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Abstract 13 

Macro- and micro-nutrients are essential for plants to function efficiently, resist disease, and 14 

produce high yields and quality fruits. These nutrients are involved in various aspects of almond 15 

growth and development throughout the phenological cycle. High levels of nitrogen, phosphorus, 16 

and potassium are the most important inputs for almond production. Micro-nutrients, although 17 

needed at much lower levels, also play an important role in supporting growth, especially in key 18 

tissues. The most important aspect of fertilizer management is balancing the fertilizer program in 19 

order to maximize yields while minimizing environmental impacts. In precision agricultural 20 

management, a precise assessment of nutrient status is crucial to determine the optimal application 21 

of fertilizers. The traditional method of assessing nutrients is tissue testing in biochemical 22 

laboratories, but this is not cost- or time-effective for continuous monitoring over a large area.  23 

The use of remote sensing techniques has been explored in recent decades as a method of obtaining 24 

indicators for those nutrients, most notably nitrogen, in terms of their spatial orientation, efficiency, 25 

and rapidness. In remote sensing of leaf N assessment, empirical algorithms using chlorophyll  a+b 26 

sensitive vegetation indices, as well as radiative transfer model (RTM) inversion of plant pigments, 27 

are applied. In recent years, advances in leaf N estimation have relied on the assessment of leaf 28 

biochemistry and spectral characteristics linked to photosynthesis, such as solar-induced 29 

fluorescence (SIF), which has been demonstrated to be an indicator of stress caused by nutrient 30 

deficiencies in a wide range of crop species. As a result of the sensitive nature of SIF and the 31 

complexity of tree orchard canopy architecture, its performance and sensitivity to plant condition 32 

need to be evaluated in tree-structured almond orchards. In spite of this, there is still a lack of 33 

understanding of proxies for other macro- and micro-nutrients and their interactions, an area which 34 

requires further investigation.    35 
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This research investigates the response of spectral-based plant parameters to different nutrient 36 

elements in almond trees at both the leaf and canopy levels. It is intended that this study not only 37 

provides an improved assessment of N using a combination of robust proxies, but also it examines 38 

its evaluation at various spatial and spectral resolutions, from high-resolution airborne to coarser-39 

resolution spaceborne platforms. The results from two years of data indicate that chlorophyll 40 

fluorescence can serve as a reliable proxy for the primary macro-nutrients (i.e., N, P, and K) across 41 

the two years, yielding r2 = 0.74 (p-values < 0.005) for both leaf steady-state measurements and 42 

canopy SIF with leaf N. Moreover, the biochemical constituents derived from radiative transfer 43 

modeling exhibited strong correlations with the primary macro-nutrients for both years, whereas 44 

vegetation indices exhibited generally inferior relationships with nutrients. Taking leaf N as an 45 

example, SIF and Cab derived from RTM inversion were found to be the most significant non-46 

collinear indicators at both the airborne (0.4 m) and spaceborne (30 m) scales. An airborne-based 47 

model predicted field-measured leaf N with an r2 of 0.95 and RMSE of 0.05% over the course of 48 

two years. The newly developed spectrometer DESIS onboard the International Space Station (ISS) 49 

provided a model with an r2 of 0.83 and RMSE of 0.06% in 2021, while Sentinel-2 provided an 50 

inferior result (r2 = 0.72, RMSE = 0.08%). An emphasis has been placed in this research on the 51 

importance of Cab, SIF, and other plant pigments in determining the nutrient status of discontinuous 52 

tree-structured almond orchards. Moreover, this work provides a step forward towards achieving 53 

accurate and large-scale nutrient monitoring in precision agriculture. 54 
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Chapter 1 : General introduction 410 

1.1 Background 411 

Agricultural fertilizers are used to provide plants with nutrients that they may not be able to obtain 412 

from the soil alone, thereby increasing crop yields and enhancing agricultural productivity (Chen, 413 

2006). Over the past few decades, steady growth in fertilizer use has occurred in Australia and 414 

around the world (Fig. 1.1) due to increasing agricultural intensity and a growing emphasis on 415 

maximizing yields for economic and food-security reasons. Since the 1960s, fertilizer use in 416 

Australia has increased significantly, with nitrogen and phosphorus fertilizers the most commonly 417 

used (MacDonald et al., 2011, Lambers et al., 2008). This is mainly due to the country’s focus on 418 

agricultural exports, which has led to a need for higher yields and more intensive farming practices 419 

for high-value crops like horticultural crops and sugar cane  (Angus, 2001, Angus and Grace, 2016). 420 

Since the mid-1990s, a significant increase in fertilizer use has also been observed for wheat and 421 

other dryland crops (Angus and Grace, 2016). The use of fertilizers has increased globally, with 422 

developing countries, in particular, experiencing significant increases in fertilizer consumption 423 

over the past few decades (Heffer and Prud’homme, 2016). This trend is expected to continue in 424 

the coming years as global food demand increases and agricultural productivity becomes 425 

increasingly important (Schmidhuber and Tubiello, 2007).  426 

In addition to the effects on plant growth, plant nutrition has a profound impact on most other 427 

living organisms because plants are the foundation of many food chains. Various minerals are 428 

involved in different processes of the human body, so their abundance and distribution in plants 429 

affect human diets. According to White and Broadley (2005), iron, zinc, calcium, magnesium, and 430 

copper deficiencies are very common, especially in developing regions, and this is a result of the 431 

lack of minerals in natural sources (i.e., crops, food, water). Agricultural production and food 432 
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security are thus concerns all over the world and are subject to national regulations (Roy et al., 433 

2006).  434 

 

 

Fig. 1.1. The use of nitrogen fertilizer in Australia and around the world from 1960 to 2020 (data 435 

source: FAOSTAT https://www.fao.org). 436 

 

The use of fertilizers has undoubtedly improved agricultural productivity and increased food 437 

production, but it appears that over-fertilization has become a common practice. Excess 438 

fertilization can sometimes damage plants, adversely impacting overall plant development and 439 

performance, and can lead to environmental problems like soil contamination, atmospheric 440 

pollution, algal blooms, biodiversity threats, and greenhouse gas emissions, thus prompting 441 

resource and economic concerns (Stewart et al., 2005, Stevenson and Cole, 1999, Matson et al., 442 

1998, Sutton et al., 2013, Skiba and Rees, 2014). Fig. 1.2 illustrates the global water pollution 443 

risks associated with fertilizer runoff, showing Australia among the high-risk countries. Therefore, 444 

it is imperative that fertilizers and other inputs are applied within the constraints and conditions of 445 

sustainable agricultural practices in order to effectively promote yields while minimizing 446 

https://www.fao.org/
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environmental impacts (Muhammad et al., 2015). In fact, globally, about 47% of synthetic N 447 

fertilization fails to increase yield (Lassaletta et al., 2014) due to various factors, including crop 448 

species and varieties, the form of N used, soil types, water availability, supply technology (e.g., 449 

timing, forms, placement), availability of other nutrients, and prevalent insect pests (El-Sharkawy 450 

et al., 1998, Ospina et al., 2014, Dobermann, 2005, Fageria and Baligar, 2005). In the context of 451 

precision agriculture management, nutrient status needs to be accurately assessed to enable optimal 452 

and sustainable application of fertilizers.  453 

 

 

Fig. 1.2. Water quality risks of global river basins, based on 2000-2010 data from Damania et al. 454 

(2019). Red or yellow show areas where biological oxygen demand, nitrogen fertilizer runoff, and 455 

electrical conductivity have significant impacts on freshwater and present a high risk of water 456 

pollution. Gray areas have no data for one or more parameters. 457 

 

1.2 Roles of nutrients in plant growth 458 

To complete their life cycle, plants require numerous nutrients in varying amounts throughout the 459 

growing season. Carbon (C), hydrogen (H), and oxygen (O) are considered the three primary 460 

elements taken up through both air and water, whereas the other necessary elements are absorbed 461 
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from soil and fertilizers through plant roots (Marschner, 1986). Nutrients are usually classified into 462 

macro-nutrients and micro-nutrients, based on their rate of absorption by plants (Stewart, 1988). 463 

It is widely accepted that macro-nutrients are often essential for the structure of molecules, which 464 

explains the need of plants for large quantities. Plant macro-nutrients are divided into two groups 465 

based on their functions – primary macro-nutrients (i.e., nitrogen, phosphorus, potassium) and 466 

secondary macro-nutrients (i.e., calcium, magnesium, sulfur). The role of plant micro-nutrients is 467 

generally described as catalytic or regulatory (Carrow et al., 2002, Ryan et al., 2001). As the plant 468 

moves through different stages of development, each nutrient plays a distinctive role in different 469 

metabolic processes, such as constituting structural components or redox-sensitive components, as 470 

well as protecting plants from various abiotic and biotic stresses (White and Brown, 2010, Morgan 471 

and Connolly, 2013, Shanker and Venkateswarlu, 2011, Roy et al., 2006, Tripathi et al., 2014). 472 

Nitrogen (N) is required by plants in large amounts throughout all phases of plant development 473 

because it constitutes both structural (cell membranes) and nonstructural (amino acids, enzymes, 474 

protein, nucleic acids, and chlorophyll) components (Chism, 2002, Mengel and Kirkby, 2012). For 475 

example, N constitutes about 16% of total plant protein (Frink et al., 1999) and approximately 1.5-476 

2.0% of plant dry matter (Lima et al., 2007). Furthermore, N enhances fruit and seed production, 477 

and produces rapid plant growth and high-quality forage crops (Mengel and Kirkby, 2012, 478 

Marschner, 2011). Thus, N is regarded as the essential plant nutrient. In almonds, N is an extremely 479 

important nutrient throughout the entire growth cycle. N is essential for building the tree canopy 480 

and stimulating vegetation growth (e.g., promoting the growth of stems, full leaf expansion, and 481 

hardening of nut shells), resulting in improved bud formation, higher yields, and higher protein 482 

levels in nuts. Insufficient N stops leaf elongation (Marschner, 2011), inhibits photosynthesis 483 

(Gregoriou et al., 2007), reduces the size of chloroplasts (Li et al., 2013), and produces plants 484 
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lacking vigor. It is common for plants that are deficient in N to show signs of chlorosis or yellowing 485 

leaves. On the other hand, the application of excessive N impairs hydraulics, limits photosynthesis, 486 

and alters the metabolic processes of almond trees (Sperling et al., 2019).  487 

Phosphorus (P) plays a vital role as the constituent of nucleic acids (i.e., DNA, RNA), adenosine 488 

triphosphate (ATP), and other plant components (e.g., teichoic acids and phospholipids), as well 489 

as being a central component of intermediary metabolism (Mills and WT, 1994, Hopkins and 490 

Hüner, 1995). The concentration of P in plants is approximately 0.05% to 0.5% of total dry weight. 491 

The presence of P contributes to the development of root and stem strength, flower initiation, seed 492 

formation, and fruit quality and production (He et al., 1992, Malhotra et al., 2018, Zhu and Smith, 493 

2001). It is thus regarded as an essential nutrient for plant growth and development. There is much 494 

evidence that P aids in the photosynthetic process (Raaimakers et al., 1995, Stitt, 1990), assists 495 

with plant maturation and stress resistance (Tripathi et al., 2014), and increases crop yield 496 

(Hopkins and Hansen, 2019, Schlegel and Havlin, 2017, Hopkins et al., 2010). When P is deficient, 497 

the growth of the plant is markedly restricted, resulting in retarded growth, tillering, root 498 

development, and delayed ripening. Conversely, excessive levels of P can cause toxic symptoms 499 

or the death of the plant in very severe cases (Roy et al., 2006). 500 

Potassium (K) is closely involved in many physiological processes (e.g., protein synthesis) and 501 

plays a major role as a cationic inorganic element in plants, helping to improve photosynthesis, 502 

enzyme activity, water balance, assimilation, and transportation (Barker and Pilbeam, 2015, 503 

Mengel and Kirkby, 2012, Pettigrew, 2008). More specifically, K is crucial in maintaining the 504 

water homeostasis of plants because it regulates stomatal opening and closing in plants and thus 505 

minimizes drought stress (Mahouachi et al., 2006). K enhances fruit quality and yield, increases 506 

disease resistance, and reduces lodging in plants (Nursu’aidah et al., 2014, Barker and Pilbeam, 507 



 
6  

2015, Pettigrew, 2008). Therefore, K is considered essential to all plant life. To be more specific, 508 

K is particularly important for nut-fill and is required in large quantities to achieve the highest 509 

yields. A sufficient supply of K leads to higher kernel weights, more split shells, and fewer blank 510 

nuts. There is evidence that K accounts for between 1% and 5% of plant dry matter. The fact that 511 

K, like N and P, is highly mobile in plant tissues explains why symptoms of primary macro-nutrient 512 

deficiency usually appear in the older leaves of a plant. Nevertheless, when K levels are low, the 513 

symptoms of deficiency are not as easily visually detectable as deficiencies of N or P are. At an 514 

advanced stage of K deficiency, chloroplasts and mitochondria collapse (Barker and Pilbeam, 515 

2015).  516 

Calcium (Ca) plays an essential role in plants as a structural component of cell walls and 517 

membranes and as a second intracellular messenger (Maathuis, 2009, Marschner, 2011). Critical 518 

for plant growth and development, it aids in activating enzymes, regulating water movement, and 519 

balancing salt levels in plant cells, and it also activates K to control the process of the opening and 520 

closing of stomata (Hepler, 2005). In this regard, Ca facilitates the response to biotic and abiotic 521 

stresses (e.g., salt stress, hyperosmotic stress), stomatal regulation, and physical damage (e.g., cold 522 

shock) (McAinsh and Pittman, 2009, Drøbak and Watkins, 2000, Kiegle et al., 2000, Thor, 2019, 523 

Kudla et al., 2010). In almond crops, Ca plays an important role in maintaining the integrity of cell 524 

membranes and building strong cell walls. Ca enables greater physiological stability of plant 525 

tissues, reducing the risk of physical damage and disorders. It also provides growth support for 526 

pollen tubes and aids in pollination. Ca constitutes between 0.1% and 5% of plant dry matter 527 

(White and Broadley, 2003). Deficiency of Ca is characterized by yellow coloration and black 528 

spots on leaves (Hepler, 2005), symptoms which first appear on growing tips and young leaves 529 

because Ca is immobile.  530 
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Magnesium (Mg) is known as one of the essential nutrient elements for plants because it is a 531 

central atom in chlorophyll and an important regulator of enzymes (Hopkins and Hüner, 1995, 532 

Wilkinson et al., 1990). Additionally, it plays a significant role in plant photosynthesis, particularly 533 

in promoting light reactions in the stroma (Marschner, 2011, Maathuis, 2009). It has been found 534 

that Mg constitutes approximately 0.05-0.5% of total plant dry matter. Mg is a movable element 535 

in plants, which results in chlorophyll decreasing first in old leaves and the remaining Mg being 536 

transferred to younger leaves. It is commonly known that chlorosis (yellowing of the leaves) is a 537 

sign of Mg deficiency (Hermans et al., 2010). Conversely, an adequate supply of Mg means that 538 

plants display resistance to diseases like root rot, bacterial spot, and early blight disease (Ishfaq et 539 

al., 2022, Huber and Jones, 2013). 540 

Sulfur (S) is an important constituent of proteins and coenzymes and is implicated in oil 541 

biosynthesis (Hopkins and Hüner, 1995, Fazili et al., 2008), with a typical range of 0.1-0.4% in 542 

plant dry matter and a N/S ratio of approximately 15 (Roy et al., 2006). Furthermore, S is a key 543 

component of legume N fixation and its application greatly enhances legume N fixation, plant 544 

growth, and yield (Jamal et al., 2005, Jamal et al., 2010, Zhao et al., 1999). There is also evidence 545 

that S compounds are effective for the detoxification of heavy metals (Jones, 1985, Ernst et al., 546 

2008). S is mobile in plants. Nevertheless, the symptoms of S deficiency may not be recognized 547 

easily in the field, as they are only obvious in severely deficient plants, and they often resemble 548 

the symptoms of N deficiency, with yellowish leaves first observable on the younger leaves.  549 

In comparison to macro-nutrients, micro-nutrients are required at much lower levels to promote 550 

plant growth and boost yield, all of which are crucial to the growth of key tissues, the biosynthesis 551 

of proteins, stress tolerance, and the formation of chlorophyll and secondary metabolites 552 

(Marschner and Rengel, 2007, Jatav et al., 2020).  553 
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Manganese (Mn) serves as an enzyme cofactor as well as part of the oxygen-evolving complex 554 

in chloroplast (Hopkins and Hüner, 1995). It is known that Mn is a primary component of the 555 

water-splitting enzyme associated with photosystem Ⅱ, with a typical concentration of 20-300 556 

mg/kg (Aftab and Hakeem, 2020, Havlin et al., 2016). It exhibits certain properties similar to Mg, 557 

although Mn-deficiency symptoms appear first on the younger leaves, whereas Mg-deficiency 558 

symptoms are evident first on the older leaves (Roy et al., 2006). 559 

Iron (Fe) is crucial for chlorophyll synthesis and electron transfer, as well as for N fixation (Aftab 560 

and Hakeem, 2020, Hopkins and Hüner, 1995). Fe is generally the most abundant of the micro-561 

nutrients, with a dry matter concentration of 100-500 mg/kg (Havlin et al., 2016). Similarly to Mn, 562 

Fe is generally immobile in the phloem and the symptoms of Fe deficiency are comparable to those 563 

of Mn deficiency because both deficiencies lead to a reduction in chlorophyll production. In cases 564 

of severe deficiency, leaves become almost pale white due to loss of chlorophyll (Roy et al., 2006).  565 

Zinc (Zn) is an enzyme activator (Hopkins and Hüner, 1995) and is normally found in volumes 566 

ranging from 27 to 150 mg/kg of dry matter (Havlin et al., 2016). According to Cakmak (2008), a 567 

deficiency of Zn impairs ribonucleic acid (RNA) and protein production due to its significant role 568 

in photosynthesis and N metabolism. Further, Zn is essential for maintaining plant growth, 569 

especially for new tissue development, with increased seed viability and seedling vigor, as well as 570 

resistance to abiotic and biotic stresses. The mobility of Zn is low. Zn is commonly used as a 571 

defoliant after harvesting to promote budding, pollination, and fruiting in the following season (Bi 572 

et al., 2005, Lin and Agehara, 2021).  573 

Boron (B) contributes to cell division and elongation by maintaining the structural integrity and 574 

thickness of the cell wall (Hopkins and Hüner, 1995). In addition, B promotes flower production 575 

and retention, the elongation and germination of pollen tubes, and the development of seed and 576 
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fruit, and hence it promotes yield (Aftab and Hakeem, 2020, Roy et al., 2006). Furthermore, it 577 

improves the drought tolerance of crops. B is essential for flowering and pollination to ensure 578 

successful fruit development. B constitutes about 10-20 mg/kg of plant dry matter (Havlin et al., 579 

2016). Any deficiency of B is usually observed on the growing points of roots, shoots, and young 580 

leaves and may result in stunting, distortion, and brittle foliage, as well as yellowing of lower leaf 581 

tips. 582 

Copper (Cu) is a necessary cofactor of oxidative enzymes (Hopkins and Hüner, 1995) and is 583 

involved in chlorophyll formation (Roy et al., 2006). In addition to protecting plants from disease 584 

and improving the fertility of male flowers, Cu also contributes to the oxidation of iron in plants 585 

(Aftab and Hakeem, 2020). Cu constitutes approximately 5-30mg/kg of plant dry matter (Havlin 586 

et al., 2016). The first signs of a Cu deficiency include narrow, twisted leaves and pale white shoot 587 

tips (Roy et al., 2006). 588 

In conclusion, it is evident that nutrients play significant roles in plant growth and development 589 

and have an impact on every stage of plant life. When plants do not have access to enough nutrients, 590 

they will show signs of deficiency, such as discolorations, spotting on leaves, wilting, or drooping 591 

(see Fig. 1.3 and Table 1.1 for further details). When these symptoms are observed on younger 592 

leaves, it indicates that the deficient elements are immobile, such as B, Ca, Cu, Fe, Mn, S, and Zn. 593 

However, plant growth, yield, and fruit quality can be enhanced by the application of adequate 594 

nutrients (Morgan and Connolly, 2013). Nevertheless, determining specific nutrient deficiencies 595 

is often challenging due to the possibility of similar symptoms being caused by different nutrient 596 

deficiencies (Table 1). The interrelationships between nutrients and their deficiencies which affect 597 

plant growth are complex and difficult to define. Consequently, beyond examinations of a single 598 

nutrient, interactions between nutrients are poorly understood and require further study. 599 
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Furthermore, visible symptoms of water deficiency and pathogenic infections may be similar. 600 

Consequently, visual observation alone may yield a flawed diagnosis, resulting in delayed 601 

remedial action for the affected plant. For this purpose, it is necessary to develop an effective, 602 

efficient, and robust method for assessing plant nutrient status over large agricultural areas. 603 

 

 

Fig. 1.3. Visible symptoms of nutrient deficiency (image source: 604 

https://www.agrowtronics.com/nutrients-for-hydroponics/). 605 
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Table 1.1. Common symptoms associated with nutrient deficiencies. A bold orange X indicates 606 

the most likely elements corresponding to the symptoms of deficiency (modified based on an 607 

image source: https://www.agrowtronics.com/nutrients-for-hydroponics/). 608 

Symptoms Suspected nutrient element 

N P K Ca Mg S Mn Fe Zn B Cu 

Necrosis (tissue death)     X   X   X X X     

Stunted growth X X X           X X X 

Wilting/drooping     X   X       X     

Thin stems X X X     X           

Leaf drop X                   X 

Deformed leaves     X X           X X 

Chlorosis X           X X       

Tip burn   X X                 

Blossom end rot       X               

Brittle/weak stems   X X     X         X 

Chlorosis between veins         X   X X X     

Spotting/mottling             X         

Dark green or purple color   X                 X 

 

1.3 Traditional methods for leaf nutrient assessment 609 

The analysis of leaf tissues has traditionally been regarded as an effective method of determining 610 

a plant's nutrient status and determining the best fertilization strategy (Smith, 1962, Ulrich, 1952, 611 

Embleton et al., 1973, Jones and Janick, 1984). Destructive sampling techniques that use chemical 612 

analysis of leaf tissue have been widely used. There are two common laboratory methods, Kjeldahl 613 

digestion (Kjeldahl, 1883b, Kjeldahl, 1883a) and Dumas combustion (Dumas, 1831), which are 614 

accurate and reliable as reference methods for determining different macro- and micro-nutrient 615 

contents in leaf samples. Using the Kjeldahl digestion method, organic nitrogen is converted into 616 

ammonium by boiling in sulfuric acid and distilling with alkali to liberate ammonia, which is then 617 

determined by titration (Amin and Flowers, 2004). However, this method can only measure N 618 

which is bound to the organic components (proteins, amino acids, nucleic acids) and ammonium 619 

in the sample, while other N forms, such as nitrate and nitrite, are not amenable to measurement 620 
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and will thus produce a slightly lower value when using this procedure (Muñoz-Huerta et al., 2013). 621 

The Dumas method overcomes this limitation and does not require toxic reagents, thus producing 622 

less pollution than the Kjeldahl method (Muñoz-Huerta et al., 2013). Nevertheless, incomplete 623 

combustion results in the loss of nitrogen in the sample, and therefore a small sample weight is 624 

required for this method (Unkovich et al., 2008). 625 

However, this is not an efficient nor affordable approach to the continuous monitoring of nutrient 626 

status for large areas, especially when considering seasonal and within-field spatial variations. In 627 

contrast, non-destructive remote sensing (RS) techniques can determine spatial variability of 628 

photosynthesis-related proxies and plant physiological conditions over large areas in a rapid and 629 

cost-effective manner (Menesatti et al., 2010, Prananto et al., 2021, Wessman et al., 1988, Martin 630 

and Aber, 1997, Smith et al., 2002).  631 

 

1.4 Airborne remote sensing platforms for assessing leaf nutrients 632 

As most of the absorption features of green vegetation are located in the optical domain (400-2500 633 

nm), optical sensing is generally used in remote sensing studies to analyze vegetation 634 

characteristics (Schaepman-Strub et al., 2006). Hank et al. (2019a) outlined the spectral domain, 635 

in which reflectance is categorized into three major regions – visible (400-700 nm, VIS), near-636 

infrared (700-1300 nm, NIR), and shortwave (1300-2500 nm, SWIR). VIS covers the spectral 637 

region of the absorption of foliar photosynthetic pigments, primarily chlorophylls, carotenoids, 638 

anthocyanins, and xanthophylls. In the NIR region, scattering occurs at both the leaf and the 639 

canopy scales, mainly determined by leaf structure, leaf area index (LAI), and plant density. Water, 640 
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lignin, cellulose, and proteins are the dominant absorption components in the SWIR range. For 641 

nutrient assessment of extensive areas, optical sensors and cameras are usually mounted on aircraft.  642 

Although drones are capable of capturing images with high spatial resolution, they are limited by 643 

their flight altitude (normally less than 150 meters when keeping the platform within the line of 644 

sight) and coverage capacity, consequently needing much more time to cover large areas than 645 

aircraft-based platforms do. Due to the limited discrete spectral bands visible with multispectral 646 

sensors (Landgrebe, 2003), these sensors typically make use of empirical methods based on 647 

vegetation indices to assess nutrients (Maresma et al., 2016, Tilling et al., 2007, Boegh et al., 648 

2002). On the other hand, advances in hyperspectral sensors (Bioucas-Dias et al., 2013) fitted to 649 

manned/unmanned vehicles have enabled more accurate determination of pigment content (e.g., 650 

chlorophyll, carotenoids, anthocyanins, and xanthophyll cycle status) and other spectral traits (e.g., 651 

chlorophyll fluorescence, dry matter, and structural traits) as a result of their detailed contiguous 652 

and narrow spectral information (Goetz, 2009), which is much better for determining the nutrient 653 

status of large areas (Thenkabail and Lyon, 2016, Blackburn, 2007, Clevers and Kooistra, 2011). 654 

In the past 20 years, the most widely used airborne imaging spectrometers include the NASA 655 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane et al., 1993), the Australian 656 

HyMAP (Cocks et al., 1998), the Compact Airborne Spectrographic Imager (CASI) (Babey and 657 

Anger, 1989), and the Airborne Prism Experiment (APEX) (Schaepman et al., 2015). See the 658 

review paper by Rast and Painter (2019). 659 
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1.5 Standard remote sensing methods for monitoring nutrient status 660 

Typically, nutrient estimation, particularly for N, has been extensively investigated with optical 661 

RS techniques which rely on proxy-based empirical methods. An early study by Evans (1989) 662 

demonstrated a strong correlation between N and chlorophyll (Lee et al., 2015) content. In practice, 663 

handheld leaf-scanning instruments typically calculate Cab in situ based on greenness readings 664 

using two or more spectral bands, for instance, the SPAD-502 Chlorophyll Meter (Minolta Camera 665 

Co. Ltd., Tokyo, Japan) and Dualex 4 Scientific (FORCE-A, Orsay, France). More specifically, 666 

the SPAD-502 leaf chlorophyll meter is a non-destructive hand-held leaf-clip that measures 667 

transmission through leaves with two light-emitting diodes in the red and infrared spectral regions 668 

(650nm and 940nm) and a photodiode (Wood et al., 1993, Markwell et al., 1995). Other more 669 

recently developed optical leaf-clip meters, like the Dualex 4 Scientific (FORCE-A, Orsay, 670 

France), add flavonol (Flav) detection and the nitrogen balance index (NBI) (Goulas et al., 2004). 671 

These handheld leaf clips are widely used for rapid in situ leaf N status assessment of a wide range 672 

of crops (e.g., rice, maize, wheat, cotton) (Cerovic et al., 2012, Bullock and Anderson, 1998, Wood 673 

et al., 1992b, Wood et al., 1992a) and also various different hardwood species (Netto et al., 2005, 674 

Chang and Robison, 2003, Cerovic et al., 2012). Nevertheless, it has been demonstrated that 675 

chlorophyll meter readings across species, varieties, cultivation practices, and growing stages vary 676 

according to genetic and environmental factors and have limited sensitivity to high Cab values, 677 

thereby limiting the in situ assessment of leaf N (Houborg et al., 2007, Xiong et al., 2015, Cerovic 678 

et al., 2015). 679 

Numerous studies have described different kinds of spectroscopic estimation of N using several 680 

indices calculated from reflectance, particularly focusing on the visible and near-infrared (VNIR) 681 

spectral domain. Close-range active spectral sensors are flexible in varying illumination conditions 682 
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because they are equipped with light-emitting components which provide radiation in specific 683 

wavebands (Hatfield et al., 2008). For example, Crop Circle (Holland Scientific Inc., Lincoln, 684 

Nebraska) and GreenSeeker (NTech Industries Inc., Ukiah, California) can determine green 685 

biomass and nitrogen uptake by detecting reflection in the VIS and NIR spectral regions. The N-686 

Sensor ALS® (YARA International, ASA, Dulmen, Germany) detects canopy reflectance by 687 

flashing a xenon light source in the red-edge (730 nm) and NIR (760 nm) (Erdle et al., 2011) 688 

spectral regions. These field instruments provide simple canopy spectral ratios or indices from 689 

specific spectral bands and can be installed on vehicles used for routine management. However, 690 

the saturation occurs as a result of the biomass increase (Muñoz-Huerta et al., 2013).  691 

As an alternative to active sensors with spectral limitations, passive sensors (i.e., optical imagers 692 

or spectral radiometers) have long been advocated as a useful means of characterizing spatial 693 

variability in farm fields (Bhatti et al., 1991). Due to strong chlorophyll absorption in the visible 694 

and red-edge regions (Gitelson and Merzlyak, 1994), field spectrometers like the FieldSpec 695 

(Analytical Spectral Devices, Boulder, CO, USA) and airborne imagers have made it possible to 696 

estimate N content via canopy reflectance. The estimation of leaf N is typically based on empirical 697 

relationships based on plant structure and Cab content, which can be characterized using vegetation 698 

indices derived from VNIR spectroscopy in a simple, speedy, and straightforward way. As 699 

indicators of plant canopy structure, Normalized Difference Vegetation Index (NDVI) (Rouse et 700 

al., 1974) and its variants (e.g., RDVI, Green NDVI) (Roujean and Breon, 1995, Gitelson et al., 701 

1996) are most commonly used because chlorophyll strongly absorbs visible light while the cell 702 

structure of leaves and the entire canopy scattering strongly reflects near-infrared radiation. 703 

However, the indirect link between vegetation density and leaf N often results in an ineffective 704 

response to leaf N variability, particularly when plants reach a certain height and density 705 
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(Thenkabail et al., 2000, Scotford and Miller, 2003). Chlorophyll indices using the red-edge 706 

spectral regions, which have much lower chlorophyll absorption, have thus been proposed and 707 

successfully applied to determination of chlorophyll content (Gitelson and Merzlyak, 1994, 708 

Haboudane et al., 2002). An investigation by Schlemmer et al. (2013) revealed a strong linear 709 

relationship between the red-edge chlorophyll index ((NIR/Red Edge)-1) and nitrogen content. 710 

Chlorophyll a+b alone, however, is not sufficient to estimate nitrogen under nitrogen-rich 711 

conditions because the chlorophyll-nitrogen relationship saturates at high nitrogen levels (Uddling 712 

et al., 2007, Padilla et al., 2018) and shows a less robust correlation when other factors are taken 713 

into account, such as leaf thickness, species, canopy shape, nutrient status, and water content 714 

(Hatfield et al., 2008). Moreover, the combination of chlorophyll and structural index is found to 715 

perform better to assess leaf N, such as with TCARI/OSAVI (Haboudane et al., 2002) and CCCI 716 

(Fitzgerald et al., 2010). Furthermore, indices calculated from the SWIR region add additional 717 

capacity to determine crop water status and protein content, such as with TCARI1510/OSAVI1510 718 

(Herrmann et al., 2010). However, determining protein and nitrogen content independently of 719 

water is difficult because protein absorptions are very shallow and are largely obscured by water 720 

absorption features (Hank et al., 2019b). Despite that, although spectral indices are functional and 721 

widely accepted, they still encounter problems with transferability across different crop types and 722 

are unstable across growth stages and varying environmental conditions (Li et al., 2014, Basso et 723 

al., 2004, Li et al., 2010). 724 

Additionally, carotenoids play a role in the light-harvesting complex of the photosystem, which 725 

plays a role in non-photochemical quenching. Xanthophylls, a specific group of carotenoids, are 726 

known to be associated with these light-harvesting complexes (Siefermann-Harms, 1985). The 727 

xanthophyll cycle refers to the process of interconversion of three specific xanthophylls – 728 
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violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) – in the chloroplast membrane of higher 729 

plants and algae (Yamamoto, 1979). During this cycle, excessive levels of light that cannot be used 730 

for photosynthesis induce the enzymatic de-epoxidation of V, resulting in the rapid conversion of 731 

this pool of energy into A and Z. In contrast, limiting light levels or adapting photosynthetic 732 

membranes to darkness reverses the process, resulting in the reformation of V via the epoxidation 733 

of Z and A (Fig. 1.4). In this context, certain vegetation indices based on the xanthophyll cycle 734 

and carotenoids are also used to assess nutrients, among them the PRI (photochemical reflectance 735 

index) families (Patel et al., 2021, Strachan et al., 2002, Peñuelas et al., 1994, Wang et al., 2017, 736 

Moran et al., 2000), including PRI, (Gamon et al., 1992), PRIm1 and PRIm4 (Hernández-Clemente 737 

et al., 2011), PRI515 (Hernández-Clemente et al., 2011), PRIn (Zarco-Tejada et al., 2013b), and 738 

PRI∙CI (Garrity et al., 2011). However, these indices are associated with light utilization efficiency 739 

but are only indirectly associated with nutrients. 740 

 

Fig. 1.4. Representation of xanthophyll cycles in photosynthetic microbes. Violaxanthin-741 

antheraxanthin-zeaxanthin (VAZ) cycles are modulated by light conditions (modified based on  742 

Saini et al. (2019)). 743 

 



 
18  

1.6 Plant traits retrieval from radiative transfer models 744 

In empirical approaches, the relationship between nutrients and indices can be greatly influenced 745 

by a number of leaf- and canopy-level factors. Because nutrients and leaf physiological traits are 746 

closely related in the context of plant photosynthesis, other studies using radiative transfer models 747 

(RTM) have explored the retrieval of Cab contents, as well as other leaf and canopy traits (e.g., 748 

carotenoid (Ccar), anthocyanins (Anth), dry matter (Cdm), water content (Cw), and leaf area index 749 

(LAI)) (Baret et al., 2007, Jay et al., 2017, Kimm et al., 2020, Wang et al., 2021, Zarco-Tejada et 750 

al., 2004, Clevers and Kooistra, 2011). With RTMs, it is possible to simulate the absorption and 751 

scattering of light within vegetation canopies while also accounting for leaf biochemical 752 

constituents and canopy structural properties (Jacquemoud et al., 2009), enabling a better 753 

understanding of how light interacts with plants at both leaf and canopy level. In this physical 754 

approach, leaf optical property models are combined with canopy bidirectional reflectance models 755 

like PROSAIL (Verhoef, 1984).  756 

The simpler approximations of canopy RTMs have been developed from one-dimensional models, 757 

such as Scattering by Arbitrary Inclined Leaves (SAIL), which accounts for canopy scattering and 758 

extinction coefficients by using a 2-D turbid medium with horizontal and vertical leaf facets. 759 

Following this, several versions have been developed, including SAILH (Verhoef, 1998) with the 760 

foliage hotspot effects incorporated, and 4SAIL (Verhoef et al., 2007), which provides numerically 761 

robust and speed-optimized simulations of thermal-infrared radiation scattering and emission in a 762 

geometrically homogeneous canopy with thermodynamic heterogeneity. This approach is more 763 

robust and transferable than index-based empirical models. Consequently, it is widely used for 764 

retrieving biochemical constituents with remote sensing data (Le Maire et al., 2004). From local 765 

to regional spatial scales, these models have been extensively used to simulate homogeneous 766 
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canopies, such as wheat (Camino et al., 2018b, Zhang et al., 2016, Danner et al., 2017), corn 767 

(Haboudane et al., 2002), rice (Wan et al., 2021, Darvishzadeh et al., 2012), soybean (Verrelst et 768 

al., 2016), potato (Clevers and Kooistra, 2011, Botha et al., 2007), maize (Chakhvashvili et al., 769 

2022, Koetz et al., 2005), sugar beet (Baret et al., 1995, Jay et al., 2017, Richter et al., 2009), and 770 

even closed forest canopies (Zarco-Tejada et al., 2001). Further, other studies have demonstrated 771 

that these models could also be inverted for discontinuous tree canopy/vineyard attribution with 772 

enough image spatial resolution for the extraction of pure canopy vegetation pixels (Suarez et al., 773 

2021b, Camino et al., 2021, Suarez et al., 2021a).  774 

In contrast, more complex approximations focus on 3-D ray-tracing models incorporating three-775 

dimensional structures simulating discontinuous and heterogeneous canopy structures (North, 776 

1996, Gastellu-Etchegorry et al., 1996, Li et al., 1995). As an example, the Discrete Anisotropic 777 

Radiative Transfer (DART) model simulates radiative transfer in 3-D scenes that contain a variety 778 

of landscape features by dividing the scene into a rectangular cell matrix. In addition to topography 779 

and hot spots, leaf specularity and first-order polarization mechanisms are also modeled (Gastellu-780 

Etchegorry et al., 1996). The 3-D Forest Light Interaction Model (FLIGHT) is another example. 781 

Based on the Monte Carlo ray-tracing (MCRT) method, it simulates bidirectional reflectance in 782 

forest scenes using geometric envelopes that constrain the 3-D distribution of foliage elements 783 

(North, 1996). The use of these 3-D RTMs has been proven for heterogeneous canopies (Janoutová 784 

et al., 2021, Banskota et al., 2015, Hernández-Clemente et al., 2017, Zarco-Tejada et al., 2018), 785 

but they require complex input variables and heavy computational load (Gastellu-Etchegorry et 786 

al., 2017, Miraglio et al., 2019, Verrelst et al., 2019). Hence, the feasibility and cost-effectiveness 787 

of complex 3-D RTMs with coarse spatial resolution imagery needs to be considered. 788 
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Inversion algorithms are often used to retrieve plant traits from reflectance spectra from RTM, and 789 

then regression models are developed using these traits to estimate nutrient content (Camino et al., 790 

2018a, Nevalainen et al., 2013). Although this approach is promising, it has been validated mainly 791 

on relatively uniform and row-structured crops that grow into full canopy closure, such as wheat 792 

(Camino et al., 2018a), potato (Clevers and Kooistra, 2011, Botha et al., 2007), sugar beet (Jay et 793 

al., 2017), and meadow (Clevers and Kooistra, 2011). As a result of extensive structural effects 794 

caused by clumping, crown shadows, and soil background, these model inversion methods present 795 

considerable challenges when applied to tree crowns (Camino et al., 2018c), resulting in a lack of 796 

robust studies on orchard trees. 797 

 

1.7 Chlorophyll fluorescence 798 

Chlorophyll fluorescence is a re-emission of light by chlorophyll molecules during their transition 799 

from an excited state to a non-excited state (Rosenqvist and van Kooten, 2003). Chlorophyll 800 

fluorescence is generally considered to be a direct indicator of electron transport rates and thus of 801 

photosynthetic activity (Genty et al., 1989). Plants under different types of stress require different 802 

amounts of light energy for photosynthetic quantum conversion, chlorophyll fluorescence, and 803 

heat production. In the absence of stress, the light energy is effectively used in plant 804 

photochemistry, thus reducing the fluorescence yield. Considering that the energy is dissipated in 805 

a short period of time, de-excitation is primarily accomplished through three competing processes 806 

– photochemistry, chlorophyll fluorescence (only 2-3%), and non-radiative thermal dissipation 807 

(Krause and Weis, 1991, Maxwell and Johnson, 2000). Due to the interdependence of these three 808 

pathways, any increase in the efficiency of one will result in a decrease in the efficiency of the 809 

other two. These competing processes change as a result of physiological and environmental 810 
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changes. Consequently, recent years have seen an increase in the use of chlorophyll fluorescence 811 

as a proxy for monitoring crop photosynthesis status. With the aid of remote sensing methods, we 812 

can determine changes in the efficiency of photochemistry and thermal dissipation by measuring 813 

chlorophyll fluorescence emissions (Maxwell and Johnson, 2000). Furthermore, the maximum 814 

carboxylation rate (Vcmax) has been shown to be highly correlated with SIF (Rascher et al., 2015) 815 

via its strong connections to chlorophyll content and photosynthetic activity (Walker et al., 2014, 816 

Camino et al., 2019). 817 

In the field, it has been proven that pulse amplitude modulation (PAM) fluorometers, along with 818 

saturation pulse methods, can be used for leaf-level measurement (Schreiber et al., 1986, Schreiber, 819 

2004). For example, the Li-Cor device (Li-Cor, Lincoln, NE, USA), PAM-2500 (Heinz Walz 820 

GmbH, Effeltrich, Germany), and FluorPen (Photon Systems Instruments, Brno, Czech Republic) 821 

are commonly used leaf-level measurement instruments that require active manipulation of the 822 

light environment. Scaling from leaf level to canopy level, however, presents many challenges. 823 

Rather than simply applying existing models to a large area, it is necessary to account for all 824 

photosynthetic processes, including light absorption, emission, scattering, and reabsorption by the 825 

canopy (Porcar-Castell et al., 2014). In the past few decades, significant progress has been made 826 

since chlorophyll fluorescence was first demonstrated experimentally and analytically, with 827 

airborne hyperspectral data and model simulations as a signal superimposed upon apparent 828 

reflectance spectra in leaves and canopies (Zarco-Tejada et al., 2000a, Zarco-Tejada et al., 2000b). 829 

A number of advances have been made since then regarding sensor technology, retrieval 830 

algorithms, and modelling of leaf and canopy fluorescence. A full recent review on this topic can 831 

be found in Mohammed et al. (2019). 832 
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The typical method for retrieving SIF from passive sensors (i.e., hyperspectral imagery) is based 833 

on the Fraunhofer Line Depth (FLD) principle (Plascyk and Gabriel, 1975). In conceptual terms, 834 

FLD approaches use the different relative contributions of fluorescence to the upwelling radiance 835 

and the downwelling irradiance spectra, inside and outside of an absorption feature. As a result of 836 

the implementation of narrow-band hyperspectral sensors (generally with bandwidths less than 10 837 

nm) on airborne platforms, SIF occurs in the 650-850 nm range with two peaks in the red (centered 838 

around 685 nm) and far-red regions (centered around 740nm), which can be quantified within the 839 

O2 absorption features (Fig. 1.5). Due to the greater reabsorption of red fluorescence by 840 

chlorophyll during the transit of fluorescence to the leaf surface, the red peak typically appears 841 

lower than the far-red peak of healthy green leaves (Mohammed et al., 2019). In addition, the O2-842 

B absorption features at 687 nm are much shallower and narrower than O2-A absorption features 843 

at 760 nm, adding additional challenges for detecting chlorophyll fluorescence signal. In addition, 844 

SIF is dynamic and highly sensitive to a range of environmental factors, including atmospheric 845 

conditions, irradiance, structural characteristics, stress effects, and light absorption by chlorophyll 846 

(Buschmann, 2007). Due to the weak signal of SIF, all these factors contribute to the complexity 847 

of the retrieval and interpretation of SIF data.  848 

 
Fig. 1.5. At the top of the canopy, the total upwelling radiance (orange) and solar-induced 849 

fluorescence (SIF) spectra (blue) were collected in the range of 650-800 nm, with two oxygen 850 

absorption features marked with grey rectangles. 851 
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Since chlorophyll fluorescence emission is closely connected to photosynthetic status and is 852 

sensitive to plant stress (e.g., water, heat, biotic stresses) (Krause and Weis, 1991, Baker, 2008, 853 

Zarco-Tejada et al., 2013a, Camino et al., 2019, Mohammed et al., 2019, Lang et al., 1996), SIF 854 

has been used to detect nutrient deficiency in numerous studies (Tremblay et al., 2012, Schächtl 855 

et al., 2005). In a study conducted by Wei et al. (2016), it was shown that nitrogen has a significant 856 

impact on photosynthetic rate and thus on leaf fluorescence emission. The relationship is based on 857 

the fact that chlorophyll fluorescence emissions are dependent on chlorophyll concentration and 858 

PSI and PSII efficiency (Lichtenthaler et al., 1996). Lu and Zhang (2000) demonstrated that 859 

nitrogen deficiency affects PSII photochemistry by reducing electron transport quantum yield and 860 

photochemical efficiency, thereby decreasing the net assimilation rate. Tremblay et al. (2012) 861 

investigated the use of SIF data to improve nitrogen quantification. Camino et al. (2018a) 862 

demonstrated the correlation between airborne-quantified chlorophyll fluorescence and nitrogen 863 

content in wheat. More importantly, the accuracy of nitrogen estimates for wheat improved 864 

significantly, yielding r2 = 0.93 when SIF was added to the model based on the leaf biochemistry 865 

identified by RTM inversion. However, these results have only been demonstrated in 866 

homogeneous crops. It is therefore necessary to further investigate the contributions of SIF when 867 

explaining the variability of N and other nutrients in complex vegetation structures, such as fruit 868 

orchards. Besides N levels, Carstensen et al. (2019) demonstrated that chlorophyll fluorescence 869 

transients also allow the detection of latent P deficiency, crucial so that P deficiency can be 870 

speedily remediated to restore plant growth and development. This study was in agreement with 871 

those by Carstensen et al. (2018) and Goltsev et al. (2016) in demonstrating that chlorophyll 872 

fluorescence is a valuable proxy for P deficiency. 873 
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1.8 Spaceborne platforms for assessing leaf nutrients 874 

On a regional or global scale, satellite remote sensing technologies are becoming increasingly 875 

significant tools supporting plant monitoring and management in a spatially, temporally, and cost-876 

effective manner. A number of satellites equipped with multispectral imaging systems, such as 877 

Landsat, Sentinel, RapidEye, QuickBird, GeoEye, Worldview-2, and SPOT, have been used to 878 

assess chlorophyll and nutrient status based on reflectance indices and red-edge spectral band data 879 

(Ali et al., 2016, Bausch et al., 2008, Wong and He, 2013). In addition, two imaging spectrometers 880 

have been in orbit as demonstrations for nutrient status assessments – Hyperion (220 contiguous 881 

spectral bands in VIS-SWIR range with a 30-m spatial resolution) onboard NASA's Earth 882 

Observing-1 (EO-1) satellite (active between November 2000 and March 2017) (Datt et al., 2003, 883 

Abdel-Rahman et al., 2013, Sims et al., 2013, Townsend et al., 2003), and the Compact High 884 

Resolution Imaging Spectrometer (CHRIS, 19 spectral bands in VNIR range with an 18-m spatial 885 

resolution, operating between October 2001 and December 2022) onboard ESA's Proba-1 satellite 886 

(Castaldi et al., 2016, Huber et al., 2007, Vincini et al., 2006, Huber et al., 2010). A study 887 

conducted by Marshall and Thenkabail (2015) compared N uptake calculated from multispectral 888 

and crop biomass estimates with narrowband indices from EO-1 Hyperion. Crop biomass was 889 

derived using spectral indices from IKONOS, GeoEye-1, Landsat ETM+, MODIS, and 890 

WorldView-2. The performance of hyperspectral narrowband indices was found to explain a 5-891 

31% greater variability of biomass than broadband indices from multispectral sensors could, 892 

emphasizing the need to use satellite data with higher spectral resolution. These studies 893 

demonstrate that imaging spectroscopy is a necessary tool for monitoring different plant traits 894 

throughout phenological stages. 895 
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The technology for spaceborne sensors is advancing rapidly and a number of narrow-band 896 

hyperspectral sensors are being developed for use on spaceborne systems (Fig. 1.6). For example, 897 

the PRecursore IperSpettrale della Missione Applicativa (PRISMA, with 250 spectral bands, 898 

launched in March 2019) (Labate et al., 2009), and the Environmental Mapping and Analysis 899 

Program (EnMAP, with 228 spectral bands, launched in April 2022) (Guanter et al., 2015), are 900 

two of the most recent spaceborne hyperspectral sensors launched in the VIS-SWIR range with a 901 

30-m spatial resolution. In addition, the new-generation German Aerospace Center (DLR) Earth 902 

Sensing Imaging Spectrometer (DESIS), which has been operating onboard the International 903 

Space Station (ISS) since August 2018, collects hyperspectral imagery over 235 narrow spectral 904 

bands in the VNIR range at a spatial resolution of 30 m (Krutz et al., 2019, Eckardt et al., 2015). 905 

There are several more missions under development, including the Hyperspectral Infrared Imager 906 

(HysplRI, with a 150-km swath) (Team, 2018) onboard NASA’s EO-1, now part of NASA’s 907 

Surface Biology and Geology (SBG) mission, as well as the Copernicus Hyperspectral Imaging 908 

Mission for the Environment (CHIME, with 20-30 m spatial resolution) satellite (Rast et al., 2021) 909 

of the European Space Agency (ESA). A satellite developed specifically for detecting chlorophyll 910 

fluorescence is the ESA’s high-spectral-resolution (around 0.3 nm) Fluorescence Explorer FLEX 911 

(Drusch et al., 2016), which covers the spectral range between 500 and 780 nm. Using HysplRI 912 

(SBG) mission and EnMAP within the VIS-SWIR spectral range, Pellissier et al. (2015) (Berger 913 

et al., 2020) have successfully estimated N concentration in homogeneous crops. It should be noted, 914 

however, that spaceborne imagery often has limited spatial and/or spectral resolution. 915 

Consequently, it is necessary to validate the performance of these spaceborne sensors in assessing 916 

nutrients, especially in heterogeneous orchards, in terms of a spatial and spectral resolution trade-917 

off.  918 
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Fig. 1.6. Spaceborne imaging spectrometers recently launched or planned/approved (Rast and 919 

Painter, 2019). 920 

 

It is noteworthy that breakthroughs in understanding the potential contribution of chlorophyll 921 

fluorescence, as well as in SIF retrieval methodologies, have enabled satellite-based SIF detection 922 

for global monitoring (Mohammed et al., 2019). SIF was first identified globally in the far-red 923 

wavelengths with high spectral resolution spectrometers (i.e., 0.025 nm) by the Greenhouse gasses 924 

Observing SATellite (GOSAT) (Joiner et al. (2011)) at a 10.5-km spatial resolution with a revisit 925 

time of 3 days. Since then, retrievals have also been made possible by satellites with lower spectral 926 

resolution, such as the Global Ozone Experiment 2 (GOME-2, Joiner et al. (2013)) at a 0.5-nm 927 

FWHM and the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY 928 

(SCIAMACHY, Joiner et al. (2012)) at the FWHM of 0.2-0.5 nm. In addition, there are more 929 

recent instruments with higher spatial resolution, such as the Orbiting Carbon Observatory 2 930 

(OCO-2, Frankenberg et al. (2014)) and the Chinese Carbon Dioxide Observation Satellite 931 

Mission (TanSat) (Du et al. (2018)), which provide spatial resolution of approximately two 932 

kilometers and spectral resolution of 0.04 nm. With the increasing attraction of SIF and sensor 933 

capability development, a specific satellite mission designed for SIF measurement, FLEX, is 934 
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expected to be launched in 2025 with a single payload, the FluORescence Imaging Spectrometer 935 

(FLORIS), which has a 0.3 km × 0.3 km footprint, 0.3-2 nm FWHM, and 27-day repetition time 936 

(Drusch et al., 2016). Nevertheless, the spatial resolution of these satellite sensors is not optimal 937 

for precision agriculture and nutrient assessment of crops. Fig. 1.7 illustrates past, present, and 938 

future missions based on spatial and temporal resolution (specifications from Mohammed et al. 939 

(2019)).  940 

 

Fig. 1.7. Observations of solar-induced chlorophyll fluorescence (SIF) made by past missions 941 

(gray), current missions (pink), and future missions (light blue). The font colors distinguish 942 

geostationary (green) from low-earth orbit (black) missions. The dashed-line boxes indicate the 943 

spatial and temporal resolution of value-added SIF products (purple) (Sun et al., 2023). ‘p.’ 944 

denotes present. 945 

 

1.9 Objectives and thesis structure 946 

1.9.1 Research objectives 947 

According to the literature review, most studies have concentrated on homogenous and dense crops 948 

(e.g., wheat, maize) for nitrogen estimation, using vegetation indices, biochemistry quantification 949 
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from RTMs, and more recently SIF. It should be noted, however, that methods of estimating N 950 

using chlorophyll as a proxy for nitrogen content are strongly affected by the saturation of spectral 951 

indices at high N levels, as well as by canopy structure, varying leaf densities, and mixtures of 952 

sunlit and shaded canopy and soil background conditions (Camino et al., 2018c). These effects are 953 

particularly evident in heterogeneous tree orchards, where the tree crowns’ structural heterogeneity 954 

is a significant factor limiting the transferability of algorithms within and across tree species. In 955 

addition, there are large physiological differences between orchard trees and annual crops, and it 956 

is difficult to apply such methods across an extremely wide range of plant species. On the other 957 

hand, other macro- and micro-nutrients have been less thoroughly studied. Furthermore, at the 958 

outer space level, the global visibility of satellite images is negatively impacted by their spectral 959 

and spatial resolution, so it would be beneficial to assess the proposed methods for larger-scale 960 

application and determine the significance of spectral and spatial resolution for N assessment. In 961 

particular, the following objectives need to be addressed regarding discontinuous tree-structured 962 

orchards: 963 

1. To investigate the links of chlorophyll fluorescence and plant pigments with the main 964 

macro- and micro-nutrients at the leaf and canopy levels in almond orchards; 965 

2. To study biochemistry estimation using radiative transfer models (i.e., Fluspect-Cx and 966 

4SAIL) by implementing inversion algorithms in almond orchards; 967 

3. To assess the contribution of tree-level SIF quantification to explaining leaf N variability 968 

observed at the orchard level with airborne hyperspectral imagery; 969 

4. To validate the accuracy and robustness of the proposed modeling methods for leaf N 970 

quantification in large almond orchards using the DESIS hyperspectral imager onboard the 971 

International Space Station (ISS); 972 
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5. To evaluate the effects of the spectral and spatial resolution of hyperspectral and 973 

multispectral sensors for the assessment of leaf N. 974 

 

1.9.2 Research questions 975 

The objectives of this research are to investigate robust methods for an assessment of nutrients and 976 

to develop algorithms for retrieving leaf nitrogen concentration from high-resolution airborne and 977 

spaceborne sensors in almond orchards by using SIF and leaf plant traits derived from physical 978 

models. The following questions will be addressed in accordance with the research objectives: 979 

1. What are the robust proxies available for explaining nutrient (especially N, P, and K) 980 

variations in almond orchards? 981 

2. What is the performance of the coupled Fluspect-Cx and 4SAIL models in retrieving 982 

biochemical constituents? 983 

3. What is the performance of SIF quantification from high-resolution hyperspectral imagery, 984 

and how does it contribute to the assessment of leaf N in almond trees? 985 

4. How effective is the DESIS imaging spectrometer onboard ISS for deriving plant traits and 986 

quantifying SIF for leaf N prediction? 987 

5. How does DESIS compare to airborne hyperspectral and Sentinel-2 multispectral imagery 988 

in terms of spectral and spatial resolution for the assessment of leaf N? 989 
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1.9.3 Thesis structure 990 

This doctoral thesis is presented in chapters that address the objectives previously described. Each 991 

of the main chapters (Chapters 2, 3, and 4) has been constructed as a stand-alone research article, 992 

and their connections are illustrated in Fig. 1.8. 993 

Chapter 2 examines Objective 1 for different macro- and micro-nutrients and compares the 994 

performance of different spectral traits at the leaf level (field measurements) and the canopy level 995 

(estimation of traits based on RTM and SIF quantification from airborne hyperspectral imagery) 996 

over two growing seasons.  997 

Chapter 3 addresses Objectives 2 and 3, focusing on the estimation of N based on tree crowns 998 

using RTM-derived plant traits and SIF quantified from high-resolution airborne hyperspectral 999 

imagery. In this chapter, we examine how different spectral traits (e.g., Cab, Ccar, Anth, Cx, Cdm, 1000 

SIF, LAI) contributed to N assessment over the course of two years with different fertigation 1001 

applications. 1002 

Chapter 4 addresses Objectives 4 and 5, applying methods for large-scale estimation, with the 1003 

newly developed sensor DESIS onboard the International Space Station, which account for the 1004 

mixed features of canopy, shadow, and soil background. In this chapter, space-based spectral traits 1005 

are compared with those at airborne level. Furthermore, Sentinel-2, an open-source sensor with a 1006 

medium spatial resolution and low spectral resolution, is also examined as a comparison for 1007 

operational purposes. 1008 

Chapter 5 summarizes the key findings of each chapter and the overall conclusion of this doctoral 1009 

thesis. Additionally, recommendations are made for future research. 1010 
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Fig. 1.8. The flow between the main chapters demonstrates how the research development of this 1011 

doctoral thesis is motivated by the key connections. 1012 
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Abstract 1662 

Macro- and micro-nutrients are essential for plant functioning and to ensure crop growth, high 1663 

yields, and quality fruit. Having a comprehensive understanding of nutrient status within the crop 1664 

is essential for making effective fertilizer management decisions. Existing studies have 1665 

demonstrated the feasibility of remote sensing techniques for nutrient assessment, although most 1666 

of them have a particular focus on nitrogen status. The methods generally used are chlorophyll-1667 

sensitive indices, biochemical constituents, and fluorescence (SIF) derived from visible and near-1668 

infrared spectral domains. However, fewer studies have assessed other macro- and micro-nutrients 1669 

which are critical for the growth and optimal management of crops. This study investigated the 1670 

sensitivity of vegetation indices, plant traits, and fluorescence emission to explain the variability 1671 

of 12 macro- and micro-nutrients, as well as 10 nutrient ratios at leaf and canopy levels, throughout 1672 

two consecutive growing seasons. Results showed that chlorophyll fluorescence was a robust 1673 

indicator of the three primary macro-nutrients, N, P, and K, at both leaf and canopy levels across 1674 

both years, yielding r2 = 0.74 (p-values < 0.005) for both leaf steady-state measurements and 1675 

canopy SIF of leaf N for the two years of data. In addition, the biochemical constituents derived 1676 

by radiative transfer modeling demonstrated strong correlations with the primary macro-nutrients 1677 

for both years, whereas the vegetation indices exhibited generally weaker relationships with 1678 

nutrients. 1679 

 

Keywords: Chlorophyll Fluorescence, SIF, Macro-nutrient, Micro-nutrient, Chlorophyll, 1680 

Hyperspectral, Nitrogen (N), Phosphorus (P), Potassium (K), Almond   1681 
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2.1 Introduction 1682 

Plant growth and development are heavily dependent on essential nutrients which contribute to 1683 

different aspects of plant development and functioning at different phenological stages (Aftab and 1684 

Hakeem, 2020, Roy et al., 2006). Providing optimal and balanced nutrient inputs is becoming 1685 

increasingly important to enhance the quality and yield of almonds in an environmentally friendly, 1686 

sustainable, and productive manner (Roy et al., 2006, Muhammad et al., 2015). Thus fine-tuned, 1687 

efficient, and sustainable fertilizer applications are critical to ensure optimum yields and quality 1688 

while minimizing the impact on the environment. 1689 

According to plant uptake, nutrients are classified as: i) macro-nutrients, which are required in 1690 

large quantities by plants and living organisms as substances essential for plant cell and tissue 1691 

development, including carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), 1692 

potassium (K), sulfur (S), calcium (Ca), and magnesium (Mg); and ii) micro-nutrients, which are 1693 

required in lower quantities, like iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and boron (B) 1694 

(Maathuis, 2009, George et al., 2008). Among all nutrients, N, P, and K are the primary macro-1695 

nutrients and they are predominantly provided via fertilizer applications during active plant growth, 1696 

aiming to achieve high photosynthetic rates. N is a crucial constituent of proteins and contributes 1697 

to the formation of chlorophyll. P is essential for the growth of early roots, cell division, and the 1698 

development of seed and fruit. K plays an important role in regulating stomatal opening and closing, 1699 

which is crucial for the water balance of plants (Roy et al., 2006). Micro-nutrients also play 1700 

important roles in plant growth and functioning, even when they are less abundant (Sharma, 2006). 1701 

For instance, Mn plays a role in splitting the water molecule during photosynthesis. In addition to 1702 

controlling membrane integrity and cell-wall development, B is associated with pollen tube growth, 1703 

which affects seed and fruit set and thus yield. More specifically to almonds, B application was 1704 



 
48  

found to increase nut weight and number, and protein content. S, Cu, Fe, and Mn also assist in the 1705 

formation of chlorophyll along with N  (Roy et al., 2006).  1706 

A number of studies have provided evidence of interactions between nutrient elements and stressed 1707 

the importance of an optimal balance of internal reserves (Bloom et al., 1985, Krouk and Kiba, 1708 

2020, Kumar et al., 2021). Due to the large number of potential nutrient combinations, monitoring 1709 

changes in nutrient status is crucial to maintain a balance between different elements regarding 1710 

nutrient intake and usability under changing conditions throughout the phenological stages 1711 

(Chapin et al., 1987). For instance, many observations suggest that N affects P uptake positively 1712 

(Grunes, 1959, Smith and Jackson, 1987) and that P starvation affects nitrate assimilation and 1713 

uptake negatively (Gniazdowska and Rychter, 2000, De Magalhães et al., 1998, Rufty Jr et al., 1714 

1990). In the light of such interactions, the N/P ratio has been used to monitor the N-P balance in 1715 

order to coordinate the application of N and P for growth optimization (Koerselman and Meuleman, 1716 

1996, McGroddy et al., 2004, Güsewell, 2004, Tessier and Raynal, 2003). Consequently, an 1717 

understanding of nutrient dynamics in almonds is essential, allowing growers to diagnose and 1718 

prevent deficiencies throughout the growing season. 1719 

Traditionally, leaf analysis has been considered a practical approach to evaluating nutrient status 1720 

and determining the best fertilization strategy (Smith, 1962, Ulrich, 1952, Embleton et al., 1973, 1721 

Jones and Janick, 1984). As a non-destructive, quicker, and cost-effective tool, remote sensing 1722 

(RS) techniques employing spectrometers are capable of detecting photosynthesis-related proxies 1723 

and stress indicators (Menesatti et al., 2010, Prananto et al., 2021). Current RS studies on leaf 1724 

nutrient monitoring in almonds have focused primarily on leaf N estimation (Saa and Brown, 2014, 1725 

Wang et al., 2022, Wang et al., 2021, Saa et al., 2014, Zarate-Valdez et al., 2015, O'Connell et al., 1726 

2014, Morais et al., 2020) due to it being needed in large quantities. Other macro- and micro-1727 
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nutrients seem to be difficult to assess and consequently only very few attempts have been made 1728 

to characterize and monitor them together. Different macro-nutrients (e.g., N, P, K, Ca, Mg, and 1729 

S) and micro-nutrients (e.g., Fe, Mn, Cu, and B) have been studied with handheld NIR 1730 

spectrometers at the leaf level (Prananto et al., 2021). At canopy level, RS approaches to macro-1731 

nutrient detection are typically based on chlorophyll-related indicators in the visible and near-1732 

infrared (VNIR) and the short-wave infrared (SWIR) spectral regions via vegetation indices 1733 

derived from specific spectral bands. A few examples are: the Red Edge Chlorophyll Index 1734 

(Gitelson et al., 2005) proposed as a proxy for N; the ratio of reflectance difference index (Li et 1735 

al., 2018) for P; the three band vegetation index (Lu et al., 2020) using both red-edge and SWIR 1736 

for K; and the SWIR ratio index for Ca and Mg (Munyati et al., 2020). In addition, there has been 1737 

an increased interest in searching for other physiological traits and proxies, including a set of leaf 1738 

biochemical constituents and biophysical traits derived by inverting the radiative transfer model 1739 

(RTM), such as carotenoid (Ccar), anthocyanin (Anth), dry matter (Cdm), the parameter of de-1740 

epoxidation state of the xanthophyll cycle (Cx), water content (Cw), and leaf area index (LAI). For 1741 

instance, the leaf margins of plants with P deficiencies were found to have purple discolorations 1742 

due to an increase in the production of Anth (Marschner, 2011). The link between N and Cab and 1743 

other pigments makes this physical method more practical for assessing N levels (Wang et al., 1744 

2015, Camino et al., 2018). Furthermore, solar-induced fluorescence (SIF) has attracted great 1745 

attention due to its strong link with photosynthesis and its usefulness as an indicator of plant stress. 1746 

Using simple image analysis, fluorescence changes can be interpreted by observing the pattern 1747 

differences of leaves with N, P, or K deficiencies between their blue-green fluorescence (BGF), 1748 

their chlorophyll-a fluorescence (ChlF) intensity induced by UV and blue excitations 1749 

(ChlFUV/ChlFBLUE), and their ratio of red and far-red ChlF intensity (RF/FRF) (Cadet and Samson, 1750 
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2011). The use of SIF for N assessment has already been reported in several studies (Cadet and 1751 

Samson, 2011, Wang et al., 2022, Camino et al., 2018).  1752 

The present investigation aimed to analyze the relationships of leaf macro- and micro-nutrient 1753 

concentrations and their ratios with different spectral traits and vegetation indices at the leaf and 1754 

canopy levels across two years, and thus to identify the traits of robust almond trees with better 1755 

predictive capacity.   1756 

 

2.2 Material and methods 1757 

2.2.1 Study area 1758 

This study was conducted in a commercial almond orchard located in Robinvale, situated on the 1759 

south bank of the Murray River in Victoria, Australia, as illustrated in Fig. 2.1b. The orchard was 1760 

monitored at the pre-harvest stage for two consecutive growing seasons in 2019/2020 and 1761 

2020/2021. There was a slight drop in the average maximum temperature for January 2021, 32.6°C, 1762 

compared with that of January 2020, which was 33.2°C. As a result of its mediterranean climate, 1763 

with annual precipitation of approximately 310 mm, this area is well known for high-volume 1764 

production of almonds, olives, grapes etc. The industry statistics for 2019 indicate that 64,416 1765 

tonnes of almonds were produced in Victoria, out of a total of 104,437 tonnes in Australia.  1766 

This almond orchard (Fig. 2.1a), covering about 1240 hectares, is composed of northern and 1767 

southern sites planted on sandy loam soils in 2006 and 2007, respectively. There are 67 blocks 1768 

facing north-south on the northern site and 6 blocks facing east-west on the southern site. Nonpareil 1769 

(1/2 of the rows), Carmel (1/3), and Price (1/6) were planted alternately in groups of six rows (Fig. 1770 

2.1c) at a spacing of 7 m (rows) by 4.4 m (trees). The diameters of the tree crowns typically range 1771 

from 4 to 6.5 m, resulting in a dense cluster rather than a separated canopy between trees. Figs. 1772 
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2.1d and 2.1e show more detail of the almond tree crowns and planting rows. A drip fertigation 1773 

system was used to apply water and nutrients to Nonpareil and Carmel with Price varieties on an 1774 

hourly basis. Macro-nutrients N, P, and K were applied throughout the growing season, while Ca 1775 

and B nutrients were applied only during the bloom and nut growth stages, and S was applied after 1776 

bloom. Fertigation rates were adjusted based on the data observed from the previous growing 1777 

season. In 2019/2020, all varieties were fertigated at the same rate, while in 2020/2021, Carmel 1778 

and Price varieties were fertigated about 10% more than Nonpareil was. Due to these factors, 1779 

Nonpareil was fertigated at 325.6 kg N/ha, 44 kg P/ha, 241.5 kg K/ha, 125.6 kg S/ha, 35.3 kg 1780 

Ca/ha, 3.5 kg B/ha, and 11,465 m3 water/ha in 2019/2020, whereas in 2020/2021 it was applied at 1781 

318.7 kg N/ha, 42.2 kg P/ha, 270.8 kg K/ha, 128 kg S/ha, 35.3 kg Ca/ha, 3.5 kg B/ha, and 12,255 1782 

m3 water/ha.  1783 

 

Fig. 2.1.  a) The area of the 1200-ha almond orchard where the study was conducted. b) The 1784 

location of the study site (magenta pointer) in Victoria, Australia. c) The landscape and row 1785 

structure of the almond trees in the study area. d)-e) Close-ups of almond trees and the gap between 1786 

rows.   1787 
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2.2.2 Leaf-level data collection  1788 

In situ leaf measurements (Fig. 2.2) were conducted from the same study plots over 2 years. 1789 

Monitoring was carried out on 15 homogeneous plots (presented in the yellow rectangle in Fig. 1790 

2.3) with different degrees of variability, planting ages, and orientations, each consisting of 6 rows 1791 

with 7-8 trees. Four adjacent trees (two Nonpareil and two Carmel) were sampled in each study 1792 

plot. Twenty representative mature sunlit leaves per tree were examined with various handheld 1793 

instruments to assess leaf Cab, anthocyanins (Anth), flavonoid (Flav) content, and nitrogen balance 1794 

index (NBI) measured using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France) (Fig. 2.2a). 1795 

The FluorPen 110 (Fig. 2.2c) and PolyPen RP 410 (Fig. 2.2b) (PSI, Brno, Czech Republic) were 1796 

used to measure leaf steady-state chlorophyll fluorescence (Ft) and leaf reflectance spectrum in 1797 

the VNIR regions, respectively. Based on the average spectrum from each study plot, a number of 1798 

vegetation indices were calculated, including chlorophyll a+b indices, xanthophyll indices, BGR 1799 

indices, and fluorescence reflectance index, as listed in Table 2.1. An additional 20 leaves were 1800 

collected along with the 80 leaves measured in order to increase the weight and size of the sample. 1801 

The 100 leaves in each sample were used to analyze 12 macro- and micro-nutrient concentrations 1802 

in a biochemical laboratory, using Dumas Combustion with a LECO TruMac CNS Macro 1803 

Analyzer (LECO Corporation, MI, USA) and an inductively coupled plasma optical emission 1804 

spectrometer (ICP-OES Optima 8300, Perkin Elmer, USA). The descriptive statistics for leaf 1805 

nutrients and the measured indicators collected over two years were compared and their ranges of 1806 

variation were calculated independently for three quartiles. In addition, the coefficients of 1807 

determination were compared between in situ leaf measurements and 12 nutrient concentrations 1808 

and 10 ratios, following the procedure of Horuz et al. (2013). 1809 
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Fig. 2.2. In situ leaf measurements of: a) leaf chlorophyll (Cab), anthocyanins (Anth), flavonoid 1810 

(Flav) content, and nitrogen balance index (NBI) using a Dualex 4 Scientific sensor; b) leaf 1811 

reflectance spectra in the visible and near-infrared regions with a PolyPen RP 410 instrument; c) 1812 

leaf steady-state chlorophyll fluorescence (Ft) with a FluorPen FP 110 instrument; and d) leaf 1813 

sample collection and leaf measurements of sunlit leaves from the top of the ladder. 1814 

 

2.2.3 Airborne hyperspectral datasets acquisition 1815 

In parallel with the collection of field data for image processing and calibration, airborne 1816 

campaigns were conducted at solar noon under clear skies on 17 February 2020 and 31 January 1817 

2021 prior to harvest. A manned aircraft (Cessna 172R) carrying a hyperspectral line-scanning 1818 

sensor (Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) flew 1819 

at 550 m above ground level (AGL) and collected data from north to east direction. The aircraft 1820 

was operated by the HyperSens Remote Sensing Laboratory, the Airborne Remote Sensing Facility 1821 

of the University of Melbourne. There are 371 spectral bands in the VNIR region covered by the 1822 

hyperspectral imager with a full width at half maximum (FWHM) of 5.8 nm and a spectral 1823 

sampling interval of 1.626 nm. For both years, the hyperspectral imager collected data at 40-cm 1824 

spatial resolution with an angular field of view of 66o and an 8-mm focal length. Each 1825 

hyperspectral flight line was atmospherically corrected using the SMARTS model (Gueymard, 1826 

2001, Gueymard, 1995). At the time of each flight, aerosol optical measurements at 500 nm were 1827 

taken using a Microtops II sunphotometer (Solar Light, PA, USA) connected to a GPS-12 1828 

navigator (Garmin, Olathe, KS, USA). The other input parameters (i.e., air temperature and 1829 
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humidity) were calculated based on the averages of three nearby weather stations located between 1830 

4 and 15 km away. The orthorectification and mosaicking of images were performed using PARGE 1831 

(ReSe Applications Schlapfe, Wil, Switzerland) and ENVI (Boulder, Colorado) software, 1832 

respectively. To verify and correct the resulting image spectrum, reflectance data collected from 1833 

in situ vegetation and soil targets with a FieldSpec Handheld Pro spectrometer (ASD Inc., CO, 1834 

USA) was used. A false color composition of the airborne hyperspectral mosaic captured over the 1835 

almond orchard in 2021 is shown in Fig. 2.3a. 1836 

 

 
Fig. 2.3. a) High-resolution airborne hyperspectral image (color-infrared overview) over the study 1837 

area at 40-cm spatial resolution collected with 371 spectral bands on 31 January 2021. The yellow 1838 

areas represent the locations of the 15 study plots. b) Segmentation of sunlit crown area, the yellow 1839 

rectangle representing an 8-tree × 6-row study plot. c) The reflectance spectra for two tree crowns 1840 

segmented from a study plot. d) The radiance (L, green colors) spectra for two tree crowns and the 1841 

irradiance (E, orange color) spectra for SIF calculation. Crosses indicate the spectral positions of 1842 

the sensor bands. 1843 
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2.2.4 Vegetation indices calculation 1844 

Due to the fine spatial resolution of the airborne hyperspectral imagery, it is possible to 1845 

differentiate between sunlit and shaded canopies and soil background features. This feature 1846 

differentiation was achieved by segmenting tree crowns using Fiji (Abràmoff et al., 2004), 1847 

combining Niblack’s thresholding method (Niblack, 1985) on a NIR band (e.g., 800 nm) and 1848 

Phansalkar’s thresholding method (Phansalkar et al., 2011) on a structural index (e.g., NDVI). The 1849 

segmentation method was applied to each planting block with varying thresholds; an illustration 1850 

of the segmented tree crowns is shown in Fig. 2.3b. The average spectrum of each tree-crown was 1851 

calculated. Fig. 2.3 (c & d) shows an example of the reflectance and radiance spectra of two tree 1852 

crowns and the irradiance spectra derived by the airborne sensors. Based on these spectra, a 1853 

number of vegetation indices (full list in Table 2.1) were calculated and further analysis was carried 1854 

out. The coefficients and the determination of these indices and leaf nutrients were then calculated. 1855 
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Table 2.1. Spectral vegetation index equations used in this study. 1856 

Index Equation Reference 

Structural indices 

NDVI (R800  −  R670) (R800 +  R670)⁄   Rouse et al. (1974) 

EVI 2.5 ∙ (R800  −  R670) (R800 +  6 ∙ R670 −  7.5 ∙ R500  +  1)⁄  Liu and Huete (1995) 

OSAVI (1 +  0.16) ∙ (R800  −  R670) (R800 + R670  +  0.16)⁄  Rondeaux et al. (1996) 

Chlorophyll a+b indices 

CI R750 R710⁄  Zarco-Tejada et al. (2001) 

CTRI1 R695 R420⁄  Carter (1994) 

SRPI R430 R680⁄  Penuelas et al. (1995) 

NPQI (R415  −  R435) (R415 +  R435)⁄  Barnes et al. (1992) 

NPCI (R680  −  R430) (R680 +  R430)⁄  Penuelas et al. (1995) 

MCARI ((R700  −  R670) − 0.2 ∙ (R700  −  R550)) ∙ (R700 R670)⁄  Daughtry et al. (2000) 

TCARI 3 ∙ ((R700  −  R670) − 0.2 ∙ (R700  −  R550) ∙ (R700 R670)⁄ ) Haboudane et al. (2002) 

TCARI/OSAVI 
3 ∙ ((R700  −  R670) − 0.2 ∙ (R700  −  R550) ∙ (R700 R670)⁄ )

(1 +  0.16) ∙ (R800  −  R670) (R800 +  R670 +  0.16)⁄  
 Haboudane et al. (2002) 

PSSRb R800 R650⁄  Blackburn (1998) 

DCabCxc 𝑅672/(3 · 𝑅550 · 𝑅708) Datt (1998) 

Xanthophyll indices 

PRI (R570  −  R531) (R570 +  R531)⁄  Gamon et al. (1992) 

PRI515 (R515  −  R531) (R515 +  R531)⁄  Hernández-Clemente et al. (2011) 

PRIm1 (R512  −  R531) (R512 +  R531)⁄  Gamon et al. (1992) 

PRIm4 (𝑅570 − 𝑅531 − 𝑅670)/(𝑅570 + 𝑅531 + 𝑅670) Gamon et al. (1992) 

PRIn 𝑃𝑅𝐼570/(𝑅𝐷𝑉𝐼 · (𝑅700/𝑅670)) Zarco-Tejada et al. (2013) 

PRI∙CI ((R570  −  R531) (R570 +  R531)⁄ ) ∙ ((R760  R700)⁄ − 1) Garrity et al. (2011) 

BGR indices 

B R450 R490⁄  Calderón et al. (2013) 

BGI1 R400 R550⁄  Zarco-Tejada et al. (2005) 

BRI1 R400 R690⁄  Zarco-Tejada et al. (2012) 

Fluorescence reflectance index 

CUR (𝑅675 · 𝑅690)/𝑅683
2  Zarco-Tejada et al. (2000) 

 

2.2.5 Physiological traits retrieval from RTM and SIF quantification from airborne 1857 

hyperspectral imagery 1858 

By inverting the average reflectance spectra in RTMs, plant physiological traits such as 1859 

biochemical constituents and canopy biophysical traits were obtained for each tree-crown. For this 1860 

study, the method was based on the leaf optical properties model Fluspect-Cx (Vilfan et al., 2018) 1861 

coupled with the canopy bidirectional reflectance model 4SAIL (Verhoef et al., 2007), which is 1862 

henceforth referred to as FluSAIL. Following the input parameter ranges provided by Wang et al. 1863 

(2022), a look-up table (LUT) containing 500,000 FluSAIL model simulations was constructed 1864 

using randomly assigned input parameters. With 70%, 15%, and 15% of the LUT samples, training, 1865 
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testing, and validation were performed using the Statistics and Machine Learning Toolbox and the 1866 

Deep Learning Toolbox in MATLAB version R2020a (MathWorks Inc., Natick, MA, USA). 1867 

Using a 10-hidden-layer artificial neural network (ANN) (Hassoun, 1995, Combal et al., 2003), 1868 

the de-epoxidation state of the xanthophyll cycle (Cx) and other typical leaf biochemical 1869 

constituents (i.e., Cab, Ccar, Anth, Cdm), along with canopy structural trait LAI, were identified 1870 

simultaneously. Validation was performed with the forward mode of RTM, using the inverted 1871 

parameters, and the minimum root mean square error (RMSE) between modeled and image spectra 1872 

was used as a cost function for optimal selection.  1873 

SIF quantification was undertaken follow the Fraunhofer line depth (FLD) principle (Plascyk and 1874 

Gabriel, 1975, Plascyk, 1975) based on three spectral bands (3FLD) (Maier et al., 2004). The 1875 

spectral windows for ‘in’ and ‘out’ of the peak irradiance (E) and radiance (L) using an oxygen A-1876 

band in-filling method around 760 nm were compared following Eq. 1. The Ein/Lin ratio 1877 

corresponds to the minima of E/L in the 755-776 region, which was 762 nm in our observation. 1878 

Eout/Lout is the average value of the maximum E/L from the two shoulder regions (i.e., 744-754 nm 1879 

and 770-780 nm), which was the average from 750 nm and 778 nm in our observation. Moreover, 1880 

a non-fluorescence offset was applied to SIF, based on the soil features identified by the airborne 1881 

hyperspectral imagery, to reduce atmospheric and calibration effects (Belwalkar et al., 2022). 1882 

Following this, the inverted plant traits and SIF were assessed using field measurements and the 1883 

coefficients of determination with leaf nutrients were also calculated: 1884 

             𝑆𝐼𝐹 =  (𝐸𝑜𝑢𝑡 · 𝐿𝑖𝑛 − 𝐸𝑖𝑛 · 𝐿𝑜𝑢𝑡)/(𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛)                                                    (1) 1885 
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2.3 Results 1886 

2.3.1 Variability in nutrient concentrations from destructive sampling 1887 

Nutrient concentrations of 12 measured leaf macro- and micro-nutrient elements presented a wide 1888 

range of variability within the study plots and across two growing seasons, as shown in Table 2.2. 1889 

Total C featured the greatest concentration (mean values: 42.9% in 2020, 41.59% in 2021), 1890 

followed by Ca (mean values: 2.37% in 2020, 3.09% in 2021), K (mean values: 2.13% in 2020, 1891 

2.65% in 2021), and N (mean values: 2.07% in 2020, 2.36% in 2021), which were substantially 1892 

higher than Mg (mean values: 0.57% in 2020, 0.66% in 2021), S (mean values: 0.22% in 2020, 1893 

0.24% in 2021), and P (mean values: 0.15% both in 2020 and 2021). Among the micro-nutrients, 1894 

Mn (mean values: 352.57 mg/kg in 2020, 452.25 mg/kg in 2021) and Fe (mean values: 223.37 1895 

mg/kg in 2020, 136.56 mg/kg in 2021) were the most abundant, while the mean values for the rest 1896 

were around 100 mg/kg or less. Generally, the concentrations of nutrients were higher in 2021 than 1897 

in 2020. For example, the median/mean value for 2021 is similar to the maximum value for 2020 1898 

for N, Ca, Zn, and N/P ratio. However, Fe concentrations were much lower in 2021 than in 2020, 1899 

with the maximum concentration in 2021 being lower than the minimum value in 2020, which is 1900 

also reflected in the Fe/Mn ratio.  1901 
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Table 2.2. Descriptive data from the biochemical laboratory analysis of macro- and micro-nutrient 1902 

concentrations and their ratios in almond leaves from the 15 study plots in 2020 and 2021. 1903 

  

Minimum Maximum Median Mean Standard Deviation 

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 

Macro-

nutrient 

concentration 

(%w/w) 

Total Nitrogen (N) 1.80 2.15 2.36 2.69 2.04 2.33 2.07 2.36 0.17 0.16 

Phosphorus (P) 0.13 0.14 0.17 0.18 0.15 0.15 0.15 0.15 0.01 0.01 

Potassium (K) 1.53 1.97 3.05 3.61 1.91 2.52 2.13 2.65 0.50 0.60 

Calcium (Ca) 1.86 2.33 2.88 4.47 2.37 2.92 2.37 3.09 0.31 0.48 

Magnesium (Mg) 0.47 0.57 0.70 0.80 0.56 0.65 0.57 0.66 0.08 0.06 

Sulphur (S) 0.15 0.21 0.28 0.27 0.22 0.25 0.22 0.24 0.04 0.02 

Total Carbon (C) 40.50 40.22 44.50 42.52 43.00 41.65 42.90 41.59 1.02 0.63 

Micro-

nutrient 

concentration 

(10-6%, 
mg/kg) 

Iron (Fe) 176.50 114.87 314.00 157.60 213.50 136.17 223.37 136.56 39.19 15.18 

Manganese (Mn) 182.50 304.87 526.00 689.65 322.50 394.75 352.57 452.25 109.20 125.61 

Zinc (Zn) 64.05 88.55 120.00 170.83 86.65 114.11 89.23 125.56 17.56 26.42 

Copper (Cu) 40.25 45.39 118.80 205.56 67.80 90.14 67.35 90.99 20.83 38.89 

Boron (B) 28.90 32.38 40.25 45.91 32.15 37.47 33.59 38.58 3.45 4.60 

Ratios 

N/P 12.48 13.70 14.81 16.67 13.36 15.66 13.54 15.51 0.70 0.80 

N/K 0.74 0.70 1.27 1.19 1.07 0.93 1.01 0.92 0.21 0.15 

N/(N+P+K) 0.41 0.40 0.54 0.53 0.50 0.47 0.48 0.46 0.05 0.04 

K/Ca 0.53 0.53 1.46 1.55 0.91 0.90 0.93 0.89 0.29 0.30 

K/(Ca+Mg) 0.43 0.45 1.16 1.22 0.72 0.73 0.74 0.73 0.23 0.24 

Ca/Mg 3.62 3.62 5.28 5.62 3.89 4.78 4.19 4.69 0.58 0.53 

Fe/Mn 0.41 0.20 1.04 0.44 0.65 0.31 0.68 0.32 0.18 0.07 

Fe/N (10-6%) 77.41 48.94 149.17 69.81 104.90 57.27 107.82 57.85 17.08 5.24 

Zn/N (10-6%) 29.96 37.99 61.69 66.25 42.20 50.72 43.15 52.81 8.47 7.93 

B/N (10-6%) 13.96 14.46 20.05 18.21 15.85 16.61 16.25 16.31 1.67 1.16 

 

Fig. 2.4 illustrates the ranges of variation and the steady increase of the three quartiles for leaf 1904 

macro- and micro-nutrients in the 15 study plots over two years. There was a significant increase 1905 

in the mean concentrations of macro- and micro-nutrients (Figs. 2.4a-l) for each quartile in 2021 1906 

compared to 2020, except for total C (Fig. 2.4g) and Fe (Fig. 2.4h), whereas leaf P concentration 1907 

(Fig. 2.4b) was quite consistent between the two years. Overall, the variation of each element 1908 

among the three quartiles was reasonable, with a slightly larger variation in 2020 than in 2021. In 1909 

2021, the Q3 class, such as K, Ca, Fe, and Zn, appeared to have a greater range. In contrast to 2020, 1910 

leaf Fe concentrations (mg/kg) decreased significantly with a gradual slope in 2021, leading to the 1911 

same pattern for the Fe/Mn ratio. It is noteworthy that despite the increased N and K concentrations 1912 

(%w/w) in 2021, the N/(N+P+K) ratio (Fig. 2.4m) was higher in 2020 than in 2021, indicating that 1913 

the gain of N was lower than the K concentration in 2021. In contrast, the mean value for each 1914 

quartile of the K/(Ca+Mg) ratio (Fig. 2.4n) remained stable for two years. 1915 
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Fig. 2.4. Ranges of variation for biochemical laboratory-derived leaf macro-nutrients of: a) 1916 

Nitrogen; b) Phosphorus; d) Calcium; e) Magnesium; f) Sulphur; g) Carbon concentration (%w/w); 1917 

and leaf micro-nutrients of: h) Iron; i) Manganese; j) Zinc; k) Copper; l) Boron concentration 1918 

(mg/kg); and nutrient ratios of m) N/(N+P+K), n) K/(Ca+Mg), o) Fe/Mn in almond leaves for the 1919 

15 study plots in 2020 (green) and 2021 (brown). The crossed line and the line through the box 1920 

indicate the median and mean values, respectively. Q1, Q2, and Q3 represent the limits of the first, 1921 

second, and third quartiles, with 15 samples collected each year. 1922 
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2.3.2 Assessment of leaf spectral measurements  1923 

As shown in Fig. 2.5, the ranges of variation of leaf measurements using handheld instruments 1924 

over two years were calculated using three quartiles independently. There was a greater range of 1925 

variation observed in 2021 than in 2020, with the mean value of each quartile for Cab (Fig. 2.5a) 1926 

and Flav (Fig. 2.5b) content in 2020 being higher than in 2021. Furthermore, Anth (data not shown) 1927 

increased from a mean value of 0.19 in 2020 to 0.24 in 2021, with a less steep upward slope among 1928 

the three classes in 2021. However, the range of variation of NBI (Fig. 2.5c), defined as the ratio 1929 

of Cab to Flav, remained quite stable over the course of the two years. In contrast, Ft measured by 1930 

FluorPen (Fig. 2.5d) increased steeply from 2020 to 2021 as a result of both inherent and 1931 

environmental factors.  1932 

 
Fig. 2.5. Ranges of variation of leaf: a) chlorophyll (Cab); b) flavonoids (Flav); c) nitrogen balance 1933 

index (NBI) measured using Dualex; and d) steady-state chlorophyll fluorescence (Ft) using 1934 

FluorPen in almond leaves for the 15 study plots in 2020 (green) and 2021 (brown). The crossed 1935 

line and the line through the box indicate the median and mean values, respectively. Q1, Q2, and 1936 

Q3 represent the limits of the first, second, and third quartiles, with 15 samples collected each year. 1937 
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A summary of the correlations between in situ leaf measurements using handheld instruments and 1938 

various nutrient elements and their ratios can be found in Table 2.3. What stands out in this table 1939 

is the consistently significant correlations between Ft and the macro-nutrients of N, P, K (r2 ≥ 0.48, 1940 

p-values < 0.005) and certain micro-nutrients (i.e., B with r2 ≥ 0.47, p-values < 0.005, and Zn with 1941 

r2 ≥ 0.39, p-values < 0.05) and ratios (e.g., K/Ca with r2 ≥ 0.48, p-values < 0.005) across the two 1942 

years, followed by Flav and NBI measured with Dualex. In 2020, Anth showed strong correlations 1943 

with a number of nutrients, while none were observed in 2021. Despite this, Cab was not sensitive 1944 

to nutrient profile over the two years, except in the B/N ratio (r2 ≥ 0.30, p-values < 0.05). Upon 1945 

closer inspection, Cab showed positive and significant correlations with leaf N concentration in 1946 

2020 (r2 = 0.60, p-value < 0.005), but was not sensitive in 2021 (r2 = 0.04, not significant) (Fig. 1947 

2.6a). On the other hand, Flav (r2 ≥ 0.52, p-values < 0.005) and NBI (r2 ≥ 0.64, p-values < 0.005) 1948 

displayed clearly strong relationships with leaf N across the two years, as shown in Figs. 2.6b and 1949 

6c, yielding r2 = 0.68 and 0.50 (p-values < 0.005), respectively. In spite of this, the in situ leaf 1950 

measurements were not statistically significantly correlated with other macro-nutrients, i.e., Ca, 1951 

Mg, and S. 1952 
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Table 2.3. Correlations (r2) between leaf measurements and nutrient concentrations and their ratios 1953 

for the 15 study plots in 2020 and 2021. Field measurements include leaf chlorophyll a+b (Cab), 1954 

flavonoids (Flav), anthocyanins (Anth), nitrogen balance index (NBI) measured with Dualex, and 1955 

steady-state chlorophyll fluorescence (Ft) measured with FluorPen. Background color represents 1956 

the p-value – dark green for p < 0.005, medium green for 0.005 ≤ p < 0.01, light green for 0.01 ≤ 1957 

p < 0.05, and white for p ≥ 0.05 (not significant). 1958 

Field data 

Nutrients 

Cab Flav Anth NBI Ft 

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 

Macro-

nutrient 

concentration 

(%w/w) 

Total Nitrogen (N) 0.60 0.04 0.52 0.73 0.59 0.01 0.68 0.64 0.54 0.52 

Phosphorus (P) 0.43 0.18 0.43 0.65 0.42 0.08 0.43 0.32 0.56 0.48 

Potassium (K) 0.01 0.22 0.44 0.90 0.39 0.01 0.32 0.46 0.49 0.68 

Calcium (Ca) 0.01 0.19 0.12 0.22 0.10 0.01 0.06 0.04 0.24 0.05 

Magnesium (Mg) 0.14 0.05 0.06 0.05 0.15 0.01 0.03 0.01 0.08 0.03 

Sulphur (S) 0.05 0.01 0.00 0.04 0.03 0.09 0.01 0.10 0.00 0.04 

Total Carbon (C) 0.02 0.05 0.49 0.12 0.43 0.20 0.53 0.30 0.27 0.10 

Micro-nutrient 

concentration 

(10-6%, 

mg/kg) 

Iron (Fe) 0.04 0.00 0.51 0.30 0.33 0.08 0.48 0.34 0.16 0.41 

Manganese (Mn) 0.07 0.02 0.40 0.34 0.51 0.01 0.45 0.26 0.59 0.15 

Zinc (Zn) 0.02 0.13 0.35 0.68 0.36 0.03 0.30 0.39 0.39 0.50 

Copper (Cu) 0.00 0.07 0.20 0.37 0.18 0.05 0.13 0.22 0.38 0.18 

Boron (B) 0.00 0.20 0.46 0.89 0.30 0.00 0.36 0.49 0.47 0.60 

Ratios 

N/P 0.05 0.23 0.01 0.07 0.04 0.15 0.08 0.01 0.00 0.06 

N/K 0.18 0.30 0.17 0.81 0.13 0.02 0.07 0.31 0.22 0.69 

N/(N+P+K) 0.17 0.30 0.18 0.82 0.13 0.01 0.07 0.32 0.22 0.69 

K/Ca 0.00 0.26 0.41 0.77 0.35 0.01 0.28 0.34 0.48 0.49 

K/(Ca+Mg) 0.00 0.26 0.43 0.78 0.39 0.01 0.30 0.34 0.49 0.52 

Ca/Mg 0.10 0.19 0.01 0.24 0.01 0.03 0.00 0.05 0.04 0.05 

Fe/Mn 0.05 0.04 0.16 0.18 0.30 0.04 0.15 0.09 0.48 0.03 

Fe/N (10-6%) 0.03 0.02 0.18 0.00 0.05 0.10 0.11 0.01 0.00 0.06 

Zn/N (10-6%) 0.04 0.15 0.07 0.54 0.06 0.04 0.03 0.24 0.10 0.41 

B/N (10-6%) 0.44 0.30 0.01 0.54 0.00 0.00 0.01 0.14 0.01 0.34 

 

p-value < 0.005 p-value < 0.01 p-value < 0.05 not significant 

 

Comparatively statistically significant correlations were clearly demonstrated between Ft and 1959 

macro-nutrients N, P, and K, with a similar slope in both years (Figs. 2.6d-f). A consistent 1960 

relationship between Ft and leaf N in both years (r2 = 0.54 in 2020 and r2 = 0.52 in 2021; p-values 1961 

< 0.005) was observed (Fig. 2.6d). Upon combining two years of data, the trendline clustered and 1962 

yielded r2 = 0.74 (p-value < 0.005). Although Ft produced strong correlations with macro-nutrients 1963 

P and K at the 0.005 level for the individual years, the relationship with leaf N was weaker when 1964 

the data across the two years was aggregated.  1965 
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Fig. 2.6. Relationships between in situ Dualex-measured: a) leaf chlorophyll (Cab); b) flavonoid 1966 

(Flav) content; c) nitrogen balance index (NBI) and biochemically derived leaf Nitrogen 1967 

concentration (%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). Relationships 1968 

between leaf steady-state fluorescence (Ft) and biochemically derived leaf macro-nutrients of: d) 1969 

Nitrogen; e) Phosphorus; f) Potassium concentration (%w/w) in 2020 (hollow gray circle) and 1970 

2021 (solid black circle). All p-values are less than 0.005, except for the one marked n.s. (not 1971 

significant). 1972 
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Table 2.4 presents the correlations between vegetation indices derived from the leaf reflectance 1973 

spectra and leaf nutrient assessments for both years. Results indicate varying degrees of correlation 1974 

and, in most cases, relationships were inconsistent between the two years. For both years, the 1975 

xanthophyll indices, BGR indices, and fluorescence reflectance index calculated at leaf level 1976 

demonstrated stronger relationships with primary macro-nutrient and micro-nutrient levels, but 1977 

none of these indices had statistically significant relationships with the levels of macro-nutrients 1978 

Ca, Mg, and S. More specifically, CTRI1, NPQI, PRIn, PRI∙CI, BGI1, and BRI1 had statistically 1979 

significant relationships with the levels of N, P, K, and B for both years. Compared with other 1980 

indices, chlorophyll a+b indices showed stronger correlations with N and P levels in 2020, 1981 

whereas they were generally poorly correlated in 2021. For example, CI demonstrated significant 1982 

correlation with N (r2 = 0.79, p-values < 0.005) and P (r2 = 0.62, p-values < 0.005) in 2020, but no 1983 

significant correlation (r2 ≤ 0.06) was observed in 2021. Although BGI1 and PRIm4 demonstrated 1984 

slightly higher correlations with leaf N for individual years, CTRI1 and PRIn exhibited stable 1985 

slopes across both years, leading to a more robust relationship when combined data over two years 1986 

are considered (Fig. 2.7). Additionally, NPQI (r2 = 0.62 and 0.72 in 2020 and 2021, respectively; 1987 

p-values < 0.005) and some xanthophyll indices (i.e., PRI, PRIn, and PRI∙CI) were significantly 1988 

and consistently correlated with leaf K (r2 ≥ 0.48, p-values < 0.005) in both years. At the 0.05 level, 1989 

CTRI1 displayed reasonably strong relationships with leaf P and K levels over the two years. 1990 

Regarding the micro-nutrient B, the NPQI (r2 = 0.65 in 2020 and r2 = 0.68 in 2021; p-values < 1991 

0.005) and PRI (r2 = 0.48 in 2020 and r2 = 0.54 in 2021; p-values < 0.005) deserve particular 1992 

attention. Further, PRIm4 appears to be a reliable indicator of Fe (r2 = 0.67 in 2020 and r2 = 0.61 in 1993 

2021; p-values < 0.005) and Mn (r2 = 0.45, p-values < 0.01 in 2020, and r2 = 0.54, p-values < 0.005 1994 

in 2021) across years. In both years, the fluorescence reflectance index CUR displayed significant 1995 
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relationships with N, P, and Mn at the 0.05 level, but these were weaker than those of Ft. On the 1996 

other hand, structural indices, such as NDVI, did not present skills to estimate the concentrations 1997 

and ratios of nutrients for both years. 1998 
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Table 2.4. Correlations (r2) between vegetation indices at the leaf level and nutrient concentrations for the 15 study plots in 2020 and 1999 

2021. Background color represents the p-value – dark green for p < 0.005, medium green for 0.005 ≤ p < 0.01, light green for 0.01 ≤ p 2000 

< 0.05, and white for p ≥ 0.05 (not significant). 2001 

 

Nutrients 

 

Indices at  

leaf level 

Macro-nutrient concentration (%w/w) Micro-nutrient concentration (10-6%, mg/kg) 

N P K Ca Mg S C Fe Mn Zn Cu B 

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 

Chlorophyll a+b indices 

CI 0.79 0.06 0.62 0.00 0.13 0.00 0.00 0.13 0.13 0.30 0.10 0.03 0.23 0.00 0.14 0.10 0.39 0.09 0.07 0.00 0.11 0.01 0.16 0.02 

CTRI1 0.55 0.53 0.34 0.33 0.33 0.43 0.02 0.04 0.13 0.02 0.03 0.16 0.21 0.04 0.15 0.25 0.52 0.24 0.05 0.53 0.15 0.18 0.34 0.39 

SRPI 0.24 0.33 0.21 0.17 0.36 0.26 0.02 0.01 0.10 0.05 0.08 0.19 0.15 0.01 0.02 0.12 0.46 0.09 0.05 0.28 0.18 0.05 0.29 0.17 

NPQI 0.45 0.61 0.31 0.67 0.62 0.72 0.05 0.29 0.06 0.09 0.00 0.20 0.47 0.00 0.40 0.23 0.71 0.33 0.18 0.63 0.22 0.36 0.65 0.68 

NPCI 0.24 0.31 0.21 0.16 0.35 0.24 0.02 0.01 0.11 0.04 0.09 0.18 0.14 0.01 0.01 0.11 0.45 0.08 0.05 0.26 0.18 0.04 0.28 0.17 

MCARI 0.70 0.18 0.42 0.03 0.07 0.02 0.02 0.00 0.09 0.03 0.00 0.00 0.14 0.09 0.27 0.13 0.22 0.20 0.05 0.20 0.07 0.23 0.14 0.04 

TCARI 0.72 0.23 0.52 0.22 0.09 0.18 0.03 0.14 0.08 0.02 0.00 0.04 0.19 0.01 0.28 0.02 0.24 0.21 0.10 0.19 0.12 0.32 0.16 0.20 

TCARI/OSAVI 0.64 0.06 0.52 0.07 0.19 0.08 0.02 0.23 0.03 0.42 0.00 0.11 0.46 0.08 0.43 0.09 0.37 0.02 0.23 0.01 0.10 0.00 0.25 0.08 

PSSRb 0.01 0.23 0.03 0.33 0.11 0.35 0.01 0.33 0.02 0.29 0.01 0.18 0.25 0.03 0.03 0.00 0.11 0.11 0.10 0.15 0.01 0.11 0.08 0.30 

DCabCxc 0.45 0.12 0.42 0.17 0.16 0.14 0.00 0.26 0.01 0.19 0.00 0.09 0.43 0.02 0.25 0.02 0.27 0.10 0.21 0.05 0.09 0.14 0.18 0.14 

Xanthophyll indices 

PRI 0.42 0.57 0.30 0.44 0.51 0.64 0.02 0.08 0.03 0.09 0.01 0.17 0.36 0.06 0.10 0.28 0.57 0.26 0.12 0.53 0.17 0.19 0.48 0.54 

PRI515 0.43 0.00 0.13 0.10 0.16 0.05 0.05 0.18 0.07 0.16 0.02 0.08 0.22 0.18 0.44 0.12 0.30 0.03 0.15 0.02 0.01 0.00 0.16 0.02 

PRIm1 0.44 0.03 0.14 0.21 0.18 0.14 0.06 0.24 0.08 0.13 0.02 0.13 0.23 0.16 0.45 0.04 0.33 0.00 0.16 0.01 0.01 0.03 0.18 0.09 

PRIm4 0.52 0.76 0.21 0.43 0.33 0.68 0.04 0.05 0.01 0.00 0.04 0.04 0.50 0.23 0.67 0.61 0.45 0.54 0.23 0.86 0.03 0.44 0.37 0.71 

PRIn 0.59 0.60 0.40 0.43 0.48 0.64 0.05 0.06 0.08 0.06 0.02 0.14 0.29 0.09 0.12 0.33 0.56 0.28 0.11 0.58 0.23 0.21 0.46 0.55 

PRI∙CI 0.43 0.57 0.30 0.44 0.49 0.62 0.02 0.10 0.02 0.11 0.01 0.20 0.41 0.04 0.12 0.24 0.55 0.27 0.15 0.52 0.15 0.21 0.44 0.52 

BGR indices 

B 0.45 0.53 0.31 0.33 0.52 0.48 0.04 0.06 0.09 0.04 0.02 0.17 0.37 0.03 0.19 0.22 0.64 0.20 0.16 0.52 0.19 0.20 0.47 0.38 

BGI1 0.62 0.72 0.35 0.47 0.33 0.61 0.07 0.08 0.17 0.01 0.01 0.15 0.19 0.06 0.24 0.42 0.49 0.32 0.10 0.76 0.17 0.33 0.34 0.55 

BRI1 0.49 0.51 0.33 0.37 0.46 0.45 0.04 0.06 0.13 0.04 0.04 0.24 0.26 0.00 0.15 0.23 0.60 0.15 0.10 0.49 0.21 0.17 0.43 0.33 

Fluorescence reflectance index 

CUR 0.66 0.33 0.31 0.41 0.14 0.43 0.01 0.26 0.07 0.03 0.00 0.00 0.15 0.02 0.30 0.17 0.32 0.37 0.03 0.45 0.05 0.37 0.23 0.56 

                         
p-value < 0.005 p-value < 0.01 p-value < 0.05 not significant 
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Fig. 2.7. Relationships between leaf CTRI1, BGI1, PRIm4, PRIn, and biochemically derived leaf 2002 

nitrogen concentration (%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). All p-2003 

values<0.005. 2004 

 

2.3.3 Assessment of vegetation indices and trait retrievals from airborne hyperspectral 2005 

datasets  2006 

When canopy structural and background effects were taken into account, vegetation indices 2007 

calculated at canopy level (Table 2.5) typically showed weaker relationships with nutrients than 2008 

those calculated at leaf level. In addition to the results at the leaf level, fluorescence reflectance 2009 

index (p-values < 0.005) and xanthophyll indices (p-values < 0.05) derived at the canopy level also 2010 

appear to have had significant correlations with macro-nutrients N and P over the two years. In 2011 

addition, CTRI1 also demonstrated reasonably strong relationships with leaf N (r2 = 0.61 in 2020 2012 

and r2 = 0.52 in 2021; p-values < 0.005), P (p-values < 0.05), and K (p-values < 0.05) over the two 2013 
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years. Additionally, the CUR fluorescence reflectance index presented surprisingly strong and 2014 

consistently significant correlations with leaf N (r2 = 0.75 in 2020 and r2 = 0.58 in 2021) and P (r2 2015 

= 0.53 in 2020 and r2 = 0.58 in 2021) at the level of 0.005 over the two years, which is even 2016 

stronger than the correlations observed at leaf level. In accordance with the leaf level results, CUR 2017 

at canopy level also demonstrated a strong correlation with Mn (p-values < 0.05) for both years. 2018 

Further, MCARI was able to provide a good estimate of leaf N (r2 = 0.61 in 2020 and r2 = 0.48 in 2019 

2021; p-values < 0.005), P (p-values < 0.05), and Zn (p-values < 0.05) at canopy level across both 2020 

years. Besides this, the PRI family exhibited a generally stronger relationship with nutrient levels 2021 

in 2021 than in 2020. Nevertheless, PRIm1 was statistically significantly correlated at the level of 2022 

0.05 with Mn for both years, and the same correlation was recorded for PRI∙CI with S. Even though 2023 

the structural indices at the canopy level were inferior to nutrients compared to pigment-related 2024 

indices, their correlations still outperformed those at the leaf level. For example, EVI at the canopy 2025 

level demonstrated strong relationships with leaf N (r2 = 0.32 in 2020 and r2 = 0.31 in 2021; p-2026 

values < 0.05) and the B/N ratio (r2 = 0.46 in 2020 and r2 = 0.44 in 2021; p-values < 0.01) for both 2027 

years, while no significant relationships were found at the leaf level.  2028 
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Table 2.5. Correlations (r2) between vegetation indices calculated from airborne hyperspectral imagery and nutrient concentrations for 2029 

the 15 study plots in 2020 and 2021. Background color represents the p-value – dark green for p < 0.005, medium green for 0.005 ≤ p < 2030 

0.01, light green for 0.01 ≤ p < 0.05, and white for p ≥ 0.05 (not significant). 2031 

 

Nutrients 

 

Indices at 

canopy level 

Macro-nutrient concentration (%w/w) Micro-nutrient concentration (10-6%, mg/kg) 

N P K Ca Mg S C Fe Mn Zn Cu B 

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 

Structural indices 

NDVI 0.05 0.13 0.01 0.15 0.04 0.21 0.01 0.16 0.24 0.00 0.19 0.03 0.00 0.03 0.02 0.04 0.01 0.19 0.03 0.21 0.13 0.24 0.08 0.37 

EVI 0.32 0.31 0.17 0.31 0.02 0.38 0.07 0.20 0.49 0.01 0.30 0.01 0.01 0.06 0.01 0.15 0.02 0.27 0.04 0.28 0.01 0.29 0.05 0.53 

OSAVI 0.21 0.22 0.09 0.23 0.04 0.29 0.03 0.18 0.38 0.00 0.25 0.00 0.00 0.05 0.01 0.10 0.01 0.24 0.04 0.26 0.05 0.28 0.08 0.46 

Chlorophyll a+b indices 

CI 0.04 0.01 0.05 0.02 0.50 0.03 0.00 0.07 0.22 0.00 0.29 0.14 0.40 0.04 0.17 0.00 0.13 0.11 0.08 0.05 0.25 0.08 0.55 0.15 

CTRI1 0.61 0.52 0.45 0.35 0.35 0.35 0.00 0.05 0.00 0.00 0.00 0.29 0.55 0.02 0.30 0.24 0.58 0.06 0.11 0.31 0.07 0.22 0.41 0.21 

SRPI 0.02 0.09 0.02 0.02 0.30 0.01 0.10 0.01 0.39 0.00 0.25 0.25 0.51 0.00 0.11 0.06 0.20 0.04 0.00 0.00 0.03 0.00 0.39 0.02 

NPQI 0.38 0.00 0.50 0.03 0.16 0.04 0.32 0.04 0.33 0.00 0.19 0.07 0.04 0.03 0.12 0.00 0.22 0.04 0.27 0.01 0.20 0.01 0.10 0.05 

NPCI 0.02 0.08 0.02 0.02 0.29 0.01 0.11 0.01 0.39 0.00 0.25 0.24 0.51 0.00 0.11 0.06 0.19 0.04 0.00 0.00 0.03 0.00 0.39 0.02 

MCARI 0.61 0.48 0.38 0.46 0.18 0.50 0.10 0.09 0.17 0.02 0.04 0.32 0.25 0.01 0.31 0.21 0.31 0.12 0.29 0.34 0.02 0.25 0.13 0.33 

TCARI 0.72 0.04 0.56 0.04 0.21 0.04 0.18 0.00 0.26 0.04 0.09 0.27 0.15 0.01 0.23 0.02 0.35 0.00 0.25 0.00 0.09 0.00 0.16 0.00 

TCARI/OSAVI 0.64 0.00 0.56 0.00 0.41 0.00 0.18 0.04 0.10 0.02 0.02 0.16 0.23 0.01 0.27 0.00 0.42 0.04 0.25 0.02 0.20 0.04 0.36 0.06 

PSSRb 0.14 0.12 0.07 0.12 0.21 0.15 0.02 0.13 0.44 0.00 0.32 0.07 0.12 0.08 0.00 0.04 0.00 0.22 0.00 0.19 0.07 0.18 0.20 0.35 

DCabCxc 0.69 0.20 0.48 0.20 0.08 0.23 0.12 0.02 0.42 0.06 0.23 0.32 0.04 0.01 0.09 0.07 0.21 0.01 0.13 0.10 0.05 0.05 0.04 0.10 

Xanthophyll indices 

PRI 0.48 0.27 0.26 0.18 0.11 0.16 0.00 0.00 0.03 0.03 0.14 0.18 0.36 0.03 0.19 0.35 0.18 0.01 0.06 0.15 0.06 0.16 0.16 0.03 

PRI515 0.39 0.53 0.28 0.53 0.17 0.65 0.05 0.24 0.07 0.00 0.02 0.03 0.30 0.04 0.37 0.19 0.43 0.26 0.23 0.55 0.00 0.50 0.15 0.69 

PRIm1 0.40 0.47 0.29 0.48 0.12 0.59 0.04 0.27 0.08 0.01 0.02 0.01 0.26 0.04 0.35 0.17 0.37 0.27 0.24 0.50 0.00 0.48 0.11 0.67 

PRIm4 0.34 0.50 0.27 0.56 0.16 0.71 0.13 0.29 0.19 0.02 0.11 0.04 0.12 0.01 0.22 0.14 0.34 0.23 0.22 0.53 0.00 0.46 0.09 0.71 

PRIn 0.31 0.35 0.22 0.24 0.05 0.23 0.07 0.01 0.65 0.04 0.47 0.12 0.06 0.07 0.00 0.41 0.02 0.03 0.02 0.24 0.00 0.23 0.07 0.09 

PRI∙CI 0.13 0.18 0.08 0.10 0.27 0.09 0.00 0.00 0.28 0.00 0.27 0.32 0.10 0.00 0.01 0.22 0.00 0.00 0.01 0.06 0.11 0.06 0.24 0.00 

BGR indices 

B 0.11 0.06 0.18 0.06 0.38 0.06 0.00 0.02 0.03 0.12 0.00 0.25 0.26 0.07 0.10 0.00 0.52 0.03 0.01 0.00 0.08 0.01 0.43 0.01 

BGI1 0.70 0.28 0.66 0.24 0.19 0.31 0.09 0.10 0.23 0.04 0.16 0.23 0.14 0.03 0.19 0.06 0.48 0.02 0.14 0.21 0.10 0.17 0.18 0.19 

BRI1 0.41 0.07 0.34 0.01 0.43 0.01 0.00 0.02 0.02 0.00 0.02 0.29 0.62 0.01 0.29 0.07 0.44 0.03 0.11 0.01 0.12 0.00 0.49 0.02 

Fluorescence reflectance index 

CUR 0.75 0.58 0.53 0.58 0.07 0.64 0.12 0.19 0.43 0.00 0.21 0.10 0.06 0.05 0.12 0.22 0.31 0.27 0.14 0.56 0.04 0.51 0.05 0.65 

                         
p-value < 0.005 p-value < 0.01 p-value < 0.05 not significant 
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Generally speaking, SIF quantified from airborne data and plant traits derived via RTM from 2032 

hyperspectral imagery outperformed vegetation indices in nutrient assessment, yielding stronger 2033 

correlations with higher significance levels. As shown in Table 2.6, Cab and Ccar had the strongest 2034 

relationships with nutrients, closely followed by Cx and SIF. Nevertheless, all of them showed 2035 

significant correlations with N at the 0.005 level, whereas Cab and Ccar (p-values < 0.01) had more 2036 

significant correlations with P concentration than Cx and SIF (p-values < 0.05) did across both 2037 

years. Despite this, these biochemical constituents (i.e., Cab, Ccar, and Cx) also displayed strong 2038 

relationships with K (p-values < 0.005) and a number of micro-nutrients and nutrient ratios in 2021. 2039 

There are also prominent relationships (p-values < 0.05) between Ccar and Mn, as well as between 2040 

Cx and Zn, over the two years. Further, statistically significant correlations were most evident 2041 

between Anth and N (r2 = 0.58, p-values < 0.005), as well as between Anth and P (r2 = 0.46, p-2042 

values < 0.01), in 2020 but their correlations were not significant in 2021, which is consistent with 2043 

the results obtained from the in situ leaf measurements. Nonetheless, it appears that Cdm was a 2044 

reliable indicator of Ca/Mg and B/N ratios (p-values < 0.05) over the two years. No significant 2045 

correlation was observed between LAI and nutrients or their ratios for both years. 2046 
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Table 2.6. Correlations (r2) between RTM-inverted plant traits from airborne hyperspectral 2047 

imagery and nutrient concentrations and ratios for the 15 study plots in 2020 and 2021. Traits 2048 

derived from airborne data include leaf chlorophyll a+b (Cab), carotenoids (Ccar), anthocyanin 2049 

(Anth), photochemical reflectance parameter (Cx), dry matter content (Cdm), leaf area index (LAI) 2050 

by inversion algorithm, and solar-induced fluorescence (SIF). Background color represents the p-2051 

value: dark green for p < 0.005, medium green for 0.005 ≤ p < 0.01, light green for 0.01 ≤ p < 0.05, 2052 

and white for p ≥ 0.05 (not significant). 2053 

Airborne derived 

traits 

Nutrients 

RTM-derived plant traits SIF 

Cab (µg/cm2) Ccar (µg/cm2) Anth (µg/cm2) Cx Cdm (g/cm2) LAI SIF 

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 

Macro-

nutrient 

concentration 

(%w/w) 

N 0.73 0.66 0.75 0.56 0.58 0.09 0.61 0.62 0.36 0.20 0.02 0.05 0.60 0.55 

P 0.43 0.61 0.43 0.55 0.46 0.05 0.38 0.49 0.18 0.17 0.00 0.06 0.51 0.29 

K 0.07 0.66 0.12 0.58 0.02 0.06 0.10 0.51 0.08 0.25 0.23 0.09 0.30 0.44 

Ca 0.03 0.23 0.04 0.17 0.12 0.01 0.24 0.09 0.00 0.17 0.01 0.11 0.10 0.13 

Mg 0.16 0.00 0.16 0.00 0.34 0.05 0.34 0.00 0.43 0.00 0.06 0.00 0.15 0.00 

S 0.05 0.06 0.04 0.01 0.17 0.23 0.07 0.11 0.41 0.01 0.07 0.09 0.07 0.01 

C 0.20 0.06 0.24 0.14 0.02 0.01 0.08 0.12 0.04 0.04 0.17 0.02 0.11 0.23 

Micro-

nutrient 

concentration 

(10-6%, 

mg/kg) 

Fe 0.20 0.21 0.22 0.18 0.12 0.00 0.19 0.39 0.01 0.08 0.00 0.01 0.02 0.17 

Mn 0.26 0.24 0.26 0.29 0.12 0.02 0.14 0.24 0.00 0.25 0.00 0.14 0.33 0.28 

Zn 0.16 0.62 0.19 0.55 0.17 0.04 0.35 0.53 0.01 0.26 0.01 0.13 0.25 0.35 

Cu 0.02 0.47 0.04 0.36 0.04 0.01 0.09 0.42 0.02 0.24 0.12 0.11 0.34 0.30 

B 0.07 0.64 0.10 0.59 0.01 0.04 0.05 0.46 0.09 0.39 0.09 0.24 0.24 0.49 

Ratios 

N/P 0.12 0.07 0.13 0.08 0.02 0.00 0.08 0.02 0.10 0.01 0.04 0.02 0.01 0.00 

N/K 0.00 0.46 0.00 0.47 0.02 0.02 0.00 0.34 0.30 0.20 0.18 0.09 0.09 0.29 

N/(N+P+K) 0.00 0.47 0.00 0.46 0.01 0.02 0.00 0.34 0.29 0.22 0.16 0.10 0.09 0.29 

K/Ca 0.08 0.65 0.12 0.54 0.06 0.06 0.20 0.44 0.05 0.27 0.08 0.11 0.24 0.39 

K/(Ca+Mg) 0.10 0.63 0.14 0.52 0.08 0.06 0.23 0.43 0.03 0.26 0.08 0.10 0.26 0.39 

Ca/Mg 0.07 0.47 0.05 0.38 0.09 0.00 0.02 0.22 0.53 0.30 0.02 0.25 0.01 0.19 

Fe/Mn 0.12 0.14 0.13 0.15 0.08 0.07 0.06 0.08 0.05 0.20 0.00 0.14 0.37 0.15 

Fe/N (10-6%) 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.17 0.00 0.01 0.01 0.06 0.00 

Zn/N (10-6%) 0.00 0.49 0.00 0.46 0.01 0.02 0.07 0.41 0.11 0.23 0.00 0.14 0.03 0.22 

B/N (10-6%) 0.18 0.27 0.14 0.29 0.23 0.00 0.16 0.12 0.60 0.34 0.05 0.33 0.02 0.18 

                
p-value < 0.005 p-value < 0.01 p-value < 0.05 not significant 

 

Throughout both years, SIF exhibited significant correlations with leaf K values (p-values < 0.05), 2054 

and with N and P values, which is consistent with the leaf-level Ft result, implying that chlorophyll 2055 

fluorescence could serve as a more reliable indicator of K than biochemical constituent testing or 2056 

vegetation indices. Fig. 2.8 illustrates the relationships and trendlines between SIF and the macro-2057 

nutrients N, P, and K. Despite weaker relationships from SIF than from in situ Ft results, which 2058 

may be related to the aggregated pixels representing soil and other background, the clustered 2059 

trendlines of SIF vs. N, as well as the similar slopes of SIF vs. K across the two years, stand out. 2060 

Likewise, when aggregated data for two years were analyzed, the correlation between SIF and leaf 2061 

N (r2 = 0.74) and K (r2 = 0.46) was significant at the 0.005 level, with a better fit than leaf P, which 2062 

is in agreement with Ft results at leaf level. Additionally, SIF also demonstrated consistently strong 2063 
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relationships with certain micro-nutrients and ratios (i.e., Mn, Cu, K/(Ca+Mg)) for both years, with 2064 

p-values less than 0.05. Overall, SIF and the fluorescence reflectance index CUR demonstrated 2065 

consistent relationships with nutrients which were stronger than those demonstrated by vegetation 2066 

indices. 2067 
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Fig. 2.8. Relationships between canopy solar-induced fluorescence (SIF) and biochemically 2068 

derived leaf macro-nutrient levels of: a) Nitrogen; b) Phosphorus; c) Potassium concentration 2069 

(%w/w) in 2020 (hollow gray circle) and 2021 (solid black circle). The highlighted text represents 2070 

the p-value – below 0.005 (white), 0.01 (light gray), up to 0.05 (medium gray). 2071 
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2.4. Discussions 2072 

Cab has long been widely used as a measure of plant vigor and health condition (Ciganda et al., 2073 

2008, Xue and Su, 2017, Haboudane et al., 2008), as well as a nutrient deficiency indicator (Wood 2074 

et al., 1993, Herrmann et al., 2010, Bojović and Marković, 2009, Yoder and Pettigrew-Crosby, 2075 

1995). However, at leaf level, rapid Cab readings from field-portable chlorophyll meters are based 2076 

on a limited number of bands to assess leaf greenness and are affected by several factors, 2077 

specifically plant species, fertilizer application timing, phenological stages, and growing seasons 2078 

(Schepers et al., 1992, Masoni et al., 1996). Thus, Cab readings fail to consistently explain the 2079 

variability of nutrients across years, as found by Xiong et al. (2015). This is also the case with 2080 

most of the vegetation indices, which are calculated from only a few spectral bands and are further 2081 

constrained by factors like soil background, leaf inclination angle, and atmospheric conditions 2082 

(Baret and Guyot, 1991). However, our results demonstrated that, rather than relying upon the Cab 2083 

proxy, the actual values for Cab content and other biochemical constituents derived from physical 2084 

models exhibited more consistent relationships with nutrients over both years, considering the 2085 

presence of multiple varieties, ages, and management practices within the orchard. These results 2086 

are in agreement with other studies that report the superior performance of modeling approaches 2087 

compared to the methods based on standard vegetation indices (Camino et al., 2018).  2088 

In addition, our results are in accordance with other studies (Parkhill et al., 2001, Kalaji et al., 2089 

2018, Kalaji et al., 2014, Camino et al., 2018) that have suggested that chlorophyll fluorescence 2090 

is a good proxy for photosynthesis and is closely related to nutrients, especially nitrogen. The 2091 

results of our study reinforce this finding because we found that the measurements of Ft at leaf 2092 

level displayed statistically significant correlations with nutrient values (i.e., N, P, and K) at the 2093 

level of 0.005 across both years, outperforming Cab readings and vegetation indices. These 2094 
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significant relationships and consistent slopes are also found with the SIF quantified at canopy 2095 

level for both years. Further, when combining the data from the two years, the relationship with N 2096 

is even stronger, yielding r2 = 0.74 (p-values < 0.005) at both the leaf and canopy levels. The close 2097 

relationship between N and chlorophyll fluorescence indicates that N availability plays a greater 2098 

role in photosynthesis and fluorescence emission than P and K availability do. Cab is a pigment 2099 

that is crucial to photosynthesis and N is an essential component of Cab, whereas chlorophyll 2100 

fluorescence is a measure of the amount of light energy emitted by chlorophyll molecules upon 2101 

returning to their ground state following light excitation (Bolhàr-Nordenkampf and Öquist, 1993). 2102 

So, when plants have inadequate nitrogen content, their Cab levels decrease, which results in a 2103 

reduction in photosynthetic performance and can negatively impact the amount of chlorophyll 2104 

fluorescence emitted by the plant. However, even though P and K are also essential nutrients for 2105 

plant growth, they do not have as direct an influence on chlorophyll levels or photosynthetic 2106 

efficiency as N does. Therefore, it is unlikely that the presence of these nutrients has the same 2107 

significant and consistent impact on chlorophyll fluorescence over time as N does. In addition, the 2108 

P concentration (%) is lower (< 0.18%) and displays less variation (standard deviation of 0.01) 2109 

than the N and K concentrations do (Table 2.2), resulting in a lower level of sensitivity to N and 2110 

K.  2111 

In comparison to primary macro-nutrients, the values for secondary macro-nutrients (e.g., Ca, Mg) 2112 

and for micro-nutrients (e.g., Fe, Cu) demonstrated weaker relationships with Cab and chlorophyll 2113 

fluorescence. This is generally due to their indirect and secondary roles in the photosynthetic 2114 

process interfering with enzyme activity, protein synthesis, and membrane stability (Römheld and 2115 

Marschner, 1991, Maathuis, 2009). These ‘assistant’ roles may not be as closely linked to Cab and 2116 

chlorophyll fluorescence as factors like light intensity and water availability, which directly affect 2117 
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the photosynthetic process. Furthermore, it is possible that the relationships between these 2118 

nutrients and Cab or chlorophyll fluorescence, which are only indirect, do not hold across growth 2119 

stages, variations in fertilizer application, or environmental conditions. For example, Cu was only 2120 

applied at the beginning of the growing season, so the end of the season might not be the most 2121 

appropriate time to assess its effects on the leaf pigment pool.    2122 

There is evidence of strong relationships between chlorophyll fluorescence and nutrient ratios (e.g., 2123 

K/(Ca+Mg)), yielding significant results, 0.005 and 0.05 at leaf and canopy levels, respectively. 2124 

The robustness of these relationships was not strongly demonstrated in this study over time, so 2125 

further testing is needed to determine their validity. The timing of fertilizer applications and 2126 

environmental conditions could also contribute to changes in nutrients’ availability in the soil, their 2127 

interactions, and plant uptake of them. Therefore, leaf nutrient assessment is not necessarily a 2128 

reflection of nutrient availability in the soil. Nevertheless, nutrient ratio measurements can still be 2129 

useful in assessing plant nutrient status, potential limitations of photosynthetic performance, and 2130 

changes in nutrient availability, which can inform fertilizer application management. 2131 

 

2.5. Conclusions 2132 

This study examines the sensitivity of plant traits and vegetation indices to macro- and micro-2133 

nutrient concentrations and their ratios in almond orchards, at both the leaf and canopy levels, over 2134 

the course of two years. The RTM-derived biochemical constituent levels (i.e., Cab, Ccar, Cx) 2135 

calculated from airborne hyperspectral imagery outperformed vegetation indices in explaining 2136 

nutrient variability across both years. In particular, the biochemical constituents showed significant 2137 

correlations with leaf N (p-values < 0.005) for both years. Chlorophyll fluorescence emission 2138 

demonstrated consistently significant correlations with the primary macro-nutrients (i.e., N, P, and 2139 
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K) throughout the two years, at both leaf and canopy levels, suggesting it is a reliable indicator of 2140 

nutrient variability, especially when considering data across years. For instance, the relationships 2141 

of both leaf Ft and canopy SIF with leaf N yielded r2 = 0.74 (p-values < 0.005) when combining 2142 

the data from the two years. In addition, the relationships of pigment-related indices with leaf N 2143 

were stronger than with structural indices and indices like CTRI1 (p-values < 0.005) and PRIm4 2144 

(p-values < 0.05), yielding consistently strong correlations over two years at both leaf and canopy 2145 

levels. The relationships of leaf P and K with fluorescence and trait identification were weaker 2146 

than those of leaf N, but they were still statistically significant (p-values < 0.05).   2147 
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Abstract 2388 

Accurate, spatially extensive, and frequent assessments of plant nitrogen (N) enabled by remote 2389 

sensing allow growers to optimize fertilizer applications and reduce environmental impacts. 2390 

Standard remote sensing methods for N assessment typically involve the use of chlorophyll-2391 

sensitive vegetation indices calculated from multispectral or hyperspectral reflectance data. 2392 

However, the chlorophyll a+b derived from spectral indices is indirectly related to leaf N and 2393 

saturates at high leaf N levels, dramatically reducing the sensitivity with leaf N under these 2394 

conditions. Furthermore, these relationships are heavily influenced by canopy structure, variability 2395 

in leaf area density, proportion of sunlit-shaded tree-crown components, soil background, and 2396 

understory. Recent studies in uniform crops have demonstrated that estimation of plant N can be 2397 

improved by considering leaf biochemical constituents derived from radiative transfer model 2398 

(RTM) and solar-induced fluorescence (SIF). However, it is unclear whether these methods are 2399 

transferable to tree crops due to their intrinsic physiological differences, structural complexity, and 2400 

within-tree crown heterogeneity. We investigated how various hyperspectrally derived proxies for 2401 

leaf N, including RTM-based traits and SIF, could be combined to assess N status on a 1,200-ha 2402 

almond orchard across two growing seasons. RTM-based chlorophyll a+b content (Cab) and SIF 2403 

were found to be the most important and consistent predictors for leaf N compared to other leaf 2404 

biochemical and biophysical traits. Cab alone was a modest predictor of leaf N variability (r2 = 2405 

0.49, RMSE = 0.16%, p-value < 0.001), but when the non-collinear SIF and Cab traits were coupled 2406 

together, predictions improved dramatically (r2 = 0.95, RMSE = 0.05%, p-value < 0.001). Leaf 2407 

area index (LAI) was poorly associated with leaf N, suggesting that leaf physiological traits may 2408 

be more important than structural traits in quantifying leaf N in well-managed orchards 2409 

characterized by high N levels. Consistent results across the 2 years suggests the importance of 2410 
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airborne SIF coupled with Cab for precision agriculture and leaf N status assessment in almond 2411 

orchards. 2412 

 

Keywords: Chlorophyll Fluorescence, SIF, Nitrogen, Chlorophyll, FluSAIL RTM, Hyperspectral, 2413 

Gaussian Process Regression, Random Forest, Almond, Tree Orchard  2414 
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3.1 Introduction 2415 

Nitrogen (N) is an essential nutrient for plant growth, productivity, and quality and is often the 2416 

major limiting factor for photosynthesis (Evans, 1989). However, more N fertilizer than needed is 2417 

often applied to maximize yield and quality (Conant et al., 2013). In addition to the economic costs 2418 

of N over-fertilization, excess N has detrimental effects on the environment, leading to pollution 2419 

of the atmosphere and water systems (Stevenson and Cole, 1999, Shcherbak et al., 2014, Zebarth 2420 

et al., 2009). Monitoring crop N status is essential for optimizing N applications and maintaining 2421 

productivity while minimizing environmental impacts for sustainable agriculture (Matson et al., 2422 

1998, Snyder et al., 2009, Manna et al., 2005, Panhwar et al., 2019). 2423 

The concentration of leaf nitrogen can be determined through various approaches. The chemical 2424 

analysis of leaf tissue via destructive sampling, such as the traditional Kjeldahl-digestion method 2425 

(Kjeldahl, 1883) or the simpler and faster Dumas combustion method to avoid using toxic 2426 

chemicals (Dumas, 1831), has been the standard method for the assessment of leaf N. Although 2427 

this approach is very accurate, it is not cost- or time-effective for the continuous monitoring of N 2428 

status over large areas. In recent decades, imaging spectroscopy has been used as an alternative to 2429 

lab-based assays from the leaf, enabling rapid N monitoring at a range of spatio-temporal scales 2430 

(Schepers et al., 1992, Chapman and Barreto, 1997, Nageswara Rao et al., 2001, Dong et al., 2020, 2431 

Romina et al., 2019) to canopy level (Pinter Jr et al., 2003, Nigon et al., 2020, Inoue et al., 2012, 2432 

Clevers and Kooistra, 2011, Clevers and Gitelson, 2013, Gnyp et al., 2014, Haboudane et al., 2433 

2002). 2434 

Most remote sensing (RS) studies of leaf N depend on an assumed strong correlation between leaf 2435 

chlorophyll a+b (Cab) and N (Evans, 1989). Thus, Cab has been proposed as a common RS-based 2436 

indicator for N assessment (Wood et al., 1992, Yoder and Pettigrew-Crosby, 1995, Schlemmer et 2437 
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al., 2013, Clevers and Gitelson, 2013). The conventional approach in these studies has been to 2438 

determine an empirical relationship between destructively sampled tissue N and non-destructive 2439 

proxy measurements, including hand-held spectral readings at visible, red-edge, and near-infrared 2440 

spectral bands (Cerovic et al., 2015, Cerovic et al., 2012, Bullock and Anderson, 1998, Chang and 2441 

Robison, 2003, Jongschaap and Booij, 2004, Padilla et al., 2018, Wood et al., 1992) or 2442 

chlorophyll-sensitive vegetation indices derived from multispectral or hyperspectral reflectance at 2443 

leaf and canopy levels (Filella et al., 1995, Fitzgerald et al., 2010, Cummings et al., 2021, Nigon 2444 

et al., 2020, Inoue et al., 2012, Clevers and Gitelson, 2013, Gnyp et al., 2014). Although leaf 2445 

chlorophyll meters are valuable tools for quick on-farm determination of leaf N status, the 2446 

relationship between chlorophyll meter readings and N content differs across plant genotypes and 2447 

environmental contexts (Xiong et al., 2015). Furthermore, these chlorophyll indicators from 2448 

chlorophyll meters or vegetation indices are not the actual chlorophyll content, but rather the proxy 2449 

for leaf greenness. Although they are generally related to leaf N, these proxies saturate at high N 2450 

levels, resulting in reduced sensitivity to increased N values (Padilla et al., 2018, Romina et al., 2451 

2019, Li et al., 2020, Schlemmer et al., 2013). In addition to these leaf greenness indicators, 2452 

vegetation indices widely used in RS such as the Normalized Difference Vegetation Index (NDVI) 2453 

(Rouse et al., 1974), are also indirectly related to N (Yoder and Pettigrew-Crosby, 1995). They 2454 

have been demonstrated to lack sensitivity and to saturate at high plant densities and under 2455 

overfertilization levels (Matsushita et al., 2007, Flowers et al., 2003, Nguy-Robertson et al., 2012). 2456 

To prevent these effects, proxies directly linked to leaf N through pathways other than via the 2457 

quantification of chlorophyll content are required. 2458 

Moreover, spectral indices that incorporate red-edge spectra are thought to be improved ways to 2459 

derive N status due to the higher sensitivity of this spectral region to moderate and high chlorophyll 2460 
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content levels (Gitelson et al., 1996, Gitelson et al., 2003). Fitzgerald et al. (2006) found that the 2461 

Normalized Difference Red-Edge (NDRE) index, which is calculated by replacing the red band of 2462 

NDVI with the red-edge band, was a reliable indicator of chlorophyll and N status. Another index 2463 

termed the Canopy Chlorophyll Content Index (CCCI) is based on a two-dimensional planar 2464 

extension of NDVI and NDRE and has been proposed as a method for improved estimation of N 2465 

in annual crops (e.g., wheat (Triticum aestivum)) (Fitzgerald et al., 2010, Perry et al., 2012, Li et 2466 

al., 2014). Another approach combining the information in the red-edge with a structural index is 2467 

the use of the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) with the 2468 

Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI) (Haboudane et al., 2002). These 2469 

indices tend to be sensitive to chlorophyll a+b induced by N variability while also accounting for 2470 

background effects (Gabriel et al., 2017, Wu et al., 2008). Nevertheless, empirical relationships 2471 

are required to estimate N from these vegetation indices. 2472 

As leaf N content is associated with many other physiological traits besides Cab content, the use of 2473 

radiative transfer model (RTM)-based retrievals of plant physiological traits is a promising 2474 

alternative to spectral indices for assessing leaf N. Due to the fact that leaf N is not an input in the 2475 

RTM, nutrient variability was described through a wide range of model-simulated plant traits, 2476 

including leaf constituents (e.g., Cab, dry matter (Cdm), water content (Cw)), and canopy structural 2477 

parameters (Wang et al., 2018, Thorp et al., 2012, Baret et al., 2007, Camino et al., 2018a, Wang 2478 

et al., 2021). Traits derived from RTMs are considered more accurate and transferrable than index-2479 

based empirical algorithms (Kimes et al., 2000), although this has only been tested for uniform 2480 

crops. For orchards, this method is more complex due to the tree crown heterogeneity and 2481 

clumping effects with mixed crown-shadow-soil backgrounds. Radiative transfer model inversion 2482 

also allows inverting for other non-photosynthetic plant pigments, such as carotenoids (Ccar) and 2483 
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xanthophylls (Cx), which are involved in photosynthetic light-harvesting (Niyogi et al., 1997, 2484 

Jacquemoud et al., 2009, Vilfan et al., 2016, Vilfan et al., 2018). Plants prevent photodamage by 2485 

deoxidizing the xanthophyll violaxanthin (V) into antheraxanthin (A) and zeaxanthin (Z) in 2486 

response to excess excitation energy (Demmig et al., 1987, Gilmore, 1997). Therefore, 2487 

xanthophyll composition is linked to photosynthetic efficiency and may thus relate to leaf N status, 2488 

particularly under abiotic stress conditions (Verhoeven et al., 1999, Tóth et al., 2002, Cheng, 2003, 2489 

Ramalho et al., 2000). Thus, based on their links with photosynthesis under stress conditions, the 2490 

complete set of photosynthetic and non-photosynthetic pigments, along with structural traits, can 2491 

lead to a more informed assessment of N. 2492 

In the last few decades, solar-induced fluorescence (SIF) has been proposed as a trait for 2493 

monitoring plant physiology, vegetation functioning, and plant biotic and abiotic stress detection 2494 

due to the dynamic changes in photochemical and non-photochemical quenching in the 2495 

photosynthetic process (see review paper by Mohammed et al. (2019) and studies from 2496 

Mohammed et al. (1995), Porcar-Castell et al. (2014), Maxwell and Johnson (2000), Murchie and 2497 

Lawson (2013), Sayed (2003), Zarco-Tejada et al. (2018)). It is well known that abiotic-induced 2498 

stress conditions such as light intensity, water status, and temperature extremes modulate the 2499 

photosynthetic performance (Ashraf and Harris, 2013, Biswal et al., 2011, Saibo et al., 2009). 2500 

Most importantly, SIF is considered a direct proxy for electron transport rate and thus a direct 2501 

measure of photosynthesis (Krause and Weis, 1991, Walker et al., 2014, Genty et al., 1989, 2502 

Middleton et al., 2016). N modulates the fluorescence-photosynthesis link, thus several studies 2503 

propose SIF as a potential proxy for the assessment of leaf N status at both the leaf (Lu and Zhang, 2504 

2000, Huang et al., 2004) and the canopy levels (Cendrero-Mateo et al., 2016, Middleton et al., 2505 

2016, Corp et al., 2003, Mohammed et al., 2019, Wang et al., 2021). For example, Camino et al. 2506 
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(2018a) showed that SIF improved predictions of N content in wheat. However, in tree orchards, 2507 

SIF is affected by canopy structure and the mixing of within-crown sunlit and shaded components. 2508 

This adds complexity to the accurate SIF quantification in tree orchards (Camino et al., 2018b). 2509 

The combined use of RTM-based leaf biochemistry estimates with SIF for N assessment is poorly 2510 

studied in structurally complex tree orchards. Such a methodology may have important uses in 2511 

precision agriculture when using commercial hyperspectral sensors with 5- to 6-nm spectral 2512 

resolution, which have been shown to be sensitive to SIF emission and thus are useful for 2513 

quantifying abiotic sources of stress (Belwalkar et al., 2022, Zarco-Tejada et al., 2012, Zarco-2514 

Tejada et al., 2016, Zarco-Tejada et al., 2013, Raya-Sereno et al., 2021, Belwalkar et al., 2021).   2515 

In this study, we explored the contribution of various hyperspectrally derived proxies for leaf N 2516 

status assessment in almond orchards across two consecutive growing seasons, including airborne-2517 

quantified plant physiological traits estimated by RTM inversion and canopy SIF. We evaluated 2518 

the accuracy and robustness of the retrieved plant physiological traits and the collinearity among 2519 

plant pigments, SIF, and structural traits when assessing leaf N variability across the field. Rather 2520 

than a data driven approach, our study advances the mechanistic understanding of the responses 2521 

of RS-derived plant traits to leaf N content changes. 2522 

 

3.2 Material and methods 2523 

3.2.1 Study area and field data collection 2524 

This study was conducted in a commercial almond orchard in northwest Victoria, Australia, at the 2525 

pre-harvest stage of the growing season in 2019/2020 and 2020/2021 when the leaves are mature 2526 

and have reached their maximum N uptake capacity. The region has a Mediterranean climate with 2527 
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hot, dry summers and mild, wet winters. Average annual precipitation is 300 mm. The summer of 2528 

2020/2021 was milder than that of 2019/2020, with an average maximum air temperature of 2529 

29.5°C in December 2020, compared to 34.3°C in December 2019. The almond orchard (Fig. 3.1) 2530 

covers approximately 1,240 hectares with trees planted between 2006 (Northern blocks facing N-2531 

S) and 2007 (Southern blocks mixed in N-S and E-W orientations) on sandy loam soils. Generally, 2532 

trees planted in the eastern blocks tend to have larger tree crowns than those in the west. Three 2533 

almond varieties were planted in alternating blocks of six rows to facilitate cross-pollination (Hill 2534 

et al., 1985, Asai et al., 1996). Varieties included Nonpareil (50%), Carmel (33%), and Price (17%). 2535 

A drip fertigation system was used to supply the same amount of water and nutrients to the tree 2536 

root zones for each variety at the same time and was established at 1-hour intervals between 2537 

varieties across the entire orchard. Fertigation was supplied as needed based on weather and plant 2538 

responses over the growing season. In summer of 2020/2021, irrigation volume was 10% higher 2539 

(12,795 m3/ha) than in 2019/2020 (11,465 m3/ha), but total N fertilizer applications (330 kg/ha in 2540 

2020/2021 and 326 kg/ha in 2019/2020) were similar. In summer of 2020/2021, Nonpareil was 2541 

treated with 10% less fertigation than Carmel and Price varieties across the orchard based on the 2542 

difference observed along the 2019/2020 season.  2543 

Fifteen homogeneous plots consisting of six rows of seven to eight trees were monitored 2544 

throughout the experiment in 2019/2020 and 2020/2021 (Fig. 3.2). In each plot, four adjacent trees 2545 

from Nonpareil and Carmel varieties (two each; yellow dashed rectangle in Fig. 3.2a) were 2546 

sampled in situ prior to harvest in both years. Leaf Cab, anthocyanins (Anth), flavonoid (Flav) 2547 

content, and the nitrogen balance index (NBI) were measured from 20 representative sunlit mature 2548 

leaves per tree using a Dualex 4 Scientific sensor (FORCE-A, Orsay, France). Leaf steady-state 2549 

chlorophyll fluorescence (Ft) and leaf reflectance spectra within the visible (VIS) and near-infrared 2550 
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(NIR) regions were measured with FluorPen FP 110 and PolyPen RP 410 instruments (PSI, Brno, 2551 

Czech Republic) on the same leaves with the Dualex sensor. A series of vegetation pigment indices 2552 

(see Table 3.1 for the complete list of indices used in this study) were calculated based on the leaf 2553 

reflectance spectra measured from the PolyPen handheld instrument. An additional set of 20 leaves 2554 

per plot were collected for biochemical laboratory analyses using Dumas Combustion (Etheridge 2555 

et al., 1998, Buckee, 1994, Dumas, 1831) with a LECO TruMac CNS Macro Analyzer (LECO 2556 

Corporation, MI, USA) and an inductively coupled plasma optical emission spectrometer (ICP-2557 

OES Optima 8300, Perkin Elmer, USA). Thirteen macro and micro-nutrients (e.g., nitrogen, 2558 

carbon, phosphorus, and potassium) were measured. The ranges of variation of field data collected 2559 

over 2 years were compared against Ft-measured quartiles. The correlations between leaf 2560 

measurement and laboratory N concentration were calculated for both years. 2561 

 

3.2.2 Airborne hyperspectral and thermal imagery  2562 

Airborne campaigns were conducted concurrently with the field measurements on February 17, 2563 

2020, and January 31, 2021. Both campaigns occurred at solar noon under clear skies. Field 2564 

sampling and auxiliary data collection required for the calibration and atmospheric correction of 2565 

the images were conducted simultaneously with airborne campaigns. A hyperspectral line-2566 

scanning sensor (Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, 2567 

USA) and a thermal infrared camera (A655sc model, FLIR Systems, Wilsonville, OR, USA) were 2568 

flown in tandem on a manned aircraft operated by the HyperSens Remote Sensing Laboratory, the 2569 

Airborne Remote Sensing Facility of The University of Melbourne. The hyperspectral imager 2570 

covers 371 spectral bands in the visible and near-infrared regions (400-1000 nm) with a full-width 2571 

at half-maximum (FWHM) of 5.8 nm and a spectral sampling interval of 1.626 nm. Hyperspectral 2572 
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and thermal images with an angular field of view (FOV) of 66° and 45° (8- and 13.1-mm focal 2573 

length), respectively, were collected by the aircraft at 550 m above ground level (AGL), yielding 2574 

spatial resolutions of 40 and 60 cm, respectively, enabling the differentiation of sunlit and shaded 2575 

components of tree crowns and soil areas. SMARTS (Gueymard, 2001, Gueymard et al., 2002, 2576 

Gueymard, 1995) irradiance simulations were used to correct for atmospheric effects of the 2577 

hyperspectral imagery based on aerosol optical measurements at 500 nm taken with a Microtops 2578 

II sunphotometer (Solar Light, PA, USA) connected to a GPS-12 navigator (Garmin, Olathe, KS, 2579 

USA) at the time of each flight. Air temperatures and relative humidity were calculated based on 2580 

the average of three nearby weather stations (Robinvale, Lake Powell and Wemen) less than 15 2581 

km from the study site. Hyperspectral line-scanned image orthorectification was performed using 2582 

PARGE software (ReSe Applications Schläpfe, Wil, Switzerland) with readings from the onboard 2583 

inertial measuring unit (IMU) (VectorNav VN-300 dual-antenna GNSS/INS, Dallas, TX, USA). 2584 

Empirical line calibration was conducted by measuring the reflectance spectra and temperature of 2585 

bare soil and green and dry vegetation. Spectra were measured with an ASD Handheld-2 field 2586 

spectrometer (FieldSpec Handheld Pro, ASD Inc., CO, USA), and temperature was measured with 2587 

a thermal gun (LaserSight, Optris, Germany). Hyperspectral and thermal imagery were mosaicked 2588 

(Figs. 3.1 and 3.3) using ENVI (Boulder, Colorado) and Pix4D (Lausanne, Switzerland) 2589 

photogrammetry software, respectively. 2590 
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Fig. 3.1. Color-infrared (CIR) overview of the hyperspectral mosaic acquired with the VNIR 2591 

hyperspectral sensor over the 1,200-ha study site collected on January 31, 2021. Spectral bands at 2592 

860 (R), 650 (G), and 550 (B) nm are shown with a spatial resolution of 40 cm per pixel.  2593 
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Fig. 3.2. (a) Study plot consisting of six rows by eight trees within the blue solid line. Leaves from 2594 

four trees within the yellow dashed rectangle were measured in the field. (b) The reflectance 2595 

spectra of different scene components extracted from the airborne hyperspectral imager, including 2596 

sunlit (green solid line) and shaded (grey dashed line) tree crown, and sunlit (orange dashed line) 2597 

and shaded soil (brown dashed line) pixels.  2598 

 

Automatic segmentation of the hyperspectral reflectance imagery was conducted using Fiji 2599 

(Abràmoff et al., 2004) combining Niblack’s (Niblack, 1985) thresholding method on the NIR 2600 

band, and Phansalkar’s thresholding method (Phansalkar et al., 2011) on a structural index (NDVI > 2601 

0.72). This method enabled the discrimination of sunlit pure tree crowns from the soil background, 2602 

as well as the separation of within-crown shadows (see reflectance spectra in Fig. 3.2b). 2603 

Considering the sensitivity of SIF to the illumination levels, a more selective segmentation (10% 2604 

restricted) was applied to the hyperspectral radiance data when segmenting the sunlit crown 2605 

component. The thermal segmentation of the tree canopy was performed with Niblack’s 2606 

thresholding method (Niblack, 1985) to eliminate the soil and background effects. The resulting 2607 

pure vegetation pixels obtained in the previous step were clustered into tree-crown features using 2608 

a watershed segmentation approach based on Euclidean distance (as in Zarco-Tejada et al. (2018)). 2609 
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In Fig. 3.4, an example of the segmentation conducted on the hyperspectral and the thermal 2610 

mosaics is presented.  2611 

 

 
Fig. 3.3. Thermal mosaic collected over the entire study area captured on January 31, 2021 at a 2612 

spatial resolution of 60 cm. Cooler colors (purple and blue) indicate plant canopies, and 2613 

yellow/brown colors indicate soil. 2614 
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Fig. 3.4. Overview of the tree-crown segmentation applied to the hyperspectral mosaic (a, upper 2615 

image in color-infrared, crown in green outline) and the thermal mosaic (c, bottom image 2616 

displaying cooler canopy in blue and hot soil in red color, crown in yellow outline). Right column 2617 

contains zoomed-in views (b and d) of the scenes within the white rectangle on the left. 2618 
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Fig. 3.5. Segmentation of the sunlit crown area for SIF quantification on two study plots (a) higher 2619 

nutrient level and (b) lower nutrient level. The irradiance spectrum (orange color) was used along 2620 

with the radiance spectra (example shown in (c) for two study plots (green and grey lines) to 2621 

calculate SIF. Crosses denote the spectral position of the sensor bands (c). 2622 

 

The mean radiance and reflectance spectra, and temperature were extracted from tree crown pixels 2623 

by hyperspectral and thermal imagery for each study plot. The crop water stress index (CWSI) 2624 

(Idso et al., 1981) was calculated based on the canopy-air temperature difference and the water 2625 

vapor pressure deficit (VPD) at the time of image acquisition for assessing the tree-crown water 2626 

stress levels. A non-water-stressed baseline (NWSB) for almond trees suggested by Bellvert et al. 2627 

(2018) was used.  2628 

SIF was quantified using the Fraunhofer line depth (FLD) principle (Plascyk and Gabriel, 1975) 2629 

based on three spectral bands (3FLD) (Maier et al., 2004) located inside and outside the O2-A 2630 

absorption features. Specifically, we compared canopy radiance values Lin at 762 nm and Lout at 2631 

750 and 778 nm extracted from the hyperspectral imagery to the corresponding incoming 2632 

irradiance Ein (E762) and Eout (E750, E778) derived from the field measurements during the flight and 2633 

resampled to match the spectral specifications of the airborne hyperspectral sensor. To account for 2634 

the effects of negative values from atmospheric and calibration factors, SIF was scaled using the 2635 

offset from non-fluorescence targets (e.g., soil) extracted from the imagery. Fig. 3.5 shows the 2636 
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irradiance and the mean radiance spectra from two study plots (in Figs. 5a and 5b) at the oxygen-2637 

A absorption region around 760 nm. Average tree-crown reflectance (R) spectra extracted from 2638 

pure vegetation pixels were used to estimate plant traits through RTM inversion and to calculate 2639 

narrow-band hyperspectral indices (Table 3.1) for comparison. The set of indices used comprised 2640 

structural indices (e.g., NDVI), pigment indices (e.g., Modified Chlorophyll Absorption in 2641 

Reflectance Index (MCARI), TCARI/OSAVI, and Carter Index 1 (CTRI1)), and indices in the 2642 

visible region (e.g., Photochemical Reflectance Index (PRI)) that track the dynamics of 2643 

photoprotective mechanisms. Indices calculated from airborne imagery were also compared 2644 

against leaf N, Cab, NBI, and Ft measured in the field. 2645 
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Table 3.1. Spectral vegetation index equations used in this study. 2646 

Index Equation Reference 

Structural indices 

NDVI (R800  −  R670) (R800 +  R670)⁄   Rouse et al. (1974) 

EVI 2.5 ∙ (R800  −  R670) (R800 +  6 ∙ R670 −  7.5 ∙ R500  +  1)⁄  Liu and Huete (1995) 

MCARI2 
1.5 ∙ (2.5 ∙ (R800  −  R670)  −  1.3 ∙ (R800  −  R550))

√(2 ∙ R800  +  1)2 − (6 ∙ R800  −  5 ∙ R670) −  0.5 
 Haboudane et al. 

(2004) 

RDVI (R800  −  R670) √R800 +  R670 ⁄  
Roujean and Breon 

(1995) 

OSAVI (1 +  0.16) ∙ (R800  −  R670) (R800 +  R670  +  0.16)⁄  Rondeaux et al. (1996) 

Chlorophyll a+b indices 

MCARI ((R700  −  R670) − 0.2 ∙ (R700  −  R550)) ∙ (R700 R670)⁄  Daughtry et al. (2000) 

TCARI/OSAVI 
3 ∙ ((R700  −  R670) − 0.2 ∙ (R700  −  R550) ∙ (R700 R670)⁄ )

(1 +  0.16) ∙ (R800  −  R670) (R800 +  R670 +  0.16)⁄  
 

Haboudane et al. 

(2002) 

NPQI (R415  −  R435) (R415 +  R435)⁄  Barnes et al. (1992) 

PSSRa R800 R675⁄  Blackburn (1998) 

PSSRb R800 R650⁄  Blackburn (1998) 

PSSRc R800 R500⁄  Blackburn (1998) 

SIPI (R800  −  R445) (R800 −  R680)⁄  Penuelas et al. (1995) 

CTRI1 R695 R420⁄  Carter (1994) 

Indices based on the green region 

PRI (R570  −  R531) (R570 +  R531)⁄  Gamon et al. (1992) 

PRI515 (R515  −  R531) (R515 +  R531)⁄  
Hernández-Clemente 

et al. (2011) 

PRI∙CI ((R570  −  R531) (R570 +  R531)⁄ ) ∙ ((R760  R700)⁄ − 1) Garrity et al. (2011) 

Fluorescence quantification 

SIF 

𝐸𝑜𝑢𝑡 · 𝐿𝑖𝑛 − 𝐸𝑖𝑛 · 𝐿𝑜𝑢𝑡

𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛
 

Where E and L represent the incoming irradiance and 

canopy radiance, ‘in’ band refers to 762 nm, and ‘out’ band 

refers to the average value in 750 and 778 nm 

Plascyk and Gabriel 

(1975) 

Canopy temperature 

CWSI 

(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
 

Where LL and UL represent the upper limit and lower limit 

of canopy (Tc) and air (Ta) temperatures 

Jackson et al. (1981) 
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3.2.3 Modeling methods for plant trait retrieval and N assessment 2647 

The coupled leaf-level Fluspect-Cx model (Vilfan et al., 2018) and 4SAIL (Verhoef, 1984) canopy 2648 

radiative transfer model, referred to here as FluSAIL, were employed to derive plant biophysical 2649 

and biochemical parameters by inverting the average canopy reflectance extracted from pure 2650 

vegetation pixels. The de-epoxidation state of the xanthophyll cycle (Cx) as well as Cab, Ccar, and 2651 

Anth pigment content were retrieved by the inversion of the Fluspect-Cx model. A look-up table 2652 

(LUT) was generated by running 50,000 simulations using randomly generated input parameters 2653 

drawn from uniform distributions (Table 3.2). Parameter ranges were adjusted for the viewing 2654 

geometries due to the slightly different solar zenith angles (SZAs) for each airborne dataset. 2655 

Biochemical constituents and biophysical parameters were estimated simultaneously for all study 2656 

plots using a 10-hidden layer artificial neural network (ANN) model (Hassoun, 1995, Combal et 2657 

al., 2003). The model was trained using 70% of the LUT spectra and tested using the remaining 2658 

30% with the mean squared error (MSE) as a performance measure. The model was fit in 2659 

MATLAB (MATLAB; Statistics and Machine Learning Toolbox and Deep Learning Toolbox; 2660 

Natick, Massachusetts, USA). Retrieved parameters were used to simulate reflectance spectra with 2661 

the FluSAIL model using the retrieved parameters and compared with the observed reflectance 2662 

spectra obtained from the imagery in the 400–900-nm range based upon the root-mean-square 2663 

deviation (RMSE) assessment. Additionally, the correlations of field leaf-level measurements 2664 

against estimated plant traits derived from the inversion of the FluSAIL model were compared 2665 

with those obtained from hyperspectral indices. 2666 
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  Table 3.2. Ranges of input parameters for the LUT of FluSAIL model. 2667 

Parameter Symbol Unit Range/Value 

Leaf thickness and constituents 

Chlorophyll a+b content Cab μg/cm2 20–70 

Carotenoid content Ccar μg/cm2 3–20 

Anthocyanin content Anth μg/cm2 0–10 

Leaf water content Cw g/cm2 0.001–0.05 

Leaf dry matter content Cdm g/cm2 0.001–0.05 

Brown pigment content Cs μg/cm2 0 

Leaf mesophyll structural parameter N-struct - 1.3–2.5 

Leaf dynamic biochemistry 

De-epoxidation state of the xanthophyll cycle 

(photochemical reflectance parameter) 
Cx - 0–3 

Fraction of photons partitioned to PSI fqeI - 0.002 

Fraction of photons partitioned to PSII fqeII - 0.02 

Canopy structural parameters 

Leaf area index LAI m2/m2 1–7 

Hot spot parameter q - 0.03 

Leaf inclination distribution function parameter a LIDFa - −1–1 

Leaf inclination distribution function parameter b LIDFb - −1–1 
 

 

To predict leaf N concentration, a pool of representative plant traits and parameters was considered 2668 

as inputs in the N model, including (1) leaf biochemical and canopy biophysical traits retrieved 2669 

from pure reflectance spectra with FluSAIL model inversion, (2) airborne-quantified SIF from 2670 

sunlit-crown radiance spectra, and (3) the water stress indicator CWSI calculated from the thermal 2671 

imagery. Random Forest (Breiman, 2001) and Gaussian process regression (Williams and 2672 

Rasmussen, 1996, Williams and Rasmussen, 2006) algorithms were built with fine-tunning of 2673 

hyperparameter optimization with 1,000 iterations incorporated in the leave-one-out-cross-2674 

validation (LOOCV, 15-fold) training and testing steps for each year’s dataset. Previously, input 2675 

collinearity was evaluated using the variance inflation factor (VIF) analysis (O’brien, 2007) 2676 

following the approach in Zarco-Tejada et al. (2018) conducted using the ‘fmsb’ package (Gareth 2677 
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et al., 2013) in R. Out-of-bag (OOB) predictor importance was implemented to rank the input 2678 

relative contribution to the models (as in Zarco-Tejada et al. (2021)). Input parameters with a high 2679 

degree of collinearity (VIF > 5) (Akinwande et al., 2015) and therefore less informative 2680 

contribution were filtered out to avoid redundancy. Both Random Forest and Gaussian process 2681 

regression models were evaluated using the final selection of input parameters. The model 2682 

performance was evaluated based on the coefficient of determination (r2) and RMSE. In addition, 2683 

models with different combination of any two non-collinear parameters were evaluated. In 2684 

particular, models using leaf biochemical constituents and biophysical parameters with and 2685 

without SIF were compared to assess the contribution of SIF to N assessments.  2686 

A final evaluation was conducted with the LOOCV (30-fold) method using the non-collinear 2687 

airborne-quantified Cab and SIF for N assessment from both datasets. Model performance was 2688 

determined using r2 and RMSE against the validation data from the 2 years. The best Gaussian 2689 

process regression model was applied at the tree-crown level to obtain the spatial variability of the 2690 

tree-based N concentration for the entire 1,200-ha almond orchard using the airborne-quantified 2691 

SIF and Cab content from FluSAIL RTM inversion. The continuous map of N concentration for 2692 

each management unit were generated using the Kernel interpolation with barriers (KIB) algorithm 2693 

(Worton, 1989) in ESRI ArcGIS Desktop (Redlands, CA, USA) to visualize the variability across 2694 

the entire orchard. 2695 

 

3.3 Results 2696 

3.1 Field and laboratory data analyses 2697 

Leaf nutrient and pigment content varied widely within the study site and across the two growing 2698 

seasons. Mean leaf N concentration was 2.07% in 2020 and 2.36% in 2021. The Dualex measured 2699 
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Cab and Flav were more variable in 2021 than in 2020. Mean Cab was 32.53 units in 2020 and 30.71 2700 

units in 2021. Mean Flav was 2.04 units in 2020 and 1.84 units in 2021. Anth range was higher in 2701 

2021 than in 2020, with a mean value of 0.24 units compared to 0.19 in 2020. NBI was 16.46 in 2702 

2020 and 17.18 in 2021. Ft was highly variable throughout the orchard and was higher in 2021 2703 

than in 2020, ranging from 1,648 to 2,751 units in 2020 and from 2,574 to 3,970 units in 2021. 2704 

The relationships between leaf steady-state chlorophyll fluorescence quartiles and derived spectral 2705 

and physiological metrics varied across seasons (Fig. 3.6). Similar linear relationships were 2706 

observed across seasons for leaf N concentration (Fig. 3.6a), Flav (Fig. 3.6c), NBI (Fig. 3.6d), and 2707 

leaf spectral indices (Fig. 3.6f-i). By contrast, Anth (Fig. 3.6e) exhibited opposite trends with Ft 2708 

quartiles between 2020 (negative) and 2021 (positive). Unexpectedly, leaf Cab (Fig. 3.6b) did not 2709 

exhibit consistent trends relative to leaf Ft quartiles, with generally positive and negative trends 2710 

for 2020 and 2021 (n.s.), respectively. 2711 
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Fig. 3.6. Ranges of variation based on leaf steady-state chlorophyll fluorescence (Ft) quartiles for 2712 

leaf phenotypes measured at the pre-harvest stage in 2020 (green) and 2021 (orange): a) nitrogen 2713 

concentration, b) chlorophyll a+b (Cab), c) flavonoid (Flav), d) Nitrogen Balance Index (NBI), e) 2714 

anthocyanins (Anth), f) CTRI1, g) PRI, h) PRI∙CI, and i) NPQI. The line through the box and 2715 

marker ‘x’ refer to the median and mean value, respectively. 2716 

 

In general, leaf measurements were correlated with each other across years (Fig. 3.7). Chlorophyll 2717 

content and leaf N were strongly correlated in 2020 (r2 = 0.60, p-value < 0.005, Fig. 3.7a). However, 2718 

this correlation was not statistically significant in 2021 (r2 = 0.04, n.s.). Leaf N was more 2719 

consistently correlated with Dualex-measured NBI (Fig. 3.7b) for both years (r2 = 0.68 for 2020 2720 
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and r2 = 0.64 for 2021; p-values < 0.005), since the index calculation incorporates both chlorophyll 2721 

and flavonoids. Leaf PRI (related to xanthophyll composition changes) was also correlated with 2722 

leaf N across seasons (r2 = 0.49 in 2020 and r2 = 0.58 in 2021; p-values < 0.005, Fig. 3.7c) as was 2723 

Ft (r2 = 0.54 in 2020 and r2 = 0.52 in 2021; p-values < 0.005, Fig. 3.7d). Leaf fluorescence (Fig. 2724 

3.7d) was strongly correlated with N when using combined 2-year data (r2 = 0.74, p-value < 0.005), 2725 

outperforming the rest of the leaf traits (e.g., r2 = 0.50 for PRI and NBI; p-values < 0.005). 2726 

 
Fig. 3.7. Relationships between leaf N concentration (%) and a) leaf chlorophyll content, b) 2727 

Nitrogen Balance Index (NBI), c) photochemical reflectance index (PRI), and d) steady-state 2728 

chlorophyll fluorescence (Ft). Green and orange represent data in 2020 and 2021, respectively. 2729 

Grey is used to represent correlation when combining data of 2 years. *p-value < 0.05; **p-value 2730 

< 0.01; ***p-value < 0.005; n.s. = not significant. 2731 
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3.2 Narrow-band indices calculated from airborne hyperspectral imagery 2732 

Relationships between narrow-band reflectance indices, airborne SIF, and field-based leaf 2733 

measurements are summarized in Table 3.3. The results present a wide range of correlation and 2734 

significance levels between leaf physiological measurements and indicators of canopy structure, 2735 

pigments, airborne-quantified fluorescence, and CWSI temperature-based stress indicator. 2736 

Airborne-quantified SIF (Fig. 3.8a) was significantly correlated with Ft in both 2020 (r2 = 0.73, p-2737 

value < 0.005) and 2021 (r2 = 0.30, p-value < 0.05). The relationship was stronger when combining 2738 

datasets across 2 years (r2 = 0.77, p-value < 0.005; shown by the grey dashed line in Fig. 3.8). SIF 2739 

was also significantly correlated with leaf N (r2 = 0.60 in 2020 and 0.55 in 2021, p-values < 0.005), 2740 

and the relationships remained strong when combining data from both years (r2 = 0.74, p-value < 2741 

0 .005, Fig. 3.8b). Strong correlations were also evident between SIF and leaf NBI (r2 = 0.46 and 2742 

0.67, p-values < 0.01) in 2020 and 2021, respectively. Fluorescence, as a proxy of photosynthesis, 2743 

both at the leaf (Fig. 3.7d) and canopy levels (Fig. 3.8b), achieved steady and strong relationships 2744 

with leaf N (r2 = 0.74, p-value < 0.005).  2745 

Hyperspectral indices related to vegetation structure (e.g., NDVI) and pigment concentration (e.g., 2746 

MCARI) were generally correlated with leaf chlorophyll measured by Dualex in 2020, but not in 2747 

2021 (Table 3.3). This pattern was reversed for leaf NBI, where canopy structure (e.g., EVI) and 2748 

pigment indices (e.g., MCARI) were more correlated in 2021 than in 2020. Leaf N was more 2749 

strongly related to pigment indices (i.e., MCARI and CTRI1, Figs. 9b and 9c) than structural 2750 

indices (i.e., NDVI and EVI) in both years. These strong relationships were not always consistent 2751 

over 2 years, as illustrated in Table 3.3. For example, the chlorophyll index TCARI/OSAVI was 2752 

unable to capture the existing N variability in 2021 (r2 = 0, n.s.) as it did in 2020 (r2 = 0.57, p-2753 

value < 0.01). 2754 
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Some pigment indices in Table 3.3 stand out in terms of their high correlations with N for both 2755 

years. For example, MCARI had an r2 of 0.61 and 0.48 (p-values < 0.005, Fig. 3.9b) in 2020 and 2756 

2021, respectively. PRI515 (PRI index using reference band at 515 nm to minimize structural effects) 2757 

(Stagakis et al., 2012, Zarco-Tejada et al., 2012, Hernández-Clemente et al., 2011) was superior 2758 

to PRI (at 570 nm) in both 2020 and 2021(Fig. 3.9d). 2759 

Many structural and pigment indices showed inconsistent trends across seasons, as shown in Fig. 2760 

3.9 and Table 3.3. When looking at data from the 2 years combined, no variables from Fig. 3.9 2761 

were significantly correlated with leaf N. NDVI had relatively weak associations with leaf N in 2762 

each year throughout this heterogeneous orchard. By contrast, airborne SIF calculated from the 2763 

illuminated crown pixels was consistently related to leaf N across years (Fig. 3.8). CWSI was not 2764 

consistently correlated with leaf N or pigment content in either year (Table 3.3). 2765 
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Table 3.3. Coefficients of determination (r2) for the intercorrelations among standard indices at 2766 

canopy level from the same 15 study plots in two consecutive years and leaf N concentration (%), 2767 

Dualex-derived leaf chlorophyll content (Cab), nitrogen balance index (NBI), and steady-state 2768 

chlorophyll fluorescence (Ft) measured with FluorPen. 2769 

 N (%) Cab NBI Ft 

 2020 2021 2020 2021 2020 2021 2020 2021 

Structural indices 

NDVI 0.25* 0.13 0.49*** 0.10 0.07 0.12 0.04 0.05 

EVI 0.37** 0.29** 0.56*** 0.01 0.14 0.43*** 0.07 0.17 

MCARI2 0.40** 0.28** 0.58*** 0.03 0.16 0.36** 0.09 0.15 

RDVI 0.36** 0.25* 0.58*** 0.01 0.15 0.36** 0.07 0.13 

OSAVI 0.34** 0.22* 0.57*** 0.03 0.13 0.29** 0.06 0.10 

Chlorophyll a+b indices 

MCARI 0.61*** 0.48*** 0.54*** 0.00 0.55*** 0.39** 0.44*** 0.31** 

TCARI/OSAVI 0.57*** 0.00 0.15 0.04 0.46*** 0.00 0.48*** 0.01 

NPQI 0.38** 0.00 0.37** 0.12 0.39** 0.00 0.36** 0.05 

PSSRa 0.24* 0.15 0.49*** 0.08 0.08 0.16 0.04 0.06 

PSSRb 0.14 0.12 0.43*** 0.06 0.03 0.14 0.01 0.05 

PSSRc 0.23* 0.16 0.58*** 0.02 0.12 0.21* 0.02 0.05 

SIPI 0.17 0.05 0.37** 0.16 0.02 0.03 0.02 0.02 

CTRI1 0.61*** 0.52*** 0.35** 0.03 0.76*** 0.51*** 0.45*** 0.18 

Indices calculated in the green region 

PRI 0.10 0.27** 0.01 0.13 0.24* 0.36** 0.10 0.08 

PRI515 0.69*** 0.47*** 0.61*** 0.11 0.43*** 0.38** 0.33** 0.25* 

PRI∙CI 0.13 0.18 0.49*** 0.15 0.03 0.21* 0.00 0.05 

Fluorescence quantification 

SIF 0.60*** 0.55*** 0.28** 0.00 0.46*** 0.67*** 0.73*** 0.30** 

Canopy temperature 

CWSI 0.05 0.03 0.00 0.23* 0.31** 0.01 0.10 0.03 

*p-value < 0.1; **p-value < 0.05; ***p-value < 0.01. 

Cab: Chlorophyll a+b content; NBI: Nitrogen Balance Index; Ft: steady-state chlorophyll fluorescence. 
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Fig. 3.8. Relationships between canopy SIF and a) leaf steady-state chlorophyll fluorescence (Ft) 2770 

and b) leaf N concentration (%) in 2020 (green), 2021 (orange), and the combined years (grey). 2771 

*p-value < 0.5; **p-value < 0.05; ***p-value < 0.005.  2772 
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Fig. 3.9. Leaf N against a) NDVI, b) MCARI, c) CTRI1, and d) PRI515 calculated from 2773 

hyperspectral imagery acquired in 2020 (green) and 2021 (orange). *p-value < 0.05; **p-value < 2774 

0.01; ***p-value < 0.005; n.s. = not significant. 2775 

 

3.3 Plant trait retrieval from the FluSAIL radiative transfer model 2776 

Modelled reflectance spectra from FluSAIL showed close agreement with observed spectra 2777 

extracted from pure tree crown vegetation pixels in airborne hyperspectral imagery, yielding 2778 

average RMSE values of 0.008 and 0.007 for 2020 and 2021, respectively. Fig. 3.10 illustrates a 2779 

simulated and observed spectra as well as a range of simulated spectra from the FluSAIL LUT. 2780 
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In 2020, leaf Cab from model inversion was strongly correlated to both the Dualex chlorophyll 2781 

measurement (r2 = 0.66, p-value < 0.001) and leaf N (r2 = 0.73, p-value < 0.001). As with the 2782 

hyperspectral indices, no model-derived measures were significantly correlated with Dualex 2783 

chlorophyll in 2021 (Table 3.4). In addition to Cab, other pigments (i.e., Ccar and Cx) also presented 2784 

significant relationships with leaf N. 2785 

Cx, which is sensitive to the de-epoxidation state of the xanthophyll cycle, was significantly 2786 

correlated with canopy PRI515 (r2 = 0.68 and 0.60 in 2020 and 2021, p-values < 0.001) and with 2787 

leaf N (r2 = 0.61 and 0.62 in 2020 and 2021, p-values < 0.001). Cab was also closely related to 2788 

canopy PRI515 (r2 = 0.80, p-value < 0.001) and SIF (r2 = 0.51, p-value < 0.005). No significant 2789 

relationship was detected between the retrieved LAI and leaf N throughout the orchard across years. 2790 

These results suggest that pigment content and N were highly correlated with biochemical 2791 

constituents and SIF but showed little effects on the crown structure.  2792 

 
Fig. 3.10. Comparison of the average hyperspectral image spectrum (orange dashed line) and the 2793 

corresponding spectrum obtained from the FluSAIL model inversion (blue solid line) for one 2794 

monitored plot. The simulated FluSAIL spectral range is shown in the shaded grey area. 2795 
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Table 3.4. Coefficients of determination (r2) for correlations among model-derived estimates from 2796 

the same 15 study plots in two consecutive years, including leaf chlorophyll a+b (Cab), carotenoids 2797 

(Ccar), anthocyanin (Anth), dry matter content (Cdm), photochemical reflectance parameter (Cx), 2798 

leaf area index (LAI), measured leaf N concentration (%), Dualex-measured chlorophyll content, 2799 

canopy SIF, and canopy photochemical reflectance index (PRI515). 2800 

Estimated 

parameter 

N (%) Leaf Cab Canopy SIF Canopy PRI515 

2020 2021 2020 2021 2020 2021 2020 2021 

Cab (μg/cm2) 0.73*** 0.66*** 0.66*** 0.10 0.51** 0.52** 0.80*** 0.82*** 

Ccar (μg/cm2) 0.75*** 0.56** 0.65*** 0.15 0.56** 0.43* 0.72*** 0.50** 

Anth (μg/cm2) 0.58*** 0.09 0.63*** 0.00 0.45* 0.04 0.85*** 0.00 

Cx 0.61*** 0.62*** 0.50** 0.01 0.54** 0.57** 0.68*** 0.60*** 

Cdm (g/cm2) 0.36* 0.20 0.58** 0.04 0.20 0.31* 0.59*** 0.79*** 

LAI 0.02 0.05 0.02 0.16 0.07 0.06 0.02 0.49** 

*p-value < 0.05; **p-value < 0.005; ***p-value < 0.001. 

 

3.4 Leaf N status assessment from the airborne-estimated plant traits and SIF 2801 

The final model for leaf N using traits derived from hyperspectral imagery was strongly correlated 2802 

to field-measured N across years (r2 = 0.96, p-value < 0.001). FluSAIL-inverted Cab and airborne-2803 

derived SIF had the greatest OOB predictor scores, followed by other biochemical constituents 2804 

(e.g., Ccar and Cx), as illustrated in Fig. 3.11a. While the structural trait LAI (p-value > 0.1) and 2805 

the thermal-based water stress indicator CWSI (p-value > 0.05) were not statistically significant 2806 

predictors of N. VIF analysis revealed that Cab and SIF were not collinear, but other biochemical 2807 

constituents (Ccar, Cx, and Cdm) were discarded from further analysis with a VIF > 5 (empty bars 2808 

in Fig. 3.11a). Fig. 3.11b shows that Cab and SIF were the most important predictors of N for both 2809 

years, yielding r2 and RMSE of 0.95 and 0.05%, respectively. 2810 

When using combined data from both years, the Gaussian regression model using chlorophyll 2811 

exclusively as a predictor explained 49% (p-value < 0.001) of the variability in N (Fig. 3.12a) 2812 

across the almond orchard. A Gaussian process regression model including Cab and SIF 2813 
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considerably increased the performance (r2 = 0.95, p-value < 0.001, RMSE = 0.05%, Fig. 3.12b). 2814 

This model with Cab and SIF outperformed any other combination of traits quantified from the 2815 

hyperspectral imagery for predicting leaf N. As an example, the addition of a structural parameter 2816 

(LAI) to the model only resulted in a slight increase of 0.02 in r2 and a 0.01% reduction in RMSE 2817 

(Fig. 3.12c) but yielded reasonable results when coupled to SIF (r2 = 0.81, p-value < 0.001, RMSE 2818 

= 0.1%, Fig. 3.12d). The consistency in the results obtained from the two growing seasons suggests 2819 

the importance of combining Cab and SIF to assess leaf N status as opposed to standard methods 2820 

based on individual traits or single vegetation indices, which are generally affected by management 2821 

practices and the changing growing conditions naturally varying across seasons. 2822 
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Fig. 3.11. The relative contribution from OOB importance scores of each variable to the predicted 2823 

N concentration from a) all plant traits estimated from hyperspectral and thermal imagery and b) 2824 

a non-collinear subset of variables (VIF < 5). 2825 
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Fig. 3.12. Correlations between leaf N concentration (%) and predicted N using models based on 2826 

a) chlorophyll a+b content alone, b) chlorophyll a+b content with canopy SIF, c) chlorophyll a+b 2827 

content with leaf area index (LAI), and d) LAI with canopy SIF. The grey diagonal line is the 1:1 2828 

line. All p-values < 0.001. 2829 

 

 

The N prediction map based on a model using Cab and SIF as predictors revealed that tree N was 2830 

spatially variable across the orchard in 2021 (Fig. 3.13). As expected, the pattern of N predictions 2831 

integrates trends in chlorophyll a+b content and SIF.  2832 
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Fig. 3.13. Interpolated map of a) chlorophyll a+b content, c) solar-induced fluorescence, and e) 2833 

predicted N concentration derived from Cab and SIF in 2021. Right column contains zoomed-in 2834 

views (b, d and f) of the scenes on the left in the northeast blocks. Block numbers are displayed in 2835 

the centers. 2836 
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3.4 Discussion 2837 

Previous studies using RS spectroscopy to estimate leaf N have often focused on developing 2838 

multispectral indices or proxies from leaf or canopy spectra. These methods usually require the 2839 

development of empirical models relating leaf N to chlorophyll-sensitive vegetation indices 2840 

(Clevers and Kooistra, 2011, Inoue et al., 2012, Schlemmer et al., 2013, Pancorbo et al., 2021, 2841 

Fitzgerald et al., 2010, Gabriel et al., 2017) or combinations of bands and indices (Haboudane et 2842 

al., 2002, Fitzgerald et al., 2010). However, these methods fail to explain leaf N variability in 2843 

woody crops that are characterized by structurally complex canopies that are managed to increase 2844 

productivity. In these highly managed orchard canopies, the relationship between structure and 2845 

nutrient levels is uncoupled; therefore, structural index-based models are not appropriate (Table 2846 

3.4). In these orchard canopies, the main drivers for the observed structural changes are the 2847 

planting density and the fractional cover, which add additional complexity to the use of structural 2848 

RS vegetation indices as indicators of nutrient levels. In these structurally complex orchards, the 2849 

spectral indices are heavily affected by the canopy architecture and by structural parameters, such 2850 

as leaf density, which in turn interact with the illumination and observation geometry within the 2851 

canopy (Haboudane et al., 2002, Broge and Leblanc, 2001, Wang et al., 2018). Therefore, the 2852 

variability observed with standard vegetation indices such as NDVI and other structurally sensitive 2853 

indicators may not necessarily represent the nutrient variability, but instead the heterogeneity due 2854 

to different tree ages, crown densities, and planting grids that usually coexist in large well-2855 

managed orchards such as the one used in this study. 2856 

The assessment of the physiological status, independent from the structure and canopy architecture 2857 

using plant traits through RTM model inversion, is particularly beneficial in the case of structurally 2858 

complex canopies (Malenovský et al., 2013) when trying to capture the within-field spatial 2859 
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variability of the leaf nutrient status independent from the structural variability. In this study, we 2860 

found that plant physiological estimates derived from RTM inversion using VNIR hyperspectral 2861 

imagery were generally stronger and more consistent predictors of leaf N status than the empirical 2862 

models built with vegetation indices. In particular, RTM-retrieved pigment Cab was the strongest 2863 

predictor (Fig. 3.11), consistent with the results of Camino et al. (2018a) for wheat. RTM-based 2864 

carotenoid content and the xanthophyll cycle (Cx) parameter were also more strongly related to 2865 

leaf N than vegetation indices in our study, as both are involved in light-harvesting regulation that 2866 

is associated with photosynthetic efficiency (Ruban et al., 1999). For instance, RTM-based 2867 

chlorophyll a+b content was strongly correlated with leaf N for both years of study (r2 = 0.73 in 2868 

2020 and 0.66 in 2021, p-values < 0.001), whereas the chlorophyll-sensitive index TCARI/OSAVI 2869 

was not correlated with N in 2021 (r2 = 0, n.s.), suggesting those indices are not reliable indicators 2870 

for N assessment across seasons. Spectral indices are greatly affected by management practices 2871 

and background changes across orchards and years, leading to inconsistencies that may make them 2872 

inappropriate for operational purposes. 2873 

The fact that both model-inverted LAI and structural hyperspectral indices were poorly related to 2874 

leaf N supports the idea that canopy structure is not driven by nutrient availability in well-managed 2875 

intensive orchards. As a consequence, it is not surprising that the widely used structural index 2876 

NDVI was inadequate for predicting leaf N in this context. Ground-based leaf chlorophyll 2877 

measurements were poorly related to leaf N when leaf N was high in 2021. This is consistent with 2878 

the results of Jifon et al. (2005), who found the relationship between chlorophyll meter readings 2879 

and leaf N was stronger at low chlorophyll concentrations than at higher chlorophyll 2880 

concentrations. At high N concentrations, there is a possibility that some N may be allocated to 2881 

soluble protein rather than pigment-protein complexes (Evans, 1989). And the soluble protein and 2882 
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pigment complexes in leaves can be imbalanced depending on leaf physical characteristics, plant 2883 

age, environmental factors, and management practices (Bondada and Syvertsen, 2003, Evans and 2884 

Poorter, 2001, Syvertsen and Smith Jr, 1984, Syvertsen et al., 1995). In our study, leaf nitrogen 2885 

balance index was more strongly correlated with leaf N and canopy indices as it incorporated the 2886 

ratio of a second pigment flavonoid into the calculation. This phenomenon was also observed at 2887 

the canopy level for both chlorophyll-sensitive vegetation indices and RTM-based pigment 2888 

concentrations. Cab at the canopy level was more strongly related to leaf N than Cab at the leaf level, 2889 

which may be attributed to the fact that the field-collected leaf measurements came from lower 2890 

layers of the tree crown, whereas the imagery captured the upper layers. Our results provide 2891 

evidence that RTM-based leaf physiological traits provide additional benefits over standard 2892 

structural indices for assessing leaf N in orchards, particularly when multiple varieties, ages, and 2893 

management practices coexist within the orchard.  2894 

Several studies have shown that SIF derived from sub-meter narrow-band imagery, in which the 2895 

depth of the oxygen absorption feature can be quantified, is an effective tool for detecting plant 2896 

stress in precision agriculture (Zarco-Tejada et al., 2012, Calderón et al., 2013, Quemada et al., 2897 

2014, Camino et al., 2018b, Camino et al., 2018a, Raya-Sereno et al., 2021). In this study, we also 2898 

found a strong association between fluorescence and leaf N, consistent with the literature (Corp et 2899 

al., 2003, Cendrero-Mateo et al., 2016, Schächtl et al., 2005), yielding r2 = 0.74 (p-value < 0.005) 2900 

over the course of 2 years at both leaf and canopy levels. Airborne-quantified SIF was the second 2901 

most important predictor of leaf N after Cab and outperformed any other vegetation index or 2902 

structural and temperature-based plant traits in terms of correlation and consistency across years. 2903 

When combined with RTM-based traits, SIF significantly improved model performance for 2904 

predicting leaf N. The model that included Cab and SIF explained 95% of the leaf N variability (p-2905 
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value < 0.001), improving upon results obtained with Cab alone (r2 = 0.49, p-value < 0.001) 2906 

accounting for different plant varieties, ages, planting patterns, water status levels, and fertilizer 2907 

management practices across 2 years. 2908 

CWSI, a thermal canopy water status index, was poorly associated with leaf N and relatively 2909 

inconsistent across years. Overall, we found no evidence of a relationship between CWSI and leaf 2910 

N, suggesting that leaf N variability was not driven by water status in this well-managed intensive 2911 

almond orchard. 2912 

 

3.5 Conclusions 2913 

This study demonstrates that leaf N estimation conducted in an almond orchard across 2 years was 2914 

significantly improved when SIF was included alongside RTM-based leaf chlorophyll a+b content. 2915 

Among all spectral plant traits evaluated from hyperspectral imagery, including all RTM-derived 2916 

leaf biochemical constituents, SIF, and structural and water stress traits, the retrieved leaf 2917 

chlorophyll a+b and SIF were the two most important predictors to explain leaf N variability. The 2918 

model that incorporated both chlorophyll a+b content and SIF traits explained 95% of the 2919 

variability in leaf N (p-value < 0.001) consistently across 2 years of airborne hyperspectral data 2920 

collection. Together, these results provide important insights into the quantification of leaf N 2921 

content in well-managed structurally complex canopies, such as discontinuous tree orchards, 2922 

demonstrating that traditional vegetation indices and individual plant traits do not sufficiently track 2923 

leaf N content over well-managed intensive crops typically reaching high N levels. 2924 

  



 

 
 

123  

References  2925 

ABRÀMOFF, M. D., MAGALHÃES, P. J. & RAM, S. J. 2004. Image processing with ImageJ. 2926 
Biophotonics international, 11, 36-42. 2927 

AKINWANDE, M. O., DIKKO, H. G. & SAMSON, A. 2015. Variance inflation factor: as a condition for 2928 
the inclusion of suppressor variable (s) in regression analysis. Open Journal of Statistics, 5, 754. 2929 

ASAI, W., MICKE, W., KESTER, D. & ROUGH, D. 1996. The evaluation and selection of current varieties; 2930 
almond production manual, University of California (system). Division of Agriculture and Natural 2931 
Resources. ANR Publications, California. 2932 

ASHRAF, M. & HARRIS, P. J. 2013. Photosynthesis under stressful environments: an overview. 2933 
Photosynthetica, 51, 163-190. 2934 

BARET, F., HOULÈS, V. & GUERIF, M. 2007. Quantification of plant stress using remote sensing 2935 
observations and crop models: the case of nitrogen management. Journal of Experimental Botany, 2936 
58, 869-880. 2937 

BARNES, J. D., BALAGUER, L., MANRIQUE, E., ELVIRA, S. & DAVISON, A. 1992. A reappraisal of 2938 
the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher 2939 
plants. Environmental and Experimental botany, 32, 85-100. 2940 

BELLVERT, J., ADELINE, K., BARAM, S., PIERCE, L., SANDEN, B. L. & SMART, D. R. 2018. 2941 
Monitoring crop evapotranspiration and crop coefficients over an almond and pistachio orchard 2942 
throughout remote sensing. Remote Sensing, 10, 2001. 2943 

BELWALKAR, A., POBLETE, T., LONGMIRE, A., HORNERO, A., HERNANDEZ-CLEMENTE, R. & 2944 
ZARCO-TEJADA, P. 2022. Evaluation of SIF retrievals from narrow-band and sub-nanometer 2945 
airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant 2946 
phenotyping. Remote Sensing of Environment, 273. 2947 

BELWALKAR, A., POBLETE, T., LONGMIRE, A., HORNERO, A. & ZARCO-TEJADA, P. Comparing 2948 
the Retrieval of Chlorophyll Fluorescence from Two Airborne Hyperspectral Imagers with 2949 
Different Spectral Resolutions for Plant Phenotyping Studies.  2021 IEEE International Geoscience 2950 
and Remote Sensing Symposium IGARSS, 2021. IEEE, 5845-5848. 2951 

BISWAL, B., JOSHI, P., RAVAL, M. & BISWAL, U. 2011. Photosynthesis, a global sensor of 2952 
environmental stress in green plants: stress signalling and adaptation. Current Science, 47-56. 2953 

BLACKBURN, G. A. 1998. Spectral indices for estimating photosynthetic pigment concentrations: a test 2954 
using senescent tree leaves. International Journal of remote sensing, 19, 657-675. 2955 

BONDADA, B. R. & SYVERTSEN, J. P. 2003. Leaf chlorophyll, net gas exchange and chloroplast 2956 
ultrastructure in citrus leaves of different nitrogen status. Tree Physiology, 23, 553-559. 2957 

BREIMAN, L. 2001. Random forests. Machine learning, 45, 5-32. 2958 
BROGE, N. H. & LEBLANC, E. 2001. Comparing prediction power and stability of broadband and 2959 

hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll 2960 
density. Remote sensing of environment, 76, 156-172. 2961 

BUCKEE, G. 1994. Determination of total nitrogen in barley, malt and beer by Kjeldahl procedures and 2962 
the dumas combustion methodcollaborative trial. Journal of the Institute of Brewing, 100, 57-64. 2963 

BULLOCK, D. & ANDERSON, D. 1998. Evaluation of the Minolta SPAD‐502 chlorophyll meter for 2964 
nitrogen management in corn. Journal of Plant Nutrition, 21, 741-755. 2965 

CALDERÓN, R., NAVAS-CORTÉS, J. A., LUCENA, C. & ZARCO-TEJADA, P. J. 2013. High-2966 
resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of 2967 
olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of 2968 
Environment, 139, 231-245. 2969 

CAMINO, C., GONZÁLEZ-DUGO, V., HERNÁNDEZ, P., SILLERO, J. & ZARCO‐TEJADA, P. J. 2970 
2018a. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified 2971 
from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International 2972 
journal of applied earth observation and geoinformation, 70, 105-117. 2973 



 

 
 

124  

CAMINO, C., ZARCO-TEJADA, P. J. & GONZALEZ-DUGO, V. 2018b. Effects of heterogeneity within 2974 
tree crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of 2975 
precision agriculture. Remote Sensing, 10, 604. 2976 

CARTER, G. A. 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. 2977 
of Remote Sensing, 15, 697-703. 2978 

CENDRERO-MATEO, M. P., MORAN, M. S., PAPUGA, S. A., THORP, K., ALONSO, L., MORENO, 2979 
J., PONCE-CAMPOS, G., RASCHER, U. & WANG, G. 2016. Plant chlorophyll fluorescence: 2980 
active and passive measurements at canopy and leaf scales with different nitrogen treatments. 2981 
Journal of Experimental Botany, 67, 275-286. 2982 

CEROVIC, Z. G., GHOZLEN, N. B., MILHADE, C., OBERT, M. L., DEBUISSON, S. B. & MOIGNE, 2983 
M. L. 2015. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) 2984 
based on dualex leaf-clip measurements in the field. Journal of agricultural and food chemistry, 2985 
63, 3669-3680. 2986 

CEROVIC, Z. G., MASDOUMIER, G., GHOZLEN, N. B. & LATOUCHE, G. 2012. A new optical leaf‐2987 
clip meter for simultaneous non‐destructive assessment of leaf chlorophyll and epidermal 2988 
flavonoids. Physiologia plantarum, 146, 251-260. 2989 

CHANG, S. X. & ROBISON, D. J. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen 2990 
status using the SPAD-502 chlorophyll meter. Forest Ecology and Management, 181, 331-338. 2991 

CHAPMAN, S. C. & BARRETO, H. J. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen 2992 
of tropical maize during vegetative growth. Agronomy Journal, 89, 557-562. 2993 

CHENG, L. 2003. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple 2994 
leaves. Journal of Experimental Botany, 54, 385-393. 2995 

CLEVERS, J. G. & GITELSON, A. A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen 2996 
content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth 2997 
Observation and Geoinformation, 23, 344-351. 2998 

CLEVERS, J. G. & KOOISTRA, L. 2011. Using hyperspectral remote sensing data for retrieving canopy 2999 
chlorophyll and nitrogen content. IEEE Journal of selected topics in applied earth observations 3000 
and remote sensing, 5, 574-583. 3001 

COMBAL, B., BARET, F., WEISS, M., TRUBUIL, A., MACE, D., PRAGNERE, A., MYNENI, R., 3002 
KNYAZIKHIN, Y. & WANG, L. 2003. Retrieval of canopy biophysical variables from 3003 
bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote 3004 
sensing of environment, 84, 1-15. 3005 

CONANT, R. T., BERDANIER, A. B. & GRACE, P. R. 2013. Patterns and trends in nitrogen use and 3006 
nitrogen recovery efficiency in world agriculture. Global Biogeochemical Cycles, 27, 558-566. 3007 

CORP, L. A., MCMURTREY, J. E., MIDDLETON, E. M., MULCHI, C. L., CHAPPELLE, E. W. & 3008 
DAUGHTRY, C. S. 2003. Fluorescence sensing systems: In vivo detection of biophysical 3009 
variations in field corn due to nitrogen supply. Remote sensing of environment, 86, 470-479. 3010 

CUMMINGS, C., MIAO, Y., PAIAO, G. D., KANG, S. & FERNÁNDEZ, F. G. 2021. Corn nitrogen status 3011 
diagnosis with an innovative multi-parameter crop circle phenom sensing system. Remote Sensing, 3012 
13, 401. 3013 

DAUGHTRY, C. S., WALTHALL, C., KIM, M., DE COLSTOUN, E. B. & MCMURTREY III, J. 2000. 3014 
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing 3015 
of Environment, 74, 229-239. 3016 

DEMMIG, B., WINTER, K., KRÜGER, A. & CZYGAN, F.-C. 1987. Photoinhibition and zeaxanthin 3017 
formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light 3018 
energy. Plant physiology, 84, 218-224. 3019 

DONG, R., MIAO, Y., WANG, X., CHEN, Z., YUAN, F., ZHANG, W. & LI, H. 2020. Estimating plant 3020 
nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote 3021 
Sensing, 12, 1139. 3022 

DUMAS, J. B. A. 1831. Procedes de l’analyse Organic. Annales de Chimie et de Physique (Annals of 3023 
Chemistry and of Physics), 247, 198-213. 3024 



 

 
 

125  

ETHERIDGE, R., PESTI, G. & FOSTER, E. 1998. A comparison of nitrogen values obtained utilizing the 3025 
Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of 3026 
an animal nutrition analytical laboratory. Animal Feed Science and Technology, 73, 21-28. 3027 

EVANS, J. 1989. Photosynthesis and nitrogen relationships in leaves of C 3 plants. Oecologia, 78, 9-19. 3028 
EVANS, J. & POORTER, H. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative 3029 

importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, cell & 3030 
environment, 24, 755-767. 3031 

FILELLA, I., SERRANO, L., SERRA, J. & PENUELAS, J. 1995. Evaluating wheat nitrogen status with 3032 
canopy reflectance indices and discriminant analysis. Crop Science, 35, 1400-1405. 3033 

FITZGERALD, G., RODRIGUEZ, D., CHRISTENSEN, L., BELFORD, R., SADRAS, V. & CLARKE, 3034 
T. 2006. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat 3035 
environments. Precision Agriculture, 7, 233-248. 3036 

FITZGERALD, G., RODRIGUEZ, D. & O’LEARY, G. 2010. Measuring and predicting canopy nitrogen 3037 
nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field 3038 
Crops Research, 116, 318-324. 3039 

FLOWERS, M., WEISZ, R. & HEINIGER, R. 2003. Quantitative approaches for using color infrared 3040 
photography for assessing in‐season nitrogen status in winter wheat. Agronomy journal, 95, 1189-3041 
1200. 3042 

GABRIEL, J. L., ZARCO-TEJADA, P. J., LÓPEZ-HERRERA, P. J., PÉREZ-MARTÍN, E., ALONSO-3043 
AYUSO, M. & QUEMADA, M. 2017. Airborne and ground level sensors for monitoring nitrogen 3044 
status in a maize crop. Biosystems Engineering, 160, 124-133. 3045 

GAMON, J., PENUELAS, J. & FIELD, C. 1992. A narrow-waveband spectral index that tracks diurnal 3046 
changes in photosynthetic efficiency. Remote Sensing of environment, 41, 35-44. 3047 

GARETH, J., DANIELA, W., TREVOR, H. & ROBERT, T. 2013. An introduction to statistical learning: 3048 
with applications in R, Spinger. 3049 

GARRITY, S. R., EITEL, J. U. & VIERLING, L. A. 2011. Disentangling the relationships between plant 3050 
pigments and the photochemical reflectance index reveals a new approach for remote estimation of 3051 
carotenoid content. Remote Sensing of Environment, 115, 628-635. 3052 

GENTY, B., BRIANTAIS, J.-M. & BAKER, N. R. 1989. The relationship between the quantum yield of 3053 
photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et 3054 
Biophysica Acta (BBA)-General Subjects, 990, 87-92. 3055 

GILMORE, A. M. 1997. Mechanistic aspects of xanthophyll cycle‐dependent photoprotection in higher 3056 
plant chloroplasts and leaves. Physiologia Plantarum, 99, 197-209. 3057 

GITELSON, A. A., GRITZ, Y. & MERZLYAK, M. N. 2003. Relationships between leaf chlorophyll 3058 
content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in 3059 
higher plant leaves. Journal of plant physiology, 160, 271-282. 3060 

GITELSON, A. A., MERZLYAK, M. N. & LICHTENTHALER, H. K. 1996. Detection of red edge 3061 
position and chlorophyll content by reflectance measurements near 700 nm. Journal of plant 3062 
physiology, 148, 501-508. 3063 

GNYP, M. L., MIAO, Y., YUAN, F., USTIN, S. L., YU, K., YAO, Y., HUANG, S. & BARETH, G. 2014. 3064 
Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field 3065 
Crops Research, 155, 42-55. 3066 

GUEYMARD, C. A. 1995. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: 3067 
algorithms and performance assessment, Florida Solar Energy Center Cocoa, FL. 3068 

GUEYMARD, C. A. 2001. Parameterized transmittance model for direct beam and circumsolar spectral 3069 
irradiance. Solar Energy, 71, 325-346. 3070 

GUEYMARD, C. A., MYERS, D. & EMERY, K. 2002. Proposed reference irradiance spectra for solar 3071 
energy systems testing. Solar energy, 73, 443-467. 3072 

HABOUDANE, D., MILLER, J. R., PATTEY, E., ZARCO-TEJADA, P. J. & STRACHAN, I. B. 2004. 3073 
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: 3074 



 

 
 

126  

Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90, 3075 
337-352. 3076 

HABOUDANE, D., MILLER, J. R., TREMBLAY, N., ZARCO-TEJADA, P. J. & DEXTRAZE, L. 2002. 3077 
Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application 3078 
to precision agriculture. Remote sensing of environment, 81, 416-426. 3079 

HASSOUN, M. H. 1995. Fundamentals of artificial neural networks, MIT press. 3080 
HERNÁNDEZ-CLEMENTE, R., NAVARRO-CERRILLO, R. M., SUÁREZ, L., MORALES, F. & 3081 

ZARCO-TEJADA, P. J. 2011. Assessing structural effects on PRI for stress detection in conifer 3082 
forests. Remote Sensing of Environment, 115, 2360-2375. 3083 

HILL, S., STEPHENSON, D. & TAYLOR, B. 1985. Almond pollination studies: pollen production and 3084 
viability, flower emergence and cross-pollination tests. Australian Journal of Experimental 3085 
Agriculture, 25, 697-704. 3086 

HUANG, Z.-A., JIANG, D.-A., YANG, Y., SUN, J.-W. & JIN, S.-H. 2004. Effects of nitrogen deficiency 3087 
on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. 3088 
Photosynthetica, 42, 357-364. 3089 

IDSO, S., JACKSON, R., PINTER JR, P., REGINATO, R. & HATFIELD, J. 1981. Normalizing the stress-3090 
degree-day parameter for environmental variability. Agricultural meteorology, 24, 45-55. 3091 

INOUE, Y., SAKAIYA, E., ZHU, Y. & TAKAHASHI, W. 2012. Diagnostic mapping of canopy nitrogen 3092 
content in rice based on hyperspectral measurements. Remote Sensing of Environment, 126, 210-3093 
221. 3094 

JACKSON, R. D., IDSO, S., REGINATO, R. & PINTER JR, P. 1981. Canopy temperature as a crop water 3095 
stress indicator. Water resources research, 17, 1133-1138. 3096 

JACQUEMOUD, S., VERHOEF, W., BARET, F., BACOUR, C., ZARCO-TEJADA, P. J., ASNER, G. P., 3097 
FRANÇOIS, C. & USTIN, S. L. 2009. PROSPECT+ SAIL models: A review of use for vegetation 3098 
characterization. Remote sensing of environment, 113, S56-S66. 3099 

JIFON, J. L., SYVERTSEN, J. P. & WHALEY, E. 2005. Growth environment and leaf anatomy affect 3100 
nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. Journal of the American 3101 
Society for Horticultural Science, 130, 152-158. 3102 

JONGSCHAAP, R. E. & BOOIJ, R. 2004. Spectral measurements at different spatial scales in potato: 3103 
relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation 3104 
and Geoinformation, 5, 205-218. 3105 

KIMES, D. S., KNYAZIKHIN, Y., PRIVETTE, J., ABUELGASIM, A. & GAO, F. 2000. Inversion 3106 
methods for physically‐based models. Remote Sensing Reviews, 18, 381-439. 3107 

KJELDAHL, J. 1883. A new method for the estimation of nitrogen in organic compounds. Z. Anal. Chem, 3108 
22, 366. 3109 

KRAUSE, G. & WEIS, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual review 3110 
of plant biology, 42, 313-349. 3111 

LI, F., MIAO, Y., FENG, G., YUAN, F., YUE, S., GAO, X., LIU, Y., LIU, B., USTIN, S. L. & CHEN, X. 3112 
2014. Improving estimation of summer maize nitrogen status with red edge-based spectral 3113 
vegetation indices. Field Crops Research, 157, 111-123. 3114 

LI, H., ZHANG, Y., LEI, Y., ANTONIUK, V. & HU, C. 2020. Evaluating different non-destructive 3115 
estimation methods for winter wheat (Triticum aestivum L.) nitrogen status based on canopy 3116 
spectrum. Remote Sensing, 12, 95. 3117 

LIU, H. Q. & HUETE, A. 1995. A feedback based modification of the NDVI to minimize canopy 3118 
background and atmospheric noise. IEEE transactions on geoscience and remote sensing, 33, 457-3119 
465. 3120 

LU, C. & ZHANG, J. 2000. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition 3121 
as affected by nitrogen deficiency in maize plants. Plant Science, 151, 135-143. 3122 

MAIER, S. W., GÜNTHER, K. P. & STELLMES, M. 2004. Sun‐induced fluorescence: A new tool for 3123 
precision farming. Digital imaging and spectral techniques: Applications to precision agriculture 3124 
and crop physiology, 66, 207-222. 3125 



 

 
 

127  

MALENOVSKÝ, Z., HOMOLOVÁ, L., ZURITA-MILLA, R., LUKEŠ, P., KAPLAN, V., HANUŠ, J., 3126 
GASTELLU-ETCHEGORRY, J.-P. & SCHAEPMAN, M. E. 2013. Retrieval of spruce leaf 3127 
chlorophyll content from airborne image data using continuum removal and radiative transfer. 3128 
Remote Sensing of Environment, 131, 85-102. 3129 

MANNA, M., SWARUP, A., WANJARI, R., RAVANKAR, H., MISHRA, B., SAHA, M., SINGH, Y., 3130 
SAHI, D. & SARAP, P. 2005. Long-term effect of fertilizer and manure application on soil organic 3131 
carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. 3132 
Field crops research, 93, 264-280. 3133 

MATSON, P. A., NAYLOR, R. & ORTIZ-MONASTERIO, I. 1998. Integration of environmental, 3134 
agronomic, and economic aspects of fertilizer management. Science, 280, 112-115. 3135 

MATSUSHITA, B., YANG, W., CHEN, J., ONDA, Y. & QIU, G. 2007. Sensitivity of the enhanced 3136 
vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: 3137 
a case study in high-density cypress forest. Sensors, 7, 2636-2651. 3138 

MAXWELL, K. & JOHNSON, G. N. 2000. Chlorophyll fluorescence—a practical guide. Journal of 3139 
experimental botany, 51, 659-668. 3140 

MIDDLETON, E. M., HUEMMRICH, K. F., CHENG, Y.-B. & MARGOLIS, H. A. 2016. 12 spectral 3141 
bioindicators of photosynthetic efficiency and vegetation stress. Hyperspectral remote sensing of 3142 
vegetation. CRC Press. 3143 

MOHAMMED, G. H., BINDER, W. & GILLIES, S. 1995. Chlorophyll fluorescence: a review of its 3144 
practical forestry applications and instrumentation. Scandinavian Journal of Forest Research, 10, 3145 
383-410. 3146 

MOHAMMED, G. H., COLOMBO, R., MIDDLETON, E. M., RASCHER, U., VAN DER TOL, C., 3147 
NEDBAL, L., GOULAS, Y., PÉREZ-PRIEGO, O., DAMM, A. & MERONI, M. 2019. Remote 3148 
sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote 3149 
sensing of environment, 231, 111177. 3150 

MURCHIE, E. H. & LAWSON, T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and 3151 
understanding some new applications. Journal of experimental botany, 64, 3983-3998. 3152 

NAGESWARA RAO, R., TALWAR, H. & WRIGHT, G. 2001. Rapid assessment of specific leaf area and 3153 
leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. Journal of Agronomy and 3154 
Crop Science, 186, 175-182. 3155 

NGUY-ROBERTSON, A., GITELSON, A., PENG, Y., VIÑA, A., ARKEBAUER, T. & RUNDQUIST, D. 3156 
2012. Green leaf area index estimation in maize and soybean: Combining vegetation indices to 3157 
achieve maximal sensitivity. Agronomy Journal, 104, 1336-1347. 3158 

NIBLACK, W. 1985. An introduction to digital image processing, Strandberg Publishing Company. 3159 
NIGON, T. J., YANG, C., DIAS PAIAO, G., MULLA, D. J., KNIGHT, J. F. & FERNÁNDEZ, F. G. 2020. 3160 

Prediction of Early Season Nitrogen Uptake in Maize Using High-Resolution Aerial Hyperspectral 3161 
Imagery. Remote Sensing, 12, 1234. 3162 

NIYOGI, K. K., BJÖRKMAN, O. & GROSSMAN, A. R. 1997. The roles of specific xanthophylls in 3163 
photoprotection. Proceedings of the National Academy of Sciences, 94, 14162-14167. 3164 

O’BRIEN, R. M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 3165 
41, 673-690. 3166 

PADILLA, F. M., DE SOUZA, R., PEÑA-FLEITAS, M. T., GALLARDO, M., GIMENEZ, C. & 3167 
THOMPSON, R. B. 2018. Different responses of various chlorophyll meters to increasing nitrogen 3168 
supply in sweet pepper. Frontiers in plant science, 9, 1752. 3169 

PANCORBO, J., CAMINO, C., ALONSO-AYUSO, M., RAYA-SERENO, M., GONZALEZ-3170 
FERNANDEZ, I., GABRIEL, J., ZARCO-TEJADA, P. & QUEMADA, M. 2021. Simultaneous 3171 
assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. 3172 
European Journal of Agronomy, 127, 126287. 3173 

PANHWAR, Q. A., ALI, A., NAHER, U. A. & MEMON, M. Y. 2019. Fertilizer management strategies 3174 
for enhancing nutrient use efficiency and sustainable wheat production. Organic Farming. Elsevier. 3175 



 

 
 

128  

PENUELAS, J., BARET, F. & FILELLA, I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll 3176 
a ratio from leaf spectral reflectance. Photosynthetica, 31, 221-230. 3177 

PERRY, E. M., FITZGERALD, G. J., NUTTALL, J. G., O’LEARY, G. J., SCHULTHESS, U. & 3178 
WHITLOCK, A. 2012. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using 3179 
a Canopy Chlorophyll Content Index. Field Crops Research, 134, 158-164. 3180 

PHANSALKAR, N., MORE, S., SABALE, A. & JOSHI, M. Adaptive local thresholding for detection of 3181 
nuclei in diversity stained cytology images.  2011 International conference on communications and 3182 
signal processing, 2011. IEEE, 218-220. 3183 

PINTER JR, P. J., HATFIELD, J. L., SCHEPERS, J. S., BARNES, E. M., MORAN, M. S., DAUGHTRY, 3184 
C. S. & UPCHURCH, D. R. 2003. Remote sensing for crop management. Photogrammetric 3185 
Engineering & Remote Sensing, 69, 647-664. 3186 

PLASCYK, J. A. & GABRIEL, F. C. 1975. The Fraunhofer line discriminator MKII-an airborne instrument 3187 
for precise and standardized ecological luminescence measurement. IEEE Transactions on 3188 
Instrumentation and measurement, 24, 306-313. 3189 

PORCAR-CASTELL, A., TYYSTJÄRVI, E., ATHERTON, J., VAN DER TOL, C., FLEXAS, J., 3190 
PFÜNDEL, E. E., MORENO, J., FRANKENBERG, C. & BERRY, J. A. 2014. Linking chlorophyll 3191 
a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. 3192 
Journal of experimental botany, 65, 4065-4095. 3193 

QUEMADA, M., GABRIEL, J. L. & ZARCO-TEJADA, P. 2014. Airborne hyperspectral images and 3194 
ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote sensing, 3195 
6, 2940-2962. 3196 

RAMALHO, J. C., PONS, T. L., GROENEVELD, H. W., AZINHEIRA, H. G. & NUNES, M. A. 2000. 3197 
Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: role of 3198 
xanthophylls, quenching mechanisms and nitrogen nutrition. Functional Plant Biology, 27, 43-51. 3199 

RAYA-SERENO, M. D., ALONSO-AYUSO, M., PANCORBO, J. L., GABRIEL, J. L., CAMINO, C., 3200 
ZARCO-TEJADA, P. J. & QUEMADA, M. 2021. Residual Effect and N Fertilizer Rate Detection 3201 
by High-Resolution VNIR-SWIR Hyperspectral Imagery and Solar-Induced Chlorophyll 3202 
Fluorescence in Wheat. IEEE Transactions on Geoscience and Remote Sensing. 3203 

ROMINA, D. S., TERESA, P.-F., RODNEY, B. T., MARISA, G., RAFAEL, G. & FRANCISCO, M. P. 3204 
2019. The use of chlorophyll meters to assess crop N status and derivation of sufficiency values for 3205 
sweet pepper. Sensors, 19, 2949. 3206 

RONDEAUX, G., STEVEN, M. & BARET, F. 1996. Optimization of soil-adjusted vegetation indices. 3207 
Remote sensing of environment, 55, 95-107. 3208 

ROUJEAN, J.-L. & BREON, F.-M. 1995. Estimating PAR absorbed by vegetation from bidirectional 3209 
reflectance measurements. Remote sensing of Environment, 51, 375-384. 3210 

ROUSE, J. W., HAAS, R. H., SCHELL, J. A. & DEERING, D. W. 1974. Monitoring vegetation systems 3211 
in the Great Plains with ERTS. NASA special publication, 351, 309. 3212 

RUBAN, A. V., LEE, P. J., WENTWORTH, M., YOUNG, A. J. & HORTON, P. 1999. Determination of 3213 
the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting 3214 
complexes. Journal of Biological Chemistry, 274, 10458-10465. 3215 

SAIBO, N. J., LOURENÇO, T. & OLIVEIRA, M. M. 2009. Transcription factors and regulation of 3216 
photosynthetic and related metabolism under environmental stresses. Annals of botany, 103, 609-3217 
623. 3218 

SAYED, O. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321-330. 3219 
SCHÄCHTL, J., HUBER, G., MAIDL, F.-X., STICKSEL, E., SCHULZ, J. & HASCHBERGER, P. 2005. 3220 

Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat 3221 
(Triticum aestivum L.) canopies. Precision Agriculture, 6, 143-156. 3222 

SCHEPERS, J., FRANCIS, D., VIGIL, M. & BELOW, F. 1992. Comparison of corn leaf nitrogen 3223 
concentration and chlorophyll meter readings. Communications in soil science and plant analysis, 3224 
23, 2173-2187. 3225 



 

 
 

129  

SCHLEMMER, M., GITELSON, A., SCHEPERS, J., FERGUSON, R., PENG, Y., SHANAHAN, J. & 3226 
RUNDQUIST, D. 2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf 3227 
and canopy levels. International Journal of Applied Earth Observation and Geoinformation, 25, 3228 
47-54. 3229 

SHCHERBAK, I., MILLAR, N. & ROBERTSON, G. P. 2014. Global metaanalysis of the nonlinear 3230 
response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National 3231 
Academy of Sciences, 111, 9199-9204. 3232 

SNYDER, C. S., BRUULSEMA, T. W., JENSEN, T. L. & FIXEN, P. E. 2009. Review of greenhouse gas 3233 
emissions from crop production systems and fertilizer management effects. Agriculture, 3234 
Ecosystems & Environment, 133, 247-266. 3235 

STAGAKIS, S., GONZÁLEZ-DUGO, V., CID, P., GUILLÉN-CLIMENT, M. L. & ZARCO-TEJADA, P. 3236 
J. 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit 3237 
irrigation using narrow-band structural and physiological remote sensing indices. ISPRS Journal 3238 
of Photogrammetry and Remote Sensing, 71, 47-61. 3239 

STEVENSON, F. J. & COLE, M. A. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, 3240 
micronutrients, John Wiley & Sons. 3241 

SYVERTSEN, J., LLOYD, J., MCCONCHIE, C., KRIEDEMANN, P. & FARQUHAR, G. 1995. On the 3242 
relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous 3243 
leaves. Plant, Cell & Environment, 18, 149-157. 3244 

SYVERTSEN, J. & SMITH JR, M. 1984. Light acclimation in citrus leaves. I: Changes in physical 3245 
characteristics, chlorophyll, and nitrogen content. Journal of the American Society for Horticultural 3246 
Science, 109, 807-812. 3247 

THORP, K., WANG, G., WEST, A., MORAN, M., BRONSON, K., WHITE, J. & MON, J. 2012. 3248 
Estimating crop biophysical properties from remote sensing data by inverting linked radiative 3249 
transfer and ecophysiological models. Remote Sensing of Environment, 124, 224-233. 3250 

TÓTH, V. R., MÉSZÁROS, I., VERES, S. & NAGY, J. 2002. Effects of the available nitrogen on the 3251 
photosynthetic activity and xanthophyll cycle pool of maize in field. Journal of Plant Physiology, 3252 
159, 627-634. 3253 

VERHOEF, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The 3254 
SAIL model. Remote sensing of environment, 16, 125-141. 3255 

VERHOEVEN, A. S., ADAMS III, W. W., DEMMIG-ADAMS, B., CROCE, R. & BASSI, R. 1999. 3256 
Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and 3257 
light stress in Vinca major. Plant Physiology, 120, 727-738. 3258 

VILFAN, N., VAN DER TOL, C., MULLER, O., RASCHER, U. & VERHOEF, W. 2016. Fluspect-B: A 3259 
model for leaf fluorescence, reflectance and transmittance spectra. Remote Sensing of Environment, 3260 
186, 596-615. 3261 

VILFAN, N., VAN DER TOL, C., YANG, P., WYBER, R., MALENOVSKÝ, Z., ROBINSON, S. A. & 3262 
VERHOEF, W. 2018. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. 3263 
Remote sensing of environment, 211, 345-356. 3264 

WALKER, A. P., BECKERMAN, A. P., GU, L., KATTGE, J., CERNUSAK, L. A., DOMINGUES, T. F., 3265 
SCALES, J. C., WOHLFAHRT, G., WULLSCHLEGER, S. D. & WOODWARD, F. I. 2014. The 3266 
relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and 3267 
specific leaf area: a meta‐analysis and modeling study. Ecology and evolution, 4, 3218-3235. 3268 

WANG, Y., SUAREZ, L., QIAN, X., POBLETE, T., GONZALEZ-DUGO, V., RYU, D. & ZARCO-3269 
TEJADA, P. Assessing the Contribution of Airborne-Retrieved Chlorophyll Fluorescence for 3270 
Nitrogen Assessment in Almond Orchards.  2021 IEEE International Geoscience and Remote 3271 
Sensing Symposium IGARSS, 2021. IEEE, 5853-5856. 3272 

WANG, Z., SKIDMORE, A. K., DARVISHZADEH, R. & WANG, T. 2018. Mapping forest canopy 3273 
nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne 3274 
hyperspectral imagery. Agricultural and forest meteorology, 253, 247-260. 3275 

WILLIAMS, C. K. & RASMUSSEN, C. E. 1996. Gaussian processes for regression. 3276 



 

 
 

130  

WILLIAMS, C. K. & RASMUSSEN, C. E. 2006. Gaussian processes for machine learning, MIT press 3277 
Cambridge, MA. 3278 

WOOD, C., REEVES, D., DUFFIELD, R. & EDMISTEN, K. 1992. Field chlorophyll measurements for 3279 
evaluation of corn nitrogen status. Journal of Plant Nutrition, 15, 487-500. 3280 

WORTON, B. J. 1989. Kernel methods for estimating the utilization distribution in home‐range studies. 3281 
Ecology, 70, 164-168. 3282 

WU, C., NIU, Z., TANG, Q. & HUANG, W. 2008. Estimating chlorophyll content from hyperspectral 3283 
vegetation indices: Modeling and validation. Agricultural and forest meteorology, 148, 1230-1241. 3284 

XIONG, D., CHEN, J., YU, T., GAO, W., LING, X., LI, Y., PENG, S. & HUANG, J. 2015. SPAD-based 3285 
leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. 3286 
Scientific reports, 5, 1-12. 3287 

YODER, B. J. & PETTIGREW-CROSBY, R. E. 1995. Predicting nitrogen and chlorophyll content and 3288 
concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote sensing 3289 
of environment, 53, 199-211. 3290 

ZARCO-TEJADA, P. J., CAMINO, C., BECK, P., CALDERON, R., HORNERO, A., HERNÁNDEZ-3291 
CLEMENTE, R., KATTENBORN, T., MONTES-BORREGO, M., SUSCA, L. & MORELLI, M. 3292 
2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. 3293 
Nature Plants, 4, 432-439. 3294 

ZARCO-TEJADA, P. J., GONZÁLEZ-DUGO, M. & FERERES, E. 2016. Seasonal stability of chlorophyll 3295 
fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis 3296 
in the context of precision agriculture. Remote Sensing of Environment, 179, 89-103. 3297 

ZARCO-TEJADA, P. J., GONZÁLEZ-DUGO, V. & BERNI, J. A. 2012. Fluorescence, temperature and 3298 
narrow-band indices acquired from a UAV platform for water stress detection using a micro-3299 
hyperspectral imager and a thermal camera. Remote sensing of environment, 117, 322-337. 3300 

ZARCO-TEJADA, P. J., MORALES, A., TESTI, L. & VILLALOBOS, F. J. 2013. Spatio-temporal 3301 
patterns of chlorophyll fluorescence and physiological and structural indices acquired from 3302 
hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote 3303 
Sensing of Environment, 133, 102-115. 3304 

ZARCO-TEJADA, P. J., POBLETE, T., CAMINO, C., GONZALEZ-DUGO, V., CALDERON, R., 3305 
HORNERO, A., HERNANDEZ-CLEMENTE, R., ROMÁN-ÉCIJA, M., VELASCO-AMO, M. & 3306 
LANDA, B. 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across 3307 
species. Nature Communications, 12, 1-11. 3308 

ZEBARTH, B., DRURY, C., TREMBLAY, N. & CAMBOURIS, A. 2009. Opportunities for improved 3309 
fertilizer nitrogen management in production of arable crops in eastern Canada: A review. 3310 
Canadian Journal of Soil Science, 89, 113-132. 3311 

  



 

 
 

131  

Chapter 4 : Quantification of leaf nitrogen in almond orchards from the 3312 

spaceborne DESIS hyperspectral sensor: modeling and assessment with 3313 

airborne hyperspectral and Sentinel-2 imagery 3314 
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Abstract 3316 

To ensure the quality and yield in almond orchards, it is essential to accurately monitor leaf 3317 

nitrogen (N) status both spatially across orchards and temporally throughout the growing season. 3318 

Remote sensing approaches are well suited for this need and typically assess leaf N through proxies 3319 

such as leaf chlorophyll a+b (Cab) content estimated from vegetation indices or radiative transfer 3320 

model (RTM) inversion techniques. Hyperspectral sensors allow the estimation of other 3321 

biochemical plant traits besides Cab, which enhance our understanding of plant photosynthetic 3322 

performance and physiological condition. Previous work has shown that solar-induced 3323 

fluorescence (SIF) and Cab are strong predictors of leaf N, but these assessments were based 3324 

exclusively on high-resolution airborne imagery. This study evaluates the performance of leaf N 3325 

estimation using hyperspectral imagery collected from the spaceborne DESIS. We compare 3326 

spaceborne retrievals to field measurements and the retrievals from both airborne hyperspectral 3327 

and spaceborne multispectral imagery (Sentinel-2). We found that Cab and SIF derived from 3328 

DESIS were strongly associated with leaf N, consistent with airborne hyperspectral observations. 3329 

A DESIS-based model predicted field-measured leaf N with an r2 of 0.83 and RMSE of 0.06%. 3330 

Sentinel-2 yielded inferior results (r2 = 0.72, RMSE = 0.08%) to those from hyperspectral imagery, 3331 

despite having a higher nominal spatial resolution (up to 10 m) than DESIS (30 m). This work 3332 

demonstrates that spaceborne hyperspectral imagery can be useful for the operational monitoring 3333 

of N content in almond orchards. It also highlights the importance of Cab, SIF, and other 3334 

physiological plant pigments in nutrient assessment. 3335 
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4.1 Introduction 3339 

Nitrogen (N) is an essential macronutrient for plants (Lemaire et al., 2008). In agricultural settings, 3340 

N fertilizer inputs enhance plant growth and yield via improved photosynthetic rate and light use 3341 

efficiency (Jones, 1999). However, excessive N inputs lead to resource waste, economic losses, 3342 

and environmental problems (e.g., soil contamination, and atmospheric and water pollution) 3343 

(Stewart et al., 2005, Stevenson and Cole, 1999, Matson et al., 1998). Leaf N content is typically 3344 

determined by destructive sampling followed by laboratoryf-based assays, such as Kjeldahl 3345 

digestion (Kjeldahl, 1883) or Dumas combustion (Dumas, 1831). Although reliable, these methods 3346 

are costly in terms of time, samples, and laboratory equipment. These costs limit the practical 3347 

extent to which N may be measured over an area such as an orchard. For this reason, the accurate 3348 

measurement of leaf N via remote sensing (RS) has been widely studied (Peterson et al., 1988, 3349 

Peñuelas et al., 1994, Yoder and Pettigrew-Crosby, 1995). RS imaging spectroscopy techniques 3350 

enable the creation of spatially continuous maps of plant traits, including the potential 3351 

quantification of leaf N. However, for crop monitoring, these assessments need to be both precise 3352 

and repeatable. 3353 

Recent advances in RS-based monitoring of plant N have relied on the use of physical models 3354 

rather than empirical relationships between plant N and vegetation indices derived from specific 3355 

spectra (Verrelst et al., 2016, Kimes et al., 2000). For instance, solar-induced fluorescence (SIF) 3356 

has been shown to improve the RS-based quantification of leaf nutrient levels (Wang et al., 2022, 3357 

Camino et al., 2018a). Physical models are more capable of adapting local variability in specific 3358 

crop fields due to the fitting process involved and thus are arguably more scalable than vegetation 3359 

index-based models. Most of these techniques, however, require high-spatial-resolution 3360 
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hyperspectral imagery captured from airborne platforms, which is costly and limited in the spatial 3361 

extent that can be sampled, particularly when SIF is required. 3362 

Spaceborne imaging spectrometers provide valuable RS data at a relatively high temporal 3363 

frequency across large spatial scales (Rast and Painter, 2019, Atzberger, 2013). Yet, spaceborne 3364 

imagery often has the disadvantage of limited spatial and/or spectral resolution. Trade-offs 3365 

between spatial and spectral resolutions limit the applicability of hyperspectral sensors operated at 3366 

lower altitudes (Teillet et al., 1997). However, spaceborne sensor technology is rapidly developing, 3367 

and several hyperspectral sensors onboard spaceborne systems have recently come online. 3368 

Recent spaceborne hyperspectral sensors include the Environmental Mapping and Analysis 3369 

Program (EnMAP), launched in April 2022 (Guanter et al., 2015), and the PRecursore 3370 

IperSpettrale della Missione Applicativa (PRISMA), launched in March 2019 (Labate et al., 2009). 3371 

More missions are under development, including the Hyperspectral Infrared Imager (HysplRI, 3372 

with a 150-km swath) onboard NASA’s Earth Observing-1 (EO-1), now part of NASA’s Surface 3373 

Biology and Geology (SBG) mission (Lee et al., 2015, Team, 2018), the Copernicus Hyperspectral 3374 

Imaging Mission for the Environment (CHIME, with 20-30 m spatial resolution) satellite from the 3375 

European Space Agency (ESA) (Rast et al., 2021), and the ESA’s high-spectral-resolution (around 3376 

0.3 nm) Fluorescence explorer FLEX with a 500-780 nm spectral range (Drusch et al., 2016). In 3377 

addition, the new-generation German Aerospace Center (DLR) Earth Sensing Imaging 3378 

Spectrometer (DESIS) (Eckardt et al., 2015), operating since August 2018 onboard the 3379 

International Space Station (ISS), collects hyperspectral imagery (HSI) over 235 narrow spectral 3380 

bands in the VNIR at a 30-m spatial resolution (Krutz et al., 2019). In this study, we investigate 3381 

the utility of DESIS imagery for plant N monitoring. 3382 
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Although DESIS was not explicitly designed for retrieving SIF, it captures spectra within the 3383 

Fraunhofer lines centered at photosystem (PS) I (PS-I) and PS-II emission regions, making SIF 3384 

calculations technically possible (Gupana et al., 2021). SIF has been found to correlate with leaf 3385 

Cab content and photosynthetic activity and has been considered to be a close proxy for leaf N 3386 

(Genty et al., 1989, Weis and Berry, 1987). SIF has been used to detect both biotic and abiotic 3387 

plant stress (Ač et al., 2015, Hernández-Clemente et al., 2017) and improve the predictive accuracy 3388 

of models estimating leaf N (Camino et al., 2018a, Tremblay et al., 2012, Wang et al., 2021). 3389 

Using high-resolution airborne imagery, Camino et al. (2018a) and Wang et al. (2022) assessed 3390 

leaf N in wheat and almond, respectively, demonstrating that SIF combined with other leaf traits 3391 

outperformed standard models based on leaf Cab alone. Despite much previous research using SIF 3392 

quantification from airborne platforms, the effectiveness of using spaceborne SIF for stress 3393 

detection in precision agriculture, especially in non-homogeneous and discontinuous crop 3394 

canopies, has yet to be thoroughly tested (Paul-Limoges et al., 2018). 3395 

In this study, we evaluate the potential use of the spaceborne DESIS hyperspectral sensor to assess 3396 

leaf N content, photosynthetic pigment content, and SIF in a heterogeneous almond orchard. 3397 

Further, we compare the performance of DESIS-based assessment against estimates based on high-3398 

spatial-resolution airborne hyperspectral imagery. We evaluate the influence of image spectral and 3399 

spatial resolution, as well as SIF and other physically modeled variables, on the reliability and 3400 

consistency of leaf N prediction. 3401 

Lastly, we compare leaf N estimates from hyperspectral-based data sources to those from the 3402 

ESA’s Sentinel-2 multispectral instrument (MSI), which is increasingly used for agricultural 3403 

monitoring. Sentinel-2 data is freely available and provides high-spatial-resolution imagery (up to 3404 

10 m) over 13 discrete spectral bands in the visible near-infrared to short-wave infrared (VNIR-3405 
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SWIR) spectral ranges. Most standard Cab and N estimation methods from Sentinel-2 imagery rely 3406 

on vegetation indices derived from red-edge spectral bands (Clevers and Gitelson, 2013), such as 3407 

CIred-edge, TCARI/OSAVI705, 750, NDRE, and S2REP. Although Sentinel-2 data are insufficient for 3408 

quantifying SIF, they include the SWIR spectral domain, which covers features related to leaf 3409 

protein and water absorption and hence can potentially be used to model physical parameters 3410 

related to leaf N content (Curran, 1989, Kumar et al., 2002) at large spatial scales (Söderström et 3411 

al., 2017, Clevers and Gitelson, 2013, Delloye et al., 2018). We assess the performance of leaf N 3412 

prediction models based on all three data sources (airborne hyperspectral, spaceborne 3413 

hyperspectral, and spaceborne multispectral), considering trade-offs of accuracy, resolution, and 3414 

scalability. 3415 

 

4.2 Material and methods 3416 

4.2.1 Study area and field data collection 3417 

This study was carried out in a commercial almond orchard (yellow dashed line in Fig. 4.1) located 3418 

on the south bank of the Murray River in northwestern Victoria, Australia. At the study site, the 3419 

average annual precipitation is 310 mm, and the climate is Mediterranean, marked by hot, dry 3420 

summers and mild, wet winters. These conditions are favorable for almond production, making 3421 

northwestern Victoria one of the largest almond-producing regions in Australia. The almond 3422 

orchard is 1200 ha with 67 blocks of trees planted in the north-south direction and six blocks in 3423 

the east-west direction. Soils at the site are sandy loams. Three varieties were planted between 3424 

2006 and 2007 in alternating rows spaced 7 m apart with 4.4 m between trees in a row. Three 3425 

varieties were planted in groups of six rows, Nonpareil (1/2 of the rows), Carmel (1/3 of rows), 3426 

and Price (1/6 of the rows). Tree crowns typically span 4-6.5 m in diameter, resulting in a nearly 3427 
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closed canopy between trees. Water and nutrients were optimized for each variety and were applied 3428 

via drip fertigation. Fertigation amounts were tuned each year based on species-specific 3429 

observation of varietal performance in the previous season. Following this approach, the same rate 3430 

of fertigation (325.6 kg N/ha and 11,465 m3 water/ha) was applied to all varieties during the 3431 

2019/2020 growing season, whereas Nonpareil (318.7 kg N/ha and 12,255 m3 water/ha) was 3432 

treated with about 10% less fertigation than the Carmel and Price varieties (340.7 kg N/ha and 3433 

13,335 m3 water/ha) during the growing season of 2020/2021. 3434 

 

 
Fig. 4.1. Two adjacent scenes from the spaceborne DESIS hyperspectral sensor (30-m spatial 3435 

resolution). The radiance spectra from randomly chosen fields are shown in the inset. The study 3436 

site is demarcated by the yellow dashed line. 3437 
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Field measurements were conducted at the pre-harvest stage over two consecutive growing 3438 

seasons: 2019/2020 and 2020/2021. Twelve study plots were monitored in February 2020 and 24 3439 

study plots in February 2021. Each plot consisted of six rows of seven to eight trees, of which four 3440 

adjacent trees (two Nonpareil and two Carmel) were subject to in situ samplings. Leaf steady-state 3441 

chlorophyll fluorescence (Ft) and leaf reflectance spectra within the VNIR region were measured 3442 

with a FluorPen FP 110 and a PolyPen RP 410 (PSI, Brno, Czech Republic), respectively, on 20 3443 

representative leaves from each tree. Leaf Cab, anthocyanin (Anth), flavonoid content, and nitrogen 3444 

balance index were measured with a Dualex 4 Scientific sensor (FORCE-A, Orsay, France). 3445 

Twenty additional leaves per plot (100 leaves in total) were collected for chemical analysis using 3446 

Dumas combustion (Etheridge et al., 1998, Buckee, 1994, Dumas, 1831) with a LECO TruMac 3447 

CNS Macro Analyzer (LECO Corporation, MI, USA) and an inductively coupled plasma optical 3448 

emission spectrometer (ICP-OES Optima 8300, Perkin Elmer, USA). 3449 

 

4.2.2 Airborne and spaceborne hyperspectral datasets 3450 

4.2.2.1 High-spatial-resolution airborne hyperspectral imagery 3451 

Airborne campaigns were conducted concurrently with field measurements on February 17, 2020 3452 

and January 31, 2021, which were previously conducted by Wang et al. (2022). To minimize 3453 

atmospheric effects and tree shading, both campaigns were carried out at solar noon under clear 3454 

skies. A manned aircraft operated by the HyperSens Remote Sensing Laboratory, The University 3455 

of Melbourne’s Airborne Remote Sensing Facility, carried a hyperspectral line-scanning sensor 3456 

(Micro-Hyperspec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA) with an 3457 

angular field of view of 66° flying at 550 m above ground level. This resulted in a spatial resolution 3458 

of 40 cm, enabling the separation of sunlit and shaded components of tree crowns and soil features. 3459 
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The hyperspectral sensor collects imagery in the VNIR spectral region (400-1000 nm) with a full-3460 

width at half-maximum (FWHM) of 5.8 nm and a spectral sampling interval of 1.626 nm, resulting 3461 

in 371 spectral-band images (detailed specifications in Table 4.1). Auxiliary data were collected 3462 

over the same area as the aircraft passed over; these were later used for image calibration and 3463 

atmospheric correction. Airborne HSI was atmospherically corrected using the SMARTS model 3464 

(Gueymard, 1995, Gueymard, 2001). Aerosol optical measurements were taken with a Microtops 3465 

II sunphotometer (Solar Light, PA, USA) on the ground during the flight, and several other 3466 

parameters for the model were derived from the average observations (i.e., air temperature and 3467 

relative humidity) from three weather stations (Robinvale, Lake Powell, and Wemen) between 4 3468 

and 15 km away. Reflectance was measured in situ for vegetation and soil targets with a FieldSpec 3469 

Handheld Pro spectrometer (ASD Inc., CO, USA) to validate and correct imagery. Images were 3470 

orthorectified and mosaiced with PARGE (ReSe Applications Schlapfe, Wil, Switzerland) and 3471 

ENVI (Boulder, Colorado), respectively. A false-colour airborne hyperspectral mosaic of the study 3472 

site from 2021 is shown in Fig. 4.2a. Tree crowns were segmented in the HSI following Wang et 3473 

al. (2022) to differentiate the canopy from soil and shade background. Mean spectra were 3474 

calculated for each individual tree crown for use in subsequent analyses. 3475 

 

Table 4.1. Specifications of the sensors used in this study. 3476 
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Fig. 4.2. Colour-infrared (CIR-R: 860, G: 650, B: 550) overview of a) airborne VNIR 3477 

hyperspectral image (HSI) acquired at 0.4-m pixel size on January 31, 2021 and b) spaceborne 3478 

DESIS VNIR HSI collected at 30-m pixel size on January 23, 2021 over the 1200-ha study site. 3479 

(c-f) The irradiance (E) spectrum at each data collection date and the radiance (L) spectra of 3480 

vegetation and soil from c) airborne HSI and d) spaceborne DESIS HSI over the 700-800 nm 3481 

spectral region and e-f) their spectra over the O2-A feature around 760 nm. 3482 
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4.2.2.2 Spaceborne DESIS hyperspectral imagery 3483 

Spaceborne HSI was collected by DESIS onboard the ISS (Fig. 4.1). As part of the Multi-User 3484 

System for Earth Sensing (MUSES) platform, DESIS was jointly developed by Teledyne Brown 3485 

Engineering and DLR and launched on June 29, 2018. A cloud-free DESIS image over the study 3486 

area from January 23, 2021 (within one week of the airborne campaign) was selected for analysis 3487 

(Fig. 4.2b). DESIS contains 235 spectral bands in the VNIR spectral region (400-1000 nm) with 3488 

an FWHM of 3.5 nm and a spectral sampling interval of 2.55 nm (Krutz et al., 2019) (detailed 3489 

specifications in Table 4.1). An orbit of the ISS at 400-km altitude results in a 30-m ground 3490 

sampling distance (Alonso et al., 2019). Orthorectified top-of-atmosphere (TOA) radiance (L1C) 3491 

and reflectance (L2A) DESIS products were used without spectral binning. The DESIS image 3492 

together with the radiance spectra from randomly selected vegetation features are depicted in Fig. 3493 

4.1. Due to the low surface reflectance in the blue spectral region, DESIS reflectance imagery was 3494 

post-calibrated based on airborne HSI via an empirical line for 42 feature targets randomly selected 3495 

throughout the orchard consisting of soil, water, and vegetation areas. Fig. 4.3 shows the 3496 

reflectance spectrum of one of the targets before and after calibration. The irradiance simulation 3497 

for the day of DESIS acquisition (Fig. 4.2d) was produced using the data collected from the three 3498 

nearby weather stations. Aerosol optical depth (AOD) data at processing level 1.5 was obtained 3499 

from Fowlers Gap, the nearest Aeronet station 3500 

(https://aeronet.gsfc.nasa.gov/new_web/index.html). 3501 

 

https://aeronet.gsfc.nasa.gov/new_web/index.html
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Fig. 4.3. Comparison of colour-infrared a) airborne and b) DESIS hyperspectral image (HSI), and 3502 

the reflectance spectra for c) vegetation and d) soil, from the original spaceborne DESIS HSI (solid 3503 

orange line), post-calibrated spaceborne DESIS HSI (solid green line), and airborne HSI (grey 3504 

dashed line). 3505 

 

The airborne HSI (see a closed view in Fig. 4.4a) was resampled to 30-m resolution using the Pixel 3506 

Aggregate method in ENVI (Boulder, Colorado) by averaging all the surrounding pixels. In this 3507 

regard, the resampled airborne hyperspectral pixels maintained all 371 spectral bands, 3508 

incorporating soil, vegetation, and shadow features. Spatially resampled airborne pixels were 3509 

aligned to the extent of DESIS pixels using the Snap Raster feature in ESRI ArcGIS Desktop 3510 

(Redlands, CA, USA). A comparison of pixel sizes and alignments is shown in Figs. 4.5a to 4.5c. 3511 
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Fig. 4.4. Colour-infrared image from the a) airborne VNIR hyperspectral image (HSI) acquired at 3512 

0.4 m per pixel on January 31, 2021, b) post-calibrated DESIS HSI acquired at 30 m per pixel on 3513 

January 23, 2021, and c) Sentinel-2 multispectral image at 10 m per pixel collected on January 23, 3514 

2021, with the reflectance spectra of vegetation (in green) and soil (in brown) within the DESIS 3515 

pixel in the VNIR region. 3516 

 

4.2.3 Plant trait retrieval and SIF quantification from airborne and DESIS hyperspectral  3517 

Plant physiological traits were derived from HSI by inverting canopy reflectance spectra using the 3518 

Fluspect-Cx (Vilfan et al., 2018) leaf optical properties model coupled with the 4SAIL (Verhoef 3519 

et al., 2007) canopy bidirectional reflectance model (henceforth FluSAIL). For airborne HSI, 3520 

reflectance spectra from pure vegetation pixels were selected for modeling (segmentation shown 3521 

in Fig. 4.5a). For imagery with coarser spatial resolution, pixels overlapping the ground 3522 

measurements but not edges of the planting blocks were selected. Reflectance spectra from each 3523 

study plot were used as inputs for the modeling inversion. To perform the inversion, a synthetic 3524 

dataset was first created from the FluSAIL forward model in order to derive the reflectance 3525 

spectrum. The result of this process is the generation of a look-up table (LUT) containing 500,000 3526 

simulations, integrating the output spectrum with randomly assigned input parameters drawn from 3527 
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uniform distributions (see Table 4.2 for input parameter ranges used by Wang et al. (2022)) along 3528 

with the solar zenith and relative azimuth angles for each data source. Based on this LUT, model 3529 

training, testing, and validation were conducted using the Statistics and Machine Learning Toolbox 3530 

and Deep Learning Toolbox in MATLAB R2020a version (Natick, MA, USA), with 70%, 15%, 3531 

and 15% of the LUT samples, respectively (Xie et al., 2019). During the training phase, which is 3532 

the backward model, it is intended to determine the relationship between the input reflectance 3533 

spectrum and the output plant parameters. Consequently, leaf constituents (i.e., Cab, Ccar, Anth, and 3534 

Cdm), the de-epoxidation state of the xanthophyll cycle (Cx), and structural trait LAI were 3535 

simultaneously inverted through a 10-hidden layer artificial neural network (ANN) (Hassoun, 3536 

1995, Combal et al., 2003) for each data source. The inverted parameters were then compared 3537 

using field measurements from all study plots. The FluSAIL model was also run in the forward 3538 

mode for the final inverted parameters to compare against observed image spectra using the root 3539 

mean square error (RMSE). 3540 

 

Table 4.2. Ranges of input parameters for the LUT of the FluSAIL Model. 3541 
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Fig. 4.5. Colour-infrared overview of a 5-by-5 DESIS pixel window of a) the tree-crown 3542 

segmentation in yellow colour and the average tree-crown reflectance spectrum (in orange) from 3543 

an airborne hyperspectral image (HSI) at 0.4-m resolution, b) airborne HSI resampled to 30-m per 3544 

pixel, c) post-calibrated DESIS HSI at 30 m per pixel, and d) Sentinel-2 multispectral image at 10 3545 

m per pixel. VNIR reflectance spectra within each green box are shown below each image. The 3546 

solid green line represents the reflectance spectrum within the central DESIS pixel (in green) from 3547 

different images compared with the tree-crown reflectance spectrum (orange dashed line). 3548 

 

SIF was calculated from the oxygen (O2) A-band absorption feature near 760 nm, following the 3549 

Fraunhofer line depth principle (Plascyk and Gabriel, 1975, Plascyk, 1975). For each data source, 3550 

SIF quantification using the O2-A in-filling method was performed by comparing the spectral 3551 

windows for ‘in’ and ‘out’ of the peak irradiance (E) and radiance (L). It was observed that the 3552 

minimum value within the 755-765 nm region of E and L was at 762 nm (used as Ein/Lin) for both 3553 

airborne and DESIS HSI, as shown in Figs. 2e and 2f. Here, the Eout/Lout corresponds to their 3554 

maximum E/L values within the spectral regions of 744–754 nm and 770–780 nm, respectively. A 3555 

correction based on values of non-fluorescence soil features was added to reduce atmospheric and 3556 

calibration effects (Belwalkar et al., 2022). Due to the limited availability of AOD data from the 3557 

nearby Aeronet station on the date of the DESIS imagery, SIF values from DESIS were treated as 3558 

SIF proxies rather than absolute values. 3559 
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4.2.4 Sentinel-2 datasets for vegetation indices calculation and plant traits retrievals 3560 

Cloud-free scenes from Sentinel-2B on February 13, 2020, and Sentinel-2A on January 23, 2021 3561 

were considered for potential leaf N estimation. Twelve-bit images with a swath width of 290 km 3562 

and 13 spectral bands over VNIR-SWIR spectral regions were acquired at three spatial resolutions 3563 

of 10, 20, and 60 m (detailed specifications can be found in Table 4.1 and Drusch et al. (2012)). 3564 

Level-1C images (orthorectified TOA reflectance) were processed into level-2A (bottom-of-3565 

atmosphere reflectance) using Sen2Cor, version 2.8.0 (Louis et al., 2016). The lower-spatial-3566 

resolution bands (20 and 60 m) were then resampled to 10 m to create a uniform-resolution 3567 

multispectral image over the study site. Fig. 4.4 illustrates VNIR images as well as soil and 3568 

vegetation spectra from the three sensors used in this study. The comparison of reflectance spectra 3569 

(RMSE = 0.01) over the dense canopy of tree crowns from Sentinel-2 (in green) and airborne (in 3570 

orange) is shown in Fig. 4.5d.  3571 

Sixteen vegetation indices related to canopy structure and pigment content were calculated from 3572 

the uniform-resolution images (see Table 4.3 for the list of indices and their formulas). Some of 3573 

them were the indices compatible with Sentinel-2 spectral bands proposed by Clevers and Gitelson 3574 

(2013), such as Sentinel-2 red-edge position (S2REP) (Frampton et al., 2013). Other indices using 3575 

bands in the SWIR were also tested in this study, such as the Aerosol free vegetation index 3576 

(AFRI1510 and AFRI2100) (Karnieli et al., 2001). 3577 
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Table 4.3. Vegetation indices calculated in this study from Sentinel-2 data. 3578 

Index Equation Reference 

VNIR indices for Sentinel-2 

NDVI (R842  −  R665) (R842 +  R665)⁄   Rouse et al. (1974) 

EVI 
2.5 ∙ (R842 − R665)

R842 +  6 ∙ R665 −  7.5 ∙ R490 + 1
 Liu and Huete (1995) 

CIred-edge (R783 R705) − 1⁄  Gitelson et al. (2003) 

CIgreen (R783 R560) − 1⁄  Gitelson et al. (2003) 

S2REP 705 +  
35 ∙ (R665 +  R783) 2⁄ − R705

R740  −  R705 
 Frampton et al. (2013) 

MTCI (R740  −  R705) (R705 −  R665)⁄  Dash and Curran (2007) 

MCARI/OSAVI705,750 
((R740  −  R705) − 0.2 ∙ (R740  −  R560)) ∙ (R740 R705)⁄

(1 +  0.16) ∙ (R740  −  R705) (R740 +  R705 +  0.16)⁄  
 Wu et al. (2008) 

TCARI/OSAVI705,750 
3 ∙ ((R740  −  R705) − 0.2 ∙ (R740  −  R560) ∙ (R740 R705)⁄ )

(1 +  0.16) ∙ (R740  −  R705) (R740 +  R705 +  0.16)⁄  
 Wu et al. (2008) 

NDRE1 (R740  −  R705) (R740 +  R705)⁄  Sims and Gamon (2002) 

NDRE2 (R783  −  R705) (R783 +  R705)⁄  Barnes et al. (2000) 

PSSRa R783 R665⁄  Blackburn (1998) 

PSSRc2 R842 R490⁄  Blackburn (1998) 

SWIR indices for Sentinel-2 

STI R1610 R2190⁄  Van Deventer et al. (1997) 

NDWI (R842  −  R1610) (R842 +  R1610)⁄  Gao (1996) 

AFRI1510 R865 −  
0.66 ∙ R1610

R865 +  0.66 ∙ R1610 
 Karnieli et al. (2001) 

AFRI2100 R865 −  
0.5 ∙ R2190

R865 +  0.56 ∙ R2190 
 Karnieli et al. (2001) 

 

 

As with the other two datasets, a LUT with 500,000 FluSAIL simulations using the same ranges 3579 

of input parameters in Table 4.2 was built for the Sentinel-2 dataset. As Sentinel-2 has only one 3580 

band in the green spectral region where most pigments are active, making it difficult to accurately 3581 

determine minor pigments and the xanthophyll epoxidation state (Cx), hence only Cab retrieval was 3582 

attempted. A selection of plant traits (i.e., Cab, Cw, Cdm, and LAI) were extracted using the ANN 3583 

from Sentinel-2 LUT. 3584 

 

4.2.5 Leaf N estimation 3585 

For HSI-derived data, leaf N prediction models were built using RTM inverted plant traits (i.e., 3586 

Cab, Ccar, Anth, Cdm, Cx, and LAI) and SIF as inputs (see STAGE 2 at the bottom of Fig. 4.6). For 3587 
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Sentinel-2 data, two separate models were established, one using the estimated plant traits (i.e., 3588 

Cab, Cw, Cdm, and LAI) and the other using the vegetation indices (Table 4.3) as inputs. Data were 3589 

fit with random forest (RF) (Breiman, 2001) regression models with fine-tuning of 3590 

hyperparameters, using leave-one-out cross-validation for the training and testing steps, following 3591 

the method described by Wang et al. (2022). Predictions from the model based on airborne imagery 3592 

were previously validated by Wang et al. (2022) and explained 95% of the variability of field-3593 

measured leaf N throughout the orchard over 2 years of study. Due to the high resolution and 3594 

accuracy of this model, its spatially resolved predictions were used as a baseline for the models 3595 

from coarser resolution data. Randomly selected pixels across the orchard were employed for 3596 

training (60%) and testing (40%) based on the airborne N map for both DESIS and Sentinel-2. 3597 

Finally, all models were compared against field-derived leaf N concentration. 3598 

To reduce the redundancy of the inputs, a variance inflation factor (VIF) (O’brien, 2007) 3599 

collinearity assessment was conducted when building the regression model. To understand the 3600 

relative importance of the inputs to each model, out-of-bag predictor importance scores were 3601 

evaluated. The final model was constructed using the most important predictors, which are non-3602 

collinear for each year of data sources. More specifically, the airborne and spaceborne DESIS 3603 

hyperspectral models were built with Cab and SIF, whereas Cab, Cdm, and Cw were employed for 3604 

Sentinel-2-based models. As an alternative to the plant traits, a second N model using non-collinear 3605 

VNIR and SWIR vegetation indices was constructed for the Sentinel-2 dataset. Using r2 and RMSE 3606 

as performance measures, the models were evaluated against the validation data. To conclude, leaf 3607 

N estimation from DESIS hyperspectral and Sentinel-2 were compared with high-resolution 3608 

airborne estimates throughout the orchard to determine the RMSE based on individual planting 3609 

blocks. 3610 
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Fig. 4.6. Schematic representation of the leaf N assessment from airborne hyperspectral, 3611 

spaceborne DESIS hyperspectral imagery, and Sentinel-2 multispectral image in a dense canopy 3612 

almond orchard. Underlined parameters were retrieved and used in the Sentinel-2 model. 3613 
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4.3 Results 3614 

4.3.1 Assessment of trait retrievals with airborne and spaceborne hyperspectral datasets 3615 

A comparison of Cab and SIF from airborne hyperspectral imagery in native vs. downsampled 3616 

resolutions is presented in Figs. 7a and 7b. Values across spatial resolutions were highly correlated 3617 

for both Cab (e.g., r2 = 0.93, RMSE = 1.99, p-value < 0.001 in 2021) and SIF (e.g., r2 = 0.97, RMSE 3618 

= 0.61, p-value < 0.001 in 2021). When both years of data were considered simultaneously, 3619 

associations remained strong for SIF (r2 = 0.93, RMSE = 0.77, p-value < 0.001) and to a lesser 3620 

extent for Cab (r2 = 0.72, RMSE = 4.81, p-value < 0.001). The structural vegetation indices (e.g., 3621 

NDVI) and SIF and  were not correlated with each other (r2 < 0.1, not significant for both years), 3622 

suggesting that canopy structural effects were not the dominant driver of SIF differences between 3623 

years. Associations were weaker between airborne and DESIS-derived Cab (r2 = 0.33, RMSE = 3624 

8.07, p-value < 0.005 in 2021) and SIF index (r2 = 0.53, p-value < 0.001 in 2021) (Figs. 7c to 7f). 3625 

When compared to airborne observations, DESIS-derived Cab contents were biased towards higher 3626 

Cab contents. 3627 
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Fig. 4.7. Relationships between estimates of plant characteristics by measurement methodology. 3628 

Top row: spatially resampled (aggregated to 30 m) airborne hyperspectral vs. tree crown-based 3629 

estimates for a) Cab, and b) SIF in 2020 (12 points in the hollow grey circle) and 2021 (24 points 3630 

in solid black circle). The solid blue line represents correlation when combining data from 2 years. 3631 

Middle row: DESIS hyperspectral vs. tree crown-based estimates of c) Cab and d) SIF in 2021. 3632 

Bottom row: e) Cab and f) SIF index between DESIS hyperspectral and the spatially resampled 3633 

airborne hyperspectral at 30 m. The orange dashed diagonal line is the 1:1 line. 3634 
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SIF and RTM-derived plant traits were strongly correlated with leaf pigment content and leaf N 3635 

concentration obtained from in situ measurements (Table 4.4). Statistically significant correlations 3636 

were found between HSI-estimated Cab and both Dualex-measured Cab (all p-values < 0.005) and 3637 

laboratory-derived leaf N concentration (all p-values < 0.001). SIF (p-values < 0.005) and Cdm (p-3638 

values < 0.005) were also significantly correlated with leaf N. As expected, Cx had greater 3639 

correspondence with N measures when estimated from high-spatial-resolution imagery, allowing 3640 

the extraction of pure vegetation features from tree crowns rather than mixed features derived from 3641 

low-spatial-resolution pixels of DESIS. Airborne-derived traits (esp. SIF, Cab, Ccar, and Cx) were 3642 

also more correlated with in situ leaf Ft measurements than spaceborne-derived traits. RTM-3643 

inverted plant traits were more closely correlated with field measurements than vegetation indices 3644 

derived from either airborne or DESIS hyperspectral imagery (e.g., TCARI/OSAVI vs. leaf N 3645 

concentration: r2 < 0.23, data not shown).  3646 

 

Table 4.4. Correlations (r2) between image-derived spectral traits and field measurements. Rows 3647 

indicate modeled traits, and columns indicate pairing of field data source (top row), year (second 3648 

row), and HSI source (third row). 3649 
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4.3.2 Leaf nitrogen assessment using SIF and plant traits derived from airborne and DESIS 3650 

hyperspectral data  3651 

Predictor importance scores for models based on spaceborne DESIS HSI and airborne HSI from 3652 

2021 are exhibited in Fig. 4.8. DESIS-derived SIF (p-value < 0.001) and FluSAIL RTM-inverted 3653 

Cab (p-value < 0.001) were the highest ranked predictors for both platforms, followed by other leaf 3654 

biochemical constituents and biophysical traits. SIF and Cab were not collinear when assessed for 3655 

variance inflation (VIF < 5) for both airborne and spaceborne DESIS and thus were kept in the 3656 

final prediction model. However, Cdm, Cca,, and Cx were collinear with Cab. The structural trait LAI 3657 

was markedly more important in the DESIS-based model than the airborne-based model. As a 3658 

result, final models for both HSI datasets were constructed using Cab and SIF. The DESIS model 3659 

yielded an r2 of 0.83 (p-value < 0.001) and RMSE of 0.06% when validated against in situ leaf N 3660 

in 2021. The prediction against the airborne-based model had an r2 of 0.88 (p-value < 0.001) and 3661 

RMSE of 0.05% throughout the entire orchard. 3662 

 
Fig. 4.8. Importance of FluSAIL RTM-inverted traits and SIF used as predictors for leaf N. Models 3663 

used traits derived from either DESIS (in orange) or airborne (in green) hyperspectral imagery in 3664 

2021. The two most important variables (non-collinear) are marked in a grey dashed rectangle. 3665 
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4.3.3 Performance of Sentinel-2-derived plant traits and vegetation indices 3666 

Correlations between Sentinel-2-derived indices and field measurements are presented in Table 3667 

4.5. Overall, plant traits (e.g., Cab and Cdm) tended to be more consistently significant correlated 3668 

with field measures than vegetation indices across the 2 years of study. Vegetation indices were 3669 

more correlated with field measures in 2021 than in 2020. RTM-derived Cab from Sentinel-2 was 3670 

biased at higher Cab contents compared to in situ measures with an r2 of 0.41 (p-value < 0.001) and 3671 

RMSE of 1.63 in 2021 (Fig. 4.9a). Nevertheless, RTM-derived Cab was consistently significant 3672 

correlated with leaf N for both years (r2 = 0.68 and 0.64 in 2020 and 2021, respectively, p-values 3673 

< 0.001). CIred-edge was weakly correlated with leaf N in 2020 (r2 = 0.18, n.s.) but strongly correlated 3674 

in 2021 (r2 = 0.56, p-value < 0.001, Fig. 4.9b). Additionally, indices derived from spectra in the 3675 

SWIR region tended to be more correlated with field measurements than those from the VNIR 3676 

region. For example, AFRI1500, a SWIR-based index, was correlated with leaf N in both 2020 (r2 3677 

= 0.54, p-value < 0.05) and 2021 (r2 = 0.69, p-value < 0.001). 3678 

 
Fig. 4.9. Relationships between a) RTM-derived Cab content from Sentinel-2 and leaf Cab measured 3679 

by Dualex, and b) CIred-edge calculated from Sentinel-2 and leaf N concentration (%) in 2021 (24 3680 

points). The grey dashed diagonal line is the 1:1 line. 3681 
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Sentinel-2-based Cab and Cdm were consistently correlated with leaf N across years (Table 4.5), as 3682 

with hyperspectral-derived Cab and Cdm. However, correlations with Dualex-measured Cab were 3683 

lower than those derived from hyperspectral imagery. LAI determined from Sentinel-2 was more 3684 

strongly correlated with GNDVI (r2 = 0.71, p-value < 0.001) and RDVI (r2 = 0.40, p-value < 0.005) 3685 

(data not shown) than LAI obtained from hyperspectral sources in 2021. Sentinel-2-derived LAI 3686 

was more correlated with leaf N concentration (r2 = 0.28, p-value < 0.05 in 2021) than DESIS-3687 

derived LAI (r2 = 0.18, p-value < 0.05 in 2021). Nevertheless, the structural trait LAI did not 3688 

explain much N variability in this well-managed dense orchard compared to other traits. 3689 

 

Table 4.5. Correlations (r2) between model-derived plant traits and vegetation indices from 3690 

Sentinel-2 against field measurements. 3691 
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4.3.4 Leaf nitrogen assessment from Sentinel-2: comparison against hyperspectral imagery 3692 

For predictions of leaf N using Sentinel-2 data, Cab, Cdm, and Cw were found to be more important 3693 

than LAI across years (Fig. 4.10). Importance scores of vegetation indices were inconsistent across 3694 

years. Nevertheless, vegetation indices derived from the SWIR region (i.e., 2190 and 1610 nm) 3695 

tended to be more important than VNIR vegetation indices.  3696 

 

 
Fig. 4.10. Importance of model-derived plant traits and vegetation indices (non-collinear, VIF < 5) 3697 

calculated from Sentinel-2 in 2020 and 2021. 3698 

 

The final N prediction model using plant traits from Sentinel-2 (N = f(Cab, Cw, Cdm)) had an r2 of 3699 

0.79 (p-value < 0.001) and RMSE of 0.08% for 2020, and an r2 of 0.72 (p-value < 0.001) and 3700 

 

  

                               
 

Cab 

Cdm 

Cw 

LAI 

 

 

AFRI1510 

STI 

PSSRc2 

S2REP 

MTCI 

EVI 

CIgreen 

TCARI/OSAVI 

GNDVI 

 



 

 
 

158  

RMSE of 0.12% for 2021. Similar performance was found for the model based on the non-collinear 3701 

vegetation indices (N = f(STI, PSSRc2, S2REP, MTCI, EVI, CIgreen)). Across all models, those 3702 

built with hyperspectral-derived datasets (e.g., r2 = 0.86, RMSE = 0.05%, p-value < 0.001 from 3703 

airborne HSI in 2021, and r2 = 0.83, RMSE = 0.06%, p-value < 0.001 from spaceborne DESIS 3704 

HSI in 2021) outperformed Sentinel-2-based models (e.g., r2 = 0.72, RMSE = 0.08%, p-value < 3705 

0.001 in 2021, Fig. 4.11) each year. Combining data over both years, the airborne-based regression 3706 

model (r2 = 0.91, RMSE = 0.05%, p-value < 0.001) performed much better than Sentinel-2 (r2 = 3707 

0.82, RMSE = 0.09%, p-value < 0.001). 3708 
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Fig. 4.11. Relationships between leaf N concentration model predictions based on a) airborne 3709 

hyperspectral-derived N (Cab, SIF) from tree crowns, b) Sentinel-2-derived N (Cab, Cw, Cdm), and 3710 

c) spaceborne DESIS hyperspectral-derived N (Cab, SIF). Data from 2020 (12 points) are shown 3711 

as hollow grey circles, and data from 2021 (24 points) are shown as solid black circles. The solid 3712 

blue line represents the linear fit when combining data from 2 years. The orange dashed diagonal 3713 

line is the 1:1 line.  3714 

 

 

 

a) Airborne hyperspectral 

b) Spaceborne DESIS hyperspectral 

c) Sentinel-2 
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Spatial patterns in predicted N were similar between models based on spaceborne and airborne 3715 

imagery (Fig. 4.12). Pixel values from the airborne-derived N map were highly correlated with 3716 

both the DESIS (r2 = 0.88 and RMSE = 0.03%, p-value < 0.001, n (number of pixels) = 5030) and 3717 

Sentinel-2 (r2 = 0.82 and RMSE = 0.07%, p-value < 0.001, n = 54661) N maps. The largest 3718 

discrepancies between N maps were observed in areas with extreme N levels, possibly due to the 3719 

influence of soil and shadows in coarser imagery and to fewer extreme-valued samples being used 3720 

in model training. When using an average aggregated value per management block, DESIS 3721 

estimates had greater correspondence with high-resolution airborne estimates than Sentinel-2 3722 

estimates, with 67 out of 71 blocks having an RMSE under 0.1% for DESIS (compared to 62 out 3723 

of 73 blocks for Sentinel-2). Subsequent examination revealed that blocks with high RMSEs also 3724 

tended to have high N levels. 3725 
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Fig. 4.12. Estimated leaf N maps for the 2021 pre-harvest season based on models using a) airborne 3726 

hyperspectral-derived Cab and SIF from tree crowns, b) spatially resampled airborne hyperspectral 3727 

imagery-derived Cab and SIF, c) spaceborne DESIS hyperspectral imagery-derived Cab and SIF, 3728 

and d) Sentinel-2-derived plant traits Cab, Cw, and Cdm. 3729 

 

4.4 Discussion 3730 

Monitoring and quantification of leaf N at both the local and large-area scales require a 3731 

comprehensive understanding of the drivers and plant traits that can best explain N stress. For both 3732 
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hyperspectral image datasets (airborne and spaceborne DESIS) tested in this study, SIF and Cab 3733 

were the most important spectrally derived traits for predicting leaf N, followed by Ccar and Cx 3734 

(Fig. 4.8). By contrast, LAI was only modestly important and only for the model based on the 3735 

DESIS dataset. One possible explanation is that at the pre-harvest stage, foliage growth slows 3736 

(Clark and Smith, 1990, Brown, 1994) and becomes more uniform, especially in well-managed 3737 

orchards. Thus, LAI would not be expected to vary much, especially in pure vegetation pixels. 3738 

The spatial resolution of each sensor influenced both trait retrievals and model predictions in this 3739 

study. In particular, medium-resolution satellite imagery is known to suffer from greater mixing 3740 

effects from shadow and soil backgrounds on vegetation signals within pixels (Zarco-Tejada et al., 3741 

2013). In this study, Cx, a dynamic trait approximating the xanthophyll cycle as a function of stress, 3742 

was not found to be important for predicting leaf N at coarse spatial resolutions. According to Jia 3743 

et al. (2021), SIF was found to be important for predicting leaf N, outperforming other spectral 3744 

indices (e.g., CIred-edge and NDRE). However, this result was somewhat sensitive to the N 3745 

measurement technique (area-based vs. mass-based leaf N content). In this study, RTM-derived 3746 

Cab and SIF were found to be important for predicting leaf N in models from both airborne (40-cm 3747 

resolution) and DESIS (30-m resolution) imagery, suggesting that both Cab and SIF are strong 3748 

candidates for leaf N estimates across spatial resolutions. 3749 

Many studies have shown that it is possible to estimate LAI from Sentinel-2 data (Richter et al., 3750 

2009, Verrelst et al., 2015, Herrmann et al., 2011, Atzberger and Richter, 2012); however, 3751 

estimates of actual leaf pigment content or other biochemical constituents are more difficult due 3752 

to the limited number of spectral bands available in these data. In this study, we found strong 3753 

correlations between estimated plant physiological traits and field measurements, suggesting that 3754 

it is possible to use RTM inversion with Sentinel-2 data to estimate key physiological traits (i.e., 3755 
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Cab, Cw, Cdm, and LAI). When we compared RTM-derived Cab and Cdm to field-measured Cab, we 3756 

observed relatively strong correlations over both years (p-values < 0.05) and even stronger 3757 

correlations with leaf N (p-values < 0.005) (Table 4.5). Although LAI can reflect changes in plant 3758 

growth due to nutrient or water availability (Albaugh et al., 2004), sustained stress is uncommon 3759 

in well-managed orchards, and it is thus unlikely that LAI will be sensitive to the relatively low 3760 

nutrient variability found in production settings. In this study, we found that LAI was not correlated 3761 

with leaf Cab or N. Cw was also not consistently associated with leaf N across seasons, which could 3762 

be explained by the actual differences in fertigation management between seasons. Li et al. (2010) 3763 

found that the utility of vegetation indices for predicting plant N was inconsistent and particularly 3764 

contingent on the plant phenological stage. Similarly, there was evidence of a significant 3765 

correlation between vegetation indices and in situ leaf measurements in 2021, but not in 2020. This 3766 

inconsistency suggests that vegetation indices may not be appropriate for long-term N monitoring. 3767 

Regardless, consistent contribution of vegetation indices across years was not observed (Fig. 4.10), 3768 

which is important when attempting to monitor Cab and N status over phenological stages across 3769 

multiple years. 3770 

Sensor spatial and spectral resolution strongly influences the accuracy of any downstream leaf N 3771 

predictions, especially in heterogeneous orchards. Among the three platforms tested in this study, 3772 

the imager with the highest resolution (airborne) provided the best leaf N predictions. The model 3773 

built with Sentinel-2 multispectral imagery had nearly double the RMSE of the airborne-derived 3774 

model. Interestingly, in 2021, the model based on DESIS hyperspectral imagery (N = f(Cab, SIF) 3775 

with r2 = 0.83, RMSE = 0.06%, p-value < 0.001 when assessed against field measurements) was 3776 

more accurate than the Sentinel-2 models (N = f(Cab, Cw, Cdm) with r2 = 0.72, RMSE = 0.08%, p-3777 

value < 0.001 against field measurements), despite having a lower spatial resolution and shorter 3778 
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spectral range. The DESIS model (94% of RMSE ≥ 0.1%) also had greater correspondence with 3779 

the airborne model at the block level than the Sentinel-2 model (85% of RMSE ≥ 0.1%). These 3780 

results suggest that spectral resolution may be more important than spatial resolution in predicting 3781 

leaf N. Nevertheless, the performance of Sentinel 2 (N = f(Cab, Cw, Cdm)) is still acceptable, and 3782 

provides a reasonable alternative approach for estimating N from Sentinel-2derived Cab, Cw, and 3783 

Cdm when hyperspectral imagery cannot be utilized to derive SIF.    3784 

The presence of stem elements, crown architecture, and bare soil in a scene can result in model 3785 

inaccuracies (Verstraete et al., 1990, Law et al., 2001). Nevertheless, RTMs considering the 3786 

canopy as a turbid medium have already been successfully used to retrieve plant traits. An earlier 3787 

study by Zarco-Tejada et al. (2001) demonstrated that coupled PROSPECT and SAILH models 3788 

could be used to estimate Cab in high-density closed forest canopies, particularly after selecting the 3789 

brightest 25% pixels in the NIR region from high-resolution airborne imagery. In the well-3790 

managed orchard used for this study, tree canopies were dense and uniform, thus minimizing the 3791 

impact of the canopy structural variation. In prior work using the same data as this study, Wang et 3792 

al. (2022) demonstrated that plant traits can be successfully estimated through a one-dimensional 3793 

canopy RTM (4SAIL) using such high-density closed tree canopy data. Models in the current study 3794 

did not take into account the effects of woody material and foliar clumping required for a more 3795 

detailed estimate of LAI (Chen et al., 1997). With coarse spatial resolution data (over 10 m), 3796 

however, these effects are difficult to detect and unlikely to be a significant issue. 3797 

Another limitation of this study was the empirical line post-calibration needed to correct the 3798 

abnormal values found in the blue and parts of green region of the DESIS reflectance imagery. An 3799 

improved radiometry calibration of the DESIS imagery, especially in the Southern Hemisphere, 3800 

would be beneficial in the future. Raw radiance spectra with no further calibration were used for 3801 
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SIF calculation in this study. Although SIF retrieval is known to be affected by spatial resolution 3802 

and illumination differences (Camino et al., 2018b, Zarco-Tejada et al., 2013), SIF estimates based 3803 

on 30-m resolution DESIS imagery were shown to be associated with leaf N in this study, possibly 3804 

due to the dense tree canopy in the orchard. Nevertheless, this study illustrates the potential use of 3805 

DESIS for monitoring N across large areas. 3806 

 

4.5 Conclusions 3807 

We demonstrated that it is possible to estimate leaf N in a discontinuous tree-structured orchard 3808 

using 30-m spatial resolution DESIS hyperspectral imagery. High-resolution airborne 3809 

hyperspectral imagery and field data were used for validation. We found that SIF and RTM-3810 

derived Cab were the most important for predicting leaf N across spatial resolutions. Furthermore, 3811 

the model based on airborne and spaceborne hyperspectral data outperformed Sentinel-2-based 3812 

models (using either vegetation indices or RTM-derived traits). Our results suggest that the newly 3813 

available spaceborne hyperspectral sensor can be used to assess N across large areas via models 3814 

using RTM-derived leaf biochemical trait retrievals and SIF. One important finding of this study 3815 

was that models based on hyperspectral data outperformed models based on Sentinel-2 data, even 3816 

though Sentinel-2 data has a higher spatial resolution and represent reflectance in the SWIR 3817 

spectral region. 3818 
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Chapter 5 : Conclusions 4061 

5.1 Summary and main conclusions 4062 

The primary objective of this PhD thesis was to assess the role of chlorophyll fluorescence in leaf 4063 

nutrient estimation for almond orchards at the leaf and the canopy levels using leaf-scanning 4064 

instruments and airborne and spaceborne imagery. The study evaluated models based on a series 4065 

of plant parameters over the course of two growing seasons with different fertigation applications 4066 

in a discontinuous tree-structured almond orchard. 4067 

The thesis starts with a general exploration of spectral traits as predictors for a series of leaf nutrient 4068 

elements (e.g., N, P, and K) and nutrient ratios measured by destructive testing of leaves sampled 4069 

in the field, followed by focusing on the assessment of nitrogen content, the most abundant primary 4070 

element in plants. Analysis of airborne imagery and ground measurements indicated that 4071 

vegetation indices calculated from the visible spectral region (e.g., NPQI, CTRI1, BGI1, and PRI 4072 

series) were more closely related to nutrients than structural indices calculated from the visible 4073 

and near-infrared regions (e.g., NDVI). Based on hyperspectral imagery collected in the visible 4074 

and near-infrared regions, biochemical constituents such as photosynthetic pigments (e.g., Cab, Ccar, 4075 

Cx) derived from the FluSAIL radiative transfer model were found to be reliable predictors of 4076 

nutrient levels (especially for primary macronutrients), outperforming the results of empirical 4077 

models based on single vegetation indices. In addition, this PhD thesis demonstrates that 4078 

chlorophyll fluorescence, used as a proxy for photosynthesis, is sensitive to deficiencies of the 4079 

three primary macro-nutrients (i.e., N, P, and K), especially when considering data across years 4080 

under varying management practices, yielding r2 = 0.74 (p-values < 0.005) for the relationships of 4081 

both leaf steady-state measurements and canopy SIF with leaf N.  4082 
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The study emphasizes the importance of examining other proxies for nutrients in addition to 4083 

chlorophyll alone, particularly when N levels are high, because Cab shows reverse trends with N 4084 

across different fertigation applications during different years. At the leaf level, the Dualex leaf-4085 

measurement of chlorophyll alone was not as sensitive and consistent as the NBI indicator based 4086 

on both Flav and Cab parameters. Alternatively, steady-state chlorophyll fluorescence results 4087 

demonstrated consistently stronger correlation and trend with primary macro-nutrient results than 4088 

did the leaf-measured Cab results. This stronger correlation and trend remained consistent at the 4089 

canopy level, whereas spectral vegetation indices showed inconsistent trends. However, airborne 4090 

SIF calculated from the illuminated crown pixels was correlated with leaf N results across growing 4091 

seasons. For leaf nitrogen estimation in almond trees, Cab and SIF were found to be the most 4092 

effective predictors of N for individual years, at both high-resolution airborne scale and spaceborne 4093 

scale, outperforming other biochemical tests and biophysical plant trait assessments. SIF exhibited 4094 

performance in terms of primary macro-nutrients superior to that of RTM-based plant traits across 4095 

years, with an r2 = 0.74 (p-values < 0.005) for both steady-state measurements and canopy SIF of 4096 

leaf N. The performance of N estimation improved when SIF was coupled with photosynthetic 4097 

plant traits derived by both airborne and spaceborne platforms, making combined Cab and SIF 4098 

superior to any other combinations for this purpose. The model using Cab alone showed modest 4099 

predictivity for leaf N variability (r2 = 0.49, RMSE = 0.16%, p-value < 0.001) over the two years 4100 

of data, but when SIF and Cab traits (non-collinear) were coupled, predictions improved 4101 

dramatically (r2 = 0.95, RMSE = 0.05%, p-value < 0.001). These findings suggest that chlorophyll 4102 

fluorescence is a promising and reliable indicator for nutrient assessment, and that the combination 4103 

of Cab and SIF provides the most robust assessment of leaf N concentration.  4104 
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Additionally, this work demonstrates that spaceborne hyperspectral imagery, such as the newly 4105 

developed DESIS onboard the International Space Station (ISS) with a 30-m spatial resolution, is 4106 

useful for the operational monitoring of N content via models using RTM-derived leaf biochemical 4107 

trait determinations and SIF in almond tree orchards. Also, N assessments of discontinuous dense 4108 

canopies are more accurate with greater spectral resolution than with greater spatial resolution, and 4109 

hyperspectral imaging provides the most accurate N estimations. These results demonstrate the 4110 

vital contribution of hyperspectral spaceborne missions to large-area N monitoring and precision 4111 

agriculture. 4112 

 

5.2 Implications and contributions 4113 

Over two growing seasons with different fertigation applications monitored at various scales, this 4114 

PhD thesis demonstrates a consistent method for assessing leaf nitrogen in a dense discontinuous 4115 

tree-structured almond orchard. As compared to the standard method of using Cab alone, the 4116 

combination of Cab and SIF provides a more robust and improved assessment of leaf nitrogen, 4117 

eliminating the saturation effects and instability caused by the variation of fertigation practices. 4118 

As a result of this research, SIF has been further proven as a means of assessing leaf nutrients in 4119 

heterogeneous canopies and monitoring vegetation health before harvest. A subsequent analysis 4120 

of leaf nutrient status can also be conducted during other phenological stages. In Chapter 4, the 4121 

effects of image spatial resolution are evaluated by comparing the results obtained from pure tree-4122 

crown pixels and from downsampled resolutions resulting in mixed features, both for SIF and N 4123 

content assessment. Considering that the tree canopies in this almond orchard are quite dense and 4124 

clustered, the effects of canopy discontinuity did not impede the assessment. The results presented 4125 

in this thesis provide us with new insights which can be applied to assessing the performance of 4126 
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SIF techniques for other tree species and structures, particularly when using coarser spatial 4127 

resolution sensors at the regional scale. 4128 

An assessment of the PRI family of indices as a measure of the dynamics of the xanthophylls was 4129 

carried out. Throughout two growing seasons in the almond orchard, PRI515 (PRI index using as 4130 

reference the signal at 515 nm), developed to minimize structural effects, was superior to PRI (at 4131 

570 nm). As part of this thesis, FluSAIL RTM was employed to retrieve Cx data for the assessment 4132 

of the de-epoxidation state of the xanthophyll cycle, as well as the standard major leaf 4133 

photosynthetic pigments Cab, Ccar, and Anth. The modeling of the Cx parameter is based on in vivo 4134 

absorption coefficients for two extreme states of the carotenoid pool, corresponding to the two 4135 

extremes of xanthophyll de-epoxidation, and describes the intermediate states as a lineal mixture 4136 

of these two extreme states. The Cx data retrieved from airborne hyperspectral imagery was 4137 

significantly correlated with PRI515 results (r2 = 0.68 and 0.60 in 2020 and 2021, p-values <0.001) 4138 

and with leaf N results (r2 = 0.61 and 0.62 in 2020 and 2021, p-values <0.001). In addition, Cx 4139 

was found to be the next best non-collinear (VIF<10) predictor for leaf N after Cab and SIF. The 4140 

model incorporating Cx, Cab, and SIF outperformed any other combinations with plant traits 4141 

derived from high-resolution airborne hyperspectral imagery across both years. These results 4142 

suggest that RTM-derived Cx estimates from airborne hyperspectral imagery, serving as a measure 4143 

of xanthophyll status, are important predictors for leaf N levels in almond orchards, the model’s 4144 

performance improving when combined with Cab and SIF. 4145 

RTM-inverted plant traits identified from VNIR hyperspectral images are found to be more 4146 

accurate N estimators than single vegetation indices at both high (airborne at 0.4-m) and coarse 4147 

(DESIS at 30-m) spatial resolutions. Compared to biochemical constituent results, LAI based on 4148 

vegetation pixels from the airborne scale was less effective for leaf N estimates, whereas LAI 4149 
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derived from spaceborne DESIS, where pixels comprise crowns, soil, and shaded background, 4150 

gave more accurate N assessment than did plant traits derived from high-resolution airborne 4151 

imagery. Based on these results, LAI was not the primary indicator of leaf nutrient content when 4152 

using high-resolution imagery, but it should be considered with coarser spatial resolutions. 4153 

Even though this thesis is primarily focused on the use of hyperspectral imagery for nutrient 4154 

assessment, the results from the multispectral Sentinel-2 imagery, a widely used free satellite 4155 

source, are also evaluated. In the absence of SIF quantification, other biochemical constituents 4156 

(e.g., Cw and Cdm) can be coupled with Cab for estimation of leaf nitrogen using the SWIR spectral 4157 

region.  4158 

The potential effect of water stress under varying fertigation was also considered. Based on the 4159 

two-year dataset, it was observed that the water stress indicator, CWSI, did not show any 4160 

correlation with leaf nitrogen variability, revealing different variability patterns throughout the 4161 

orchard. These results indicate that leaf nitrogen variability is not driven by water status in this 4162 

managed intensive almond orchard, even when both water and fertilizer are applied together via 4163 

fertigation. 4164 

This study also demonstrates the high correlation between chlorophyll fluorescence and primary 4165 

macro-nutrients, including P and K, and provides guidance on estimating these nutrients using the 4166 

proposed method. From a physiological perspective, it is believed that the SIF signal is closely 4167 

related to the photosynthetic capacity of leaves, which is in turn dependent on the availability of 4168 

micro-nutrients. Particularly evident are the correlations of SIF data with results for plants that are 4169 

capable of absorbing large amounts of nutrients, suggesting that these nutrient elements may be of 4170 

particular importance to photosynthesis. As a result of their indirect and secondary roles in the 4171 
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photosynthetic process, results for secondary macro-nutrients (e.g., Ca, Mg) and micro-nutrients 4172 

(e.g., Fe, Cu) demonstrate less correlation with Cab and chlorophyll fluorescence data. 4173 

 

5.3 Recommendations for further research 4174 

This thesis contributes to the development of future research in the fields of fertilizer use efficiency 4175 

optimization and precision agriculture in heterogeneous orchards using airborne and spaceborne 4176 

remote sensing. Future research could focus on: 4177 

 Investigating the sensitivity of SWIR spectral bands to nitrogen and other nutrients through 4178 

the use of high-resolution airborne and spaceborne hyperspectral imagery. 4179 

 Evaluation of the contribution and robustness of Cab and SIF in the assessment of the leaf 4180 

nitrogen levels of other tree species at airborne and spaceborne levels.  4181 

 Examining the performance of plant trait estimation using 3-D RTMs in heterogeneous 4182 

orchards and its contribution to leaf N assessment.  4183 

 Exploring plant spectral traits and performance in assessment of other macro-nutrients (i.e., 4184 

P and K). 4185 

 Improving the accuracy of SIF quantification via use of a variety of advanced methods and 4186 

sensor technologies (e.g., sub-nanometer spectrometers) in heterogeneous orchards. 4187 

 Investigating the feasibility and performance of satellite-borne spectrometers for the 4188 

quantification of SIF in heterogeneous orchards, especially for less dense canopy, as well 4189 

as investigating their contribution to nutrient assessment.  4190 

4191 
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Appendix 1 4192 

Evaluating the role of solar-induced fluorescence (SIF) and plant physiological 4193 

traits for leaf nitrogen assessment in almond using airborne hyperspectral 4194 

imagery 4195 

 

 

 

 

 

This is the paper in its published format in Remote Sensing of Environment: 4196 

 

Wang, Y., Suarez, L., Poblete, T., Gonzalez-Dugo, V., Ryu, D., Zarco-Tejada, P.J., Evaluating the 4197 

role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment 4198 

in almond using airborne hyperspectral imagery, Remote Sensing of Environment, 279, 113141.   4199 
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Appendix 2 4200 

Assessing the Contribution of Airborne-retrieved Chlorophyll Fluorescence for 4201 

Nitrogen Assessment in Almond Orchards 4202 
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Appendix 3 4208 

Leaf Nitrogen Assessment with ISS DESIS Imaging Spectrometer as Compared 4209 

to High-Resolution Airborne Hyperspectral Imagery 4210 

 

 

 

 

 

This is the paper in its published format in IEEE IGARSS 2022 conference: 4211 

 

Wang, Y., Suarez, L., Gonzalez-Dugo, V., Ryu, D., Moar, P., Zarco-Tejada, P.J., Leaf Nitrogen 4212 

Assessment with ISS DESIS Imaging Spectrometer as Compared to High-Resolution Airborne 4213 

Hyperspectral Imagery, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing 4214 

Symposium, 2022, pp. 5444-5447, doi: 10.1109/IGARSS46834.2022.9884759.  4215 



 

 
 

202  



 

 
 

203  



 

 
 

204  



 

 
 

205  

  



 

 
 

206  

Appendix 4 4216 

Evaluating the Contribution of Cx to Leaf Nitrogen Quantification using Fluspect 4217 

and Airborne Imaging Spectroscopy in Almond Orchards 4218 
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Appendix 5 4220 

Nitrogen Estimation in Almond Orchards from DESIS Imaging Spectrometer 4221 

Onboard the International Space Station 4222 
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