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Abstract 
Maximising the availability and use of grazed pasture is extremely important for 

grazing systems because it is usually the cheapest feed source for livestock. With 

increasing risks caused by variability in climate, precision agriculture (PA) 

technologies provide opportunities to routinely measure the current state of their 

pasture and to predict future pasture growth which may assist in risk management, 

but there has been relatively little research on PA application in pasture systems. 

Some Australian farmers are utilising PA by using soil moisture probes to monitor 

soil water content (SWC) to assist in acquiring an indication of seasonal conditions. 

Farmers could utilise this knowledge of SWC to predict pasture growth in the weeks 

and months ahead. One pasture model being used to estimate pasture growth rates 

is the Sustainable Grazing Systems (SGS) pasture model which incorporates the 

farms soil moisture content and historical weather records to estimate pasture 

growth rates over the months ahead. This work explored the potential to link infield 

measurements of soil water content to pasture growth models, in order to predict 

future pasture growth. A study was undertaken to determine the usefulness of SWC 

as a predictor of pasture growth at three sites (Pigeon Ponds, Baynton and 

Dartmoor) in Victoria, Australia, with different climatic conditions and pasture 

types. 

The SGS pasture model was used to predict monthly pasture growth rates based on 

historically dry (10th percentile), moderate (50th percentile) or wet (90th 

percentile) SWC, simulated using local climate data from 1990-2020.  Results were 

presented as the probability that pasture growth will be in the lowest, middle or top 

tercile (third) of expected growth rates for the month.   

The SGS modelling work demonstrated that the pasture growth forecast skill was 

mostly demonstrated at intervals within the main growing season with variation 

between each site. For Baynton, the forecasting skill was highest in October (Spring) 

and April and May (Autumn), at Pigeon Ponds it was in October and November 

(Spring) and April and May (Autumn) whilst at Dartmoor the forecasting skill was 

January through to April (Summer and Autumn). 

In horticulture and other broadacre cropping PA is used to measure plant water 

stress using canopy temperatures. Numerous studies have been undertaken using 

stressed and non-stressed plants to develop the Crop Water Stress Index (CWSI) 

and accompanying baselines in horticulture and broadacre cropping over the years. 

Limited work has been undertaken on using the CWSI and associated baselines for 

annual ryegrass and pastures with mixed species in southeast Australia. 

We developed field experiments set up on a commercial farm in Murroon, in the 

Otway’s (38°27’S. 143°50’S, 273m alt.) in southwest Victoria which ran from 

October 2020 to January 2022. Two treatment plots were set up in the paddock: a 

well-watered (non-stressed) and a rainfall-only (stressed) plot. The pastures were 

predominantly phalaris (Phalaris aquatica L) with a small amount of clover 

(Trifolium subterraneum L) and dandelion (Taraxacum officinalis) weeds. A 

permanent thermal canopy sensor was installed in each plot, along with soil 

moisture probes and a weather station. 
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Field plots were set up to simulate a stressed and non stressed pasture, from which 

data was collected to develop the stressed and non stressed baselines. Canopy 

temperatures were collected remotely, using infield canopy temperature sensors 

and utilising a flir thermal camera from a plane, to examine the use of CWSI 

spatially, at the plot and paddock scale. The field experiments showed that the 

baselines could be developed in the Australian pasture context, with clear canopy 

temperature differentials observed between stressed and non-stressed field plots 

during stressed conditions which made it possible to then calculate the CWSI. This 

work also showed that the CWSI could be applied spatially for pastures, highlighting 

areas of stressed and non stressed pastures across the paddock and farm scale.  A 

comparison between the baselines, empirical and adaptive CWSI was undertaken, 

with the baseline appearing more robust and useful as a method to determine the 

requirements for irrigation. 

Future research should aim to expand the available CWSI baselines for pastures in 

southeast Australia and examine how the phenological stages of pasture growth 

may affect the baselines. SWC has utility in predicting pasture production, which 

varies from site to site, but this predictive power could be further enhanced by 

integrating seasonal climate forecasts. 

Effective use of PA to monitor plant water stress by using the CWSI and improving 

accuracy in predicting pasture production can both assist with improving fodder 

management, quality and quantity in the weeks and months ahead, which is critical 

in an increasingly variable climate. 
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1 Introduction 
 

Use of canopy temperature and biophysical modelling to improve 

management of climate variability in grazed pastures. 

Background 

Field-grown pasture is the primary and cheapest feedstock for cattle and sheep in 

southern Australia (Perera et al. 2020, Chapman et al. 2009) and many other 

regions worldwide. Climate, particularly rainfall variability, is one of the significant 

sources of intra and inter-annual variation in pasture growth (Chapman et al. 2009). 

In the temperate and Mediterranean climates of southern Australia, pasture growth 

is primarily limited by water availability from mid-late spring to the time of the 

opening rains in autumn, while appropriate spring and autumn temperatures, 

nutrients, disease and other management practices (overgrazing) can also affect 

pasture growth. If the farmer can more accurately predict the fodder available in 

their paddocks in the coming weeks and months, they can improve their resource 

management and produce more fodder with fewer resources. The first part of this 

thesis examines the ability to model soil water content (SWC) to predict pasture 

growth rates in pastures in Victoria.  

The second related topic involved using precision agriculture and remote sensing 

to remotely monitor plant water stress in pastures using canopy temperature 

sensors and generate stressed and non-stressed baselines for a CWSI (Crop Water 

Stress Index) for pastures. The CWSI relies on recording the canopy temperatures 

of the plants to identify stressed and non-stressed plants. Water deficits occur in 

plants when evaporative demand exceeds the supply of water in the soil (Slatyer, 

1967). When there is inadequate water for the plant, the water stress causes partial 

stomatal closure and reduction in transpiration rates, and the reduced evaporative 

cooling raises the canopy temperature in relation to the ambient temperature 

(Jones, 1999). This canopy temperature difference can be measured and used to 

identify stressed and non-stressed plants in a plot or at a broader scale, such as 

across a paddock or farm. Using the CWSI can assist farmers in quickly identifying 

plant water stress over broad areas such as a paddock, vineyard or orchard, using 

the canopy temperature to measure the plants' water stress status. The CWSI has 

been extensively used in horticultural and other crops internationally (Idso 1982) 

and in parts of Australia (Park, et al. 2015) to measure the canopy temperature 

difference between a stressed and non-stressed plants; however, more work needs 

to be done on using the CWSI on pastures globally.  

Literature review overview 

Livestock producers in SE Australia experience fluctuations in pasture production 

within a season and from season to season and managing the pasture production 

and undertaking feedstock budgeting from month to month is critical to animal 

health and for the economic performance of farmers. The uneven pasture 

production is primarily governed by climate variability, ultimately affecting soil 
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moisture (Perera et al. 2020). In SE Australia, pasture production and quality are 

largely driven by the amount and timing of rainfall, with the peak pasture growth 

period being in the spring season for temperate pasture species (Chapman et al. 

(2009). Phalaris (Phalaris aquatica), an important perennial grass in south-eastern 

Australia due to its high productivity (Anderson et al. 1999; Reed et al. 2008a) and 

its ability to survive drought (Robinson et al. 1966, Hutchinson, 1979) and its 

drought tolerance is becoming more critical as summer droughts become more 

frequent and more severe (Kiem et al. 2016). Whilst phalaris is seen as an important 

pasture in the Australian grazing context, it can be affected by stresses related to 

climate, soil and grazing pressure, which can affect its persistence (Culvenor et al. 

2014).  

Biophysical agricultural models can simulate biological systems, assisting farmers 

in predicting the pasture growth that they can expect in the weeks and months 

ahead. These models can utilise local historic climate data and current on-farm 

conditions to simulate a range of pasture growth possibilities ahead. Several 

biophysical models are used in cropping, dairy, and weather forecasting, with the 

SGS pasture model being developed for southeast Australian conditions. In rain-fed 

cropping systems, SWC or Plant Available Water (PAW) is well established as a 

valuable indicator of future yield potential (Carberry et al. 2002, Foale et al. 2004), 

and systems have been developed to store soil moisture prior to planting in order 

to minimise climate risk (Hunt et al. 2011). Tools such as 'Yield Prophet' have been 

developed to improve the understanding of seasonal climate risk in cropping 

systems (Hochman et al. 2009) and to evaluate management input decisions (such 

as nitrogen fertiliser rates) to improve decision-making for grain growers (Hunt et 

al. 2006). However, there needs to be more research on the value of SWC for 

managing climate risk in pasture-based livestock production systems. Pasture 

systems differ from crop systems because they are often based on perennial plants 

rather than annual species and aim to supply year-round feed to meet livestock 

demands rather than a single crop harvest.   

Precision agriculture (PA) can assist with managing some of the risks around 

pasture production. The tools and techniques of PA are examined along with work 

to date using remote sensing in agriculture. It examines the use of PA to measure 

plant water stress and how the soil water content or canopy temperature can 

indirectly monitor it. Canopy temperature is generally accepted as an indirect, 

rapid, accurate and a large-scale indicator of crop water stress (Gonzalez–Dugo et 

al. 2022). Canopy temperature is considered a reliable proxy for plant water stress 

monitoring and irrigation scheduling (Tanner, 1963; Idso et al. 1984; Steele et al. 

1994). The issues of using the CWSI and baselines are also examined when 

developing the baselines; clear sky conditions (Idso, 1982) are required, as well as 

consideration of the growth stage of the plant (i.e. for grain crops pre-heading or 

post-heading, (Idso, 1982)).  

The CWSI has been used extensively in orchards and vineyards in Europe and the 

United States to monitor plant water stress. Initial studies undertaken by Idso et al. 

(1981) also developed baselines for numerous vegetable crops across sites in the 

USA. Continuing studies are being undertaken using the CWSI in other geographic 
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locations, looking at similar species with different varieties (i.e. vines with different 

cultivars) and looking into using the CWSI as a tool for controlling irrigation. 

However, minimal work has been undertaken on developing baselines and using 

the CWSI for pastures in southeast Australia, with limited information on the CWSI 

of annual ryegrasses or pastures in southeast Australia specifically. The CWSI can 

be calculated from baselines, empirically and theoretically. To develop stressed and 

non stressed baselines, the canopy temperature, air temperature and VPD needs to 

be recorded for stressed and non stressed plants and plotted. The empirical 

approach uses the formulae suggested by Idso (1981) and involves gathering 

canopy temperature for the canopy being measured, the air temperature, the 

canopy temperature of a stressed and non stressed canopy. Having a stressed and 

non stressed plant in order to undertake CWSI calculations is not always practical. 

A form of adaptive CWSI has also been used, using a histogram to assess the canopy 

temperatures in the area of interest and then using the high and low points in the 

histogram as the stressed and non stressed temperatures for the formulae. Jackson 

et al. (1981) also developed a theoretical CWSI, which requires canopy 

temperature, air temperature, relative humidity, net radiation wind speed and crop 

height. 

Aims of the study 

The research aimed to develop approaches to manage climate variability in 

pastures in south-eastern Australia, with a particular focus on water stress. 

Biophysical modelling was used to predict the impact of soil water on pasture 

growth and precision agriculture approaches were used to record canopy 

temperatures of stressed and non stressed pastures to develop baselines and 

calculate the CWSI.  

The specific research questions and hypothesis were: 

1. Is soil water content (SWC) a reliable predictor of pasture growth? How 

reliable is the prediction of pasture growth, and does it predict more reliably 

at certain times of the year? How does the pasture growth prediction vary 

due to climate and pasture types? 

 

Hypothesis: Wet/dry SWC will result in model predictions of high/low 

pasture growth rates 

Hypothesis: Pasture growth predictions will show most differences in the 

spring season. 

 

2. Do water water-stressed (non-irrigated) and non-stressed (irrigated) 

pastures show different canopy temperatures? 

 

Hypothesis: The stressed canopy will have a higher temperature than the 

non-stressed canopy (based on literature from other species). 

 

3. Can the canopy temperatures of water-stressed (non-irrigated) and non-

stressed (irrigated) pastures (Phalaris, Clover, and Dandelion) in southeast 

Australia be used to create the baselines and CWSI for pasture?  
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What are the issues of calculating the CWSI and baselines on pastures in 

southeast Australia?  

 

Hypothesis: The stressed and non-stressed baselines and CWSI will be able 

to be developed for pastures and will be similar to the annual ryegrass 

pastures. 

 

4. Can the stressed and non stressed baselines and the CWSI be developed 

remotely for an annual ryegrass pasture in southeast Australia? What are 

the issues of calculating the CWSI and baselines on annual ryegrass in 

southeast Australia?  

 

Hypothesis: The stressed and non-stressed baselines and CWSI will be able 

to be developed for the annual ryegrass pasture. 

 

5. Can the CWSI and baselines be applied spatially? Can this data be used 

spatially to project the CWSI across a paddock, property, and surrounds?  

What are the issues of calculating the CWSI and baselines from aerially 

derived data on pastures in southeast Australia?  

 

Hypothesis: The CWSI method developed will be able to detect spatial 

variation in pasture water stress, and temporal variation (flights on different 

days).  

 

6. How comparable are the baseline, empirical and adaptive CWSI methods? 

Are they interchangeable? What are the issues with using each method?  

Hypothesis: The baseline and empirical CWSI method will provide a more 

realistic result for plant water stress, and the adaptive CWSI will be less 

accurate than the conventional CWSI; however, the adaptive CWSI will still 

highlight areas of plant water stress in the field over a broad area (farm-

scale).  
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Thesis Structure  
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• Addresses the research question: Can 
the baselines (stressed and non 
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comparable the baseline, empirical and 
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summarises the new findings.
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2 Literature review 

2.1 Scope of the Literature Review 
The scope of the literature review was to investigate what biophysical models are 

used in agriculture and the pasture systems in Southeast Australia. The specific 

focus of this was on pasture modelling tools and forecasting, how they are used, and 

how fodder growth forecasts are presented to end users for pastures in Southeast 

Australia. This review does not cover all the plant species, management variables, 

soil conditions, fertilisation rates, etc., that can contribute to the variability of 

pasture fodder production. 

The literature review also considers the use of the Crop Water Stress Index (CWSI) 

and the development of baselines (stressed and non-stressed) as a way of 

evaluating plant water stress and how and where it has been applied in the field. 

The review examined the use of the CWSI across the globe and examines potential 

limitations for using the CWSI in Southeast Australia with regard to pastures.  

2.2 Pasture-based livestock production in SE Australia 
Livestock producers in SE Australia experience fluctuations in pasture production 

within a season and from season to season. Managing pasture production and 

undertaking feedstock budgeting from month to month is critical to animal health 

and the farmers' profitability. Agricultural production is also significant to Victoria. 

The gross value of agricultural production in Victoria was $17.5 billion (2020-21), 

which was 25% of the total gross value of agricultural production in Australia 

(Victorian Agriculture Industry Snapshot, January 2023). Livestock production in 

Victoria also plays a significant role in the state's economy. In Victoria, the gross 

value of agricultural milk production was $2.86 billion, beef was $2.58 billion, and 

sheep meat was $1.90 billion. Most of South West Victoria’s sheep and cattle 

production is based on dryland pasture systems of summer dormant cultivars of 

perennial ryegrass (Lolium perenne) or phalaris  (Phalaris aquatica L)  with 

subterranean clover (Trifolium subterraneum) (Waller et al. 2001).  

One major issue for Australian farmers is the uneven pasture production within a 

year (seasonal variation) and between years (inter-annual variation) (Perera et al. 

2020). The uneven pasture production is primarily governed by climate variability, 

ultimately affecting soil moisture (Perera et al. 2020).  Work undertaken by Perera 

et al. (2020) examining the seasonal average pasture production (kg DM/ha.day) 

from 1960 to 2015 across five different sites clearly shows the increase in pasture 

production in Spring, with the least amount of pasture production typically in 

Summer in southeast Australia (Figure 1). Perera et al. (2020) also found that year-

to-year pasture yield variability had increased from 2002 -2015 compared with an 

earlier period (1998-2001). 

  

https://www.evergraze.com.au/library-content/evergraze-action-productive-persistent-perennial-ryegrass/
https://www.evergraze.com.au/library-content/evergraze-action-grazing-phalaris-for-production-and-persistence/
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FIGURE 1. SEASONAL AVERAGE PASTURE PRODUCTION (KG DM/HA.DAY) FROM 1960 TO 2015 IN 

14-YEAR TIME INTERVALS AT (A) WAGGA WAGGA WITHOUT C4 GRASSES, (B) WAGGA WAGGA WITH 

C4 GRASSES, (C) DOOKIE, (D) HAMILTON, (E) ELLINBANK AND (F) ELLIOTT. (SOURCE PERERA ET AL. 
(2020) 

 

One of the most important perennial pasture grasses in southeastern Australia is 

phalaris due to its high productivity (Anderson et al. 1999; Reed et al. 2008a) and 

its ability to survive drought (Robinson & Simpson, 1966; Hutchinson, 1970). Its 

ability to survive summer drought is due to deep roots and partial summer 

dormancy (Culvenor, 2009). While phalaris is considered an essential pasture in the 

Australian grazing context, it can be affected by climate, soil, and grazing pressure 

stresses, affecting its persistence (Culvenor et al. 2014). Disease and interplant 

competition can also affect its persistence (Culvenor et al. 2014). Cocksfoot 

(Dactylis glomerata L.), tall fescue (Festuca arundinacea) and phalaris (Phalaris 

aquatica) are the major sown permanent, perennial grasses in areas of high rainfall 

in southeast Australia considered too dry for perennial ryegrass (Lolium perenne L.) 

(Culvenor et al. 2016). 

Since European settlement, the botanical composition of native pastures in high-

rainfall temperate areas of Australia has changed (Moore, 1970). Grazing, 
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accidental and deliberate introduction of exotic species and fertiliser applications 

have generated many pastures with a mix of native and exotic perennial grasses, 

annual grasses and native and exotic legumes (Garden et al. 2000). Some pastures 

may contain sown exotic pastures, sown to create feed for grazing stock (Garden et 

al. 1996). 

Seed supply companies and researchers have been undertaking field trials looking 

at improving the cultivars (Culvenor et al. 2016) and genetics of the pastures used 

in the Australian grazing industry with overseas species being brought in and 

trialled to see how they survive, how much biomass they yield, their persistence, 

etc in the Australian environment (Culvenor et al. 2016).  

In Europe, agriculture production has relied on the application of nitrogen fertiliser 

for the production of grasses. In contrast, Australia has relied on using legumes in 

pastoral agriculture to maintain low-cost farming (Ledgard et al. 1992). However, 

in more recent times, the use of nitrogen has increased in Australia (Rawnsley et al. 

2019). Legumes have been identified as important in the Australian grazing 

environment as they fix atmospheric nitrogen in the soil, potentially improving 

pasture biomass production (Sanford et al. 1995). Legumes and taller grasses can 

be more dominant at different times of the year (Sanford et al. 1995) and, in some 

cases, can complement each other. Lucerne (Medicago sativa L) has also been used 

as a legume in pastures to restore soil fertility and nitrogen status of soils in 

cropping and pastures (Davies et al. 2003, Ledgard et al. 1992). 

Similarly, part of work undertaken by Garden et al. (2000) looking at grazing 

management on the botanical composition of native grass-based systems in 

southeast Australia demonstrated the varied botanical composition throughout the 

year at four sites in Southeast Australia that had been previously grazed by sheep 

and cattle (Garden et al. 2000). These examples (Figure 2) also demonstrate how 

the species composition mix can change composition throughout the year. One 

issue with having mixed species can be the effect of taller grasses shading other 

pastures (i.e., clover) at certain times of the year (Sanford et al. 1995), making it 

harder for these small plants to grow and possibly contributing to their reduction 

in density in a paddock. These taller pastures may be alive and still growing or 

senescing, but they provide shading that may reduce the performance of other 

grasses or clovers. Clover and pasture composition and make-up can also be 

influenced by defoliation caused by overgrazing (Sanford et al. 1995). Livestock can 

selectively graze certain plants/species, further stressing certain pastures. 
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FIGURE 2. THE VARIED SPECIES COMPOSITION AT FOUR SITES IN SOUTHEAST AUSTRALIA (A) 

ATTUNGA NSW, (B) CARGO NSW, (C) HALL ACT AND (D) NILE TASMANIA (GARDEN ET AL. 2000). 

 

One of the major sources of variability in these production systems is the intra and 

inter annual variation in pasture production caused by climate variations 

(Chapman et al. 2009). Managing these risks is essential for profitable and 

sustainable grazing systems. Figure 3 presents the rainfall anomalies in the Murray 

Darling Basin going back to 1900, demonstrating the variability of rainfall, defined 

as deviations of annual rainfall from the long-run averages (Zaveri et al. 2020). The 

anomalies show how the rainfall can vary yearly and demonstrate the variability in 

rainfall farmers must manage. Southeast Australia has experienced three significant 

droughts since after the instrumental period: the Federation drought (1895-1902), 

the World War 2 drought (1937-1945) and the Millennium drought (1997-2009) 

(Dey et al. 2018) with the effects of reduced rainfall and elevated temperatures 

(Murphy et al. 2008). The variation in rainfall can change from year to year, decade 

to decade, as demonstrated by the drought periods in Figure 3. 
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FIGURE 3. MAJOR DROUGHTS AND MDB (MURRAY DARLING BASIN) RAINFALL ANOMALY FROM 

SEASONAL AVERAGE %. (KING ET AL. 2020). 

 

2.3 Climate in SE Australia. 
The climate of Southeast Australia is characterised as a mixture of temperate and 

grassland (based on a modified Koeppen classification system) (Figure 4). Mean 

average annual rainfall for South East Australia can vary from 200 mm to 1500 mm 

(http://www.bom.gov.au/climate/maps/averages/rainfall/) High rainfall 

variability is a feature of the southeast Australian climate (Murphy & Timbal, 2008). 

 

FIGURE 4. CLIMATE CLASSIFICATION OF AUSTRALIA (BUREAU OF METEOROLOGY) 

 

http://www.bom.gov.au/climate/maps/averages/rainfall/
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Southeast Australian farmers typically rely on winter rains to restore the soil 

moisture levels leading into Spring, where most fodder is grown. However, this 

rainfall is highly variable and can change from season to season. Trends show that 

the April to October rainfall across southeastern Australia has declined, as shown 

in the rainfall anomaly Figure 5 (CSIRO State of the Climate 2020). Along with the 

year-to-year variability discussed above, there is also variability within a season 

shown below (figure 5), which can result in soil being unable to recharge fully 

before the next growing season. 

 

FIGURE 5. RAINFALL ANOMALY SOUTHEAST AUSTRALIA (APRIL – OCTOBER) (CSIRO STATE OF THE 

CLIMATE 2022). 

 

Figure 6 presents the annual mean temperature anomaly for Victoria (1910-2022), 

demonstrating that during the 1970s, Victoria has changed from a negative mean 

temperature anomaly to a more consistent positive mean temperature anomaly, 

showing how climate change is starting to affect temperatures in Victoria 

(Australia).  
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FIGURE 6. ANNUAL MEAN TEMPERATURE ANOMALY, VICTORIA. (HTTP://WWW.BOM.GOV.AU/CGI-
BIN/CLIMATE/CHANGE/TIMESERIES.CGI?GRAPH=SST&AREA=VIC&SEASON=0112&AVE_YR=T) 

 

Australia’s climate has warmed by just over 1℃  since 1910, increasing the 

frequency of extreme weather heat events (CSIRO State of the Climate 2022). 

Eight of Australia’s top ten warmest years on record have occurred since 2005, as 

shown in Figure 7 (CSIRO State of the Climate 2022), adding further complexity to 

the variability farmers are facing. 

 

FIGURE 7. ANOMALIES IN ANNUAL TEMPERATURE OVER LAND IN THE AUSTRALIAN REGION (CSIRO 

STATE OF THE CLIMATE 2022). 
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2.3.1 Managing Variability 
 

Globally and historically, farmers manage variability throughout a season and from 

one season to the next; however, with the additional variability created by climate 

change, farmers are learning to adapt more often and faster than in the past. The 

variability caused by climate change can affect the farmer's production numbers; 

farmers may have to potentially reduce their stocking numbers or result in 

purchasing, non-budgeted fodder to feed livestock. If not appropriately managed, 

this can affect the profitability of the enterprise (Mu et al. 2013; Beitnes et al. 2022). 

Therefore, the more suitable tools a farmer has to manage, monitor and oversee 

their farming operations, the more likely they can be nimble to make quick and 

critical decisions based on factual data as the season changes so they can generate 

profits whilst managing resources optimally (Chapman et al. 2013). 

The literature shows that farmers need to adapt to increased climate variability. 

Following are some of the observations of changes in climate variability affecting 

agricultural production: 

• Shorter Spring seasons in Southern Australia are increasing (Bell et al. 2011) 

• Late autumn breaks in some locations have been observed (Bell et al. 2011) 

• Increased winter and early spring pasture production (Cullen et al. 20012) 

• Decreased late Spring and early Summer growth (Cullen et al. 20012) 

• Future pasture production will be reduced, causing economic difficulties for 

farmers (Harrison et al. 2016) 

The national livestock numbers (figure 8) fluctuate yearly, primarily dependent on 

pasture production, influenced by factors such as precipitation, flooding, and 

drought. Other factors, such as access to foreign markets and disease, can influence 

livestock numbers. Over the last five years, we have seen a drop in the beef, sheep, 

and lamb flocks, with a slight increase in 2020-2022 (Australian Bureau of 

Statistics, Agricultural Commodities, Australia 2021-2022). 

 

FIGURE 8. AUSTRALIAN BEEF, SHEEP AND LAMB FLOCK SIZE FLUCTUATIONS (SOURCE – ABS, 
AGRICULTURAL COMMODITIES, AUSTRALIA 2021-2022) 
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2.4  Use of biophysical models to understand climate variability impacts 
on agricultural production. 

Farming is a complex occupation, with many variables influencing production from 

one season to the next. In the case of raising grazing stock on pastures in Southwest 

Victoria, the main complexities are around having enough grass in the paddocks to 

feed the livestock throughout the year, allowing for seasonal and annual climatic 

variations. Biophysical agricultural models, which can simulate biological systems, 

play a significant role in assisting farmers in predicting the pasture growth that they 

can expect in the weeks and months ahead. These models can utilise local historical 

data and current on-farm conditions to simulate a range of pasture growth 

possibilities ahead. 

2.4.1 Agricultural Models History 
 

Earl Heady and his students undertook some of the earliest agricultural systems 

modelling to optimise decision-making at the farm scale (Jones et al. 2016). Heady 

undertook experiments on the fertilisation of crops and feeding of hogs, broilers, 

turkeys, dairy cows, beef cows, etc., to predict yield per acre of crop, gain per bird 

or animal for chickens, turkeys, hogs and beef cattle and milk production per cow 

(Heady, 1957).  

In 1972, the US government was surprised by a large order of wheat from the Soviet 

Union, causing price rises and shortages of wheat (Pinter et al. 2003). This 

prompted the US to fund research programs to create crop models to use with the 

US’s recently available remote sensing equipment to predict the production of 

major crops globally (Jones et al. 2016). Figure 9 outlines the timeline of significant 

events that led to the models available today. Whilst the timeline stops around 

2013, more recent models include data synthesis on greenhouse gases and the like. 

As our understanding of science, weather, and technological improvement (internet 

and personal computers) have progressed, the models have become more all-

encompassing. These models are constantly evolving, with new agricultural models 

factoring in the emissions produced from farming.  
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FIGURE 9. LOOKING BACK AT THE LAST 70 YEARS AND THE MAIN DRIVERS FOR DEVELOPING 

AGRICULTURAL SYSTEM MODELLING (SOURCE JONES ET AL. 2016). 

 

2.4.2 Types of Agricultural Models 
 

The scale of agricultural models can vary from the National / Global scale to the 

field scale as shown in Figure 10. This literature review concentrates on the field 

scale where individual farm production can be modelled to predict outputs at the 

operations scale. 
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FIGURE 10. VARYING LEVELS AT WHICH AGRICULTURAL MODELS ARE DEVELOPED AND 

OPERATE AT. (JONES ET AL. 2016) 

 

2.4.3 Australian Agricultural Models  
 

Numerous agricultural models can be used to simulate biological systems in 

Australia, such as: 

• The SGS (Sustainable Grazing Systems) Pasture Model, a multi-paddock, 

biophysical simulation model for livestock systems (Johnson et al. 2003), 

• APSIM, an agricultural production systems simulator to simulate 

biophysical processes in agricultural systems as they relate to management 

practices' economic and ecological outcomes in the face of climate risk. 

(McCown et al. 1995)  

• Farmpredict (ABARES) – AUSTRALIA (Hughes et al. 2019). A simulation 

model based on ABARES farm surveys. The model can simulate financial and 

physical outcomes for Australian farm businesses. 

• DairyMod & EcoMod biophysical pasture-simulation models for Australia 

and New Zealand (Johnson et al. 2008) 

• GRASP, a simulation model for soil water and pasture growth developed for 

northern Australia and rangeland pastures (Masoud, 2022).   

 

The models typically rely on inputs such as the current and historical climate data 

from the Bureau of Meteorology (BOM), soil moisture /water content, fertiliser 

application rates and past applications, soil type, historical production figures (e.g. 

yield, tonnes/hectare. % protein), irrigation rates, etc. 
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The need for Agricultural models. 

 

With the ever-increasing variability from season to season and throughout a season, 

it is critical that livestock managers can budget enough fodder for the stock they 

have at hand. Data-driven models using local inputs (i.e. current local weather data, 

historical local weather data, local soil moisture levels) can provide the livestock 

manager with potentially more accurate insights into the fodder availability (Jones 

et al, 2017) in the weeks and months ahead, resulting in better management 

decisions on farm and potentially improving the bottom line of the operations. 

Agricultural models can also be used in the science industry to predict specific 

outcomes, such as the effect of climate change on production rates (Guerena et al. 

2001). Similarly, the government can use the outputs of these models for planning 

and policy decisions (Holsworth et al. 2014).  

Data collected from precision agriculture, such as rainfall quantities, 

evapotranspiration rates, soil moisture content, humidity, and other field data, can 

be imported into biophysical models such as the Sustainable Grazing Systems (SGS) 

Pasture Model, Agricultural Production Systems sIMulator (APSIM), Pasture for 

prophets and Yield Prophet. These biophysical models can be valuable tools to farm 

managers and scientists alike, as the models can be run to predict future scenarios, 

using different inputs into the model to see how this will affect the model's 

outputs/predictions. The data collected by remote sensing can also be used to 

measure plant canopy temperature and monitor plant water stress using the Crop 

Water Stress Index (CWSI) (Bellvert et al. 2014). 

Agricultural models have several limitations. The data derived from the 

Agricultural models is only as good as the data quality used as the input and the 

operator's competency to question the results the model output provides. Studies 

undertaken by Silva et al. (2021) identified that although there have been 

significant advances in crop modelling, there are still knowledge gaps, with less 

attention paid to phosphorous and potassium limitations or yield production due 

to pests and disease. It was found that much focus has been put on the major cereal 

crops and less emphasis on root and tuber crops or tropical perennials (Donatelli 

et al. 2017). Agricultural models play a vital role in enhancing efficiency, 

sustainability, and resilience in agriculture. The models provide valuable insights 

that empower farmers, researchers, and policymakers with knowledge to make 

informed decisions in a rapidly changing agricultural landscape. 

 

APSIM (Agricultural Production Systems sIMulator) 

 

APSIM was developed by APSRU (Agricultural Production Systems Research Unit), 

a collaborative group comprising the CSIRO and the Queensland State Government, 

in 1991 (Keating et al. 2003). It was developed as there was a requirement for 

improved modelling to provide predictions of crop production in relation to 

climate, genotype, soil, and management factors whilst considering the long-term 

resource management issues in Australian farming (Keating et al. 2003). The 
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developers were influenced by overseas models such as CERES (Crop Environment 

Resource Synthesis). APSIM has been used extensively across numerous 

agricultural domains in Australia, such as crop management (Pembleton et al. 

2016), climate change impact assessment (Wang et al. 2019), soil health and 

nutrient management (Wang et al. 2020), water management (Keating et al. 2002) 

and economic analysis (McCown et al. 1995). 

 

Yield Prophet for grain growers. 

 

One of the main models used in the grain-growing industry is Yield Prophet. In 

2003, Yield Prophet started as a monthly fax to subscribers in the Wimmera – 

Mallee region of NW Victoria. In 2004, it became a web interface available for users, 

and in 2005, it expanded to all regions of Australia (Hunt et al. 2006). Yield Prophet 

is an example of an online, subscriber-based platform that provides grain growers 

and consultants with access to a crop production model presenting users with real-

time information about their crops (Hunt et al. 2006). Yield Prophet utilises APSIM 

as the underlying model and runs simulations and delivers reports to assist farm 

managers in decision-making.  

Yield Prophet provides a platform and model for users to; 

• Forecast crop yields. 
• Manage enterprise risks such as climate, soil, and water risks. 
• Monitor inputs such as fertiliser rates with potential crop yield. 
• Simulate the effect of changing sewing dates or trying new varieties. 
• Assess the possible effects of climate change. 

 
Figure 11 is a visual representation of the yield prophet simulation process as 

shown on their website, demonstrating how the underlying APSIM model aids in 

simulating yield production. 

 

FIGURE 11. YIELD PROPHET SIMULATION OVERVIEW. (SOURCE – YIELD PROPHET WEBSITE) 
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ABARES farm-predict 

 

ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences) 

has developed a model called farm-predict, "which can simulate the effects of price 

and climate variability on the production and profitability of Australian broadacre 

farms" (Hughes et al. 2019). ABARES farm-predict simulates the production of 

outputs (e.g., wheat, beef cattle, wool, etc.), the use of inputs (fuel and fertilizer) and 

changes in farm livestock and grain at a farm level under selected conditions. An 

overview of ‘farmpredict’ is shown in Figure 12 giving an example of the range of 

inputs used in calculating the outputs. 

 

FIGURE 12. OVERVIEW OF THE FARM-PREDICT SYSTEM (SOURCE - 

WWW.AGRICULTURE.GOV.AU) 

 

While farmpredict captures a lot of inputs and modelling outputs, at this stage, it 

does not appear to be using the models to produce short-term (3-12 month) 

forecasts of farm pasture production.  

SGS Pasture Model 

 

The SGS Pasture Model is a multi-paddock, biophysical simulation model for 

livestock systems. The SGS model can simulate pasture growth rates for grazing 

enterprises. The SGS Pasture Model was developed for Australian conditions by IMJ 

Consultants in collaboration with Meat and Livestock Australia (MLA), the 

University of Melbourne, and Dairy Australia. It was developed for researchers 
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(Johnson et al. 2003) to simulate grazing scenarios. The model can import the local 

weather data and use historical weather in certain simulations. The SGS model 

incorporates modules for water dynamics, herbage accumulation and utilisation, 

nutrient dynamics and animal intake and metabolism (Johnson et al. 2003). The 

interactions between these modules are crucial to understanding efficient pasture 

management (Johnson et al. 2003). Elements within the modules can be altered to 

see how changing certain variables can affect pasture production. The philosophy 

of model use is that all model outputs should be questioned. If the model's output 

agrees with the observed data, then the model should be interrogated to 

understand why this is so. Similarly, if the model output does not agree with the 

observed data, the model should be interrogated to see why (Johnson et al. 2003). 

The user of the model is encouraged to question the outputs of the model for 

accuracy and, in doing so, build up proficiency and competency in what to expect 

from the model (Johnson et al. 2003). Consideration needs to be considered when 

interrogating the output of the modelled versus actual data, as some variables are 

challenging to measure in the field, and errors can be derived from many sources, 

such as location error, calibration error and /or instrument error (Sinclair et al. 

1979). The SGS model is typically used for academic research and is not widely 

available to the public. 

2.4.4 Model and data output quality 
 

Whilst agriculture models can add value, they are only as good as the data put into 

the model and the parameters the model runs on. Therefore, time must be taken to 

build the model, understand the model, and check the model against what is 

happening in the field to ensure a model runs as close to reality as possible. Beukes 

et al. (2008) conducted a three-year farm trial to evaluate the Whole-farm model 

(WFM) in New Zealand. Similarly, Barrett et al. (2004) evaluated four perennial 

ryegrass growth models to form the basis of a herbage growth model (HGM). 

Comparing the SGS biophysical simulation model against actual data, the model 

parameters can be refined to ensure the model simulates as close to reality as 

possible. Numerous variables within the SGS pasture model and other models must 

be 'calibrated' to local conditions. Variables include: 

• Plant type (C3, C4, phalaris, fescue, clover, etc), annual or perennial, 

persistence coefficient. 

• Plant composition (number of different species present in the paddock), 

• Soil type(s) (soil profile depth, texture, saturated hydraulic conductivity), 

• Soil compaction (soil texture), 

• Nitrogen content. (Ability to alter soil nutrients and add fertiliser 

history/data), 

• Grass management approach (set grazing, rotational grazing, cutting for hay, 

nitrogen replacement, etc). 

 

2.4.5 Forecasting  
Using forecasting available to farmers can potentially help manage the 

repercussions of climate variability that farmers are facing. Climate forecasts can 
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assist farmers with knowledge of future potential rainfall and temperatures, 

whereas pasture growth forecasts can assist farmers with feed budgeting in the 

weeks and months ahead. Using seasonal climate forecasts can assist farmers in 

making management decisions which may be one-way farmers can minimise losses 

in drought years and take advantage of favourable seasons (Ash et al. 2007). 

The Bureau of Meteorology provides a wide range of rainfall forecasts to farmers 

across Australia with weekly, one and three-month forecasts, as shown in Figure 13 

as an example. These types of forecasts can assist farmers with planning for future 

events. 

 

FIGURE 13. RAINFALL, THREE-MONTH OUTLOOK, DECEMBER TO FEBRUARY (2023-2024). 
THE CHANCE OF EXCEEDING MEDIAN RAINFALL (SOURCE - BUREAU OF METEOROLOGY). 

 

The Bureau of Meteorology also provides past accuracies for their predictions, 

demonstrating that at some locations at certain times of the year, their forecast is 

accurate or inaccurate, as shown in Figure 14. 
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FIGURE 14. ACCURACY FOR CHANCE OF ABOVE MEDIAN RAINFALL, NOVEMBER-JANUARY 

(SOURCE BUREAU OF METEOROLOGY). 

 

Like climate forecasts, forecasts of future pasture growth can provide farmers with 

important insights into pasture production in the weeks and months ahead. 

Knowing expected pasture production in the weeks and months ahead can assist 

farmers with facing the uncertainties around farming and be prepared for what is 

to come. Shown in Figure 15 is a forecast of projected green herbage available 

versus historic for the Riverina (NSW). Forecasts like these can assist farmers with 

knowing how this season is tracking compared to previous seasons and indicate 

how much pasture production can be generated in poor years versus excellent 

years (Mitchell et al. 2022). 

 



 39 

 

FIGURE 15. PROJECTED GREEN HERBAGE FORECAST AVAILABLE TO FARMERS USING THE 

CSIRO “FARMING FORECASTER.” 

 

The skilfulness of the forecast is an issue. Ash et al. (2007) concluded from Ziervogel 

et al. (2005) that forecasts need to be 65-70% accurate to achieve long-term 

adoption and trust, which is similar to work undertaken by Jochec et al. (2001) and 

Leith (2006) that demonstrated that an accuracy of 70-80% is required and that 

forecasts have to be proven for a 4–5 year period before they would be adopted. 

Forecast skill varies over more extended periods, within seasons and spatially. 

Predicting the most helpful variable to provide to farmers can be an issue. 

Forecasting rainfall and temperature for the three months ahead may be relevant 

to some, however, other farmers may want access to forecasts on crop/pasture 

growth rates and soil water storage (Ash et al. 2007). Whilst climate and fodder 

forecasts are available to farmers, they are not necessarily used by all farmers for 

various reasons. How forecasts are presented can cause confusion (Ash et al. 2007). 

Research undertaken by Keogh et al. (2005) demonstrated that only “20% of 

pastoralists correctly interpreted a forecast that stated there was a 70% probability 

of receiving above median rainfall”. 

Farmers can act on forecasts if they have significant lead time and are willing to 

change. However, the implications of changing plans to short-term forecasts on 

long-term farm objectives must be considered. If a farmer knows they are going into 

a drier period, they may be able to purchase forage; however, if the lead time is 

short, extra forage may not be available or cost prohibitive. Similarly, if a farmer 
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knows they are heading into a drier period, it may not be practical to sell off a 

breeding herd (Stafford Smith et al. 2000) as this may affect long-term herd 

dynamics and profitability (Ash et al. 2007). The value of the forecast needs to be 

considered within the context of the whole farm and aligns with the manager’s 

decision-making process (Stafford Smith et al. 2000). Overreacting to forecasts can 

result in losses of profits, whilst inappropriate responses can exceed the benefits of 

using forecasting (Smith et al. 2000). 

2.4.6 Soil Moisture 
 

Rainfall makes water available to the pastures as either in-season rainfall or stored 

soil water (Verburg et al. 2016). The amount of stored soil water, also known as 

Plant Available Water (PAW), is affected by pre-season and in-season rainfall, 

infiltration, evaporation, and crop/pasture water use (Verburg et al. 2016). The 

Plant available water capacity (PAWC) is the total amount of water that can be 

stored in a soil and released to a crop/pasture. The PAW is the amount of water 

stored within the soil and available to the plant (Figure 16) (Verburg et al. 2016).  

 

FIGURE 16. (A) PLANT AVAILABLE WATER CONTENT (PAWC) V (B) PLANT AVAILABLE 

WATER (PAW). SOURCE VERBURG ET AL. 2020. 

 

Contributing to the PAWC is the soils texture. Particle size within the soil 

determines how much moisture can be stored and how tightly it is held in the soil 

(Verburg et al. 2016). The soil’s structure, chemistry and mineralogy can all affect 

the PAWC (Verburg et al. 2016). 

2.4.7 Summary 
 

This section discussed the variability of the Australian climate and gives examples 

of agricultural models and how agricultural models are used in agriculture to assist 

in improving agricultural production. It also demonstrated the void and 

inaccessibility of agricultural models available for pasture forecasting in the weeks 

and months ahead in the Southeast region of Australia.   



 41 

2.5 What is Precision Agriculture? 
Precision agriculture can assist farmers in monitoring and managing their pastures. 

Precision agriculture intends to match agricultural inputs and practices to localised 

conditions within a field so user can do the “right thing in the right place, at the right 

time”, and in the right way (Banu, 2015). 

A Lleida University Research Group lists 27 definitions from the scientific literature 
and the Internet (Lleida University, 2018). In 2019, the International Society of 
Precision Agriculture adopted the following definition: ‘Precision Agriculture is a 
management strategy that gathers, processes and analyses temporal, spatial and 
individual data and combines it with other information to support management 
decisions according to estimated variability for improved resource use efficiency, 
productivity, quality, profitability and sustainability of agricultural production.’ 
Source 
(https://www.ispag.org/about/definition#:~:text=%E2%80%9CPrecision%20Ag
riculture%20is%20a%20management,%2C%20productivity%2C%20quality%2C
%20profitability%20d). Another definition by Liaghat et al. (2010) is that “PA is an 
integrated, information and production-based farming system that is designed to 
increase long term, site-specific and whole farm production efficiency, productivity 
and profitability while avoiding the undesirable effects of excess chemical loading 
to the environment or productivity loss due to insufficient input application.” 

 

2.5.1 Precision agriculture – tools and techniques 
 

There is wide-scale adoption of precision agriculture technology (Castle et al. 

2015), whilst the cost of precision agriculture technology has decreased since its 

introduction (Jochinke et al. 2007). Examples of pasture-related growth and 

monitoring technological tools include; 

• Canopy temperature sensors, 
• Nitrogen and moisture sensors, 
• VRT. Variable Rate technologies, delivering desired rates to specific 

locations. (i.e. fertiliser application, sprays), 
• Moisture probes with inbuilt communications (O’Shaughnessy et al. 2020), 
• Local (farm) based weather stations (Conaty et al. 2012). 

 
In the past, farmers would need to buy the individual components (sensors, data 
loggers, electronics boards, etc) of the required precision agriculture tools from 
different supplies and cobble together a system that works for their enterprise. 
Now, there are numerous off-the-shelf products that farmers can buy or subscribe 
to, to monitor individual parts of their enterprise (e.g., individual sensors) or 
packages that can monitor the whole farm, from their crops, soil moisture, 
humidity, temperature, salinity, dam heights, etc. (Rehman et al. 2014, Farooq et al. 
2020).  
 

2.5.2 Remote Sensing  
 

Remote Sensing (RS) is defined as “the field of study associated with extracting 

information about an object without coming into physical contact with it” (Schott et 

https://www.ispag.org/about/definition#:~:text=%E2%80%9CPrecision%20Agriculture%20is%20a%20management,%2C%20productivity%2C%20quality%2C%20profitability%20d
https://www.ispag.org/about/definition#:~:text=%E2%80%9CPrecision%20Agriculture%20is%20a%20management,%2C%20productivity%2C%20quality%2C%20profitability%20d
https://www.ispag.org/about/definition#:~:text=%E2%80%9CPrecision%20Agriculture%20is%20a%20management,%2C%20productivity%2C%20quality%2C%20profitability%20d
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al. 2007). “Remote sensing applications in agriculture are based on the interaction 

of electromagnetic radiation with soil or plant material” (Mulla, 2013).  

Remote sensing can utilise sensors in the paddock on vehicles capable of carrying 

measuring devices/sensors. Remote sensing can utilise drones, planes or satellites 

as vehicles to carry multispectral, hyperspectral and thermal Infrared cameras to 

capture images. Remote sensing also includes using a sensor or instrument 

mounted on a probe (Weiss et al. 2020) or pole. Remote sensing can virtually obtain 

measurements across a paddock in every location in time and space. Multispectral, 

hyperspectral and thermal Infrared cameras capture specific wavelength bands on 

the electromagnetic spectrum that humans cannot see. These bands can reveal 

information on vegetation that photos and the human eye cannot observe. The raw 

data captured from the multispectral and hyperspectral cameras must be converted 

to an output that farmers and others can utilise.  

Applications of remote sensing across the agricultural environment include: 

• Broadacre cropping picking up in-field variability (Jochinke et al. 2007). 

• Citrus and silage yield mapping (Lee et al. 2005). 

• Quality mapping in various crop types (Wahab et al. 2018). 

• Variable rate technology (VRT) for spreading fertiliser efficiently (Han et al. 

2019). 

• Vegetation growth monitoring (Jung et al. 2018). 

• Weed mapping and management (Bah et al. 2017). 

• Irrigation management (Quebrajo et al. 2018, Albornoz et al. 2017). 

• Crop spraying. (Xue et al. 2016, Garre et al. 2018). 

Remote sensing uses non-contact measurements of radiation reflected or emitted 

from plants (Mulla, 2013) and can be used to detect issues such as plant water 

stress. Remote sensing has been used globally to monitor, measure and check plant 

water stress in numerous and diverse agricultural industry crops, such as; grains 

and seeds (Maise - Zea mays L, (Tsouros et al. 2019), Wheat – Triticum durum 

(Tsouros et al. 2019), Rice (Tsouros et al. 2019), Soya - Glycme max L Merr, (Tsouros 

et al. 2019), Sunflowers - Hebanthus annuus L (de Castro et al. 2018)), fruits and 

vegetables (Nectarines - Prunus persica  (Park et al. 2017), Peaches - Prunus persica 

(Park et al. 2017), Grape vines - Vitis vinifera L.. (Knipper et al. 2019), Tomatoes 

(Hassler et al. 2019), Potato - Solanum tuberosum L. Cilena, (Gerhards et al. 2019), 

Cranberry - V. macrocarpon,  (Sandler et al. 2018), Forestry and Fibres, (Conifers 

(Smigaj, et al. 2017), Forest characterisation (Michez et al. 2019), Cotton - 

xinongmian 1008) (Bian et al. 2019)), Therapeutics, (Poppy crops (de Castro et al. 

2018)), as well as invasive species mapping (Michez et al. 2019), wildlife census 

(Michez et al. 2019) and analysing commercial grass (Gerhards et al. 2018). 

One area of remote sensing is the collection of leaf temperatures of crops/plants. 

Plants under water stress tend to close their stomata, and therefore, the plant's 

mechanism for self-cooling is decreased, increasing plant surface temperature 

(Gerhards et al. 2019). The water-stressed plant will have a higher leaf surface 

temperature than a well-watered plant nearby. The leaf temperature of crops can 

now be continuously monitored remotely with field canopy temperature sensors. 
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The leaf’s temperature can also be collected by thermal infra-red (TIR) from drones, 

planes and satellites (Gonzalez-Dugo et al. 2019, Fisher et al. 2019). The remotely 

collected leaf temperature data can also be incorporated into the Crop Water Stress 

Index (CWSI), which farmers can also use to monitor water stress across their crops 

(Veysi et al. 2016). 

2.5.3 Imaging technologies 
 

Numerous imaging camera technologies exist and are used within agriculture. The 

imaging camera technologies utilised in agriculture fit into the following categories 

(Jin et al. 2020): 

• Red, Green Blue (RGB) Camera. 

• Multispectral Cameras, (Bands; blue 475 +/- 20 nm, green 560 +/- 20 nm, 

red 668 +/- 10 nm, near IR 840 +/- 40 nm, red edge 717 +/- 10 nm). 

• Hyperspectral Cameras (narrower bands ((spectral range 400 - 1000 nm).  

• Thermal infrared cameras (spectral range 7.5 – 13.5 nm) 

The different imaging technologies concentrate on different bands of the 

electromagnet spectrum, some of which can be seen by the human eye and most of 

which cannot, as shown in Figure 17. 

 

FIGURE 17. THE ELECTROMAGNETIC SPECTRUM. (SOURCE- HTTPS://WWW.E-
EDUCATION.PSU.EDU/GEOG160/NODE/1958) 

Plants interact with solar radiation differently from other materials. Plant 

components are expressed differently in the reflected optical spectrum from 400 

nm to 2500 nm, as shown in Figure 18, with distinct reflectance behaviours, as can 

be seen by the different reflectance of leaf pigments, cell structure and protein and 

cellulose content. These variations within plants can be captured by the different 

remote imaging tools and used to assess varying crop health parameters. 

https://www.e-education.psu.edu/geog160/node/1958
https://www.e-education.psu.edu/geog160/node/1958
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FIGURE 18. COMPONENTS OF PLANTS AND THE VEGETATION SPECTRUM. (SOURCE - 

WWW.DRONEZON.COM) 

 

With regards to monitoring plant water stress, whilst the underlying technology 

may not be new, the availability, reduction in cost, size, and weight of the cameras, 

and access to and understanding of the outputs have undergone considerable 

improvement over the last two decades. 

Thermal Infrared (TIR) 

 

Thermal remote sensing involves acquiring, processing and interpreting data in the 

TIR range of the electromagnetic spectrum (EM) (Prakash, 2000). Sensors within a 

thermal camera pick up the infrared radiation emitted by a plant, displaying its 

temperature in a digital radiometric (Messina et al. 2020) or thermal image. 

The thermal images can be taken with handheld thermal sensors, or sensors can be 

mounted on planes and satellites. The measurement of thermal temperature is a 

non-invasive, non-contact, and non-destructive technique (Ishimwe et al. 2014). 

Thermal remote sensing works as everything above absolute zero (0 k or -

273.15℃) emits radiation within the infrared range on the electromagnetic 

spectrum (Prakash, 2000). The thermal properties of plant canopies are affected by 

the plant's structure and the amount of water per unit area (Ishimwe et al. 2014).  

 

2.6 Monitoring Plant water stress using Remote Sensing 
There are many methods for stress detection in plants. A number of the methods 

can be ineffective in early plant stress detection, time-consuming and require 

numerous measurements across a whole field to gain a true reflection of the field’s 



 45 

plants' water status (Conaty et al. 2014). Some of the methods for stress detection 

in plants are as follows:  

• In the field, visual observation by a farmer looking for, wilting, soil moisture 

levels, etc. 

• Scoring of plants for leaf rolling using a visual scale, i.e. scale 1-9 (1 

correlates to no leaf rolling, and nine correlates to maximum leaf rolling. 

Baret et al. (2018)). 

• The leaf wilting index (LWI) which is the ratio between the number of 

wilting leaves and the total number of leaves (Pungulani et al. 2013). 

• Leaf water potential which provides data on the soil moisture content of a 

plant by measuring the amount of pressure the plant is exhibiting while 

pulling water from the soil (Bartell et al. 2021), typically measured using a 

pressure chamber. 

• Stem water potential which directly measures the tree water status by 

measuring the water tension within the plant (Blanco et al. 2021). 

• Plant water potential which provides data on the soil moisture content of a 

plant by measuring the amount of pressure the plant is exhibiting while 

pulling water from the soil (Bartell et al. 2021). 

• Leaf relative water content which reflects the balance between water supply 

to the leaf tissue and transpiration rate (Lugojan et al. 2011). 

• A leaf pyrometer which measures gas by placing the conductance of a leaf in 

series with two known conductance elements and comparing the humidity 

measurements between them to estimate water vapour flux (Batke et al. 

2020). 

• Gas exchange rate systems which measure the gas exchange based on a leaf 

cuvette connected to an infrared gas analyser. The cuvette is clamped over a 

single leaf, and the gas exchange of a small area of the leaf blade (typically 2–

10 cm2) is measured (Kolling et al. 2015). 

• CWSI (Crop water stress index) which uses the temperature comparisons of 

a leaf and an index to determine a stressed or non-stressed plant. 

There are several ways to monitor plant water stress remotely. They range from 

soil moisture probes, Thermal Infrared (TIR) cameras, hyperspectral images, VNIR 

/ SWIR (visible and near-infrared / Shortwave infrared) and the use of 

Fluorescence. Remote sensing methods are shown in Figure 19, demonstrating the 

relationship between stresses, plants response and applicable remote sensing 

techniques.  
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FIGURE 19. RELATIONSHIP BETWEEN THE STRESSES, PLANTS RESPONSE AND APPLICABLE 

REMOTE SENSING TECHNIQUE (SOURCE - JONES ET AL 2010). 

 

A plants performance is maximised when a plant is maintained within its optimum 

temperature range, which can be partially controlled through plant water 

availability. Guobin et al. (1992) found that the lack of water severely restricted 

plant growth and that tillers and stolons of clover and phalaris were reduced by 

20% under water stress. Guobin et al. (1992) also found that phalaris and clover 

stomatal conductance declined by 80-90% with increasing water stress. They also 

found that soil moisture deficits reduced the pasture growth and survival and the 

fodder quality available for farm animals. By using the plant's canopy temperature 

as a guide to water stress, farmers can use a direct method to monitor plant water 

stress instead of using an indirect measurement of plant water stress, such as soil 

moisture conditions or evaporative demand (Conaty et al. 2012). 

Declining stomatal conductance reduces transpiration and evaporative cooling, 

increasing canopy temperature (Struthers et al. 2015). Transpiration has the most 

influence in reducing leaf temperature to below the ambient temperature (Conaty 

et al. 2014). By the time wilting is observed in a pasture or crop, a proportion of the 

potential yield may have already been lost (Jones, 2004). If soil moisture is 

available, water flows through plants from the root system up the stem to the leaves 

to facilitate transpiration, as shown in Figure 20. 
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FIGURE 20. WATER FLOW THROUGH A PLANT (SOURCE - PLANTS AND MICROCLIMATE, JONES 

1992) 

 

During water stress, the stomata close, causing an increase in canopy temperature 

(Gerhards et al. 2019). Figure 21 shows an example of an open and closed stomata.  

 

FIGURE 21. STOMATA OPEN AND CLOSED (SOURCE - PLANT PHYSIOLOGY, 2ND EDITION, P. 
523, EDITED BY TAIZ AND ZEIGER.) 

 

As a result, the crop canopy temperature (Tc), associated with transpiration, has 

been identified as a real-time, plant-based tool for crop water stress detection and 
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monitoring (Conaty et al. 2014). Figure 22 summarises the above points, 

demonstrating that a plant with access to soil moisture should have a lower leaf 

temperature as the stomata are open and the plants fully transpiring, compared to 

a plant in dry soil, where the stomata have closed and as a result the canopy 

temperature is higher. 

 

 

FIGURE 22. REMOTE MEASUREMENT OF CANOPY TEMPERATURE (SOURCE - AHMAD ET AL. 
2021). 

 

2.6.1 Monitoring soil moisture 
 

Soil moisture probes are another form of remote sensor and come in different types. 

The capacitance sensor measures the amount of water in the soil through its 

capacity to transmit electromagnetic waves or pulses. Multi-depth capacitance 

sensors have become popular for real-time, continuous and non-destructive soil 

moisture profile measurements (Myeni et al. 2021). Soil moisture sensors can be 

used at individual sites to give the farmer an idea of their soil moisture, and these 

individual sites can be part of a larger network of soil sensors, as is used in Victoria 

(Figure 23). Here, a network of sensors is used for the cropping and pasture 

industries, with data available online. Some farmers use soil sensors when 

considering when to plant a crop. However, to get an accurate soil moisture 

measurement, the capacitance probes must be calibrated for different soil types 

(Myeni et al. 2021). Calibration undertaken on site factors in soil properties, such 

as soil texture, mineralogy, bulk density, salinity, temperature and organic matter 

(Myeni et al. 2021). Another issue in using soil moisture probes is the spatial 
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variability of soil moisture; the probe may give a relatively accurate result of the 

soil moisture at the probe; however, how much does the soil moisture vary as you 

move away from the probe? 

         

 

FIGURE 23. ANNUAL SOIL MOISTURE MEASURED AT DIFFERENT DEPTHS, INCLUDING ANNUAL 

RAINFALL FOR HARROW IN SOUTH-WEST VICTORIA. (SOURCE – 

HTTPS://EXTENSIONAUS.COM.AU/SOILMOISTUREMONITORING/) 

 

2.6.2 Reliability, Interpretation, Cost 
 

Thermal remote sensing makes it possible to quickly measure plant water stress in 

large areas with a thermal camera mounted on a drone, plane, or Satellite. This 

allows a farmer to identify areas of issue (stress) quickly and easily.  

While using RS has many advantages, there are also numerous issues involved with 

collecting consistent and accurate data remotely in the field. Environmental 

conditions like wind and clouds can interfere with thermal measurements and 

cause errors. The presence of clouds, dust, snow, smoke, and high winds can also 

make the collection of data difficult in some parts of the globe (Akuraju et al. (2021), 

Nielsen (1990)). The cost of thermal sensors, planes, etc, can also be prohibitive for 

some technology users. Thermal images also tend to be recorded around thermal 

noon for most applications. Low-cost thermal cameras are not necessarily 

radiometrically calibrated and can only provide relative temperature differences 

(Messina et al. 2020). Field calibration is also required (Messina et al. 2020). The 

end users' ability to access, process and interpret the data can also be limiting. 

When measuring the canopy's temperature, errors can occur if the background 

(typically soil) influences the temperature recorded. The low resolution of some 

satellites means that the thermal data may not be used for gaining canopy 

temperature as the resolution is not small enough to pick up the temperatures of 

individual leaves and may also pick up a lot of background temperatures (i.e., soil) 

or 'mixed pixel values' which represent pixels that are a combination of leaf and 

background (Messina et al. 2020). 

The data gathered is restricted to the sensor and platform capacities (viewing 

https://extensionaus.com.au/soilmoisturemonitoring/
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direction and limited spatiotemporal information (Weiss et al. 2020). The sensor(s) 

need to be calibrated (Weiss et al. 2020), and atmospheric conditions (Weiss et al. 

2020) and geometry of acquisition (Epiphanio et al. 1995), crop type, water status 

and phenological stages (Colombo et al. 2003) all need to be considered. Other 

uncertainties also include errors associated with the devices (Fernandes et al. 

2005). With regard to using RS in the farming environment, the farmer needs to 

have access to the equipment, to be able to use the equipment and decipher the 

results. 

The ability to collect the data using RS at the right time and place can be an issue, 

with clouds making it difficult to collect data remotely by plane, satellites, and, to a 

certain extent, drones. Similarly, the return times of satellites can make it 

challenging to monitor a crop constantly or daily if required. Using planes to 

monitor crops from the air constantly can be time-consuming and expensive. Hill et 

al. (2004) highlight how providing a 'pasture growth rate' is required in a timely 

and accurate manner as it is critical to assist livestock producers in developing 

grazing plans for their properties. Similarly, Handcock et al. (2016) highlight the 

'irregular availability of suitable images" and the issue of generating an output 

useful for farmers. Banhazi (2012) highlights the abundance of information 

available to the farmer but how it is not generally structured in a way that can be 

applied readily". The issues of weather and return times need to be considered 

when choosing the right mix of PA and RS for specific crop monitoring. 

Spatial resolution (Figure 24) is also a major consideration when choosing which 

type of RS to assist with data gathering. Many of the satellites may not have the 

spatial resolution to collect the data required (i.e., to collect plant water stress by 

collecting the thermal temperatures of individual leaves, resolution of a few 

centimetres are required, where some of the satellites resolutions can be 5m – 30m 

or more).  Over time as satellite/technology improves we will see the spatial 

resolution continuing to reduce. 

 

FIGURE 24. SATELLITES AND THEIR SPATIAL RESOLUTION SINCE 1999 (KHANAL ET AL. 2020). 
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RS is used more widely in some parts of the world, therefore more comparison 

studies are available to access. If limited studies are conducted in the area of 

interest, then more baseline data may be required to be gathered before using the 

RS method in the field. Figure 25 shows that Europe appears to be the leader in 

Satellite-based studies across multiple sensors, whilst Australia trails behind in 

both platforms and sensor types used in the field. 

 

FIGURE 25. SUMMARY OF AGRICULTURE REMOTE STUDIES BY GEOGRAPHIC REGION BY (A) 

PLATFORM AND (B) SENSOR TYPE. (KHANAL ET AL. 2020). 

 

When using satellites, planes and drones, the time of day the data is recorded must 

be considered. Certain data types must be collected at certain times (i.e., plant water 

stress thermal data should ideally be recorded around solar noon). If the data is not 

collected at the correct time, then the data may be less useful or completely useless. 

When the data is collected some filtering may need to be undertaken such as when 

monitoring plant water stress, any background soils temperatures need to be 

filtered. 

With the increase in RS tools come other issues. What does the raw data mean? Can 

the farmers get the data on a timely basis? Is it a real-time or lagging indicator? Is 

the data measuring what the farmer needs? How accurate is the data? Is the data 

always available when the farmers need it? Do farmers need to calibrate new tools? 

Farmers do not necessarily have the time, knowledge, or skills to compute all this 

extra data to extrapolate specific insights that will improve their enterprise. Jones 

et al. (2017) state that “one issue is how to make data acquisition and analytical 

tools appropriate for and easy to use by farm-level decision-makers” (Jones et al. 

2017). Shovelton et al. (2017) highlighted that "the correlations between NDVI and 
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feed on offer varied between sites and seasonality, and there was no consistent 

calibration to all situations". Higgins et al. (2018) also state the need for "high-

quality ground truth data for cross-validation". 

The cost of the RS equipment (i.e., thermal camera) and the vehicle it is mounted on 

can be cost-prohibitive for individual users. Calibration of the field equipment is 

also important, especially when collecting data using different pieces of equipment 

that then need to be combined for further calculation or interpretation. Having the 

time to collect and interpret the data is also time consuming. Other issues may 

involve special licence requirements (i.e., pilot license or drone licence) and 

maintenance of equipment (drones, planes, thermal cameras, etc). 

 

2.6.3 Capturing plant canopy Temperature in the field. 
 

Figure 26 demonstrates results from fieldwork undertaken by Bucks et al. (1985) 

that monitored the plant canopy temperature minus air temperature relative to 

irrigation treatments. Figure 26 demonstrates that the wet/irrigated guayule has a 

lower canopy temperature than an unwatered/dry plant. This variation in the 

canopy temperature of a wet vs. dry plant along with the VPD is used in developing 

the crop water stress index (CWSI). 

 

FIGURE 26. PLANT CANOPY MINUS AIR TEMPERATURE V’S TIME FOR THREE GUAYULE CULTIVARS 

UNDER WET (I1), MEDIUM (I3) AND DRY (6) IRRIGATION TREATMENTS. SOURCE – BUCKS ET AL. 
(1985) 
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2.6.4 Crop water stress index (CWSI)  
 

The Crop Water Stress Index has been developed and is used in industry to measure 

the amount of plant water stress based on the canopy surface temperatures. The 

CWSI has been demonstrated to be closely related to water availability in the root 

zone of wheat crops (Jackson et al. 1981). The CWSI was calculated as proposed by 

Idso et al. (1981). The empirical CWSI formulae used are as follows in Figure 27. 

 

FIGURE 27. CWSI FORMULAE 

 

The (Tc – Ta) represents the canopy temperature less air temperature of a canopy 

on the sampling day. The (Tc – Ta)LL represents the canopy temperature less air 

temperature of a canopy transpiring at its maximum rate. The (Tc – Ta)UL 

represents the canopy temperature less air temperature of a canopy when 

transpiration is halted due to lack of moisture. The temperature to develop the 

CWSI must be collected during daylight hours and clear skies.  

To use the CWSI in the field, the user needs to know the canopy temperatures of a 

stressed and non-stressed plant to use the CWSI formula. However, having a 

stressed and non-stressed plant when using the CWSI is not always possible or 

practical. Alternatively, a number of crops have already been studied, and their 

stressed and non-stressed canopy temperatures have been recorded and turned 

into stressed and non-stressed baselines. The CWSI development requires two 

baselines specific for each site and crop (Idso, 1982; Gardner et al. 1992a; Nielsen, 

1990). The upper baseline represents the canopy under full water stress with 

minimal to no transpiration. The lower baseline represents the non-stressed plants, 

where pastures/plants receive adequate water and are not limited in transpiration. 

By taking the air temperature from the temperature of the canopy (Tc-Ta) and 

knowing the VPD, the CWSI can be calculated from the baseline, as demonstrated 

(Figure 28). 
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FIGURE 28. VISUAL REPRESENTATION OF HOW CWSI CAN BE CALCULATED FROM BASELINES. 

 

Idso et al. (1982) conducted experiments on numerous crops, such as beans, alfalfa, 

lettuce, peas, squash, soybeans, etc., in varying locations (Kansas, Nebraska, Dakota, 

Arizona, etc) where they collected data to develop the baselines. Similarly, Maes et 

al. (2012) provide a long list of baselines developed by others over the years from 

many countries (Kansas, Iowa, California, Arizona, Turkey, Iran, Pakistan, Portugal, 

Argentina, France, Texas, etc.) for many crops and species; however, in these lists 

and other literature reviewed, there appear to be no references to annual ryegrass 

pastures or mixed species pastures baselines, especially in Southeast Australia. 

The CWSI can be calculated empirically, as reported by Idos et al. (1981), and 

theoretically, as reported by Jackson et al. (1981). This work concentrates on the 

empirical approach, using field measurements to calculate the baselines and CWSI. 

Collecting canopy thermal data to develop CWSI is typically undertaken using 

drones (UAV), planes and satellites. Figure 29 shows UAV sourced thermal data 

used to develop the CWSI for an olive grove.  

 

FIGURE 29. UAV SOURCED THERMAL DATA TO DEVELOP THE CWSI FOR AN OLIVE ORCHARD 

IN SPAIN (BERNI ET AL. 2009). 
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2.6.5 Issues Developing baselines. 
 

While using CWSI and baselines can assist in identifying plant water stress in plants 

early, there are numerous issues in collecting the data. In the supplementary data 

in Maes et al. (2012) is an extensive list of non-water stressed baselines equations, 

similarly, in Idso’s (1982) work there is a comprehensive list of baselines. Many 

early baselines were developed in more arid parts of the world (Arizona, California, 

Turkey, Iran, Texas, etc.) with limited work in the medium to high rainfall areas. A 

lot of the early work on developing the CWSI was done in the USA by Idso in Arizona, 

North Dakota, Nebraska, Kansas, etc, in arid environments with limited clouds. 

Similarly, other work on baselines since Idso’s work has predominantly been in 

Turkey, Arizona, Iran, Texas, etc. (Maes et al. 2012), typically more arid areas. Idso 

(1981) mentions that his work was undertaken with clear skies with some thin 

cirrus conditions; he further mentions that for other types of cloudiness, the 

relationship begins to fall down, presumably due to changing illumination effects 

on stomates (Idso, 1981). 

Similarly, O'Shaughnessy (2020) acknowledged the problem regarding irrigation 

scheduling by using instantaneous measurements taken over a short period near 

solar noon, which may be influenced by passing clouds, wind gusts or other 

micrometeorological incidents. Hipps (1985) discusses the small temporal 

variability of radiation and wind in the arid areas where much of the early work 

was undertaken and concludes that using the Tf – Ta (Temperature foliage – 

Temperature air) has limited validity in regions with significant environmental 

variability. Consideration needs to be given to the usefulness of using the CWSI in 

non-arid regions. 

Abdulelah et al. (2001). Stockle et al. (1992) found that the CWSI values for a non-

stressed crop determined using the empirical CWSI baseline approach changed 

daily, especially under low VPD deficits. Abdulelah et al. (2001) also found that 

canopy temperature differences between stressed and non-stressed crops are 

usually small under low evaporative demand. Another finding by Jensen et al. 

(1989) was that the canopy temperature of either stressed or non-stressed wheat, 

barley, rape and perennial ryegrass crops could fluctuate up to 6℃ within a few 

minutes to rapid changes in incident solar radiation. Environmental conditions 

(cloud cover and wind) can change canopy temperatures quickly.  

The CWSI is an index that is measured between '0' (non-stressed plant) and '1' 

(stressed); however, using the data and baseline gathered from the plots, it was not 

possible to get all results to lie between these extremes. Abdulelah et al. (2001) also 

concluded that with their controlled environmental studies, there is strong 

evidence that there is no easy way to get the empirical CWSI results to consistently 

lie between 0 and 1. Similarly, the work by Wanjura et al. (1984) and Jalali-Farahani 

et al. (1993) experienced some negative CWSI values in their calculations. 

Haghverdi et al. (2021) report that the reported CWSI baselines for Turfgrass vary 

widely in the literature and that specific baselines for each climatic region must be 
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developed. Jalail-Farahani, H et al. (1993) also discussed how baselines are site-

specific. Adopting CWSI baselines derived from other countries, states, regions, or 

cultivars could be problematic as varying climatic conditions and microclimates 

exist, which can alter the CWSI from one place to another. 

The CWSI can also be used as an irrigation trigger; when the CWSI reaches a specific 

level, it will trigger irrigation to start or stop. If the CWSI is not localised, then the 

CWSI trigger level may be wrong, and either over-watering or underwatering of a 

crop can occur, resulting potentially in plant damage from overwatering or 

reduction in production and plant death from underwatering, including the waste 

of natural resources (water). 

Australia has experienced three La Nina weather patterns in a row (2020, 2021, 

2022 – Source BOM). La Nina can be associated with above-average rainfalls and 

cooler days and nights in summer. With increasing variability in our climate, these 

changing weather patterns may influence where the CWSI works more optimally. 

The process of senescence (change in colour and loss of leaves) and the plant dying 

may lead to changes in canopy temperature (Barbosa et al. 2005). Related to 

senescence is the reduction in canopy with the background soil influence on the 

infrared thermometer readings becoming more intensive. Barbosa et al. 2005 also 

mention that clouds were an operational issue, affecting the net radiation when 

collecting data, and that the field site is 60km from the Atlantic Ocean, which may 

be a reason behind the intermittent cloud cover. 

Recording a range of VPDs can be difficult, especially if the fieldwork data collection 

time is short. Wanjura et al. (1984) highlighted that their VPD measurements did 

not exceed 4.0 kPa in their fieldwork. Wanjura et al. (1984) also mention the 

difficulty in recording canopy temperatures and how some of their plant canopies 

were not large enough to mask the soil background, and the TC included some 

contribution from the bare soil. Wanjura et al. (1984) also mention the possibility 

that early season stress caused by hail, wind and the seedling disease damaged the 

roots of many plants. Thus, their roots may be more resistant to water uptake than 

healthier plants. 

Other issues include the sensors used to measure canopy temperatures and the 

weather stations used to derive the weather input data need to be evaluated and 

potentially calibrated to ensure accurate results for the CWSI (Gonzalez-Dugo, V et 

al. (2022). While the CWSI and associated baselines can be beneficial in monitoring 

plant water stress in the field, numerous issues are involved with data gathering to 

develop the baselines that can result in errors in the data gathered.  

2.6.6 Baselines and their development 
 

Figure 30 presents the results from experiments conducted by Idso et al. (1982) on 

(a) non-stressed (well-watered) Alfalfa to generate the non-stressed baseline for 

Alfalfa and (b) stressed soybeans to develop the stressed baseline for soybeans. To 

develop these baselines, he collected the canopy temperature, air temperature and 

VPD (Vapour pressure Deficit) over time.  
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FIGURE 30. (A) NON-STRESSED ALFALFA (B) STRESSED SOYBEANS (SOURCE - IDSO ET AL. 
(1982)) 

 

2.6.7 Comparing baselines 
 

Figure 31 is an example of comparing baselines of different plants, species, and 
varieties. It is noticeable how the different species have different stressed baselines 
and how some are similar (i.e., barley and wheat (Idso, 1982)), whilst others vary 
considerably, such as Bermuda Grass (Gonzalez-Dugo et al. 2022) and Turf grass 
(Gonzalez-Dugo et al. 2022) to wheat (Idso, 1982), and cowpeas (Idso, 1982). It is 
also noticeable how the growth stage can affect the baselines, such as in the wheat, 
pre- and post-heading (Figure 31). 
 

a 

b 
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FIGURE 31. COMPARING BASELINES ACROSS A BROAD SELECTION OF SPECIES. 

 

Figure 32 compares Tall fescue, Hybrid Bermuda grass and Turfgrass, comparing 

the Tc – Ta versus VPD for the different species. Even for the same grass, the 

baselines can vary from one year to another as in the example in Figure 32 of the 

tall Fescue. 

 

 

FIGURE 32. COMPARING BASELINES OF FESCUE, TURFGRASS AND BERMUDAGRASS. 
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Similarly, Payero et al. (2005) compiled Figure 33, demonstrating the different non 

stressed baselines that have been developed for Alfalfa, demonstrating how the 

baseline can vary for different locations and seasons. 

 

FIGURE 33. NON-WATER STRESSED BASELINES REPORTED BY VARIOUS RESEARCHERS FOR ALFALFA 

(PAYERO ET AL. (2005)) 

 

2.6.8 Use of CWSI to understand spatial variability in agriculture. 
 

Using the point data provided by a soil moisture monitor in a paddock or from one 

or two plant canopy temperatures gives the farmer a good understanding of what 

is happening in part of their crop/pasture and the spatial variability in water status 

across the whole paddock/farm gives the farmer a more comprehensive idea of 

what is happening across their operations. Plant canopy temperatures obtained by 

thermal infrared cameras that may be plane or drone-mounted can provide a more 

extensive spatial data set to see what is happening across a field or farm. The 

collected plant canopy temperatures can be used to develop the CWSI of the farm, 

providing farm managers with a visual aid that tells them where any plant water 

stress is occurring across their operations and allowing them to rectify the issue 

where possible by applying irrigation in areas demonstrating high plant water 

stress.   

The use of thermal remote sensing uses have been undertaken and implemented in 

other industries, assisting with identifying issues over a larger spatial area. Thermal 

remote sensing has been widely used overseas and in Australia, but mainly for 'high 

value' crops such as, 

• Almonds (Garcia–Tejero et al. 2018) 

• Maise (Dar et al. 2016),  
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• Wheat (Banerjee et al. 2020),   

• Grape vines (Knipper et al. 2019),   

• Nectarines (Park et al. 2017),   

• Peaches (Park et al. 2017),  

• Cotton (Bian et al. 2019, Conaty et al. 2012, Conaty et al. 2014) 

• Conifers (Smigaj et al. 2017) 

• Lentils (Biju et al. 2018) 

• Potatoes (Rud et al. 2011) 

 

2.7 Knowledge Gaps  
The literature review critically evaluated the scientific literature on what 

biophysical models are used in agriculture, the use of the CWSI and the 

development of baselines (stressed and non-stressed) to evaluate plant water 

stress and how and where it has been applied.  

With the climate variability faced by farms and the changes that climate change will 

bring, the earlier farmers can detect changes in their pasture status, giving them 

more time to react. Whether it is predicting how much pasture they can produce in 

the months ahead or the plant water status of their pastures, the more farmers are 

forewarned, the more time they have to plan. 

Pasture growth forecasting. 

Regarding biophysical modelling, limited tools are available for modelling pasture 

production compared to biophysical models available in horticultural and cropping 

industries. Limited work had also been undertaken on biophysical models and 

using soil water content (SWC) to project pasture production in the following weeks 

and months. 

 Knowledge gap – limited research has been conducted to date linking 
field soil water content to biophysical models to improve pasture growth 
predictions for the month(s) ahead.  

 

CWSI 

The literature review highlighted the extensive global use of precision agriculture 

in homogenous, high-value crops. However, it also showed that limited research has 

been conducted on heterogeneous pastures and annual rye grass-based grazing 

pastures, predominantly used by Australian farmers in SW Victoria. Minimal 

examples in the literature could be found where CWSI of pastures had been used, 

and no baselines could be found for annual ryegrass or mixed pastures in the 

Australian context. Most of the CWSI work appeared to be in arid zones, with limited 

work being undertaken in medium to high rainfall zones. 

The use of precision agriculture to record the canopy temperatures of pastures in 

Australia was limited. Numerous studies have been conducted using planes or 

drones to remotely collect the thermal temperatures of horticultural crops in 

Europe and the United States, with minimal reference to using these methods in 

Australia on pastures. Similarly, there was minimal literature on using plant water 
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stress and the CWSI to scale point data to the paddock or farm scale, enabling 

farmers to monitor plant water stress of their pastures over broader areas. 

 Knowledge gap - A lack of work has been undertaken using remote precision 
agriculture to monitor plant water stress in single and multi-species 
pastures in Southeast Australia.   

 Knowledge gap - The literature review showed a lack of use of adaptive CWSI 
to measure variability in pastures in Southeast Australia.  

 

If some of these knowledge gaps can be filled with new insights and the results from 

field trials, then the farmers of tomorrow should be able to more accurately predict 

the pasture produced in their fields and be able to monitor the plant water status of 

their pastures, identifying a stressed pasture prior to visual identification of wilting 

and senescence. These new insights should result in improved pasture prediction 

and use. 
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3 Utilising soil water content to predict pasture growth rates in 
Victoria, Australia. 

 

3.1 Introduction 
 

One of the major sources of variability in pasture-based livestock production 

systems is the intra- and inter-annual variation in pasture production caused by 

climate variations (Chapman et al. 2009). The variation in rainfall can have a 

marked impact on the quantity and quality of pasture available to livestock from 

season to season, and this variation impacts management decisions made at the 

farm level such as stocking rate adjustments (Chapman et al. 2009) and purchasing 

of supplementary feed (Clark et al. 2003).  Managing these risks is important for 

profitable and sustainable grazing systems.  There is emerging evidence that 

variability in pasture production in southern Australia has increased in recent 

decades (Perera et al. 2020).  The changes in seasonal pasture growth patterns 

include increasing pasture growth rates in winter and early spring (Cullen et al. 

2012; Perera et al. 2020) and increased frequency of short spring growing seasons 

(Bell et al. 2011; Perera et al. 2020).  This increasing variability, together with 

expectations that climate variability will continue to increase into the future 

(Collins et al. 2021), places an increased emphasis on developing approaches to 

understand climate variability and predict pasture growth rates in coming months 

to manage climate risks in pasture-based livestock production systems. 

 

In rain-fed cropping systems, SWC or Plant Available Water (PAW) is well 

established as a useful indicator of future yield potential (Carberry et al. 2002, Foale 

et al. 2004), and systems have been developed to store soil moisture prior to 

planting in order to minimise climate risk (Hunt et al. 2011).  Tools such as ‘Yield 

Prophet’ have been developed to improve the understanding of seasonal climate 

risk in cropping systems (Hochman et al. 2009) and to evaluate management input 

decisions (such as nitrogen fertiliser rates) to improve decision making for grain 

growers (Hunt et al. 2006).  However, there has been much less research on the 

value of SWC for managing climate risk in pasture-based livestock production 

systems.  Pasture systems have important differences from crop systems because 

they are often based on perennial plants rather than annual species and generally 

aim to supply year-round feed to meet the demands from livestock rather than a 

single crop harvest.   

 

Biophysical farm systems models of pasture-based livestock systems provide useful 

tools for simulating the impacts of climate variability on pasture production using 

long-term climate records.  These tools simulate pasture production based on daily 

climate, soil characteristics, pasture species and management (such as soil fertility 

and grazing).  Tools such as Grassgro (Moore et al. 1997) and the SGS Pasture model 
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(Johnson et al. 2008) have been applied in southern Australia to simulate impacts 

of climate variability, but there has not been any systematic assessment of the 

usefulness of using SWC to predict pasture growth in the region. Simulation 

modelling of the climate impacts will not be able to predict a single future outcome, 

but it can guide in quantifying an uncertain future (Hayman et al. 2008).  Presenting 

probabilistic information as percentage chance of the outcome being in the lowest, 

middle or highest third of possible outcomes has been shown to be an effective way 

to communicate results of seasonal forecasting studies (McIntosh et al. 2005, Ash et 

al. 2007). 

 

The aim of the study was to assess the usefulness of SWC to predict pasture growth 

in the following one to three months ahead using the SGS Pasture Model at three 

sites across central and south-west Victoria, Australia.  The study consisted of two 

main components, first to validate the simulated SWC against measured data in the 

field, and second to predict monthly pasture growth rates based on historically dry 

(10th percentile), moderate (50th percentile) or wet (90th percentile) SWC on the 

first day of each month.  

 

3.2 Materials and Methods 
 

3.2.1 Site Descriptions 
Three sites were selected in central and south-west Victoria, Australia, to present 

the range of climatic conditions in the region: Baynton (Lat -37.12, long 144.61); 

Pigeon Ponds (Lat -37.29, long 141.67); and Dartmoor (-37.92, Long 141.27). The 

sites all have a winter dominant rainfall pattern typical of temperate climates in 

southern Australia (34).  Pigeon Ponds was the lowest rainfall site (564 mm annual 

average rainfall from 1990-2019, range 329-856 mm), Baynton was intermediate 

(690 mm average annual rainfall, range 408-1153 mm) and Dartmoor was the 

highest (754, range 482-977 mm).  Monthly rainfall and temperatures are shown in 

Figure 34. 
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FIGURE 34. CLIMATE SUMMARY WITH AVERAGE MONTHLY RAINFALL (GREY BARS), AND 

AVERAGE MONTHLY MAXIMUM (BOLD LINE) AND MINIMUM TEMPERATURES (LIGHTER LINE) 

AT (A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR FROM 1990-2021. 

 

The pastures consisted of phalaris (Phalaris aquatica L.) and sub-clover (Trifolium 

subterraneum) at Baynton (also a small proportion of annual weeds) and Pigeon 

Ponds, while at Dartmoor the pasture species were phalaris, lucerne (Medicago 

sativa L.) and perennial ryegrass (Lolium perenne). The soil physical characteristics 

and water holding capacities used in the simulation study for each site are 

summarised in Table 1.  Soil moisture probes (Enviropro capacitance probe – 80cm, 

connected with MAIT logger and telemetry) were installed in February 2018 in the 

paddocks.  The probes measure and collect SWC up to 80cm deep every hour. The 

sensor data was sourced from Agriculture Victoria online (source – 

https://extensionaus.com.au/soilmoisturemonitoring). 

  

https://extensionaus.com.au/soilmoisturemonitoring
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TABLE 1. PHYSICAL CHARACTERISTICS AND SOIL WATER HOLDING PARAMETERS , INCLUDING SATURATED 

WATER CONTENT, FIELD CAPACITY AND WILTING POINT (ALL % VOLUMETRIC) AT THE THREE SITES.  

  Pigeon Ponds Baynton Dartmoor 

Soil Profile Depth (cm) 0 – 5 
5 – 

30 

30 – 

80 

80 – 

140 
0 – 50 

50 – 

150 
0 – 50 

50 – 

150 

Soil Texture Loam Clay Clay Clay 
Sandy 

loam 
Clay 

Sandy 

loam 

Sandy 

clay 

Saturated hydraulic 

conductivity (cm/day) 
31 10 14 6 6.2 3.6 32.4 6.7 

Saturated water 

content (% volumetric) 
50 41 44 48 40 50 42 48 

Field Capacity (% 

volumetric) 
31 27 34 36 29 46 27 40 

Wilting Point (% 

volumetric) 
11 15 29 32 17 28 11 19 

 

3.2.2 Validation of predicted SWC 
 

At each of the three sites the daily SGS Pasture model predicted volumetric SWC 
was compared to the SWC measured by the in-field sensors for the period 1 June 
2019 to 31 December 2021.  The simulations used the SGS Pasture model (Johnson 
et al. 2003, 2008).  The soil type and pasture species were defined in the model as 
described in Table 1.  Climate data for each site was obtained through the closest 
Bureau of Meteorology site accessed through the SILO website 

(https://www.longpaddock.qld.gov.au/silo/, Jeffrey et al. 2001) Baynton (Station 

88073), Pigeon Ponds (Station 89003) and Dartmoor (Station 90032).  

The measured relative SWC from in-field moisture probes and the modelled SWC 

(from SGS pasture model) were used to determine if the SGS Pasture model could 

realistically simulate the measured patterns of SWC change over time.  The in-field 

sensors were not calibrated (e.g., to field capacity and wilting point) so provided a 

relative SWC, but on a different scale to the modelled volumetric SWC.   To express 

the in-field sensor SWC on the same scale as the SGS pasture model predicted 

volumetric SWC, the following procedure was used: 

1. The range of the in-field sensor relative SWC was calculated for the period, 
using the 95th percentile as the upper limit and 5th percentile as the lower 

limit,  
2. The in-field sensor daily measured relative SWC minus the lower limit was 

calculated as a proportion of the range, 
3. The range of the SGS Pasture volumetric SWC was calculated for the period, 

using the 95th percentile as the upper limit and 5th percentile as the lower 
limit, 

4. The daily in-field sensor proportion (point 2) was multiplied by the range of 
SGS volumetric SWC (point 3) plus the lower limit to give the equivalent 

volumetric soil water content.   
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For example, at Baynton on 1 June 2019,  

• the range of the in-field sensor relative SWC was 23-61%.   

• on the date of 1st June 2019, the in-field sensor measured relative SWC was 
48% and the range of data which is 0.66 of the range {[48-23]/[61-23]= 
0.66}. 

• the range of the SGS Pasture model volumetric SWC was 16.5-33.4%    

• the proportion (point 2) was multiplied by the range from the SGS model 

data and the lower limit was added {[0.66*(33.4-16.5)]+16.5 = 27.7}.   

This calculation was completed daily for all three sites. The daily measured and 

modelled SWC were compared, with linear trendline and coefficient of 

determination computed using Microsoft Excel. 

 

3.2.3 Modelling the effect of SWC on pasture growth rate 
 

At each of the sites the effects of historically ‘dry’, ‘moderate’ and ‘wet’ SWC on the 

first day of each month on pasture growth rates over the following 4 months was 

simulated, and results expressed relative to the historical distribution of pasture 

growth using ‘low’, ‘mid’ and ‘high’ terciles.  The first step in the modelling process 

was to run long-term simulations at each site to predict the historical variation in 

SWC and pasture growth rates.  The SGS Pasture model was used to simulate each 

site using climate data from 1990-2020.  A cut trial was implemented in the model, 

with pasture cut to 1 t DM/ha on the last day of each month, and soil fertility was 

assumed to be unlimited so that the predicted pasture growth rates reflected the 

climate variation and not other management factors. 

To determine the historically ‘dry’, ‘moderate’ and ‘wet’ SWC on the first day of each 

month, the plant available water (PAW) was calculated from the SGS pasture model 

predicted SWC for the soil depth from 0-50 cm. The PAW calculation was the SWC 

– Wilting point (WP) multiplied for the depth for intervals from surface to 50cm 

depth. Depths were 0-2cm, 2cm – 5cm, 5cm- 10cm, 10cm -15cm, 15cm -20cm, 20cm 

-30cm, 30cm – 40 cm and 40cm -50cm. The PAW on the first day of each month 

from each year (1990-2020) was used to determine historically ‘dry’ (0.1 

percentile), ‘moderate’ (0.5 percentile) and ‘wet’ (0.9 percentile) conditions.  The 

individual years representing ‘dry’, ‘moderate’ and ‘wet’ conditions were identified 

and the modelled SWC on that day was used to initialise the model. The ‘dry’, 

‘moderate’ and ‘wet’ PAW for each month is shown in Figure 35. 

The effect of ‘dry’, ‘moderate’ and ‘wet’ SWC on the first day each month on pasture 

growth rates over the following four months was simulated using the ‘soil water 

reset’ function in the SGS Pasture model.  The simulations were run using climate 

data for 1990-2020 with the SWC in the model reset to the appropriate SWC on the 

date in each year. The simulations were conducted as a cut trial with no soil nutrient 

limitation, using the same modelling approach described above.   A total of 108 

simulations were completed (3 sites x 3 SWC x 12 months).  The daily ‘net positive 

growth rate’ simulated by the SGS Pasture model was averaged for each month, and 

then categorised into the ‘low’, ‘mid’ or ‘high’ terciles of pasture growth according 
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to the categories described above.  Results are presented as the percentage chance 

of the simulated pasture growth rate being in each tercile, similar to the ‘chocolate 

wheel’ approach described by McIntosh et al. (2005). 

 

 

 

FIGURE 35. PLANT AVAILABLE WATER FOR THREE PERCENTILES “DRY” (0.1 PERCENTILE), 
‘MODERATE’ (0.5 PERCENTILE), ‘WET’ (0.9 PERCENTILE) ON THE FIRST DAY OF EACH MONTH 

AT (A) PIGEON PONDS, (B) BAYNTON), AND (C) DARTMOOR. 
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In this study, a 30% increase in the chance of the predicted pasture growth rate 

being in a tercile was used as an indicator of when the forecast would be useful to a 

land manager (i.e. without knowing the SWC there is a 33% chance of the predicted 

pasture growth rate being in the each of the terciles, but when this increases to 43% 

or greater the forecast was considered useful).  This threshold was based on the 

conclusion of Ash et al. (2007) who found that a seasonal climate forecast of above 

or below median rainfall needed to be at least 65% accurate (i.e. a 30% increase in 

the change of above or below the median) to achieve adoption by farmers.   

 

3.3 Results 
 

3.3.1 Validation of predicted SWC 
 

The time series of measured relative SWC and predicted SWC from the SGS pasture 
model at 20 cm soil depth is presented in Figure 36. Visual inspection of the figure 
indicates that there was overall good agreement in the timing of wetting up and 
drying down between the measured and predicted data, however there were some 
points that were not well simulated.  The regression equations for the daily data 
plotted as measured vs. predicted were at Baynton (Y= 0.89x + 1.87, R2 = 0.73), 
Pigeon Ponds (Y=0.81x + 3.8, R2 = 0.55) and Dartmoor (Y = 0.97x + 1.1, R2 = 0.85).   
The SWC validation data for other soil depths is provided as supplementary 
information to this chapter.  
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FIGURE 36. DAILY MEASURED RELATIVE SWC AND PREDICTED SWC FROM THE SGS 

PASTURE MODEL AT 20 CM AT (A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR.  

 

3.3.2 Pasture Growth Rates 
 

The long-term simulated pasture growth rates for Baynton, Pigeon Ponds and 
Dartmoor are shown in Figure 37.  The terciles are indicated on the Figures as the 
areas below the 33rd percentile line (low tercile), between the 33rd and 66th 
percentile (mid tercile), and greater than 66th percentile (high tercile).  The time of 
highest variability in pasture growth rates in autumn and spring at Baynton and 
Pigeon Ponds, and spring and summer at Dartmoor (Figure 37).  Pasture growth 
rates in the winter months had low variability. For example, pasture growth rates 
varied from 20-120 kg DM/ha.day at Baynton in late spring whereas during winter 
the variation only ranged between 10 – 20 kg DM/ha.day. Similarly, at Pigeon Ponds 
during late spring the pasture growth rates varied from 0- 120 kg DM/ha.day 
depending on the season, whilst in late summer pasture growth rates were low. At 
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the Dartmoor site, lucerne-based pasture growth rates in summer varied from 15-
100 kg DM/ha.day compared to 10 – 20 kg DM/ha.day in winter. 

 

 

 

 

 

 

FIGURE 37. SIMULATED MONTHLY AVERAGE PASTURE GROWTH RATES (KG DM/HA.DAY) AT 

(A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR. THE SHADED AREA SHOWS THE RANGE 

OF PASTURE GROWTH RATES, THE DARK LINE THE 33RD PERCENTILE AND LIGHT LINE THE 

66TH PERCENTILE. SHADED AREAS BELOW THE 33RD PERCENTILE LINE REPRESENTS THE LOW 

TERCILE, BETWEEN THE 33RD AND 66TH PERCENTILE LINE THE MID TERCILE), AND ABOVE THE 

66TH PERCENTILE THE HIGH TERCILE. 
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3.3.3 Pasture growth predictions using SWC 
 

The results for the three sites showing the percent chance of predicted pasture 

growth being in the Low, Mid and Upper tercile are shown in Tables 2-4.  The SGS 

simulation model results showed that SWC at the start of each month influenced the 

pasture growth rates, notably during the Australian spring and autumn for phalaris 

based pastures but had minimal effect during winter and summer for phalaris based 

pastures. There were some differences between the sites, reflecting the different 

patterns of SWC (Figure 36) and pasture growth (Figure 37) variability at the sites.  

 

For Baynton (Table 3) in Spring, the data demonstrates that if it is dry in September 

and October there is an increased chance of growth being in the mid to low tercile 

over the following two months. For Pigeon Ponds (Table 2) the data demonstrates 

that if it is dry in November, there is an increased chance of being in the low tercile 

growth, whereas a wet SWC in November increases the chance of high tercile 

growth. For Dartmoor (Table 4) the effects of SWC are more pronounced in the late 

spring and summer than at other times of year. 

 

For Baynton the results show SWC in Autumn has an impact on pasture production 

in the following months. A dry SWC in March indicated growth being in the lower 

tercile throughout Autumn, where a wet SWC increased the chance of growth being 

in the high tercile in April and May. For Pigeon Ponds with a wet SWC, the results 

show increased chance of growth in the high tercile in Autumn. For Dartmoor with 

a wet SWC the results show growth being in the higher tercile in early Autumn 

(March).  

 

The majority of the results for the three sites when calculating the percent chance 

of predicted pasture growth being in the Low, Mid and Upper tercile appear with 

higher pasture production predicted when there was higher SWC, however there 

are some cases that do not fit with what would have been expected (Tables 2-4).  

The February Pigeon Ponds result seems inconsistent with the rest of the results 

because all three initial SWCs predicted an increased chance of low tercile growth 

in the prediction months, and increased chance of high tercile in +2 and +3 months. 

February does have the lowest pasture growth rate, so very small differences in 

predicted growth rates can result in different tercile being predicted.  Similarly at 

Dartmoor, the dry SWC in April predicted a 43% chance of High tercile where one 

would expect a lower tercile, as the lucerne growing season is coming to an end. 

Different subsoil moisture content may explain this result.  
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TABLE 2. SUMMARISED RESULTS FOR PIGEON PONDS SHOWING PERCENT CHANCE OF PREDICTED PASTURE 

GROWTH BEING IN THE LOW, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN GREEN, 
MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE. 

 

 

 

 

 

Pigeon Ponds
Prediction 

month
+ 1 month + 2 months + 3 months

SWC

Low,Mid,High Low,Mid,High Low,Mid,High Low,Mid,High

January Dry 35,32,32 38,27,35 27,32,41 27,32,41

January Med 38,27,35 35,24,41 27,30,43 27,32,41

January Wet 38,27,35 35,24,41 24,32,43 22,35,43

February Dry 43,27,30 30,32,38 19,38,43 16,27,57

February Med 43,27,30 30,30,41 19,30,51 11,30,59

February Wet 43,27,30 30,30,41 19,32,49 11,30,59

March Dry 30,38,32 41,35,24 46,30,24 38,38,24

March Med 32,32,35 38,32,30 38,35,27 35,41,24

March Wet 35,30,35 22,27,51 8,32,59 19,38,43

April Dry 32,27,41 32,27,41 24,41,35 27,24,49

April Med 32,27,41 19,41,41 22,38,41 27,22,51

April Wet 22,30,49 8,32,59 19,43,38 30,27,43

May Dry 32,32,35 27,35,38 30,24,46 30,32,38

May Med 24,35,41 27,38,35 30,32,38 32,32,35

May Wet 16,32,51 30,46,24 32,35,32 35,30,35

June Dry 32,35,32 35,30,35 30,35,35 32,32,35

June Med 27,38,35 35,27,38 35,30,35 30,35,35

June Wet 32,35,32 35,30,35 35,30,35 30,35,35

July Dry 32,30,38 32,32,35 32,32,35 35,30,35

July Med 38,27,35 32,32,35 30,35,35 35,30,35

July Wet 38,27,35 35,30,35 30,35,35 35,30,35

August Dry 32,32,35 30,35,35 35,30,35 32,32,35

August Med 32,32,35 30,35,35 35,30,35 32,32,35

August Wet 35,30,35 30,35,35 35,30,35 32,32,35

September Dry 32,32,35 41,27,32 38,27,35 38,27,35

September Med 30,35,35 32,27,41 32,32,35 32,32,35

September Wet 35,32,32 32,27,41 32,32,35 32,32,35

October Dry 38,27,35 41,30,30 43,27,30 32,35,32

October Med 27,24,49 32,30,38 30,35,35 32,35,32

October Wet 24,24,51 32,30,38 30,35,35 32,35,32

November Dry 46,41,14 49,24,27 32,35,32 30,24,46

November Med 41,35,24 46,27,27 35,32,32 30,32,38

November Wet 24,24,51 30,30,41 35,35,30 35,30,35

December Dry 35,35,30 35,32,32 35,24,41 30,32,38

December Med 30,32,38 43,24,32 35,27,38 30,32,38

December Wet 27,32,41 46,19,35 35,24,41 32,27,41

% chance predicted pasture growth rate in each tercile



 74 

 

TABLE 3. SUMMARISED RESULTS FOR BAYNTON SHOWING THE PERCENT CHANCE OF PREDICTED PASTURE 

GROWTH BEING IN THE LOW, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN GREEN, 
MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE. 
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TABLE 4. SUMMARISED RESULTS FOR DARTMOOR SHOWING THE PERCENT CHANCE OF PREDICTED 

PASTURE GROWTH BEING IN THE LOW, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN 

GREEN, MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE. 

 

 

 

 

 

 

Dartmoor
Prediction 

month
+ 1 month + 2 months + 3 months

SWC

Low,Mid,High Low,Mid,High Low,Mid,High Low,Mid,High

January Dry 89,5,5 73,22,5 59,32,8 65,16,19

January Med 51,24,24 49,43,8 46,43,11 49,30,22

January Wet 3,11,86 0,35,65 5,41,54 30,14,57

February Dry 51,46,3 43,41,16 49,19,32 35,38,27

February Med 0,0,100 0,11,89 8,27,65 16,32,51

February Wet 0,3,97 0,32,68 22,27,51 22,35,43

March Dry 11,59,30 38,19,43 30,35,35 30,35,35

March Med 3,62,35 30,19,51 27,35,38 27,38,35

March Wet 0,46,54 27,27,46 24,38,38 30,35,35

April Dry 14,38,49 22,35,43 24,41,35 38,27,35

April Med 14,30,57 27,27,46 24,38,38 38,30,32

April Wet 11,19,70 22,27,51 22,38,41 38,27,35

May Dry 27,38,35 24,38,38 32,32,35 32,32,35

May Med 27,38,35 27,35,38 32,32,35 32,32,35

May Wet 27,35,38 24,38,38 35,30,35 35,32,32

June Dry 27,35,38 32,32,35 32,32,35 30,32,38

June Med 32,32,35 32,32,35 32,32,35 30,35,35

June Wet 32,32,35 32.32.35 32,32,35 32,32,35

July Dry 32,32,35 35,30,35 30,35,35 30,35,35

July Med 32,32,35 32,32,35 27,38,35 30,35,35

July Wet 35,30,35 38,30,32 35,32,32 30,38,32

August Dry 35,30,35 35,32,32 30,35,35 32,35,32

August Med 35,30,35 35,32,32 32,32,35 32,35,32

August Wet 35,30,35 35,30,35 32,32,35 32,32,35

September Dry 32,32,35 32,35,32 32,32,35 27,38,35

September Med 32,30,38 30,35,35 32,32,35 24,41,35

September Wet 32,32,35 32,32,35 32,32,35 27,38,35

October Dry 35,27,38 32,32,35 32,38,30 41,30,30

October Med 30,32,38 32,32,35 32,35,32 35,32,32

October Wet 30,38,32 30,35,35 24,41,35 27,35,38

November Dry 32,43,24 35,32,32 51,16,32 27,59,14

November Med 30,32,38 38,30,32 49,19,32 27,59,14

November Wet 27,32,41 24,35,41 11,38,51 16,41,43

December Dry 57,22,22 70,14,16 57,38,5 46,43,11

December Med 27,41,32 62,14,24 41,54,5 46,41,14

December Wet 27,35,38 8,24,68 5,46,49 8,49,43

% chance predicted pasture growth rate in each tercile
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3.4 Discussion 
This study examined the role of SWC in predicting pasture growth in the months 

ahead at three sites across Victoria, Australia. The spring and autumn period is 

typically when SWC can limit pasture growth. This research demonstrates that SWC 

can be used to improve the prediction of pasture growth rates at these times. For 

Baynton the main growth periods were October to January with some growth 

occurring in March to April. For Pigeon Ponds the main growth periods was October 

to December. Dartmoor also demonstrated that the predictions for lucerne 

demonstrate a large variation in October through to March/April depending on the 

starting SWC. 

In the Dartmoor scenario (Table 4) the December, wet, at one month gave a 68% of 

“High” chance of predicted pasture growth, where at the +2month and +3month it 

gave a 49% and 43% chance respectively. The higher percentage in this example 

would indicate a more reliable prediction at the one month than the later months 

(Harrison et al. 2017).  One observation was that in a ‘dry’ start to a month, that 

month’s pasture production may be in the lower tercile due to the dry SWC, 

however it did not mean the following months would remain in the lower tercile. 

Whilst a low SWC may affect that month’s pasture production there can still be a 

possibility of a rainfall event(s) occurring that will lift a ‘dry’ SWC to a ‘medium’ or 

‘high’ SWC which can lead to an increase in pasture production. An example of this 

is in Dartmoor in a dry January, if sufficient rains are received, the following month 

can still be in the positive growth tercile (i.e. 68%). 

The predicted impact of SWC on pasture growth over successive months can be 

estimated using a weighted average approach from the data provided in Tables 2-4 

and the tercile growth rates in Figures 37.  For example, at Pigeon Ponds in October, 

if the SWC is dry (20mm) then there is a 38,27,35% chance of low medium and high 

terciles compared to 24,24,51% if the SWC is wet (60mm). This leads to a weighted 

average predicted growth rate of 52kg DM/ha.day if the SWC is dry, compared to a 

56kg DM/ha if the SWC is wet. Over a 4-month period (Oct to Jan) this would 

translate to an average 3,596kg DM/ha for a wet SWC and 2,750kg DM/ha for a dry 

SWC. Similarly for Baynton in April, if the SWC is dry (40 mm) then this could lead 

to 21kg DM/ha, compared to a 33kg DM/ha if the SWC is wet. Over a 4-month period 

(April to July) this would translate to an average 2,735kg DM/ha for a wet SWC and 

2,272kg DM/ha for a dry SWC. In Dartmoor in December, if the SWC is dry it would 

lead to 69kg DM/ha.day, compared to a 75kg DM/ha.day if the SWC is wet. Over a 

4-month period (Dec to Mar) this would translate to an average 8,512kg DM/ha for 

a wet SWC and 6,463kg DM/ha for a dry SWC. These predictions in pasture growth 

production could assist farmers in managing and planning their fodder budgets. 

The results are largely expected as the literature highlighted the increase in pasture 

growth in spring and autumn with limited growth in winter and summer as the 

pastures are either limited by temperature or SWC (Rawnsley et al. (2013), Clark et 

al. (2003), Perera et al. (2020)). The ability of the model to predict ahead two - three 

months and give a tercile prediction dependent on a starting SWC whilst partially 

could provide valuable information to a farmer who is making decisions such as to 

change stocking rates (Ash et al. 2007). One issue with relying on SWC as a predictor 
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of pasture growth rates is the limited amount of lead time the results give the 

farmer to make a decision and then act on that decision for example, by decreasing 

stock or buying hay.  

Other studies have also demonstrated similar findings to the data presented here. 

Cullen et al. (2012) used soil water to predict pasture growth rates and noted that 

the knowledge of SWC can be valuable when looking at pasture growth rates in 

autumn and spring, when variability is high. They also noted that SWC in the winter 

and summer months did not impact on future pasture growth rate. Chapman et al. 

(2009) also highlighted the variability in pasture growth outcomes is driven by the 

interannual variability in rainfall (and its availability to the plant in soil water) and 

of the variability of pasture growth within a year (seasonal variation) and between 

years (interannual variation). Brown et al. (2019) acknowledged the year-to-year 

fluctuations in rainfall and how this affects pasture growth and as a result the 

difficulties in aligning stock numbers and forage supply. Brown et al. (2019) also 

discusses the issue of knowing potential pasture growth ahead of time could lead to 

more proactive approach in fodder management. If the farmer knew now that the 

next three months are looking poor for pasture growth, they can make decisions 

earlier. Knowing if the next two/three months is tending towards the upper or 

lower tercile can allow farmers to manage the risks of over or under stocking, of 

having adequate supplementary feeding available if required. Rawnsley et al. 

(2013) also had similar findings of a strong seasonality and high inter annual 

variation in feed supply. Ash et al. (2007) highlights the need to receive the 

information in a timely manner, where the farmer has time to act on the data. 

In other industries such as annual cropping, modelling approaches utilising 

historical climate records in combination with seasonal forecast data to predict 

potential crop yield (Hunt et al. 2006) are undertaken. Similarly, Brown et al. (2018) 

looked at the use of integrating dynamic seasonal climate models when forecasting 

crop yield predictions in the Australian cropping zone and found that seasonal 

climate forecasts provide more definitive and accurate crop yield predictions than 

when seasonal climate forecasts were not used. Combining seasonal forecasts into 

the SGS pasture model instead of relying on historical climate data may improve the 

pasture predictions further, similar to work undertaken by Harrison et al. (2017). 

The validation demonstrated that the modelled SWC from the SGS model was very 

similar to the actual SWC for the three sites. Whilst there are some variations 

between the two data sets, they tend to follow a similar drying down and wetting 

up sequence (Figure 36). This validation work is important to ensure the modelled 

data is an accurate representation of what is happening in the ground. Having 

confidence in the modelled data increases confidence for the modelling of SWC to 

predict the pasture growth at the three sites (Baynton, Dartmoor, Pigeon Ponds) in 

Victoria. 

 

3.5 Conclusion 
The spring and autumn period is typically when SWC can limit pasture growth. This 

research demonstrates that SWC can be used to improve the prediction of pasture 

growth rates at these times. The predicted pasture output tables were able to 
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display tercile probabilities for the month of prediction and the following three 

months given a dry, medium, or wet SWC at the start of the month.  One issue with 

relying on SWC as a predictor of pasture growth rates is the limited amount of lead 

time the results give the farmer to make a decision and then act on that decision by 

decreasing stock, buying hay or the like. Some locations appear to have an 

extremely short lead time (Pigeon Ponds) whilst other sites with longer growing 

season (Dartmoor), give the farmer a lot more time to react to the forecast. 
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3.6 Supplementary Material 
Validation of predicted Soil Water Content (SWC).  

The time series of measured relative SWC and predicted SWC from the SGS pasture model at 10, 20, 30, 40 and 50 cm soil depth is presented 

below for (a) Pigeon Ponds, (b) Baynton, (c) Dartmoor. 
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SOIL WATER CONTENT VALIDATION, MODELLED V’S MEASURED SOIL WATER CONTENT (A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR. 
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4 A Crop Water Stress Index for a phalaris (Phalaris aquatica L) 
and subterranean clover (Trifolium subterraneum L) pasture in 
southeastern Australia. 

 

4.1 Introduction 
Field-grown pasture is the main and cheapest form of feedstock for cattle and sheep 

in southern Australia (Perera et al. 2020; Chapman et al. 2009) and many other 

regions around the world. Climate, particularly rainfall variability, is one of the 

significant sources of intra- and inter-annual variation in pasture growth (Chapman 

et al. 2009). In the temperate and Mediterranean climates of southern Australia, 

pasture growth is primarily limited by water availability from mid-late spring to the 

time of the opening rains in autumn, while appropriate spring and autumn 

temperatures, nutrients, disease and other management practices (overgrazing) 

can also affect pasture growth. As soil moisture reduces, plant transpiration 

declines and the leaf’s temperature increases along with a reduction in 

photosynthesis (Idso et al. 1981). Water deficits occur in plants when evaporative 

demand exceeds the water supply in the soil (Slatyer, 1967). Where there is 

inadequate water for the plant, the water stress causes partial or complete stomatal 

closure and reduction in transpiration rates, and the reduced evaporative cooling 

raises the canopy temperature in relation to the ambient temperature (Jones, 

1998).  

Canopy temperature is generally accepted as an indirect, rapid, accurate and large-

scale indicator of crop water stress (Gonzalez–Dugo. et al. 2022). Canopy 

temperature is considered a reliable proxy for plant water stress monitoring and 

irrigation scheduling (Tanner, 1963; Idso et al. 1984; Steele et al. 1994). Different 

plants and species respond differently to water stress as they can have different 

transpiration rates (Gonzalez–Dugo, V et al. 2022) and, as a result, have a different 

crop water stress index (CWSI). For example, different turfgrass species (Turfgrass 

Tifway Bermuda (Cynodon dactylon x C. transvaalensis), Meyer zoysia (Zoysia 

japonica), Common Centipede (Eremochloa ophiuroides), Common Bermuda 

(Cynodon dactylon), all have different CWSI as result of how they react to plant 

water stress (Gonzalez-Dugo et al. 2022). Different transpiration rates can also 

occur at different stages in a plant's growth stages, which Idso (1982) found in his 

work on barley (Hordeum vulgare) and wheat (Triticum). The use of a thermal infra-

red thermometer to assess water stress was initially proposed by Jackson et al. 

(1977). In the absence of biotic stress such as from fungi, bacteria, or viruses, the 

restrictions in canopy growth under sub-optimal water levels is generally related 

to stomatal closure (Jones, 1998) and chlorosis (Shimshi, 1967), resulting in both 

water and nutrient stress due to limited uptake from the roots (Zarco-Tejada, 

2021).  

Changes in plant canopy temperatures due to water availability have been studied 

extensively in other crops such as alfalfa (Medicago sativa), tomatoes (Lycopersicum 

esculentum), sunflowers (Helianthus annus), turnips (Brassica rapa), potatoes 



 82 

(Solanum tuberosum), lettuce (Lactuca scariola), beet (Beta vulgaris), cotton 

(Gossypium hirstum), cowpeas (Vigna catjang Walp)), soybeans (Glycine max), peas 

(Pism sativum), etc. (Idso, 1982). However, none has been undertaken on pastures. 

Non-water stressed baselines (NWSB) can be developed by conducting 

experiments to measure canopy temperatures, air temperature and Vapour 

Pressure Deficit (VPD) of a well-watered plant transpiring at its potential rate over 

time (Idso, 1982). In developing the baselines, clear sky conditions (Idso, 1982) are 

required, as well as consideration of the plant's growth stage (i.e., for grain crops 

pre-heading or post-heading, Idso 1982). The NWSB for different plants and species 

generate different slopes, which have an effect on the CWSI calculations (Gonzalez–

Dugo, V et al. 2022). Many NWSBs have been developed and reported by Idso 

(1982) and Maes et al. (2012).  

The Tc – Ta values for the upper stressed baseline can be manually calculated 

similar to the stressed baselines calculated by Irmak et al. (2000), where they 

averaged their upper baseline values for Tc-Ta and drew the stressed baselines 

parallel to the VPD for this point.  

The CWSI has been predominantly used to monitor the CWSI spatially across 

homogeneous crops/orchards globally (Gonzalez-Dugo et al. 2022) and across 

different orchard tree species; however, these different orchard tree species are 

typically located where a particular species is planted together, with different 

species planted in different sections. Some work has been undertaken on 

attempting to use the CWSI in non-homogeneous areas such as a wetland as has 

been attempted by Ciezkowski et al. (2020), and Liu et al. (2020) undertook work 

measuring CWSI in ‘non-managed’ ecosystems (Australian bush context).  

The baselines can vary depending on which type of plant, the cultivar, the stage of 

growth, and the prevailing environmental conditions (Gonzalez–Dugo, V et al. 

2022) and can change from month to month. In developing the baselines, 

consideration needs to be given to the weather conditions at the time of 

temperature data gathering, such as solar radiation and wind speed (Gonzalez–

Dugo, V et al. 2022), as these can affect the thermal temperatures of the canopy 

being measured.  

Most work to date developing baselines has been undertaken on horticultural 

crops, with limited work to date undertaken on pastures. This study aimed to 

develop the stressed and non-stressed baselines and the CWSI for pastures in 

Southeast Australia. 

Hypothesis  

The pasture canopy temperatures from the treatment plots, along with climate data, 

can be used to develop stressed and non-stressed baselines that can then be used 

to develop a CWSI for pasture. Remotely gathered thermal infrared data can be used 

to develop the CWSI on a broader scale across a paddock(s). 

 

4.2 Material and Methods 
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4.2.1 Experimental design and plot management  
 

Study Area, Agricultural practices, and pasture growth. 

The field experiment was set up on a commercial farm in Murroon, in the Otway’s 

(38°27’S. 143°50’S, 273m alt.) in southwest Victoria and ran from October 2020 to 

January 2022. Two treatment plots were set up in the paddock: a well-watered 

(non-stressed) and a rainfall-only (stressed) plot. The pastures were 

predominantly Phalaris (Phalaris aquatica L) with a small amount of Clover 

(Trifolium subterraneum L) and Dandelion (Taraxacum officinalis) weeds. A 

permanent thermal canopy sensor was installed in each plot, along with soil 

moisture probes and a weather station. The property has been a beef production 

enterprise for over 20 years. 

Yearlings are typically bought at the local Colac market, held for approximately 12 

months and then sold back into the local market. The cattle rely on pastures that 

are solely dependent on rainfall. Animal numbers are managed to align with fodder 

availability, with a higher stocking rate during the Spring and a reduced stocking 

rate throughout the Winter. Minimal extra fodder (hay) is brought onto the 

property, and hay/silage is not cut. Pastures are maintained with routine spraying 

of woody weeds and annual applications of fertilizer. A loose form of rotational 

grazing is practised. The farm has a mixture of flat areas and several hills and gullies 

with small creeks and dams (Figure 38). The soil type is a Sandy Loam (Colac Map 

sheet). Geological maps indicate the pasture covers a range of Cretaceous age, 

Eumeralla Formation, which is part of the Otway Group of soils (Geovic). The field 

trials were undertaken in a relatively flat area of the farm, as shown in Figure 38. 

To the east, a small creek and rolling hills can be observed from the topographic 

map below. 

 

FIGURE 38. TOPOGRAPHIC MAP OF THE PROPERTY WITH A BLACK CIRCLE INDICATING THE 

LOCATION OF STRESSED AND NON-STRESSED FIELD PLOTS. (SOURCE - 

HTTPS://MAPSHARE.VIC.GOV.AU/VICPLAN) 
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The active pasture growth periods are typically Autumn and Spring when most 

pasture is produced. Pasture growth is typically restricted in Winter when it is too 

cold and in summer when it can be too hot and dry. Usually, late spring and summer 

are characterized by increasing soil water deficit. As a result, the pastures die off 

(or become dormant) until Autumn rains occur and the pasture begins to grow 

again. Season-to-season pasture growth can vary considerably due to variability in 

climate, particularly rainfall. In the period after the autumn break and through to 

mid-spring, soil water availability is not usually limiting because regular rainfall 

events 'top up' the soil moisture profiles. Typically, throughout these periods, the 

ambient temperatures are not high enough to induce plant water stress.  

 

Experimental Design 

A soil moisture probe (depth 80 cm) and a thermal infrared camera (Goanna Ag, 

'GoField" package G4FLDC11) were used to measure soil moisture and canopy 

temperatures continuously, respectively. The soil moisture probe was placed in the 

centre of each plot, and the thermal infrared camera was located within one metre 

of the soil moisture probe. The pasture canopy temperature of the stressed and non-

stressed plots was continuously measured throughout the field trials. The canopy 

temperature sensor was positioned 50cm above the ground at an angle of 30 

degrees to ensure that the camera captured the thermal temperature of the pasture 

and not any background soil. The canopy temperature was recorded every 15 

minutes. A meteorological weather station, "GoWeather" from Goanna Ag, was 

located approximately 15 m away to collect metrological data, including 

temperature, wind speed, rainfall, humidity, barometric pressure and soil 

temperature. The field plot site was flat and received full sunlight throughout the 

day.   

The stressed plot was not watered and received only rainfall, whilst the non-

stressed plot was watered throughout the experiment to provide enough water, so 

the pasture was not limited by water. Watering was undertaken by hand and 

involved using watering cans to disperse the water across the non-stressed plot 

area evenly. The amount of water was recorded after each watering event. The soil 

moisture probe and thermal infrared cameras were placed within each 6m by 6 m-

fenced field plot to prohibit grazing by livestock and wildlife (Kangaroos). The plots 

were within 6 metres of each other. As part of the study, spatial variation in canopy 

temperature was also assessed with a FLIR thermal infrared camera mounted on 

an aeroplane. 

4.2.2 Meteorological Conditions throughout the experiment 
 

The climate is classified as warm and temperate. The area (Barwon Downs) 

receives, on average, 824mm of precipitation per year (1980-2022). Barwon Downs 

is the closest weather station (approximately 6 km from the field trial’s location) 

from the site with long-term weather data; this data was sourced from the 'Long 

Paddock' website (https:www.longpaddock.com.au) and used for the following 

graphs. From the annual total rainfall (Figure 39), we can see the last two years 
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(2021 and 2022) exceeded 900mm of rain, which has been reached only one other 

time (2010) since 2001. 

 

 

 

FIGURE 39. ANNUAL TOTAL RAINFALL (MM) FROM 1980 TO 2022.  

 

Figure 40 plots the long-term monthly rainfall (1980-2022) together with the 

monthly rainfall for 2021 and 2022. 2021 and 2022 had higher-than-average 

rainfall in October, November and January. 

 

FIGURE 40. MONTHLY RAINFALL (MM) AVERAGED BETWEEN 1980 AND 2022, AND 2021 

AND 2022 AS A COMPARISON.  

 

From the maximum monthly temperatures (1980-2022), Figure 41 shows that the 

monthly average temperatures in 2021 and 2022 were lower than the long-term 

average, particularly from September through March. These cooler temperatures 

mean the high temperatures were not experienced for a month or two later than 

usual, and the historical maximum temperatures were not experienced at all 

through 2021 and 2022.  
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FIGURE 41. MAXIMUM MONTHLY TEMPERATURES (℃) AVERAGED BETWEEN 1980 AND 

2022, INCLUDING 2021 AND 2022 AS A COMPARISON. 

 

4.2.3 Air Temperature during the Monitoring Period 
 

The air temperature was recorded during the experiment with the 12.00 am-1.00 

pm average temperature presented in Figure 42, with dates of the flights also shown 

(red arrows). Seasonal variation in air temperature can be observed from the 

temperatures in Figure 41 and Figure 42.  

 

FIGURE 42. AIR TEMPERATURES (°C, 12.00 NOON – 1.00 PM) THROUGHOUT PERIOD OF THE 

FIELD EXPERIMENTS WITH FLIGHT DATES (RED ARROWS). 

 

Figure 43 shows the rainfall experienced on-site throughout the field study period. 

This rainfall fell on both plots (stressed and non-stressed), as a rainout shelter was 
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not used for the stressed plot. Figure 43 also includes the dates and quantities of 

waterings for the non-stressed field plot throughout the experiment. During the 

Winter, watering ceased as the plants received enough water from rainfall, with 

watering commencing again in Spring. Waterings were undertaken using a 

watering can, evenly spreading the water around the non-stressed plot to ensure 

all pasture in the plots was evenly watered. The specific watering amounts are 

shown in Figure 43 and range from 2.5mm to 11mm. 

The soil moisture levels for the stressed and non-stressed plots fluctuated as 

expected throughout the field trials. From Figure 43, it can be seen how the 

watering affects the soil moisture of the non-stressed field plot. Figure 43 shows 

how the soil moisture profile increases during the winter months and starts to be 

drawn down during spring and summer as pasture growth increases and rainfall 

declines. 

 

FIGURE 43. SOIL MOISTURE, RAINFALL AND WATERING THROUGHOUT THE FIELD 

EXPERIMENTS. RED ARROWS INDICATE THE TIME OF THE FLIGHTS. 

 

The Vapor Pressure Deficit (VPD) ranged from 0-4.25 kPa throughout the study 

period, typically being lower during Winter and rising in late Spring to Summer 

period. VPD was calculated using the method of the FAO Irrigation and Drainage 

Paper, No.56, Crop Evapotranspiration (Allen et al. 1998). The calculated VPD was 

compared to a sensor (HT.w Sensor, SensorPush) placed in the field, with the two 

methods showing similar results (Figure 44).  
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FIGURE 44. VPD COMPARISON BETWEEN CALCULATED AND COLLECTED FROM THE SENSOR 

(HT.W SENSOR, SENSORPUSH). 

 

Figure 45 shows the setup of one of the field plots and an aerial view of the field 

trial plots. Fencing was used to prevent stock and kangaroos from grazing the area 

and to protect the monitoring equipment. 

 

 

FIGURE 45. (A)  FIELD PLOT SET UP, SHOWING SOIL MOISTURE PROBE AND THERMAL 

CAMERA, FENCED OFF TO RESTRICT STOCK AND WILDLIFE. (B) AERIAL VIEW OF TWO FIELD 

PLOTS WITHIN THE PADDOCK. 

Non-Stressed field plot 

Stressed field plot 

A 

B 
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Figure 46 shows the species composition of pastures within the field plots (non-

stressed and stressed) on 11/9/2021. Three sites were selected within each field 

plot, and a steel quadrant (30cm by 30cm) was used to define the boundaries for 

the sample. Pasture within the quadrant was cut, collected, dried (48 hours at 80°C), 

sorted into species, and weighed. The species composition changed slightly 

throughout the field experiment due to the seasonal growth patterns of the species 

mix. 

 

FIGURE 46. PASTURE COMPOSITION (% DM) WITHIN THE PLOTS ON THE 11/9/2021. 

 

4.2.4 Validation of canopy temperature sensors 
 

Diurnal sampling, measuring the canopy temperatures throughout a day, was 

undertaken, comparing the canopy temperatures between the Goanna ag sensors 

and the handheld sensor to validate the accuracy of the Goanna ag permanent field 

sensors in both the stressed and non-stressed plots. Diurnal sampling was 

undertaken on 12/10/2021, 26/10/2021, 8/11/2021, 13/12/2021, 2/1/2022, 

and 21/1/2022. The method for recording the canopy temperature for the diurnal 

sampling was to record five canopy temperatures with a handheld device (Optris 

MS, non-contact infrared thermometer) from the one field plot to calculate an 

average. The five samples were all taken within 2 minutes of each other, 

approximately 30 centimetres apart. The averaged results were then compared 

against the Goanna ag sensor data for that specific time and date. 

4.2.5 Calculation of baselines 
 

The stressed and non-stressed baselines were calculated using the approach of Idso 

(1981). The stressed and non-stressed baselines were calculated by plotting the Tc 

– Ta versus the VPD between 12-1 pm from the 19/10/2020 – 17/2/2022 for the 

separate plots (stressed and non-stressed), removing any periods that were wet or 
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windy and then calculating the line of best fit. These baseline equations were used 

to develop a CWSI plot to determine which plants are under plant water stress and 

which plants are not under plant water stress. The CWSI ranges from '0' to '1', '0' 

being a well-watered, non-stressed plant and '1' being a fully stressed plant with 

transpiration halted. The non stressed baseline excluded wet days and where solar 

radiation was under 1,100 W/m2, this data was removed from the spreadsheet 

prior to baseline calculations.  

4.2.6 CWSI Calculations 
 

The CWSI of pastures were calculated using the method of Idso et al. (1981). The 

CWSI formula used was: 

CWSI = ((Tc – Ta) - (Tc- Ta) LL) / ((Tc – Ta) UL – (Tc- Ta) LL) 

The (Tc – Ta) represents the canopy temperature less air temperature of a canopy 

on the sampling day. The (Tc – Ta)LL represents the canopy temperature less air 

temperature of a canopy transpiring at its maximum rate. The (Tc – Ta)UL 

represents the canopy temperature less air temperature of a canopy when 

transpiration is halted due to stomata closure. The temperature to develop the 

CWSI must be collected during daylight hours and under clear skies.  

4.2.7 Airborne thermal imagery acquisition 
 

The airborne thermal flight plan shown in Figure 47 was conducted with a Cessna 

aircraft flying approximately 500m above the site with a heading on the solar plane. 

Airborne thermal acquisition was conducted on 14/12/2020, 29/11/2021 and 

14/12/2021. The plane took approximately one hour to fly over the property to 

record the canopy's thermal temperature remotely. The aircraft recorded canopy 

temperature with a thermal camera (SC655 model, FLIR Systems, Wilsonville, OR, 

USA) with a resolution of 640 × 480 pixels, 16-bit radiometric resolution, 13.1-mm 

focal length, and 45 × 33.7 ° FOV (Field of view)yielding a spatial resolution of 0.25 

m.  



 91 

 

FIGURE 47. FLIGHT PATH TAKEN TO COLLECT AERIAL CANOPY DATA, THE RED BOX INDICATES 

THE FARM BOUNDARY WHERE FIELD EXPERIMENTS WERE CONDUCTED (14/12/2020). RED 

BOX INDICATES AREA OF FARM. 

 

4.2.8 Processing of Thermal Images 
 

The thermal images were processed as in Calderon et al. (2015) and Hornero et al. 

(2021). The thermal imagery data obtained from the flights recorded the pasture's 

canopy temperatures, and the ambient air temperature from the on-site weather 

station combined with the baselines was used to calculate the CWSI for the 

treatment plots and broader area. Data processing was undertaken using ENVI 

Classic 4 image processing and analysis software.  

4.2.9 Ground Truthing sites Species Composition – broader farm area 
 

Figure 48 shows where the species composition and pasture mass (kg DM/ha) were 

collected. A 'rising plate meter' was used at each site to measure the pasture mass 

present (kg DM/ha). At each site, a steel quadrant (30cm by 30cm) was used to 

define the boundaries for the sample. Pasture within the quadrant was cut, 

collected, sorted into species, and weighed. These samples were then dried in an 

oven for 48 hours at 80℃ and weighed. The results of the species composition are 

presented as a percentage in Figure 49. Canopy temperature was also recorded at 

these sites on flight days (29/11/2020 and 14/12/2021) using a handheld sensor 

(Figure 48). 
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FIGURE 48. LOCATIONS WHERE SPECIES COMPOSITION AND PASTURE MASS (KG DM/HA) 

WERE COLLECTED.  

100m 
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The species composition was not conducted during the first flight (14/12/2020). 
However, it was undertaken for the subsequent two flights (Figure 49). Phalaris 
was the dominant species in the paddocks, with clover and dandelions also 
present in different amounts at different times of the year. The pasture mass also 
varied across the paddock and farm, from the bare ground (location 3) to areas of 
short pasture where intermittent partial grazing may have occurred, and to areas 
of higher pasture mass. 
 

 

 

FIGURE 49. SPECIES COMPOSITION AND PASTURE MASS (KG DM/HA). (A) 29/11/2021 (B) 

14/12/2021. 

 

4.2.10 Calculating CWSI of the paddocks 
 

Figure 50 is the outline of two paddocks (approx. 9.5 hectares) with Phalaris 

pasture used for the CWSI calculations that follow. The clump of trees was removed 

from the CWSI calculations, and the dam and farm tracks have been excluded. The 

CWSI was calculated from the flight area using the aerially sourced pasture canopy 

temperatures and the baselines (non-stressed y=-2.9289x+7.286. Stressed = 16) 



 94 

and then plotted using the software package ENVI Classic 4. Calculation of the 

average CWSI in the images was undertaken and presented in Figure 50. 

 

FIGURE 50. OUTLINE (IN BLACK) OF THE TWO PADDOCKS USED FOR THE FOLLOWING CWSI 

CALCULATIONS. 

 

4.3 Results 
 

4.3.1 Diurnal Sampling  
 

The diurnal sampling shows the variation in canopy temperature throughout the 

day, as shown in Figure 51. A clear distinction can be seen between the stressed and 

non-stressed pastures' canopy temperatures throughout the day, with the stressed 

pastures' canopy temperature being higher than the non-stressed pastures' canopy 

temperature for the sampling period.  
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FIGURE 51. DIURNAL SAMPLING CANOPY TEMPERATURE (°C) UNDERTAKEN ON STRESSED 

AND NON-STRESSED PLOTS ON 1/1/2022. 

 

In Figure 52, the canopy temperatures have been plotted, including the five 

individual measurements for each time interval and the average temperature for 

each time interval during the diurnal cycle taken on 21/1/2022. Interestingly, there 

were higher fluctuations in canopy temperature in the mid to early afternoon, as 

opposed to the cooler mornings, with a wider variety of canopy temperatures being 

recorded for the stressed plot. It would be expected to see the stressed canopy 

temperature results higher than the non-stressed canopy temperatures. However, 

as shown in Figure 52 there is one interval (at 13.00) where the non-stressed 

canopy temperature was higher than the stressed canopy temperature. This could 

be due to several reasons, such as a different ambient temperature from when the 

stressed sample was taken to when the non-stressed was taken, and environmental 

factors such as a gust of wind or cloud influencing the canopy temperature.  
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FIGURE 52. CANOPY TEMPERATURE (DEG C) SPREAD RECORDED BY HANDHELD THERMAL 

SENSOR (A) STRESSED PASTURE (B) NON-STRESSED PASTURE ON 21/1/2022. 

 

There was a strong correlation between canopy temperatures measured with the 

Goanna Ag sensor and the canopy temperatures measured with the handheld 

sensor (Figure 53). The data are close to the one-to-one line with R2 values of 0.85 

and 0.86. This data was from the diurnal sampling, comparing all the handheld 

thermal sensor temperature data against the Goanna Ag canopy sensor data. 
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FIGURE 53. VALIDATION OF CANOPY TEMPERATURE COMPARING HANDHELD THERMAL 

SENSOR TO GOANNA AG FIELD SENSOR (A, STRESSED FIELD PLOT, B, NON-STRESSED FIELD 

PLOT) 

 

4.3.2 Validation of canopy temperature measurements using ground-truthing sites.  
 

Handheld sensor Vs Airborne image 

Figure 54 is a scatter plot comparison of the canopy thermal temperatures 

measured with the handheld sensor at ground level versus the flight canopy data at 

numerous (13) sites around the farm. The data does not fit the 1-to-1 line exactly. 

However, the data shows a strong, positive, linear association between the two 

measurement techniques and has an R2 of 0.92 and 0.78 for the flights in November 

and December 2021, respectively. 
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FIGURE 54. COMPARISON OF HANDHELD TEMPERATURES (13 SITES AROUND THE FARM) AND 

FLIGHT DATA (A) 29/11/2021, (B) 14/12/2021. 

 

4.3.3 Time series of Canopy Temperatures  
 

In Figure 55, (a) and (b) are the canopy temperatures (Tc) and the Tc - Ta for the 

stressed and non-stressed plots recorded from the ground-based sensors, showing 

that the stressed plots' temperatures were typically higher than the non-stressed 

plots' temperatures, primarily through the 'hotter' months. During 

January/February, the stressed canopy temperatures were up to 14 ℃ hotter than 

the non-stressed canopy, with all days in January and February having higher 

temperatures for the stressed compared to the non-stressed canopy. The average 

temperature difference between the stressed and non-stressed canopies in 

January- February was 6.13 ℃, whereas in June- July, the difference was 0.55 ℃.  
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FIGURE 55. (A) DAILY CANOPY TEMPERATURES (TC) OF THE STRESSED AND NON-STRESSED 

PASTURE. (B) DAILY TC – TA OF STRESSED AND NON-STRESSED PASTURES BETWEEN 1-2 PM. 

 

4.3.4 Baselines 
 

Non-stressed baseline  

Figure 56 presents the baselines developed for the non-stressed field plot. A 

number of baselines were developed using different screening parameters to 

determine the most appropriate baseline. Wet days (>0 mm) were taken out of the 

data before developing the baselines, and then different solar radiation (W/m2) 

intensities were used to screen the data further. Different ‘screening' parameters 

(i.e., using different solar radiation intensity cutoffs) resulted in slight differences 

between the non-stressed baselines, but all baselines had similar fitted linear 

trendlines. Baseline ‘c’ (figure 56) was chosen as the final baseline because it had 

the highest R2. 
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FIGURE 56. NON-STRESSED BASELINE DEVELOPMENT, (A) EXCLUDING WET DAYS AND SOLAR 

RADIATION UNDER 700 W/M2, (B) EXCLUDING WET DAYS AND SOLAR RADIATION UNDER 

1,000 W/M2, (C) EXCLUDING WET DAYS AND SOLAR RADIATION UNDER 1,100 W/M2. 

 

Stressed baseline development 

Two of the stressed baselines resulting from different screening for wet days and 

intensities of solar radiation are shown in Figure 57 (a). The baselines were 

developed initially using all the recorded data and then screening out unsuitable 



 101 

days (i.e. wet and cloudy days). The stressed baseline was set at a Tc – Ta of 16℃ 

because this was the highest Tc-Ta. This indicated maximum stress in the stressed 

field plot. The chosen stressed baseline of 16℃ is shown in red in Figure 57 (b). 

 

FIGURE 57. STRESSED BASELINE DEVELOPMENT (A) TC – TA, LESS RAIN AND SOLAR 

RADIATION UNDER 1200 W/M2. (B) TC – TA, LESS RAIN AND SOLAR RADIATION UNDER 

1250 W/M2.  

 

The daily CWSI results calculated from the stressed and non-stressed plots are 

shown in Figure 58. Figure 58 shows the majority of the stressed plants having a 

high CWSI and many of the non stressed plants having a lower CWSI as expected. 
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FIGURE 58. CWSI CALCULATED FROM THE GROUND CANOPY SENSORS SCREENING FOR WET 

DAYS AND SOLAR RADIATION UNDER 900 W/M2  

 

Figure 59 demonstrates further examples of the CWSI results calculated from the 

field plots data; however, more data has been screened out as the solar radiation up 

to 1,200 W/m2 have also been removed. Seventy-one (71) percent of CWSI results 

are within the CWSI range (0-1) when using the higher stressed baseline of 16℃ 

and the 1,200 W/m2 than the 62 percent when using the higher stressed baseline 

of ‘16’ and the 900 W/m2 as shown in Figure 59. 

 

FIGURE 59. CWSI WAS CALCULATED FROM THE GROUND CANOPY SENSORS, EXCLUDING WET 

WEATHER AND SOLAR RADIATION UNDER 1200 W/M2 USING 16 DEG C AS THE STRESSED 

BASELINE (Y = -2.9289X + 7.286). 

 

4.3.5 Canopy temperature of field plots from flights 
 

Figure 60 is a close-up image showing the canopy temperature variation across the 

field plots on 14/12/2020. The temperature of the stressed plot ranges from 38.85– 

41.85℃ with the majority at 40.85℃, while the non-stressed plot ranges from 
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35.85-39.85℃ with the majority at 38.15℃. With the range of canopy temperatures 

across the non-stressed plot, there may be some edge effects where watered-

pastured areas are close to non-watered pastures. 

 

FIGURE 60. CANOPY TEMPERATURE (DEG C) VARIATION ACROSS NON-STRESSED AND 

STRESSED PLOTS FROM AERIAL FLIGHT (14/12/2020). THE AVERAGE TEMPERATURE OF 

THE STRESSED PLOT WAS 40.88 ℃, AND THE NON-STRESSED PLOT WAS 38.15 ℃.  

 

Figure 61 is a broader view of pasture canopy temperatures (℃) recorded during 

the flight from the FLIR camera, showing canopy temperature variation over a 

broader scale, over several paddocks.  

 

FIGURE 61. A BROADER VIEW OF PASTURE CANOPY TEMPERATURES (DEG C) RECORDED 

DURING THE FLIGHT (14/12/2020) FROM THE FLIR CAMERA. FIELD TRIAL PLOTS IN 

SQUARE BOXES (CANOPY TEMPERATURES). 
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4.3.6 CWSI from flights 
 

In Figure 62. the CWSI has been calculated for the flight area using the aerially 

sourced pasture canopy temperatures and the baselines (non-stressed y=-

2.9289x+7.286. Stressed = 16). 

 

FIGURE 62. CWSI WAS DERIVED FROM FLIGHT 1 (14/12/2020). FIELD TRIAL AREAS IN 

BLACK SQUARES. NON-STRESSED COMPOUND CWSI =0.15 STRESSED COMPOUND 

CWSI=0.48. 

 

4.3.7 Comparison of canopy temperature and CWSI 
 

A comparison of the canopy temperatures over the three flights is shown in Table 

4. The second and third flights occurred on cooler days compared to flight 1; hence, 

the plants may not have been under as much water stress. In Table 5, the CWSI 

values have been plotted for the field plots, with the non-stressed plots showing a 

lower CWSI than the stressed plots, which is to be expected. 

TABLE 4. TEMPERATURES AND CWSI OF STRESSED AND NON-STRESSED FIELD PLOTS USING FLIGHT CANOPY 

TEMPERATURES AND BASELINES (NON-STRESSED Y=-2.8212X+7.2968. STRESSED = 16) DURING THE 

THREE FLIGHTS. 

 Date of Flight Air 
Temperature 
℃ 

Canopy 
Temperature 
Stressed ℃ 

Canopy 
Temperature 
Non-Stressed 
℃ 

VPD CWSI 

Stressed 

CWSI 

Non-

Stressed 

Flight 1 14/12/2020 32.99 40.85 35.85 2.26 0.48 0.15 

Flight 2 29/11/2021 22.36 29.85 26.85 1.24 0.32 0.08 

Flight 3 14/12/2021 20.36 26.85 25.85 1.06 0.21 0.12 

 

Non-stressed plot 

(CWSI=0.14) 

Stressed plot 

(CWSI=0.47) 

100m 
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Figure 63 shows the CWSI calculated from the baselines (non-stressed y=-

2.9289x+7.286. Stressed = 16) for each of the three flights. The figures show the 

CWSI values for the pasture paddock (outlined in black), including the field plots. 
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FIGURE 63. CWSI OF FLIGHTS (A) FLIGHT 1. 14/12/2020, (B) FLIGHT 2. 29/11/2021, 
(C) FLIGHT 3. 14/12/2021. USING THE BASELINES (NON-STRESSED Y=-2.9289X+7.286. 
STRESSED = 16). 

 

Figure 64 is an analysis of the % per CWSI range across the paddocks for flights 1, 

2 and 3 as per the areas in Figure 63.   

 

 

FIGURE 64. ANALYSIS OF THE % PER CWSI RANGE ACROSS THE PADDOCKS FOR FLIGHTS 1, 2 

AND 3. THE AVERAGE CWSI RANGE FOR FLIGHT 1 WAS 0.45, FOR FLIGHT 2, IT WAS 0.18 

AND FOR FLIGHT 3, IT WAS 0.27. 

 

4.4 Discussion 
This study created CWSI baselines for phalaris – sub clover pastures in 

southeastern Australia, demonstrating that the approach developed largely for 

individual species could be applied to pastures. The results show that the 

temperature difference between the stressed and non-stressed pastures could be 

recorded on the ground and remotely, with canopy temperatures of the stressed 

plot typically hotter than the non-stressed plot. Viewing the spatial CWSI also 

provides insight into water stress across paddocks and the larger area (farm). 

The non-stressed baseline was developed using all the field data collected during 

the field studies and screening out wet days and solar radiation intensities. 

Screening for solar radiation was used to screen out days where clouds may be 

present. Numerous baselines were developed using different solar radiation cutoffs 

to ascertain the most accurate baseline. A cutoff of 700 W/m2, 1000 W/m2, and 

1,100 W/m2 radons gave a similar non-stressed baseline (see Figure 56). Numerous 

other variations were applied in an attempt to calculate the non-stressed baseline.  

Unfortunately, in the literature, there is minimal work on developing baselines for 

pastures, so we are unable to compare our results directly with other peer-
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reviewed work. The pasture baselines developed from these field experiments were 

compared against previously designed non-stressed baselines undertaken by Idso 

et al. (1981) and compiled in the supplementary data by Gonzalez-Dugo et al. 

(2022), for other plants and a selection is shown in Figure 65. Figure 65 also shows 

the non-stressed baselines for a variety of species and stages of growth, such as 

Barley, Wheat, Turfgrass, and Alfalfa. Figure 65 also shows that the baseline 

developed for pasture has a slope similar to that of some other species. 

 

FIGURE 65. PASTURE NON-STRESSED BASELINE COMPARED AGAINST OTHER BASELINES 

DEVELOPED BY IDSO ET AL. (1981). 

 

The stressed baseline was developed using all the data screening for rain and taking 

out days where solar radiation was under 1250 W/m2 (figure 57). Numerous other 

variations were applied in attempting to calculate the stressed baseline. Trials were 

also undertaken to manipulate the stressed baselines for other values such as Tc – 

Ta equalling 11℃ and 16℃. Figure 57 shows the stressed baseline development, 

with a Tc - Ta of 16 ℃ chosen as the final stressed baseline. It is difficult to obtain a 

stressed baseline from plants in the field given that the plants are 'just holding on' 

before plant death when the plants are under the most stress. The stressed field 

plots were rainfed (not rain excluded), and therefore, it was not possible to create 

a highly stressed pasture. It is difficult to accurately record stressed baseline in the 

field as the measurement attempts to measure the plant under maximum stress, 

effectively just before the plant senesces.  

Three flights were undertaken (14/12/2020, 29/11/2021, 14/12/2021). The 

higher ambient temperature during flight 1 would most likely have contributed to 

the increase in CWSI in flight 1 compared to the other two flights. Flight 1 was 

undertaken on 14/12/2020 with an air temperature of 33 degrees Celsius. Flight 2 

(29/11/2021) and flight 3 (14/12/2021) were undertaken on days when the 

temperature was 22 degrees Celsius and 20 degrees Celsius respectively.  

The CWSI was plotted for the field pastures using the generated baselines. Figures 

58 and 59 demonstrate a range of CWSI values spread between -0.6 to just under 
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1.2.  Figure 66 is the CWSI viewed over time, excluding wet days and days where 

solar radiation is below 600 W/m2. The results demonstrate a clear increase in 

CWSI during the hotter periods, where the stressed CWSI exceeds the non-stressed 

CWSI. There are gaps in the data because during Winter and other periods there 

were numerous cloudy days, and these have been screened out by taking out all the 

wet days and days below 600 W/m2 solar radiation (Idso et al. 1981). Due to the 

cooler winters, the pastures were not under water stress for the whole year but 

only for periods in summer when the air temperatures increased. Similar to results 

from Haghverdi et al. (2021), Al-Faraj et al. (2001) and Jalali-Farahani (1993), it 

was not possible for all the CWSI results to be within the 0 -1 range, with some 

results exceeding the one and below zero. Whilst we developed stressed and non-

stressed baselines from the field experiments undertaken, it is essential to 

remember that baselines are localized and may not be appropriate for use in the 

next valley, region or other parts of Australia (Jalali-Farahani (1993). 

One issue not thoroughly studied in this field experiment is the phenological stage 

of the plant versus the canopy temperature. Bellvert et al. (2015) found that the 

non-stressed baseline differed with grapevines depending on variety and 

phenological stage. Similarly, Kar et al. (2010) found that regarding winter maize 

irrigation, the CWSI varied at different plant growth phases. Further work should 

look at creating baselines at different stages of the pasture's growth to see how this 

may change throughout a season and from year to year.  

 

FIGURE 66. CWSI OVER TIME, LESS WET DAYS AND DAYS WHERE SOLAR RADIATION ARE 

BELOW 600 W/M2. 

 

4.4.1 CWSI vs Pasture mass comparison 
 

A comparison was undertaken comparing the CWSI and pasture mass (figure 67) 

with no correlation being found. The minimum pasture mass was around 1,500 kg 
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/DM/ha, demonstrating that most of the paddock had adequate pasture cover and 

that soil temperatures were not affecting the pasture CWSI. 

 

FIGURE 67. COMPARISON COMPARING THE CWSI AND PASTURE MASS (KG DM/HA). 

 

4.4.2 Spatial CWSI Discussion 
 

Looking at the temperature, Tc – Ta and CWSI images at the paddock scale, there is 

a significant variation in canopy temperatures and CWSI, especially during the first 

flight (14/12/2020) when the ambient temperature was high. This is due to several 

effects. Some of the temperature differences are the difference in stresses between 

the pastures in certain parts of the paddock, where some paddocks may be holding 

more or less water or have a slightly different orientation or soil type. Other 

variations may be caused by a mix of species and seasonal variations in species mix. 

This is somewhat similar to an orchard/vineyard environment where different 

species of trees or vines may be present that have different canopy temperatures 

and result in a different CWSI or where different soil types across an 

orchard/vineyard will have different moisture-holding capacities, which may affect 

the stress of a plant (Horst et al. 1989). 

For this study, we had to exclude or remove any non-pasture temperatures, such as 

roads and trees (Figure 68). When a farmer looks at the canopy temperature or 

CWSI over a broader scale than the paddock, non-pasture-related temperatures 

(bare ground, roofs, tree canopy, etc.) can affect the CWSI. However, if the 

farmer/user is familiar with the location. In that case, the CWSI can be calculated 

by selectively using the canopy temperature of the stressed and non-stressed 

pastures, avoiding the potential error of selecting a higher or lower temperature 

that is not pasture-related, which would result in a skewed CWSI. This is similar to 

using CWSI in an orchard-type environment, where the user or AI (Artificial 

Intelligence) needs to preferentially ensure that data is related to the canopy and 

screens out background data (Berni et al. 2009). Similarly, in an orchard/vineyard 
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scenario, there may be other infrastructure (water tanks, dams, tractors, sheds, etc) 

that, if not screened out correctly, can affect the CWSI results. 

 

FIGURE 68. THERMAL TEMPERATURE ISSUES. PASTURE AND NON-PASTURE-BASED THERMAL 

TEMPERATURES WERE RECORDED WITH A FLIR CAMERA DURING FLIGHT DATA ACQUISITION.  

 

4.4.3  Comparing Flight data to ground data. 
 

There was a difference between the canopy temperature data gathered aerially 

from the plane and the ground-sourced canopy temperature data (goanna ag and 

handheld). The plane flies ‘lines’ (Figure 47) in the sky to record the flight data over 

the broader area and can take an hour to collect all the filed data, as in the case of 

these field experiments. The canopy temperature data gathered with the handheld 

thermal sensor is collected over a few minutes, as temperatures are recorded and 

written down and then the recorder moves to the following location whilst the 

flights are being undertaken. Therefore, the three sources of canopy temperature 

are not all taken at the same time, meaning there can be a variation between the 

canopy temperatures gathered. The canopy temperatures are all recorded within 

an hour of each other with no significant changes in climate occurring (i.e., storm); 

therefore, the temperatures represent what is happening in the field. Going 

forward, improvements could include installing canopy thermal sensors in the field 

plots (stressed and non-stressed) and across the broader paddock, all recording the 

canopy temperature simultaneously. The data collection could be improved if the 

actual time the flight image is taken over certain parts of the farm is known and 

timed with the ground recorded data. 

4.4.4 Cloud Cover 
 

Cloud cover has been an issue with the on-ground remote sensors and the aerial 

data collection. The on-ground sensors collect data continuously, and as a result, 

there are many instances where cloud cover is an issue, and these need to be 

screened out when developing the baselines. Similarly, the presence of clouds made 

it difficult to time flights, as days, when there was cloud cover, meant the plane 
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could not fly to collect the thermal canopy data. Days of intermittent cloud made it 

difficult to schedule flights for breaks in the clouds. 

The cloud cover maps from the Bureau of Meteorology (Figure 69) show that the 

field experiments were undertaken in a high total cloud amount (oktas – unit of 

measurement of clouds) area. As discussed in the previous chapter, the use of the 

CWSI is restricted by clouds, and therefore, using the CWSI in the southern parts of 

Australia will increase complications with data sourcing due to cloud cover. 

However, using the CWSI in lower cloud areas, which corresponds to central parts 

of Australia, would be more advantageous and could cause fewer issues with 

calculating the CWSI due to less cloud cover. 

 

FIGURE 69. AVERAGE CLOUD COVER BETWEEN 9 AM AND 3 PM FOR AUSTRALIA (SOURCE 

BOM). RED CIRCLE INDICATES LOCATION OF FIELD SITE. 

 

4.4.5 Further Research 
 

Throughout the field experiment, the pastures develop through stages of growth 

and are consumed and senescing as the seasons change, influenced by rainfall, 

grazing, and temperature. It would be worthwhile investigating a month-by-month 

comparison as different species progress through different growth stages; for 

example, in spring, the pastures will typically crowd out the clover, and then as the 

pastures progress, the clovers may come back.  
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The development of these baselines allowed for the CWSI to be generated from the 

aerial data, which could be used for automated irrigation control. Using the spatial 

CWSI image over a couple of paddocks (Figure 62) can assist with selecting areas 

that may need irrigation and areas within a paddock that may not. Limits could be 

set for initiating irrigation, i.e., when the CWSI is over 0.65, irrigation is turned on, 

similar to work undertaken by Golgul et al. 2022 where they postulated that a CWSI 

between 0.13-0.22 could be used to initiate irrigation for mung beans. 

4.5 Conclusions 
The baselines and CWSI derived from the thermal canopy data collected at ground 

level and aerial flights were suitable indicators for water stress monitoring of 

pastures. This study demonstrated that the thermal canopy data collected at ground 

level throughout a season could be used to develop the stressed and non-stressed 

baselines. The thermal canopy data collected aerially could also be used to develop 

the CWSI over the paddock and farm scale. The applicability of these results showed 

that using the CWSI in pastures is a valuable tool for assessing the variability of crop 

water stress over pasture paddocks. 
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5 A Crop water stress index of annual ryegrass pastures in 
southern Australia. 

 

5.1 Introduction 
Farmers typically rely on homegrown pastures to provide fodder for their livestock. 

Australia’s climate is highly variable which affects the productivity and profitability 

of the farms they manage (Waha et al. 2022). Monitoring plant water stress of 

pastures can assist Australian farmers to manage in a variable climate, thus 

improving fodder management and assisting enterprises to be profitable in a 

changing climate. 

The crop water stress index (CWSI) relates canopy temperature to water stress, as 

water-stressed plants reduce transpiration due to partial or complete closure of 

their stomata, and as a result, the plant’s canopy temperature increases (Idso et al. 

1981; Jones, 1999). This difference in canopy temperature between stressed and 

non-stressed plants can be measured and used to produce the CWSI. The CWSI has 

been developed for a range of crops; however, to date, work has yet to be 

undertaken to examine the use of Crop Water Stress Indices (CWSI) on annual rye 

grass pastures in southeastern Australia. 

This work aimed to develop the CWSI for an annual ryegrass pasture in Southeast 

Australia.  

 

5.2 Materials and Methods 
 

5.2.1 Experimental design and plot management  
 

Study Area, Agricultural practices and pasture growth. 

The field experiments were undertaken at Murroon, in the Otway Range’s (38°27’S. 

143°50’S, 273m alt.) in Southwest Victoria, Australia. The property is 

approximately 147 km southwest of Melbourne and has flat areas and rolling hills. 

Field experiments were primarily conducted on the flat areas. Further details can 

be found in chapter 4. 

5.2.2 Meteorological Conditions throughout the experiment 
 

The climate is classified as warm and temperate. The area receives, on average, 

640mm of precipitation a year, with May and October being the wetter months. 

Waterings conducted on the annual rye pasture in the non stressed field plot and 

rainfall that occurred during the trials are shown in Figure 70. 
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FIGURE 70. WATERINGS (MM) AND RAINFALL (MM) THROUGHOUT THE EXPERIMENT. 

 

Further information on the Materials, methods and experiment design are included 

in the previous chapter (chapter 4). 

PowerPak sprinter (blend of Ascend and Astro tetraploid annual ryegrasses), was 

sown on 7/5/2021 at a rate of 25kg/ha with DAP (Di-Ammonium Phosphate) 

fertiliser applied at 72kg/ha. The newly planted annual ryegrass pasture within the 

field plots was not cut during the field trial, and it did not experience grazing 

pressure from any livestock or wildlife (Kangaroos). Measurements for the stressed 

and non stressed field plots were undertaken from 18/10/2021 – 1/2/2022. The 

soil moisture probe was placed in the centre of each plot, whilst the thermal 

infrared camera was located within one metre of the soil moisture probe. The 

equipment was installed on the 18/10/2021. 

5.2.3 Baseline Calculations 
 

The baselines are derived by recording the temperature of the canopy, air 

temperature and VPD between 12-1. The Tc (Temperature Canopy) – Ta 

(Temperature air) V's VPD (Vapour Pressure deficit) calculations were undertaken 

on the stressed and non-stressed canopy temperature to determine the stressed 

and non-stressed baselines. The baseline data was then filtered to remove days 

where rain occurred (stressed plot) and cloudy days. This data was then used to 

develop the stressed and non-stressed baseline equations used to develop a CWSI 

plot to determine which plants are under plant water stress and which plants are 

not under plant water stress. The CWSI ranges from ‘0’ to ‘1’, ‘0’ being a well-

watered non-stressed plant and ‘1’ being a fully stressed plant.  

5.2.4 CWSI Calculations 
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The CWSI was calculated as proposed by Idso et al. (1981). The CWSI was calculated 

for the pastures in the stressed and non-stressed plots. The empirical CWSI 

formulae used are as follows in Figure 71. 

 

FIGURE 71. CWSI FORMULAE  

 

The (Tc – Ta) represents the canopy temperature less air temperature of a canopy 

on the sampling day. The (Tc – Ta)LL represents the canopy temperature less air 

temperature of a canopy transpiring at its maximum rate. The (Tc – Ta)UL 

represents the canopy temperature less air temperature of a canopy when 

transpiration is halted due to lack of moisture. The temperature to develop the 

CWSI needs to be collected during daylight hours and clear skies. The development 

of the CWSI requires two baselines that are specific for each site and each crop 

(Idso, 1982). The upper baseline represents the canopy under full water stress with 

minimal transpiration. The lower baseline represents the non-stressed plants, 

where pastures/plants receive adequate water and are not limited in transpiration.  

 

5.3 Results 
 

5.3.1 Temperature 
 

The pasture canopy temperature between the stressed and non-stressed plots 

throughout the experiment is shown in Figure 72. The temperature increased to 

over 30 ℃ in early January, putting the pasture under water stress and 

differentiating the stressed and non-stressed plants' canopy temperature. Prior to 

the early January increase in temperature, the temperatures had not increased 

significantly, and the pastures were receiving intermittent rainfall during 

November and December and were therefore not experiencing extreme plant water 

stress.  
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FIGURE 72. CANOPY TEMPERATURE OF STRESSED AND NON-STRESSED PLANTS, INCLUDING 

AIR TEMPERATURE. 

 

5.3.2 Diurnal Sampling 
 

The diurnal sampling shows the variation in canopy temperature throughout the 

day, as shown in Figure 73. A clear distinction can be seen between the stressed and 

non-stressed pastures' canopy temperatures throughout the day, with the stressed 

pastures' canopy temperature being higher than the non-stressed pastures' canopy 

temperature for the sampling period.  

 

FIGURE 73. DIURNAL SAMPLING OF RYEGRASS 2/1/2022  

 

In Figure 74, the canopy temperatures have been plotted, including the five 

individual measurements for each time interval and the average temperature for 

each time interval during the diurnal cycle taken on 2/1/2022. This sampling shows 

that the canopy temperature of similar plants under similar conditions can vary 

over a range.  
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FIGURE 74. CANOPY TEMPERATURE (DEG C) SPREAD RECORDED BY HANDHELD THERMAL 

SENSOR (A) STRESSED PASTURE (B) NON-STRESSED PASTURE ON 2/1/2022. 

 

5.3.3 Soil Moisture 
 

The soil moisture levels between the stressed and non stressed field plots were 

relatively equal until late November, when there was some separation between the 

soil moisture levels (75). The stressed soil moisture level decreased consistently, 

whilst the non-stressed soil moisture level did not reduce as quickly.   The soil 

moisture for the non-stressed plot temporarily increased at intervals as a response 

to the watering. 



 118 

 

FIGURE 75. SOIL MOISTURE (MM) OF THE STRESSED AND NON-STRESSED PLOT AREAS. 

 

5.3.4 Baselines 
 

The stressed and non-stressed baselines developed for the annual ryegrass are 

shown in Figure 76.  The stressed data points representing the Tc –  Ta of the 

stressed pastures were averaged to determine the water-stressed baseline 

(10.2℃). 

 

FIGURE 76. BASELINES (STRESSED AND NON-STRESSED) WITH MANUALLY ADJUSTED 

STRESSED BASELINE. 
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5.3.5 Resulting CWSI 
 

Figure 77 shows the CWSI results for the period throughout the field trials when 

the plants were under the most water stress due to an increase in temperatures in 

late December 2021 and early January 2022.  

 

 

FIGURE 77. CWSI DURING PERIODS OF HIGHER AMBIENT TEMPERATURE, EXPERIENCED IN 

LATE DECEMBER AND JANUARY (21/12/2021) 

 

The CWSI over time (21/12/2021 and 31/1/2022) shows that the stressed pasture 

had a higher CWSI than the non-stressed pasture on certain days when the ambient 

air temperature increases (Figure 78). 

 

 

FIGURE 78. CWSI BETWEEN 21/12/2021 AND 31/1/2022 DURING HOTTER PERIODS OF 

YEAR, PUTTING THE PLANTS UNDER WATER STRESS. 
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5.4 Discussion 
The stressed and non-stressed CWSI baselines for annual ryegrass developed in this 

study were similar to what Idso et al. (1982) and others (Maes et al. 2012) achieved 

for other plant species. The baselines were difficult to generate if we used all the 

data collected; however, by screening the data and removing days that were cloudy, 

wet or conditions where the pasture was not under plant water stress, we were able 

to develop baselines.  

There is limited literature on other ryegrass or annual ryegrass baselines to 

compare our data. Our non-stressed baselines sits higher than most other crop 

types compared to Idso's (1980's) work and the numerous other baselines in the 

supplementary data (Maes et al. 2012). Some of the closest baselines are in turf, tall 

fescue, and hybrid Bermudagrass, as shown in figure 10; however, there are no 

direct comparisons for annual Ryegrass.  In Figure 79, the non-stressed baseline for 

the annual Ryegrass has been plotted against some field-derived baselines for Tall 

fescue and Hybrid Bermudagrass undertaken by Haghverdi et al. (2021) in central 

California in 2018 and 2019. The Tall fescue and Hybrid Bermudagrass are from a 

climate where evapotranspiration is approximately five times the precipitation 

received in the area of this study (Haghverdi et al. (2021)). The work undertaken 

on Tall Fescue was conducted over 2018 and 2019, and the baselines have been 

plotted separately.  

 

 

FIGURE 79. COMPARISON OF ANNUAL RYEGRASS BASELINE TO TALL FESCUE (HAGHVERDI ET 

AL 2021), HYBRID BERMUDA (HAGHVERDI ET AL 2021) AND TURFGRASS (GONZALEZ-
DUGO ET AL 2022). 

 

The supplementary data in Maes et al. (2012) is an extensive list of non-water-

stressed baseline equations. Many early baselines have been developed in more 

arid parts of the world (Arizona, California, Turkey, Iran, Texas, etc).  Alderfasi et al. 

(2001) Stockle et al. (1992) found that the CWSI values for a non-stressed crop 

determined using the empirical CWSI baseline approach changed daily, especially 

under low VPD deficits.  Alderfasi et al. (2001) also found that canopy temperature 

differences between stressed and non-stressed crops are usually small under low 

evaporative demand. This was also found in our field trials. During the periods 
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before mid-December, when plants had soil moisture and ambient temperatures 

were not excessive (above 30 ℃) it was difficult to determine plant water stress 

between the two field plots. However, this changed as the ambient temperature 

increased in mid to late December and early January and the soil moisture levels 

between the two plots started to differ. Another finding by Jensen et al. (1990) was 

that either stressed or non-stressed wheat, barley, rape and perennial ryegrass 

crops could fluctuate up to 6 deg C within a few minutes to rapid changes in incident 

solar radiation. With the high amount of cloud cover during the winter and spring 

when the canopy temperature measurements were taken for the field trials, we 

could expect a rapid change in canopy temperatures in our field plots. This was 

experienced when taking canopy temperature checks with a handheld 

thermometer (Optris MS, non-contact infrared thermometer). Taking five canopy 

temperature measurements within one metre over one minute gave a range of 

canopy temperatures for a similar pasture (figure 5). 

The CWSI relies on clear skies, and therefore, while it is useful in areas outside arid 

environments, its use is limited to non-cloudy days or periods of no clouds during 

the day (O’Shaughnessy et al. 2012). O'Shaughnessy et al. (2012) also points out 

that wind gusts and other micrometeorological incidents influence the CWSI. 

Barbosa et al. (2005) also mention that clouds were an operational issue, affecting 

the net radiation when collecting data and that the field site being 60km from the 

Atlantic Ocean may explain the intermittent cloud cover. Similarly, our site was only 

15km from the ocean, which may have increased the occurrence of cloud cover. 

One implication of using the CWSI in this region (South of the Great Dividing Range) 

is the occurrence of clouds throughout the year, making it challenging to collect data 

to develop the baselines and test the CWSI. Much of the early work on developing 

the CWSI was undertaken in the USA by Idso, (1981) in Arizona, North Dakota, 

Nebraska and Kansas, that is in arid environments with limited clouds. Similarly, 

other work on baselines since Idso’s work has predominantly been in Turkey, 

Arizona, Iran, Texas, etc. (Maes et al. 2012), typically more arid areas. Idso (1981) 

mentions that his work was undertaken under clear skies with some thin cirrus 

conditions; he further mentions that the relationship begins to decline for other 

types of cloudiness, presumably due to changing illumination effects on stomates 

(Idso, 1981). Similarly, O'Shaughnessy (2012) acknowledged the problem 

regarding irrigation scheduling by using instantaneous measurements taken over a 

short period near solar noon, which may be influenced by passing clouds, wind 

gusts or other micrometeorological incidents. Consideration needs to be given to 

the usefulness of using the CWSI in non-arid regions, especially if used for irrigation 

scheduling. 

The CWSI values are meant to vary between 0 and 1 (representing no transpiration 

and maximum transpiration, respectively); however, from our results, we had 

several CWSI values exceeding one and less than zero. It was possible to 'clean' this 

data by taking out days with obvious cloud cover or recent rainfall events; however, 

even allowing for this screening, keeping all our results within the CWSI 0 to 1 range 

was not possible. Haghverdi et al. (2021) found that their CWSI values ranged from 

-0.34 – 0.56. Similarly, work undertaken on Tall Fescue by Al-Faraj et al. (2001) and 
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Alderfasi et al. (2001) within a controlled environment found that it was not 

possible to consistently get the empirical CWSI results to lie between 0 and 1. 

Similarly, the work by Wanjura et al. (1984) and Jalali-Farahani et al. (1993) 

experienced some negative CWSI values in their calculations. 

Australia has experienced three La Nina weather patterns in a row (2020,2021, 

2022 – Source BOM). La Nina can be associated with above-average rainfall, cooler 

days, and cooler nights in summer. With the wetter-than-normal periods (refer 

chapter 4) and cooler conditions (refer chapter 4), pasture was still growing in 

January, which in 'normal' times would have ceased growing. Further work could 

be undertaken in developing baselines in non-La Nina years and comparing to these 

results.  

Haghverdi et al. (2021) report that the reported CWSI baselines for turfgrass vary 

widely in the literature and that specific baselines for each climatic region should 

be developed. Jalail-Farahani, et al. (1993) also discussed how baselines are site-

specific. Adopting CWSI baselines derived from other countries, states, regions, or 

cultivars could be problematic as varying climatic conditions and microclimates can 

alter the CWSI from one place to another. Using Haghverdi et al. (2021) premise and 

other comments in the literature about site-specific baselines, further work needs 

to be undertaken on developing further baselines for annual Ryegrass across 

southeast Australia to compare this study to. 

Due to the process of senescence (change in colour and loss of leaves), the 

senescence changes may lead to changes in canopy temperature (Barbosa et al. 

2005). As pastures change from growth to senescence the pasture can become 

stalky, as seen in this study. This change could have effects on the canopy 

temperature, as stalky material may influence the canopy temperature. Further 

work on developing baselines at different stages of pasture growth could 

demonstrate if senescence influences canopy temperature. 

When collecting the data, recording a range of VPDs can be quite difficult, especially 

if the fieldwork data collection time is limited. Wanjura D et al. (1984) highlighted 

that their VPD measurements did not exceed 4.0 kPa in their fieldwork whereas 

work undertaken by Idso (1982) demonstrated a wider range of VPD’s such as a 

VPD of up to 7kPa for field measurements for tomatoes. The VPD collected during 

these field trials ranged from close to zero to about 4 kPa. Similar to Haghverdi et 

al. (2021) studies throughout 2018 and 2019, where their VPD was restricted 

between 1 – 5 kPa. Undertaking similar field trials in different locations across 

Victoria and Australia may assist in obtaining results over a wider VPD range. 

Wanjura et al. (1984) also mention the difficulty in recording canopy temperatures, 

noting that some of their plant canopies were not large enough to mask the soil 

background, and that the Tc included some contribution from the bare soil. Wanjura 

et al. (1984) also mention the possibility that early season stress caused by hail, 

wind and seedling disease damaged the roots of many plants, and thus, their roots 

may be more resistant to water uptake than healthier plants. Jackson et al. (1981) 

mention that wheat took 5-7 days to resume transpiring normally after a stress 

period. Whilst during these field trial, the presence of hail, excessive wind and 

disease was not identified as an issue, it does demonstrate further issues that need 
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to be considered when relying on CWSI in the field. Further work could involve 

trialling how quickly annual Ryegrass takes to resume full transpiration after a 

stress period. 

Whilst the CWSI and associated baselines can be of benefit in monitoring for plant 

water stress in the field, there are numerous potential issues involved with data 

gathering to develop the baselines that can result in errors in the data gathered. 

Further work must be undertaken to verify this study's baselines and resulting 

CWSI, especially in non-arid regions. 

5.5 Conclusion 
The canopy temperature difference between the stressed and non-stressed annual 

ryegrass pastures was able to be detected using a thermal sensor in the field, with 

the stressed pastures typically recording higher canopy temperatures than the non-

stressed pasture canopies during the hotter periods of the year. From the canopy 

temperature differences, the stressed and non-stressed baselines for the stressed 

and non-stressed rye grass pastures were developed during periods of plant stress 

and over a range of VPD. CWSI values for stressed and non-stressed rye grass 

pastures were able to be determined when the plants were under water-stressed 

conditions (increase in ambient temperature) but did not work well, as expected, 

during times when the plant was not under water stress (cooler ambient 

temperatures or when the plant had adequate soil moisture). The stressed and non 

stressed baselines developed as part of this field work could be used in the 

agriculture environment to monitor plant water stress across a paddock or farm, 

and also could be used as a tool to set irrigation limits if irrigation water is available. 
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6 Comparison of empirical, adaptive, and baseline-derived Crop 
Water Stress Index (CWSI) methods to assess plant water 
stress in pastures in Southeast Australia.  

 

6.1 Introduction 
Field-grown pasture is the main and cheapest feedstock for cattle and sheep in 

southern Australia (Perera et al. 2020; Chapman et al. 2009) and many other 

regions worldwide. Climate, particularly rainfall variability, is one of the significant 

sources of intra - and inter-annual variation in pasture growth (Chapman et al. 

2009). In southern Australia's temperate and Mediterranean climates, pasture 

growth is primarily limited by water availability from mid-late spring to the 

opening rains in autumn. In contrast, appropriate spring and autumn temperatures 

with nutrients, disease, and other management practices (overgrazing) can also 

affect pasture growth. As soil moisture reduces, plant transpiration declines and the 

canopy temperature increases along with a reduction in photosynthesis (Idso et al. 

1981). Water deficits occur in plants when evaporative demand exceeds the water 

supply in the soil (Slatyer, 1967). Where there is inadequate water for the plant, the 

water stress causes partial stomatal closure and reduction in transpiration rates, 

and the reduced evaporative cooling raises the canopy temperature in relation to 

the ambient temperature (Jones, 1999).  

Canopy temperature is considered a reliable proxy for plant water stress 

monitoring and irrigation scheduling (Idso et al. 1984; Steele et al. 1994). Canopy 

temperature is accepted as an indirect, rapid, accurate, and large-scale crop water 

stress indicator (Gonzalez–Dugo et al. 2022). Using a Thermal infra-red 

thermometer to assess plant canopy temperatures of water-stressed plants was 

initially put forward by Jackson et al. (1977). In the absence of biotic stress from 

fungi, bacteria, and viruses, the restrictions in canopy growth under sub-optimal 

water or nutrient levels are generally related to stomatal closure (Jones, 1998) and 

chlorosis (Shimshi. 1967), resulting in both water and nutrient stress due to limited 

uptake from the roots (Zarco-Tejada, 2021). The Crop Water Stress Index (CWSI) is 

an efficient indicator of crop water status and is based on the difference between 

foliage and air temperature (Idso et al. 1981; Jackson et al. 1981) of stressed and 

non-stressed plants normalised by the vapour pressure deficit (VPD). 

To measure the CWSI empirically, an alternative method requires a stressed and 

non-stressed plant to normalise the results. The canopy temperature 

measurements from the stressed and non-stressed canopies and the canopy 

temperature from the plant of interest are used to develop the CWSI. The 

requirement for having a non-stressed and stressed plant present to measure the 

CWSI in the field has made it difficult to use the CWSI extensively in the Agricultural 

setting. Alternatively, if a stressed and non-stressed plant is unavailable, it is 

possible to utilise baselines if they have been developed for that species at that 

location. Idso initially undertook numerous baselines for various crops in the 

(1980's). One limiting factor of using already developed baselines is that the 
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baselines are site, species and variety specific (Idso, 1982) and may not work that 

well when used in the next valley or in a different region, country, continent or time 

of year.  

One method to avoid the requirement for having a stressed and non-stressed plant 

available to normalise the results is the use of reference leaves, using materials that 

may imitate the stressed and non-stressed leaf's canopy temperatures in the field 

(Jones et al. 2002). Alternative methods include cloth knitted around a solid frame 

(Maes, 2016), cellulose paper (Apolo – Apolo 2020), leaves sprayed with water or 

covered in petroleum gelly (Leinonen, 2004), a small quantity of detergent on the 

leaf (Jones et al. 2002), filter paper (Jones et al. 2002) and a wet artificial reference 

surface (WARS). 

Park et al. (2017) used an adaptive derived Twet (non-stressed) and Tdry (stressed) 

to calculate the CWSI as part of one of their studies on nectarine and peaches under 

different irrigation treatments. They used a temperature histogram derived from a 

TIR (thermal infrared) image to generate the stressed and non-stressed values for 

CWSI. They used T-wet (non-stressed), the histogram's coldest part, and T-dry, the 

hottest part. They excluded any pixels with a mixture of canopy and background 

(such as soil). Their experiment-imposed deficit plots, where irrigation was 

withheld for five days before the field trials (Park et al. 2017). The other plots were 

irrigated and were the control plots. Park et al. (2017) collected the canopy's 

thermal temperatures remotely using a thermal camera. This allowed the quick 

recording of the thermal temperatures over a larger area (paddock/farm scale) 

than would be possible if taking point measurements on the ground. By using the 

remote collection method, they assessed the spatial variability of plant water stress 

over larger areas quickly and efficiently. 

This work compares the baseline calculated CWSI against the CWSI developed 

empirically and uses an adaptive CWSI method similar to Park et al. (2017) on 

pasture species in Southeast Australia. The baseline approach relies on CWSI 

baselines having been developed for the particular species, at the same location to 

then calculate the CWSI of the plant from using the canopy temperature and VPD 

(Vapor Pressure Deficit) at the time. The empirical CWSI approach uses two canopy 

temperatures on the day of sampling, one from a stressed plant and one from a non-

stressed plant. These stressed and non stressed temperatures are then used in the 

CWSI formulae to calculate the CWSI. The adaptive approach uses a temperature 

histogram derived from a thermal infrared image to generate the stressed and non-

stressed values for the CWSI. 

 

6.2 Materials and Methods 
 

6.2.1 Experimental design and plot management  
 

Study Area, Agricultural practices and pasture growth 
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The field experiments were undertaken at Murroon, in the Otway’s (38°27’S. 

143°50'S, 273m alt.) in Southwest Victoria, Australia. The property is 

approximately 147 km southwest of Melbourne and has flat areas and rolling hills. 

Field experiments were primarily conducted on the flat areas. Further details on the 

property and pasture can be found in Chapter 4. 

6.2.2 Meteorological Conditions throughout the experiment 
 

The climate is classified as warm and temperate. The area receives, on average, 

824mm of precipitation (Average 1980-2022 Barwon Downs) a year, with May and 

October being the wetter months. Further details can be found in Chapter 4. 

6.2.3 Field Plots 
 

The field experiment was set up in Murroon, in south-west Victoria and ran from 

October 2020 to January 2022. Two treatment plots were set up in the paddock, a 

well-watered (non-stressed) and a rainfall only (stressed) plot.  The pastures were 

predominantly Phalaris (Phalaris aquatica L) with a small amount of Clover 

(Trifolium subterraneum L) and Dandelion (Taraxacum officinalis) weeds. A 

permanent thermal canopy sensor was installed in each plot along with soil 

moisture probes and a weather station. The pasture canopy temperature of the 

stressed and non-stressed plots was continuously measured throughout the field 

trials. As part of the study, spatial variation in canopy temperature was also 

assessed with a Flir thermal infrared camera mounted on an aeroplane. Further 

information can be found in Chapter 4. 

Figure 80 shows the rainfall experienced on-site throughout the field study period. 

This rainfall fell on both plots (stressed and non-stressed), as a rainout shelter was 

not used for the stressed plot. Whilst a rainout shelter was considered, introducing 

a rainout shelter introduces other variables that can affect the microclimate and, 

therefore the plants water stressed state. The rainout shelter would also have 

added complications for aerial data gathering, effectively blocking the pasture from 

the FLIR camera mounted to the plane. 

 

FIGURE 80. RAINFALL (MM) COLLECTED FROM AN ON-SITE WEATHER STATION. 
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In Figure 81 are the dates and quantities of waterings for the non-stressed field plot 

throughout the experiment. During the winter, watering ceased as the plants 

received enough water from rainfall, with watering continuing again in spring. 

Waterings were undertaken using a watering can, evenly spreading the water 

around the non-stressed plot to ensure all pasture within the plot was evenly 

watered. 

 

FIGURE 81. DATES AND AMOUNTS (MM) OF WATER ADDED TO NON-STRESSED PLOT DURING 

FIELD TRIALS. 

 

6.2.4 Study Area  
 

The field plots are shown in Figure 82, including the area used to develop the 

histogram (Area A), which covers approximately 5.8 hectares and excludes the 

stressed and non-stressed field plot areas. 

 

FIGURE 82. FIELD PLOTS (BLUE SQUARES) AND AREA A USED TO DEVELOP THE HISTOGRAM. 

 

Area A 

100 m 

Field Plots 
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6.2.5 Thermal Image Acquisition Remote 
 

The airborne thermal imagery was collected with a Cessna aircraft flying 500m 

above the site on 14/12/2020 (figure 9), 29/11/2021 (figure 10) and 14/12/2021 

(figure 11) heading on the solar plane. The aircraft recorded canopy temperature 

with a thermal camera (SC655 model, FLIR Systems, Wilsonville, OR, USA) with a 

resolution of 640 × 480 pixels, 16-bit radiometric resolution, 13.1-mm focal length, 

and 45 × 33.7 ° FOV yielding a spatial resolution of 0.25 m.  

6.2.6 Processing of Thermal Images 
 

The thermal images were processed as in Calderon et al. (2015) and Hornero et al. 

(2021). The thermal imagery map obtained from the flight was then used to 

calculate the CWSI for the treatment plots and the wider area (across the paddocks 

or farm).  

6.2.7 CWSI Calculations 
 

Three different methods to calculate the CWSI were used, they included, 

1. Baselines – using the previously calculated (Chapter 4) pasture baseline (y=-

2.9289x + 7.286. and 16) to generate the CWSI (Idso,1982). 

 

2. Empirically using the stressed and non-stressed plants' canopy 

temperatures to calculate the CWSI (Gonzalez-Dugo et al 2018) using the 

CWSI = ((Tc – Ta) - (Tc- Ta) LL) / ((Tc – Ta) UL – (Tc- Ta) LL) (The (Tc – Ta)LL 

represents the canopy temperature less air temperature of a canopy 

transpiring at its maximum rate, the non stressed plot. The (Tc – Ta)UL 

represents the canopy temperature less air temperature of a canopy when 

transpiration is halted due to stomata closure, the stressed plot.)  

 

3. Adaptive - using a temperature histogram derived from a thermal infrared 

image to generate the stressed and non-stressed values for the CWSI (Park 

et al 2017) using the CWSI = ((Tc – Ta) - (Tc- Ta) LL) / ((Tc – Ta) UL – (Tc- Ta) 

LL) (The (Tc – Ta)LL represents the canopy temperature less air temperature 

of a canopy transpiring at its maximum rate, in this scenario the lower 

temperature on the histogram. The (Tc – Ta)UL represents the canopy 

temperature less air temperature of a canopy when transpiration is halted 

due to stomata closure, in this scenario, the upper temperature on the 

histogram. 

6.2.8 Data analysis 
 

Describe the data was analysed – eg temperature histograms, and CWSI – averag 

averaqge and spatial distribution. 

The thermal temperatures from the flight were analysed and the temperature 

occurences were put in the histogram (figure 83). The temperatures were then used 

to devlop the CWSI for the field plots (figure 84) for each flight using each method 
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(baseline, empirical and adaptive). The data was then used to display the  the spatial 

canopy temerature avross the farm (figures 85-87) and for the CWSI across the 

paddock (figure 88). 

6.3 Results 
From the aerial pasture canopy temperature data the CWSI were generated from 

the baselines, empirically and using the adaptive approach. 

6.3.1 Baseline approach 
 

The baselines were generated as part of the fieldwork, with full details in Chapter 

5. The CWSIs generated for each flight using the baselines approach are shown in 

Table 6. These baselines were developed from the canopy temperatures from the 

stressed and non stressed field plots. 

 

TABLE 5. CWSI GENERATED USING BASELINES 

 

 

6.3.2 Empirical Approach 
 

The maximum and minimum canopy temperatures could be measured for the 

stressed and non-stressed plots for the three flights. The canopy temperature from 

the stressed plot (maximum temperature) and the canopy temperature from the 

non-stressed plot (minimum temperature) were used to develop the empirical 

CWSI for each flight, and the CWSI results are shown in Table 7. The CWSI index 

ranges from 0 (stressed) to 1 (non stressed) (Jackson et al. 1981), which can be seen 

in the stressed and non stressed results obtained (Table 2).  As the stressed and non 

stressed canopy temperatures from each flight are used to develop the empirical 

CWSI, these canopy temperatures represent the highest and lowest canopy 

temperatures and therefore calculate into the maximum and minimium CWSI. For 

the canopy temperatures between the maximum and minimum canopy 

temperatures, these will range between  0 and 1 on the CWSI.   

TABLE 6. MAXIMUM AND MINIMUM CANOPY TEMPERATURES FOR THE STRESSED AND NON-
STRESSED PLOTS AND EMPIRICALLY DEVELOPED CWSI. 

 Non Stressed 

canopy 

temperature ℃ 

Stressed canopy 

temperature ℃ 

Non-

Stressed 

CWSI 

Stressed 

CWSI 

Flight 1 (14/12/2020) 35.85 40.85 0 1 

Flight 2 (29/11/2021) 26.85 29.85 0 1 

Flight 3 (14/12/2021) 25.85 26.85 0 1 

 

Flight 1 Flight 2 Flight 3

CWSI Non Stressed 0.15 0.08 0.12

CWSI Stressed 0.48 0.32 0.21
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6.3.3 Adaptive Approach 
 

In Figure 82, “Area A”, shows the area used to determine the canopy temperature 

for the CWSI histogram method. The histogram results for “Area A” for each flight 

are shown in Figure 83. 

 

 

FIGURE 83. FREQUENCY DISTRIBUTION HISTOGRAM OF FIELD CANOPY TEMPERATURES (℃) 

OF AREA IN FIGURE 6 FOR EACH FLIGHT. 

 

In Table 8 are the CWSI results for the adaptive approach.The maxnimum (stressed) 

and minimum (non stressed) temperatures (℃) used for the CWSI were obtained 

from the histograms (Figure 83) for each flight and then the CWSI was calcualted 

for the stressed and non-stressed field plots. 

TABLE 7. CWSI RESULTS FOR THE ADAPTIVE APPROACH 

 Non Stressed 

canopy 

temperature ℃ 

(from histogram) 

Stressed canopy 

temperature ℃ 

(from Histogram) 

Non-

Stressed 

CWSI 

Stressed 

CWSI 

Flight 1 (14/12/2020) 32.85 46.85 0.21 0.57 

Flight 2 (29/11/2021) 18.85 36.80 0.45 0.61 

Flight 3 (14/12/2021) 22.85 34.83 0.25 0.33 

 

6.3.4 Comparison of the CWSI’s generated  
 

The CWSIs could be developed for all the methods (baseline, empirical and 

adaptive). Figure 84 presents the results using the different methods to derive the 
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CWSI on the field trial plots (stressed and non-stressed). The CWSI results differ for 

the differing approaches for the two areas (stressed and non-stressed plots); 

however, the CWSI results still demonstrate areas of high to low water stress. The 

empirical results are always going to have a CWSI upper and lower limits of 1 – 0 

and rely on the canopy temerature of the stressed and non stressed plot on the day. 

The adaptive approach will differ, depending on the pasture canopy temperatures 

and the variation in the pastures water stress status across the paddock on the day. 

For flight 1 the ambient temperature was significantly higher than for flight 2 and 

flight 3, and this is seen in the data with the CWSI higher for flight 1 than for flights 

2 and 3.      

 

 

 

FIGURE 84. COMPARING THE THREE FLIGHTS’ (BASELINE, EMPIRICAL AND ADAPTIVE) 

GENERATED CWSI RESULTS. (A) FLIGHT 1, (B) FLIGHT 2, (C) FLIGHT 3 OF THE FIELD PLOTS. 
(NOTE: EMPIRICAL WILL ALWAYS RESULT IN A CWSI OF 0 TO 1.) 
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6.3.5 CWSI of paddocks 
 

Figures 85-87 shows the canopy temperatures collected remotely during the flights, 

showing the variation in canopy temperature across the paddocks. 

 

FIGURE 85. PASTURE CANOPY TEMPERATURES (℃) WERE OBTAINED REMOTELY (BY PLANE) 

ON 14/12/2020. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER AREA 

(PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY.  

 

 

Stressed 

100 m 

100 m 

Non-Stressed 

Stressed 

Non-Stressed 
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FIGURE 86. PASTURE CANOPY TEMPERATURES (DEG C) WERE OBTAINED REMOTELY (BY 

PLANE) ON 29/11/2021. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER 

AREA (PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY. 

 

 

FIGURE 87. PASTURE CANOPY TEMPERATURES (DEG C) WERE OBTAINED REMOTELY (BY 

PLANE) ON 14/12/2021. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER 

AREA (PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY. 

 

Figure 88 shows the CWSI calculated by the different approaches spatially for the 

data for the first flight (14/12/2020).  
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FIGURE 88. ANALYSIS OF THE CWSI RANGE FOR FLIGHT 1 OVER SEVERAL PADDOCKS, USING 

THE (A) BASELINE, (B) EMPIRICAL AND (C) ADAPTIVE CWSI METHODS. 

 

Analysis of the % CWSI range for (a) flight 1 (14/12/2020) and (b) flight 2 

(29//11/2021) using the baseline, empirical and adaptive CWSI methods (Figure 

88). The ambient temperature on the day of flight 1 was 33 ℃ compared to 22 ℃ 

for flight 2. As a result of the higher ambient temperartures during flight 1 the 

pasture canopy temperatures were higher and as seen in figure 88 the resultant 

CWSI’s were higher than flight 2. Examining the average CWSI’s for each method 

(figure 89), the empirical and baseline method showed a clealy higher average CWSI 

for flight 1 than flight 2. The average CWSI using the adaptive approach was similar 

for flight 1 and flight 2. 
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FIGURE 89. ANALYSIS OF THE % CWSI RANGE FOR (A) FLIGHT 1 (14/12/2020) AND (B) 

FLIGHT 2 (29/11/2021) USING THE BASELINE, EMPIRICAL AND ADAPTIVE CWSI METHODS. 

 

The area average CWSI for flight 1 (14/12/2020) and flight 2 (29/11/2021) for the 

baseline, empirical and adaptive CWSI methods is shown in Figure 90. 

a 

b 
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FIGURE 90. AVERAGE CWSI FOR (A) FLIGHT 1  (B) FLIGHT 2, USING THE DIFFERENT CWSI 

CALCULATION METHODS. 

 

6.4 Discussion 
Using the CWSI calculation methods (baseline-derived, empirical, and adaptive), 

the CWSI for the plot areas and spatially across the paddocks were calculated. All 

methods used a form of stressed and non-stressed plant canopy temperature to 

calculate the CWSI but these temperatures were derived in different ways. The 

baseline approach was derived from collecting canopy temperatures of stressed 

and non-stressed plants over time to develop the baselines as undertaken in 

chapter 4 and 5. The empirical CWSI approach only uses two canopy temperatures 

on the day of sampling, one from a stressed plant and one from a non-stressed plant. 

In using the empirical approach, we must ensure the two points selected for the 

CWSI accurately reflect an example of a stressed and a non-stressed pasture. The 

adaptive CWSI approach uses more data points (pixels) from a larger area to 

determine the maximum and minimum pasture canopy temperatures across the 

target areas. Before calculating the adaptive CWSI non pasture canopy 

temperatures need to be removed (bare ground, roads, trees, water bodies, etc) as 

temperatures from these areas can vary considerably from pasture canopy 

a 

b 
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temperatures and so affect the CWSI considerably. For the adaptive CWSI to work 

well, there needs to be a representative stressed and non-stressed plant in the field 

of view to produce an accurate CWSI, which may not always be possible. 

In the data collected on 14/12/2020, due to the time of year (early summer) and 

nature of the season, there was a lot of canopy temperature variation across the 

paddock, due to some pasture experiencing water stress, other pastures starting to 

undertake senescence, whilst other pastures were still growing. As a result, there 

was a large amount of canopy temperature variation across the paddocks. The 

ambient temperature was 33℃ on the day (14/12/2020). However in the data 

collected in the second (29/11/2021) and third (14/12/2021) flights, the ambient 

temperature on the day of the flights was lower, 22℃ and 20℃ respectively, and 

the field conditions leading up to the flight had not been as dry, resulting in more 

plants that were not under water stress and therefore resulted in lower canopy 

temperatures than the first flight which can be seen in figure 87. The average CWSI 

temperatures for flight 1 were higher than the average temperatures for flight 2 

(Figure 90). Similarly, looking at the % CWSI ranges (Figure 89), flight 2 had more 

of the results in the lower % CWSI ranges. 

The baseline and empirical CWSI (using a fully stressed plant) will give a more 
accurate result for plant water stress, and the adaptive CWSI will be less accurate; 
however, the adaptive CWSI will still highlight areas of plant water stress in the field 
over a broad area (farm scale). The adaptive CWSI can provide a faster (although 
less accurate) way to identify plant water stress in the field, although the extent of 
the water stress will not be known as the CWSI calculation does not necessarily 
include a stressed and non-stressed canopy temperature like the baseline and 
empirical CWSI approach. The adaptive approach may not be accurate enough to 
set irrigation limits. However, it may assist users in identifying which parts of their 
paddocks are under stress compared to the pastures around them, which could then 
be visually inspected in the field. The adaptive approach would be suitable for using 
for irrigation controls if a stressed and non stressed plant was within the area 
where the data is collected for the histogram.  
 
The baseline and empirical CWSI method could be used in the field for irrigation 
control.  The baseline approach relies on many months of collecting field 
temperature data to generate the baselines, incorporating a range of temperatures 
and seasons in the final baseline whereas the other two methods (empirical and 
adaptive) rely only on collecting plant canopy temperatures on the day of analysis. 
Whilst the empirical approach relies on having a stressed and non stressed plant 
for the calcultion, its not always possible in the field to have a fully stressed plant. 
In this study we chose not to use a rain out shelter as introducing a rainout shelter 
introduces other variables that can affect the microclimate and therefore the plants 
water stressed state and would also have added complications for aerial data 
gathering, effectively blocking the pasture from the FLIR camera mounted to the 
plane. As a result, our stressed plant although stressed, may not have been fully 
stressed. 
 
The main finding was that the CWSI can be generated using the baseline, empirical 

and adaptive approaches. If the adaptive CWSI is undertaken when there is a range 
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of plant water stress occurring in a paddock, then the resultant adaptive CWSI is 

closer to the baseline and empirical CWSI.  

This work expands on the work by Park et al. (2017) and demonstrates that an 

adaptive CWSI could be developed. Using the adaptive approach with pastures was 

different to how Park et al. (2017) initially used the adaptive approach. This work, 

using the adaptive approach demonstrated that the adaptive aproach can add value 

in identfying plant water stress spatially, however its not always accurate enough 

to use for irrigation controls if stressed and non stressed plants are not used. 

The shortcomings of using the adaptive CWSI is that the accuracy can be an issue if 

no stressed or non-stressed plant is present. Although it can be quicker than 

developing baselines, the process of data gathering and analyse takes time. The user 

needs access to a current  thermal image area of the area in question. They then 

need access to geospatial software, and then they need to sort the canopy 

temperatures and develop the histogram. The shortcomings are that a stressed and 

non-stressed plant is still required to generate an accurate empirical and adaptive 

CWSI. The stressed plant can be similar to the ones in this experiment, where they 

were not watered, or similar to other studies (Park et al. 2017), where irrigation is 

stopped for several days before measuring the CWSI. Similarly, a well-watered plant 

also needs to be used, which could be undertaken similarly to this experiment 

where it receives specific watering in the field or similar to Park et al. (2017), where 

the plants receive 100% irrigation treatment. 

There is minimal literature using an adaptive CWSI. Previous work using a form of 

adaptive CWSI was undertaken by Park et al. (2017, 2021) on nectarines and 

peaches. The method used to develop the the baseline is similar to what has been 

documented by Idso and used extensively since the 1980’s. The adaptive CWSI 

approach is relatively new, with Park et al. (2017) recently completing work on a 

similar approach.  

One implication of using the CWSI in this region (South of the Great Dividing Range) 

is the occurrence of clouds throughout the year, making it challenging to collect data 

to develop and test the CWSI. A lot of the early work on developing the CWSI was 

done in the USA by Idso in Arizona, North Dakota, Nebraska, Kansas, etc, in arid 

environments with limited clouds. Idso (1981) mentions that his work was 

undertaken with clear skies and some thin cirrus conditions. He further mentions 

that the relationship begins to fall down for other types of cloudiness, presumably 

due to changing illumination effects on stomates (Idso, 1981). Consideration needs 

to be given to the usefulness of using the empirical and adaptive CWSI in non-arid 

regions. 

Another difficulty in using the CWSI in grazed pastures is the variability introduced 

by cattle grazing practices, where a pasture may be long one day and shorter a few 

days after grazing. 

Relying solely on spatial images, such as Figure 88, can make it challenging to 

quickly identify the differences visually between the CWSI methods. However, 

sorting the data into CWSI ranges and averages, such as in Figures 89 and 90, can 
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aid in evaluating the spatial data and make it easier to make management decisions 

from the data. 

6.5 Conclusion  
Developing the CWSI using the baseline, empirical and adaptive approach was 

carried out and assessed. The three approaches identified areas across the paddock 

that ranged from stressed to non-stressed. Whilst more confidence is given to the 

baseline and empirical CWSI approach as it inherently includes stressed and non-

stressed pasture canopy temperatures within the formulae calculation, using the 

adaptive CWSI approach was still able to identify a range of stressed to non-stressed 

plants across the field. Once the baselines are developed, calculating the CWSI using 

the baseline approach is quick, only needing the plant canopy and air temperatures. 

Using the empirical and adaptive approach in the field requires a lot more data 

collection, synthesis and calculation. 
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7 General Discussion 

7.1 Introduction 
With improved approaches to monitor plant water stress in pastures together with 

improved pasture forecasting, primary producers can manage the risks associated 

with climate variability better. This work examined the use of the SGS biophysical 

model to assist farmers in looking ahead at pasture forecasts in the weeks and 

months ahead and at how the CWSI can assist farmers in monitoring the water 

stress of their pastures in the field. This study involved a combination of modelling 

and field work in pasture systems in medium-high rainfall zones of Southeast 

Australia. 

7.2 Aims 
This research aimed to assess the usefulness of soil water content (SWC) as a 

predictor of pasture growth at three sites in Victoria, Australia, across different 

climatic conditions and pasture types. This was done using The Sustainable Grazing 

Systems (SGS) pasture model to predict monthly pasture growth rates based on 

historically dry (10th percentile), moderate (50th percentile) or wet (90th 

percentile) Soil Water Content (SWC), simulated using local climate data from 

1990-2020. Results were presented as the probability that pasture growth will be 

in the lowest, middle, or top tercile (third) of expected monthly growth rates.   

Another aim was to develop the CWSI for two pasture types (phalaris-based and 

annual ryegrass) in Southeast Australia by measuring the canopy temperature 

differentials between the stressed and non-stressed pastures to develop their 

baselines and the CWSI. Another aim was to compare methods for calculating the 

CWSI, using an adaptive, empirical and baseline approach. 

7.3 Key findings and original contributions  
Chapter 3 assessed the usefulness of SWC to predict pasture growth for a one-to-

three-month period, using the SGS Pasture Model at three sites across central and 

southwest Victoria, Australia. The study consisted of two main components: to 

validate the simulated SWC against measured data in the field and to predict 

monthly pasture growth rates based on historically dry (10th percentile), moderate 

(50th percentile) or wet (90th percentile) SWC on the first day of each month. The 

validation demonstrated that the modelled SWC from the SGS model was very 

similar to the actual SWC for the three sites. Whilst there are some variations 

between the two data sets, they tend to follow a similar drying down and wetting 

up sequence. The key questions were: Is soil water content (SWC) a useful predictor 

of pasture growth? If so, what are its strengths and weaknesses? 

The findings demonstrated that pasture growth is most variable in Autumn and 

Spring but less variable in Winter when pasture growth is typically limited by 

temperature. The key findings of this study are that during the main growth 

periods, predictions of SWC are most useful where variation in pasture growth is 

high and affected by the initial soil water content. Predictions for lucerne showed a 

large variation in summer pasture growth predictions, depending on the starting 
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SWC. For Baynton, the forecasting skill was in October (Spring) and April and May 

(Autumn), at Pigeon Ponds it was in October and November (Spring) and April and 

May (Autumn) whilst at Dartmoor the forecasting skill was January through to April 

(Summer and Autumn). For example, considering Baynton in April, if the SWC is dry 

(40 mm) then this could lead to 21kg DM/ha, compared to a 33kg DM/ha if the SWC 

is wet. Over a 4-month period (April to July) this would translate to an average 

2,735kg DM/ha for a wet SWC and 2,272kg DM/ha for a dry SWC. This varying 

pasture production as a result of the initial SWC can be large over a broad farm, and 

especially useful where stock is relying on only field grown pasture fodder for 

growth.  

The more forewarning a farmer has, the more time is available to react and plan for 

a changing environment. If the farmer has site-specific tools that utilise historical 

local data, then they may have more confidence in the output being more relevant 

for their scenario. This modelling exercise using historical weather data and the 

farmer's soil moisture level at the start of each month means that predictions of 

pasture growth rates in the months ahead are more tailored and site-specific than 

modelling that is more generic and regional. These site-specific 'heads up' pasture 

growth forecasts can give the farmer more time to prepare for the upcoming season 

and give them more time to align the fodder budget with the expected pasture 

growth forecast, assisting farmers manage the risks of a variable climate. The 

results show that skill in forecasting pasture growth is highest in the first month of 

prediction and then declines over time (+1month, +2 month, +3 month), therefore 

more emphasis should be put on the short term predictions (Prediction month) and 

less emphasis should be on the longer term predictions, where intervening weather 

events may influence these longer term predictions. 

This research also expanded on pasture growth predictions using the SGS model 

(Cullen et al. 2012) and compared different SWC at the start of each month to 

calculate pasture growth predictions for three sites around regional Victoria. The 

work demonstrates that SWC can be used to improve the prediction of pasture growth 

rates at these times of the year. The predicted pasture output tables could display 

tercile probabilities for the month of prediction and the following three months, 

given a dry, medium, or wet SWC at the start of the month. Modelling tools that can 

assist with predicting how much pasture is available to farmers can assist in 

managing risk in their agricultural business. Knowing how much fodder is available 

in the months ahead can affect livestock numbers and a business's economics. With 

increasing climate variability and global warming occurring, it would be interesting 

to see if and, if so, how much the winter pasture growth patterns may change over 

time. 

Whilst the SGS model is a tool that can be used to predict future pasture production, 

one limitation is that setting up and running the SGS model is time-consuming and 

would be difficult for first-time users. Another limitation is that the output data 

from the SGS model also requires interpretation to understand what it is predicting.  

Chapter 4 involved establishing water stressed (rainfed) and non-stressed 

(irrigated) pasture field plots and recording the pasture canopy temperature and 

VPD to develop the baselines so the CWSI could be calculated. Once the CWSI was 
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established, three flights were also undertaken to capture the pasture's canopy 

temperature remotely across the paddocks to see if the CWSI could be recorded 

spatially. The key questions were: Can the CWSI and baselines be developed for a 

pasture species in southeast Australia? If so, what are the limitations of using the 

CWSI and baselines on mixed pastures in southeast Australia? Can the CWSI and 

baselines be developed by gathering canopy temperatures remotely by plane? Can 

this data be used spatially to project the CWSI across a paddock or property?  

The findings and new contributions to science demonstrated that the field 

experiment enabled the capturing of the pasture's canopy temperatures for the 

stressed and non-stressed plots, which could then be used to develop the baselines 

for pastures (figure 91). It was possible to project the CWSI baselines across the 

paddock/farm spatially. This adds to the work on developing baselines for alfalfa, 

tomato, sunflower, cotton, cowpeas, etc undertaken by Idso et al. (1982) and others, 

compiled by Maes et al. (2012). The phalaris and annual ryegrass non stressed 

baselines (figure 91) are somewhat similar and different. There is a pronounced 

difference between the stressed baselines, with the stressed baseline for the 

phalaris pasture higher than the annual rye grass. The differences in the baselines 

are due to two different species being measured, which can differ in transpiration 

response to environmental constraints (Gonzalez – Dugo et al 2022). The data to 

develop the pasture baselines was collected over a longer time interval (October 

2020 - January 2022) than the data to collect the annual rye grass baseline 

(18/10/2021 – 1/2/2022) which may also affect the baselines. Future work 

gathering data over a longer time period would be an interesting addition to this 

work, to determine if the longer data gathering time frame would affect the 

baselines. 

 

FIGURE 91. COMPARING PASTURE AND ANNUAL RYEGRASS STRESSED AND NON-STRESSED 

BASELINES DEVELOPED IN SE AUSTRALIA AS PART OF THE FIELD WORK UNDERTAKEN FOR 

THIS THESIS. 
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FIGURE 92. COMPARING THE PASTURE AND ANNUAL RYEGRASS NON-STRESSED BASELINES 

DEVELOPED AS PART OF THIS THESIS AGAINST A NUMBER OF OTHER PLANTS . 

 

The thermal canopy data collected aerially could also be used to develop the CWSI 

over the paddock and farm scale. The applicability of these results showed that 

using the CWSI in pastures is a valuable tool for assessing the variability of crop 

water stress over pasture paddocks. Areas of stressed to non stressed pastures 

could be observed in the spatial images, clearly identifying the variance in plant 

water stress across the paddock. 

Chapter 5, like Chapter 4, involved setting up stressed and non-stressed field plots 

and recording the annual ryegrasses canopy temperature and VPD over time to 

develop the baselines (Figure 91) so the CWSI for annual ryegrass could be 

calculated. The baselines vary from one plant to another as demonstrated in Figure 

92, due to a number of factors including varying leaf stomatal densities between 

species (Costa et al. 2012), different hormonal regulation of stomata (Schultz 2003), 

the size of the canopy leading to different velocities in dehydration (Rogiers et al. 

2009), etc.   

It was possible to remotely record canopy temperature differences between 

stressed and non-stressed annual ryegrass plants in the field. From the temperature 

differentials in the canopy temperatures of the stressed and non-stressed annual 
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ryegrass pastures, it was possible to develop the stressed and non-stressed 

baselines and resulting CWSI. The result was the development of baselines for 

annual ryegrass pastures.  

Using the CWSI results can potentially assist farmers in managing fodder 

production. Knowing the state of the pasture’s water stress at any one time gives 

managers time to react to changes in pasture growth. If a pasture is getting 

increasingly stressed and no irrigation is possible, farmers may preferentially graze 

it before it deteriorates further or cut it for fodder to conserve some of the quality. 

Better monitoring of the plant’s water stress would improve pasture utilisation and 

resource management. 

It was possible, although difficult, to use the CWSI in a non-arid region. Using the 

CWSI with a drone to collect the canopy’s thermal temperatures would help the 

farmer be quick and nimble to collect the thermal temperatures when clouds are 

absent. With drones becoming cheaper and easier to use, as well as the thermal 

cameras coming down in cost, collecting actual data at the farm level is more 

realistic than ever.  

As these field trials were conducted in the field, without a rainout shelter, it was not 

possible to fully limit rainfall falling on the stressed field plot, therefore the stressed 

plants may not have been fully stressed. A rainout shelter could be used, however 

this addition may affect the pastures growth by altering the microclimate and 

therefore add other variables. Not having a ‘fully’ stressed plant could affect the 

CWSI calculations by potentially having a lower stressed baseline than a fully 

stressed pasture. 

This research contributes towards the remote gathering and use of the CWSI in 

pastures in Southeast Australia. The resulting baselines for annual ryegrass and 

mixed species have been developed, and further work in this field could result in 

further baselines for pastures in different climates and micro climates. This work 

demonstrates that the CWSI can work on pastures, giving farmers a new tool to 

monitor their pastures. The earlier a farmer knows the condition of their pasture is 

deteriorating, the more time they have to react. If the farmers first notice that there 

is water stress in their pastures by the visible presence of senescence or wilting, 

then the window is small to react to the situation by cutting hay, irrigating, grazing, 

etc. However, using the CWSI, farmers can see the deterioration of their pastures 

prior to senescing. The CWSI also allows the farmer to see which plants are more 

stressed than others, therefore giving the farmer the ability to target any remedial 

action they take to the affected pastures.  

Prior to this work, no research was found using the CWSI in the Australian grazing 

pasture context. As access to drones and thermal cameras increases, farmers can 

undertake their analyses, developing the CWSI for their pastures. Similarly, as the 

number of satellites increases (O’Reilly et al. 2021), with more satellites with 

thermal infra red cameras attached (Stavros et al. 2017), farmers can access the 

satellites to retrieve the thermal data. Along with the increasing number of 

satellites, the return time of satellites is being reduced, so instead of waiting a week 

for a satellite to return to an area, the return times are getting smaller and smaller. 

Being able to compare the CWSI of the pasture more regularly allows the farmers 
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to pick up changes quicker than if they must wait for a week to get the subsequent 

data from a satellite, by which time the pasture may have deteriorated significantly.  

Chapter 6 compares the ‘baseline’ calculated CWSI (refer chapter 4) against the 

CWSI developed ‘empirically’ and an ‘adaptive’ CWSI method similar to the one Park 

et al. (2017) used on pasture species in Southeast Australia. The key questions 

were: How comparable are the three CWSI methods (baseline, empirical, and 

adaptive), and how comparable is the adaptive method as a method that does not 

use a stressed and non-stressed plant to the other two methods? Are they 

interchangeable? What are the advantages and disadvantages of each method? 

While each method gave a resultant CWSI, the baseline approach has been 

calculated by collecting data over a more extended period to generate the pasture’s 

response to different climatic conditions. The adaptive approach gave insight into 

relative stress across a paddock; however, as it is unknown if a stressed or non-

stressed plant is in the area used to develop the CWSI, it is unreliable as an accurate 

measure of the CWSI. Whilst the baseline method could be considered more robust, 

the other methods can provide insights to the farmer without additional 

information. For example, using the adaptive approach can still assist in developing 

a spatial image of the pasture, which gives the farmer an idea of the relative stress 

variation across a paddock or area, with the ability to pinpoint the farmer to areas 

of high stress. If the farmer wanted to use the CWSI results to set their irrigation, 

then the baseline approach, if developed for the local environment, should be 

suitable, whereas the adaptive approach would be unsuitable.  

This work also shows the application of the CWSI in pastures of mixed species in 

mid to high-rainfall zones. Prior to this research, most work has been undertaken 

using the CWSI in more arable areas on crops and orchards. However, this work 

involved the use of the CWSI in a wetter environment and applied to pastures, 

demonstrating that the CWSI could be used as a new tool for Australian farms with 

regards to identifying plant water stress in pastures. Using CWSI in medium to high 

rainfall zones can present issues with data handling and gathering. Due to the 

increased amount of cloud compared to arid zones which results in extra data 

sorting before calculating baselines and the CWSI. The collecting, analysing and 

developing of the CWSI is also time-consuming, limiting its use in the present format 

for easy use on the farm.  

This research examined gathering the CWSI data remotely using planes and infield 

canopy sensors. The use of planes and satellites is not always practical and cost-

effective for primary producers, furthermore, there are limitations related to the 

need to collect flight/satellite data on a clear day (minimal cloud cover). Collecting 

the data remotely by satellite and plane or using the canopy sensors generates a lot 

of data, which must be filtered and sorted to meet the required output.  

7.4 Future Research 
 

7.4.1 Pasture Growth Forecasting 
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Further work to improve the pasture predictions could also involve combining 

seasonal forecasts into the SGS pasture model instead of relying on historical 

climate data. Seasonal forecasts can provide long range forecasts on rainfall and 

temperatures expected in the next 1 to 3 months. Farming forecaster is one tool that 

is starting to use current soil moisture to provide nowcasts (real time conditions) 

forecasts from 1 – 4 months (Mitchell et al. 2022). McDonnell et al. 2019 has used 

short term weather forecasts (up to ten days in advance) to predict short term grass 

growth in Ireland. Further work also needs to be conducted to investigate if farmers 

regard this work and the form it is presented as helpful in improving their risk 

management on their farms. 

7.4.2 CWSI/Baselines  
 

A broad range of different pasture species and combinations are used across SE 

Australia. This research highlights that different pasture species will respond 

differently and have different baselines. There is a need to develop baselines for 

different pasture types and regions. Future work could be undertaken on 

developing baselines for pastures, clover dominant pastures, annual and perennial 

ryegrass pastures at different locations and throughout the year, including 

examining baselines at different stages of growth throughout the season – 

(Vegetative, elongation and reproductive). Bellvert et al. (2015) and Idso (1982) 

found that non water stressed baselines differed depending on phenological stage 

and variety. How do these growth stages affect the pasture’s canopy temperatures 

and resulting baselines? 

Further work could also examine the use of the baselines in developing irrigation 
scheduling, similar to work undertaken by Kumar et al. (2019) on using the CWSI 
for scheduling irrigation for Indian Mustard, where they “postulate that irrigation 
should be provided when the CWSI value exceeds 0.4”. Finding a CWSI value 
whereby irrigation could be initiated would assist farmers who have access to 
irrigation, although considerations would need to be considered that the baseline 
used is suitable for the location. Alternatively, a baseline could be calculated for the 
particular location and tests undertaken to determine the appropriate CWSI to 
initiate irrigation for the particular location. 
 
Further work could also involve the use of rainout shelter to limit any rainfall falling 
on the stressed plot in order to determine how no rainfall water affects the stressed 
baseline. This work would also need to consider if the use of a rainout shelter 
introduces other variables that influence the canopy temperature when calculating 
the stressed baseline, such as creating a microclimate limiting wind and solar 
radiation. Alternatively, a drone could be used to collect the thermal data, avoiding 
the long delay in getting the plane in the air. The drone would add a nimbleness, 
allowing canopy temperatures to quickly be measured on days of intermittent cloud 
cover. 
 

Further work may combine the above-mentioned approaches for a more automated 

and accurate forecast. There is potential to test the use of canopy temperature 

sensors permanently set up in the field, with an algorithm that only computes data 

between 12-1 daily and filters for clouds, wind, rain, and other environmental 
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factors affecting the CWSI could be tested. Mohammed et al 2022 discusses using 

neural networks and the CWSI to develop an ‘intelligent and automatic’ system for 

irrigation.  This canopy data could be fed into the SGS model to validate and improve 

the modelling pasture forecasts in real time.  

7.5 Conclusions 
In conclusion, the findings from this research can assist farmers with managing 

risks associated with climate variability by assisting them to improve pasture 

growth predictions in the months ahead using local, current and historical data. The 

predicted pasture output tables were able to display tercile probabilities for the 

month of prediction and the following three months given a dry, medium, or wet 

SWC at the start of the month, with the ability to give farmers a predicted pasture 

growth rate determined by their actual SWC, assisting farmers in estimating future 

fodder production and therefore stock health.  

The findings from the research also demonstrates that the CWSI can be used on 

pastures, with stressed and non-stressed baselines being developed for pastures 

and annual ryegrass in Southeast Australia and also how the CWSI could be used 

spatially, across a paddock, on pastures in Southeast Australia. These results 

showed that using the CWSI in pastures is a valuable tool for assessing the 

variability of crop water stress over pasture paddocks/farms. The research also 

showed that there are several ways for using the CWSI, with the empirical approach 

being more reliable than the adaptive approach in this scenario. Using the CWSI on 

pastures in the Australian farming context could aid in increasing fodder 

production if irrigation water is available to water stressed pastures, applying 

irrigation at a predetermined CWSI threshold.  
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