous orchards. Among the three platforms tested in this study,
the imager with the highest resolution (airborne) provided the best leaf N predictions. The model
built with Sentinel-2 multispectral imagery had nearly double the RMSE of the airborne-derived
model. Interestingly, in 2021, the model based on DESIS hyperspectral imagery (N = f(Cab, SIF)
with r? = 0.83, RMSE = 0.06%, p-value < 0.001 when assessed against field measurements) was
more accurate than the Sentinel-2 models (N = f(Cab, Cw, Cam) with r? = 0.72, RMSE = 0.08%, p-

value < 0.001 against field measurements), despite having a lower spatial resolution and shorter
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spectral range. The DESIS model (94% of RMSE > 0.1%) also had greater correspondence with
the airborne model at the block level than the Sentinel-2 model (85% of RMSE > 0.1%). These
results suggest that spectral resolution may be more important than spatial resolution in predicting
leaf N. Nevertheless, the performance of Sentinel 2 (N = f(Cab, Cw, Cam)) is still acceptable, and
provides a reasonable alternative approach for estimating N from Sentinel-2derived Ca, Cw, and
Cdm When hyperspectral imagery cannot be utilized to derive SIF.

The presence of stem elements, crown architecture, and bare soil in a scene can result in model
inaccuracies (Verstraete et al., 1990, Law et al., 2001). Nevertheless, RTMs considering the
canopy as a turbid medium have already been successfully used to retrieve plant traits. An earlier
study by Zarco-Tejada et al. (2001) demonstrated that coupled PROSPECT and SAILH models
could be used to estimate Cap in high-density closed forest canopies, particularly after selecting the
brightest 25% pixels in the NIR region from high-resolution airborne imagery. In the well-
managed orchard used for this study, tree canopies were dense and uniform, thus minimizing the
impact of the canopy structural variation. In prior work using the same data as this study, Wang et
al. (2022) demonstrated that plant traits can be successfully estimated through a one-dimensional
canopy RTM (4SAIL) using such high-density closed tree canopy data. Models in the current study
did not take into account the effects of woody material and foliar clumping required for a more
detailed estimate of LAI (Chen et al., 1997). With coarse spatial resolution data (over 10 m),
however, these effects are difficult to detect and unlikely to be a significant issue.

Another limitation of this study was the empirical line post-calibration needed to correct the
abnormal values found in the blue and parts of green region of the DESIS reflectance imagery. An
improved radiometry calibration of the DESIS imagery, especially in the Southern Hemisphere,

would be beneficial in the future. Raw radiance spectra with no further calibration were used for



3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

SIF calculation in this study. Although SIF retrieval is known to be affected by spatial resolution
and illumination differences (Camino et al., 2018b, Zarco-Tejada et al., 2013), SIF estimates based
on 30-m resolution DESIS imagery were shown to be associated with leaf N in this study, possibly
due to the dense tree canopy in the orchard. Nevertheless, this study illustrates the potential use of

DESIS for monitoring N across large areas.

4.5 Conclusions

We demonstrated that it is possible to estimate leaf N in a discontinuous tree-structured orchard
using 30-m spatial resolution DESIS hyperspectral imagery. High-resolution airborne
hyperspectral imagery and field data were used for validation. We found that SIF and RTM-
derived Cab were the most important for predicting leaf N across spatial resolutions. Furthermore,
the model based on airborne and spaceborne hyperspectral data outperformed Sentinel-2-based
models (using either vegetation indices or RTM-derived traits). Our results suggest that the newly
available spaceborne hyperspectral sensor can be used to assess N across large areas via models
using RTM-derived leaf biochemical trait retrievals and SIF. One important finding of this study
was that models based on hyperspectral data outperformed models based on Sentinel-2 data, even
though Sentinel-2 data has a higher spatial resolution and represent reflectance in the SWIR

spectral region.
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Chapter 5 : Conclusions

5.1 Summary and main conclusions

The primary objective of this PhD thesis was to assess the role of chlorophyll fluorescence in leaf
nutrient estimation for almond orchards at the leaf and the canopy levels using leaf-scanning
instruments and airborne and spaceborne imagery. The study evaluated models based on a series
of plant parameters over the course of two growing seasons with different fertigation applications

in a discontinuous tree-structured almond orchard.

The thesis starts with a general exploration of spectral traits as predictors for a series of leaf nutrient
elements (e.g., N, P, and K) and nutrient ratios measured by destructive testing of leaves sampled
in the field, followed by focusing on the assessment of nitrogen content, the most abundant primary
element in plants. Analysis of airborne imagery and ground measurements indicated that
vegetation indices calculated from the visible spectral region (e.g., NPQI, CTRI1, BGI1, and PRI
series) were more closely related to nutrients than structural indices calculated from the visible
and near-infrared regions (e.g., NDVI). Based on hyperspectral imagery collected in the visible
and near-infrared regions, biochemical constituents such as photosynthetic pigments (e.g., Cab, Cecar,
Cx) derived from the FIUSAIL radiative transfer model were found to be reliable predictors of
nutrient levels (especially for primary macronutrients), outperforming the results of empirical
models based on single vegetation indices. In addition, this PhD thesis demonstrates that
chlorophyll fluorescence, used as a proxy for photosynthesis, is sensitive to deficiencies of the
three primary macro-nutrients (i.e., N, P, and K), especially when considering data across years
under varying management practices, yielding r? = 0.74 (p-values < 0.005) for the relationships of

both leaf steady-state measurements and canopy SIF with leaf N.
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The study emphasizes the importance of examining other proxies for nutrients in addition to
chlorophyll alone, particularly when N levels are high, because Can shows reverse trends with N
across different fertigation applications during different years. At the leaf level, the Dualex leaf-
measurement of chlorophyll alone was not as sensitive and consistent as the NBI indicator based
on both Flav and Ca» parameters. Alternatively, steady-state chlorophyll fluorescence results
demonstrated consistently stronger correlation and trend with primary macro-nutrient results than
did the leaf-measured Cab results. This stronger correlation and trend remained consistent at the
canopy level, whereas spectral vegetation indices showed inconsistent trends. However, airborne
SIF calculated from the illuminated crown pixels was correlated with leaf N results across growing
seasons. For leaf nitrogen estimation in almond trees, Ca» and SIF were found to be the most
effective predictors of N for individual years, at both high-resolution airborne scale and spaceborne
scale, outperforming other biochemical tests and biophysical plant trait assessments. SIF exhibited
performance in terms of primary macro-nutrients superior to that of RTM-based plant traits across
years, with an r? = 0.74 (p-values < 0.005) for both steady-state measurements and canopy SIF of
leaf N. The performance of N estimation improved when SIF was coupled with photosynthetic
plant traits derived by both airborne and spaceborne platforms, making combined Ca and SIF
superior to any other combinations for this purpose. The model using Ca alone showed modest
predictivity for leaf N variability (r> = 0.49, RMSE = 0.16%, p-value < 0.001) over the two years
of data, but when SIF and Cab traits (non-collinear) were coupled, predictions improved
dramatically (r? = 0.95, RMSE = 0.05%, p-value < 0.001). These findings suggest that chlorophyll
fluorescence is a promising and reliable indicator for nutrient assessment, and that the combination

of Cab and SIF provides the most robust assessment of leaf N concentration.
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Additionally, this work demonstrates that spaceborne hyperspectral imagery, such as the newly
developed DESIS onboard the International Space Station (ISS) with a 30-m spatial resolution, is
useful for the operational monitoring of N content via models using RTM-derived leaf biochemical
trait determinations and SIF in almond tree orchards. Also, N assessments of discontinuous dense
canopies are more accurate with greater spectral resolution than with greater spatial resolution, and
hyperspectral imaging provides the most accurate N estimations. These results demonstrate the
vital contribution of hyperspectral spaceborne missions to large-area N monitoring and precision

agriculture.

5.2 Implications and contributions

Over two growing seasons with different fertigation applications monitored at various scales, this
PhD thesis demonstrates a consistent method for assessing leaf nitrogen in a dense discontinuous
tree-structured almond orchard. As compared to the standard method of using Cab alone, the
combination of Ca and SIF provides a more robust and improved assessment of leaf nitrogen,
eliminating the saturation effects and instability caused by the variation of fertigation practices.
As a result of this research, SIF has been further proven as a means of assessing leaf nutrients in
heterogeneous canopies and monitoring vegetation health before harvest. A subsequent analysis
of leaf nutrient status can also be conducted during other phenological stages. In Chapter 4, the
effects of image spatial resolution are evaluated by comparing the results obtained from pure tree-
crown pixels and from downsampled resolutions resulting in mixed features, both for SIF and N
content assessment. Considering that the tree canopies in this almond orchard are quite dense and
clustered, the effects of canopy discontinuity did not impede the assessment. The results presented

in this thesis provide us with new insights which can be applied to assessing the performance of
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SIF techniques for other tree species and structures, particularly when using coarser spatial

resolution sensors at the regional scale.

An assessment of the PRI family of indices as a measure of the dynamics of the xanthophylls was
carried out. Throughout two growing seasons in the almond orchard, PRIsis (PRI index using as
reference the signal at 515 nm), developed to minimize structural effects, was superior to PRI (at
570 nm). As part of this thesis, FIuSAIL RTM was employed to retrieve Cx data for the assessment
of the de-epoxidation state of the xanthophyll cycle, as well as the standard major leaf
photosynthetic pigments Cab, Ccar, and Anth. The modeling of the Cx parameter is based on in vivo
absorption coefficients for two extreme states of the carotenoid pool, corresponding to the two
extremes of xanthophyll de-epoxidation, and describes the intermediate states as a lineal mixture
of these two extreme states. The Cx data retrieved from airborne hyperspectral imagery was
significantly correlated with PRIs1s results (r? = 0.68 and 0.60 in 2020 and 2021, p-values <0.001)
and with leaf N results (r> = 0.61 and 0.62 in 2020 and 2021, p-values <0.001). In addition, Cx
was found to be the next best non-collinear (VIF<10) predictor for leaf N after Can and SIF. The
model incorporating Cx, Ca, and SIF outperformed any other combinations with plant traits
derived from high-resolution airborne hyperspectral imagery across both years. These results
suggest that RTM-derived Cx estimates from airborne hyperspectral imagery, serving as a measure
of xanthophyll status, are important predictors for leaf N levels in almond orchards, the model’s

performance improving when combined with Ca, and SIF.

RTM-inverted plant traits identified from VNIR hyperspectral images are found to be more
accurate N estimators than single vegetation indices at both high (airborne at 0.4-m) and coarse
(DESIS at 30-m) spatial resolutions. Compared to biochemical constituent results, LAI based on

vegetation pixels from the airborne scale was less effective for leaf N estimates, whereas LAI
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derived from spaceborne DESIS, where pixels comprise crowns, soil, and shaded background,
gave more accurate N assessment than did plant traits derived from high-resolution airborne
imagery. Based on these results, LAl was not the primary indicator of leaf nutrient content when

using high-resolution imagery, but it should be considered with coarser spatial resolutions.

Even though this thesis is primarily focused on the use of hyperspectral imagery for nutrient
assessment, the results from the multispectral Sentinel-2 imagery, a widely used free satellite
source, are also evaluated. In the absence of SIF quantification, other biochemical constituents
(e.g., Cw and Cam) can be coupled with Cap for estimation of leaf nitrogen using the SWIR spectral

region.

The potential effect of water stress under varying fertigation was also considered. Based on the
two-year dataset, it was observed that the water stress indicator, CWSI, did not show any
correlation with leaf nitrogen variability, revealing different variability patterns throughout the
orchard. These results indicate that leaf nitrogen variability is not driven by water status in this
managed intensive almond orchard, even when both water and fertilizer are applied together via

fertigation.

This study also demonstrates the high correlation between chlorophyll fluorescence and primary
macro-nutrients, including P and K, and provides guidance on estimating these nutrients using the
proposed method. From a physiological perspective, it is believed that the SIF signal is closely
related to the photosynthetic capacity of leaves, which is in turn dependent on the availability of
micro-nutrients. Particularly evident are the correlations of SIF data with results for plants that are
capable of absorbing large amounts of nutrients, suggesting that these nutrient elements may be of

particular importance to photosynthesis. As a result of their indirect and secondary roles in the
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photosynthetic process, results for secondary macro-nutrients (e.g., Ca, Mg) and micro-nutrients

(e.g., Fe, Cu) demonstrate less correlation with Cab and chlorophyll fluorescence data.

5.3 Recommendations for further research

This thesis contributes to the development of future research in the fields of fertilizer use efficiency
optimization and precision agriculture in heterogeneous orchards using airborne and spaceborne

remote sensing. Future research could focus on:

= Investigating the sensitivity of SWIR spectral bands to nitrogen and other nutrients through
the use of high-resolution airborne and spaceborne hyperspectral imagery.

= Evaluation of the contribution and robustness of Ca» and SIF in the assessment of the leaf
nitrogen levels of other tree species at airborne and spaceborne levels.

= Examining the performance of plant trait estimation using 3-D RTMs in heterogeneous
orchards and its contribution to leaf N assessment.

= Exploring plant spectral traits and performance in assessment of other macro-nutrients (i.e.,
P and K).

= Improving the accuracy of SIF quantification via use of a variety of advanced methods and
sensor technologies (e.g., sub-nanometer spectrometers) in heterogeneous orchards.

= Investigating the feasibility and performance of satellite-borne spectrometers for the
quantification of SIF in heterogeneous orchards, especially for less dense canopy, as well

as investigating their contribution to nutrient assessment.
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Appendix 1
Evaluating the role of solar-induced fluorescence (SIF) and plant physiological
traits for leaf nitrogen assessment in almond using airborne hyperspectral

imagery

This is the paper in its published format in Remote Sensing of Environment:

Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., Evaluating the
role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment

in almond using airborne hyperspectral imagery, Remote Sensing of Environment, 279, 113141.
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Accurate, spatially extensive, and frequent assessments of plant nitrogen (N) enabled by remote sensing allow
growers to optimize fertilizer applications and reduce environmental impacts. Standard remote sensing methods
for N assessment typically involve the use of chlorophyll-sensitive vegetation indices calculated from multi-
spectral or hyperspectral reflectance data. However, the chlorophyll a + b derived from spectral indices is
indirectly related to leaf N and saturates at high leaf N levels, dramatically reducing the sensitivity with leaf N
under these conditions. Furthermore, these relationships are heavily influenced by canopy structure, variability
in leaf area density, proportion of sunlit-shaded tree-crown components, soil background, and understory. Recent
studies in uniform crops have demonstrated that estimation of plant N can be improved by considering leaf
biochemical constituents derived from radiative transfer model (RTM) and solar-induced fluorescence (SIF).
However, it is unclear whether these methods are transferable to tree crops due to their intrinsic physiological
differences, structural complexity, and within-tree crown heterogeneity. We investigated how various hyper-
spectrally derived proxies for leaf N, including RTM-based traits and SIF, could be combined to assess N status on
a 1200-ha almond orchard across two growing seasons. RTM-based chlorophyll a | b content (C.,) and SIF were
found to be the most important and consistent predictors for leaf N compared to other leaf biochemical and
biophysical traits. Cy, alone was a modest predictor of leaf N variability (P = 0.49, RMSE = 0.16%, p-value
<0.001), but when the non-collinear SIF and C,, traits were coupled together, predictions improved dramatically
(% = 0.95, RMSE = 0.05%, p-value <0.001). Leaf area index (1AI) was poorly associated with leaf N, suggesting
that leaf physiological traits may be more important than structural traits in quantifying leaf N in well-managed
orchards characterized by high N levels. Consistent results across the 2 years suggests the importance of airborne
SIF coupled with Cy, for precision agriculture and leaf N status assessment in almond orchards.

1. Introduction

environmental impacts for sustainable agriculture (Manna et al., 2005;
Matson et al., 1998; Panhwar et al., 2019; Snyder et al., 2009).

Nitrogen (N) is an essential nutrient for plant growth, productivity,
and quality and is often the major limiting factor for photosynthesis
(Evans, 1989). However, more N fertilizer than needed is often applied
to maximize yield and quality (Conant et al., 2013). In addition to the
economic costs of N over-fertilization, excess N has detrimental effects
on the environment, leading to pollution of the atmosphere and water
systems (Shcherbak et al., 2014; Stevenson and Cole, 1999; Zebarth
et al., 2009). Monitoring crop N status is essential for optimizing N
applications and maintaining productivity while minimizing

* Corresponding author.
E-mail address: wang.y@unimelb.edu.au (Y. Wang).

https://doi.org/10.1016/j.rse.2022.113141

The concentration of leaf nitrogen can be determined through
various approaches. The chemical analysis of leaf tissue via destructive
sampling, such as the traditional Kjeldahl-digestion method (Kjeldahl,
1883) or the simpler and faster Dumas combustion method to avoid
using toxic chemicals (Dumas, 1831), has been the standard method for
the assessment of leaf N. Although this approach is very accurate, it is
not cost- or time-effective for the continuous monitoring of N status over
large areas. In recent decades, imaging spectroscopy has been used as an
alternative to lab-based assays from the leaf, enabling rapid N
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monitoring at a range of spatio-temporal scales (Chapman and Barreto,
1997; Dong et al., 2020; Nageswara Rao et al,, 2001; Romina et al.,
2019; Schepers et al., 1992) to canopy level (Clevers and Gitelson, 2013;
Clevers and Kooistra, 2011; Gnyp et al., 2014; Haboudane et al., 2002;
Inoue et al., 2012; Nigon et al., 2020; Pinter Jr et al., 2003).

Most remote sensing (RS) studies of leaf N depend on an assumed
strong correlation between leaf chlorophyll a + b (C,p) and N (Evans,
1989). Thus, C,p has been proposed as a common RS-based indicator for
N assessment (Clevers and Gitelson, 2013; Schlemmer et al., 2013; Wood
et al, 1992; Yoder and Pettigrew-Crosby, 1995). The conventional
approach in these studies has been to determine an empirical relation-
ship between destructively sampled tissue N and non-destructive proxy
measurements, including hand-held spectral readings at visible, red-
edge, and near-infrared spectral bands (Bullock and Anderson, 1998;
Cerovic et al,, 2015; Cerovic et al,, 2012; Chang and Robison, 2003;
Jongschaap and Booij, 2004; Padilla et al,, 2018; Wood et al., 1992) or
chlorophyll-sensitive vegetation indices derived from multispectral or
hyperspectral reflectance at leaf and canopy levels (Clevers and Gitel-
son, 2013; Cummings et al., 2021; Filella et al., 1995; Fitzgerald et al,,
2010; Gnyp etal., 2014; Inoue et al., 2012; Nigon et al., 2020). Although
leaf chlorophyll meters are valuable tools for quick on-farm determi-
nation of leaf N status, the relationship between chlorophyll meter
readings and N content differs across plant genotypes and environ-
mental contexts (Xiong et al., 2015). Furthermore, these chlorophyll
indicators from chlorophyll meters or vegetation indices are not the
actual chlorophyll content, but rather the proxy for leaf greenness.
Although they are generally related to leaf N, these proxies saturate at
high N levels, resulting in reduced sensitivity to increased N values (Li
et al., 2020; Padilla et al., 2018; Romina et al., 2019; Schlemmer et al.,
2013). In addition to these leaf greenness indicators, vegetation indices
widely used in RS such as the Normalized Difference Vegetation Index
(NDVI) (Rouse et al., 1974), are also indirectly related to N (Yoder and
Pettigrew-Crosby, 1995). They have been demonstrated to lack sensi-
tivity and to saturate at high plant densities and under overfertilization
levels (Flowers et al.,, 2003; Matsushita et al., 2007; Nguy-Robertson
et al,, 2012). To prevent these effects, proxies directly linked to leaf N
through pathways other than via the quantification of chlorophyll
content are required.

Moreover, spectral indices that incorporate red-edge spectra are
thought to be improved ways to derive N status due to the higher
sensitivity of this spectral region to moderate and high chlorophyll
content levels (Gitelson et al,, 2003; Gitelson et al.,, 1996). Fitzgerald
et al. (2006) found that the Normalized Difference Red-Edge (NDRE)
index, which is calculated by replacing the red band of NDVI with the
red-edge band, was a reliable indicator of chlorophyll and N status.
Another index termed the Canopy Chlorophyll Content Index (CCCI) is
based on a two-dimensional planar extension of NDVIand NDRE and has
been proposed asa method for improved estimation of N in annual crops
(e.g., wheat (Triticum aestivurn)) (Fitzgerald et al., 2010; Li et al., 2014;
Perry et al,, 2012). Another approach combining the information in the
red-edge with a structural index is the use of the Transformed Chloro-
phyll Absorption in Reflectance Index (TCARI) with the Optimized Soil-
Adjusted Vegetation Index (TCARI/OSAVI) (Haboudane et al., 2002).
These indices tend to be sensitive to chlorophyll a + b induced by N
variability while also accounting for background effects (Gabriel et al.,
2017; Wu et al, 2008). Nevertheless, empirical relationships are
required to estimate N from these vegetation indices.

As leaf N content is associated with many other physiological traits
besides G,p content, the use of radiative transfer model (RTM)-based
retrievals of plant physiological traits is a promising alternative to
spectral indices for assessing leaf N. Due to the fact that leaf N is not an
input in the RTM, nutrient variability was described through a wide
range of model-simulated plant traits, including leaf constituents (e.g.,
Cap, dry matter (Cqy), water content (Cy)), and canopy structural pa-
rameters (Baret et al,, 2007; Camino et al,, 2018a; Thorp et al., 2012;
Wang et al., 2021; Wang et al,, 2018). Traits derived from RTMs are
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considered more accurate and transferrable than index-based empirical
algorithms (Kimes et al., 2000), although this has only been tested for
uniform crops. For orchards, this method is more complex due to the tree
crown heterogeneity and clumping effects with mixed crown-shadow-
soil backgrounds. Radiative transfer model inversion also allows
inverting for other non-photosynthetic plant pigments, such as carot-
enoids (Ce,) and xanthophylls (Cy), which are involved in photosyn-
thetic light-harvesting (Jacquemoud et al., 2009; Niyogi et al,, 1997;
Vilfan et al., 2016; Vilfan et al., 2018). Plants prevent photodamage by
deoxidizing the xanthophyll violaxanthin (V) into antheraxanthin (A)
and zeaxanthin (Z) in response to excess excitation energy (Demmig
et al,, 1987; Gilmore, 1997). Therefore, xanthophyll composition is
linked to photosynthetic efficiency and may thus relate to leaf N status,
particularly under abiotic stress conditions (Cheng, 2003; Ramalho
et al,, 2000; Tath et al,, 2002; Verhoeven et al., 1999). Thus, based on
their links with photosynthesis under stress conditions, the complete set
of photosynthetic and non-photosynthetic pigments, along with struc-
tural traits, can lead to a more informed assessment of N.

In the last few decades, solar-induced fluorescence (SIF) has been
proposed as a trait for monitoring plant physiology, vegetation func-
tioning, and plant biotic and abiotic stress detection due to the dynamic
changes in photochemical and non-photochemical quenching in the
photosynthetic process (see review paper by Mohammed et al. (2019)
and studies from Maxwell and Johnson (2000); Mohammed et al.
(1995); Murchie and Lawson (2013); Porcar-Castell et al. (2014); Sayed
(2003); Zarco-Tejada et al. (2018)). It is well known that abiotic-induced
stress conditions such as light intensity, water status, and temperature
extremes modulate the photosynthetic performance (Ashraf and Harris,
2013; Biswal et al,, 2011; Saibo et al.,, 2009). Most importantly, SIF is
considered a direct proxy for electron transport rate and thus a direct
measure of photosynthesis (Genty et al., 1989; Krause and Weis, 1991;
Middleton et al, 2016; Walker et al, 2014). N modulates the
fluorescence-photosynthesis link, thus several studies propose SIF as a
potential proxy for the assessment of leaf N status at both the leaf
(Huang et al.,, 2004; Lu and Zhang, 2000) and the canopy levels (Cen-
drero-Mateo et al.,, 2016; Corp et al, 2003; Middleton et al.,, 2016;
Mohammed et al.,, 2019; Wang et al., 2021). For example, Camino et al.
(2018a) showed that SIF improved predictions of N content in wheat.
However, in tree orchards, SIF is affected by canopy structure and the
mixing of within-crown sunlit and shaded components. This adds
complexity to the accurate SIF quantification in tree orchards (Camino
et al., 2018b). The combined use of RTM-based leaf biochemistry esti-
mates with SIF for N assessment is poorly studied in structurally complex
tree orchards. Such a methodology may have important uses in precision
agriculture when using commercial hyperspectral sensors with 5- to 6-
nm spectral resolution, which have been shown to be sensitive to SIF
emission and thus are useful for quantifying abiotic sources of stress
(Belwalkar et al., 2022; Belwalkar et al., 2021; Raya-Sereno et al., 2021;
Zarco-Tejada et al., 2016; Zarco-Tejada et al.,, 2012; Zarco-Tejada et al.,
2013).

In this study, we explored the contribution of various hyperspectrally
derived proxies for leaf N status assessment in almond orchards across
two consecutive growing seasons, including airborne-quantified plant
physiological traits estimated by RTM inversion and canopy SIF. We
evaluated the accuracy and robustness of the retrieved plant physio-
logical traits and the collinearity among plant pigments, SIF, and
structural traits when assessing leaf N variability across the field. Rather
than a data driven approach, our study advances the mechanistic un-
derstanding of the responses of RS-derived plant traits to leaf N content
changes.

2. Material and methods
2.1. Study area and field data collection

This study was conducted in a commercial almond orchard in



Y. Wangetal

northwest Victoria, Australia, at the pre-harvest stage of the growing
season in 2019/2020 and 2020/2021 when the leaves are mature and
have reached their maximum N uptake capacity. The region has a
Mediterranean climate with hot, dry summers and mild, wet winters.
Average annual precipitation is 300 mm. The summer of 2020/2021 was
milder than that of 2019/2020, with an average maximum air temper-
ature of 29.5 °C in December 2020, compared to 34.3 °C in December
2019. The almond orchard (Fig. 1) covers approximately 1240 ha with
trees planted between 2006 (Northern blocks facing N-S) and 2007
(Southern blocks mixed in N-S and E-W orientations) on sandy loam
soils. Generally, trees planted in the eastern blocks tend to have larger
tree crowns than those in the west. Three almond varieties were planted
in alternating blocks of sixrows to facilitate cross-pollination (Asaietal.,
1996; Hill et al,, 1985). Varieties included Nonpareil (50%), Carmel
(33%), and Price (17%). A drip fertigation system was used to supply the
same amount of water and nutrients to the tree root zones for each va-
riety at the same time and was established at 1-h intervals between
varieties across the entire orchard. Fertigation was supplied as needed
based on weather and plant responses over the growing season. In
summer of 2020/2021, irrigation volume was 10% higher (12,795 m3/
ha) than in 2019/2020 (11,465 m®/ha), but total N fertilizer applica-
tions (330 kg/ha in 2020/2021 and 326 kg/ha in 2019/2020) were
similar. In summer of 2020/2021, Nonpareil was treated with 10% less
fertigation than Carmel and Price varieties across the orchard based on
the difference observed along the 2019/2020 season.

Fifteen homogeneous plots consisting of six rows of seven to eight
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trees were monitored throughout the experiment in 2019/2020 and
2020/2021 (Fig. 2). In each plot, four adjacent trees from Nonpareil and
Carmel varieties (two each; yellow dashed rectangle in Fig. 2a) were
sampled in situ prior to harvest in both years. Leaf C,p, anthocyanins
(Anth), flavonoid (Flav) content, and the nitrogen balance index (NBI)
were measured from 20 representative sunlit mature leaves per tree
using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France). Leaf
steady-state chlorophyll fluorescence (Ft) and leaf reflectance spectra
within the visible (VIS) and near-infrared (NIR) regions were measured
with FluorPen FP 110 and PolyPen RP 410 instruments (PSI, Brno, Czech
Republic) on the same leaves with the Dualex sensor. A series of vege-
tation pigment indices (see Table 1 for the complete list of indices used
in this study) were calculated based on the leaf reflectance spectra
measured from the PolyPen handheld instrument. An additional set of
20 leaves per plot were collected for biochemical laboratory analyses
using Dumas Combustion (Buckee, 1994; Dumas, 1831; Etheridge et al.,
1998) with a LECO TruMac CNS Macro Analyzer (LECO Corporation,
MI, USA) and an inductively coupled plasma optical emission spec-
trometer (ICP-OES Optima 8300, Perkin Elmer, USA). Thirteen macro
and micronutrients (e.g., nitrogen, carbon, phosphorus, and potassium)
were measured. The ranges of variation of field data collected over 2
years were compared against Ft-measured quartiles. The correlations
between leaf measurement and laboratory N concentration were
calculated for both years.

Fig. 1. Colour-infrared (CIR) overview of the hyperspectral mosaic acquired with the VNIR hyperspectral sensor over the 1200-ha study site collected on January 31,
2021. Spectral bands at 860 (R), 650 (G), and 550 (B) nm are shown with a spatial resolution of 40 cm per pixel.
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Fig. 2. (a) Study plot consisting of six rows by eight trees within the blue solid line. Leaves from four trees within the yellow dashed rectangle were measured in the
field. (b) The reflectance spectra of different scene components extracted from the airborne hyperspectral imager, including sunlit (green solid line) and shaded (grey
dashed line) tree crown, and sunlit (orange dashed line) and shaded soil (brown dashed line) pixels. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Table 1
Speetral vegetation index equations used in this study.

Index Equation

Reference

Structural indices

5eRgz0}

NDVI (Reoo — Re70)/(Rgoa + Rezo)
EVI 2.5 o (Rgop — Re70)/(Rgoo + 6 ® Rg79 — 7.5 @ Ryag + 1)
MCARI2 1 ( i (R, = v/ s
150 (2.5 # (Rgoo — Rezo} — 1.3 » (Reoo — Rsso) /2 oRan 1 17~ (6+Reno
RDVI (Rsoo — Re7o}/+/Reoo + Rero
OSAVI (1 +0.16) » (Rgao — Re70)/(Rgoo + Rezo + 0.16)

Chlorophyll a + b indices

0.5

Rouse et al. (1974)
Liu and Huete (1995)

Haboudane et al. (2004)
Roujean and Breon

(1995)
Rondeaux et al. (1996)

MCART ((Ryoo — Rez0) — 0.2 & (Ryop — Rasa)) ® (Rya0/Re70)

TCARL/ 3 e {[Rzon — Rezo) — 0.2 @ (Rzpa — Rezso ) (Ryon /Rera) iy, \
OSAVI : A

NPQI (Ryys — Ryss)/(Rags + Rygs)

PSSRa Reao/Re7s

PSSRb Reoo/Reso

PSSRe Rsao/Rsoo

Sl (Rgoo — Ra45)/(Rgoo — Reso)

CIRI1 Reon/Razo

Indices based on the green region

* {Rgo0 — Rezo}/ (Reao + Rez0 + 0.16)

Daughtry et al. (2000)
Haboudane et al. (2002)

Barnes et al. (1992)
Blackburn (1998)
Blackburn (1998)
Blackburn (1998)
Penuelas et al. (1995)
Carter (1994)

PRI (Rs70 — Rs21)/(Rs7o + Rsa1)
PRI55 (Rsys — Rs31)/(Rsys + Rsay)
PRIeCI ((Rs70 — Rs31)/(Rs70 + Rs31)) @ (R7s0/R700) — 1)

Fluorescence quantification

Gamon et al. (1992)
Hernandez-Clemente
et al. (2011)

Garrity et al. (2011)

SIF Egur-Lin — Eim*Lourf,, .
Eout — Ein
‘Where E and L rep: the i ing irradi

value in 750 and 778 nm

Canopy temperature

‘in’ band refers to 762 nm, and ‘out’ band refers to the average

Plascyk and Gabriel
(1975)

cwst (Te—Ta) = (Te—Ta)

T Tayy—{Te— Taliz

Where LL and UL represent the upper limit and lower limit of canopy (T.) and air (T,) temperatures

Jackson et al. (1981)
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2.2. Airborne hyperspectral and thermal imagery

Airborne campaigns were conducted concurrently with the field
measurements on February 17, 2020, and January 31, 2021. Both
campaigns occurred at solar noon under clear skies. Field sampling and
auxiliary data collection required for the calibration and atmospheric
correction of the images were conducted simultaneously with airborne
campaigns. A hyperspectral line-scanning sensor (Micro-Hyperspec
VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) and a
thermal infrared camera (A655sc model, FLIR Systems, Wilsonville, OR,
USA) were flown in tandem on a manned aircraft operated by the
HyperSens Remote Sensing Laboratory, the Airborne Remote Sensing
Facility of The University of Melbourne. The hyperspectral imager
covers 371 spectral bands in the visible and near-infrared regions
(400-1000 nm) with a full-width at half-maximum (FWHM) of 5.8 nm
and a spectral sampling interval of 1.626 nm. Hyperspectral and thermal
images with an angular field of view (FOV) of 66° and 45° (8-and 13.1-
mm focal length), respectively, were collected by the aircraft at 550 m
above ground level (AGL), yielding spatial resolutions of 40 and 60 cm,
respectively, enabling the differentiation of sunlit and shaded compo-
nents of tree crowns and soil areas. SMARTS (Gueymard, 1995, 2001;
Gueymard et al., 2002) irradiance simulations were used to correct for
atmospheric effects of the hyperspectral imagery based on aerosol op-
tical measurements at 500 nm taken with a Microtops II sunphotometer
(Solar Light, PA, USA) connected to a GPS — 12 navigator (Garmin,
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Olathe, KS, USA) at the time of each flight. Air temperatures and relative
humidity were calculated based on the average of three nearby weather
stations (Robinvale, Lake Powell and Wemen) less than 15 km from the
study site. Hyperspectral line-scanned image orthorectification was
performed using PARGE software (ReSe Applications Schldpfe, Wil,
Switzerland) with readings from the onboard inertial measuring unit
(IMU) (VectorNav VN-300 dual-antenna GNSS/INS, Dallas, TX, USA).
Empirical line calibration was conducted by measuring the reflectance
spectra and temperature of bare soil and green and dry vegetation.
Spectra were measured with an ASD Handheld-2 field spectrometer
(FieldSpec Handheld Pro, ASD Inc., CO, USA), and temperature was
measured with a thermal gun (LaserSight, Optris, Germany). Hyper-
spectral and thermal imagery were mosaicked (Figs. 1 and 3) using ENVI
(Boulder, Colorado) and Pix4D (Lausanne, Switzerland) photogram-
metry software, respectively.

Automatic segmentation of the hyperspectral reflectance imagery
was conducted using Fiji (Abramoff et al.,, 2004) combining Niblack's
(Niblack, 1985) thresholding method on the NIR band, and Phansalkar's
thresholding method (Phansalkar et al., 2011) on a structural index
(NDVI >0.72). This method enabled the discrimination of sunlit pure
tree crowns from the soil background, as well as the separation of
within-crown shadows (see reflectance spectra in Fig. 2b). Considering
the sensitivity of SIF to the illumination levels, a more selective seg-
mentation (10% restricted) was applied to the hyperspectral radiance
data when segmenting the sunlit crown component. The thermal

Fig. 3. Thermal mosaic collected over the entire study area captured on January 31, 2021 at a spatial resolution of 60 cm. Cooler colors (purple and blue) indicate
plant canopies, and yellow/brown colors indicate soil. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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segmentation of the tree canopy was performed with Niblack's thresh-
olding method (Niblack, 1985) to eliminate the soil and background
effects. The resulting pure vegetation pixels obtained in the previous
step were clustered into tree-crown features using a watershed seg-
mentation approach based on Euclidean distance (as in Zarco-Tejada
et al. (2018)). In Fig. 4, an example of the segmentation conducted on
the hyperspectral and the thermal mosaics is presented.

The mean radiance and reflectance spectra, and temperature were
extracted from tree crown pixels by hyperspectral and thermal imagery
for each study plot. The crop water stress index (CWSI) (Idso et al.,,
1081) was calculated based on the canopy-air temperature difference
and the water vapor pressure deficit (VPD) at the time of image acqui-
sition for assessing the tree-crown water stress levels. A non-water-
stressed baseline (NWSB) for almond trees suggested by Bellvert et al.
(2018) was used.

SIF was quantified using the Fraunhofer line depth (FLD) principle
(Plascyk and Gabriel, 1975) based on three spectral bands (3FLD) (Maier
et al,, 2004) located inside and outside the O,-A absorption features.
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Specifically, we compared canopy radiance values L;, at 762 nm and Loy
at 750 and 778 nm extracted from the hyperspectral imagery to the
corresponding incoming imradiance Ei, (Ezen) and Eow (Ezso, Ezzg)
derived from the field measurements during the flight and resampled to
match the spectral specifications of the airborne hyperspectral sensor.
To account for the effects of negative values from atmospheric and
calibration factors, SIF was scaled using the offset from non-fluorescence
targets (e.g., soil) extracted from the imagery. Fig. 5 shows the irradi-
ance and the mean radiance spectra from two study plots (in Fig. 5a and
b) at the oxygen-A absorption region around 760 nm. Average tree-
crown reflectance (R) spectra extracted from pure vegetation pixels
were used to estimate plant traits through RTM inversion and to
calculate narrow-band hyperspectral indices (Table 1) for comparison.
The set of indices used comprised structural indices (e.g., NDVI),
pigment indices (e.g., Modified Chlorophyll Absorption in Reflectance
Index (MCARI), TCARI/OSAV], and Carter Index 1 (CTRI1)), and indices
in the visible region (e.g., Photochemical Reflectance Index (PRI)) that
track the dynamics of photoprotective mechanisms. Indices calculated
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Fig. 4. Overview of the tree-crown segmentation applied to the hyperspectral mosaic (a, upper image in colour-infrared, crown in green outline) and the thermal
mosaic (c, bottom image displaying cooler canopy in blue and hot soil in red colour, crown in yellow outline). Right column contains zoomed-in views (b and d) of the
scenes within the white rectangle on the left. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Segmentation of the sunlit crown area for SIF quantification on two study plots (a) higher nutrient level and (b) lower nutrient level. The irradiance spectrum
(orange colour) was used along with the radiance spectra (example shown in (c) for two study plots (green and grey lines) to calculate SIF. Crosses denote the spectral
position of the sensor bands (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

from airborne imagery were also compared against leaf N, C,3, NBI, and
Ft measured in the field.

2.3. Modeling methods for plant trait retrieval and N assessment

The coupled leaf-level Fluspect-Cx model (Vilfan et al., 2018) and
4SAIL (Verhoef, 1984) canopy radiative transfer model, referred to here
as FIuSAIL, were employed to derive plant biophysical and biochemical
parameters by inverting the average canopy reflectance extracted from
pure vegetation pixels. The de-epoxidation state of the xanthophyll cycle
(Cy) as well as Cap, Cear, and Anth pigment content were retrieved by the
inversion of the Fluspect-Cxmodel. A look-up table (LUT) was generated
by running 50,000 simulations using randomly generated input pa-
rameters drawn from uniform distributions (Table 2). Parameter ranges
were adjusted for the viewing geometries due to the slightly different
solar zenith angles (SZAs) for each airborne dataset. Biochemical con-
stituents and biophysical parameters were estimated simultaneously for
all study plots using a 10-hidden layer artificial neural network (ANN)
model (Combal et al., 2003; Hassoun, 1995). The model was trained
using 70% of the LUT spectra and tested using the remaining 30% with
the mean squared error (MSE) as a performance measure. The model
was fit in MATLAB (MATLAB; Statistics and Machine Learning Toolbox
and Deep Learning Toolbox; Natick, Massachusetts, USA). Retrieved
parameters were used to simulate reflectance spectra with the FluSAIL
model using the retrieved parameters and compared with the observed
reflectance spectra obtained from the imagery in the 400-900-nm range
based upon the root-mean-square deviation (RMSE) assessment. Addi-
tionally, the correlations of field leaf-level measurements against esti-
mated plant traits derived from the inversion of the FIuSAIL model were
compared with those obtained from hyperspectral indices.

To predict leaf N concentration, a pool of representative plant traits
and parameters was considered as inputs in the N model, including (1)
leaf biochemical and canopy biophysical traits retrieved from pure
reflectance spectra with FIuSAIL model inversion, (2) airborne-
quantified SIF from sunlit-crown radiance spectra, and (3) the water
stress indicator CWSI calculated from the thermal imagery. Random
Forest (Breiman, 2001) and Gaussian process regression (Williams and
Rasmussen, 1996, 2006) algorithms were built with fine-tunning of
hyperparameter optimization with 1000 iterations incorporated in the
leave-one-out-cross-validation (LOOCV, 15-fold) training and testing
steps for each year's dataset. Previously, input collinearity was evaluated
using the variance inflation factor (VIF) analysis (O'brien, 2007)
following the approach in Zarco-Tejada et al. (2018) conducted using
the ‘fmsb’ package (Gareth et al, 2013) in R. Out-of-bag (OOB)

Table 2
Ranges of input parameters for the LUT of FluSAIL model.
Parameter Symbol Unit Range/
Value

Leaf thickness and constituents

Chlorophyll @ + b content Cap ug/ 20-70
cm?

Carotenoid content Gear g/ 3-20
em?

Anthocyanin content Anth g/ 0-10
cm?

Leaf water content Cyw 8/ 0.001-0.05
em?

Leaf dry matter content Cam g/ 0.001-0.05
cm?

Brown pigment content G g/ 0
cm?

Leaf mesophyll structural parameter N- - 1.3-2.5

struct
Leaf dynamic biochemistry
De-epoxidation state of the xanthophyll cycle G - 0-3
(photochemical reflectance parameter)

Fraction of photons partitioned to PSI foel - 0.002

Fraction of photons partitioned to PSII faell - 0.02

Canopy structural parameters

Leaf area index LAI m?/ 1-7

2

m

Hot spot parameter q - 0.03

Leafinclination distribution function parameter ~ LIDF, = -1-1

a
Leafinclination distribution function parameter ~ LIDF, - —-1-1

b

predictor importance was implemented to rank the input relative
contribution to the models (as in Zarco-Tejada et al. (2021)). Input pa-
rameters with a high degree of collinearity (VIF > 5) (Akinwande et al.,
2015) and therefore less informative contribution were filtered out to
avoid redundancy. Both Random Forest and Gaussian process regression
models were evaluated using the final selection of input parameters. The
model performance was evaluated based on the coefficient of determi-
nation (72) and RMSE. In addition, models with different combination of
any two non-collinear parameters were evaluated. In particular, models
using leaf biochemical constituents and biophysical parameters with
and without SIF were compared to assess the contribution of SIF to N
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assessments.

A final evaluation was conducted with the LOOCV (30-fold) method
using the non-collinear airborne-quantified Cop and STF for N assessment
from both datasets. Model performance was determined using r* and
RMSE against the validation data from the 2 years. The best Gaussian
process regression model was applied at the tree-crown level to obtain
the spatial variability of the tree-based N concentration for the entire
1200-ha almond orchard using the airborne-quantified SIF and Gy
content from FIuSAIL RTM inversion. The continuous map of N con-
centration for each management unit were generated using the Kernel
interpolation with barriers (KIB) algorithm (Worton, 1989) in ESRI
ArcGIS Desktop (Redlands, CA, USA) to visualize the variability across
the entire orchard.

3. Results
3.1. Field and laboratory data analyses
Leafnutrient and pigment content varied widely within the study site

and across the two growing seasons. Mean leaf N concentration was
2.07% in 2020 and 2.36% in 2021. The Dualex measured C,; and Flav
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were more variable in 2021 than in 2020. Mean C,p, was 32.53 units in
2020 and 30.71 units in 2021. Mean Flav was 2.04 units in 2020 and
1.84 units in 2021. Anth range was higher in 2021 than in 2020, witha
mean value of 0.24 units compared to 0.19 in 2020. NBI was 16.46 in
2020 and 17.18 in 2021. Ft was highly variable throughout the orchard
and was higher in 2021 than in 2020, ranging from 1648 to 2751 units in
2020 and from 2574 to 3970 units in 2021.

The relationships between leaf steady-state chlorophyll fluorescence
quartiles and derived spectral and physiological metrics varied across
seasons (Fig. 6). Similar linear relationships were observed across sea-
sons for leaf N concentration (Fig. 6a), Flav (Fig. 6¢), NBI (Fig. 6d), and
leaf spectral indices (Fig. 6f-i). By contrast, Anth (Fig. 6e) exhibited
opposite trends with Ft quartiles between 2020 (negative) and 2021
(positive). Unexpectedly, leaf Cap (Fig. 6b) did not exhibit consistent
trends relative to leaf Ft quartiles, with generally positive and negative
trends for 2020 and 2021 (n.s.), respectively.

In general, leaf measurements were correlated with each other across
years (Fig. 7). Chlorophyll content and leaf N were strongly correlated in
2020 (2 = 0.60, p-value <0.005, Fig. 7a). However, this correlation was
not statistically significant in 2021 (r> = 0.04, n.s.). Leaf N was more
consistently correlated with Dualex-measured NBI (Fig. 7b) for both
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Fig. 6. Ranges of variation based on leaf steady-state chlorophyll fluorescence (Ft) quartiles for leaf phenotypes measured at the pre-harvest stage in 2020 (green)
and 2021 (orange): a) nitrogen concentration, b) chlorophyll a + b (C.p), ) flavonoid (Flav), d) Nitrogen Balance Index (NBI), e) anthocyanins (Anth), f) CTRI1, g)
PRI, h) PRIeCI, and i) NPQL The line through the box and marker ‘x* refer to the median and mean value, respectively. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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legend, the reader is referred to the web version of this article.)

years (r* = 0.68 for 2020 and r* = 0.64 for 2021; p-values <0.005), since
the index calculation incorporates both chlorophyll and flavonoids. Leaf
PRI (related to xanthophyll composition changes) was also correlated
with leaf N across seasons (r2 —=0.49 in 2020 and r* = 0.58 in 2021; p-
values <0.005, Fig. 7¢) as was Ft (> = 0.54 in 2020 and r* = 0.52 in
2021; p-values <0.005, Fig. 7d). Leaf fluorescence (Fig. 7d) was strongly
correlated with N when using combined 2-year data (/2 = 0.74, p-value
<0.005), outperforming the rest of the leaf traits (e.g., r> = 0.50 for PRI
and NBI; p-values <0.005).

3.2. Narrow-band indices calculated from airborne hyperspectral imagery

Relationships between narrow-band reflectance indices, airborne
STF, and field-based leaf measurements are summarized in Table 3. The
results present a wide range of correlation and significance levels be-
tween leaf physiological measurements and indicators of canopy struc-
ture, pigments, airborne-quantified fluorescence, and CWSI
temperature-based stress indicator. Airborne-quantified SIF (Fig. 8a)
was significantly correlated with Ft in both 2020 (2 = 0.73, p-value
<0.005) and 2021 (r2 = 0.30, p-value <0.05). The relationship was
stronger when combining datasets across 2 years (2 = 0.77, p-value
<0.005; shown by the grey dashed line in Fig. 8). SIF was also signifi-
cantly correlated with leaf N (> = 0.60 in 2020 and 0.55 in 2021, p-
values <0.005), and the relationships remained strong when combining

not significant. (For interpretation of the references to colour in this figure

data from both years (> = 0.74, p-value <0 0.005, Fig. 8b). Strong
correlations were also evident between SIF and leaf NBI (+* = 0.46 and
0.67, p-values <0.01) in 2020 and 2021, respectively. Fluorescence, asa
proxy of photosynthesis, both at the leaf (Fig. 7d) and canopy levels
(Fig. 8b), achieved steady and strong relationships with leaf N (% =
0.74, p-value <0.005).

Hyperspectral indices related to vegetation structure (e.g., NDVI)
and pigment concentration (e.g., MCARI) were generally correlated with
leaf chlorophyll measured by Dualex in 2020, but not in 2021 (Table 3).
This pattern was reversed for leaf NBI, where canopy structure (e.g.,
EVI) and pigment indices (e.g., MCARI) were more correlated in 2021
than in 2020. Leaf N was more strongly related to pigment indices (i.e.,
MCARI and CTRI1, Fig. 9b and c) than structural indices (i.e., NDVI and
EVI) in both years. These strong relationships were not always consistent
over 2 years, as illustrated in Table 3. For example, the chlorophyll index
TCARI/OSAVI was unable to capture the existing N variability in 2021
(? = 0, n.s.) as it did in 2020 (7> = 0.57, p-value <0.01).

Some pigment indices in Table 3 stand out in terms of their high
correlations with N for both years. For example, MCARIhad an 12 of 0.61
and 0.48 (p-values <0.005, Fig. 9b) in 2020 and 2021, respectively.
PRIs3s (PRI index using reference band at 515 nm to minimize structural
effects) (Hernandez-Clemente et al., 2011; Stagakis et al., 2012; Zarco-
Tejada et al.,, 2012) was superior to PRI (at 570 nm) in both 2020 and
2021(Fig. 9d).
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Table 3
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Coefficients of determination (+2) for the intercorrelations among standard indices at canopy level from the same 15 study plots in two consecutive years and leaf It
concentration (%), Dualex-derived leaf chlorophyll content (C.), nitrogen balance index (NBI), and steady-state chlorophyll fluorescence (Ft) measured with

FluorPen.
N (%) Cap NBI Ft
2020 2021 2020 2021 2020 2021 2020 2021
Structural indices
NDVI 0.25% 0.13 0.49%%% 0.10 0.07 0.12 0.04 0.05
EVI 0.37%* 0.29%** 0.56%** 0.01 0.14 0.43%%% 0.07 0.17
MCARI2 0.40%* 0.28%* 0:58**%: 0.03 0.16 0.36%* 0.09 0.15
RDVI 0.36%* 0.25% 0.58**% 0.01 0.15 0.36%* 0.07 0.13
OSAVI 0.34%* 0.22* 0.57%%% 0.03 0.13 0.29%* 0.06 0.10
Chlorophyll a + b indices
MCARI 0.61%%* 0.48%%* 0.54%%% 0.00 0.55%%% 0.39%* 0.44%%* 0.31**
TCARI/OSAVI 0.57%%% 0.00 0.15 0.04 0.46%%% 0.00 0.48*%* 0.01
NPQI 0.38** 0.00 0.37%* 0.12 0.39* 0.00 0.36** 0.05
PSSRa 0.24* 0.15 0.49%% 0.08 0.08 0.16 0.04 0.06
PSSRb 0.14 0.12 0.43%%% 0.06 0.03 0.14 0.01 0.05
PSSRe 0.23* 0.16 0.58**% 0.02 0.12 0.21* 0.02 0.05
SIPI 017 0.05 0.37* 0.16 0.02 0.03 0.02 0.02
CTRI1 0:610% 0.52%%% 0.35%* 0.03 0,76+ 0.51 %% 0.45%%% 0.18
Indices calculated in the green region
PRI 0.10 0.27%% 0.01 013 0.24* 0.36** 0.10 0.08
PRIs;5 0.69%** 0.47%%% 0.61 %% 0.11 0.43%x% 0.38%* 0.33%* 0.25*
PRIeCI 0.13 0.18 0.49%%% 015 0.03 0.21* 0.00 0.05
Fluorescence quantification
SIF 0.60%* 0.55%%% 0.28* 0.00 0.46%*% 0.67%%* O:73%%% 0.30%*
Canopy temperature
CWSI 0.05 0.03 0.00 0.23* 0.31** 0.01 0.10 0.03
*p-value <0.1; **p-value <0.05; ***p-value <0.01.
Gap: Chlorophyll @ + b content; NBI: Nitrogen Balance Index; Ft: steady-state chlorophyll fluorescence.
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Many structural and pigment indices showed inconsistent trends
across seasons, as shown in Fig. 9 and Table 3. When looking at data
from the 2 years combined, no variables from Fig. O were significantly
correlated with leaf N. NDVI had relatively weak associations with leaf N
in each year throughout this heterogeneous orchard. By contrast,
airborne SIF calculated from the illuminated crown pixels was consis-
tently related to leaf N across years (Fig. 8). CWSI was not consistently

correlated with leaf N or pigment content in either year (Table 3).
3.3. Plant trait retrieval from the FIuSAIL radiative transfer model
Modelled reflectance spectra from FluSAIL showed close agreement

with observed spectra extracted from pure tree crown vegetation pixels
in airborne hyperspectral imagery, yielding average RMSE values of
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Fig. 10. Comparison of the average hyperspectral image spectrum (orange
dashed line) and the corresponding spectrum obtained from the FluSAIL model
inversion (blue solid line) for one monitored plot. The simulated FluSAIL
spectral range is shown in the shaded grey area. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

11

not significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the

0.008 and 0.007 for 2020 and 2021, respectively. Fig. 10 illustrates a
simulated and observed spectra as well as a range of simulated spectra
from the FluSAIL LUT.

In 2020, leaf C,p, from model inversion was strongly correlated to
both the Dualex chlorophyll measurement (2 = 0.66, p-value <0.001)
and leaf N (2 = 0.73, p-value <0.001). As with the hyperspectral
indices, no model-derived measures were significantly correlated with
Dualex chlorophyll in 2021 (Table 4). In addition to Cyp, other pigments
(i.e,, Cqr and Cy) also presented significant relationships with leaf N.

Cy, which is sensitive to the de-epoxidation state of the xanthophyll
cycle, was significantly correlated with canopy PRIgs;s (> = 0.68 and
0.60 in 2020 and 2021, p-values <0.001) and with leaf N (> = 0.61 and
0.62 in 2020 and 2021, p-values <0.001). Cap was also closely related to
canopy PRIss (r2 = 0.80, p-value <0.001) and SIF (r2 = 0.51, p-value
<0.005). No significant relationship was detected between the retrieved
LAI and leaf N throughout the orchard across years. These results sug-
gest that pigment content and N were highly correlated with biochem-
ical constituents and SIF but showed little effects on the crown structure.

3.4. Leaf N status assessment from the airbomne-estimated plant traits and
SIF

The final model for leaf N using traits derived from hyperspectral
imagery was strongly correlated to field-measured N across years (-2 =
0.96, p-value <0.001). FluSAIL-inverted Cyp and airborne-derived SIF
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Table 4
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Coefficients of determination (+2) for correlations among model-derived estimates from the same 15 study plots in two consecutive years, including leaf chlorophyll a
+ b (Cap), carotenoids (C.a), anthocyanin (Anth), dry matter content (Cam), photochemical reflectance parameter (Cy), leaf area index (LAI), measured leaf N con-
centration (%), Dualex-measured chlorophyll content, canopy SIF, and canopy photochemical reflectance index (PRIs;s).

Estimated traits N (%) Leaf Cyp Canopy SIF Canopy PRIg; s

2020 2021 2020 2021 2020 2021 2020 2021
Cyp (ug/em?) 0.73%%* 0.66%** 0.66%** 0.10 0.51%* 0.52%* 0.80%** 0.82%%*
G (pg/cmz) 0.75%%% 0.56** 0.65%%* 0.15 0.56%* 0.43* 0.72%%% 0.50%*
Anth (ug/cm?) 0.58%** 0.09 0.63** 0.00 0.45% 0.04 0.85%%* 0.00
Cy 0.61%%* 0.62%* 0.50%* 0.01 0.54%* 0.57%* 0.68%** 0.60%**
Cam (8/cm?) 0.36* 0.20 0.58** 0.04 0.20 0.31* 0.59%%* 0.79%%*
LAI 0.02 0.05 0.02 0.16 0.07 0.06 0.02 0.49%*

*p-value <0.05; **p-value <0.005; ***p-value <0.001.

had the greatest OOB predictor scores, followed by other biochemical
constituents (e.g., Cear and Cy), as illustrated in Fig. 11a. While the
structural trait LAI (p-value >0.1) and the thermal-based water stress
indicator CWSI (p-value >0.05) were not statistically significant pre-
dictors of N. VIF analysis revealed that C,p and SIF were not collinear,
but other biochemical constituents (Cea,, Cy, and Cqp,) were discarded
from further analysis with a VIF > 5 (empty bars in Fig. 11a). Fig. 11b
shows that C,p, and SIF were the most important predictors of N for both
years, yielding r? and RMSE of 0.95 and 0.05%, respectively.

When using combined data from both years, the Gaussian regression

model using chlorophyll exclusively as a predictor explained 49% (p-
value <0.001) of the variability in N (Fig. 12a) across the almond or-
chard. A Gaussian process regression model including C,p and SIF
considerably increased the performance (> = 0.95, p-value <0.001,
RMSE = 0.05%, Fig. 12b). This model with C,p, and SIF outperformed
any other combination of traits quantified from the hyperspectral im-
agery for predicting leaf N. As an example, the addition of a structural
parameter (LAI) to the model only resulted in a slight increase of 0.02 in
7 and a 0.01% reduction in RMSE (Fig. 12¢) but yielded reasonable
results when coupled to SIF (=081, p-value <0.001, RMSE = 0.1%,

Contribution
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Contribution (non-collinear inputs)
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Fig. 11. The relative contribution from OOB importance scores of each variable to the predicted N concentration from a) all plant traits estimated from hyperspectral

and thermal imagery and b) a non-collinear subset of variables (VIF < 5).
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Fig. 12. Correlations between leaf N concentration (%) and predicted N using models based on a) chlorophyll a + b content alone, b) chlorophyll a + b content with
canopy SIF, c¢) chlorophyll a + b content with leaf area index (LAI), and d) LAI with canopy SIF. The grey diagonal line is the 1:1 line. All p-values <0.001.

Fig. 12d). The consistency in the results obtained from the two growing
seasons suggests the importance of combining C,p and SIF to assess leaf
N status as opposed to standard methods based on individual traits or
single vegetation indices, which are generally affected by management
practices and the changing growing conditions naturally varying across
seasons.

The N prediction map based on a model using Cap and SIF as pre-
dictors revealed that tree N was spatially variable across the orchard in
2021 (Fig. 13). As expected, the pattern of N predictions integrates
trends in chlorophyll a + b content and SIF.

4. Discussion

Previous studies using RS spectroscopy to estimate leaf N have often
focused on developing multispectral indices or proxies from leaf or
canopy spectra. These methods usually require the development of
empirical models relating leaf N to chlorophyll-sensitive vegetation
indices (Clevers and Kooistra, 2011; Fitzgerald et al,, 2010; Gabriel
et al,, 2017; Inoue et al., 2012; Pancorbo et al., 2021; Schlemmer et al.,
2013) or combinations of bands and indices (Fitzgerald et al., 2010;
Haboudane et al., 2002). However, these methods fail to explain leaf N
variability in woody crops that are characterized by structurally com-
plex canopies that are managed to increase productivity. In these highly
managed orchard canopies, the relationship between structure and
nutrient levels is uncoupled; therefore, structural index-based models

are not appropriate (Table 4). In these orchard canopies, the main
drivers for the observed structural changes are the planting density and
the fractional cover, which add additional complexity to the use of
structural RS vegetation indices as indicators of nutrient levels. In these
structurally complex orchards, the spectral indices are heavily affected
by the canopy architecture and by structural parameters, such as leaf
density, which in turn interact with the illumination and observation
geometry within the canopy (Broge and Leblanc, 2001; Haboudane
etal.,, 2002; Wang etal., 2018). Therefore, the variability observed with
standard vegetation indices such as NDVI and other structurally sensi-
tive indicators may not necessarily represent the nutrient variability, but
instead the heterogeneity due to different tree ages, crown densities, and
planting grids that usually coexist in large well-managed orchards such
as the one used in this study.

The assessment of the physiological status, independent from the
structure and canopy architecture using plant traits through RTM model
inversion, is particularly beneficial in the case of structurally complex
canopies (Malenovsky et al., 2013) when trying to capture the within-
field spatial variability of the leaf nutrient status independent from the
structural variability. In this study, we found that plant physiological
estimates derived from RTM inversion using VNIR hyperspectral imag-
ery were generally stronger and more consistent predictors of leaf N
status than the empirical models built with vegetation indices. In
particular, RTM-retrieved pigment C,p was the strongest predictor
(Fig. 11), consistent with the results of Camino et al. (2018a) for wheat.
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Fig. 13. Interpolated map of a) chlorophyll a + b content, ¢) solar-induced fluorescence, and ) predicted NN concentration derived from C,;, and SIF in 2021. Right
column contains zoomed-in views (b, d and f) of the scenes on the left in the northeast blocks. Block numbers are displayed in the centers.

RTM-based carotenoid content and the xanthophyll cycle (C,) parameter
were also more strongly related to leaf N than vegetation indices in our
study, as both are involved in light-harvesting regulation that is asso-
ciated with photosynthetic efficiency (Ruban et al., 1999). For instance,
RTM-based chlorophyll a + b content was strongly correlated with leaf N
for both years of study (+> = 0.73 in 2020 and 0.66 in 2021, p-values
<0.001), whereas the chlorophyll-sensitive index TCARI/OSAVI was not
correlated with N in 2021 (2 = 0, n.s.), suggesting those indices are not
reliable indicators for N assessment across seasons. Spectral indices are
greatly affected by management practices and background changes
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across orchards and years, leading to inconsistencies that may make
them inappropriate for operational purposes.

The fact that both model-inverted LAI and structural hyperspectral
indices were poorly related to leaf N supports the idea that canopy
structure is not driven by nutrient availability in well-managed intensive
orchards. As a consequence, it is not surprising that the widely used
structural index NDVI was inadequate for predicting leaf N in this
context. Ground-based leaf chlorophyll measurements were poorly
related to leaf N when leaf N was high in 2021. This is consistent with
the results of Jifon et al. (2005), who found the relationship between
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chlorophyll meter readings and leaf N was stronger at low chlorophyll
concentrations than at higher chlorophyll concentrations. At high N
concentrations, there is a possibility that some N may be allocated to
soluble protein rather than pigment-protein complexes (Evans, 1989).
And the soluble protein and pigment complexes in leaves can be
imbalanced depending on leaf physical characteristics, plant age, envi-
ronmental factors, and management practices (Bondada and Syvertsen,
2003; Evans and Poorter, 2001; Syvertsen et al., 1995; Syvertsen, 1984).
In our study, leaf nitrogen balance index was more strongly correlated
with leaf N and canopy indices as it incorporated the ratio of a second
pigment flavonoid into the caleulation. This phenomenon was also
observed at the canopy level for both chlorophyll-sensitive vegetation
indices and RTM-based pigment concentrations. Cap at the canopy level
was more strongly related to leaf N than Cayp at the leaf level, which may
be attributed to the fact that the field-collected leaf measurements came
from lower layers of the tree crown, whereas the imagery captured the
upper layers. Our results provide evidence that RTM-based leaf physi-
ological traits provide additional benefits over standard structural
indices for assessing leaf N in orchards, particularly when multiple va-
rieties, ages, and management practices coexist within the orchard.

Several studies have shown that SIF derived from sub-meter narrow-
band imagery, in which the depth of the oxygen absorption feature can
be quantified, is an effective tool for detecting plant stress in precision
agriculture (Calderén et al., 2013; Camino et al., 2018a; Camino et al,,
2018b; Quemada et al., 2014; Raya-Sereno et al., 2021; Zarco-Tejada
et al., 2012). In this study, we also found a strong association between
fluorescence and leaf N, consistent with the literature (Cendrero-Mateo
et al,, 2016; Corp et al., 2003; Schichtl et al., 2005), yielding r% = 0.74
(p-value <0.005) over the course of 2 years at both leaf and canopy
levels. Airborne-quantified SIF was the second most important predictor
of leaf N after C,p and outperformed any other vegetation index or
structural and temperature-based plant traits in terms of correlation and
consistency across years. When combined with RTM-based traits, SIF
significantly improved model performance for predicting leaf N. The
model that included C,p and SIF explained 95% of the leaf N variability
(p-value <0.001), improving upon results obtained with Cyy, alone (1% =
0.49, p-value <0.001) accounting for different plant varieties, ages,
planting patterns, water status levels, and fertilizer management prac-
tices across 2 years.

CWS], a thermal canopy water status index, was poorly associated
with leaf N and relatively inconsistent across years. Overall, we found no
evidence of a relationship between CWSI and leaf N, suggesting that leaf
N variability was not driven by water status in this well-managed
intensive almond orchard.

5. Conclusions

This study demonstrates that leaf N estimation conducted in an
almond orchard across 2 years was significantly improved when SIF was
included alongside RTM-based leaf chlorophyll a + b content. Among all
spectral plant traits evaluated from hyperspectral imagery, including all
RTM-derived leaf biochemical constituents, SIF, and structural and
water stress traits, the retrieved leaf chlorophyll a + b and SIF were the
two most important predictors to explain leaf N variability. The model
that incorporated both chlorophyll a + b content and SIF traits explained
95% of the variability in leaf N (p-value <0.001) consistently across 2
years of airborne hyperspectral data collection. Together, these results
provide important insights into the quantification of leaf N content in
well-managed structurally complex canopies, such as discontinuous tree
orchards, demonstrating that traditional vegetation indices and indi-
vidual plant traits do not sufficiently track leaf N content over well-
managed intensive crops typically reaching high N levels.
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ABSTRACT

Standard remote sensing methods for nitrogen (N)
assessment in precision agriculture rely on empirical
relationships built with chlorophyll a+b (Ca) sensitive
vegetation indices. Nevertheless, methods of N estimation
based on the Cab vs. N relationships are strongly affected by
the saturation of these indices at high N levels, and by
canopy structure, shadows and soil background variability.
These effects are even more pronounced in heterogeneous
orchards where the tree crown structural variability is a
major factor that limits the transferability of the algorithms
within- and across-tree crop species. Solar-induced
fluorescence (SIF) has been proposed in precision
agriculture as a plant functional trait related to N due to its
link with photosynthesis. However, retrieving SIF from
orchards is challenging due to the mixture of sunlit and
shaded crown components. The present study explored the
retrieval of airborne SIF in almond orchards from
hyperspectral imagery, assessing its contribution to the
estimation of N. Results show that the assessment of N
improved when SIF was coupled to the model estimated Cap
(e.g., Ca+SIF, r?=0.95) as compared with using Ca alone

(T=0.87).

Index Terms - Chlorophyll Fluorescence, SIF,
Nitrogen, Hyperspectral, Almond, FIuSAIL RTM

1. INTRODUCTION

Nitrogen (N) is an important indicator of plant growth and
productivity as it is the major limiting factor in
photosynthetic capacity [1]. Monitoring N status timely can
inform fertilizer management strategy in terms of balancing
plant production against economic losses and environmental

978-1-6654-0369-6/21/$31.00 ©2021 IEEE 5853

effects [2] for sustainable agriculture purposes. Monitoring
the spatial and temporal variability of N status at large
scales requires rapid and cost-effective remote sensing
methods to overcome the limitations of traditional
biochemical analyses of leaf tissues.

Traditional remote sensing methods for N assessment
are commonly based on empirical models that use structural
and chlorophyll-sensitive vegetation indices employing
specific spectral bands [3]. Recent studies have proposed the
use of plant traits estimated by radiative transfer models
(RTMs) for assessing N in homogenous crops [4, 5].
However, the application of these methods to tree orchards
is challenging due to the structural complexity of the
canopies caused by clumping effects, crown heterogeneity,
within-crown shadows, and soil background influence.

Solar-induced chlorophyll fluorescence (SIF) has been
shown as a proxy for photosynthetic activities [6, 7] and
therefore sensitive to the leaf nutrient levels [8]. A recent
study [4] presented SIF as an indicator for N quantification
in wheat phenotyping that improved the predictions when
coupled to chlorophyll content (Ca). However, the
physiological dynamics of SIF vs. N may differ
considerably between orchard trees and herbaceous crops
due to the within-tree structural variability and background
effects. In this study, we explored the retrieval of airborne-
quantified SIF in almond orchards from hyperspectral
imagery, assessing the contribution of SIF and spectral plant
traits for N estimation.

2. MATERIAL AND METHODS
2.1. Study area

The study was conducted in a commercial almond orchard
located in northwestern Victoria, Australia. The almond
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orchard (Figure 1a) covers approximately 1200 hectares and
was planted in 2006 (Northern blocks oriented N-S) and
2007 (Southern blocks with mixed N-S and E-W
orientations). Three different varieties comprising Nonpareil
(planted in every two rows), Price (planted in every six
rows), and Carmel were planted in groups of 6 rows for
cross-pollination purposes [9]. All blocks received the same
amount of water and nutrient rates across the entire orchard.

2.2. Data collection

2.2.1. Field measurements and laboratory analyses

A total of 14 homogenous monitoring plots spread across
the entire orchard were selected for leaf measurements and
sampling purposes, comprising both Nonpareil and Carmel
varieties. Leal measurements were carried out before
harvest on 20 fully exposed leaves per tree from each of the
monitoring plots, comprising leaf Ca, anthocyanins (Anm),
flavonol content and the nitrogen balance index (NBI) using
a Dualex 4 Scientific instrument (FORCE-A, Orsay,
France), leaf steady-state chlorophyll fluorescence (Ft) and
leaf reflectance spectra within the visible and NIR region
with FluorPen FP 110 and PolyPen RP 400 instruments
(PSI, Brno, Czech Republic), respectively. Meanwhile, a
total of 50 leaves per variety were collected from each plot
for N determination in the laboratory using a LECO
Nitrogen Analyzer (LECO Corporation, MI, USA).

2.2.2. Airborne hyperspectral imagery

Within a week of field data collection, an airborne campaign
was carried out under clear sky conditions on 17" February
2020. A hyperspectral VNIR camera (micro-hyperspec
model, Headwall Photonics, Fitchburg, MA, USA) and a
thermal infrared camera (A655sc model, FLIR systems,
Wilsonville, OR, USA) were installed in tandem on an
aircraft (Cessna 172R) operated by the HyperSens
Laboratory, the University of Melbourne’s Airborne Remote
Sensing Facility. The imagery was collected at midday
flying in the solar plane at 550 m above ground level,
yielding 45 cm and 60 cm pixel resolutions for the
hyperspectral and thermal imagery, respectively. Raw
images were then calibrated and pre-processed as described
in Zarco-Tejada, et al. [10]. Reflectance spectra extracted
from pure tree crowns (Figure 2a) and radiance extracted
from sunlit vegetation pixels at the O»-A absorption feature
(Figure 2b) were used to quantify the spectral plant traits
and SIF employed for the analysis, respectively.

2.3. Plant traits retrievals from hyperspectral imagery

Mean reflectance per plot was calculated from pure sunlit
pixels (Figure 1b) for the 358 spectral bands acquired by the
airborne hyperspectral camera. Reflectance spectra were
used to calculate structural and chlorophyll indices, such as
NDVIL, EVI, MCARI2, CI and TCARI/OSAVI among

Figure 1. a) False color composite of the hyperspectral
imagery acquired over a 1200 ha almond orchard in
Victoria, Australia, b) image segmentation applied to
individual tree crowns to extract tree crown reflectance and
spectral radiance at the O2-A spectral feature.

others (see Zarco-Tejada, et al. [10] for a complete list of
indices). The spectral reflectance was also used as input for
Fluspect-CX leaf [11] coupled with 4SAIL canopy RTM
[12] as FluSAIL model to estimate Cay, carotenoids (Car),
Ann, the de-epoxidation state of the xanthophyll-cycle
pigments (Cy). dry matter (Cam), mesophyll structure (N-
struc), leaf area index (LAI), and the leaf inclination
distribution (LIDFa3). A look-up table (LUT) containing
50,000 random simulations of FIuSAIL was used to retrieve
all plant traits for each tree crown at the same time using an
artificial neural network model [13].

SIF was quantified from pure sunlit vegetation pixels
through the Fraunhofer Line Depth (FLD) principle [14]
using three bands (3FLD) [15] from the O:-A oxygen
absorption feature in the radiance spectra (Figure 2b). The
method used the radiance at 762 nm (L762) as Lin, L7so and
L7 as Lo and the same spectral bands from the irradiance
(E) spectra concurrently measured in the field at the time of
flight.
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Figure 2. a) Spectra of different scene components extracted
from the airborne hyperspectral image: reflectance of soil,
sunlit and shaded tree crown pixels, b) radiance spectra
extracted from sunlit tree crown pixels at the O,-A feature,

and field measured irradiance at the time of flight.
2.4. Statistical analysis for nitrogen estimation

Regression random forest machine learning algorithm [16],
a computational method that can assess the relative variable
importance, was employed to predict N by using the
coefficient of determination (r*) and RMSE as the first and
second performance measure, respectively. The training and
testing steps were performed using the leave-one-out-cross-
validation (LOOCY) method for N prediction from a pool of
representative parameters, including i) biochemical and
structural plant traits retrieved from pure reflectance spectra
by FIuSAIL model inversion, ii) airborne quantified SIF
from the radiance spectra, and iii) crop water stress index
(CWSI) calculated from the thermal infrared imagery. For
each set of inputs, the variance inflation factor (VIF) and
out-of-bag (OOB) predictor importance with sensitivity
analysis were employed to suppress the input collinearity
and to evaluate the relative contribution of each input to the
models, respectively. The final selection of variables for the
N prediction model was obtained by filtering the most
collinear and less contributing parameters.

3. RESULTS

The analysis of the field data illustrated the existing
variability of leaf nitrogen and pigment content throughout
the orchard (Figure 3), observing the ranges of variation for
N, NBIL, Cap and Anm based on leaf fluorescence quartiles.

Relationships between leaf N concentration vs. airborne
NDVI (=027, ns., Figure 4a) showed that the crown
structure was not a major driver in the N variability
throughout the orchard. While TCARI/OSAVI chlorophyll
index was better related to N (r?=0.53, p<0.05, Figure 4b)
than any other spectral index. Nevertheless, plant traits
estimated by RTM inversion such as Cy, (r?=0.70, p<0.001,
Figure 4c) and airborne SIF (r?=0.64, p<0.001, Figure 4d)
yielded stronger relationships than standard indices against
leaf N concentration. Airborne-quantified Cg, and SIF also
showed statistically significant relationships with the
equivalent field-measured leaf Cap (r?=0.64, p<0.001) and
leaf Ft (r>=0.61, p<0.001) (data not shown).
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Figure 3. Ranges of variation for a) leaf nitrogen
concentration, b) chlorophyll a+b, ¢) nitrogen balance index
and d) anthocyanins content based on leaf fluorescence
quartiles. Crossing line through the box and marker X’ refer
to the median and mean value, respectively. Box amplitude
refers to the second and third quartiles’ limits.
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the airborne radiance spectra.
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The relative contribution of each plant trait for
estimating leaf nitrogen assessed by the OOB predictor
importance analysis showed that the model estimated Ca
and airborne-quantified SIF were the spectra plant traits
contributing the most (Figure 5), followed by C,, Cx and
A biochemical constituents. The structural trait LAI, and
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Figure 5. Relative contribution of each input to the model
built to estimate N concentration from the pool of FluSAIL
model inverted plant traits, airborne quantified SIF, and the
water stress indicator CW SL.

the water stress indicator CWSI showed a weak contribution
to N variability. However, the statistical analysis showed
that Cy, and SIF were not strongly collinear, while Cy, Cx
and Ann were discarded after presenting a VIF>10 with Cy,
Results also showed that the model performance for
assessing N content was improved when coupling airborne
SIF with any plant traits, particularly with Cy, derived from
RTM inversion, increasing r* from 0.87 to 0.95 and reducing
the RMSE from 0.064 to 0.044. As a result, the model
consisting of Cy, and airborne SIF together explained 95%
of the N variability in the almond orchard comprising
different varieties, ages, and water status levels.

4. CONCLUSIONS

This study shows that airborne-retrieved chlorophyll
fluorescence improves the prediction of leaf nitrogen
content in almond orchards when coupled with plant traits.
Notably, when airborne SIF is coupled to C,, estimated by
radiative transfer simulations, the model explained 95% of
the variability of nitrogen in the almond orchard The
analysis showed that Cy, and SIF were non-collinear, while
other biochemical constituents such as Cu, Cy and Apm
estimated from RTM inversion were discarded by the VIF
analysis as they presented strong collinearity with Cy,. This
study demonstrates the interest of using SIF coupled to Cg
for the assessment of N in structurally complex canopies
such as almond orchards for precision agriculture purposes.
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ABSTRACT

Traditional methods to estimate leaf nitrogen (N) from
satellite imagery rely on structural and chlorophyll a+5 (Cy,)
vegetation indices. Recent progress with airborne
hyperspectral imagery identified Cu and SIF as critical
indicators for evaluating leaf N variability, yielding superior
performance than standard vegetation indices. In tree
orchards, accurate physiological assessments require high-
spatial-resolution hyperspectral imagery to minimize canopy
architecture and soil background effects. Understanding the
potential of  coarse-spatial-resolution ~ spaceborne
hyperspectral imagery for leaf N estimation is critical. In this
study, DESIS hyperspectral imagery collected on board the
International Space Station was used to assess the
quantification of leaf N, evaluating the relative contributions
of physiological plant traits and SIF. High-resolution
airborne hyperspectral imagery and ground N data were used
for validation. Results show that Ca and SIF were the most
critical parameters explaining leaf N both from DESIS and
from airborne hyperspectral imagery, yielding strong
correlations against ground truth N data (=0.90, p<0.0001)
and with airborne-predicted N (#*=0.75, p<0.0001).

Index Terms — DESIS, Nitrogen, Hyperspectral,
Spaceborne, Almond, Chlorophyll, SIF, Plant traits

1. INTRODUCTION

Accurate leaf nitrogen () assessment is crucial for ensuring
adequate nutrient levels and determining fertilizer
requirements over the course of the growing season.
Monitoring leaf N status at large scales requires remote
sensing technologies to achieve affordable quantifications
compared with traditional biochemical analyses of leaf

978-1-6654-2792-0/22/$31.00 ©2022 IEEE 5444

tissues. Standard remote sensing methods for N assessment
typically use structural and chlorophyll-sensitive vegetation
indices derived from multispectral sensors, but relationships
saturate at high N levels [1]. Spaceborne hyperspectral
sensors can measure detailed spectral features over large
areas. The German Aerospace Center (DLR) Earth Sensing
Imaging Spectrometer (DESIS) onboard the International
Space Station (ISS) is capable of collecting hyperspectral
imagery from space. However, leaf N assessment in row-
structured orchards is affected by the canopy architecture and
background. Thus, the implications of using coarser spatial
resolution hyperspectral imagery on the accuracy of N
estimation in heterogeneous orchards are crucial.

Previous work [2, 3] on the assessment of leaf N from
airborne hyperspectral imagery demonstrated that Solar-
Induced Fluorescence (SIF) and physiological plant traits
(i.e., Cap and other leaf biochemicals) retrieved from radiative
transfer models (RTM) yielded superior N estimates than
standard vegetation indices. These methods showed that Cap
and SIF predicted 95% of the N variability in almond
orchards. However, the importance of specific plant traits
may differ considerably at coarser spatial resolution due to
the structural and background effects. This study investigates
the contribution of SIF and the leaf biochemistry quantified
by RTM inversions from ISS DESIS hyperspectral imagery
for large-scale N assessment in almond orchards, with
comparison against high-resolution airborne hyperspectral
imagery and ground truth data used as validation.

2. MATERIALS AND METHODS
2.1. Study area

The study site is a commercial almond orchard covering
about 1,200 hectares, located in northwestern Victoria,
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Australia. Three different almond varieties were alternately
planted in groups of 6 rows for cross-pollination [4] in 2006
and 2007, comprising Nonpareil (50%), Carmel (33%), and
Price (17%). Plant varieties are spaced apart by 7 m and trees
by 4.4 m, respectively. Nutrients were supplied to plants via
drip fertigation and separated by one-hour intervals between
varieties. During the 2020-2021 growing season, the
fertigation rate for Nonpareil was 10% lower than that of
Carmel and Price throughout the orchard.

2.2. Datasets

2.2.1. Field measurements

The field measurements and leaf sampling were conducted at
the pre-harvest stage on February 1, 2021 in 13 homogeneous
study plots throughout the orchard. A total of cighty fully
exposed leaves of Nonpareil and Carmel were collected and
measured from each study plot by different handheld
instruments, including leaf Ca, anthocyanins (Anth),
flavonol content and the nitrogen balance index (NBI) using
a Dualex-4 Scientific instrument (FORCE-A, Orsay, France),
steady-state leaf chlorophyll fluorescence (Ft) with a
FluorPen FP 110 (PSI, Brno, Czech Republic), and leaf
reflectance spectra over the visible and NIR regions with a
PolyPen RP 400 instrument (PSI, Brno, Czech Republic).
Moreover, ten additional leaves per variety (a total of 100 leaf
samples per plot) were collected for N determination in the
biochemical laboratory using the Dumas Combustion method
[5] with a LECO Nitrogen Analyzer (LECO Corporation, MI,
USA).

2.2.2. Airborne hyperspectral imagery

An airborne campaign was carried out at solar noon under
clear sky conditions on January 31, 2021. A hyperspectral
line-scanning sensor (Micro-Hyperspec VNIR model,
Headwall Photonics, Fitchburg, MA, USA), covering 371
bands from the visible and the near-infrared regions with an
FWHM of 5.8nm and a spectral sampling interval of 1.6 nm,
was flown onboard the Cessna 172R aircraft operated by the
HyperSens Laboratory, the Airborne Remote Sensing facility
of The University of Melbourne. The imagery was collected
at 550 m above ground level with a spatial resolution of 40
cm. Pre-processing and calibration steps of the raw images
were performed as described in Zarco-Tejada et al. [6]. The
high-spatial resolution of the airborne hyperspectral imagery
enabled the extraction of sunlit vegetation pixels to quantify
leaf biochemistry and SIF [2]. In a two-year validation study
conducted for the entire orchard, leaf N (*=0.95, p<0.001,
Figure 1) was estimated with Cy and SIF being the most
critical plant traits [3].

2.2.3. DESIS hyperspectral imagery acquired from the ISS

A 30-meter spacebore hyperspectral scene was captured by
the DESIS imaging spectrometer onboard the ISS on January
23, 2021. The imagery covers 235 spectral bands, ranging
from the visible to the near-infrared regions with a 3.5 nm

0 02505

1
Kilometers

Figure 1. Airborne predicted N map derived from Cy, and SIF
at a 1,200-ha almond orchard study site in Victoria, Australia.

FWHM and a 2.55 nm sampling interval [7]. As a result of
the signal noise in the blue and green spectral regions,
additional cross-calibration was performed for DESIS L2A
imagery using vegetation, soil and water features from
airborne hyperspectral imagery by 33 DESIS pixel windows
(Figure 2).

2.3. Plant traits retrievals and SIF quantification

The reflectance spectra of individual vegetation pixels were
extracted for the calculation of structural and chlorophyll
indices (e.g., NDVI, EVI, TCARI/OSAVI), as well as plant
traits (e.g., Ca, carotenoids (Cear), Anth, the de-epoxidation
state of the xanthophyll-cycle pigments (Cy), dry matter (Cgn)
and leaf area index (LAI)) retrieval from FluSAIL RTM [8,
9]. An artificial neural network model [10] based on a look-
up-table (LUT) with random 50,000 simulations was used to
retrieve the physiological plant traits.

The Fraunhofer Line Depth (FLD) principle [11] was
used to calculate SIF using the O,-A oxygen absorption
feature from the DESIS L1C radiance imagery. Irradiance
data were derived from auxiliary data collected at the nearest
station on the day of DESIS overpass. The same method was
applied to the airborne hyperspectral imagery to retrieve SIF
and the plant traits by RTM inversions.

2.4. Statistical analysis for nitrogen estimation

The statistical methods used to assess N from airborne
imagery [2, 3] were applied in this study to DESIS data. The
variance inflation factor (VIF) collinearity assessment and
the out-of-bag (OOB) predictor importance were also
determined for DESIS. We compared the relative
contributions of physiological plant traits (i.e., Cap, Ccar, Anth,
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Figure 2. a) False colour composite of DESIS hyperspectral
imagery over a 1,200-ha almond orchard. b) DESIS zoom-in
view over the planting blocks, and ¢) reflectance spectra from
raw L2A image and cross-calibrated DESIS imagery.

Cyx, Cam, LAI) and SIF to estimate leaf N between spaceborne
DESIS hyperspectral and airborne hyperspectral imagery
throughout the almond orchard. The leaf N estimates
obtained from random forest regression models using DESIS
were validated with field measured leaf N and the high-
resolution airborne hyperspectral-based retrievals.

3. RESULTS

The traditional structural indices (e.g., NDVI, MCARI1)
calculated from DESIS hyperspectral imagery were strongly
related to Ca, but yielded a weak relationship with N (Table
1). NDVI yielded 7*=0.35 (p<0.05) with leaf measured Cap,
but was unable to explain N when compared cither against
laboratory N measurements (+*=0.08, n.s.) or the airborne-
based N validation map (#*=0, n.s.). These results suggest that
the variability of the canopy architecture captured at the
spaceborne scale did not explain leaf N orchard variability.
Other traditional chlorophyll indices (e.g., TCARI/OSAVI)
used for N assessment did not correlate with leaf Ca, nor N
from DESIS data, likely due to the mixture of soil and shaded
canopy components captured at such spatial resolution.
Nevertheless, CTRI1 [12] exhibited a significant correlation
with leaf N (#°=0.45, p<0.05) and with the airborne-predicted
N (#*=0.74, p<0.01), outperforming other vegetation indices.

SIF quantified from DESIS showed statistically significant
relationships with field measured Ft (#%=0.52, p<0.01) (data
not shown), leaf Cu (#2=0.62, p<0.01) and with leaf N
(*=0.56, p<0.01).

Table 1. Coefficients of determination (#*) for the DESIS
vegetation indices against field measurements and N derived
from the airborne hyperspectral imagery.

" Airborne
Veig:::::on Leaf C,,  Leaf PRI LT:E)N predicted
N (%)
NDVI 0.35%# 0.06 0.08 0
EVI 0.65%*Y 0.24* 0:31%* 0.20
MCARI1 0.69***  0.29* G35 ez
SRPI 0.01 0.26 0.18 0.33**
TCARI/OSAVI  0.06 0.19 0.20 0.03
CTRI1 0.20 0.47***  0.45**  0.74***
SIF Q.62 ** D:62%*% . Q:56™ % D.67***

*p<0.1, **p<0.05, ***p<0.01

As illustrated in Table 2, Cy, retrieved by RTM showed
greater correlations with leaf Cq, (#*=0.31, p<0.1), leaf N
(*=0.63, p<0.01) and airborne-predicted N (+*=0.80, p<0.01)
than chlorophyll indices. In addition to Cg, other plant traits
such as Cx (#2=0.71, p<0.01) were also strongly correlated
with leaf N. Significant relationships were also observed
between retrieved leaf pigments (i.e., Cab, Cear, Cx) and SIF
(e.g., Cab, 7*=0.59, p<0.01). In contrast to biochemical plant
traits, the structural trait LAI did not yield a significant
relationship with leaf Cg, nor N at DESIS scale.

Table 2. Coefficients of determination (»2) among RTM-
derived plant traits from DESIS and ficld measurements,
canopy SIF and N derived from the airborne hyperspectral
imagery.

Estimated Leaf SIF Leaf N Alrbf)rne
predicted
parameter Cab (%) N (%)
Cap (ng/cm?) 0.31* 059%* [.p3%eF g apeee
Cear (Hg/cm?) 0.07 03z*™ 17 0.14
Anth (ug/cm?)  0.10 0.01 0.03 0.16
Gy 0.26* 0.41%* 0.71%** (.38%*
Cam (g8/cm?) 0.07 0.12 g37% 0.2
LAI 0.14 0.22 0.07 0.01

*p<0.1, **p<0.05, ***p<0.01

The relative contribution of each plant trait to leaf N
estimation from spaceborne DESIS and airborne scales
appeared to be highly consistent (Figure 3). These results
identified Cw, SIF, and Cy as the most critical spectral traits
when explaining N variability, followed by the rest of the
retriecved  biochemical  constituents and  biophysical
traits. Furthermore, the statistical analysis revealed that Cg,
and SIF were non-collinear (VIF<5) but other biochemical
constituents (i.e., Cx, Cer and Can) showed higher
collinearity with Ca. These collinear traits were dropped
from the final model to reduce redundancy. Consequently, a
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Figure 3. Relative contribution of FluSAIL RTM-inverted
plant traits and SIF on the N prediction models from DESIS
and airborne hyperspectral imagery.

model consisting of Ca, and SIF together vielded 2=0.90
(»<0.0001) against leaf N, and 7=0.75 (p<0.0001) against
airborne-predicted N in the almond orchard comprising
different varieties, ages, and planting structures.

4. CONCLUSIONS

Results shown in this study demonstrate that RTM-derived
plant traits and SIF retrieved from DESIS hyperspectral
imager onboard the International Space Station yielded
strong relationships with ground leaf N and with estimatd N
carried out from high-resolution airborne hyperspectral
imagery. The most critical parameters explaining N from
DESIS in this study agreed with those derived from the
airborne hyperspectral imagery. Accordingly, the estimated
Cq retrieved by RTM inversion and SIF made a greater
contribution to explaining leaf N than the rest of the
biochemical constituents and biophysical traits, both from
DESIS and airborne hyperspectral imagery. Ca, and SIF
predicted 90% of the leaf N variability found in the almond
orchard, obtaining a 75% agreement with the high-resolution
airborne N estimates. The present study confirms the
importance of the coupled Ca, and SIF for leaf N assessment
in tree orchards at the spaceborne scale, demonstrating the
feasibility of large-scale leaf N quantification for precision
agriculture purposes.
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ABSTRACT

Among all essential nutrients, nitrogen (N) is required by
plants in large quantities throughout the entire developmental
process. This is due to its importance for plant growth and
development and as a primary source of energy for
photosynthesis. Previous research has demonstrated that
solar-induced chlorophyll fluorescence (SIF) coupled with
chlorophyll a+b content (Cab) improved the estimation of leaf
N, outperforming standard vegetation indices. The present
study investigates the contribution of leaf Cy, a measure of
the de-epoxidation state of the xanthophyll cycle, for
explaining leaf N variability, concluding that it ranks third
after Cy and SIF consistently over two growing seasons.
Among the rest of the biochemical constituents estimated by
model inversion, Cy contributed more than anthocyanins
(Anth), the total carotenoid content (Cex), and crown-level
structural traits.

Index Terms — Cy, airborme hyperspectral, nitrogen,
xanthophyll cycle, de-epoxidation, PRI

1. INTRODUCTION

Nitrogen (N) is one of the major nutrients taken up during
active plant growth and plays a significant role in preserving
high fruit quality and yield [1, 2]. Consequently, a precise and
sustainable agricultural management strategy in almond
orchards requires an accurate leaf N status assessment in
order to fine-tune fertilizer applications.

Conventional remote sensing (RS) methods to assess
leaf N rely on empirical algorithms involving chlorophyll-
sensitive vegetation indices (VIs) calculated from spectral
bands in the visible, red-edge, and near-infrared regions, such

as Clred-eage [3], TCARI/OSAVI [4], NDRE [5], and CCCI [6]
among others. Additionally, the PRI family of indices, which
involves 2-3 spectral bands in the green region, is sensitive to
changes in xanthophyll pigments composition and has been
proposed as a proxy for photosynthesis rate through light-use
efficiency [7-9], therefore being suggested as N-induced
stress indicators [10, 11].

As alternatives to VI-based methods, a number of
studies have focused on the estimation of leaf N using models
based on plant traits, such as chlorophyll [12] content derived
through radiative transfer model (RTM) inversion [13, 14].
The C, parameter in the Fluspect-Cx RTM [15] tracks the
dynamics of the de-epoxidation state of the xanthophyll
cycle, thus receiving considerable attention in recent years.
The model assessment of the xanthophyll epoxidation is
based on in vivo absorption coefficients for two extreme
states of the carotenoid [16] pool, corresponding to the two
states of xanthophyll de-epoxidation and describes the
intermediate states as a lineal mixture of these two extreme
states.

Recent advances have proposed models with leaf
biochemistry and dynamic spectral traits linked to
photosynthesis, such as solar-induced fluorescence (SIF), to
explain the leaf N variability. SIF has been demonstrated as a
plant stress indicator and proxy for leaf N content in various
crop species. In a recent study, SIF was found to improve the
leaf N estimation in almonds [17], concluding that C,, and
SIF were the two most important predictors for leaf N
content. As a step forward, we investigate the potential
contribution of several plant traits linked to photosynthesis to



assess leaf N variability in almond orchards, particularly the
xanthophyll pigments.

2 MATERIALS AND METHODS
2.1. Study area and field data collection

The study site consists of a 1,200-hectare comercial almond
orchard (see Fig. 1a for an overview ofthe orchard in a false-
color composite image) in Robinvale, northwest Victoria,
Australia, with a Mediterranean climate. An almond tree
planting program was undertaken in 2006 (northem blocks
oriented N-5) and 2007 (southern blocks with mixed N-S and
E-W orientations. Fig. 1b), including varieties of Nonpareil,
Price, and Camnel. & drip fertigation systemis used to supply
nutrients, with one-hour intervals between rows of trees.
Fertigation is adjusted based on previous year observations,
resulting in different application rates between varieties.

The field collection of leaf samples and ground data
measurements were conducted at the pre-harvest stage for
two growing seasons, 2019-2020 (March 2020) and 2020-
2021 (Febmary 2021). Fifteen monitoring plots were
sampled throughout the orchard, averaging two Nonpareil
trees and two Catmel trees per plot. As part of the
measurement process, 20 fully exposed mature leaves per tree
were measured for leaf Cy, anthocyanins (Anth), flavonol
content, and the nitrogen balance index (NB I) using a Dualex
4 Scientific instrument (FORCE-A, Orsay, France). Wealso
determined leaf steady-state chlorophyll fluorescence (Ft)
and leaf reflectance spectra within the visible and near-
infrared (VNIR) region with FluorPen FP 110 and PolyPen
RP 400 instruments (PSI, Brno, Czech Republic),
respectively. Moreover, 20 additional leaves were sampled
per plot for laboratory nutrient analysis using a LECO
Nitrogen analyzer (LECP Corporation, MI, USA).

2.2. Acquisition of airthorne hyperspectral imagery

Airborne campaigns were camried out within a week of each
field campaign. The piloted aircraft, operated by the
HyperSens Laboratory at The University of Melboume, was
equipped with a hyperspectral line-scanning sensor (Micro-
Hyprspec VNIR model, Headwall Photonics, Fitchburg, MA
USA) with 5.8 n FWHM covering 371 spectral bands over
the VNIR region. The flights' height at 550 m above ground
level yielded a spatial resolution of 40 cm, enabling the
identification of each tree crown and shaded features. Image
pre-processing and calibration were performed following the
method in [18]. Consequently, image mosaics of reflectance
and radiance were derived over the orchard.
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Fig. 1. (a) Colour-infrared owverview of the airbome
hyperspectral image acquired over a study area of 1,200
hectares at a 40-cm spatial resolution using 371 wvisible and
near-infrared spectral bands. (b) Zoomed view of the planting
blocks for almond rows that are oriented east-west and north-
south. (c) Sample reflectance (R, green colour) and radiance
(L for SIF calculation, orange colour) spectrum extracted
from the airborne hyperspectral image.

23. SIF quantification and plant traits estimation

Based on pure sunlit vegetation pixels extracted from
radiance itnage, SIF was quantified by the Fraunhofer Line
Depth (FLD) method [19] from Oz-A oxygen absotption
features at 762 nm. The reflectance mosaic was used to
extract spectra from tree crowns used for the calculation of
vegetation indicesand the inversion of plant traits from R TIVL
Cx. along with other biochemical constituents (e.g., Cab, Cor,
and Anth), and structural traits (e.g., LAI) were retrieved
simultaneously by constructing a 10-hidden layer artificial
neural network (ANN) based on 500,000 sirulations using
the coupled Fluspect-Cxand 45A 1L model [20].

24. Nitrogen prediction model assessment

Aspart ofa previous two-year validation study performed in
the orchard, Ca and SIF were identified as the most critical
plant traits for leaf N estimation [17]. With the retrieved plant
traits, Gaussian process regression models were constructed
for each year incorporating single plant traits (i.e., Car, Cx,
Anth, LAD) in addition to Cy and SIF. The training and
testing steps were performed using leave-one-out cross-
validation. Furthermore, the variance inflation factor (VIF)
and out-of-bag predictor importance were employed to assess
the input collinearity and relative contribution of the inputs,
respectively.



3. RESULTS

The xanthophyll pigment-related indices extracted from tree
crowns were highly correlated with leaf N, in particular, PRI
(# =048, p-value < 0.005 in 2020, and /% = 0.27, p-value <
0.05in 2021), and PRIw4 (¥ = 0.34, p-value < 0.05 in 2020,
and » = 0.50, p-value < 0.005 in 2021). The RTM-derived
parameter C,, however, exhibited a superior and consistently
significant relationship with leaf N for both years (# = 0.61
in 2020 and # = 0.62 in 2021; p-values < 0.005).
Relationships were obtained between C; vs. leaf-measured
PRI (# = 0.48 in 2020 and 7 = 0.46 in 2021; p-values <
0.005) and airborne-derived PRIn4 (# = 0.50 in 2020 and 7
=0.421in 2021; p-values < 0.01, Fig. 2).

Based on the relative contribution of each input to leaf
N estimation, C; was demonstrated as the best non-collinear
(VIF<10) predictor after Cy, and SIF. Moreover, the model
incorporating C; along with Cy and SIF (e.g., RMSE =
0.079% in 2020+2021) outperformed the model built with Cy
and SIF alone (e.g., RMSE =0.092% in 2020+2021). Witha
model consisting of Ca, C, and SIF (N = f{Ca, Cs, SIF):
=0.861n2020, = 0.651n 2021, and * = 0.87 in 2020+2021,
Fig. 3), leaf N variability was better explained than any other
model combinations for each individual year and when
combining the two years together. These results suggest that
the RTM-derived C estimated from airborne hyperspectral
imagery is an important predictor for leaf N assessment in
almond orchards, improving the model performance when
coupled to Cy, and SIF.
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Fig. 2. Relationships between RTM-derived C; and airbomne-
derived PRIy in 2020 (hollow grey circle) and 2021 (solid
black circle). All p-values < 0.01.
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Fig. 3. Relationships between leaf N concentration (%) and
predicted leaf N using models based on chlorophyll content,
Cy, and SIF. The blue dashed line represents correlation when
combining data from 2 years. All p-values < 0.005.

4. CONCLUSIONS

This study demonstrates that the RTM-derived Cy parameter,
an indicator of the xanthophyll pigments cycle, ranked third
behind Ca, and SIF when explaining the observed variability
of leaf N in almond orchards. The leaf N prediction model
that incorporated Cy in addition to Cs and SIF was found to
outperform any other combinations of plant traits over the
course of two years. Other leaf biochemical constituents such
as anthocyanins (Anth), the total carotenoid content (Cear),
dry matter (Cun), and structural traits yielded lower
contributions when explaining the leaf N variability in
almond orchards.
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ABSTRACT

Accurate nitrogen (N) assessment is crucial for precise and sustainable agricultural management. Understanding crop nutrient status
in a timely manner is essential to improve the efficiency of fertilizer application throughout the growing season across the entire
farm. Standard remote sensing methods for N assessment are built upon empirical relationships with structural and chlorophyll-
sensitive vegetation indices derived from multispectral sensors. In contrast, hyperspectral imagers can collect detailed spectral
signatures resulting from the combination of all biochemical constituents and canopy structure, which provides more physiological
links for improved crop N quantification. In addition to the high spectral and temporal resolutions, hyperspectral sensors onboard
satellite and airborne platforms can collect imagery over large areas allowing for the monitoring of nitrogen levels across entire
farms. Nevertheless, unlike homogenous crops, the detailed assessment of tree orchards requires higher spatial resolutions to reduce
the extensive effects of canopy structure and soil background. Therefore, it is important to understand the applicability of coarser-
resolution satellite imagery with hyperspectral capabilities for the accurate prediction of N in heterogeneous orchards.

This study explores the feasibility and performance of N status assessment from the German Aerospace Center (DLR) Earth Sensing
Imaging Spectrometer (DESIS) over a 1,200-hectare almond orchard, as compared to high-spatial resolution airborne hyperspectral
imagery. The experiment was conducted throughout the almond growing season from Nov 2020 to Jan 2021 in Victoria, Australia.
Two airborne campaigns were conducted at almond kernel-filling and pre-harvest stages. A hyperspectral VNIR camera (Headwall
Photonics, Fitchburg, MA, USA) was installed on board an aircraft, collecting imagery at a 40 cm spatial resolution and 358 bands in
the 400-1000 nm spectral range. DESIS hyperspectral sensor on board the International Space Station (ISS) was used to collect
imagery with 235 spectral bands in the 400-1000 nm at 2.55 nm spectral resolution (FWHM) and 30 m spatial resolution. Work was
carried out to cross-validate the DESIS reflectance spectra from the airborne imagery using field targets comprising dense canopy,
soil, water body and mixed features. Results of the analysis carried out using the NIR and different spectral bands in the visible part
of the spectrum will be discussed.

Previous work for N assessment at the orchard level enabled the generation of a nitrogen map using the airborne hyperspectral
imagery from advanced spectral-based plant traits comprising Solar-Induced Fluorescence (SIF) and chlorophyll a+b content
estimated from FluSAIL radiative transfer model, validated against ground truth measurements (r>=0.95; p<0.001). The methodology
was applied to every tree in the entire orchard using the airborne hyperspectral mosaic, obtaining a high-resolution map of N
distribution. Assessment of N estimates from DESIS hyperspectral imagery will be discussed, assessing the structural effects of non-
homogeneous orchard canopies on the accuracy of parameter retrievals. This research will contribute to the evaluation of DESIS for
precision agriculture applications, in particular for large-scale mapping of N in tree crops.
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