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Abstract

Maximising the availability and use of grazed pasture is extremely important for
grazing systems because it is usually the cheapest feed source for livestock. With
increasing risks caused by variability in climate, precision agriculture (PA)
technologies provide opportunities to routinely measure the current state of their
pasture and to predict future pasture growth which may assist in risk management,
but there has been relatively little research on PA application in pasture systems.

Some Australian farmers are utilising PA by using soil moisture probes to monitor
soil water content (SWC) to assist in acquiring an indication of seasonal conditions.
Farmers could utilise this knowledge of SWC to predict pasture growth in the weeks
and months ahead. One pasture model being used to estimate pasture growth rates
is the Sustainable Grazing Systems (SGS) pasture model which incorporates the
farms soil moisture content and historical weather records to estimate pasture
growth rates over the months ahead. This work explored the potential to link infield
measurements of soil water content to pasture growth models, in order to predict
future pasture growth. A study was undertaken to determine the usefulness of SWC
as a predictor of pasture growth at three sites (Pigeon Ponds, Baynton and
Dartmoor) in Victoria, Australia, with different climatic conditions and pasture

types.

The SGS pasture model was used to predict monthly pasture growth rates based on
historically dry (10th percentile), moderate (50th percentile) or wet (90th
percentile) SWC, simulated using local climate data from 1990-2020. Results were
presented as the probability that pasture growth will be in the lowest, middle or top
tercile (third) of expected growth rates for the month.

The SGS modelling work demonstrated that the pasture growth forecast skill was
mostly demonstrated at intervals within the main growing season with variation
between each site. For Baynton, the forecasting skill was highest in October (Spring)
and April and May (Autumn), at Pigeon Ponds it was in October and November
(Spring) and April and May (Autumn) whilst at Dartmoor the forecasting skill was
January through to April (Summer and Autumn).

In horticulture and other broadacre cropping PA is used to measure plant water
stress using canopy temperatures. Numerous studies have been undertaken using
stressed and non-stressed plants to develop the Crop Water Stress Index (CWSI)
and accompanying baselines in horticulture and broadacre cropping over the years.
Limited work has been undertaken on using the CWSI and associated baselines for
annual ryegrass and pastures with mixed species in southeast Australia.

We developed field experiments set up on a commercial farm in Murroon, in the
Otway’s (38°27’S. 143°50’S, 273m alt.) in southwest Victoria which ran from
October 2020 to January 2022. Two treatment plots were set up in the paddock: a
well-watered (non-stressed) and a rainfall-only (stressed) plot. The pastures were
predominantly phalaris (Phalaris aquatica L) with a small amount of clover
(Trifolium subterraneum L) and dandelion (Taraxacum officinalis) weeds. A
permanent thermal canopy sensor was installed in each plot, along with soil
moisture probes and a weather station.



Field plots were set up to simulate a stressed and non stressed pasture, from which
data was collected to develop the stressed and non stressed baselines. Canopy
temperatures were collected remotely, using infield canopy temperature sensors
and utilising a flir thermal camera from a plane, to examine the use of CWSI
spatially, at the plot and paddock scale. The field experiments showed that the
baselines could be developed in the Australian pasture context, with clear canopy
temperature differentials observed between stressed and non-stressed field plots
during stressed conditions which made it possible to then calculate the CWSI. This
work also showed that the CWSI could be applied spatially for pastures, highlighting
areas of stressed and non stressed pastures across the paddock and farm scale. A
comparison between the baselines, empirical and adaptive CWSI was undertaken,
with the baseline appearing more robust and useful as a method to determine the
requirements for irrigation.

Future research should aim to expand the available CWSI baselines for pastures in
southeast Australia and examine how the phenological stages of pasture growth
may affect the baselines. SWC has utility in predicting pasture production, which
varies from site to site, but this predictive power could be further enhanced by
integrating seasonal climate forecasts.

Effective use of PA to monitor plant water stress by using the CWSI and improving
accuracy in predicting pasture production can both assist with improving fodder
management, quality and quantity in the weeks and months ahead, which is critical
in an increasingly variable climate.
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1 Introduction

Use of canopy temperature and biophysical modelling to improve
management of climate variability in grazed pastures.

Background

Field-grown pasture is the primary and cheapest feedstock for cattle and sheep in
southern Australia (Perera et al. 2020, Chapman et al. 2009) and many other
regions worldwide. Climate, particularly rainfall variability, is one of the significant
sources of intra and inter-annual variation in pasture growth (Chapman et al. 2009).
In the temperate and Mediterranean climates of southern Australia, pasture growth
is primarily limited by water availability from mid-late spring to the time of the
opening rains in autumn, while appropriate spring and autumn temperatures,
nutrients, disease and other management practices (overgrazing) can also affect
pasture growth. If the farmer can more accurately predict the fodder available in
their paddocks in the coming weeks and months, they can improve their resource
management and produce more fodder with fewer resources. The first part of this
thesis examines the ability to model soil water content (SWC) to predict pasture
growth rates in pastures in Victoria.

The second related topic involved using precision agriculture and remote sensing
to remotely monitor plant water stress in pastures using canopy temperature
sensors and generate stressed and non-stressed baselines for a CWSI (Crop Water
Stress Index) for pastures. The CWSI relies on recording the canopy temperatures
of the plants to identify stressed and non-stressed plants. Water deficits occur in
plants when evaporative demand exceeds the supply of water in the soil (Slatyer,
1967). When there is inadequate water for the plant, the water stress causes partial
stomatal closure and reduction in transpiration rates, and the reduced evaporative
cooling raises the canopy temperature in relation to the ambient temperature
(Jones, 1999). This canopy temperature difference can be measured and used to
identify stressed and non-stressed plants in a plot or at a broader scale, such as
across a paddock or farm. Using the CWSI can assist farmers in quickly identifying
plant water stress over broad areas such as a paddock, vineyard or orchard, using
the canopy temperature to measure the plants' water stress status. The CWSI has
been extensively used in horticultural and other crops internationally (Idso 1982)
and in parts of Australia (Park, et al. 2015) to measure the canopy temperature
difference between a stressed and non-stressed plants; however, more work needs
to be done on using the CWSI on pastures globally.

Literature review overview

Livestock producers in SE Australia experience fluctuations in pasture production
within a season and from season to season and managing the pasture production
and undertaking feedstock budgeting from month to month is critical to animal
health and for the economic performance of farmers. The uneven pasture
production is primarily governed by climate variability, ultimately affecting soil
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moisture (Perera et al. 2020). In SE Australia, pasture production and quality are
largely driven by the amount and timing of rainfall, with the peak pasture growth
period being in the spring season for temperate pasture species (Chapman et al.
(2009). Phalaris (Phalaris aquatica), an important perennial grass in south-eastern
Australia due to its high productivity (Anderson et al. 1999; Reed et al. 2008a) and
its ability to survive drought (Robinson et al. 1966, Hutchinson, 1979) and its
drought tolerance is becoming more critical as summer droughts become more
frequent and more severe (Kiem et al. 2016). Whilst phalaris is seen as an important
pasture in the Australian grazing context, it can be affected by stresses related to
climate, soil and grazing pressure, which can affect its persistence (Culvenor et al.
2014).

Biophysical agricultural models can simulate biological systems, assisting farmers
in predicting the pasture growth that they can expect in the weeks and months
ahead. These models can utilise local historic climate data and current on-farm
conditions to simulate a range of pasture growth possibilities ahead. Several
biophysical models are used in cropping, dairy, and weather forecasting, with the
SGS pasture model being developed for southeast Australian conditions. In rain-fed
cropping systems, SWC or Plant Available Water (PAW) is well established as a
valuable indicator of future yield potential (Carberry et al. 2002, Foale et al. 2004),
and systems have been developed to store soil moisture prior to planting in order
to minimise climate risk (Hunt et al. 2011). Tools such as 'Yield Prophet' have been
developed to improve the understanding of seasonal climate risk in cropping
systems (Hochman et al. 2009) and to evaluate management input decisions (such
as nitrogen fertiliser rates) to improve decision-making for grain growers (Hunt et
al. 2006). However, there needs to be more research on the value of SWC for
managing climate risk in pasture-based livestock production systems. Pasture
systems differ from crop systems because they are often based on perennial plants
rather than annual species and aim to supply year-round feed to meet livestock
demands rather than a single crop harvest.

Precision agriculture (PA) can assist with managing some of the risks around
pasture production. The tools and techniques of PA are examined along with work
to date using remote sensing in agriculture. It examines the use of PA to measure
plant water stress and how the soil water content or canopy temperature can
indirectly monitor it. Canopy temperature is generally accepted as an indirect,
rapid, accurate and a large-scale indicator of crop water stress (Gonzalez-Dugo et
al. 2022). Canopy temperature is considered a reliable proxy for plant water stress
monitoring and irrigation scheduling (Tanner, 1963; Idso et al. 1984; Steele et al.
1994). The issues of using the CWSI and baselines are also examined when
developing the baselines; clear sky conditions (Idso, 1982) are required, as well as
consideration of the growth stage of the plant (i.e. for grain crops pre-heading or
post-heading, (Idso, 1982)).

The CWSI has been used extensively in orchards and vineyards in Europe and the
United States to monitor plant water stress. Initial studies undertaken by Idso et al.
(1981) also developed baselines for numerous vegetable crops across sites in the
USA. Continuing studies are being undertaken using the CWSI in other geographic
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locations, looking at similar species with different varieties (i.e. vines with different
cultivars) and looking into using the CWSI as a tool for controlling irrigation.
However, minimal work has been undertaken on developing baselines and using
the CWSI for pastures in southeast Australia, with limited information on the CWSI
of annual ryegrasses or pastures in southeast Australia specifically. The CWSI can
be calculated from baselines, empirically and theoretically. To develop stressed and
non stressed baselines, the canopy temperature, air temperature and VPD needs to
be recorded for stressed and non stressed plants and plotted. The empirical
approach uses the formulae suggested by Idso (1981) and involves gathering
canopy temperature for the canopy being measured, the air temperature, the
canopy temperature of a stressed and non stressed canopy. Having a stressed and
non stressed plant in order to undertake CWSI calculations is not always practical.
A form of adaptive CWSI has also been used, using a histogram to assess the canopy
temperatures in the area of interest and then using the high and low points in the
histogram as the stressed and non stressed temperatures for the formulae. Jackson
et al. (1981) also developed a theoretical CWSI, which requires canopy
temperature, air temperature, relative humidity, net radiation wind speed and crop
height.

Aims of the study

The research aimed to develop approaches to manage climate variability in
pastures in south-eastern Australia, with a particular focus on water stress.
Biophysical modelling was used to predict the impact of soil water on pasture
growth and precision agriculture approaches were used to record canopy
temperatures of stressed and non stressed pastures to develop baselines and
calculate the CWSI.

The specific research questions and hypothesis were:

1. Is soil water content (SWC) a reliable predictor of pasture growth? How
reliable is the prediction of pasture growth, and does it predict more reliably
at certain times of the year? How does the pasture growth prediction vary
due to climate and pasture types?

Hypothesis: Wet/dry SWC will result in model predictions of high/low
pasture growth rates

Hypothesis: Pasture growth predictions will show most differences in the
spring season.

2. Do water water-stressed (non-irrigated) and non-stressed (irrigated)
pastures show different canopy temperatures?

Hypothesis: The stressed canopy will have a higher temperature than the
non-stressed canopy (based on literature from other species).

3. Can the canopy temperatures of water-stressed (non-irrigated) and non-

stressed (irrigated) pastures (Phalaris, Clover, and Dandelion) in southeast
Australia be used to create the baselines and CWSI for pasture?
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What are the issues of calculating the CWSI and baselines on pastures in
southeast Australia?

Hypothesis: The stressed and non-stressed baselines and CWSI will be able
to be developed for pastures and will be similar to the annual ryegrass
pastures.

Can the stressed and non stressed baselines and the CWSI be developed
remotely for an annual ryegrass pasture in southeast Australia? What are
the issues of calculating the CWSI and baselines on annual ryegrass in
southeast Australia?

Hypothesis: The stressed and non-stressed baselines and CWSI will be able
to be developed for the annual ryegrass pasture.

Can the CWSI and baselines be applied spatially? Can this data be used
spatially to project the CWSI across a paddock, property, and surrounds?
What are the issues of calculating the CWSI and baselines from aerially
derived data on pastures in southeast Australia?

Hypothesis: The CWSI method developed will be able to detect spatial
variation in pasture water stress, and temporal variation (flights on different
days).

How comparable are the baseline, empirical and adaptive CWSI methods?
Are they interchangeable? What are the issues with using each method?

Hypothesis: The baseline and empirical CWSI method will provide a more
realistic result for plant water stress, and the adaptive CWSI will be less
accurate than the conventional CWSI; however, the adaptive CWSI will still
highlight areas of plant water stress in the field over a broad area (farm-
scale).
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2 Literature review

2.1 Scope of the Literature Review

The scope of the literature review was to investigate what biophysical models are
used in agriculture and the pasture systems in Southeast Australia. The specific
focus of this was on pasture modelling tools and forecasting, how they are used, and
how fodder growth forecasts are presented to end users for pastures in Southeast
Australia. This review does not cover all the plant species, management variables,
soil conditions, fertilisation rates, etc., that can contribute to the variability of
pasture fodder production.

The literature review also considers the use of the Crop Water Stress Index (CWSI)
and the development of baselines (stressed and non-stressed) as a way of
evaluating plant water stress and how and where it has been applied in the field.
The review examined the use of the CWSI across the globe and examines potential
limitations for using the CWSI in Southeast Australia with regard to pastures.

2.2 Pasture-based livestock production in SE Australia

Livestock producers in SE Australia experience fluctuations in pasture production
within a season and from season to season. Managing pasture production and
undertaking feedstock budgeting from month to month is critical to animal health
and the farmers' profitability. Agricultural production is also significant to Victoria.
The gross value of agricultural production in Victoria was $17.5 billion (2020-21),
which was 25% of the total gross value of agricultural production in Australia
(Victorian Agriculture Industry Snapshot, January 2023). Livestock production in
Victoria also plays a significant role in the state's economy. In Victoria, the gross
value of agricultural milk production was $2.86 billion, beef was $2.58 billion, and
sheep meat was $1.90 billion. Most of South West Victoria’s sheep and cattle
production is based on dryland pasture systems of summer dormant cultivars of
perennial ryegrass (Lolium perenne) or phalaris (Phalaris aquatica L) with
subterranean clover (Trifolium subterraneum) (Waller et al. 2001).

One major issue for Australian farmers is the uneven pasture production within a
year (seasonal variation) and between years (inter-annual variation) (Perera et al.
2020). The uneven pasture production is primarily governed by climate variability,
ultimately affecting soil moisture (Perera et al. 2020). Work undertaken by Perera
et al. (2020) examining the seasonal average pasture production (kg DM/ha.day)
from 1960 to 2015 across five different sites clearly shows the increase in pasture
production in Spring, with the least amount of pasture production typically in
Summer in southeast Australia (Figure 1). Perera et al. (2020) also found that year-
to-year pasture yield variability had increased from 2002 -2015 compared with an
earlier period (1998-2001).
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FIGURE 1. SEASONAL AVERAGE PASTURE PRODUCTION (KG DM/HA.DAY) FROM 1960 T0 2015 IN
14-YEAR TIME INTERVALS AT (A) WAGGA WAGGA WITHOUT C4 GRASSES, (B) WAGGA WAGGA WITH
C4 GRASSES, (¢) DOOKIE, (D) HAMILTON, (E) ELLINBANK AND (F) ELLIOTT. (SOURCE PERERA ET AL.
(2020)

One of the most important perennial pasture grasses in southeastern Australia is
phalaris due to its high productivity (Anderson et al. 1999; Reed et al. 2008a) and
its ability to survive drought (Robinson & Simpson, 1966; Hutchinson, 1970). Its
ability to survive summer drought is due to deep roots and partial summer
dormancy (Culvenor, 2009). While phalaris is considered an essential pasture in the
Australian grazing context, it can be affected by climate, soil, and grazing pressure
stresses, affecting its persistence (Culvenor et al. 2014). Disease and interplant
competition can also affect its persistence (Culvenor et al. 2014). Cocksfoot
(Dactylis glomerata L.), tall fescue (Festuca arundinacea) and phalaris (Phalaris
aquatica) are the major sown permanent, perennial grasses in areas of high rainfall
in southeast Australia considered too dry for perennial ryegrass (Lolium perenne L.)
(Culvenor et al. 2016).

Since European settlement, the botanical composition of native pastures in high-
rainfall temperate areas of Australia has changed (Moore, 1970). Grazing,
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accidental and deliberate introduction of exotic species and fertiliser applications
have generated many pastures with a mix of native and exotic perennial grasses,
annual grasses and native and exotic legumes (Garden et al. 2000). Some pastures
may contain sown exotic pastures, sown to create feed for grazing stock (Garden et
al. 1996).

Seed supply companies and researchers have been undertaking field trials looking
at improving the cultivars (Culvenor et al. 2016) and genetics of the pastures used
in the Australian grazing industry with overseas species being brought in and
trialled to see how they survive, how much biomass they yield, their persistence,
etc in the Australian environment (Culvenor et al. 2016).

In Europe, agriculture production has relied on the application of nitrogen fertiliser
for the production of grasses. In contrast, Australia has relied on using legumes in
pastoral agriculture to maintain low-cost farming (Ledgard et al. 1992). However,
in more recent times, the use of nitrogen has increased in Australia (Rawnsley et al.
2019). Legumes have been identified as important in the Australian grazing
environment as they fix atmospheric nitrogen in the soil, potentially improving
pasture biomass production (Sanford et al. 1995). Legumes and taller grasses can
be more dominant at different times of the year (Sanford et al. 1995) and, in some
cases, can complement each other. Lucerne (Medicago sativa L) has also been used
as a legume in pastures to restore soil fertility and nitrogen status of soils in
cropping and pastures (Davies et al. 2003, Ledgard et al. 1992).

Similarly, part of work undertaken by Garden et al (2000) looking at grazing
management on the botanical composition of native grass-based systems in
southeast Australia demonstrated the varied botanical composition throughout the
year at four sites in Southeast Australia that had been previously grazed by sheep
and cattle (Garden et al. 2000). These examples (Figure 2) also demonstrate how
the species composition mix can change composition throughout the year. One
issue with having mixed species can be the effect of taller grasses shading other
pastures (i.e., clover) at certain times of the year (Sanford et al. 1995), making it
harder for these small plants to grow and possibly contributing to their reduction
in density in a paddock. These taller pastures may be alive and still growing or
senescing, but they provide shading that may reduce the performance of other
grasses or clovers. Clover and pasture composition and make-up can also be
influenced by defoliation caused by overgrazing (Sanford et al. 1995). Livestock can
selectively graze certain plants/species, further stressing certain pastures.
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FIGURE 2. THE VARIED SPECIES COMPOSITION AT FOUR SITES IN SOUTHEAST AUSTRALIA (A)
ATTUNGA NSW, (B) CARGO NSW, (c) HALLACT AND (D) NiLE TASMANIA (GARDEN ET AL. 2000).

One of the major sources of variability in these production systems is the intra and
inter annual variation in pasture production caused by climate variations
(Chapman et al. 2009). Managing these risks is essential for profitable and
sustainable grazing systems. Figure 3 presents the rainfall anomalies in the Murray
Darling Basin going back to 1900, demonstrating the variability of rainfall, defined
as deviations of annual rainfall from the long-run averages (Zaveri et al. 2020). The
anomalies show how the rainfall can vary yearly and demonstrate the variability in
rainfall farmers must manage. Southeast Australia has experienced three significant
droughts since after the instrumental period: the Federation drought (1895-1902),
the World War 2 drought (1937-1945) and the Millennium drought (1997-2009)
(Dey et al. 2018) with the effects of reduced rainfall and elevated temperatures
(Murphy et al. 2008). The variation in rainfall can change from year to year, decade
to decade, as demonstrated by the drought periods in Figure 3.
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2.3 Climate in SE Australia.

The climate of Southeast Australia is characterised as a mixture of temperate and
grassland (based on a modified Koeppen classification system) (Figure 4). Mean
average annual rainfall for South East Australia can vary from 200 mm to 1500 mm
(http://www.bom.gov.au/climate /maps/averages/rainfall /) High rainfall
variability is a feature of the southeast Australian climate (Murphy & Timbal, 2008).
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Southeast Australian farmers typically rely on winter rains to restore the soil
moisture levels leading into Spring, where most fodder is grown. However, this
rainfall is highly variable and can change from season to season. Trends show that
the April to October rainfall across southeastern Australia has declined, as shown
in the rainfall anomaly Figure 5 (CSIRO State of the Climate 2020). Along with the
year-to-year variability discussed above, there is also variability within a season
shown below (figure 5), which can result in soil being unable to recharge fully
before the next growing season.
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FIGURE 5. RAINFALL ANOMALY SOUTHEAST AUSTRALIA (APRIL — OcTOBER) (CSIRO STATE OF THE
CLIMATE 2022).

Figure 6 presents the annual mean temperature anomaly for Victoria (1910-2022),
demonstrating that during the 1970s, Victoria has changed from a negative mean
temperature anomaly to a more consistent positive mean temperature anomaly,
showing how climate change is starting to affect temperatures in Victoria
(Australia).
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FIGURE 6. ANNUAL MEAN TEMPERATURE ANOMALY, VICTORIA. (HTTP://WWW.BOM.GOV.AU/CGI-
BIN/CLIMATE/CHANGE/TIMESERIES.CGI?GRAPH=SST&AREA=VIC&SEASON=0112&AVE_YR=T)

Australia’s climate has warmed by just over 1°C since 1910, increasing the
frequency of extreme weather heat events (CSIRO State of the Climate 2022).
Eight of Australia’s top ten warmest years on record have occurred since 2005, as
shown in Figure 7 (CSIRO State of the Climate 2022), adding further complexity to
the variability farmers are facing.
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2.3.1 Managing Variability

Globally and historically, farmers manage variability throughout a season and from
one season to the next; however, with the additional variability created by climate
change, farmers are learning to adapt more often and faster than in the past. The
variability caused by climate change can affect the farmer's production numbers;
farmers may have to potentially reduce their stocking numbers or result in
purchasing, non-budgeted fodder to feed livestock. If not appropriately managed,
this can affect the profitability of the enterprise (Mu et al. 2013; Beitnes et al. 2022).
Therefore, the more suitable tools a farmer has to manage, monitor and oversee
their farming operations, the more likely they can be nimble to make quick and
critical decisions based on factual data as the season changes so they can generate
profits whilst managing resources optimally (Chapman et al. 2013).

The literature shows that farmers need to adapt to increased climate variability.
Following are some of the observations of changes in climate variability affecting
agricultural production:

e Shorter Spring seasons in Southern Australia are increasing (Bell et al. 2011)

e Late autumn breaks in some locations have been observed (Bell et al. 2011)

¢ Increased winter and early spring pasture production (Cullen et al. 20012)

e Decreased late Spring and early Summer growth (Cullen et al. 20012)

e Future pasture production will be reduced, causing economic difficulties for
farmers (Harrison et al. 2016)

The national livestock numbers (figure 8) fluctuate yearly, primarily dependent on
pasture production, influenced by factors such as precipitation, flooding, and
drought. Other factors, such as access to foreign markets and disease, can influence
livestock numbers. Over the last five years, we have seen a drop in the beef, sheep,
and lamb flocks, with a slight increase in 2020-2022 (Australian Bureau of
Statistics, Agricultural Commodities, Australia 2021-2022).
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2.4 Use of biophysical models to understand climate variability impacts
on agricultural production.

Farming is a complex occupation, with many variables influencing production from
one season to the next. In the case of raising grazing stock on pastures in Southwest
Victoria, the main complexities are around having enough grass in the paddocks to
feed the livestock throughout the year, allowing for seasonal and annual climatic
variations. Biophysical agricultural models, which can simulate biological systems,
play a significant role in assisting farmers in predicting the pasture growth that they
can expect in the weeks and months ahead. These models can utilise local historical
data and current on-farm conditions to simulate a range of pasture growth
possibilities ahead.

2.4.1 Agricultural Models History

Earl Heady and his students undertook some of the earliest agricultural systems
modelling to optimise decision-making at the farm scale (Jones et al. 2016). Heady
undertook experiments on the fertilisation of crops and feeding of hogs, broilers,
turkeys, dairy cows, beef cows, etc., to predict yield per acre of crop, gain per bird
or animal for chickens, turkeys, hogs and beef cattle and milk production per cow
(Heady, 1957).

In 1972, the US government was surprised by a large order of wheat from the Soviet
Union, causing price rises and shortages of wheat (Pinter et al. 2003). This
prompted the US to fund research programs to create crop models to use with the
US’s recently available remote sensing equipment to predict the production of
major crops globally (Jones et al. 2016). Figure 9 outlines the timeline of significant
events that led to the models available today. Whilst the timeline stops around
2013, more recent models include data synthesis on greenhouse gases and the like.
As our understanding of science, weather, and technological improvement (internet
and personal computers) have progressed, the models have become more all-
encompassing. These models are constantly evolving, with new agricultural models
factoring in the emissions produced from farming.
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FIGURE 9. LOOKING BACK AT THE LAST 70 YEARS AND THE MAIN DRIVERS FOR DEVELOPING
AGRICULTURAL SYSTEM MODELLING (SOURCE JONES ET AL. 2016).

2.4.2 Types of Agricultural Models

The scale of agricultural models can vary from the National / Global scale to the

field scale as shown in Figure 10. This literature review concentrates on the field

scale where individual farm production can be modelled to predict outputs at the

operations scale.
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FIGURE 10. VARYING LEVELS AT WHICH AGRICULTURAL MODELS ARE DEVELOPED AND
OPERATE AT. (JONES ET AL. 2016)

2.4.3 Australian Agricultural Models

Numerous agricultural models can be used to simulate biological systems in
Australia, such as:

e The SGS (Sustainable Grazing Systems) Pasture Model, a multi-paddock,
biophysical simulation model for livestock systems (Johnson et al. 2003),

e APSIM, an agricultural production systems simulator to simulate
biophysical processes in agricultural systems as they relate to management
practices' economic and ecological outcomes in the face of climate risk.
(McCown et al. 1995)

e Farmpredict (ABARES) - AUSTRALIA (Hughes et al. 2019). A simulation
model based on ABARES farm surveys. The model can simulate financial and
physical outcomes for Australian farm businesses.

e DairyMod & EcoMod biophysical pasture-simulation models for Australia
and New Zealand (Johnson et al. 2008)

e GRASP, a simulation model for soil water and pasture growth developed for
northern Australia and rangeland pastures (Masoud, 2022).

The models typically rely on inputs such as the current and historical climate data
from the Bureau of Meteorology (BOM), soil moisture /water content, fertiliser
application rates and past applications, soil type, historical production figures (e.g.
yield, tonnes/hectare. % protein), irrigation rates, etc.
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The need for Agricultural models.

With the ever-increasing variability from season to season and throughout a season,
it is critical that livestock managers can budget enough fodder for the stock they
have at hand. Data-driven models using local inputs (i.e. current local weather data,
historical local weather data, local soil moisture levels) can provide the livestock
manager with potentially more accurate insights into the fodder availability (Jones
et al, 2017) in the weeks and months ahead, resulting in better management
decisions on farm and potentially improving the bottom line of the operations.

Agricultural models can also be used in the science industry to predict specific
outcomes, such as the effect of climate change on production rates (Guerena et al.
2001). Similarly, the government can use the outputs of these models for planning
and policy decisions (Holsworth et al. 2014).

Data collected from precision agriculture, such as rainfall quantities,
evapotranspiration rates, soil moisture content, humidity, and other field data, can
be imported into biophysical models such as the Sustainable Grazing Systems (SGS)
Pasture Model, Agricultural Production Systems sIMulator (APSIM), Pasture for
prophets and Yield Prophet. These biophysical models can be valuable tools to farm
managers and scientists alike, as the models can be run to predict future scenarios,
using different inputs into the model to see how this will affect the model's
outputs/predictions. The data collected by remote sensing can also be used to
measure plant canopy temperature and monitor plant water stress using the Crop
Water Stress Index (CWSI) (Bellvert et al. 2014).

Agricultural models have several limitations. The data derived from the
Agricultural models is only as good as the data quality used as the input and the
operator's competency to question the results the model output provides. Studies
undertaken by Silva et al (2021) identified that although there have been
significant advances in crop modelling, there are still knowledge gaps, with less
attention paid to phosphorous and potassium limitations or yield production due
to pests and disease. It was found that much focus has been put on the major cereal
crops and less emphasis on root and tuber crops or tropical perennials (Donatelli
et al. 2017). Agricultural models play a vital role in enhancing efficiency,
sustainability, and resilience in agriculture. The models provide valuable insights
that empower farmers, researchers, and policymakers with knowledge to make
informed decisions in a rapidly changing agricultural landscape.

APSIM (Agricultural Production Systems sIMulator)

APSIM was developed by APSRU (Agricultural Production Systems Research Unit),
a collaborative group comprising the CSIRO and the Queensland State Government,
in 1991 (Keating et al. 2003). It was developed as there was a requirement for
improved modelling to provide predictions of crop production in relation to
climate, genotype, soil, and management factors whilst considering the long-term
resource management issues in Australian farming (Keating et al. 2003). The
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developers were influenced by overseas models such as CERES (Crop Environment
Resource Synthesis). APSIM has been used extensively across numerous
agricultural domains in Australia, such as crop management (Pembleton et al
2016), climate change impact assessment (Wang et al. 2019), soil health and
nutrient management (Wang et al. 2020), water management (Keating et al. 2002)
and economic analysis (McCown et al. 1995).

Yield Prophet for grain growers.

One of the main models used in the grain-growing industry is Yield Prophet. In
2003, Yield Prophet started as a monthly fax to subscribers in the Wimmera -
Mallee region of NW Victoria. In 2004, it became a web interface available for users,
and in 2005, it expanded to all regions of Australia (Hunt et al. 2006). Yield Prophet
is an example of an online, subscriber-based platform that provides grain growers
and consultants with access to a crop production model presenting users with real-
time information about their crops (Hunt et al. 2006). Yield Prophet utilises APSIM
as the underlying model and runs simulations and delivers reports to assist farm
managers in decision-making.

Yield Prophet provides a platform and model for users to;

Forecast crop yields.

Manage enterprise risks such as climate, soil, and water risks.
Monitor inputs such as fertiliser rates with potential crop yield.
Simulate the effect of changing sewing dates or trying new varieties.
Assess the possible effects of climate change.

Figure 11 is a visual representation of the yield prophet simulation process as
shown on their website, demonstrating how the underlying APSIM model aids in
simulating yield production.

Simulated yields
Report (t/ha)
Crop Sown Generated ’

)

YUYW . Today

APSIM simulation
(water and nitrogen balance, crop growth)

100 years of daily ’95, 2.2

climate data \

Mar. Apr. May. June. July. Aug. Sept. Oct. Nov.

FIGURE 11. YIELD PROPHET SIMULATION OVERVIEW. (SOURCE — YIELD PROPHET WEBSITE)
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ABARES farm-predict

ABARES (Australian Bureau of Agricultural and Resource Economics and Sciences)
has developed a model called farm-predict, "which can simulate the effects of price
and climate variability on the production and profitability of Australian broadacre
farms" (Hughes et al. 2019). ABARES farm-predict simulates the production of
outputs (e.g., wheat, beef cattle, wool, etc.), the use of inputs (fuel and fertilizer) and
changes in farm livestock and grain at a farm level under selected conditions. An
overview of ‘farmpredict’ is shown in Figure 12 giving an example of the range of
inputs used in calculating the outputs.

farmpredict model inputs s—
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Output prices
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= Farm information
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Machinery

Buikdings Chemicals Sheanng Beef cattie wheat
Livestock Electncity  Services Sheey Bariey
Grain stock Fertiliser Other wool Sorghum

Farmer type Fuel Oilseeds

FIGURE 12. OVERVIEW OF THE FARM-PREDICT SYSTEM  (SOURCE -
WWW.AGRICULTURE.GOV.AU)

While farmpredict captures a lot of inputs and modelling outputs, at this stage, it
does not appear to be using the models to produce short-term (3-12 month)
forecasts of farm pasture production.

SGS Pasture Model

The SGS Pasture Model is a multi-paddock, biophysical simulation model for
livestock systems. The SGS model can simulate pasture growth rates for grazing
enterprises. The SGS Pasture Model was developed for Australian conditions by IM]
Consultants in collaboration with Meat and Livestock Australia (MLA), the
University of Melbourne, and Dairy Australia. It was developed for researchers
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(Johnson et al. 2003) to simulate grazing scenarios. The model can import the local
weather data and use historical weather in certain simulations. The SGS model
incorporates modules for water dynamics, herbage accumulation and utilisation,
nutrient dynamics and animal intake and metabolism (Johnson et al. 2003). The
interactions between these modules are crucial to understanding efficient pasture
management (Johnson et al. 2003). Elements within the modules can be altered to
see how changing certain variables can affect pasture production. The philosophy
of model use is that all model outputs should be questioned. If the model's output
agrees with the observed data, then the model should be interrogated to
understand why this is so. Similarly, if the model output does not agree with the
observed data, the model should be interrogated to see why (Johnson et al. 2003).
The user of the model is encouraged to question the outputs of the model for
accuracy and, in doing so, build up proficiency and competency in what to expect
from the model (Johnson et al. 2003). Consideration needs to be considered when
interrogating the output of the modelled versus actual data, as some variables are
challenging to measure in the field, and errors can be derived from many sources,
such as location error, calibration error and /or instrument error (Sinclair et al.
1979). The SGS model is typically used for academic research and is not widely
available to the public.

2.4.4 Model and data output quality

Whilst agriculture models can add value, they are only as good as the data put into
the model and the parameters the model runs on. Therefore, time must be taken to
build the model, understand the model, and check the model against what is
happening in the field to ensure a model runs as close to reality as possible. Beukes
et al. (2008) conducted a three-year farm trial to evaluate the Whole-farm model
(WFM) in New Zealand. Similarly, Barrett et al. (2004) evaluated four perennial
ryegrass growth models to form the basis of a herbage growth model (HGM).
Comparing the SGS biophysical simulation model against actual data, the model
parameters can be refined to ensure the model simulates as close to reality as
possible. Numerous variables within the SGS pasture model and other models must
be 'calibrated’ to local conditions. Variables include:

e Plant type (C3, C4, phalaris, fescue, clover, etc), annual or perennial,
persistence coefficient.

e Plant composition (number of different species present in the paddock),

e Soil type(s) (soil profile depth, texture, saturated hydraulic conductivity),

e Soil compaction (soil texture),

e Nitrogen content. (Ability to alter soil nutrients and add fertiliser
history/data),

e (Grass management approach (set grazing, rotational grazing, cutting for hay,
nitrogen replacement, etc).

2.4.5 Forecasting
Using forecasting available to farmers can potentially help manage the
repercussions of climate variability that farmers are facing. Climate forecasts can
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assist farmers with knowledge of future potential rainfall and temperatures,
whereas pasture growth forecasts can assist farmers with feed budgeting in the
weeks and months ahead. Using seasonal climate forecasts can assist farmers in
making management decisions which may be one-way farmers can minimise losses
in drought years and take advantage of favourable seasons (Ash et al. 2007).

The Bureau of Meteorology provides a wide range of rainfall forecasts to farmers
across Australia with weekly, one and three-month forecasts, as shown in Figure 13
as an example. These types of forecasts can assist farmers with planning for future
events.
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FIGURE 13. RAINFALL, THREE-MONTH OUTLOOK, DECEMBER TO FEBRUARY (2023-2024).
THE CHANCE OF EXCEEDING MEDIAN RAINFALL (SOURCE - BUREAU OF METEOROLOGY).

The Bureau of Meteorology also provides past accuracies for their predictions,
demonstrating that at some locations at certain times of the year, their forecast is
accurate or inaccurate, as shown in Figure 14.
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FIGURE 14. ACCURACY FOR CHANCE OF ABOVE MEDIAN RAINFALL, NOVEMBER-JANUARY
(SOURCE BUREAU OF METEOROLOGY).

Like climate forecasts, forecasts of future pasture growth can provide farmers with
important insights into pasture production in the weeks and months ahead.
Knowing expected pasture production in the weeks and months ahead can assist
farmers with facing the uncertainties around farming and be prepared for what is
to come. Shown in Figure 15 is a forecast of projected green herbage available
versus historic for the Riverina (NSW). Forecasts like these can assist farmers with
knowing how this season is tracking compared to previous seasons and indicate
how much pasture production can be generated in poor years versus excellent
years (Mitchell et al. 2022).

38



Provided by CSIRO

Projected green herbage available relative to historic variation

FORECAST i
Climatol
~ 2500 ! gy
g ACCESSS
&
g 200 KEY
B o
;:. 1500 . 75%
§ 50%
o 1000 25%
: B
< 500
HISTORIC
50-90%

AprOl1Apr16 May May Jun01Jun16Jul01 Jul16 25-50%

1 1
’ . 10-25%

FIGURE 15. PROJECTED GREEN HERBAGE FORECAST AVAILABLE TO FARMERS USING THE
CSIRO “FARMING FORECASTER.”

The skilfulness of the forecast is an issue. Ash et al. (2007) concluded from Ziervogel
et al. (2005) that forecasts need to be 65-70% accurate to achieve long-term
adoption and trust, which is similar to work undertaken by Jochec et al. (2001) and
Leith (2006) that demonstrated that an accuracy of 70-80% is required and that
forecasts have to be proven for a 4-5 year period before they would be adopted.
Forecast skill varies over more extended periods, within seasons and spatially.

Predicting the most helpful variable to provide to farmers can be an issue.
Forecasting rainfall and temperature for the three months ahead may be relevant
to some, however, other farmers may want access to forecasts on crop/pasture
growth rates and soil water storage (Ash et al. 2007). Whilst climate and fodder
forecasts are available to farmers, they are not necessarily used by all farmers for
various reasons. How forecasts are presented can cause confusion (Ash et al. 2007).
Research undertaken by Keogh et al. (2005) demonstrated that only “20% of
pastoralists correctly interpreted a forecast that stated there was a 70% probability
of receiving above median rainfall”.

Farmers can act on forecasts if they have significant lead time and are willing to
change. However, the implications of changing plans to short-term forecasts on
long-term farm objectives must be considered. If a farmer knows they are going into
a drier period, they may be able to purchase forage; however, if the lead time is
short, extra forage may not be available or cost prohibitive. Similarly, if a farmer
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knows they are heading into a drier period, it may not be practical to sell off a
breeding herd (Stafford Smith et al. 2000) as this may affect long-term herd
dynamics and profitability (Ash et al. 2007). The value of the forecast needs to be
considered within the context of the whole farm and aligns with the manager’s
decision-making process (Stafford Smith et al. 2000). Overreacting to forecasts can
result in losses of profits, whilst inappropriate responses can exceed the benefits of
using forecasting (Smith et al. 2000).

2.4.6 Soil Moisture

Rainfall makes water available to the pastures as either in-season rainfall or stored
soil water (Verburg et al. 2016). The amount of stored soil water, also known as
Plant Available Water (PAW), is affected by pre-season and in-season rainfall,
infiltration, evaporation, and crop/pasture water use (Verburg et al. 2016). The
Plant available water capacity (PAWC) is the total amount of water that can be
stored in a soil and released to a crop/pasture. The PAW is the amount of water
stored within the soil and available to the plant (Figure 16) (Verburg et al. 2016).
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FIGURE 16. (A) PLANT AVAILABLE WATER CONTENT (PAWC) v (B) PLANT AVAILABLE
WATER (PAW). SOURCE VERBURG ET AL. 2020.

Contributing to the PAWC is the soils texture. Particle size within the soil
determines how much moisture can be stored and how tightly it is held in the soil
(Verburg et al. 2016). The soil’s structure, chemistry and mineralogy can all affect
the PAWC (Verburg et al. 2016).

2.4.7 Summary

This section discussed the variability of the Australian climate and gives examples
of agricultural models and how agricultural models are used in agriculture to assist
in improving agricultural production. It also demonstrated the void and
inaccessibility of agricultural models available for pasture forecasting in the weeks
and months ahead in the Southeast region of Australia.
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2.5 What is Precision Agriculture?

Precision agriculture can assist farmers in monitoring and managing their pastures.
Precision agriculture intends to match agricultural inputs and practices to localised
conditions within a field so user can do the “right thing in the right place, at the right
time”, and in the right way (Banu, 2015).

A Lleida University Research Group lists 27 definitions from the scientific literature
and the Internet (Lleida University, 2018). In 2019, the International Society of
Precision Agriculture adopted the following definition: ‘Precision Agriculture is a
management strategy that gathers, processes and analyses temporal, spatial and
individual data and combines it with other information to support management
decisions according to estimated variability for improved resource use efficiency,
productivity, quality, profitability and sustainability of agricultural production.’
Source
(https://www.ispag.org/about/definition#:~:text=%E2%80%9CPrecision%20Ag
riculture%20is%20a%Z20management,%2C%20productivity%2C%Z20quality%2C
%?20profitability%?20d). Another definition by Liaghat et al. (2010) is that “PA is an
integrated, information and production-based farming system that is designed to
increase long term, site-specific and whole farm production efficiency, productivity
and profitability while avoiding the undesirable effects of excess chemical loading
to the environment or productivity loss due to insufficient input application.”

2.5.1 Precision agriculture —tools and techniques

There is wide-scale adoption of precision agriculture technology (Castle et al
2015), whilst the cost of precision agriculture technology has decreased since its
introduction (Jochinke et al 2007). Examples of pasture-related growth and
monitoring technological tools include;

e (Canopy temperature sensors,

e Nitrogen and moisture sensors,

e VRT. Variable Rate technologies, delivering desired rates to specific
locations. (i.e. fertiliser application, sprays),

e Moisture probes with inbuilt communications (O’Shaughnessy et al. 2020),

e Local (farm) based weather stations (Conaty et al. 2012).

In the past, farmers would need to buy the individual components (sensors, data
loggers, electronics boards, etc) of the required precision agriculture tools from
different supplies and cobble together a system that works for their enterprise.
Now, there are numerous off-the-shelf products that farmers can buy or subscribe
to, to monitor individual parts of their enterprise (e.g., individual sensors) or
packages that can monitor the whole farm, from their crops, soil moisture,
humidity, temperature, salinity, dam heights, etc. (Rehman et al. 2014, Farooq et al.
2020).

2.5.2 Remote Sensing

Remote Sensing (RS) is defined as “the field of study associated with extracting
information about an object without coming into physical contact with it” (Schott et
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al. 2007). “Remote sensing applications in agriculture are based on the interaction
of electromagnetic radiation with soil or plant material” (Mulla, 2013).

Remote sensing can utilise sensors in the paddock on vehicles capable of carrying
measuring devices/sensors. Remote sensing can utilise drones, planes or satellites
as vehicles to carry multispectral, hyperspectral and thermal Infrared cameras to
capture images. Remote sensing also includes using a sensor or instrument
mounted on a probe (Weiss et al. 2020) or pole. Remote sensing can virtually obtain
measurements across a paddock in every location in time and space. Multispectral,
hyperspectral and thermal Infrared cameras capture specific wavelength bands on
the electromagnetic spectrum that humans cannot see. These bands can reveal
information on vegetation that photos and the human eye cannot observe. The raw
data captured from the multispectral and hyperspectral cameras must be converted
to an output that farmers and others can utilise.

Applications of remote sensing across the agricultural environment include:

e Broadacre cropping picking up in-field variability (Jochinke et al. 2007).

e (itrus and silage yield mapping (Lee et al. 2005).

¢ Quality mapping in various crop types (Wahab et al. 2018).

e Variable rate technology (VRT) for spreading fertiliser efficiently (Han et al.
2019).

e Vegetation growth monitoring (Jung et al. 2018).

¢ Weed mapping and management (Bah et al. 2017).

e Irrigation management (Quebrajo et al. 2018, Albornoz et al. 2017).

e Crop spraying. (Xue et al. 2016, Garre et al. 2018).

Remote sensing uses non-contact measurements of radiation reflected or emitted
from plants (Mulla, 2013) and can be used to detect issues such as plant water
stress. Remote sensing has been used globally to monitor, measure and check plant
water stress in numerous and diverse agricultural industry crops, such as; grains
and seeds (Maise - Zea mays L, (Tsouros et al. 2019), Wheat - Triticum durum
(Tsouros et al. 2019), Rice (Tsouros et al. 2019), Soya - Glycme max L Merr, (Tsouros
et al. 2019), Sunflowers - Hebanthus annuus L (de Castro et al. 2018)), fruits and
vegetables (Nectarines - Prunus persica (Park et al. 2017), Peaches - Prunus persica
(Park et al. 2017), Grape vines - Vitis vinifera L.. (Knipper et al. 2019), Tomatoes
(Hassler et al. 2019), Potato - Solanum tuberosum L. Cilena, (Gerhards et al. 2019),
Cranberry - V. macrocarpon, (Sandler et al. 2018), Forestry and Fibres, (Conifers
(Smigaj, et al. 2017), Forest characterisation (Michez et al. 2019), Cotton -
xinongmian 1008) (Bian et al. 2019)), Therapeutics, (Poppy crops (de Castro et al.
2018)), as well as invasive species mapping (Michez et al. 2019), wildlife census
(Michez et al. 2019) and analysing commercial grass (Gerhards et al. 2018).

One area of remote sensing is the collection of leaf temperatures of crops/plants.
Plants under water stress tend to close their stomata, and therefore, the plant's
mechanism for self-cooling is decreased, increasing plant surface temperature
(Gerhards et al. 2019). The water-stressed plant will have a higher leaf surface
temperature than a well-watered plant nearby. The leaf temperature of crops can
now be continuously monitored remotely with field canopy temperature sensors.
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The leaf’'s temperature can also be collected by thermal infra-red (TIR) from drones,
planes and satellites (Gonzalez-Dugo et al. 2019, Fisher et al. 2019). The remotely
collected leaf temperature data can also be incorporated into the Crop Water Stress
Index (CWSI), which farmers can also use to monitor water stress across their crops
(Veysietal 2016).

2.5.3 Imaging technologies

Numerous imaging camera technologies exist and are used within agriculture. The
imaging camera technologies utilised in agriculture fit into the following categories
(Jinetal 2020):

e Red, Green Blue (RGB) Camera.

e Multispectral Cameras, (Bands; blue 475 +/- 20 nm, green 560 +/- 20 nm,
red 668 +/- 10 nm, near IR 840 +/- 40 nm, red edge 717 +/- 10 nm).

e Hyperspectral Cameras (narrower bands ((spectral range 400 - 1000 nm).

e Thermal infrared cameras (spectral range 7.5 - 13.5 nm)

The different imaging technologies concentrate on different bands of the
electromagnet spectrum, some of which can be seen by the human eye and most of
which cannot, as shown in Figure 17.

The Electromagnetic Spectrum
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FIGURE 17. THE ELECTROMAGNETIC SPECTRUM. (SOURCE- HTTPS://WWW.E-
EDUCATION.PSU.EDU/GE0G160/NODE/1958)

Plants interact with solar radiation differently from other materials. Plant
components are expressed differently in the reflected optical spectrum from 400
nm to 2500 nm, as shown in Figure 18, with distinct reflectance behaviours, as can
be seen by the different reflectance of leaf pigments, cell structure and protein and
cellulose content. These variations within plants can be captured by the different
remote imaging tools and used to assess varying crop health parameters.
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The Vegetation Spectrum in Detail
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FIGURE 18. COMPONENTS OF PLANTS AND THE VEGETATION SPECTRUM. (SOURCE -
WWW.DRONEZON.COM)

With regards to monitoring plant water stress, whilst the underlying technology
may not be new, the availability, reduction in cost, size, and weight of the cameras,
and access to and understanding of the outputs have undergone considerable
improvement over the last two decades.

Thermal Infrared (TIR)

Thermal remote sensing involves acquiring, processing and interpreting data in the
TIR range of the electromagnetic spectrum (EM) (Prakash, 2000). Sensors within a
thermal camera pick up the infrared radiation emitted by a plant, displaying its
temperature in a digital radiometric (Messina et al. 2020) or thermal image.

The thermal images can be taken with handheld thermal sensors, or sensors can be
mounted on planes and satellites. The measurement of thermal temperature is a
non-invasive, non-contact, and non-destructive technique (Ishimwe et al. 2014).
Thermal remote sensing works as everything above absolute zero (0 k or -
273.15°C) emits radiation within the infrared range on the electromagnetic
spectrum (Prakash, 2000). The thermal properties of plant canopies are affected by
the plant's structure and the amount of water per unit area (Ishimwe et al. 2014).

2.6 Monitoring Plant water stress using Remote Sensing

There are many methods for stress detection in plants. A number of the methods
can be ineffective in early plant stress detection, time-consuming and require
numerous measurements across a whole field to gain a true reflection of the field’s
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plants' water status (Conaty et al. 2014). Some of the methods for stress detection
in plants are as follows:

In the field, visual observation by a farmer looking for, wilting, soil moisture
levels, etc.

Scoring of plants for leaf rolling using a visual scale, i.e. scale 1-9 (1
correlates to no leaf rolling, and nine correlates to maximum leaf rolling.
Baret et al. (2018)).

The leaf wilting index (LWI) which is the ratio between the number of
wilting leaves and the total number of leaves (Pungulani et al. 2013).

Leaf water potential which provides data on the soil moisture content of a
plant by measuring the amount of pressure the plant is exhibiting while
pulling water from the soil (Bartell et al. 2021), typically measured using a
pressure chamber.

Stem water potential which directly measures the tree water status by
measuring the water tension within the plant (Blanco et al. 2021).

Plant water potential which provides data on the soil moisture content of a
plant by measuring the amount of pressure the plant is exhibiting while
pulling water from the soil (Bartell et al. 2021).

Leaf relative water content which reflects the balance between water supply
to the leaf tissue and transpiration rate (Lugojan et al. 2011).

A leaf pyrometer which measures gas by placing the conductance of a leaf in
series with two known conductance elements and comparing the humidity
measurements between them to estimate water vapour flux (Batke et al.
2020).

Gas exchange rate systems which measure the gas exchange based on a leaf
cuvette connected to an infrared gas analyser. The cuvette is clamped over a
single leaf, and the gas exchange of a small area of the leaf blade (typically 2-
10 cm?) is measured (Kolling et al. 2015).

CWSI (Crop water stress index) which uses the temperature comparisons of
aleaf and an index to determine a stressed or non-stressed plant.

There are several ways to monitor plant water stress remotely. They range from
soil moisture probes, Thermal Infrared (TIR) cameras, hyperspectral images, VNIR
/ SWIR (visible and near-infrared / Shortwave infrared) and the use of
Fluorescence. Remote sensing methods are shown in Figure 19, demonstrating the
relationship between stresses, plants response and applicable remote sensing
techniques.
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A plants performance is maximised when a plant is maintained within its optimum
temperature range, which can be partially controlled through plant water
availability. Guobin et al. (1992) found that the lack of water severely restricted
plant growth and that tillers and stolons of clover and phalaris were reduced by
20% under water stress. Guobin et al. (1992) also found that phalaris and clover
stomatal conductance declined by 80-90% with increasing water stress. They also
found that soil moisture deficits reduced the pasture growth and survival and the
fodder quality available for farm animals. By using the plant's canopy temperature
as a guide to water stress, farmers can use a direct method to monitor plant water
stress instead of using an indirect measurement of plant water stress, such as soil
moisture conditions or evaporative demand (Conaty et al. 2012).

Declining stomatal conductance reduces transpiration and evaporative cooling,
increasing canopy temperature (Struthers et al. 2015). Transpiration has the most
influence in reducing leaf temperature to below the ambient temperature (Conaty
et al. 2014). By the time wilting is observed in a pasture or crop, a proportion of the
potential yield may have already been lost (Jones, 2004). If soil moisture is
available, water flows through plants from the root system up the stem to the leaves
to facilitate transpiration, as shown in Figure 20.
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FIGURE 20. WATER FLOW THROUGH A PLANT (SOURCE - PLANTS AND MICROCLIMATE, JONES
1992)

During water stress, the stomata close, causing an increase in canopy temperature
(Gerhards et al. 2019). Figure 21 shows an example of an open and closed stomata.

Chlorobiast

Guard cells

FIGURE 21. STOMATA OPEN AND CLOSED (SOURCE - PLANT PHYSIOLOGY, 2ND EDITION, P.
523, EDITED BY TAIZ AND ZEIGER.)

As a result, the crop canopy temperature (Tc), associated with transpiration, has
been identified as a real-time, plant-based tool for crop water stress detection and
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monitoring (Conaty et al. 2014). Figure 22 summarises the above points,
demonstrating that a plant with access to soil moisture should have a lower leaf
temperature as the stomata are open and the plants fully transpiring, compared to
a plant in dry soil, where the stomata have closed and as a result the canopy
temperature is higher.

o -

Closed Stomata

High
Transpiration

Transpiration

FIGURE 22. REMOTE MEASUREMENT OF CANOPY TEMPERATURE (SOURCE - AHMAD ET AL.
2021).

2.6.1 Monitoring soil moisture

Soil moisture probes are another form of remote sensor and come in different types.
The capacitance sensor measures the amount of water in the soil through its
capacity to transmit electromagnetic waves or pulses. Multi-depth capacitance
sensors have become popular for real-time, continuous and non-destructive soil
moisture profile measurements (Myeni et al. 2021). Soil moisture sensors can be
used at individual sites to give the farmer an idea of their soil moisture, and these
individual sites can be part of a larger network of soil sensors, as is used in Victoria
(Figure 23). Here, a network of sensors is used for the cropping and pasture
industries, with data available online. Some farmers use soil sensors when
considering when to plant a crop. However, to get an accurate soil moisture
measurement, the capacitance probes must be calibrated for different soil types
(Myeni et al. 2021). Calibration undertaken on site factors in soil properties, such
as soil texture, mineralogy, bulk density, salinity, temperature and organic matter
(Myeni et al. 2021). Another issue in using soil moisture probes is the spatial
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variability of soil moisture; the probe may give a relatively accurate result of the
soil moisture at the probe; however, how much does the soil moisture vary as you
move away from the probe?

261 5ealz Ranges Harrow Nth Pdk Phalaris SM

50 Summed

Moisture 10cm

Moisture 30cm
Moisture 40cm

Moisture 50cm

Moisture 60cm

Moisture 80cm

Rain

FIGURE 23. ANNUAL SOIL MOISTURE MEASURED AT DIFFERENT DEPTHS, INCLUDING ANNUAL
RAINFALL FOR HARROW IN SOUTH-WEST VICTORIA. (SoURCE -
HTTPS://EXTENSIONAUS.COM.AU/SOILMOISTUREMONITORING/)

2.6.2 Reliability, Interpretation, Cost

Thermal remote sensing makes it possible to quickly measure plant water stress in
large areas with a thermal camera mounted on a drone, plane, or Satellite. This
allows a farmer to identify areas of issue (stress) quickly and easily.

While using RS has many advantages, there are also numerous issues involved with
collecting consistent and accurate data remotely in the field. Environmental
conditions like wind and clouds can interfere with thermal measurements and
cause errors. The presence of clouds, dust, snow, smoke, and high winds can also
make the collection of data difficult in some parts of the globe (Akuraju etal. (2021),
Nielsen (1990)). The cost of thermal sensors, planes, etc, can also be prohibitive for
some technology users. Thermal images also tend to be recorded around thermal
noon for most applications. Low-cost thermal cameras are not necessarily
radiometrically calibrated and can only provide relative temperature differences
(Messina et al. 2020). Field calibration is also required (Messina et al. 2020). The
end users' ability to access, process and interpret the data can also be limiting.
When measuring the canopy's temperature, errors can occur if the background
(typically soil) influences the temperature recorded. The low resolution of some
satellites means that the thermal data may not be used for gaining canopy
temperature as the resolution is not small enough to pick up the temperatures of
individual leaves and may also pick up a lot of background temperatures (i.e., soil)
or 'mixed pixel values' which represent pixels that are a combination of leaf and
background (Messina et al. 2020).

The data gathered is restricted to the sensor and platform capacities (viewing
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direction and limited spatiotemporal information (Weiss et al. 2020). The sensor(s)
need to be calibrated (Weiss et al. 2020), and atmospheric conditions (Weiss et al.
2020) and geometry of acquisition (Epiphanio et al. 1995), crop type, water status
and phenological stages (Colombo et al. 2003) all need to be considered. Other
uncertainties also include errors associated with the devices (Fernandes et al
2005). With regard to using RS in the farming environment, the farmer needs to
have access to the equipment, to be able to use the equipment and decipher the
results.

The ability to collect the data using RS at the right time and place can be an issue,
with clouds making it difficult to collect data remotely by plane, satellites, and, to a
certain extent, drones. Similarly, the return times of satellites can make it
challenging to monitor a crop constantly or daily if required. Using planes to
monitor crops from the air constantly can be time-consuming and expensive. Hill et
al. (2004) highlight how providing a 'pasture growth rate' is required in a timely
and accurate manner as it is critical to assist livestock producers in developing
grazing plans for their properties. Similarly, Handcock et al. (2016) highlight the
'irregular availability of suitable images" and the issue of generating an output
useful for farmers. Banhazi (2012) highlights the abundance of information
available to the farmer but how it is not generally structured in a way that can be
applied readily”. The issues of weather and return times need to be considered
when choosing the right mix of PA and RS for specific crop monitoring.

Spatial resolution (Figure 24) is also a major consideration when choosing which
type of RS to assist with data gathering. Many of the satellites may not have the
spatial resolution to collect the data required (i.e., to collect plant water stress by
collecting the thermal temperatures of individual leaves, resolution of a few
centimetres are required, where some of the satellites resolutions can be 5m - 30m
or more). Over time as satellite/technology improves we will see the spatial
resolution continuing to reduce.
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FIGURE 24. SATELLITES AND THEIR SPATIAL RESOLUTION SINCE 1999 (KHANAL ET AL. 2020).
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RS is used more widely in some parts of the world, therefore more comparison
studies are available to access. If limited studies are conducted in the area of
interest, then more baseline data may be required to be gathered before using the
RS method in the field. Figure 25 shows that Europe appears to be the leader in
Satellite-based studies across multiple sensors, whilst Australia trails behind in
both platforms and sensor types used in the field.
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FIGURE 25. SUMMARY OF AGRICULTURE REMOTE STUDIES BY GEOGRAPHIC REGION BY (A)
PLATFORM AND (B) SENSOR TYPE. (KHANAL ET AL. 2020).

When using satellites, planes and drones, the time of day the data is recorded must
be considered. Certain data types must be collected at certain times (i.e., plant water
stress thermal data should ideally be recorded around solar noon). If the data is not
collected at the correct time, then the data may be less useful or completely useless.
When the data is collected some filtering may need to be undertaken such as when
monitoring plant water stress, any background soils temperatures need to be
filtered.

With the increase in RS tools come other issues. What does the raw data mean? Can
the farmers get the data on a timely basis? s it a real-time or lagging indicator? Is
the data measuring what the farmer needs? How accurate is the data? Is the data
always available when the farmers need it? Do farmers need to calibrate new tools?
Farmers do not necessarily have the time, knowledge, or skills to compute all this
extra data to extrapolate specific insights that will improve their enterprise. Jones
et al. (2017) state that “one issue is how to make data acquisition and analytical
tools appropriate for and easy to use by farm-level decision-makers” (Jones et al.
2017). Shovelton et al. (2017) highlighted that "the correlations between NDVI and
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feed on offer varied between sites and seasonality, and there was no consistent
calibration to all situations". Higgins et al. (2018) also state the need for "high-
quality ground truth data for cross-validation".

The cost of the RS equipment (i.e., thermal camera) and the vehicle it is mounted on
can be cost-prohibitive for individual users. Calibration of the field equipment is
also important, especially when collecting data using different pieces of equipment
that then need to be combined for further calculation or interpretation. Having the
time to collect and interpret the data is also time consuming. Other issues may
involve special licence requirements (i.e., pilot license or drone licence) and
maintenance of equipment (drones, planes, thermal cameras, etc).

2.6.3 Capturing plant canopy Temperature in the field.

Figure 26 demonstrates results from fieldwork undertaken by Bucks et al. (1985)
that monitored the plant canopy temperature minus air temperature relative to
irrigation treatments. Figure 26 demonstrates that the wet/irrigated guayule has a
lower canopy temperature than an unwatered/dry plant. This variation in the
canopy temperature of a wet vs. dry plant along with the VPD is used in developing
the crop water stress index (CWSI).
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2.6.4 Crop water stress index (CWSI)

The Crop Water Stress Index has been developed and is used in industry to measure
the amount of plant water stress based on the canopy surface temperatures. The
CWSI has been demonstrated to be closely related to water availability in the root
zone of wheat crops (Jackson et al. 1981). The CWSI was calculated as proposed by
Idso et al. (1981). The empirical CWSI formulae used are as follows in Figure 27.

(Te — Ta) — (Tec — Ta);p
(Tc — Ta)ur — (Tc — Ta).r

CWSI =

FIGURE 27. CWSI FORMULAE

The (Tc - Ta) represents the canopy temperature less air temperature of a canopy
on the sampling day. The (Tc - Ta)LL represents the canopy temperature less air
temperature of a canopy transpiring at its maximum rate. The (Tc - Ta)UL
represents the canopy temperature less air temperature of a canopy when
transpiration is halted due to lack of moisture. The temperature to develop the
CWSI must be collected during daylight hours and clear skies.

To use the CWSI in the field, the user needs to know the canopy temperatures of a
stressed and non-stressed plant to use the CWSI formula. However, having a
stressed and non-stressed plant when using the CWSI is not always possible or
practical. Alternatively, a number of crops have already been studied, and their
stressed and non-stressed canopy temperatures have been recorded and turned
into stressed and non-stressed baselines. The CWSI development requires two
baselines specific for each site and crop (Idso, 1982; Gardner et al. 1992a; Nielsen,
1990). The upper baseline represents the canopy under full water stress with
minimal to no transpiration. The lower baseline represents the non-stressed plants,
where pastures/plants receive adequate water and are not limited in transpiration.
By taking the air temperature from the temperature of the canopy (Tc-Ta) and
knowing the VPD, the CWSI can be calculated from the baseline, as demonstrated
(Figure 28).
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FIGURE 28. VISUAL REPRESENTATION OF HOW CWSI CAN BE CALCULATED FROM BASELINES.

Idso et al. (1982) conducted experiments on numerous crops, such as beans, alfalfa,
lettuce, peas, squash, soybeans, etc., in varying locations (Kansas, Nebraska, Dakota,
Arizona, etc) where they collected data to develop the baselines. Similarly, Maes et
al. (2012) provide a long list of baselines developed by others over the years from
many countries (Kansas, lowa, California, Arizona, Turkey, Iran, Pakistan, Portugal,
Argentina, France, Texas, etc.) for many crops and species; however, in these lists
and other literature reviewed, there appear to be no references to annual ryegrass
pastures or mixed species pastures baselines, especially in Southeast Australia.

The CWSI can be calculated empirically, as reported by Idos et al. (1981), and
theoretically, as reported by Jackson et al. (1981). This work concentrates on the
empirical approach, using field measurements to calculate the baselines and CWSI.

Collecting canopy thermal data to develop CWSI is typically undertaken using
drones (UAV), planes and satellites. Figure 29 shows UAV sourced thermal data
used to develop the CWSI for an olive grove.

FIGURE 29. UAV SOURCED THERMAL DATA TO DEVELOP THE CWSI FOR AN OLIVE ORCHARD
IN SPAIN (BERNI ET AL. 2009).
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2.6.5 Issues Developing baselines.

While using CWSI and baselines can assist in identifying plant water stress in plants
early, there are numerous issues in collecting the data. In the supplementary data
in Maes et al. (2012) is an extensive list of non-water stressed baselines equations,
similarly, in Idso’s (1982) work there is a comprehensive list of baselines. Many
early baselines were developed in more arid parts of the world (Arizona, California,
Turkey, Iran, Texas, etc.) with limited work in the medium to high rainfall areas. A
lot of the early work on developing the CWSI was done in the USA by Idso in Arizona,
North Dakota, Nebraska, Kansas, etc, in arid environments with limited clouds.
Similarly, other work on baselines since Idso’s work has predominantly been in
Turkey, Arizona, Iran, Texas, etc. (Maes et al. 2012), typically more arid areas. Idso
(1981) mentions that his work was undertaken with clear skies with some thin
cirrus conditions; he further mentions that for other types of cloudiness, the
relationship begins to fall down, presumably due to changing illumination effects
on stomates (Idso, 1981).

Similarly, O'Shaughnessy (2020) acknowledged the problem regarding irrigation
scheduling by using instantaneous measurements taken over a short period near
solar noon, which may be influenced by passing clouds, wind gusts or other
micrometeorological incidents. Hipps (1985) discusses the small temporal
variability of radiation and wind in the arid areas where much of the early work
was undertaken and concludes that using the Tf - Ta (Temperature foliage -
Temperature air) has limited validity in regions with significant environmental
variability. Consideration needs to be given to the usefulness of using the CWSI in
non-arid regions.

Abdulelah et al. (2001). Stockle et al. (1992) found that the CWSI values for a non-
stressed crop determined using the empirical CWSI baseline approach changed
daily, especially under low VPD deficits. Abdulelah et al. (2001) also found that
canopy temperature differences between stressed and non-stressed crops are
usually small under low evaporative demand. Another finding by Jensen et al
(1989) was that the canopy temperature of either stressed or non-stressed wheat,
barley, rape and perennial ryegrass crops could fluctuate up to 6°C within a few
minutes to rapid changes in incident solar radiation. Environmental conditions
(cloud cover and wind) can change canopy temperatures quickly.

The CWSI is an index that is measured between '0' (non-stressed plant) and '1'
(stressed); however, using the data and baseline gathered from the plots, it was not
possible to get all results to lie between these extremes. Abdulelah et al. (2001) also
concluded that with their controlled environmental studies, there is strong
evidence that there is no easy way to get the empirical CWSI results to consistently
lie between 0 and 1. Similarly, the work by Wanjura et al. (1984) and Jalali-Farahani
et al. (1993) experienced some negative CWSI values in their calculations.

Haghverdi et al. (2021) report that the reported CWSI baselines for Turfgrass vary
widely in the literature and that specific baselines for each climatic region must be
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developed. Jalail-Farahani, H et al. (1993) also discussed how baselines are site-
specific. Adopting CWSI baselines derived from other countries, states, regions, or
cultivars could be problematic as varying climatic conditions and microclimates
exist, which can alter the CWSI from one place to another.

The CWSI can also be used as an irrigation trigger; when the CWSI reaches a specific
level, it will trigger irrigation to start or stop. If the CWSI is not localised, then the
CWSI trigger level may be wrong, and either over-watering or underwatering of a
crop can occur, resulting potentially in plant damage from overwatering or
reduction in production and plant death from underwatering, including the waste
of natural resources (water).

Australia has experienced three La Nina weather patterns in a row (2020, 2021,
2022 - Source BOM). La Nina can be associated with above-average rainfalls and
cooler days and nights in summer. With increasing variability in our climate, these
changing weather patterns may influence where the CWSI works more optimally.

The process of senescence (change in colour and loss of leaves) and the plant dying
may lead to changes in canopy temperature (Barbosa et al. 2005). Related to
senescence is the reduction in canopy with the background soil influence on the
infrared thermometer readings becoming more intensive. Barbosa et al. 2005 also
mention that clouds were an operational issue, affecting the net radiation when
collecting data, and that the field site is 60km from the Atlantic Ocean, which may
be a reason behind the intermittent cloud cover.

Recording a range of VPDs can be difficult, especially if the fieldwork data collection
time is short. Wanjura et al. (1984) highlighted that their VPD measurements did
not exceed 4.0 kPa in their fieldwork. Wanjura et al. (1984) also mention the
difficulty in recording canopy temperatures and how some of their plant canopies
were not large enough to mask the soil background, and the TC included some
contribution from the bare soil. Wanjura et al. (1984) also mention the possibility
that early season stress caused by hail, wind and the seedling disease damaged the
roots of many plants. Thus, their roots may be more resistant to water uptake than
healthier plants.

Other issues include the sensors used to measure canopy temperatures and the
weather stations used to derive the weather input data need to be evaluated and
potentially calibrated to ensure accurate results for the CWSI (Gonzalez-Dugo, V et
al. (2022). While the CWSI and associated baselines can be beneficial in monitoring
plant water stress in the field, numerous issues are involved with data gathering to
develop the baselines that can result in errors in the data gathered.

2.6.6 Baselines and their development

Figure 30 presents the results from experiments conducted by Idso et al. (1982) on
(a) non-stressed (well-watered) Alfalfa to generate the non-stressed baseline for
Alfalfa and (b) stressed soybeans to develop the stressed baseline for soybeans. To
develop these baselines, he collected the canopy temperature, air temperature and
VPD (Vapour pressure Deficit) over time.
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FIGURE 30. (A) NON-STRESSED ALFALFA (B) STRESSED SOYBEANS (SOURCE - IDSO ET AL.
(1982))

2.6.7 Comparing baselines

Figure 31 is an example of comparing baselines of different plants, species, and
varieties. It is noticeable how the different species have different stressed baselines
and how some are similar (i.e., barley and wheat (Idso, 1982)), whilst others vary
considerably, such as Bermuda Grass (Gonzalez-Dugo et al. 2022) and Turf grass
(Gonzalez-Dugo et al. 2022) to wheat (Idso, 1982), and cowpeas (Idso, 1982). It is
also noticeable how the growth stage can affect the baselines, such as in the wheat,
pre- and post-heading (Figure 31).
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Figure 32 compares Tall fescue, Hybrid Bermuda grass and Turfgrass, comparing
the Tc - Ta versus VPD for the different species. Even for the same grass, the
baselines can vary from one year to another as in the example in Figure 32 of the

tall Fescue.
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Similarly, Payero et al. (2005) compiled Figure 33, demonstrating the different non
stressed baselines that have been developed for Alfalfa, demonstrating how the
baseline can vary for different locations and seasons.
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FIGURE 33. NON-WATER STRESSED BASELINES REPORTED BY VARIOUS RESEARCHERS FOR ALFALFA
(PAYERO ET AL. (2005))

2.6.8 Use of CWSI to understand spatial variability in agriculture.

Using the point data provided by a soil moisture monitor in a paddock or from one
or two plant canopy temperatures gives the farmer a good understanding of what
is happening in part of their crop/pasture and the spatial variability in water status
across the whole paddock/farm gives the farmer a more comprehensive idea of
what is happening across their operations. Plant canopy temperatures obtained by
thermal infrared cameras that may be plane or drone-mounted can provide a more
extensive spatial data set to see what is happening across a field or farm. The
collected plant canopy temperatures can be used to develop the CWSI of the farm,
providing farm managers with a visual aid that tells them where any plant water
stress is occurring across their operations and allowing them to rectify the issue
where possible by applying irrigation in areas demonstrating high plant water
stress.

The use of thermal remote sensing uses have been undertaken and implemented in
other industries, assisting with identifying issues over a larger spatial area. Thermal
remote sensing has been widely used overseas and in Australia, but mainly for 'high
value' crops such as,

e Almonds (Garcia-Tejero et al. 2018)
e Maise (Daretal 2016),

59



e Wheat (Banerjee et al. 2020),

e Grape vines (Knipper et al. 2019),

e Nectarines (Park et al. 2017),

e Peaches (Parketal 2017),

e (Cotton (Bian et al. 2019, Conaty et al. 2012, Conaty et al. 2014)
e Conifers (Smigaj et al. 2017)

e Lentils (Bijuetal 2018)

e Potatoes (Rud etal 2011)

2.7 Knowledge Gaps

The literature review critically evaluated the scientific literature on what
biophysical models are used in agriculture, the use of the CWSI and the
development of baselines (stressed and non-stressed) to evaluate plant water
stress and how and where it has been applied.

With the climate variability faced by farms and the changes that climate change will
bring, the earlier farmers can detect changes in their pasture status, giving them
more time to react. Whether it is predicting how much pasture they can produce in
the months ahead or the plant water status of their pastures, the more farmers are
forewarned, the more time they have to plan.

Pasture growth forecasting.

Regarding biophysical modelling, limited tools are available for modelling pasture
production compared to biophysical models available in horticultural and cropping
industries. Limited work had also been undertaken on biophysical models and
using soil water content (SWC) to project pasture production in the following weeks
and months.

* Knowledge gap - limited research has been conducted to date linking
field soil water content to biophysical models to improve pasture growth
predictions for the month(s) ahead.

CWSI

The literature review highlighted the extensive global use of precision agriculture
in homogenous, high-value crops. However, it also showed that limited research has
been conducted on heterogeneous pastures and annual rye grass-based grazing
pastures, predominantly used by Australian farmers in SW Victoria. Minimal
examples in the literature could be found where CWSI of pastures had been used,
and no baselines could be found for annual ryegrass or mixed pastures in the
Australian context. Most of the CWSI work appeared to be in arid zones, with limited
work being undertaken in medium to high rainfall zones.

The use of precision agriculture to record the canopy temperatures of pastures in
Australia was limited. Numerous studies have been conducted using planes or
drones to remotely collect the thermal temperatures of horticultural crops in
Europe and the United States, with minimal reference to using these methods in
Australia on pastures. Similarly, there was minimal literature on using plant water
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stress and the CWSI to scale point data to the paddock or farm scale, enabling
farmers to monitor plant water stress of their pastures over broader areas.

* Knowledge gap - A lack of work has been undertaken using remote precision
agriculture to monitor plant water stress in single and multi-species
pastures in Southeast Australia.

* Knowledge gap - The literature review showed a lack of use of adaptive CWSI
to measure variability in pastures in Southeast Australia.

If some of these knowledge gaps can be filled with new insights and the results from
field trials, then the farmers of tomorrow should be able to more accurately predict
the pasture produced in their fields and be able to monitor the plant water status of
their pastures, identifying a stressed pasture prior to visual identification of wilting
and senescence. These new insights should result in improved pasture prediction
and use.
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3 Utilising soil water content to predict pasture growth rates in
Victoria, Australia.

3.1 Introduction

One of the major sources of variability in pasture-based livestock production
systems is the intra- and inter-annual variation in pasture production caused by
climate variations (Chapman et al. 2009). The variation in rainfall can have a
marked impact on the quantity and quality of pasture available to livestock from
season to season, and this variation impacts management decisions made at the
farm level such as stocking rate adjustments (Chapman et al. 2009) and purchasing
of supplementary feed (Clark et al. 2003). Managing these risks is important for
profitable and sustainable grazing systems. There is emerging evidence that
variability in pasture production in southern Australia has increased in recent
decades (Perera et al. 2020). The changes in seasonal pasture growth patterns
include increasing pasture growth rates in winter and early spring (Cullen et al
2012; Perera et al. 2020) and increased frequency of short spring growing seasons
(Bell et al. 2011; Perera et al. 2020). This increasing variability, together with
expectations that climate variability will continue to increase into the future
(Collins et al. 2021), places an increased emphasis on developing approaches to
understand climate variability and predict pasture growth rates in coming months
to manage climate risks in pasture-based livestock production systems.

In rain-fed cropping systems, SWC or Plant Available Water (PAW) is well
established as a useful indicator of future yield potential (Carberry et al. 2002, Foale
et al. 2004), and systems have been developed to store soil moisture prior to
planting in order to minimise climate risk (Hunt et al. 2011). Tools such as ‘Yield
Prophet’ have been developed to improve the understanding of seasonal climate
risk in cropping systems (Hochman et al. 2009) and to evaluate management input
decisions (such as nitrogen fertiliser rates) to improve decision making for grain
growers (Hunt et al. 2006). However, there has been much less research on the
value of SWC for managing climate risk in pasture-based livestock production
systems. Pasture systems have important differences from crop systems because
they are often based on perennial plants rather than annual species and generally
aim to supply year-round feed to meet the demands from livestock rather than a
single crop harvest.

Biophysical farm systems models of pasture-based livestock systems provide useful
tools for simulating the impacts of climate variability on pasture production using
long-term climate records. These tools simulate pasture production based on daily
climate, soil characteristics, pasture species and management (such as soil fertility
and grazing). Tools such as Grassgro (Moore et al. 1997) and the SGS Pasture model
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(Johnson et al. 2008) have been applied in southern Australia to simulate impacts
of climate variability, but there has not been any systematic assessment of the
usefulness of using SWC to predict pasture growth in the region. Simulation
modelling of the climate impacts will not be able to predict a single future outcome,
but it can guide in quantifying an uncertain future (Hayman et al. 2008). Presenting
probabilistic information as percentage chance of the outcome being in the lowest,
middle or highest third of possible outcomes has been shown to be an effective way
to communicate results of seasonal forecasting studies (McIntosh et al. 2005, Ash et
al. 2007).

The aim of the study was to assess the usefulness of SWC to predict pasture growth
in the following one to three months ahead using the SGS Pasture Model at three
sites across central and south-west Victoria, Australia. The study consisted of two
main components, first to validate the simulated SWC against measured data in the
field, and second to predict monthly pasture growth rates based on historically dry
(10th percentile), moderate (50t percentile) or wet (90t percentile) SWC on the
first day of each month.

3.2 Materials and Methods

3.2.1 Site Descriptions

Three sites were selected in central and south-west Victoria, Australia, to present
the range of climatic conditions in the region: Baynton (Lat -37.12, long 144.61);
Pigeon Ponds (Lat -37.29, long 141.67); and Dartmoor (-37.92, Long 141.27). The
sites all have a winter dominant rainfall pattern typical of temperate climates in
southern Australia (34). Pigeon Ponds was the lowest rainfall site (564 mm annual
average rainfall from 1990-2019, range 329-856 mm), Baynton was intermediate
(690 mm average annual rainfall, range 408-1153 mm) and Dartmoor was the
highest (754, range 482-977 mm). Monthly rainfall and temperatures are shown in
Figure 34.
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The pastures consisted of phalaris (Phalaris aquatica L.) and sub-clover (Trifolium
subterraneum) at Baynton (also a small proportion of annual weeds) and Pigeon
Ponds, while at Dartmoor the pasture species were phalaris, lucerne (Medicago
sativa L.) and perennial ryegrass (Lolium perenne). The soil physical characteristics
and water holding capacities used in the simulation study for each site are
summarised in Table 1. Soil moisture probes (Enviropro capacitance probe — 80cm,
connected with MAIT logger and telemetry) were installed in February 2018 in the
paddocks. The probes measure and collect SWC up to 80cm deep every hour. The
sensor data was sourced from Agriculture Victoria online (source -
https://extensionaus.com.au/soilmoisturemonitoring).
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TABLE 1. PHYSICAL CHARACTERISTICS AND SOIL WATER HOLDING PARAMETERS, INCLUDING SATURATED
WATER CONTENT, FIELD CAPACITY AND WILTING POINT (ALL % VOLUMETRIC) AT THE THREE SITES.

Pigeon Ponds Baynton Dartmoor
5 —-|30 -8 - 50 - 50 -
Soil Profile Depth 0-5 0-50 0-50
oil Profile Depth (cm) 30 |80 140 150 150
Sand Sand Sand!
Soil Texture Loam Clay | Clay Clay Y Clay ¢ y
loam loam clay
Saturat hydrauli
aturated - hydraulic | ;) 10 |14 6 62 |36 324 |67
conductivity (cm/day)
Saturat t
aturated water | 5o 41 | aa 48 40 50 42 48
content (% volumetric)
Field Capacity (9
eld .apauy (% 31 27 34 36 29 46 27 40
volumetric)
Wilting  Point (%
. 11 15 29 32 17 28 11 19
volumetric)

3.2.2 Validation of predicted SWC

At each of the three sites the daily SGS Pasture model predicted volumetric SWC
was compared to the SWC measured by the in-field sensors for the period 1 June
2019 to 31 December 2021. The simulations used the SGS Pasture model (Johnson
et al. 2003, 2008). The soil type and pasture species were defined in the model as
described in Table 1. Climate data for each site was obtained through the closest
Bureau of Meteorology site accessed through the SILO website
(https://www.longpaddock.qld.gov.au/silo/, Jeffrey et al. 2001) Baynton (Station
88073), Pigeon Ponds (Station 89003) and Dartmoor (Station 90032).

The measured relative SWC from in-field moisture probes and the modelled SWC
(from SGS pasture model) were used to determine if the SGS Pasture model could
realistically simulate the measured patterns of SWC change over time. The in-field
sensors were not calibrated (e.g., to field capacity and wilting point) so provided a
relative SWC, but on a different scale to the modelled volumetric SWC. To express
the in-field sensor SWC on the same scale as the SGS pasture model predicted
volumetric SWC, the following procedure was used:

1. The range of the in-field sensor relative SWC was calculated for the period,
using the 95t percentile as the upper limit and 5t percentile as the lower
limit,

2. The in-field sensor daily measured relative SWC minus the lower limit was
calculated as a proportion of the range,

3. The range of the SGS Pasture volumetric SWC was calculated for the period,
using the 95t percentile as the upper limit and 5t percentile as the lower
limit,

4. The daily in-field sensor proportion (point 2) was multiplied by the range of
SGS volumetric SWC (point 3) plus the lower limit to give the equivalent
volumetric soil water content.
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For example, at Baynton on 1 June 2019,

¢ the range of the in-field sensor relative SWC was 23-61%.

e on the date of 1st June 2019, the in-field sensor measured relative SWC was
48% and the range of data which is 0.66 of the range {[48-23]/[61-23]=
0.66}.

e the range of the SGS Pasture model volumetric SWC was 16.5-33.4%

e the proportion (point 2) was multiplied by the range from the SGS model
data and the lower limit was added {[0.66*(33.4-16.5)]+16.5 = 27.7}.

This calculation was completed daily for all three sites. The daily measured and
modelled SWC were compared, with linear trendline and coefficient of
determination computed using Microsoft Excel.

3.2.3 Modelling the effect of SWC on pasture growth rate

At each of the sites the effects of historically ‘dry’, ‘moderate’ and ‘wet’ SWC on the
first day of each month on pasture growth rates over the following 4 months was
simulated, and results expressed relative to the historical distribution of pasture
growth using ‘low’, ‘mid’ and ‘high’ terciles. The first step in the modelling process
was to run long-term simulations at each site to predict the historical variation in
SWC and pasture growth rates. The SGS Pasture model was used to simulate each
site using climate data from 1990-2020. A cut trial was implemented in the model,
with pasture cut to 1 t DM/ha on the last day of each month, and soil fertility was
assumed to be unlimited so that the predicted pasture growth rates reflected the
climate variation and not other management factors.

To determine the historically ‘dry’, ‘moderate’ and ‘wet’ SWC on the first day of each
month, the plant available water (PAW) was calculated from the SGS pasture model
predicted SWC for the soil depth from 0-50 cm. The PAW calculation was the SWC
- Wilting point (WP) multiplied for the depth for intervals from surface to 50cm
depth. Depths were 0-2cm, 2cm - 5¢cm, 5cm- 10cm, 10cm -15¢cm, 15¢cm -20cm, 20cm
-30cm, 30cm - 40 cm and 40cm -50cm. The PAW on the first day of each month
from each year (1990-2020) was used to determine historically ‘dry’ (0.1
percentile), ‘moderate’ (0.5 percentile) and ‘wet’ (0.9 percentile) conditions. The
individual years representing ‘dry’, ‘moderate’ and ‘wet’ conditions were identified
and the modelled SWC on that day was used to initialise the model. The ‘dry’,
‘moderate’ and ‘wet’ PAW for each month is shown in Figure 35.

The effect of ‘dry’, ‘moderate’ and ‘wet’ SWC on the first day each month on pasture
growth rates over the following four months was simulated using the ‘soil water
reset’ function in the SGS Pasture model. The simulations were run using climate
data for 1990-2020 with the SWC in the model reset to the appropriate SWC on the
date in each year. The simulations were conducted as a cut trial with no soil nutrient
limitation, using the same modelling approach described above. A total of 108
simulations were completed (3 sites x 3 SWC x 12 months). The daily ‘net positive
growth rate’ simulated by the SGS Pasture model was averaged for each month, and
then categorised into the ‘low’, ‘mid’ or ‘high’ terciles of pasture growth according
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to the categories described above. Results are presented as the percentage chance
of the simulated pasture growth rate being in each tercile, similar to the ‘chocolate
wheel’ approach described by McIntosh et al. (2005).
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FIGURE 35. PLANT AVAILABLE WATER FOR THREE PERCENTILES “DRY” (0.1 PERCENTILE),

‘MODERATE’ (0.5 PERCENTILE), ‘WET’ (0.9 PERCENTILE) ON THE FIRST DAY OF EACH MONTH
AT (A) PIGEON PONDS, (B) BAYNTON), AND (C) DARTMOOR.
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In this study, a 30% increase in the chance of the predicted pasture growth rate
being in a tercile was used as an indicator of when the forecast would be useful to a
land manager (i.e. without knowing the SWC there is a 33% chance of the predicted
pasture growth rate being in the each of the terciles, but when this increases to 43%
or greater the forecast was considered useful). This threshold was based on the
conclusion of Ash et al. (2007) who found that a seasonal climate forecast of above
or below median rainfall needed to be at least 65% accurate (i.e. a 30% increase in
the change of above or below the median) to achieve adoption by farmers.

3.3 Results
3.3.1 Validation of predicted SWC

The time series of measured relative SWC and predicted SWC from the SGS pasture
model at 20 cm soil depth is presented in Figure 36. Visual inspection of the figure
indicates that there was overall good agreement in the timing of wetting up and
drying down between the measured and predicted data, however there were some
points that were not well simulated. The regression equations for the daily data
plotted as measured vs. predicted were at Baynton (Y= 0.89x + 1.87, R2 = 0.73),
Pigeon Ponds (Y=0.81x + 3.8, RZ = 0.55) and Dartmoor (Y = 0.97x + 1.1, Rz = 0.85).
The SWC validation data for other soil depths is provided as supplementary
information to this chapter.
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FIGURE 36. DAILY MEASURED RELATIVE SWC AND PREDICTED SWC FROM THE SGS
PASTURE MODEL AT 20 cM AT (A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR.

3.3.2 Pasture Growth Rates

The long-term simulated pasture growth rates for Baynton, Pigeon Ponds and
Dartmoor are shown in Figure 37. The terciles are indicated on the Figures as the
areas below the 33rd percentile line (low tercile), between the 33rd and 66th
percentile (mid tercile), and greater than 66t percentile (high tercile). The time of
highest variability in pasture growth rates in autumn and spring at Baynton and
Pigeon Ponds, and spring and summer at Dartmoor (Figure 37). Pasture growth
rates in the winter months had low variability. For example, pasture growth rates
varied from 20-120 kg DM/ha.day at Baynton in late spring whereas during winter
the variation only ranged between 10 - 20 kg DM /ha.day. Similarly, at Pigeon Ponds
during late spring the pasture growth rates varied from 0- 120 kg DM/ha.day
depending on the season, whilst in late summer pasture growth rates were low. At
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the Dartmoor site, lucerne-based pasture growth rates in summer varied from 15-
100 kg DM /ha.day compared to 10 - 20 kg DM /ha.day in winter.
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FIGURE 37. SIMULATED MONTHLY AVERAGE PASTURE GROWTH RATES (KG DM /HA.DAY) AT
(A) PIGEON PONDS, (B) BAYNTON, (C) DARTMOOR. THE SHADED AREA SHOWS THE RANGE
OF PASTURE GROWTH RATES, THE DARK LINE THE 33RP PERCENTILE AND LIGHT LINE THE
66™ PERCENTILE. SHADED AREAS BELOW THE 33RP PERCENTILE LINE REPRESENTS THE LOW
TERCILE, BETWEEN THE 33RP AND 66™ PERCENTILE LINE THE MID TERCILE), AND ABOVE THE
66™ PERCENTILE THE HIGH TERCILE.

71



3.3.3 Pasture growth predictions using SWC

The results for the three sites showing the percent chance of predicted pasture
growth being in the Low, Mid and Upper tercile are shown in Tables 2-4. The SGS
simulation model results showed that SWC at the start of each month influenced the
pasture growth rates, notably during the Australian spring and autumn for phalaris
based pastures but had minimal effect during winter and summer for phalaris based
pastures. There were some differences between the sites, reflecting the different
patterns of SWC (Figure 36) and pasture growth (Figure 37) variability at the sites.

For Baynton (Table 3) in Spring, the data demonstrates that if it is dry in September
and October there is an increased chance of growth being in the mid to low tercile
over the following two months. For Pigeon Ponds (Table 2) the data demonstrates
that if itis dry in November, there is an increased chance of being in the low tercile
growth, whereas a wet SWC in November increases the chance of high tercile
growth. For Dartmoor (Table 4) the effects of SWC are more pronounced in the late
spring and summer than at other times of year.

For Baynton the results show SWC in Autumn has an impact on pasture production
in the following months. A dry SWC in March indicated growth being in the lower
tercile throughout Autumn, where a wet SWC increased the chance of growth being
in the high tercile in April and May. For Pigeon Ponds with a wet SWC, the results
show increased chance of growth in the high tercile in Autumn. For Dartmoor with
a wet SWC the results show growth being in the higher tercile in early Autumn
(March).

The majority of the results for the three sites when calculating the percent chance
of predicted pasture growth being in the Low, Mid and Upper tercile appear with
higher pasture production predicted when there was higher SWC, however there
are some cases that do not fit with what would have been expected (Tables 2-4).
The February Pigeon Ponds result seems inconsistent with the rest of the results
because all three initial SWCs predicted an increased chance of low tercile growth
in the prediction months, and increased chance of high tercile in +2 and +3 months.
February does have the lowest pasture growth rate, so very small differences in
predicted growth rates can result in different tercile being predicted. Similarly at
Dartmoor, the dry SWC in April predicted a 43% chance of High tercile where one
would expect a lower tercile, as the lucerne growing season is coming to an end.
Different subsoil moisture content may explain this result.

72



TABLE 2. SUMMARISED RESULTS FOR PIGEON PONDS SHOWING PERCENT CHANCE OF PREDICTED PASTURE
GROWTH BEING IN THE Low, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN GREEN,
MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE.

Pigeon Ponds Prediction + 1 month + 2 months + 3 months
month
SWC % chance predicted pasture growth rate in each tercile
Low,Mid,High | Low,Mid,High | Low,Mid,High | Low,Mid,High
January Dry 35,32,32 38,27,35 27,32,41 27,32,41
January Med 38,27,35 35,24,41 27,30,43 27,32,41
January Wet 38,27,35 35,24,41 24,32,43 22,35,43
February Dry 43,27,30 30,32,38 19,38,43 16,27,57
February Med 43,27,30 30,30,41 19,30,51 11,30,59
February Wet 43,27,30 30,30,41 19,32,49 11,30,59
March Dry 30,38,32 41,35,24 46,30,24 38,38,24
March Med 32,32,35 38,32,30 38,35,27 35,41,24
March Wet 35,30,35 22,27,51 8,32,59 19,38,43
April Dry 32,27,41 32,27,41 24,41,35 27,24,49
April Med 32,27,41 19,41,41 22,38,41 27,22,51
April Wet 22,30,49 8,32,59 19,43,38 30,27,43
May Dry 32,32,35 27,35,38 30,24,46 30,32,38
May Med 24,3541 27,38,35 30,32,38 32,32,35
May Wet 16,32,51 30,46,24 32,35,32 35,30,35
June Dry 32,35,32 35,30,35 30,35,35 32,32,35
June Med 27,38,35 35,27,38 35,30,35 30,35,35
June Wet 32,35,32 35,30,35 35,30,35 30,35,35
July Dry 32,30,38 32,32,35 32,32,35 35,30,35
July Med 38,27,35 32,32,35 30,35,35 35,30,35
July Wet 38,27,35 35,30,35 30,35,35 35,30,35
August Dry 32,32,35 30,35,35 35,30,35 32,32,35
August Med 32,32,35 30,35,35 35,30,35 32,32,35
August Wet 35,30,35 30,35,35 35,30,35 32,32,35
September Dry 32,32,35 41,27,32 38,27,35 38,27,35
September Med 30,35,35 32,27,41 32,32,35 32,32,35
September Wet 35,32,32 32,27,41 32,32,35 32,32,35
October Dry 38,27,35 41,30,30 43,27,30 32,35,32
October Med 27,24,49 32,30,38 30,35,35 32,35,32
October Wet 24,24,51 32,30,38 30,35,35 32,35,32
November Dry 46,41,14 49,2427 32,35,32 30,24,46
November  |Med 41,35,24 46,27,27 35,32,32 30,32,38
November Wet 24,24,51 30,30,41 35,35,30 35,30,35
December Dry 35,35,30 35,32,32 35,24,41 30,32,38
December Med 30,32,38 43,24,32 35,27,38 30,32,38
December Wet 27,32,41 46,19,35 35,24,41 32,27,41
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TABLE 3. SUMMARISED RESULTS FOR BAYNTON SHOWING THE PERCENT CHANCE OF PREDICTED PASTURE
GROWTH BEING IN THE Low, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN GREEN,
MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE.

Baynton Prediction +1 month + 2 months + 3 months
month
SWC % chance predicted pasture growth rate in each tercile
Low,Mid,High | Low,Mid,High | Low,Mid,High | Low,Mid,High
January Dry 32,38,30 32,41,27 38,35,27 51, 24,24
January Med 30,38,32 35,38,27 35,32,32 35,38,27
January Wet 32,22,46 30,35,35 32,30,38 24,41,35
February |Dry 30,41,30 38,46,16 68,11,22 65,16,19
February |Med 30,32,38 32,30,38 22,30,49 14,30,57
February |Wet 35,27,38 32,27,41 16,24,59 8,19,73
March Dry 41,43,16 76,5,19 73,11,16 73,14,14
March Med 32,30,38 22,38,41 16,32,51 22,35,43
March Wet 32,30,38 14,27,59 8,19,73 24,22,54
April Dry 73,16,11 65,22,14 65,27,8 41,43,16
April Med 43,43,14 49,32,19 41,43,16 32,38,30
April Wet 14,27,59 11,24,65 32,32,35 32,32,35
May Dry 86,14,0 70,19,11 49,32,19 38,38,24
May Med 24,30,46 32,27,41 32,30,38 32,32,35
May Wet 22,32,46 32,41,27 38,30,32 38,30,32
June Dry 32,32,35 35,27,38 32,35,32 35,32,32
June Med 32,32,35 32,30,38 32,30,38 35,32,32
June Wet 32,35,32 38,27,35 32,35,32 35,32,32
July Dry 32,35,32 30,35,35 32,38,30 38,27,35
July Med 30,30,41 30,38,32 35,30,35 35,30,35
July Wet 35,27,38 32,35,32 35,32,32 32,32,35
August Dry 27,41,32 35,32,32 32,32,35 32,32,35
August Med 27,41,32 32,35,32 32,32,35 32,32,35
August Wet 27,41,32 35,32,32 32,32,35 32,32,35
September |Dry 32,43,24 43,27,30 40,27,32 37,29,32
September |Med 32,32,35 32,24,43 30,35,35 32,32,35
September |Wet 32,35,32 32,27,41 32,32,35 32,32,35
October Dry 54,24,22 43,35,22 46,24,30 38,30,32
October Med 24,32,43 30,38,32 38,30,32 35,30,35
October Wet 24,32,43 19,49,32 32,35,32 35,30,35
November |Dry 27,54,19 35,35,30 32,30,38 35,35,30
November |Med 16,43,41 24,38,38 32,30,38 32,38,30
November |Wet 16,43,41 24,38,38 32,30,38 32,38,30
December |Dry 27,35,38 35,24,41 35,30,35 32,30,35
December |Med 22,38,41 32,27,41 32,32,35 32,30,38
December |Wet 22,38,41 32,27,41 35,30,35 32,30,38
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TABLE 4. SUMMARISED RESULTS FOR DARTMOOR SHOWING THE PERCENT CHANCE OF PREDICTED
PASTURE GROWTH BEING IN THE Low, MID AND UPPER TERCILE. UPPER TERCILE ABOVE 43 SHADED IN
GREEN, MID TERCILE ABOVE 43 SHADED IN GREY AND LOWER TERCILE ABOVE 43 SHADED IN ORANGE.

Dartmoor Prediction + 1 month + 2 months + 3 months
month
SWC % chance predicted pasture growth rate in each tercile
Low,Mid,High | Low,Mid,High | Low,Mid,High | Low,Mid,High
January Dry 89,5,5 73,22,5 59,32,8 65,16,19
January Med 51,24,24 49,43,8 46,43,11 49,30,22
January Wet 3,11,86 0,35,65 5,41,54 30,14,57
February Dry 51,46,3 43,41,16 49,19,32 35,38,27
February Med 0,0,100 0,11,89 8,27,65 16,32,51
February Wet 0,3,97 0,32,68 22,27,51 22,35,43
March Dry 11,59,30 38,19,43 30,35,35 30,35,35
March Med 3,62,35 30,19,51 27,35,38 27,38,35
March Wet 0,46,54 27,27,46 24,38,38 30,35,35
April Dry 14,38,49 22,35,43 24,41,35 38,27,35
April Med 14,30,57 27,27,46 24,38,38 38,30,32
April Wet 11,19,70 22,27,51 22,38,41 38,27,35
May Dry 27,38,35 24,38,38 32,32,35 32,32,35
May Med 27,38,35 27,35,38 32,32,35 32,32,35
May Wet 27,35,38 24,38,38 35,30,35 35,32,32
June Dry 27,35,38 32,32,35 32,32,35 30,32,38
June Med 32,32,35 32,32,35 32,32,35 30,35,35
June Wet 32,32,35 32.32.35 32,32,35 32,32,35
July Dry 32,32,35 35,30,35 30,35,35 30,35,35
July Med 32,32,35 32,32,35 27,38,35 30,35,35
July Wet 35,30,35 38,30,32 35,32,32 30,38,32
August Dry 35,30,35 35,32,32 30,35,35 32,35,32
August Med 35,30,35 35,32,32 32,32,35 32,35,32
August Wet 35,30,35 35,30,35 32,32,35 32,32,35
September |Dry 32,32,35 32,35,32 32,32,35 27,38,35
September |Med 32,30,38 30,35,35 32,32,35 24,41,35
September |Wet 32,32,35 32,32,35 32,32,35 27,38,35
October Dry 35,27,38 32,32,35 32,38,30 41,30,30
October Med 30,32,38 32,32,35 32,35,32 35,32,32
October Wet 30,38,32 30,35,35 24,41,35 27,35,38
November Dry 32,43,24 35,32,32 51,16,32 27,59,14
November |Med 30,32,38 38,30,32 49,19,32 27,59,14
November |Wet 27,32,41 24,3541 11,38,51 16,41,43
December Dry 57,22,22 70,14,16 57,38,5 46,43,11
December Med 27,41,32 62,14,24 41,54,5 46,41,14
December Wet 27,35,38 8,24,68 5,46,49 8,49,43
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3.4 Discussion

This study examined the role of SWC in predicting pasture growth in the months
ahead at three sites across Victoria, Australia. The spring and autumn period is
typically when SWC can limit pasture growth. This research demonstrates that SWC
can be used to improve the prediction of pasture growth rates at these times. For
Baynton the main growth periods were October to January with some growth
occurring in March to April. For Pigeon Ponds the main growth periods was October
to December. Dartmoor also demonstrated that the predictions for lucerne
demonstrate a large variation in October through to March/April depending on the
starting SWC.

In the Dartmoor scenario (Table 4) the December, wet, at one month gave a 68% of
“High” chance of predicted pasture growth, where at the +2month and +3month it
gave a 49% and 43% chance respectively. The higher percentage in this example
would indicate a more reliable prediction at the one month than the later months
(Harrison et al. 2017). One observation was that in a ‘dry’ start to a month, that
month’s pasture production may be in the lower tercile due to the dry SWC,
however it did not mean the following months would remain in the lower tercile.
Whilst a low SWC may affect that month’s pasture production there can still be a
possibility of a rainfall event(s) occurring that will lift a ‘dry’ SWC to a ‘medium’ or
‘high’ SWC which can lead to an increase in pasture production. An example of this
is in Dartmoor in a dry January, if sufficient rains are received, the following month
can still be in the positive growth tercile (i.e. 68%).

The predicted impact of SWC on pasture growth over successive months can be
estimated using a weighted average approach from the data provided in Tables 2-4
and the tercile growth rates in Figures 37. For example, at Pigeon Ponds in October,
if the SWCis dry (20mm) then there is a 38,27,35% chance of low medium and high
terciles compared to 24,24,51% if the SWC is wet (60mm). This leads to a weighted
average predicted growth rate of 52kg DM /ha.day if the SWC is dry, compared to a
56kg DM/ha if the SWC is wet. Over a 4-month period (Oct to Jan) this would
translate to an average 3,596kg DM /ha for a wet SWC and 2,750kg DM /ha for a dry
SWC. Similarly for Baynton in April, if the SWC is dry (40 mm) then this could lead
to 21kg DM/ha, compared to a 33kg DM /ha if the SWC is wet. Over a 4-month period
(April to July) this would translate to an average 2,735kg DM /ha for a wet SWC and
2,272kg DM/ha for a dry SWC. In Dartmoor in December, if the SWC is dry it would
lead to 69kg DM /ha.day, compared to a 75kg DM /ha.day if the SWC is wet. Over a
4-month period (Dec to Mar) this would translate to an average 8,512kg DM /ha for
awet SWC and 6,463kg DM /ha for a dry SWC. These predictions in pasture growth
production could assist farmers in managing and planning their fodder budgets.

The results are largely expected as the literature highlighted the increase in pasture
growth in spring and autumn with limited growth in winter and summer as the
pastures are either limited by temperature or SWC (Rawnsley et al. (2013), Clark et
al. (2003), Pereraetal. (2020)). The ability of the model to predict ahead two - three
months and give a tercile prediction dependent on a starting SWC whilst partially
could provide valuable information to a farmer who is making decisions such as to
change stocking rates (Ash et al. 2007). One issue with relying on SWC as a predictor
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of pasture growth rates is the limited amount of lead time the results give the
farmer to make a decision and then act on that decision for example, by decreasing
stock or buying hay.

Other studies have also demonstrated similar findings to the data presented here.
Cullen et al. (2012) used soil water to predict pasture growth rates and noted that
the knowledge of SWC can be valuable when looking at pasture growth rates in
autumn and spring, when variability is high. They also noted that SWC in the winter
and summer months did not impact on future pasture growth rate. Chapman et al.
(2009) also highlighted the variability in pasture growth outcomes is driven by the
interannual variability in rainfall (and its availability to the plant in soil water) and
of the variability of pasture growth within a year (seasonal variation) and between
years (interannual variation). Brown et al. (2019) acknowledged the year-to-year
fluctuations in rainfall and how this affects pasture growth and as a result the
difficulties in aligning stock numbers and forage supply. Brown et al. (2019) also
discusses the issue of knowing potential pasture growth ahead of time could lead to
more proactive approach in fodder management. If the farmer knew now that the
next three months are looking poor for pasture growth, they can make decisions
earlier. Knowing if the next two/three months is tending towards the upper or
lower tercile can allow farmers to manage the risks of over or under stocking, of
having adequate supplementary feeding available if required. Rawnsley et al
(2013) also had similar findings of a strong seasonality and high inter annual
variation in feed supply. Ash et al. (2007) highlights the need to receive the
information in a timely manner, where the farmer has time to act on the data.

In other industries such as annual cropping, modelling approaches utilising
historical climate records in combination with seasonal forecast data to predict
potential crop yield (Hunt et al. 2006) are undertaken. Similarly, Brown et al. (2018)
looked at the use of integrating dynamic seasonal climate models when forecasting
crop yield predictions in the Australian cropping zone and found that seasonal
climate forecasts provide more definitive and accurate crop yield predictions than
when seasonal climate forecasts were not used. Combining seasonal forecasts into
the SGS pasture model instead of relying on historical climate data may improve the
pasture predictions further, similar to work undertaken by Harrison et al. (2017).

The validation demonstrated that the modelled SWC from the SGS model was very
similar to the actual SWC for the three sites. Whilst there are some variations
between the two data sets, they tend to follow a similar drying down and wetting
up sequence (Figure 36). This validation work is important to ensure the modelled
data is an accurate representation of what is happening in the ground. Having
confidence in the modelled data increases confidence for the modelling of SWC to
predict the pasture growth at the three sites (Baynton, Dartmoor, Pigeon Ponds) in
Victoria.

3.5 Conclusion

The spring and autumn period is typically when SWC can limit pasture growth. This
research demonstrates that SWC can be used to improve the prediction of pasture
growth rates at these times. The predicted pasture output tables were able to
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display tercile probabilities for the month of prediction and the following three
months given a dry, medium, or wet SWC at the start of the month. One issue with
relying on SWC as a predictor of pasture growth rates is the limited amount of lead
time the results give the farmer to make a decision and then act on that decision by
decreasing stock, buying hay or the like. Some locations appear to have an
extremely short lead time (Pigeon Ponds) whilst other sites with longer growing
season (Dartmoor), give the farmer a lot more time to react to the forecast.
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Validation of predicted Soil Water Content (SWC).
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4 A Crop Water Stress Index for a phalaris (Phalaris aquatica L)
and subterranean clover (Trifolium subterraneum L) pasture in
southeastern Australia.

4.1 Introduction

Field-grown pasture is the main and cheapest form of feedstock for cattle and sheep
in southern Australia (Perera et al. 2020; Chapman et al. 2009) and many other
regions around the world. Climate, particularly rainfall variability, is one of the
significant sources of intra- and inter-annual variation in pasture growth (Chapman
et al. 2009). In the temperate and Mediterranean climates of southern Australia,
pasture growth is primarily limited by water availability from mid-late spring to the
time of the opening rains in autumn, while appropriate spring and autumn
temperatures, nutrients, disease and other management practices (overgrazing)
can also affect pasture growth. As soil moisture reduces, plant transpiration
declines and the leaf’'s temperature increases along with a reduction in
photosynthesis (Idso et al. 1981). Water deficits occur in plants when evaporative
demand exceeds the water supply in the soil (Slatyer, 1967). Where there is
inadequate water for the plant, the water stress causes partial or complete stomatal
closure and reduction in transpiration rates, and the reduced evaporative cooling
raises the canopy temperature in relation to the ambient temperature (Jones,
1998).

Canopy temperature is generally accepted as an indirect, rapid, accurate and large-
scale indicator of crop water stress (Gonzalez-Dugo. et al. 2022). Canopy
temperature is considered a reliable proxy for plant water stress monitoring and
irrigation scheduling (Tanner, 1963; Idso et al. 1984; Steele et al. 1994). Different
plants and species respond differently to water stress as they can have different
transpiration rates (Gonzalez-Dugo, V et al. 2022) and, as a result, have a different
crop water stress index (CWSI). For example, different turfgrass species (Turfgrass
Tifway Bermuda (Cynodon dactylon x C. transvaalensis), Meyer zoysia (Zoysia
japonica), Common Centipede (Eremochloa ophiuroides), Common Bermuda
(Cynodon dactylon), all have different CWSI as result of how they react to plant
water stress (Gonzalez-Dugo et al. 2022). Different transpiration rates can also
occur at different stages in a plant's growth stages, which Idso (1982) found in his
work on barley (Hordeum vulgare) and wheat (Triticum). The use of a thermal infra-
red thermometer to assess water stress was initially proposed by Jackson et al
(1977). In the absence of biotic stress such as from fungi, bacteria, or viruses, the
restrictions in canopy growth under sub-optimal water levels is generally related
to stomatal closure (Jones, 1998) and chlorosis (Shimshi, 1967), resulting in both
water and nutrient stress due to limited uptake from the roots (Zarco-Tejada,
2021).

Changes in plant canopy temperatures due to water availability have been studied
extensively in other crops such as alfalfa (Medicago sativa), tomatoes (Lycopersicum
esculentum), sunflowers (Helianthus annus), turnips (Brassica rapa), potatoes
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(Solanum tuberosum), lettuce (Lactuca scariola), beet (Beta vulgaris), cotton
(Gossypium hirstum), cowpeas (Vigna catjang Walp)), soybeans (Glycine max), peas
(Pism sativum), etc. (Idso, 1982). However, none has been undertaken on pastures.
Non-water stressed baselines (NWSB) can be developed by conducting
experiments to measure canopy temperatures, air temperature and Vapour
Pressure Deficit (VPD) of a well-watered plant transpiring at its potential rate over
time (Idso, 1982). In developing the baselines, clear sky conditions (Idso, 1982) are
required, as well as consideration of the plant's growth stage (i.e., for grain crops
pre-heading or post-heading, Idso 1982). The NWSB for different plants and species
generate different slopes, which have an effect on the CWSI calculations (Gonzalez-
Dugo, V et al. 2022). Many NWSBs have been developed and reported by Idso
(1982) and Maes et al. (2012).

The Tc - Ta values for the upper stressed baseline can be manually calculated
similar to the stressed baselines calculated by Irmak et al. (2000), where they
averaged their upper baseline values for Tc-Ta and drew the stressed baselines
parallel to the VPD for this point.

The CWSI has been predominantly used to monitor the CWSI spatially across
homogeneous crops/orchards globally (Gonzalez-Dugo et al. 2022) and across
different orchard tree species; however, these different orchard tree species are
typically located where a particular species is planted together, with different
species planted in different sections. Some work has been undertaken on
attempting to use the CWSI in non-homogeneous areas such as a wetland as has
been attempted by Ciezkowski et al. (2020), and Liu et al. (2020) undertook work
measuring CWSI in ‘non-managed’ ecosystems (Australian bush context).

The baselines can vary depending on which type of plant, the cultivar, the stage of
growth, and the prevailing environmental conditions (Gonzalez-Dugo, V et al
2022) and can change from month to month. In developing the baselines,
consideration needs to be given to the weather conditions at the time of
temperature data gathering, such as solar radiation and wind speed (Gonzalez-
Dugo, V et al. 2022), as these can affect the thermal temperatures of the canopy
being measured.

Most work to date developing baselines has been undertaken on horticultural
crops, with limited work to date undertaken on pastures. This study aimed to
develop the stressed and non-stressed baselines and the CWSI for pastures in
Southeast Australia.

Hypothesis

The pasture canopy temperatures from the treatment plots, along with climate data,
can be used to develop stressed and non-stressed baselines that can then be used
to develop a CWSI for pasture. Remotely gathered thermal infrared data can be used
to develop the CWSI on a broader scale across a paddock(s).

4.2 Material and Methods

82



4.2.1 Experimental design and plot management

Study Area, Agricultural practices, and pasture growth.

The field experiment was set up on a commercial farm in Murroon, in the Otway’s
(38°27°S. 143°50’S, 273m alt.) in southwest Victoria and ran from October 2020 to
January 2022. Two treatment plots were set up in the paddock: a well-watered
(non-stressed) and a rainfall-only (stressed) plot. The pastures were
predominantly Phalaris (Phalaris aquatica L) with a small amount of Clover
(Trifolium subterraneum L) and Dandelion (Taraxacum officinalis) weeds. A
permanent thermal canopy sensor was installed in each plot, along with soil
moisture probes and a weather station. The property has been a beef production
enterprise for over 20 years.

Yearlings are typically bought at the local Colac market, held for approximately 12
months and then sold back into the local market. The cattle rely on pastures that
are solely dependent on rainfall. Animal numbers are managed to align with fodder
availability, with a higher stocking rate during the Spring and a reduced stocking
rate throughout the Winter. Minimal extra fodder (hay) is brought onto the
property, and hay/silage is not cut. Pastures are maintained with routine spraying
of woody weeds and annual applications of fertilizer. A loose form of rotational
grazing is practised. The farm has a mixture of flat areas and several hills and gullies
with small creeks and dams (Figure 38). The soil type is a Sandy Loam (Colac Map
sheet). Geological maps indicate the pasture covers a range of Cretaceous age,
Eumeralla Formation, which is part of the Otway Group of soils (Geovic). The field
trials were undertaken in a relatively flat area of the farm, as shown in Figure 38.
To the east, a small creek and rolling hills can be observed from the topographic
map below.

FIGURE 38. TOPOGRAPHIC MAP OF THE PROPERTY WITH A BLACK CIRCLE INDICATING THE
LOCATION OF STRESSED AND  NON-STRESSED  FIELD  PLOTS. (SOURCE -
HTTPS://MAPSHARE.VIC.GOV.AU/VICPLAN)
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The active pasture growth periods are typically Autumn and Spring when most
pasture is produced. Pasture growth is typically restricted in Winter when it is too
cold and in summer when it can be too hot and dry. Usually, late spring and summer
are characterized by increasing soil water deficit. As a result, the pastures die off
(or become dormant) until Autumn rains occur and the pasture begins to grow
again. Season-to-season pasture growth can vary considerably due to variability in
climate, particularly rainfall. In the period after the autumn break and through to
mid-spring, soil water availability is not usually limiting because regular rainfall
events 'top up' the soil moisture profiles. Typically, throughout these periods, the
ambient temperatures are not high enough to induce plant water stress.

Experimental Design

A soil moisture probe (depth 80 cm) and a thermal infrared camera (Goanna Ag,
'GoField" package G4FLDC11) were used to measure soil moisture and canopy
temperatures continuously, respectively. The soil moisture probe was placed in the
centre of each plot, and the thermal infrared camera was located within one metre
of the soil moisture probe. The pasture canopy temperature of the stressed and non-
stressed plots was continuously measured throughout the field trials. The canopy
temperature sensor was positioned 50cm above the ground at an angle of 30
degrees to ensure that the camera captured the thermal temperature of the pasture
and not any background soil. The canopy temperature was recorded every 15
minutes. A meteorological weather station, "GoWeather" from Goanna Ag, was
located approximately 15 m away to collect metrological data, including
temperature, wind speed, rainfall, humidity, barometric pressure and soil
temperature. The field plot site was flat and received full sunlight throughout the
day.

The stressed plot was not watered and received only rainfall, whilst the non-
stressed plot was watered throughout the experiment to provide enough water, so
the pasture was not limited by water. Watering was undertaken by hand and
involved using watering cans to disperse the water across the non-stressed plot
area evenly. The amount of water was recorded after each watering event. The soil
moisture probe and thermal infrared cameras were placed within each 6m by 6 m-
fenced field plot to prohibit grazing by livestock and wildlife (Kangaroos). The plots
were within 6 metres of each other. As part of the study, spatial variation in canopy
temperature was also assessed with a FLIR thermal infrared camera mounted on
an aeroplane.

4.2.2 Meteorological Conditions throughout the experiment

The climate is classified as warm and temperate. The area (Barwon Downs)
receives, on average, 824mm of precipitation per year (1980-2022). Barwon Downs
is the closest weather station (approximately 6 km from the field trial’s location)
from the site with long-term weather data; this data was sourced from the 'Long
Paddock' website (https:www.longpaddock.com.au) and used for the following
graphs. From the annual total rainfall (Figure 39), we can see the last two years
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(2021 and 2022) exceeded 900mm of rain, which has been reached only one other
time (2010) since 2001.
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FIGURE 39. ANNUAL TOTAL RAINFALL (MM) FROM 1980 T0 2022.

Figure 40 plots the long-term monthly rainfall (1980-2022) together with the
monthly rainfall for 2021 and 2022. 2021 and 2022 had higher-than-average
rainfall in October, November and January.
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FIGURE 40. MONTHLY RAINFALL (MM) AVERAGED BETWEEN 1980 AND 2022, AND 2021
AND 2022 AS A COMPARISON.

From the maximum monthly temperatures (1980-2022), Figure 41 shows that the
monthly average temperatures in 2021 and 2022 were lower than the long-term
average, particularly from September through March. These cooler temperatures
mean the high temperatures were not experienced for a month or two later than

usual, and the historical maximum temperatures were not experienced at all
through 2021 and 2022.
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2022, INCLUDING 2021 AND 2022 AS A COMPARISON.

4.2.3 Air Temperature during the Monitoring Period

The air temperature was recorded during the experiment with the 12.00 am-1.00
pm average temperature presented in Figure 42, with dates of the flights also shown
(red arrows). Seasonal variation in air temperature can be observed from the
temperatures in Figure 41 and Figure 42.
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FIGURE 42. AIR TEMPERATURES (°C, 12.00 NOON — 1.00 PM) THROUGHOUT PERIOD OF THE
FIELD EXPERIMENTS WITH FLIGHT DATES (RED ARROWS).

Figure 43 shows the rainfall experienced on-site throughout the field study period.
This rainfall fell on both plots (stressed and non-stressed), as a rainout shelter was
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not used for the stressed plot. Figure 43 also includes the dates and quantities of
waterings for the non-stressed field plot throughout the experiment. During the
Winter, watering ceased as the plants received enough water from rainfall, with
watering commencing again in Spring. Waterings were undertaken using a
watering can, evenly spreading the water around the non-stressed plot to ensure
all pasture in the plots was evenly watered. The specific watering amounts are
shown in Figure 43 and range from 2.5mm to 11mm.

The soil moisture levels for the stressed and non-stressed plots fluctuated as
expected throughout the field trials. From Figure 43, it can be seen how the
watering affects the soil moisture of the non-stressed field plot. Figure 43 shows
how the soil moisture profile increases during the winter months and starts to be
drawn down during spring and summer as pasture growth increases and rainfall
declines.
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FIGURE 43. SOIL MOISTURE, RAINFALL AND WATERING THROUGHOUT THE FIELD
EXPERIMENTS. RED ARROWS INDICATE THE TIME OF THE FLIGHTS.

The Vapor Pressure Deficit (VPD) ranged from 0-4.25 kPa throughout the study
period, typically being lower during Winter and rising in late Spring to Summer
period. VPD was calculated using the method of the FAO Irrigation and Drainage
Paper, No.56, Crop Evapotranspiration (Allen et al. 1998). The calculated VPD was
compared to a sensor (HT.w Sensor, SensorPush) placed in the field, with the two
methods showing similar results (Figure 44).
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FIGURE 44. VPD COMPARISON BETWEEN CALCULATED AND COLLECTED FROM THE SENSOR
(HT.w SENSOR, SENSORPUSH).

Figure 45 shows the setup of one of the field plots and an aerial view of the field
trial plots. Fencing was used to prevent stock and kangaroos from grazing the area
and to protect the monitoring equipment.
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FIGURE 45. (A) FIELD PLOT SET UP, SHOWING SOIL MOISTURE PROBE AND THERMAL

CAMERA, FENCED OFF TO RESTRICT STOCK AND WILDLIFE. (B) AERIAL VIEW OF TWO FIELD
PLOTS WITHIN THE PADDOCK.
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Figure 46 shows the species composition of pastures within the field plots (non-
stressed and stressed) on 11/9/2021. Three sites were selected within each field
plot, and a steel quadrant (30cm by 30cm) was used to define the boundaries for
the sample. Pasture within the quadrant was cut, collected, dried (48 hours at 80°C),
sorted into species, and weighed. The species composition changed slightly
throughout the field experiment due to the seasonal growth patterns of the species
mix.
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FIGURE 46. PASTURE COMPOSITION (% DM) WITHIN THE PLOTS ON THE 11/9/2021.

4.2.4 Validation of canopy temperature sensors

Diurnal sampling, measuring the canopy temperatures throughout a day, was
undertaken, comparing the canopy temperatures between the Goanna ag sensors
and the handheld sensor to validate the accuracy of the Goanna ag permanent field
sensors in both the stressed and non-stressed plots. Diurnal sampling was
undertaken on 12/10/2021, 26/10/2021, 8/11/2021, 13/12/2021, 2/1/2022,
and 21/1/2022. The method for recording the canopy temperature for the diurnal
sampling was to record five canopy temperatures with a handheld device (Optris
MS, non-contact infrared thermometer) from the one field plot to calculate an
average. The five samples were all taken within 2 minutes of each other,
approximately 30 centimetres apart. The averaged results were then compared
against the Goanna ag sensor data for that specific time and date.

4.2.5 Calculation of baselines

The stressed and non-stressed baselines were calculated using the approach of Idso
(1981). The stressed and non-stressed baselines were calculated by plotting the Tc
- Ta versus the VPD between 12-1 pm from the 19/10/2020 - 17/2/2022 for the
separate plots (stressed and non-stressed), removing any periods that were wet or
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windy and then calculating the line of best fit. These baseline equations were used
to develop a CWSI plot to determine which plants are under plant water stress and
which plants are not under plant water stress. The CWSI ranges from '0' to '1’, '0'
being a well-watered, non-stressed plant and '1' being a fully stressed plant with
transpiration halted. The non stressed baseline excluded wet days and where solar
radiation was under 1,100 W/m?, this data was removed from the spreadsheet
prior to baseline calculations.

4.2.6 CWSI Calculations

The CWSI of pastures were calculated using the method of Idso et al. (1981). The
CWSI formula used was:

CWSI = ((Tc-Ta) - (Tc- Ta)rL) / ((Tc - Ta) v - (Tc- Ta) L)

The (Tc - Ta) represents the canopy temperature less air temperature of a canopy
on the sampling day. The (Tc - Ta)LL represents the canopy temperature less air
temperature of a canopy transpiring at its maximum rate. The (Tc - Ta)uL
represents the canopy temperature less air temperature of a canopy when
transpiration is halted due to stomata closure. The temperature to develop the
CWSI must be collected during daylight hours and under clear skies.

4.2.7 Airborne thermal imagery acquisition

The airborne thermal flight plan shown in Figure 47 was conducted with a Cessna
aircraft flying approximately 500m above the site with a heading on the solar plane.
Airborne thermal acquisition was conducted on 14/12/2020, 29/11/2021 and
14/12/2021. The plane took approximately one hour to fly over the property to
record the canopy's thermal temperature remotely. The aircraft recorded canopy
temperature with a thermal camera (SC655 model, FLIR Systems, Wilsonville, OR,
USA) with a resolution of 640 x 480 pixels, 16-bit radiometric resolution, 13.1-mm
focal length, and 45 x 33.7 ° FOV (Field of view)yielding a spatial resolution of 0.25
m.
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FIGURE 47. FLIGHT PATH TAKEN TO COLLECT AERIAL CANOPY DATA, THE RED BOX INDICATES
THE FARM BOUNDARY WHERE FIELD EXPERIMENTS WERE CONDUCTED (14/12/2020). RED
BOX INDICATES AREA OF FARM.

4.2.8 Processing of Thermal Images

The thermal images were processed as in Calderon et al. (2015) and Hornero et al.
(2021). The thermal imagery data obtained from the flights recorded the pasture's
canopy temperatures, and the ambient air temperature from the on-site weather
station combined with the baselines was used to calculate the CWSI for the
treatment plots and broader area. Data processing was undertaken using ENVI
Classic 4 image processing and analysis software.

4.2.9 Ground Truthing sites Species Composition — broader farm area

Figure 48 shows where the species composition and pasture mass (kg DM/ha) were
collected. A 'rising plate meter' was used at each site to measure the pasture mass
present (kg DM/ha). At each site, a steel quadrant (30cm by 30cm) was used to
define the boundaries for the sample. Pasture within the quadrant was cut,
collected, sorted into species, and weighed. These samples were then dried in an
oven for 48 hours at 80°C and weighed. The results of the species composition are
presented as a percentage in Figure 49. Canopy temperature was also recorded at
these sites on flight days (29/11/2020 and 14/12/2021) using a handheld sensor
(Figure 48).

91



FIGURE 48. LOCATIONS WHERE SPECIES COMPOSITION AND PASTURE MASS (KG DM /HA)
WERE COLLECTED.
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The species composition was not conducted during the first flight (14/12/2020).
However, it was undertaken for the subsequent two flights (Figure 49). Phalaris
was the dominant species in the paddocks, with clover and dandelions also
present in different amounts at different times of the year. The pasture mass also
varied across the paddock and farm, from the bare ground (location 3) to areas of
short pasture where intermittent partial grazing may have occurred, and to areas
of higher pasture mass.
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FIGURE 49. SPECIES COMPOSITION AND PASTURE MASS (KG DM /HA). (A) 29/11/2021 (B)
14/12/2021.

4.2.10 Calculating CWSI of the paddocks

Figure 50 is the outline of two paddocks (approx. 9.5 hectares) with Phalaris
pasture used for the CWSI calculations that follow. The clump of trees was removed
from the CWSI calculations, and the dam and farm tracks have been excluded. The
CWSI was calculated from the flight area using the aerially sourced pasture canopy
temperatures and the baselines (non-stressed y=-2.9289x+7.286. Stressed = 16)
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and then plotted using the software package ENVI Classic 4. Calculation of the
average CWSI in the images was undertaken and presented in Figure 50.

FIGURE 50. OUTLINE (IN BLACK) OF THE TWO PADDOCKS USED FOR THE FOLLOWING CWSI
CALCULATIONS.

4.3 Results

4.3.1 Diurnal Sampling

The diurnal sampling shows the variation in canopy temperature throughout the
day, as shown in Figure 51. A clear distinction can be seen between the stressed and
non-stressed pastures' canopy temperatures throughout the day, with the stressed
pastures' canopy temperature being higher than the non-stressed pastures' canopy
temperature for the sampling period.
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FIGURE 51. DIURNAL SAMPLING CANOPY TEMPERATURE (°C) UNDERTAKEN ON STRESSED
AND NON-STRESSED PLOTSON 1/1/2022.

In Figure 52, the canopy temperatures have been plotted, including the five
individual measurements for each time interval and the average temperature for
each time interval during the diurnal cycle taken on 21/1/2022. Interestingly, there
were higher fluctuations in canopy temperature in the mid to early afternoon, as
opposed to the cooler mornings, with a wider variety of canopy temperatures being
recorded for the stressed plot. It would be expected to see the stressed canopy
temperature results higher than the non-stressed canopy temperatures. However,
as shown in Figure 52 there is one interval (at 13.00) where the non-stressed
canopy temperature was higher than the stressed canopy temperature. This could
be due to several reasons, such as a different ambient temperature from when the
stressed sample was taken to when the non-stressed was taken, and environmental
factors such as a gust of wind or cloud influencing the canopy temperature.
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FIGURE 52. CANOPY TEMPERATURE (DEG C) SPREAD RECORDED BY HANDHELD THERMAL
SENSOR (A) STRESSED PASTURE (B) NON-STRESSED PASTURE ON 21/1/2022.

There was a strong correlation between canopy temperatures measured with the
Goanna Ag sensor and the canopy temperatures measured with the handheld
sensor (Figure 53). The data are close to the one-to-one line with R2 values of 0.85
and 0.86. This data was from the diurnal sampling, comparing all the handheld
thermal sensor temperature data against the Goanna Ag canopy sensor data.
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FIGURE 53. VALIDATION OF CANOPY TEMPERATURE COMPARING HANDHELD THERMAL
SENSOR TO GOANNA AG FIELD SENSOR (A, STRESSED FIELD PLOT, B, NON-STRESSED FIELD
PLOT)

4.3.2 Validation of canopy temperature measurements using ground-truthing sites.

Handheld sensor Vs Airborne image

Figure 54 is a scatter plot comparison of the canopy thermal temperatures
measured with the handheld sensor at ground level versus the flight canopy data at
numerous (13) sites around the farm. The data does not fit the 1-to-1 line exactly.
However, the data shows a strong, positive, linear association between the two
measurement techniques and has an R% of 0.92 and 0.78 for the flights in November
and December 2021, respectively.
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FIGURE 54. COMPARISON OF HANDHELD TEMPERATURES (13 SITES AROUND THE FARM) AND
FLIGHT DATA (A) 29/11/2021, (B) 14/12/2021.

4.3.3 Time series of Canopy Temperatures

In Figure 55, (a) and (b) are the canopy temperatures (Tc) and the Tc - Ta for the
stressed and non-stressed plots recorded from the ground-based sensors, showing
that the stressed plots' temperatures were typically higher than the non-stressed
plots' temperatures, primarily through the ‘hotter' months. During
January/February, the stressed canopy temperatures were up to 14 “C hotter than
the non-stressed canopy, with all days in January and February having higher
temperatures for the stressed compared to the non-stressed canopy. The average
temperature difference between the stressed and non-stressed canopies in
January- February was 6.13 “C, whereas in June- July, the difference was 0.55 “C.
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FIGURE 55. (A) DAILY CANOPY TEMPERATURES (TC) OF THE STRESSED AND NON-STRESSED
PASTURE. (B) DAILY TC - TA OF STRESSED AND NON-STRESSED PASTURES BETWEEN 1-2 PM.

4.3.4 Baselines

Non-stressed baseline

Figure 56 presents the baselines developed for the non-stressed field plot. A
number of baselines were developed using different screening parameters to
determine the most appropriate baseline. Wet days (>0 mm) were taken out of the
data before developing the baselines, and then different solar radiation (W/m?2)
intensities were used to screen the data further. Different ‘screening' parameters
(i.e., using different solar radiation intensity cutoffs) resulted in slight differences
between the non-stressed baselines, but all baselines had similar fitted linear
trendlines. Baseline ‘c’ (figure 56) was chosen as the final baseline because it had
the highest R2.
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FIGURE 56. NON-STRESSED BASELINE DEVELOPMENT, (A) EXCLUDING WET DAYS AND SOLAR
RADIATION UNDER 700 W /M2, (B) EXCLUDING WET DAYS AND SOLAR RADIATION UNDER
1,000 W/M2, (C) EXCLUDING WET DAYS AND SOLAR RADIATION UNDER 1,100 W /M2

Stressed baseline development

Two of the stressed baselines resulting from different screening for wet days and
intensities of solar radiation are shown in Figure 57 (a). The baselines were
developed initially using all the recorded data and then screening out unsuitable
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days (i.e. wet and cloudy days). The stressed baseline was set at a Tc - Ta of 16°C
because this was the highest Tc-Ta. This indicated maximum stress in the stressed
field plot. The chosen stressed baseline of 16°C is shown in red in Figure 57 (b).
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FIGURE 57. STRESSED BASELINE DEVELOPMENT (A) TC - TA, LESS RAIN AND SOLAR
RADIATION UNDER 1200 W/M2. (B) Tc — TA, LESS RAIN AND SOLAR RADIATION UNDER
1250 W/m2.

The daily CWSI results calculated from the stressed and non-stressed plots are
shown in Figure 58. Figure 58 shows the majority of the stressed plants having a
high CWSI and many of the non stressed plants having a lower CWSI as expected.
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DAYS AND SOLAR RADIATION UNDER 900 W /M2

Figure 59 demonstrates further examples of the CWSI results calculated from the
field plots data; however, more data has been screened out as the solar radiation up
to 1,200 W/m? have also been removed. Seventy-one (71) percent of CWSI results
are within the CWSI range (0-1) when using the higher stressed baseline of 16°C
and the 1,200 W/m? than the 62 percent when using the higher stressed baseline
of ‘16’ and the 900 W/m? as shown in Figure 59.
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FIGURE 59. CWSI WAS CALCULATED FROM THE GROUND CANOPY SENSORS, EXCLUDING WET

WEATHER AND SOLAR RADIATION UNDER 1200 W/M2 USING 16 DEG C AS THE STRESSED
BASELINE (Y =-2.9289x + 7.286).

4.3.5 Canopy temperature of field plots from flights
Figure 60 is a close-up image showing the canopy temperature variation across the

field plotson 14/12/2020. The temperature of the stressed plot ranges from 38.85-
41.85°C with the majority at 40.85°C, while the non-stressed plot ranges from
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35.85-39.85°C with the majority at 38.15°C. With the range of canopy temperatures
across the non-stressed plot, there may be some edge effects where watered-
pastured areas are close to non-watered pastures.

FIGURE 60. CANOPY TEMPERATURE (DEG C) VARIATION ACROSS NON-STRESSED AND
STRESSED PLOTS FROM AERIAL FLIGHT (14/12/2020). THE AVERAGE TEMPERATURE OF
THE STRESSED PLOT WAS 40.88 °C, AND THE NON-STRESSED PLOT WAS 38.15 °C.

Figure 61 is a broader view of pasture canopy temperatures (°C) recorded during
the flight from the FLIR camera, showing canopy temperature variation over a
broader scale, over several paddocks.

FIGURE 61. A BROADER VIEW OF PASTURE CANOPY TEMPERATURES (DEG C) RECORDED
DURING THE FLIGHT (14/12/2020) FROM THE FLIR CAMERA. FIELD TRIAL PLOTS IN
SQUARE BOXES (CANOPY TEMPERATURES).
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4.3.6 CWSI from flights

In Figure 62. the CWSI has been calculated for the flight area using the aerially
sourced pasture canopy temperatures and the baselines (non-stressed y=-
2.9289x+7.286. Stressed = 16).

FIGURE 62. CWSI WAS DERIVED FROM FLIGHT 1 (14/12/2020). FIELD TRIAL AREAS IN
BLACK SQUARES. NON-STRESSED COMPOUND CWSI =0.15 STRESSED COMPOUND
CWSI=0.48.

4.3.7 Comparison of canopy temperature and CWSI

A comparison of the canopy temperatures over the three flights is shown in Table
4. The second and third flights occurred on cooler days compared to flight 1; hence,
the plants may not have been under as much water stress. In Table 5, the CWSI
values have been plotted for the field plots, with the non-stressed plots showing a
lower CWSI than the stressed plots, which is to be expected.

TABLE 4. TEMPERATURES AND CWSI OF STRESSED AND NON-STRESSED FIELD PLOTS USING FLIGHT CANOPY

TEMPERATURES AND BASELINES (NON-STRESSED Y=-2.8212X+7.2968. STRESSED = 16) DURING THE
THREE FLIGHTS.

Date of Flight | Air Canopy Canopy VPD | CWSI CWSI
Temperature | Temperature Temperature Stressed | Non-
k® Stressed C Non-Stressed Stressed
C
Flight1 | 14/12/2020 | 32.99 40.85 35.85 2.26 | 0.48 0.15
Flight2 | 29/11/2021 | 22.36 29.85 26.85 1.24 | 0.32 0.08
Flight 3 | 14/12/2021 | 20.36 26.85 25.85 1.06 | 0.21 0.12
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Figure 63 shows the CWSI calculated from the baselines (non-stressed y=-
2.9289x+7.286. Stressed = 16) for each of the three flights. The figures show the
CWSI values for the pasture paddock (outlined in black), including the field plots.
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FIGURE 63. CWSI OF FLIGHTS (A) FLIGHT 1. 14/12/2020, (B) FLIGHT 2. 29/11/2021,
(c) FLIGHT 3.14/12/2021. USING THE BASELINES (NON-STRESSED Y=-2.9289x+7.286.
STRESSED = 16).

Figure 64 is an analysis of the % per CWSI range across the paddocks for flights 1,
2 and 3 as per the areas in Figure 63.
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AND 3. THE AVERAGE CWSI RANGE FOR FLIGHT 1 wAS 0.45, FOR FLIGHT 2, IT wAS 0.18
AND FOR FLIGHT 3, IT WAS 0.27.

4.4 Discussion

This study created CWSI baselines for phalaris - sub clover pastures in
southeastern Australia, demonstrating that the approach developed largely for
individual species could be applied to pastures. The results show that the
temperature difference between the stressed and non-stressed pastures could be
recorded on the ground and remotely, with canopy temperatures of the stressed
plot typically hotter than the non-stressed plot. Viewing the spatial CWSI also
provides insight into water stress across paddocks and the larger area (farm).

The non-stressed baseline was developed using all the field data collected during
the field studies and screening out wet days and solar radiation intensities.
Screening for solar radiation was used to screen out days where clouds may be
present. Numerous baselines were developed using different solar radiation cutoffs
to ascertain the most accurate baseline. A cutoff of 700 W/m?2, 1000 W/m?, and
1,100 W/m? radons gave a similar non-stressed baseline (see Figure 56). Numerous
other variations were applied in an attempt to calculate the non-stressed baseline.

Unfortunately, in the literature, there is minimal work on developing baselines for
pastures, so we are unable to compare our results directly with other peer-
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reviewed work. The pasture baselines developed from these field experiments were
compared against previously designed non-stressed baselines undertaken by Idso
et al. (1981) and compiled in the supplementary data by Gonzalez-Dugo et al
(2022), for other plants and a selection is shown in Figure 65. Figure 65 also shows
the non-stressed baselines for a variety of species and stages of growth, such as
Barley, Wheat, Turfgrass, and Alfalfa. Figure 65 also shows that the baseline
developed for pasture has a slope similar to that of some other species.

12

10

Tc-Ta (°C)

-10 VPD
===Pasture Barley (pre, Arizona -Idso 1982)
Barley (post, Arizona - Idso 1982) Wheat (pre heading, Arizona - Idso 1982)
Wheat (post heading, Arizona - Idso 1982) Turf grass (Georgia USA- Carrow 1993)
—Turfgrass (Tifway bermuda. Georgia USA- Carrow 1993) Alfalfa (Kan,Nebr, Ariz, Minn, USA. Idso 1981)
——Turfgrass (Texoka buffalo, Texas, Horst 1989)

FIGURE 65. PASTURE NON-STRESSED BASELINE COMPARED AGAINST OTHER BASELINES
DEVELOPED BY IDSO ET AL. (1981).

The stressed baseline was developed using all the data screening for rain and taking
out days where solar radiation was under 1250 W/m? (figure 57). Numerous other
variations were applied in attempting to calculate the stressed baseline. Trials were
also undertaken to manipulate the stressed baselines for other values such as Tc -
Ta equalling 11°C and 16°C. Figure 57 shows the stressed baseline development,
with a Tc - Ta of 16 “C chosen as the final stressed baseline. It is difficult to obtain a
stressed baseline from plants in the field given that the plants are 'just holding on'
before plant death when the plants are under the most stress. The stressed field
plots were rainfed (not rain excluded), and therefore, it was not possible to create
a highly stressed pasture. It is difficult to accurately record stressed baseline in the
field as the measurement attempts to measure the plant under maximum stress,
effectively just before the plant senesces.

Three flights were undertaken (14/12/2020, 29/11/2021, 14/12/2021). The
higher ambient temperature during flight 1 would most likely have contributed to
the increase in CWSI in flight 1 compared to the other two flights. Flight 1 was
undertaken on 14/12 /2020 with an air temperature of 33 degrees Celsius. Flight 2
(29/11/2021) and flight 3 (14/12/2021) were undertaken on days when the
temperature was 22 degrees Celsius and 20 degrees Celsius respectively.

The CWSI was plotted for the field pastures using the generated baselines. Figures
58 and 59 demonstrate a range of CWSI values spread between -0.6 to just under
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1.2. Figure 66 is the CWSI viewed over time, excluding wet days and days where
solar radiation is below 600 W/m2. The results demonstrate a clear increase in
CWSI during the hotter periods, where the stressed CWSI exceeds the non-stressed
CWSI. There are gaps in the data because during Winter and other periods there
were numerous cloudy days, and these have been screened out by taking out all the
wet days and days below 600 W/m? solar radiation (Idso et al. 1981). Due to the
cooler winters, the pastures were not under water stress for the whole year but
only for periods in summer when the air temperatures increased. Similar to results
from Haghverdi et al. (2021), Al-Faraj et al. (2001) and Jalali-Farahani (1993), it
was not possible for all the CWSI results to be within the 0 -1 range, with some
results exceeding the one and below zero. Whilst we developed stressed and non-
stressed baselines from the field experiments undertaken, it is essential to
remember that baselines are localized and may not be appropriate for use in the
next valley, region or other parts of Australia (Jalali-Farahani (1993).

One issue not thoroughly studied in this field experiment is the phenological stage
of the plant versus the canopy temperature. Bellvert et al. (2015) found that the
non-stressed baseline differed with grapevines depending on variety and
phenological stage. Similarly, Kar et al. (2010) found that regarding winter maize
irrigation, the CWSI varied at different plant growth phases. Further work should
look at creating baselines at different stages of the pasture's growth to see how this
may change throughout a season and from year to year.
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FIGURE 66. CWSI OVER TIME, LESS WET DAYS AND DAYS WHERE SOLAR RADIATION ARE
BELOW 600 w/M2,

4.4.1 CWSI vs Pasture mass comparison

A comparison was undertaken comparing the CWSI and pasture mass (figure 67)
with no correlation being found. The minimum pasture mass was around 1,500 kg
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/DM/ha, demonstrating that most of the paddock had adequate pasture cover and
that soil temperatures were not affecting the pasture CWSI.
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FIGURE 67. COMPARISON COMPARING THE CWSI AND PASTURE MASS (KG DM /HA).

4.4.2 Spatial CWSI Discussion

Looking at the temperature, Tc - Ta and CWSI images at the paddock scale, there is
a significant variation in canopy temperatures and CWSI, especially during the first
flight (14/12/2020) when the ambient temperature was high. This is due to several
effects. Some of the temperature differences are the difference in stresses between
the pastures in certain parts of the paddock, where some paddocks may be holding
more or less water or have a slightly different orientation or soil type. Other
variations may be caused by a mix of species and seasonal variations in species mix.
This is somewhat similar to an orchard/vineyard environment where different
species of trees or vines may be present that have different canopy temperatures
and result in a different CWSI or where different soil types across an
orchard/vineyard will have different moisture-holding capacities, which may affect
the stress of a plant (Horst et al. 1989).

For this study, we had to exclude or remove any non-pasture temperatures, such as
roads and trees (Figure 68). When a farmer looks at the canopy temperature or
CWSI over a broader scale than the paddock, non-pasture-related temperatures
(bare ground, roofs, tree canopy, etc.) can affect the CWSIL. However, if the
farmer/user is familiar with the location. In that case, the CWSI can be calculated
by selectively using the canopy temperature of the stressed and non-stressed
pastures, avoiding the potential error of selecting a higher or lower temperature
that is not pasture-related, which would result in a skewed CWSI. This is similar to
using CWSI in an orchard-type environment, where the user or Al (Artificial
Intelligence) needs to preferentially ensure that data is related to the canopy and
screens out background data (Berni et al. 2009). Similarly, in an orchard/vineyard
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scenario, there may be other infrastructure (water tanks, dams, tractors, sheds, etc)
that, if not screened out correctly, can affect the CWSI results.

FIGURE 68. THERMAL TEMPERATURE ISSUES. PASTURE AND NON-PASTURE-BASED THERMAL
TEMPERATURES WERE RECORDED WITH A FLIR CAMERA DURING FLIGHT DATA ACQUISITION.

4.4.3 Comparing Flight data to ground data.

There was a difference between the canopy temperature data gathered aerially
from the plane and the ground-sourced canopy temperature data (goanna ag and
handheld). The plane flies ‘lines’ (Figure 47) in the sky to record the flight data over
the broader area and can take an hour to collect all the filed data, as in the case of
these field experiments. The canopy temperature data gathered with the handheld
thermal sensor is collected over a few minutes, as temperatures are recorded and
written down and then the recorder moves to the following location whilst the
flights are being undertaken. Therefore, the three sources of canopy temperature
are not all taken at the same time, meaning there can be a variation between the
canopy temperatures gathered. The canopy temperatures are all recorded within
an hour of each other with no significant changes in climate occurring (i.e., storm);
therefore, the temperatures represent what is happening in the field. Going
forward, improvements could include installing canopy thermal sensors in the field
plots (stressed and non-stressed) and across the broader paddock, all recording the
canopy temperature simultaneously. The data collection could be improved if the
actual time the flight image is taken over certain parts of the farm is known and
timed with the ground recorded data.

4.4.4 Cloud Cover

Cloud cover has been an issue with the on-ground remote sensors and the aerial
data collection. The on-ground sensors collect data continuously, and as a result,
there are many instances where cloud cover is an issue, and these need to be
screened out when developing the baselines. Similarly, the presence of clouds made
it difficult to time flights, as days, when there was cloud cover, meant the plane
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could not fly to collect the thermal canopy data. Days of intermittent cloud made it
difficult to schedule flights for breaks in the clouds.

The cloud cover maps from the Bureau of Meteorology (Figure 69) show that the
field experiments were undertaken in a high total cloud amount (oktas - unit of
measurement of clouds) area. As discussed in the previous chapter, the use of the
CWSI is restricted by clouds, and therefore, using the CWSI in the southern parts of
Australia will increase complications with data sourcing due to cloud cover.
However, using the CWSI in lower cloud areas, which corresponds to central parts
of Australia, would be more advantageous and could cause fewer issues with
calculating the CWSI due to less cloud cover.
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FIGURE 69. AVERAGE CLOUD COVER BETWEEN 9 AM AND 3 PM FOR AUSTRALIA (SOURCE
BOM). RED CIRCLE INDICATES LOCATION OF FIELD SITE.

4.4.5 Further Research

Throughout the field experiment, the pastures develop through stages of growth
and are consumed and senescing as the seasons change, influenced by rainfall,
grazing, and temperature. It would be worthwhile investigating a month-by-month
comparison as different species progress through different growth stages; for
example, in spring, the pastures will typically crowd out the clover, and then as the
pastures progress, the clovers may come back.
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The development of these baselines allowed for the CWSI to be generated from the
aerial data, which could be used for automated irrigation control. Using the spatial
CWSI image over a couple of paddocks (Figure 62) can assist with selecting areas
that may need irrigation and areas within a paddock that may not. Limits could be
set for initiating irrigation, i.e.,, when the CWSI is over 0.65, irrigation is turned on,
similar to work undertaken by Golgul et al. 2022 where they postulated that a CWSI
between 0.13-0.22 could be used to initiate irrigation for mung beans.

4.5 Conclusions

The baselines and CWSI derived from the thermal canopy data collected at ground
level and aerial flights were suitable indicators for water stress monitoring of
pastures. This study demonstrated that the thermal canopy data collected at ground
level throughout a season could be used to develop the stressed and non-stressed
baselines. The thermal canopy data collected aerially could also be used to develop
the CWSI over the paddock and farm scale. The applicability of these results showed
that using the CWSI in pastures is a valuable tool for assessing the variability of crop
water stress over pasture paddocks.
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5 A Crop water stress index of annual ryegrass pastures in
southern Australia.

5.1 Introduction

Farmers typically rely on homegrown pastures to provide fodder for their livestock.
Australia’s climate is highly variable which affects the productivity and profitability
of the farms they manage (Waha et al. 2022). Monitoring plant water stress of
pastures can assist Australian farmers to manage in a variable climate, thus
improving fodder management and assisting enterprises to be profitable in a
changing climate.

The crop water stress index (CWSI) relates canopy temperature to water stress, as
water-stressed plants reduce transpiration due to partial or complete closure of
their stomata, and as a result, the plant’s canopy temperature increases (Idso et al.
1981; Jones, 1999). This difference in canopy temperature between stressed and
non-stressed plants can be measured and used to produce the CWSI. The CWSI has
been developed for a range of crops; however, to date, work has yet to be
undertaken to examine the use of Crop Water Stress Indices (CWSI) on annual rye
grass pastures in southeastern Australia.

This work aimed to develop the CWSI for an annual ryegrass pasture in Southeast
Australia.

5.2 Materials and Methods

5.2.1 Experimental design and plot management

Study Area, Agricultural practices and pasture growth.

The field experiments were undertaken at Murroon, in the Otway Range’s (38°27’S.
143°50’S, 273m alt.) in Southwest Victoria, Australia. The property is
approximately 147 km southwest of Melbourne and has flat areas and rolling hills.
Field experiments were primarily conducted on the flat areas. Further details can
be found in chapter 4.

5.2.2 Meteorological Conditions throughout the experiment

The climate is classified as warm and temperate. The area receives, on average,
640mm of precipitation a year, with May and October being the wetter months.
Waterings conducted on the annual rye pasture in the non stressed field plot and
rainfall that occurred during the trials are shown in Figure 70.
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FIGURE 70. WATERINGS (MM) AND RAINFALL (MM) THROUGHOUT THE EXPERIMENT.

Further information on the Materials, methods and experiment design are included
in the previous chapter (chapter 4).

PowerPak sprinter (blend of Ascend and Astro tetraploid annual ryegrasses), was
sown on 7/5/2021 at a rate of 25kg/ha with DAP (Di-Ammonium Phosphate)
fertiliser applied at 72kg/ha. The newly planted annual ryegrass pasture within the
field plots was not cut during the field trial, and it did not experience grazing
pressure from any livestock or wildlife (Kangaroos). Measurements for the stressed
and non stressed field plots were undertaken from 18/10/2021 - 1/2/2022. The
soil moisture probe was placed in the centre of each plot, whilst the thermal
infrared camera was located within one metre of the soil moisture probe. The
equipment was installed on the 18/10/2021.

5.2.3 Baseline Calculations

The baselines are derived by recording the temperature of the canopy, air
temperature and VPD between 12-1. The Tc (Temperature Canopy) - Ta
(Temperature air) V's VPD (Vapour Pressure deficit) calculations were undertaken
on the stressed and non-stressed canopy temperature to determine the stressed
and non-stressed baselines. The baseline data was then filtered to remove days
where rain occurred (stressed plot) and cloudy days. This data was then used to
develop the stressed and non-stressed baseline equations used to develop a CWSI
plot to determine which plants are under plant water stress and which plants are
not under plant water stress. The CWSI ranges from ‘0’ to ‘1’, ‘0’ being a well-
watered non-stressed plant and ‘1’ being a fully stressed plant.

5.2.4 CWSI Calculations
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The CWSI was calculated as proposed by Idso et al. (1981). The CWSI was calculated
for the pastures in the stressed and non-stressed plots. The empirical CWSI
formulae used are as follows in Figure 71.

(Tc — Ta) — (Tec — Ta)y;
(Tc — Ta)ur — (Tc — Ta)r

CWSI =

FIGURE 71. CWSI FORMULAE

The (Tc - Ta) represents the canopy temperature less air temperature of a canopy
on the sampling day. The (Tc - Ta)LL represents the canopy temperature less air
temperature of a canopy transpiring at its maximum rate. The (Tc - Ta)UL
represents the canopy temperature less air temperature of a canopy when
transpiration is halted due to lack of moisture. The temperature to develop the
CWSI needs to be collected during daylight hours and clear skies. The development
of the CWSI requires two baselines that are specific for each site and each crop
(Idso, 1982). The upper baseline represents the canopy under full water stress with
minimal transpiration. The lower baseline represents the non-stressed plants,
where pastures/plants receive adequate water and are not limited in transpiration.

5.3 Results

5.3.1 Temperature

The pasture canopy temperature between the stressed and non-stressed plots
throughout the experiment is shown in Figure 72. The temperature increased to
over 30 °C in early January, putting the pasture under water stress and
differentiating the stressed and non-stressed plants' canopy temperature. Prior to
the early January increase in temperature, the temperatures had not increased
significantly, and the pastures were receiving intermittent rainfall during
November and December and were therefore not experiencing extreme plant water
stress.
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FIGURE 72. CANOPY TEMPERATURE OF STRESSED AND NON-STRESSED PLANTS, INCLUDING
AIR TEMPERATURE.

5.3.2 Diurnal Sampling

The diurnal sampling shows the variation in canopy temperature throughout the
day, as shown in Figure 73. A clear distinction can be seen between the stressed and
non-stressed pastures' canopy temperatures throughout the day, with the stressed
pastures' canopy temperature being higher than the non-stressed pastures' canopy
temperature for the sampling period.
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FIGURE 73. DIURNAL SAMPLING OF RYEGRASS 2/1/2022

In Figure 74, the canopy temperatures have been plotted, including the five
individual measurements for each time interval and the average temperature for
each time interval during the diurnal cycle taken on 2/1/2022. This sampling shows
that the canopy temperature of similar plants under similar conditions can vary
over a range.
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FIGURE 74. CANOPY TEMPERATURE (DEG C) SPREAD RECORDED BY HANDHELD THERMAL
SENSOR (A) STRESSED PASTURE (B) NON-STRESSED PASTURE ON 2/1/2022.

5.3.3 Soil Moisture

The soil moisture levels between the stressed and non stressed field plots were
relatively equal until late November, when there was some separation between the
soil moisture levels (75). The stressed soil moisture level decreased consistently,
whilst the non-stressed soil moisture level did not reduce as quickly. The soil

moisture for the non-stressed plot temporarily increased at intervals as a response
to the watering.
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5.3.4 Baselines

The stressed and non-stressed baselines developed for the annual ryegrass are
shown in Figure 76. The stressed data points representing the Tc - Ta of the
stressed pastures were averaged to determine the water-stressed baseline
(10.2°C).

14

12

10

renen,, e, CET . ., . LLEEP. CP “ua e Lr. LETP—. e, 7397 .
® ®
oy [N
. @i, .
feean, ey
— 3 .. ‘ =-1.21392+8:739
OL R? =0.594
1 ! 2‘ e
Vv
Tc-Ta non stressed c- la canopy te Stressed baseli

FIGURE 76. BASELINES (STRESSED AND NON-STRESSED) WITH MANUALLY ADJUSTED
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5.3.5 Resulting CWSI

Figure 77 shows the CWSI results for the period throughout the field trials when
the plants were under the most water stress due to an increase in temperatures in
late December 2021 and early January 2022.
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FIGURE 77. CWSI DURING PERIODS OF HIGHER AMBIENT TEMPERATURE, EXPERIENCED IN
LATE DECEMBER AND JANUARY (21/12/2021)

The CWSI over time (21/12/2021 and 31/1/2022) shows that the stressed pasture
had a higher CWSI than the non-stressed pasture on certain days when the ambient
air temperature increases (Figure 78).
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5.4 Discussion

The stressed and non-stressed CWSI baselines for annual ryegrass developed in this
study were similar to what Idso et al. (1982) and others (Maes et al. 2012) achieved
for other plant species. The baselines were difficult to generate if we used all the
data collected; however, by screening the data and removing days that were cloudy,
wet or conditions where the pasture was not under plant water stress, we were able
to develop baselines.

There is limited literature on other ryegrass or annual ryegrass baselines to
compare our data. Our non-stressed baselines sits higher than most other crop
types compared to Idso's (1980's) work and the numerous other baselines in the
supplementary data (Maes et al. 2012). Some of the closest baselines are in turf, tall
fescue, and hybrid Bermudagrass, as shown in figure 10; however, there are no
direct comparisons for annual Ryegrass. In Figure 79, the non-stressed baseline for
the annual Ryegrass has been plotted against some field-derived baselines for Tall
fescue and Hybrid Bermudagrass undertaken by Haghverdi et al. (2021) in central
California in 2018 and 2019. The Tall fescue and Hybrid Bermudagrass are from a
climate where evapotranspiration is approximately five times the precipitation
received in the area of this study (Haghverdi et al. (2021)). The work undertaken
on Tall Fescue was conducted over 2018 and 2019, and the baselines have been
plotted separately.
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=
o
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VPD

® Tc-Ta Non Stressed Stressed baseline (10.22) Tall Fescue (Haghverdi et al 2021)
Tall Fescue (Haghverdi et al 2021) e Hybrid bermudagrass (Haghverdi et al 2021) e Hybrid bermudagrass (Haghverdi et al 2021)
e Turfgrass (Gonzalez-Dugo et al 2022) Linear (Tc - Ta Non Stressed ) Linear (Stressed baseline (10.22))

FIGURE 79. COMPARISON OF ANNUAL RYEGRASS BASELINE TO TALL FESCUE (HAGHVERDI ET
AL 2021), HYBRID BERMUDA (HAGHVERDI ET AL 2021) AND TURFGRASS (GONZALEZ-
DUGO ET AL 2022).

The supplementary data in Maes et al. (2012) is an extensive list of non-water-
stressed baseline equations. Many early baselines have been developed in more
arid parts of the world (Arizona, California, Turkey, Iran, Texas, etc). Alderfasi et al.
(2001) Stockle et al. (1992) found that the CWSI values for a non-stressed crop
determined using the empirical CWSI baseline approach changed daily, especially
under low VPD deficits. Alderfasi et al. (2001) also found that canopy temperature
differences between stressed and non-stressed crops are usually small under low
evaporative demand. This was also found in our field trials. During the periods
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before mid-December, when plants had soil moisture and ambient temperatures
were not excessive (above 30 “C) it was difficult to determine plant water stress
between the two field plots. However, this changed as the ambient temperature
increased in mid to late December and early January and the soil moisture levels
between the two plots started to differ. Another finding by Jensen et al. (1990) was
that either stressed or non-stressed wheat, barley, rape and perennial ryegrass
crops could fluctuate up to 6 deg C within a few minutes to rapid changes in incident
solar radiation. With the high amount of cloud cover during the winter and spring
when the canopy temperature measurements were taken for the field trials, we
could expect a rapid change in canopy temperatures in our field plots. This was
experienced when taking canopy temperature checks with a handheld
thermometer (Optris MS, non-contact infrared thermometer). Taking five canopy
temperature measurements within one metre over one minute gave a range of
canopy temperatures for a similar pasture (figure 5).

The CWSI relies on clear skies, and therefore, while it is useful in areas outside arid
environments, its use is limited to non-cloudy days or periods of no clouds during
the day (O’Shaughnessy et al. 2012). O'Shaughnessy et al. (2012) also points out
that wind gusts and other micrometeorological incidents influence the CWSI.
Barbosa et al. (2005) also mention that clouds were an operational issue, affecting
the net radiation when collecting data and that the field site being 60km from the
Atlantic Ocean may explain the intermittent cloud cover. Similarly, our site was only
15km from the ocean, which may have increased the occurrence of cloud cover.

One implication of using the CWSI in this region (South of the Great Dividing Range)
is the occurrence of clouds throughout the year, making it challenging to collect data
to develop the baselines and test the CWSI. Much of the early work on developing
the CWSI was undertaken in the USA by Idso, (1981) in Arizona, North Dakota,
Nebraska and Kansas, that is in arid environments with limited clouds. Similarly,
other work on baselines since Idso’s work has predominantly been in Turkey,
Arizona, Iran, Texas, etc. (Maes et al. 2012), typically more arid areas. Idso (1981)
mentions that his work was undertaken under clear skies with some thin cirrus
conditions; he further mentions that the relationship begins to decline for other
types of cloudiness, presumably due to changing illumination effects on stomates
(Idso, 1981). Similarly, O'Shaughnessy (2012) acknowledged the problem
regarding irrigation scheduling by using instantaneous measurements taken over a
short period near solar noon, which may be influenced by passing clouds, wind
gusts or other micrometeorological incidents. Consideration needs to be given to
the usefulness of using the CWSI in non-arid regions, especially if used for irrigation
scheduling.

The CWSI values are meant to vary between 0 and 1 (representing no transpiration
and maximum transpiration, respectively); however, from our results, we had
several CWSI values exceeding one and less than zero. It was possible to 'clean’ this
data by taking out days with obvious cloud cover or recent rainfall events; however,
even allowing for this screening, keeping all our results within the CWSI 0 to 1 range
was not possible. Haghverdi et al. (2021) found that their CWSI values ranged from
-0.34 - 0.56. Similarly, work undertaken on Tall Fescue by Al-Faraj et al. (2001) and
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Alderfasi et al. (2001) within a controlled environment found that it was not
possible to consistently get the empirical CWSI results to lie between 0 and 1.
Similarly, the work by Wanjura et al. (1984) and Jalali-Farahani et al. (1993)
experienced some negative CWSI values in their calculations.

Australia has experienced three La Nina weather patterns in a row (2020,2021,
2022 - Source BOM). La Nina can be associated with above-average rainfall, cooler
days, and cooler nights in summer. With the wetter-than-normal periods (refer
chapter 4) and cooler conditions (refer chapter 4), pasture was still growing in
January, which in 'normal’ times would have ceased growing. Further work could
be undertaken in developing baselines in non-La Nina years and comparing to these
results.

Haghverdi et al. (2021) report that the reported CWSI baselines for turfgrass vary
widely in the literature and that specific baselines for each climatic region should
be developed. Jalail-Farahani, et al. (1993) also discussed how baselines are site-
specific. Adopting CWSI baselines derived from other countries, states, regions, or
cultivars could be problematic as varying climatic conditions and microclimates can
alter the CWSI from one place to another. Using Haghverdi et al. (2021) premise and
other comments in the literature about site-specific baselines, further work needs
to be undertaken on developing further baselines for annual Ryegrass across
southeast Australia to compare this study to.

Due to the process of senescence (change in colour and loss of leaves), the
senescence changes may lead to changes in canopy temperature (Barbosa et al
2005). As pastures change from growth to senescence the pasture can become
stalky, as seen in this study. This change could have effects on the canopy
temperature, as stalky material may influence the canopy temperature. Further
work on developing baselines at different stages of pasture growth could
demonstrate if senescence influences canopy temperature.

When collecting the data, recording a range of VPDs can be quite difficult, especially
if the fieldwork data collection time is limited. Wanjura D et al. (1984) highlighted
that their VPD measurements did not exceed 4.0 kPa in their fieldwork whereas
work undertaken by Idso (1982) demonstrated a wider range of VPD’s such as a
VPD of up to 7kPa for field measurements for tomatoes. The VPD collected during
these field trials ranged from close to zero to about 4 kPa. Similar to Haghverdi et
al. (2021) studies throughout 2018 and 2019, where their VPD was restricted
between 1 - 5 kPa. Undertaking similar field trials in different locations across
Victoria and Australia may assist in obtaining results over a wider VPD range.

Wanjura et al. (1984) also mention the difficulty in recording canopy temperatures,
noting that some of their plant canopies were not large enough to mask the soil
background, and that the Tcincluded some contribution from the bare soil. Wanjura
et al. (1984) also mention the possibility that early season stress caused by hail,
wind and seedling disease damaged the roots of many plants, and thus, their roots
may be more resistant to water uptake than healthier plants. Jackson et al. (1981)
mention that wheat took 5-7 days to resume transpiring normally after a stress
period. Whilst during these field trial, the presence of hail, excessive wind and
disease was not identified as an issue, it does demonstrate further issues that need
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to be considered when relying on CWSI in the field. Further work could involve
trialling how quickly annual Ryegrass takes to resume full transpiration after a
stress period.

Whilst the CWSI and associated baselines can be of benefit in monitoring for plant
water stress in the field, there are numerous potential issues involved with data
gathering to develop the baselines that can result in errors in the data gathered.
Further work must be undertaken to verify this study's baselines and resulting
CWS], especially in non-arid regions.

5.5 Conclusion

The canopy temperature difference between the stressed and non-stressed annual
ryegrass pastures was able to be detected using a thermal sensor in the field, with
the stressed pastures typically recording higher canopy temperatures than the non-
stressed pasture canopies during the hotter periods of the year. From the canopy
temperature differences, the stressed and non-stressed baselines for the stressed
and non-stressed rye grass pastures were developed during periods of plant stress
and over a range of VPD. CWSI values for stressed and non-stressed rye grass
pastures were able to be determined when the plants were under water-stressed
conditions (increase in ambient temperature) but did not work well, as expected,
during times when the plant was not under water stress (cooler ambient
temperatures or when the plant had adequate soil moisture). The stressed and non
stressed baselines developed as part of this field work could be used in the
agriculture environment to monitor plant water stress across a paddock or farm,
and also could be used as a tool to set irrigation limits if irrigation water is available.
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6 Comparison of empirical, adaptive, and baseline-derived Crop
Water Stress Index (CWSI) methods to assess plant water
stress in pastures in Southeast Australia.

6.1 Introduction

Field-grown pasture is the main and cheapest feedstock for cattle and sheep in
southern Australia (Perera et al. 2020; Chapman et al. 2009) and many other
regions worldwide. Climate, particularly rainfall variability, is one of the significant
sources of intra - and inter-annual variation in pasture growth (Chapman et al
2009). In southern Australia's temperate and Mediterranean climates, pasture
growth is primarily limited by water availability from mid-late spring to the
opening rains in autumn. In contrast, appropriate spring and autumn temperatures
with nutrients, disease, and other management practices (overgrazing) can also
affect pasture growth. As soil moisture reduces, plant transpiration declines and the
canopy temperature increases along with a reduction in photosynthesis (Idso et al.
1981). Water deficits occur in plants when evaporative demand exceeds the water
supply in the soil (Slatyer, 1967). Where there is inadequate water for the plant, the
water stress causes partial stomatal closure and reduction in transpiration rates,
and the reduced evaporative cooling raises the canopy temperature in relation to
the ambient temperature (Jones, 1999).

Canopy temperature is considered a reliable proxy for plant water stress
monitoring and irrigation scheduling (Idso et al. 1984; Steele et al. 1994). Canopy
temperature is accepted as an indirect, rapid, accurate, and large-scale crop water
stress indicator (Gonzalez-Dugo et al. 2022). Using a Thermal infra-red
thermometer to assess plant canopy temperatures of water-stressed plants was
initially put forward by Jackson et al. (1977). In the absence of biotic stress from
fungi, bacteria, and viruses, the restrictions in canopy growth under sub-optimal
water or nutrient levels are generally related to stomatal closure (Jones, 1998) and
chlorosis (Shimshi. 1967), resulting in both water and nutrient stress due to limited
uptake from the roots (Zarco-Tejada, 2021). The Crop Water Stress Index (CWSI) is
an efficient indicator of crop water status and is based on the difference between
foliage and air temperature (Idso et al. 1981; Jackson et al. 1981) of stressed and
non-stressed plants normalised by the vapour pressure deficit (VPD).

To measure the CWSI empirically, an alternative method requires a stressed and
non-stressed plant to normalise the results. The canopy temperature
measurements from the stressed and non-stressed canopies and the canopy
temperature from the plant of interest are used to develop the CWSI. The
requirement for having a non-stressed and stressed plant present to measure the
CWSI in the field has made it difficult to use the CWSI extensively in the Agricultural
setting. Alternatively, if a stressed and non-stressed plant is unavailable, it is
possible to utilise baselines if they have been developed for that species at that
location. Idso initially undertook numerous baselines for various crops in the
(1980's). One limiting factor of using already developed baselines is that the
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baselines are site, species and variety specific (Idso, 1982) and may not work that
well when used in the next valley or in a different region, country, continent or time
of year.

One method to avoid the requirement for having a stressed and non-stressed plant
available to normalise the results is the use of reference leaves, using materials that
may imitate the stressed and non-stressed leaf's canopy temperatures in the field
(Jones et al. 2002). Alternative methods include cloth knitted around a solid frame
(Maes, 2016), cellulose paper (Apolo - Apolo 2020), leaves sprayed with water or
covered in petroleum gelly (Leinonen, 2004), a small quantity of detergent on the
leaf (Jones et al. 2002), filter paper (Jones et al. 2002) and a wet artificial reference
surface (WARS).

Park et al. (2017) used an adaptive derived Twet (non-stressed) and Tary (stressed)
to calculate the CWSI as part of one of their studies on nectarine and peaches under
different irrigation treatments. They used a temperature histogram derived from a
TIR (thermal infrared) image to generate the stressed and non-stressed values for
CWSI. They used T-wet (non-stressed), the histogram's coldest part, and T-dry, the
hottest part. They excluded any pixels with a mixture of canopy and background
(such as soil). Their experiment-imposed deficit plots, where irrigation was
withheld for five days before the field trials (Park et al. 2017). The other plots were
irrigated and were the control plots. Park et al. (2017) collected the canopy's
thermal temperatures remotely using a thermal camera. This allowed the quick
recording of the thermal temperatures over a larger area (paddock/farm scale)
than would be possible if taking point measurements on the ground. By using the
remote collection method, they assessed the spatial variability of plant water stress
over larger areas quickly and efficiently.

This work compares the baseline calculated CWSI against the CWSI developed
empirically and uses an adaptive CWSI method similar to Park et al. (2017) on
pasture species in Southeast Australia. The baseline approach relies on CWSI
baselines having been developed for the particular species, at the same location to
then calculate the CWSI of the plant from using the canopy temperature and VPD
(Vapor Pressure Deficit) at the time. The empirical CWSI approach uses two canopy
temperatures on the day of sampling, one from a stressed plant and one from a non-
stressed plant. These stressed and non stressed temperatures are then used in the
CWSI formulae to calculate the CWSI. The adaptive approach uses a temperature
histogram derived from a thermal infrared image to generate the stressed and non-
stressed values for the CWSI.

6.2 Materials and Methods

6.2.1 Experimental design and plot management

Study Area, Agricultural practices and pasture growth
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The field experiments were undertaken at Murroon, in the Otway’s (38°27’S.
143°50'S, 273m alt.) in Southwest Victoria, Australia. The property is
approximately 147 km southwest of Melbourne and has flat areas and rolling hills.
Field experiments were primarily conducted on the flat areas. Further details on the
property and pasture can be found in Chapter 4.

6.2.2 Meteorological Conditions throughout the experiment

The climate is classified as warm and temperate. The area receives, on average,
824mm of precipitation (Average 1980-2022 Barwon Downs) a year, with May and
October being the wetter months. Further details can be found in Chapter 4.

6.2.3 Field Plots

The field experiment was set up in Murroon, in south-west Victoria and ran from
October 2020 to January 2022. Two treatment plots were set up in the paddock, a
well-watered (non-stressed) and a rainfall only (stressed) plot. The pastures were
predominantly Phalaris (Phalaris aquatica L) with a small amount of Clover
(Trifolium subterraneum L) and Dandelion (Taraxacum officinalis) weeds. A
permanent thermal canopy sensor was installed in each plot along with soil
moisture probes and a weather station. The pasture canopy temperature of the
stressed and non-stressed plots was continuously measured throughout the field
trials. As part of the study, spatial variation in canopy temperature was also
assessed with a Flir thermal infrared camera mounted on an aeroplane. Further
information can be found in Chapter 4.

Figure 80 shows the rainfall experienced on-site throughout the field study period.
This rainfall fell on both plots (stressed and non-stressed), as a rainout shelter was
not used for the stressed plot. Whilst a rainout shelter was considered, introducing
a rainout shelter introduces other variables that can affect the microclimate and,
therefore the plants water stressed state. The rainout shelter would also have
added complications for aerial data gathering, effectively blocking the pasture from
the FLIR camera mounted to the plane.
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In Figure 81 are the dates and quantities of waterings for the non-stressed field plot
throughout the experiment. During the winter, watering ceased as the plants
received enough water from rainfall, with watering continuing again in spring.
Waterings were undertaken using a watering can, evenly spreading the water
around the non-stressed plot to ensure all pasture within the plot was evenly
watered.
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FIGURE 81. DATES AND AMOUNTS (MM) OF WATER ADDED TO NON-STRESSED PLOT DURING
FIELD TRIALS.

6.2.4 Study Area

The field plots are shown in Figure 82, including the area used to develop the
histogram (Area A), which covers approximately 5.8 hectares and excludes the
stressed and non-stressed field plot areas.

FIGURE 82. FIELD PLOTS (BLUE SQUARES) AND AREA A USED TO DEVELOP THE HISTOGRAM.
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6.2.5 Thermal Image Acquisition Remote

The airborne thermal imagery was collected with a Cessna aircraft flying 500m
above the site on 14/12 /2020 (figure 9), 29/11/2021 (figure 10) and 14/12/2021
(figure 11) heading on the solar plane. The aircraft recorded canopy temperature
with a thermal camera (SC655 model, FLIR Systems, Wilsonville, OR, USA) with a
resolution of 640 x 480 pixels, 16-bit radiometric resolution, 13.1-mm focal length,
and 45 x 33.7 ° FOV yielding a spatial resolution of 0.25 m.

6.2.6 Processing of Thermal Images

The thermal images were processed as in Calderon et al. (2015) and Hornero et al.
(2021). The thermal imagery map obtained from the flight was then used to
calculate the CWSI for the treatment plots and the wider area (across the paddocks
or farm).

6.2.7 CWSI Calculations

Three different methods to calculate the CWSI were used, they included,

1. Baselines - using the previously calculated (Chapter 4) pasture baseline (y=-
2.9289x + 7.286. and 16) to generate the CWSI (Idso,1982).

2. Empirically using the stressed and non-stressed plants' canopy
temperatures to calculate the CWSI (Gonzalez-Dugo et al 2018) using the
CWSI = ((Tc-Ta) - (Tc- Ta)r) / ((Tc - Ta) uL - (Tc- Ta) L) (The (Tc - Ta)LL
represents the canopy temperature less air temperature of a canopy
transpiring at its maximum rate, the non stressed plot. The (Tc - Ta)uL
represents the canopy temperature less air temperature of a canopy when
transpiration is halted due to stomata closure, the stressed plot.)

3. Adaptive - using a temperature histogram derived from a thermal infrared
image to generate the stressed and non-stressed values for the CWSI (Park
etal 2017) using the CWSI = ((Tc-Ta) - (Tc- Ta) L) / ((Tc - Ta) uL - (Tc- Ta)
LL) (The (Tc - Ta)LL represents the canopy temperature less air temperature
of a canopy transpiring at its maximum rate, in this scenario the lower
temperature on the histogram. The (Tc - Ta)u. represents the canopy
temperature less air temperature of a canopy when transpiration is halted
due to stomata closure, in this scenario, the upper temperature on the
histogram.

6.2.8 Data analysis

Describe the data was analysed - eg temperature histograms, and CWSI - averag
averaqge and spatial distribution.

The thermal temperatures from the flight were analysed and the temperature
occurences were put in the histogram (figure 83). The temperatures were then used
to devlop the CWSI for the field plots (figure 84) for each flight using each method
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(baseline, empirical and adaptive). The data was then used to display the the spatial
canopy temerature avross the farm (figures 85-87) and for the CWSI across the
paddock (figure 88).

6.3 Results
From the aerial pasture canopy temperature data the CWSI were generated from
the baselines, empirically and using the adaptive approach.

6.3.1 Baseline approach

The baselines were generated as part of the fieldwork, with full details in Chapter
5. The CWSIs generated for each flight using the baselines approach are shown in
Table 6. These baselines were developed from the canopy temperatures from the
stressed and non stressed field plots.

TABLE 5. CWSI GENERATED USING BASELINES

Flight 1 Flight 2 Flight 3
CWSI Non Stressed 0.15 0.08 0.12
CWSI Stressed 0.48 0.32 0.21

6.3.2 Empirical Approach

The maximum and minimum canopy temperatures could be measured for the
stressed and non-stressed plots for the three flights. The canopy temperature from
the stressed plot (maximum temperature) and the canopy temperature from the
non-stressed plot (minimum temperature) were used to develop the empirical
CWHSI for each flight, and the CWSI results are shown in Table 7. The CWSI index
ranges from 0 (stressed) to 1 (non stressed) (Jackson et al. 1981), which can be seen
in the stressed and non stressed results obtained (Table 2). As the stressed and non
stressed canopy temperatures from each flight are used to develop the empirical
CWSI, these canopy temperatures represent the highest and lowest canopy
temperatures and therefore calculate into the maximum and minimium CWSI. For
the canopy temperatures between the maximum and minimum canopy
temperatures, these will range between 0 and 1 on the CWSL

TABLE 6. MAXIMUM AND MINIMUM CANOPY TEMPERATURES FOR THE STRESSED AND NON-
STRESSED PLOTS AND EMPIRICALLY DEVELOPED CWSI.

Non  Stressed | Stressed  canopy | Non- Stressed
canopy temperature °C Stressed CWSI
temperature °C CWSI
Flight 1 (14/12/2020) | 35.85 40.85 0 1
Flight 2 (29/11/2021) | 26.85 29.85 0 1
Flight 3 (14/12/2021) | 25.85 26.85 0 1
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6.3.3 Adaptive Approach

In Figure 82, “Area A”, shows the area used to determine the canopy temperature
for the CWSI histogram method. The histogram results for “Area A” for each flight
are shown in Figure 83.
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FIGURE 83. FREQUENCY DISTRIBUTION HISTOGRAM OF FIELD CANOPY TEMPERATURES ("C)
OF AREA IN FIGURE 6 FOR EACH FLIGHT.

In Table 8 are the CWSI results for the adaptive approach.The maxnimum (stressed)
and minimum (non stressed) temperatures (‘C) used for the CWSI were obtained

from the histograms (Figure 83) for each flight and then the CWSI was calcualted
for the stressed and non-stressed field plots.

TABLE 7. CWSI RESULTS FOR THE ADAPTIVE APPROACH

Non Stressed | Stressed  canopy | Non- Stressed
canopy temperature °C | Stressed CWSI
temperature °C | (from Histogram) CWSI
(from histogram)
Flight 1 (14/12/2020) | 32.85 46.85 0.21 0.57
Flight 2 (29/11/2021) | 18.85 36.80 0.45 0.61
Flight 3 (14/12/2021) | 22.85 34.83 0.25 0.33

6.3.4 Comparison of the CWSI’s generated

The CWSIs could be developed for all the methods (baseline, empirical and
adaptive). Figure 84 presents the results using the different methods to derive the
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CWSI on the field trial plots (stressed and non-stressed). The CWSI results differ for
the differing approaches for the two areas (stressed and non-stressed plots);
however, the CWSI results still demonstrate areas of high to low water stress. The
empirical results are always going to have a CWSI upper and lower limits of 1 - 0
and rely on the canopy temerature of the stressed and non stressed plot on the day.
The adaptive approach will differ, depending on the pasture canopy temperatures
and the variation in the pastures water stress status across the paddock on the day
For flight 1 the ambient temperature was significantly higher than for flight 2 and
flight 3, and this is seen in the data with the CWSI higher for flight 1 than for flights
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FIGURE 84. COMPARING THE THREE FLIGHTS' (BASELINE, EMPIRICAL AND ADAPTIVE)

GENERATED CWSI RESULTS. (A) FLIGHT 1, (B) FLIGHT 2, (C) FLIGHT 3 OF THE FIELD PLOTS.
(NOTE: EMPIRICAL WILL ALWAYS RESULT IN A CWSI 0F 0 TO 1.)
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6.3.5 CWSI of paddocks

Figures 85-87 shows the canopy temperatures collected remotely during the flights,
showing the variation in canopy temperature across the paddocks.

-

FIGURE 85. PASTURE CANOPY TEMPERATURES (°C) WERE OBTAINED REMOTELY (BY PLANE)
ON 14/12/2020. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER AREA
(PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY.
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FIGURE 86. PASTURE CANOPY TEMPERATURES (DEG C) WERE OBTAINED REMOTELY (BY
PLANE) ON 29/11/2021. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER
AREA (PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY.

LS R :
FIGURE 87. PASTURE CANOPY TEMPERATURES (DEG C) WERE OBTAINED REMOTELY (BY
PLANE) ON 14/12/2021. STRESSED AND NON-STRESSED FIELD PLOTS AND A BROADER

AREA (PADDOCKS) ARE SHOWN. AREA WITHIN BLACK OUTLINE IS THE PADDOCK BOUNDARY.

Figure 88 shows the CWSI calculated by the different approaches spatially for the
data for the first flight (14/12/2020).
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FIGURE 88. ANALYSIS OF THE CWSI RANGE FOR FLIGHT 1 OVER SEVERAL PADDOCKS, USING
THE (A) BASELINE, (B) EMPIRICAL AND (C) ADAPTIVE CWSI METHODS.

Analysis of the % CWSI range for (a) flight 1 (14/12/2020) and (b) flight 2
(29//11/2021) using the baseline, empirical and adaptive CWSI methods (Figure
88). The ambient temperature on the day of flight 1 was 33 “C compared to 22 °C
for flight 2. As a result of the higher ambient temperartures during flight 1 the
pasture canopy temperatures were higher and as seen in figure 88 the resultant
CWSI’s were higher than flight 2. Examining the average CWSI’s for each method
(figure 89), the empirical and baseline method showed a clealy higher average CWSI
for flight 1 than flight 2. The average CWSI using the adaptive approach was similar
for flight 1 and flight 2.

134



70%

60%

50%

40%

%

30%

20%

10%

0%

80%
70%
60%
50%
R 40%
30%
20%
10%

0%

<0.19

<0.19

m F1Baseline

0.2-0.39

0.2-0.39

W F2 Baseline

0.4-0.59
CWSI Ranges

m F1 Empirical

0.4-0.59

CWSI Ranges
m F2 Empirical

0.6-0.79 >0.80

m F1 Adaptive

0.6-0.79 >0.80

m F2 Adaptive

FIGURE 89. ANALYSIS OF THE % CWSI RANGE FOR (A) FLIGHT 1 (14/12/2020) AND (B)
FLIGHT 2 (29/11/2021) USING THE BASELINE, EMPIRICAL AND ADAPTIVE CWSI METHODS.

The area average CWSI for flight 1 (14/12/2020) and flight 2 (29/11/2021) for the
baseline, empirical and adaptive CWSI methods is shown in Figure 90.
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6.4 Discussion

Using the CWSI calculation methods (baseline-derived, empirical, and adaptive),
the CWSI for the plot areas and spatially across the paddocks were calculated. All
methods used a form of stressed and non-stressed plant canopy temperature to
calculate the CWSI but these temperatures were derived in different ways. The
baseline approach was derived from collecting canopy temperatures of stressed
and non-stressed plants over time to develop the baselines as undertaken in
chapter 4 and 5. The empirical CWSI approach only uses two canopy temperatures
on the day of sampling, one from a stressed plant and one from a non-stressed plant.
In using the empirical approach, we must ensure the two points selected for the
CWSI accurately reflect an example of a stressed and a non-stressed pasture. The
adaptive CWSI approach uses more data points (pixels) from a larger area to
determine the maximum and minimum pasture canopy temperatures across the
target areas. Before calculating the adaptive CWSI non pasture canopy
temperatures need to be removed (bare ground, roads, trees, water bodies, etc) as
temperatures from these areas can vary considerably from pasture canopy
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temperatures and so affect the CWSI considerably. For the adaptive CWSI to work
well, there needs to be a representative stressed and non-stressed plant in the field
of view to produce an accurate CWSI, which may not always be possible.

In the data collected on 14/12/2020, due to the time of year (early summer) and
nature of the season, there was a lot of canopy temperature variation across the
paddock, due to some pasture experiencing water stress, other pastures starting to
undertake senescence, whilst other pastures were still growing. As a result, there
was a large amount of canopy temperature variation across the paddocks. The
ambient temperature was 33°C on the day (14/12/2020). However in the data
collected in the second (29/11/2021) and third (14/12/2021) flights, the ambient
temperature on the day of the flights was lower, 22°C and 20°C respectively, and
the field conditions leading up to the flight had not been as dry, resulting in more
plants that were not under water stress and therefore resulted in lower canopy
temperatures than the first flight which can be seen in figure 87. The average CWSI
temperatures for flight 1 were higher than the average temperatures for flight 2
(Figure 90). Similarly, looking at the % CWSI ranges (Figure 89), flight 2 had more
of the results in the lower % CWSI ranges.

The baseline and empirical CWSI (using a fully stressed plant) will give a more
accurate result for plant water stress, and the adaptive CWSI will be less accurate;
however, the adaptive CWSI will still highlight areas of plant water stress in the field
over a broad area (farm scale). The adaptive CWSI can provide a faster (although
less accurate) way to identify plant water stress in the field, although the extent of
the water stress will not be known as the CWSI calculation does not necessarily
include a stressed and non-stressed canopy temperature like the baseline and
empirical CWSI approach. The adaptive approach may not be accurate enough to
set irrigation limits. However, it may assist users in identifying which parts of their
paddocks are under stress compared to the pastures around them, which could then
be visually inspected in the field. The adaptive approach would be suitable for using
for irrigation controls if a stressed and non stressed plant was within the area
where the data is collected for the histogram.

The baseline and empirical CWSI method could be used in the field for irrigation
control. The baseline approach relies on many months of collecting field
temperature data to generate the baselines, incorporating a range of temperatures
and seasons in the final baseline whereas the other two methods (empirical and
adaptive) rely only on collecting plant canopy temperatures on the day of analysis.
Whilst the empirical approach relies on having a stressed and non stressed plant
for the calcultion, its not always possible in the field to have a fully stressed plant.
In this study we chose not to use a rain out shelter as introducing a rainout shelter
introduces other variables that can affect the microclimate and therefore the plants
water stressed state and would also have added complications for aerial data
gathering, effectively blocking the pasture from the FLIR camera mounted to the
plane. As a result, our stressed plant although stressed, may not have been fully
stressed.

The main finding was that the CWSI can be generated using the baseline, empirical
and adaptive approaches. If the adaptive CWSI is undertaken when there is a range
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of plant water stress occurring in a paddock, then the resultant adaptive CWSI is
closer to the baseline and empirical CWSI.

This work expands on the work by Park et al. (2017) and demonstrates that an
adaptive CWSI could be developed. Using the adaptive approach with pastures was
different to how Park et al. (2017) initially used the adaptive approach. This work,
using the adaptive approach demonstrated that the adaptive aproach can add value
in identfying plant water stress spatially, however its not always accurate enough
to use for irrigation controls if stressed and non stressed plants are not used.

The shortcomings of using the adaptive CWSI is that the accuracy can be an issue if
no stressed or non-stressed plant is present. Although it can be quicker than
developing baselines, the process of data gathering and analyse takes time. The user
needs access to a current thermal image area of the area in question. They then
need access to geospatial software, and then they need to sort the canopy
temperatures and develop the histogram. The shortcomings are that a stressed and
non-stressed plant is still required to generate an accurate empirical and adaptive
CWSI. The stressed plant can be similar to the ones in this experiment, where they
were not watered, or similar to other studies (Park et al. 2017), where irrigation is
stopped for several days before measuring the CWSI. Similarly, a well-watered plant
also needs to be used, which could be undertaken similarly to this experiment
where it receives specific watering in the field or similar to Park et al. (2017), where
the plants receive 100% irrigation treatment.

There is minimal literature using an adaptive CWSI. Previous work using a form of
adaptive CWSI was undertaken by Park et al. (2017, 2021) on nectarines and
peaches. The method used to develop the the baseline is similar to what has been
documented by Idso and used extensively since the 1980’s. The adaptive CWSI
approach is relatively new, with Park et al. (2017) recently completing work on a
similar approach.

One implication of using the CWSI in this region (South of the Great Dividing Range)
is the occurrence of clouds throughout the year, making it challenging to collect data
to develop and test the CWSI. A lot of the early work on developing the CWSI was
done in the USA by Idso in Arizona, North Dakota, Nebraska, Kansas, etc, in arid
environments with limited clouds. Idso (1981) mentions that his work was
undertaken with clear skies and some thin cirrus conditions. He further mentions
that the relationship begins to fall down for other types of cloudiness, presumably
due to changing illumination effects on stomates (Idso, 1981). Consideration needs
to be given to the usefulness of using the empirical and adaptive CWSI in non-arid
regions.

Another difficulty in using the CWSI in grazed pastures is the variability introduced
by cattle grazing practices, where a pasture may be long one day and shorter a few
days after grazing.

Relying solely on spatial images, such as Figure 88, can make it challenging to
quickly identify the differences visually between the CWSI methods. However,
sorting the data into CWSI ranges and averages, such as in Figures 89 and 90, can
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aid in evaluating the spatial data and make it easier to make management decisions
from the data.

6.5 Conclusion

Developing the CWSI using the baseline, empirical and adaptive approach was
carried out and assessed. The three approaches identified areas across the paddock
that ranged from stressed to non-stressed. Whilst more confidence is given to the
baseline and empirical CWSI approach as it inherently includes stressed and non-
stressed pasture canopy temperatures within the formulae calculation, using the
adaptive CWSI approach was still able to identify a range of stressed to non-stressed
plants across the field. Once the baselines are developed, calculating the CWSI using
the baseline approach is quick, only needing the plant canopy and air temperatures.
Using the empirical and adaptive approach in the field requires a lot more data
collection, synthesis and calculation.
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7 General Discussion

7.1 Introduction

With improved approaches to monitor plant water stress in pastures together with
improved pasture forecasting, primary producers can manage the risks associated
with climate variability better. This work examined the use of the SGS biophysical
model to assist farmers in looking ahead at pasture forecasts in the weeks and
months ahead and at how the CWSI can assist farmers in monitoring the water
stress of their pastures in the field. This study involved a combination of modelling
and field work in pasture systems in medium-high rainfall zones of Southeast
Australia.

7.2 Aims

This research aimed to assess the usefulness of soil water content (SWC) as a
predictor of pasture growth at three sites in Victoria, Australia, across different
climatic conditions and pasture types. This was done using The Sustainable Grazing
Systems (SGS) pasture model to predict monthly pasture growth rates based on
historically dry (10th percentile), moderate (50th percentile) or wet (90th
percentile) Soil Water Content (SWC), simulated using local climate data from
1990-2020. Results were presented as the probability that pasture growth will be
in the lowest, middle, or top tercile (third) of expected monthly growth rates.

Another aim was to develop the CWSI for two pasture types (phalaris-based and
annual ryegrass) in Southeast Australia by measuring the canopy temperature
differentials between the stressed and non-stressed pastures to develop their
baselines and the CWSI. Another aim was to compare methods for calculating the
CWS], using an adaptive, empirical and baseline approach.

7.3 Key findings and original contributions

Chapter 3 assessed the usefulness of SWC to predict pasture growth for a one-to-
three-month period, using the SGS Pasture Model at three sites across central and
southwest Victoria, Australia. The study consisted of two main components: to
validate the simulated SWC against measured data in the field and to predict
monthly pasture growth rates based on historically dry (10t percentile), moderate
(50th percentile) or wet (90t percentile) SWC on the first day of each month. The
validation demonstrated that the modelled SWC from the SGS model was very
similar to the actual SWC for the three sites. Whilst there are some variations
between the two data sets, they tend to follow a similar drying down and wetting
up sequence. The key questions were: s soil water content (SWC) a useful predictor
of pasture growth? If so, what are its strengths and weaknesses?

The findings demonstrated that pasture growth is most variable in Autumn and
Spring but less variable in Winter when pasture growth is typically limited by
temperature. The key findings of this study are that during the main growth
periods, predictions of SWC are most useful where variation in pasture growth is
high and affected by the initial soil water content. Predictions for lucerne showed a
large variation in summer pasture growth predictions, depending on the starting
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SWC. For Baynton, the forecasting skill was in October (Spring) and April and May
(Autumn), at Pigeon Ponds it was in October and November (Spring) and April and
May (Autumn) whilst at Dartmoor the forecasting skill was January through to April
(Summer and Autumn). For example, considering Baynton in April, if the SWC is dry
(40 mm) then this could lead to 21kg DM /ha, compared to a 33kg DM /ha if the SWC
is wet. Over a 4-month period (April to July) this would translate to an average
2,735kg DM /ha for a wet SWC and 2,272kg DM/ha for a dry SWC. This varying
pasture production as a result of the initial SWC can be large over a broad farm, and
especially useful where stock is relying on only field grown pasture fodder for
growth.

The more forewarning a farmer has, the more time is available to react and plan for
a changing environment. If the farmer has site-specific tools that utilise historical
local data, then they may have more confidence in the output being more relevant
for their scenario. This modelling exercise using historical weather data and the
farmer's soil moisture level at the start of each month means that predictions of
pasture growth rates in the months ahead are more tailored and site-specific than
modelling that is more generic and regional. These site-specific 'heads up' pasture
growth forecasts can give the farmer more time to prepare for the upcoming season
and give them more time to align the fodder budget with the expected pasture
growth forecast, assisting farmers manage the risks of a variable climate. The
results show that skill in forecasting pasture growth is highest in the first month of
prediction and then declines over time (+1month, +2 month, +3 month), therefore
more emphasis should be put on the short term predictions (Prediction month) and
less emphasis should be on the longer term predictions, where intervening weather
events may influence these longer term predictions.

This research also expanded on pasture growth predictions using the SGS model
(Cullen et al. 2012) and compared different SWC at the start of each month to
calculate pasture growth predictions for three sites around regional Victoria. The
work demonstrates that SWC can be used to improve the prediction of pasture growth
rates at these times of the year. The predicted pasture output tables could display
tercile probabilities for the month of prediction and the following three months,
given a dry, medium, or wet SWC at the start of the month. Modelling tools that can
assist with predicting how much pasture is available to farmers can assist in
managing risk in their agricultural business. Knowing how much fodder is available
in the months ahead can affect livestock numbers and a business's economics. With
increasing climate variability and global warming occurring, it would be interesting
to see if and, if so, how much the winter pasture growth patterns may change over
time.

Whilst the SGS model is a tool that can be used to predict future pasture production,
one limitation is that setting up and running the SGS model is time-consuming and
would be difficult for first-time users. Another limitation is that the output data
from the SGS model also requires interpretation to understand what it is predicting.

Chapter 4 involved establishing water stressed (rainfed) and non-stressed
(irrigated) pasture field plots and recording the pasture canopy temperature and
VPD to develop the baselines so the CWSI could be calculated. Once the CWSI was
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established, three flights were also undertaken to capture the pasture's canopy
temperature remotely across the paddocks to see if the CWSI could be recorded
spatially. The key questions were: Can the CWSI and baselines be developed for a
pasture species in southeast Australia? If so, what are the limitations of using the
CWSI and baselines on mixed pastures in southeast Australia? Can the CWSI and
baselines be developed by gathering canopy temperatures remotely by plane? Can
this data be used spatially to project the CWSI across a paddock or property?

The findings and new contributions to science demonstrated that the field
experiment enabled the capturing of the pasture's canopy temperatures for the
stressed and non-stressed plots, which could then be used to develop the baselines
for pastures (figure 91). It was possible to project the CWSI baselines across the
paddock/farm spatially. This adds to the work on developing baselines for alfalfa,
tomato, sunflower, cotton, cowpeas, etc undertaken by Idso et al. (1982) and others,
compiled by Maes et al. (2012). The phalaris and annual ryegrass non stressed
baselines (figure 91) are somewhat similar and different. There is a pronounced
difference between the stressed baselines, with the stressed baseline for the
phalaris pasture higher than the annual rye grass. The differences in the baselines
are due to two different species being measured, which can differ in transpiration
response to environmental constraints (Gonzalez - Dugo et al 2022). The data to
develop the pasture baselines was collected over a longer time interval (October
2020 - January 2022) than the data to collect the annual rye grass baseline
(18/10/2021 - 1/2/2022) which may also affect the baselines. Future work
gathering data over a longer time period would be an interesting addition to this
work, to determine if the longer data gathering time frame would affect the
baselines.
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FIGURE 91. COMPARING PASTURE AND ANNUAL RYEGRASS STRESSED AND NON-STRESSED
BASELINES DEVELOPED IN SE AUSTRALIA AS PART OF THE FIELD WORK UNDERTAKEN FOR
THIS THESIS.
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FIGURE 92. COMPARING THE PASTURE AND ANNUAL RYEGRASS NON-STRESSED BASELINES
DEVELOPED AS PART OF THIS THESIS AGAINST A NUMBER OF OTHER PLANTS.

The thermal canopy data collected aerially could also be used to develop the CWSI
over the paddock and farm scale. The applicability of these results showed that
using the CWSI in pastures is a valuable tool for assessing the variability of crop
water stress over pasture paddocks. Areas of stressed to non stressed pastures
could be observed in the spatial images, clearly identifying the variance in plant
water stress across the paddock.

Chapter 5, like Chapter 4, involved setting up stressed and non-stressed field plots
and recording the annual ryegrasses canopy temperature and VPD over time to
develop the baselines (Figure 91) so the CWSI for annual ryegrass could be
calculated. The baselines vary from one plant to another as demonstrated in Figure
92, due to a number of factors including varying leaf stomatal densities between
species (Costa et al. 2012), different hormonal regulation of stomata (Schultz 2003),
the size of the canopy leading to different velocities in dehydration (Rogiers et al.
2009), etc.

It was possible to remotely record canopy temperature differences between
stressed and non-stressed annual ryegrass plants in the field. From the temperature
differentials in the canopy temperatures of the stressed and non-stressed annual
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ryegrass pastures, it was possible to develop the stressed and non-stressed
baselines and resulting CWSI. The result was the development of baselines for
annual ryegrass pastures.

Using the CWSI results can potentially assist farmers in managing fodder
production. Knowing the state of the pasture’s water stress at any one time gives
managers time to react to changes in pasture growth. If a pasture is getting
increasingly stressed and no irrigation is possible, farmers may preferentially graze
it before it deteriorates further or cut it for fodder to conserve some of the quality.
Better monitoring of the plant’s water stress would improve pasture utilisation and
resource management.

It was possible, although difficult, to use the CWSI in a non-arid region. Using the
CWSI with a drone to collect the canopy’s thermal temperatures would help the
farmer be quick and nimble to collect the thermal temperatures when clouds are
absent. With drones becoming cheaper and easier to use, as well as the thermal
cameras coming down in cost, collecting actual data at the farm level is more
realistic than ever.

As these field trials were conducted in the field, without a rainout shelter, it was not
possible to fully limit rainfall falling on the stressed field plot, therefore the stressed
plants may not have been fully stressed. A rainout shelter could be used, however
this addition may affect the pastures growth by altering the microclimate and
therefore add other variables. Not having a ‘fully’ stressed plant could affect the
CWSI calculations by potentially having a lower stressed baseline than a fully
stressed pasture.

This research contributes towards the remote gathering and use of the CWSI in
pastures in Southeast Australia. The resulting baselines for annual ryegrass and
mixed species have been developed, and further work in this field could result in
further baselines for pastures in different climates and micro climates. This work
demonstrates that the CWSI can work on pastures, giving farmers a new tool to
monitor their pastures. The earlier a farmer knows the condition of their pasture is
deteriorating, the more time they have to react. If the farmers first notice that there
is water stress in their pastures by the visible presence of senescence or wilting,
then the window is small to react to the situation by cutting hay, irrigating, grazing,
etc. However, using the CWSI, farmers can see the deterioration of their pastures
prior to senescing. The CWSI also allows the farmer to see which plants are more
stressed than others, therefore giving the farmer the ability to target any remedial
action they take to the affected pastures.

Prior to this work, no research was found using the CWSI in the Australian grazing
pasture context. As access to drones and thermal cameras increases, farmers can
undertake their analyses, developing the CWSI for their pastures. Similarly, as the
number of satellites increases (O'Reilly et al. 2021), with more satellites with
thermal infra red cameras attached (Stavros et al. 2017), farmers can access the
satellites to retrieve the thermal data. Along with the increasing number of
satellites, the return time of satellites is being reduced, so instead of waiting a week
for a satellite to return to an area, the return times are getting smaller and smaller.
Being able to compare the CWSI of the pasture more regularly allows the farmers
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to pick up changes quicker than if they must wait for a week to get the subsequent
data from a satellite, by which time the pasture may have deteriorated significantly.

Chapter 6 compares the ‘baseline’ calculated CWSI (refer chapter 4) against the
CWSI developed ‘empirically’ and an ‘adaptive’ CWSI method similar to the one Park
et al. (2017) used on pasture species in Southeast Australia. The key questions
were: How comparable are the three CWSI methods (baseline, empirical, and
adaptive), and how comparable is the adaptive method as a method that does not
use a stressed and non-stressed plant to the other two methods? Are they
interchangeable? What are the advantages and disadvantages of each method?

While each method gave a resultant CWSI, the baseline approach has been
calculated by collecting data over a more extended period to generate the pasture’s
response to different climatic conditions. The adaptive approach gave insight into
relative stress across a paddock; however, as it is unknown if a stressed or non-
stressed plant is in the area used to develop the CWS], it is unreliable as an accurate
measure of the CWSI. Whilst the baseline method could be considered more robust,
the other methods can provide insights to the farmer without additional
information. For example, using the adaptive approach can still assist in developing
a spatial image of the pasture, which gives the farmer an idea of the relative stress
variation across a paddock or area, with the ability to pinpoint the farmer to areas
of high stress. If the farmer wanted to use the CWSI results to set their irrigation,
then the baseline approach, if developed for the local environment, should be
suitable, whereas the adaptive approach would be unsuitable.

This work also shows the application of the CWSI in pastures of mixed species in
mid to high-rainfall zones. Prior to this research, most work has been undertaken
using the CWSI in more arable areas on crops and orchards. However, this work
involved the use of the CWSI in a wetter environment and applied to pastures,
demonstrating that the CWSI could be used as a new tool for Australian farms with
regards to identifying plant water stress in pastures. Using CWSI in medium to high
rainfall zones can present issues with data handling and gathering. Due to the
increased amount of cloud compared to arid zones which results in extra data
sorting before calculating baselines and the CWSI. The collecting, analysing and
developing of the CWSl is also time-consuming, limiting its use in the present format
for easy use on the farm.

This research examined gathering the CWSI data remotely using planes and infield
canopy sensors. The use of planes and satellites is not always practical and cost-
effective for primary producers, furthermore, there are limitations related to the
need to collect flight/satellite data on a clear day (minimal cloud cover). Collecting
the data remotely by satellite and plane or using the canopy sensors generates a lot
of data, which must be filtered and sorted to meet the required output.

7.4 Future Research

7.4.1 Pasture Growth Forecasting
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Further work to improve the pasture predictions could also involve combining
seasonal forecasts into the SGS pasture model instead of relying on historical
climate data. Seasonal forecasts can provide long range forecasts on rainfall and
temperatures expected in the next 1 to 3 months. Farming forecaster is one tool that
is starting to use current soil moisture to provide nowcasts (real time conditions)
forecasts from 1 - 4 months (Mitchell et al. 2022). McDonnell et al. 2019 has used
short term weather forecasts (up to ten days in advance) to predict short term grass
growth in Ireland. Further work also needs to be conducted to investigate if farmers
regard this work and the form it is presented as helpful in improving their risk
management on their farms.

7.4.2 CWSI/Baselines

A broad range of different pasture species and combinations are used across SE
Australia. This research highlights that different pasture species will respond
differently and have different baselines. There is a need to develop baselines for
different pasture types and regions. Future work could be undertaken on
developing baselines for pastures, clover dominant pastures, annual and perennial
ryegrass pastures at different locations and throughout the year, including
examining baselines at different stages of growth throughout the season -
(Vegetative, elongation and reproductive). Bellvert et al. (2015) and Idso (1982)
found that non water stressed baselines differed depending on phenological stage
and variety. How do these growth stages affect the pasture’s canopy temperatures
and resulting baselines?

Further work could also examine the use of the baselines in developing irrigation
scheduling, similar to work undertaken by Kumar et al. (2019) on using the CWSI
for scheduling irrigation for Indian Mustard, where they “postulate that irrigation
should be provided when the CWSI value exceeds 0.4”. Finding a CWSI value
whereby irrigation could be initiated would assist farmers who have access to
irrigation, although considerations would need to be considered that the baseline
used is suitable for the location. Alternatively, a baseline could be calculated for the
particular location and tests undertaken to determine the appropriate CWSI to
initiate irrigation for the particular location.

Further work could also involve the use of rainout shelter to limit any rainfall falling
on the stressed plot in order to determine how no rainfall water affects the stressed
baseline. This work would also need to consider if the use of a rainout shelter
introduces other variables that influence the canopy temperature when calculating
the stressed baseline, such as creating a microclimate limiting wind and solar
radiation. Alternatively, a drone could be used to collect the thermal data, avoiding
the long delay in getting the plane in the air. The drone would add a nimbleness,
allowing canopy temperatures to quickly be measured on days of intermittent cloud
cover.

Further work may combine the above-mentioned approaches for a more automated
and accurate forecast. There is potential to test the use of canopy temperature
sensors permanently set up in the field, with an algorithm that only computes data
between 12-1 daily and filters for clouds, wind, rain, and other environmental
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factors affecting the CWSI could be tested. Mohammed et al 2022 discusses using
neural networks and the CWSI to develop an ‘intelligent and automatic’ system for
irrigation. This canopy data could be fed into the SGS model to validate and improve
the modelling pasture forecasts in real time.

7.5 Conclusions

In conclusion, the findings from this research can assist farmers with managing
risks associated with climate variability by assisting them to improve pasture
growth predictions in the months ahead using local, current and historical data. The
predicted pasture output tables were able to display tercile probabilities for the
month of prediction and the following three months given a dry, medium, or wet
SWC at the start of the month, with the ability to give farmers a predicted pasture
growth rate determined by their actual SWC, assisting farmers in estimating future
fodder production and therefore stock health.

The findings from the research also demonstrates that the CWSI can be used on
pastures, with stressed and non-stressed baselines being developed for pastures
and annual ryegrass in Southeast Australia and also how the CWSI could be used
spatially, across a paddock, on pastures in Southeast Australia. These results
showed that using the CWSI in pastures is a valuable tool for assessing the
variability of crop water stress over pasture paddocks/farms. The research also
showed that there are several ways for using the CWSI, with the empirical approach
being more reliable than the adaptive approach in this scenario. Using the CWSI on
pastures in the Australian farming context could aid in increasing fodder
production if irrigation water is available to water stressed pastures, applying
irrigation at a predetermined CWSI threshold.

147



8 References

Ahmad, U., Alvino, A., & Marino, S. (2021). A review of crop water stress assessment
using remote sensing. Remote Sensing, 13, 4155.

Akuraju, V. R, Ryu, D., & George, B. (2021). Estimation of root-zone soil moisture
using crop water stress index (CWSI) in agricultural fields. GIScience & Remote
Sensing, 58(3), 340-353.

Albornoz, C., & Giraldo, L. F. (2017, October). Trajectory design for efficient crop
irrigation with a UAV. In 2017 IEEE 3rd Colombian Conference on Automatic
Control (CCAC) (pp. 1-6). IEEE.

Alderfasi, A., & Nielson, D. (2001). Use of crop water stress index for monitoring
water status and scheduling irrigation in wheat. Agricultural Water Management,
47(1), 69-75.

Al-Faraj, A.,, Meyer, G. E., & Horst, G. L. (2001). A crop water stress index for tall
fescue (Festuca arundinacea Schreb.) irrigation decision-making—A traditional
method. Computers and Electronics in Agriculture, 31(2), 107-124.

Anderson, M. W,, Cunningham, P. |, Reed, K. F. M., & Byron, A. (1999). Perennial
grasses of Mediterranean origin offer advantages for central western Victorian
sheep pasture. Australian Journal of Experimental Agriculture, 39(3), 275-284.

Apolo-Apolo, O. E., Martinez-Guanter, J., Pérez-Ruiz, M., & Egea, G. (2020). Design
and assessment of new artificial reference surfaces for real time monitoring of crop

water stress index in  maize. Agricultural Water = Management, 240,
106304.perimental Agriculture, 39(3), 275-284.

Ash, A., O'Reagain, P., Mckeon, G., & Smith, M. S. (2000). Managing climate variability
in grazing enterprises: a case study of Dalrymple Shire, north-eastern
Australia. Applications of seasonal climate forecasting in agricultural and natural
ecosystems, 253-270.

Ash, A, McIntosh, P., Cullen, B., Carberry, P., & Stafford Smith, M. (2007). Constraints
and opportunities in applying seasonal climate forecasts in rural industries.
Australian Journal of Agricultural Research, 58, 952-965.

ASCE-EWRI. (2005). The ASCE standardized reference evapotranspiration
equation. In ‘Reported by the American Society of Civil Engineers (ASCE) Task
Committee on Standardization of Reference Evapotranspiration’.

Bah, M. D., Hafiane, A., & Canals, R. (2017, November). Weeds detection in UAV
imagery using SLIC and the hough transform. In 2017 Seventh International
Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6).
IEEE.

Banerjee, K., & Krishnan, P. (2020). Normalized Sunlit Shaded Index (NSSI) for
characterizing the moisture stress in wheat crop using classified thermal and visible
images. Ecological Indicators, 110, 105947.

148



Banhazi, T. M., Lehr, H., Black, ]J. L., Crabtree, H., Schofield, P., Tscharke, M., &
Berckmans, D. (2012). Precision livestock farming: an international review of
scientific and commercial aspects. International Journal of Agricultural and
Biological Engineering, 5(3), 1-9.

Banu, S. (2015). Precision agriculture: tomorrow's technology for today's
farmer. Journal of Food Processing & Technology, 6(8), 1.

Barbosa da Silva, B., & Ramana Rao, T. (2005). The CWSI variations of cotton crop
in a semi-arid regional of Northeast Brazil. Journal of Arid Environments, 649-659.

Baret, F., Madec, S., Irfan, K., Lopez, J., Comar, A., Hemmerle, M., Dutare, D., Praud, S.,
& Tixier, M. (2018). Leaf-rolling in maize crops: from leaf scoring to canopy-level
measurements for phenotyping. Journal of Botany, 69, 2705-2716.

Barrett, P. D., Laidlaw, A. S., & Mayne, C. S. (2004). An evaluation of selected
perennial ryegrass growth models for development and integration into a pasture
management decision support system. The Journal of Agricultural Science, 142(3),
327-334.

Bartell, C., Bayabil, H. K., Schaffer, B., Tilahun, F., & Getachew, F. (2021). Measuring
Leaf Water Potential: AE563/AE563, 10/2021. EDIS, 2021(5).

Batke, S., Yiotis, C., Elliot-Kingston, C., Holohan, A., & McElwain, ]. (2020). Plant
responses to decadal scale increments in atmospheric CO2Z concentration:
comparing two stomatal conductance sampling methods. Planta, 251, 52.

Beitnes, S., Kopainsky, B., & Potthoff, K. (2022). Climate change adaptation
processes seen through a resilience lens: Norwegian farmers' handling of the dry
summer in 2018. Environmental Science and Policy, 133, 146-154.

Bell, M. ]., Cullen, B. R,, Christie, K. M., Rawnsley, R., & Eckard, R. J. (2011). Is the
variability of seasonal pasture growth patterns changing? 2nd Annual Conference

of the Grassland Society of Southern Australia Inc., 2011 Hamilton, Victoria, 113-
116.

Bellvert, ]., Zarco-Tejada, P. ]., Girona, ., & Fereres, E. ]. P. A. (2014). Mapping crop
water stress index in a ‘Pinot-noir’vineyard: comparing ground measurements with
thermal remote sensing imagery from an unmanned aerial vehicle. Precision
agriculture, 15,361-376.

Bellvert, ., Marsal, ]., Girona, ]., Zarco-Tejada, P. (2015) Seasonal evolution of crop
water stress index in grapevine varieties determined with high - resolution remote
sensing thermal imagery. Irrigation Science DOI 10.1007 /s00271-014-0456-y.

Berni, ., Zarco-Tejada, P., Sepulcre-Canto, G., & Fereres, E., & Villalobos, F. (2009).
Mapping Canopy conductance and CWSI in olive orchards using high-resolution
thermal remote sensing imagery. Remote Sensing of Environment, 2380-2388.

Beukes, P. C,, Palliser, C. C., Macdonald, K. A, Lancaster, |. A. S., Levy, G., Thorrold, B.
S., & Wastney, M. E. (2008). Evaluation of a whole-farm model for pasture-based
dairy systems. Journal of Dairy Science, 91(6), 2353-2360.

149



Bian, J., Zhang, Z., Chen, ]., Chen, H., Cui, C, Li, X,, ... & Fu, Q. (2019). Simplified
evaluation of cotton water stress using high resolution unmanned aerial vehicle
thermal imagery. Remote Sensing, 11(3), 267.

Biju, S., Fuentes, S., & Gupta, D. (2018). The use of infrared thermal imaging as a non-
destructive screening tool for identifying drought-tolerant lentil genotypes. Plant
physiology and biochemistry, 127, 11-24.

Blanco, V., & Kalcsits, L. (2021). Microtensiometers accurately measure stem water
potential in woody perennials. Plants, 10(12), 2780.

Brown, ]. N., Hochman, Z., Holzworth, D., & Horan, H. (2018). Seasonal climate
forecasts provide more definitive and accurate crop yield predictions. Agricultural
and Forest Meteorology, 260, 247-254.

Brown, ]. N., Ash, A.,, MacLeod, N., & McIntosh, P. (2019). Diagnosing the weather
and climate features that influence pasture growth in Northern Australia. Climate
Risk Management, 24, 1-12.

Bucks, D. A, Nakayama, F. S., French, O. F., Legard, W. W., & Alexander, W. L. (1985).
Irrigated guayule—evapotranspiration and plant water stress. Agricultural water
management, 10(1), 61-79.

Calderon, R., Navas-Cortes, J.A., Zarco-Tejada, P.J., (2015) Early detection and
quantification of Verticillium wilt in olive using Hyperspectral and thermal imagery
over large areas. Remote Sens. 7,5584-5610. https://doi.org/10.3390/rs70505584

Carberry, P. S., Hochman, Z., McCown, R. L., Dalgliesh, N. P., Foale, M. A., Poulton, P.
L., & Robertson, M. ]. (2002). The FARMSCAPE approach to decision support:
farmers', advisers', researchers' monitoring, simulation, communication and
performance evaluation. Agricultural systems, 74(1), 141-177.

Castle, M., Lubben, B. D., & Luck, ]J. (2015). Precision agriculture usage and big
agriculture data.

Chapman, D. F., Cullen, B. R, Johnson, L. R,, & Beca, D. (2009). Inter-annual variation
in pasture growth rate in Australian and New Zealand dairy regions and its
consequences for system management. Animal Production Science, 49, 1071-1079.

Chapman, D., Rawnsley, R,, Cullen, B., & Clark, D. (2013). Inter-annual variability in
pasture herbage accumulation in temperate dairy regions: causes, consequences,
and management tools. 2013 Proceedings of the 22nd international grassland
conference.

Ciezkowski, W., Szporak-Wasilewska, S., Kleniewska, M., Jozwiak, J., Gnatowski, T.,
Dabrowski, P., Goraj, M., Szatylowicz, J., Ignar, S., Chormanski, J. (2020) Remotely
sensed land surface temperature -based water stress index for wetland habitats.
MDPI, Remote Sensing. DOI: 10.3390/rs12040631

Clark, S. G., Austen, E. A,, Prance, T., & Ball, P. D. (2003). Climate variability effects
on simulated pasture and animal production in the perennial pasture zone of south-
eastern Australia. 1. Between year variability in pasture and animal
production. Australian Journal of Experimental Agriculture, 43(10), 1211-1219.

150


https://doi.org/10.3390/rs70505584
http://dx.doi.org/10.3390/rs12040631

Collins, B., & Chenu, K. (2021). Improving productivity of Australian wheat by
adapting sowing date and genotype phenology to future climate. Climate Risk
Management, 32, 100300

Colombo, R,, Bellingeri, D., Fasolini, D., & Marino, C. M. (2003). Retrieval of leaf area
index in different vegetation types using high resolution satellite data. Remote
sensing of environment, 86(1), 120-131.

Conaty, W. C., Burke, J. ]J.,, Mahan, J. R, Neilsen, ]. E.,, & Sutton, B. G. (2012).
Determining the optimum plant temperature of cotton physiology and yield to
improve plant - based irrigation scheduling. Crop Science, 52(4), 1828-1836.

Conaty, W. C., Mahan, |. R, Neilsen, |. E., & Constable, G. A. (2014). Vapour pressure
deficit aids the interpretation of cotton canopy temperature response to water
deficit. Functional Plant Biology, 41(5), 535-546.

Costa, J. M,, Ortufio, M. F,, Lopes, C. M., & Chaves, M. M. (2012). Grapevine varieties
exhibiting differences in stomatal response to water deficit. Functional Plant
Biology, 39(3), 179-189.

Cullen, B. R, Johnson, I. R,, Eckard, R. ], Lodge, G. M., Walker, R. G., Rawnsley, R. P,,
& McCaskill, M. R. (2009). Climate change effects on pasture systems in south-
eastern Australia. Crop and Pasture Science, 60, 933.

Cullen, B. R, Eckard, R. ], Callow, M. N,, Johnson, . R,, Chapman, D. F., Rawnsley, R.
P, .. & Snow, V. 0. (2008). Simulating pasture growth rates in Australian and New
Zealand grazing systems. Australian Journal of Agricultural Research, 59(8), 761-
768.

Cullen, B. R., & Johnson, I. R. (2012, October). Using soil water content to predict
pasture growth rates. In Capturing Opportunities and Overcoming Obstacles in
Australian Agronomy’(Ed I Yunusa) Proceedings of the 16th Australian Agronomy
Conference.

Cullen, B., Eckard, R, D., & Rawnsley, R. (2012). Resistance of pasture production to
projected climate changes in south-eastern Australia. Crop and Pasture Science, 63,
77-86.

Culvenor, R., Boschma, S., & Reed, K. (2007). Persistence of winter-active phalaris
breeding populations, cultivars, and other temperate grasses in diverse
environments of south-east Australia. Australian Journal of Experimental
Agriculture, 47, 136-148.

Culvenor, R. A. (2009). Breeding and use of summer - dormant grasses in southern
Australia, with special reference to phalaris. Crop Science, 49(6), 2335-2346.

Culvenor, R, Simpson, R. (2014). Persistence traits in perennial pasture grasses: the
case of phalaris (Phalaris aquatica L.). Crop and Pasture Science, 65, 1165-1176.

Culvenor, R,, Clark, S., Harris, C., Hayes, R,, Li, G., Nie, Z., Norton, M., & Partington, D.
(2016). Field evaluation of cocksfoot, tall fescue, and phalaris for dry marginal

environments of south-eastern Australia. 2. Persistence. Journal of Agronomy and
Crop Science, 202, 355-371.

151



Dar, Z. A., Sheshsayee, M. S, Ajaz, A, Pratibha, M. D., Khan, J. A., & Biradar, J. (2016).
Thermal induction response (TIR) in temperate maize Inbred lines. Ecol. Enviorn.
Conserv, 22, 387-393.

Davies, S., & Peoples, M. (2003). Identifying potential approaches to improve the
reliability of terminating a lucerne pasture before cropping: a review. Australian
Journal of Experimental Agriculture, 43, 429-447.

De Castro, A. I, Torres-Sanchez, ], Pefia, ]. M., Jiménez-Brenes, F. M., Csillik, 0., &
Lopez-Granados, F. (2018). An automatic random forest-OBIA algorithm for early

weed mapping between and within crop rows using UAV imagery. Remote
Sensing, 10(2), 285.

Donatelli, M., Magarey, R., Bregaglio, S, Willocquet, L., Whish, ]., & Savary, S. (2017).
Modelling the impacts of pests and disease on agricultural systems. Agricultural
Systems, 155, 213-224.

Epiphanio, J. N., & Huete, A. R. (1995). Dependence of NDVI and SAVI on sun/sensor
geometry and its effect on fAPAR relationships in Alfalfa. Remote Sensing of
Environment, 51(3), 351-360.

Farooq, M,, Riaz, S., Abid, A., Umer, T., & Zikria, Y. (2020). Role of IOT Technology in
Agriculture: A systematic Literature Review. Electronics, 9,319.

Fernandes, R., & Leblanc, S. G. (2005). Parametric (modified least squares) and non-
parametric (Theil-Sen) linear regressions for predicting biophysical parameters in
the presence of measurement errors. Remote Sensing of Environment, 95(3), 303-
316.

Fisher, ]. B., Lee, B., Purdy, A. ]., Halverson, G. H., Dohlen, M. B., Cawse - Nicholson,
K., & Hook, S. (2020). ECOSTRESS: NASA's next generation mission to measure

evapotranspiration from the international space station. Water Resources
Research, 56(4), e2019WR026058.

Foale, M. A,, Probert, M. E,, Carberry, P. S., Lack, D., Yeates, S., Brimblecombe, D.,
Shaw, R., & Crocker, M. (2004). Participatory research in dryland cropping
systems—monitoring and simulation of soil water and nitrogen in farmers’
paddocks in Central Queensland. Australian Journal of Experimental Agriculture, 44,
321-331.doi: 10.1071/EA02205

Garcia-Tejero, 1. F., Gutiérrez-Gordillo, S., Ortega-Arévalo, C., Iglesias-Contreras, M.,
Moreno, J. M., Souza-Ferreira, L., & Duran-Zuazo, V. H. (2018). Thermal imaging to
monitor the crop-water status in almonds by using the non-water stress
baselines. Scientia Horticulturae, 238, 91-97.

Garden, D., Jones, C., Friend, D., Mitchell, M., & Fairbrother, P. (1996). Regional
research on native grasses and native grass - based pastures. New Zealand Journal
of Agricultural Research, 39(4), 471-485.

Garden, D., Lodge, G., Friend, D., Dowling, P., & Orchard, B. (2000). Effects of grazing
management on botanical composition of native grass-based pastures in temperate
south-east Australia. Australian Journal of Experiment Agriculture, P225-245.

152



Gardner, B. R, Nielsen, D. C., & Shock, C. C. (1992). Infrared thermometry and the
crop water stress index. I. History, theory, and baselines. Journal of production
agriculture, 5(4), 462-466.

Garre, P., & Harish, A. (2018, December). Autonomous agricultural pesticide
spraying uav. In IOP Conference Series: Materials Science and Engineering (Vol. 455,
p. 012030). IOP Publishing.

Gerhards, M., Schlerf, M., Rascher, U., Udelhoven, T., Juszczak, R., Alberti, G, ... &
Inoue, Y. (2018). Analysis of airborne optical and thermal imagery for detection of
water stress symptoms. Remote Sensing, 10(7), 1139.

Gerhards, M., Schlerf, M., Mallick, K., & Udelhoven, T. (2019). Challenges and future
perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop
water-stress detection: A review. Remote Sensing, 11(10), 1240.

Golgul, L, Kirnak, H,, Irik, H. (2022) Yield components and crop water stress index
(CWSI) of Mung Bean Grown under deficit irrigations. Gesunde Pflanzen. 75(10):1-
11. DOI: 10.1007/s10343-022-00698-z

Gonzalez-Dugo, V., Lopez-Lopez, M., Espadafor, M., Orgaz, F., Testi, L., Zarco-Tejada,
P., .. & Fereres, E. (2019). Transpiration from canopy temperature: Implications for
the assessment of crop yield in almond orchards. European Journal of
Agronomy, 105, 78-85.

Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolas, E., Nortes, P. A,, Alarcon, ]. ]., Intrigliolo,
D. S.,, & Fereres, E. ]J. P. A. (2013). Using high resolution UAV thermal imagery to
assess the variability in the water status of five fruit tree species within a
commercial orchard. Precision Agriculture, 14, 660-678.

Gonzalez-Dugo, V., Zarco-Tejada, P., & Intrigliolo, D. (2021). Normalization of crop
water stress index to assess the within-field spatial variability of water stress
sensitivity. Precision Agriculture, 22,964-983.

Gonzalez-Dugo, V. & Zarco-Tejada, P. J. (2022). Assessing the impact of
measurement errors in the calculation of CWSI for characterizing the water status
of several crop species. Irrigation Science, 1-13.

Griner, E., Astor, T., & Wachendorf, M. (2019). Biomass prediction of heterogeneous
temperate  grasslands using an SfM  approach based on UAV
imaging. Agronomy, 9(2), 54.

Guerefia, A., Ruiz - Ramos, M., Diaz - Ambrona, C. H,, Conde, ]. R.,, & Minguez, M. L.
(2001). Assessment of climate change and agriculture in Spain using climate
models. Agronomy Journal, 93(1), 237-249.

Guobin, L., Kemp, D. R, & Liu, G. B. (1992). Water stress affects the productivity,
growth components, competitiveness and water relations of phalaris and white

clover growing in a mixed pasture. Australian journal of agricultural research, 43(3),
659-672.

Haghverdi, A., Reiter, M., Singh, A., & Sapkota, A. (2021). Hybrid bermudagrass and
tall fescue turfgrass irrigation in central California: II. Assessment of NDVI, CWS],
and canopy temperature dynamics. Agronomy, 11(9), 1733.

153


http://dx.doi.org/10.1007/s10343-022-00698-z

Han, C. W, Lee, S. Y., Hong, Y. K., & Kweon, G. (2019). Development of a variable rate
applicator for uniform fertilizer spreading. International Journal of Agricultural and
Biological Engineering, 12(2), 82-89.

Handcock, R. N,, Gobbett, D. L., Gonzalez, L. A., Bishop-Hurley, G. |., & McGavin, S. L.
(2016). A pilot project combining multispectral proximal sensors and digital
cameras for monitoring tropical pastures. Biogeosciences, 13(16), 4673-4695.

Harrison, M., Cullen, B., & Rawnsley, R. (2016). Modelling the sensitivity of
agricultural systems to climate change and extreme climatic events. Agricultural
systems, 148, 135-148.

Hassler, S. C., & Baysal-Gurel, F. (2019). Unmanned aircraft system (UAS)
technology and applications in agriculture. Agronomy, 9(10), 618.

Hayman, P., Whitbread, A., & Gobbett, D. (2008, September). Practicing agronomy
in an uncertain climate-Using simulation modelling to study seasonal drought and
the impact of ENSO in the Southern Australian grains belt. In Proceedings of the 14th
ASA Conference, Adelaide, South Australia.

Heady, E. (1957). An economic investigation of the technology of Agricultural
Production Functions. Econometrica, 25(2), 249-268.

Higgins, S., Schellberg, J., & Bailey, J. S. (2019). Improving productivity and
increasing the efficiency of soil nutrient management on grassland farms in the UK
and Ireland wusing precision agriculture technology. European Journal of
Agronomy, 106, 67-74.

Hill, M. J., Donald, G. E., Hyder, M. W., & Smith, R. C. (2004). Estimation of pasture
growth rate in the southwest of Western Australia from AVHRR NDVI and climate
data. Remote sensing of environment, 93(4), 528-545.

Hipps, L. E., Asrar, G., & Kanemasu, E. T. (1985). A theoretically based normalization
of environmental effects on foliage temperature.Agricultural and Forest
Meteorology, 35(1-4), 113-122.

Hochman, Z., van Rees, H. Carberry, P, Hunt, ], McCown, R, Gartmann, A,
Holzworth, D., van Rees, S., Dalgliesh, N., Long, W., Peake, A. Poulton, P, &
McClelland, T. (2009). Reinventing model-based decision support with Australian
dryland farmers. 4 Yield Prophet helps farmers monitor and manage crops in
variable climate. Crop and Pasture Science, 60, 1057-1070.

Hornero, A., Zarco-Tejada, P.J., Quero, ].L., North, P.RJ., Ruiz-Gomez, F.J., Sanchez-
Cuesta, R, Hernandez-Clemente, R. (2021) Modelling hyperspectral- and thermal-
based plant traits for the early detection of Phytophthora-induced symptoms in oak
decline, Remote Sensing of Environment, 263, 112570.

Horst, G., O'Toole, J., Faver, K. (1989) Seasonal and Species variation in baseline
functions for determining Crop Water Stress Indices in Turfgrass. Crop Science Vol
29, Issue 5.P 1227-1232.

Hughes, N., Ying Soh, W,, Boult, C., Lawson, K., Donoghue, M., & Valle, H. (2019).
Abares working paper. www.agriculture.gov.au

154



Hunt, J., Van Rees, H., Hochman, Z., Carberry, P., Holzworth, D., Dalgliesh, N., ... &
Peake, A. (2006, September). Yield Prophet®: An online crop simulation service.
In Proceedings of the 13th Australian Agronomy Conference (pp. 10-14).

Hunt, ., & Kirkegaard, J. (2011). Re-evaluating the contribution of summer fallow
rain to wheat yield in southern Australia. Crop and Pasture Science, 62(11), 915-
929.

Hutchinson, K. J. (1970). The persistence of perennial species under intensive
grazing in a cool temperate environment. Proceedings 11th int. Grassld Congr.,
Surfers Paradise, 1970, 611-14.

Idso, S., Jackson, R, Pinter, ]., Reginato, R., & Hatfield, J. (1981). Normalizing the
stress-degree-day parameter for environmental variability. Agricultural and Forest
Meteorology, 24, 45-55.

Idso, S. (1982). Non water stressed baselines: A key to measuring and interpreting
plant water stress. Agricultural and Forest Meteorology, 27, 59-70.

Idso, S. B, Reginato, R. ]., Clawson, K. L., & Anderson, M. G. (1984). On the stability
of non-water-stressed baselines. Agricultural and Forest Meteorology, 32, 177-182.

Invest in Victorian Agriculture and Food. (August 2018). Economic Development,
Jobs, Transport and Resources.

Irmak, S., Haman, D., & Bastug, R. (2000). Determination of crop water stress index
forirrigation timing and yield estimation of corn. Agronomy Journal, 92,1221-1227.

Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of thermal imaging in
agriculture—A review. Advances in remote Sensing, 3(03), 128.

Jackson, R., Reginato, R., & Idso, S. (1977). Wheat canopy temperature; a practical
guide tool for evaluating water requirements. Water Resources Research, 13(3),
651-656.

Jackson, R. D,, Idso, S. B, Reginato, R. ., & Pinter Jr, P.]. (1981). Canopy temperature
as a crop water stress indicator. Water resources research, 17(4), 1133-1138.

Jalali-Farahani, H., Slack, D., Kopec, D., & Matthias, A. (1993). Crop water stress index
models for bermudagrass Turf: A comparison. Agronomy Journal, 85(6),1210-1217.

Jensen, H., Svendsen, H., & Mogensen, V. (1990). Canopy-air temperature of crops
grown under different irrigation regimes in a temperate humid climate. Irrigation
Science, 11(3), 181-188.

Jeffrey, S. ]., Carter, J. O.,, Moodie, K. B, & Beswick, A. R. (2001). Using spatial
interpolation to construct a comprehensive archive of Australian climate
data. Environmental Modelling & Software, 16(4), 309-330.

Jin, X., Zarco-Tejada, P. ]J.,, Schmidhalter, U., Reynolds, M. P., Hawkesford, M. ]|,
Varshney, R. K,, ... & Li, S. (2020). High-throughput estimation of crop traits: A
review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote
Sensing Magazine, 9(1), 200-231.

155



Jochec, K. G., Mjelde, ]. W, Lee, A. C., & Conner, J. R. (2001). Use of seasonal climate
forecasts in rangeland-based livestock operations in West Texas. Journal of Applied
Meteorology and Climatology, 40(9), 1629-1639.

Jochinke, D. C., Noonon, B.].,, Wachsmann, N. G., & Norton, R. M. (2007). The adoption
of precision agriculture in an Australian broadacre cropping system—Challenges
and opportunities. Field Crops Research, 104(1-3), 68-76.

Johnson, I. R., Lodge, G. M., & White, R. E. (2003). The sustainable grazing systems
pasture model: description, philosophy and application to the SGS National
Experiment. Australian Journal of Experimental Agriculture, 43(8), 711-728.

Johnson, I. R, Chapman, D. F., Snow, V. O., Eckard, R. ], Parsons, A.]., Lambert, M. G.,
& Cullen, B. R. (2008). DairyMod and EcoMod: biophysical pasture-simulation
models for Australia and New Zealand. Australian journal of experimental
agriculture, 48(5), 621-631.

Johnston, W. H. (1996). The place of C4 grasses in temperate pastures in
Australia. New Zealand Journal of Agricultural Research, 39(4), 527-540.

Jones, H. G. (1998). Stomatal control of photosynthesis and transpiration. Journal of
experimental botany, 387-398.

Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal
conductance as a possible aid to irrigation scheduling. Agricultural and forest
meteorology, 95(3), 139-149.

Jones, H. G., Stoll, M., Santos, T., Sousa, C. D., Chaves, M. M., & Grant, 0. M. (2002). Use
of infrared thermography for monitoring stomatal closure in the field: application
to grapevine. Journal of experimental botany, 53(378), 2249-2260.

Jones, H. (1992). Plants and microclimate: A quantitative approach to
environmental plant physiology (2nd ed.). Cambridge University Press.

Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based
methods. Journal of experimental botany, 55(407), 2427-2436.

Jones, H. G., Serraj, R, Loveys, B. R, Xiong, L., Wheaton, A., & Price, A. H. (2009).
Thermal infrared imaging of crop canopies for the remote diagnosis and
quantification of plant responses to water stress in the field. Functional Plant
Biology, 36(11), 978-989.

Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: principles,
techniques, and applications. Oxford University Press, USA.

Jones, ]. W,, Antle, ]. M., Basso, B., Boote, K. ., Conant, R. T., Foster, I,, ... & Wheeler, T.
R. (2017). Toward a new generation of agricultural system data, models, and
knowledge products: State of agricultural systems science. Agricultural
systems, 155, 269-288.

Jones, ]. W,, Antle, ]. M., Basso, B., Boote, K. ., Conant, R. T., Foster, I,, ... & Wheeler, T.
R. (2017). Brief history of agricultural systems modelling. Agricultural systems, 155,
240-254.

156



Jung, J., Maeda, M., Chang, A., Landivar, ]., Yeom, J., & McGinty, ]J. (2018). Unmanned
aerial system assisted framework for the selection of high yielding cotton
genotypes. Computers and Electronics in Agriculture, 152, 74-81.

Kar, G., Kumar, A. (2010) Energy balance and crop water stress in winter maize
under phenology-based irrigation scheduling. Irrigation Science. 28(3):211-220.
DOI: 10.1007/s00271-009-0192-x

Keating, B. A., Gaydon, D., Huth, N. I, Probert, M. E., Verburg, K., Smith, C.]., & Bond,
W. (2002). Use of modelling to explore the water balance of dryland farming

systems in the Murray-Darling Basin, Australia. European Journal of
Agronomy, 18(1-2), 159-169.

Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M., Holzworth, D,, ...
McLean, G. (2003). An overview of APSIM, a model designed for farming systems
simulation. European Journal of Agronomy, 18, 267-288.

Keogh, D. U, Watson, . W, Bell, K. L., Cobon, D. H., & Dutta, S. C. (2005). Climate
information needs of Gascoyne-Murchison pastoralists: A representative study of
the Western Australian grazing industry. Australian Journal of Experimental
Agriculture, 45, 1613-1625.

Khanal, S., Kc, K., Fulton, ]. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in
agriculture—accomplishments, limitations, and opportunities. Remote
Sensing, 12(22), 3783.

Kiem, A. S, Johnson, F., Westra, S., van Dijk, A, Evans, ]. P.,, O’'Donnell, A, .. &
Mehrotra, R. (2016). Natural hazards in Australia: droughts. Climatic Change, 139,
37-54.

King, A. D, Pitman, A. ], Henley, B. ]., Ukkola, A. M., & Brown, ]. R. (2020). The role of
climate variability in Australian drought. Nature Climate Change, 10(3), 177-179.

Knipper, K. R., Kustas, W. P., Anderson, M. C,, Alsina, M. M., Hain, C. R,, Alfieri, J. G., ...
& Sanchez, L. A. (2019). Using high-spatiotemporal thermal satellite ET retrievals
for operational water use and stress monitoring in a California vineyard. Remote
Sensing, 11(18), 2124.

Kolling, K., George, G. M., Kiinzlij, R, Fliitsch, P., & Zeeman, S. C. (2015). A whole-plant
chamber system for parallel gas exchange measurements of Arabidopsis and other
herbaceous species. Plant Methods, 11, 1-12.

Kumar, N., Poddar, A, Shankar, V., Ojha, C. S. P., & Adeloye, A. ]. (2020). Crop water
stress index for scheduling irrigation of Indian mustard (Brassica juncea) based on

water use efficiency considerations. Journal of Agronomy and Crop Science, 206(1),
148-159.

Ledgard, S., & Steele, K. (1992). Biological nitrogen fixation in mixed legume/grass
pastures. Plant and Soil, 141, 137-153.

Lee, W. S,, Schueller, J. K., & Burks, T. F. (2005). Wagon-based silage yield mapping
system. Agricultural Engineering International: CIGR Journal.

157


http://dx.doi.org/10.1007/s00271-009-0192-x

Leinonen, I, & Jones, H. G. (2004). Combining thermal and visible imagery for
estimating canopy temperature and identifying plant stress. Journal of experimental
botany, 55(401), 1423-1431.

Leith, P. B. (2006). Conversations about climate: Seasonal variability and graziers’
decisions in the eastern rangeland. School of Geography and Environmental Studies,
University of Tasmania.

Liu, N,, Deng, Z., Wang, H., Luo, Z., Gutierrez-Jurado, H., He, X., Guan, H. (2020)
Thermal remote sensing pf plant water stress in natural ecosystems. Forest Ecology
and Management. Volume 476, 15 November 2020, 118433

Lleida University Research Group In AgroTIC and Precision Agriculture. (n.d.). In
Springer.com. Retrieved from
https://www.springer.com/journal/11119/updates/17240272

Lugojan, C., & Ciulca, S. (2011). Evaluation of relative water content in winter
wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173-177.

Maes, W. H., & Steppe, K. (2012). Estimating evapotranspiration and drought stress
with ground-based thermal remote sensing in agriculture: A review. Journal of
Experimental Botany, 63,4671-4712.

Maes, W. H., Baert, A., Huete, A. R,, Minchin, P. E,, Snelgar, W. P,, & Steppe, K. (2016).
A new wet reference target method for continuous infrared thermography of
vegetations. Agricultural and Forest Meteorology, 226, 119-131.

Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned
aerial vehicles in precision agriculture. Trends in plant science, 24(2), 152-164.

Masoud, M., Hsieh, ]., Helmstedt, K., McGree, ]., & Corry, P. (2023). An integrated
pasture biomass and beef cattle liveweight predictive model under weather
forecast uncertainty: An application to Northern Australia. Food and Energy
Security, e453.

McCown, R. L., Hammer, G. L., Hargreaves, ]. N. G., Holzworth, D., & Huth, N. 1. (1995).
APSIM: an agricultural production system simulation model for operational
research. Mathematics and computers in simulation, 39(3-4), 225-231.

McDonnell, ], Brophy, C., Ruelle, E., Shalloo, L., Lambkin, K., & Hennessy, D. (2019).
Weather forecasts to enhance an Irish grass growth model. European Journal of
Agronomy, 105, 168-175.

McIntosh, P. C,, Ash, A.]., & Smith, M. S. (2005). From oceans to farms: the value of a
novel statistical climate forecast for agricultural management. Journal of
Climate, 18(20), 4287-4302.

Messina, G., & Modica, G. (2020). Applications of UAV thermal imagery in precision
agriculture: State of the art and future research outlook. Remote Sensing, 12(9),
1491.

Michez, A., Lejeune, P., Bauwens, S., Herinaina, A. A. L., Blaise, Y., Castro Mufioz, E,, ...
& Bindelle, J. (2019). Mapping and monitoring of biomass and grazing in pasture
with an unmanned aerial system. Remote Sensing, 11(5), 473.

158


https://www.sciencedirect.com/journal/forest-ecology-and-management/vol/476/suppl/C

Mitchell, P., Kane, V., Lieschke, M. (2022) Farming Forecaster: integrating multiple
sources of information for livestock producers. CSIRO. Farming Forecaster:
integrating multiple sources of information for livestock producers. In: Australian
Agronomy Conference; 19 to end of 22 Sep 2022; Toowoomba. CSIRO; 2022. 4.
CSIRO: EP2022-2361.

Mohammed, B., Bekkay, H., Hassan, M., & Khalid, C. (2022, May). Neural Network-
Based Precision Irrigation Scheduling and Crop Water Stress Index (CWSI)
Assessment. In International Conference on Electronic Engineering and Renewable
Energy Systems (pp. 661-669). Singapore: Springer Nature Singapore.

Moore, R. (1970). South-eastern temperate woodlands and grasslands. In
Australian Grasslands (1st ed.).

Moore, A. D., Donnelly, J. R, & Freer, M. (1997). GRAZPLAN: decision support
systems for Australian grazing enterprises. III. Pasture growth and soil moisture
submodels, and the GrassGro DSS. Agricultural systems, 55(4), 535-582.

Mu, J.,, McCarl, B., & Wein, A. (2013). Adaptation to climate change: Changes in
farmland use and stocking rate in the US. Mitigation and Adaptation Strategies for
Global Change, 18, 713-730.

Mulla, D. (2013). Twenty-five years of remote sensing in precision agriculture: Key
advances and remaining knowledge gaps. Biosystems Engineering, 114, 358-371.

Murphy, B. F., & Timbal, B. (2008). A review of recent climate variability and climate
change in southeastern Australia. International Journal of Climatology: A Journal of
the Royal Meteorological Society, 28(7), 859-879.

Myeni, L., Moeletsi, M., & Clulow, A. (2021). Field calibration of DFM capacitance
probes for continuous soil moisture monitoring. Water SA, 47(1), 88-96.

NDVI from Landsat 8 vegetation indices to study movement dynamics of CAPRA
IBEX in mountain areas.

Nielsen, D. C. (1990). Scheduling irrigations for soybeans with the crop water stress
index (CWSI). Field Crops Research, 23(2), 103-116.

O’Reilly, D., Herdrich, G., & Kavanagh, D. F. (2021). Electric propulsion methods for
small satellites: A review. Aerospace, 8(1), 22.

O’Shaughnessy, S., Evett, S., Colaizzi, P., & Howell, T. (2012). A crop water stress
index and time threshold for automatic irrigation scheduling of grain sorghum.
Agricultural Water Management, 107, 122-132.

O’Shaughnessy, S. A., Kim, M., Andrade, M. A,, Colaizzi, P. D., & Evett, S. R. (2020).
Site-specific irrigation of grain sorghum using plant and soil water sensing
feedback-Texas High Plains. Agricultural water management, 240, 106273.

Park, S., Nolan, A., Ryu, D., Fuentes, S., Hernandez, E., Chung, H., & O’Connell, M.
(2015, November). Estimation of crop water stress in a nectarine orchard using
high-resolution imagery from unmanned aerial vehicle (UAV). In Proceedings of the
21st International Congress on Modelling and Simulation, Gold Coast, Australia (Vol.
29).

159



Park, S., Ryu, D., Fuentes, S., Chung, H., Hernandez-Montes, E., & O0’Connell, M.
(2017). Adaptive estimation of crop water stress in nectarine and peach orchards

using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote
Sensing, 9(8), 828.

Park, S., Ryu, D., Fuentes, S., Chung, H., O'Connell, M., & Kim, ]. (2021). Dependence
of CWSI-based plant water stress estimation with diurnal acquisition times in a
nectarine orchard. Remote Sensing, 13(14), 2775.

Parkash, V., & Singh, S. (2020). A review on potential plant-based water stress
indicators for vegetable crops. Sustainability, 12(10), 3945.

Payero, ]. O., Neale, C. M. U., & Wright, ]. L. (2005). Non-water-stressed baselines for
calculating crop water stress index (CWSI) for alfalfa and tall fescue
grass. Transactions of the ASAE, 48(2), 653-661.

Pembleton, K. G., Cullen, B. R, Rawnsley, R. P., Harrison, M. T., & Ramilan, T. (2016).
Modelling the resilience of forage crop production to future climate change in the

dairy regions of Southeastern Australia using APSIM. The Journal of Agricultural
Science, 154(7), 1131-1152.

Perera, R,, Cullen, B., & Eckard, R. (2020). Changing patterns of pasture production
in south-eastern Australia from 1960 to 2015. Crop and Pasture Science, 71, 70-81.

Pinter, |, Ritchie, ]., Hatfield, J., & Hart, J. (2003). The agricultural research services
remote sensing program: An example of interagency collaboration.
Photogrammetric Engineering & Remote Sensing, 69(6), 615-618.

Pungulani, L., Millner, ., Williams, W., & Banda, M. (2013). Improvement of leaf
wilting scoring system in cowpea (Vigna unguiculata (L) Walp.): From qualitative
scale to quantitative index. Australian Journal of Crop Sciences, 7(9), 1262-1269.

Prakash, A. (2000). Thermal remote sensing: concepts, issues and
applications. International Archives of Photogrammetry and Remote Sensing, 33(B1;
PART 1), 239-243.

Presentation by Cullen, B. (2019). Outlook for spring pasture growth: using soil
moisture and temperature data.

Quebrajo, L., Perez-Ruiz, M., Pérez-Urrestarazu, L., Martinez, G., & Egea, G. (2018).
Linking thermal imaging and soil remote sensing to enhance irrigation management
of sugar beet. Biosystems Engineering, 165, 77-87.

Rawnsley, R. P., Chapman, D. F,, Jacobs, J. L., Garcia, S. C., Callow, M. N., Edwards, G.
R., & Pembleton, K. P. (2013). Complementary forages-integration at a whole-farm
level. Animal Production Science, 53(9), 976-987.

Rawnsley, R. P, Smith, A. P., Christie, K. M., Harrison, M. T., & Eckard, R. ]. (2019).
Current and future direction of nitrogen fertiliser use in Australian grazing
systems. Crop and Pasture Science, 70(12), 1034-1043.

Reed, K. F. M,, Nie, Z. N,, Miller, S., Hackney, B. F,, Boschma, S. P., Mitchell, M. L., ... &
Dear, B. S. (2008). Field evaluation of perennial grasses and herbs in southern

Australia. 1. Establishment and herbage production. Australian Journal of
Experimental Agriculture, 48(4), 409-423.

160



Rehman, A., Abbast, A,, Islam, N., & Shaikh, Z. (2014). A review of wireless sensors
and networks applications in agriculture. Computer Standards & Interfaces, 263-
270.

Robinson, G. G., & Simpson, I. H. (1966). Performance of three perennial grass
species during the winter drought, 1965 at Shannon Vale Nutrition
Station. Agricultural Gazette of New South Wales, 77, 743-747.

Rogiers, S. Y., Greer, D. H., Hutton, R. ], & Landsberg, |. ]. (2009). Does night-time
transpiration contribute to anisohydric behaviour in a Vitis vinifera
cultivar?. Journal of Experimental Botany, 60(13), 3751-3763.

Rud, R, Cohen, Y., Alchanatis, V., Cohen, A., Sprintsin, M., Levi, A,, ... & Nigon, T.
(2012). Evaluating water status in potato fields using combined information from
RGB and thermal aerial images. Proceedings of 10th ICPA, ISPA, Monticello, 11, USA.
CD-ROM.

Sandler, H. A. (2018). Weed management in cranberries: A historical perspective
and a look to the future. Agriculture, 8(9), 138.

Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. (1965). Sap
Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in
plants. Science, 148(3668), 339-346.

Schott, ]J. R. (2007). Remote sensing: the image chain approach. Oxford University
Press.

Schultz, H. R. (2003). Differences in hydraulic architecture account for near -

isohydric and anisohydric behaviour of two field - grown Vitis vinifera L. cultivars
during drought. Plant, Cell & Environment, 26(8), 1393-1405.

Shimshi, D. (1967). Leaf chlorosis and stomatal aperture. New Phytologist, 66(3),
455-461.

Shovelton, J. (2017). Virtual Group - Real time estimation of biomass.

Silva, ]., & Giller, K. (2021). Grand Challenges for the 21st century: What crop models
can and can’t (yet) do. The Journal of Agricultural Science, 158, 794-805.

Sinclair, D., & Williams, ]. (1979). Components of variance involved in estimating
soil water content and water content change using a neutron moisture meter.
Australian Journal of Soil Resources, 17, 237-247.

Slayter, R. (1967). Plant Water Relationships. Academic Press Inc, London, 366p.

Smigaj, M., Gaulton, R,, Suarez, ]. C., & Barr, S. L. (2017). Use of miniature thermal
cameras for detection of physiological stress in conifers. Remote Sensing, 9(9), 957.

Smith, M. S., Buxton, R., McKeon, G., & Ash, A. (2000). Seasonal climate forecasting
and the management of rangelands: do production benefits translate into
enterprise profits? Applications of seasonal climate forecasting in agricultural and
natural ecosystems, 271-289.

Stavros, E. N.,, Schimel, D., Pavlick, R., Serbin, S.,, Swann, A., Duncanson, L., .. &
Wennberg, P. (2017). ISS observations offer insights into plant function. Nature
Ecology & Evolution, 1(7), 0194.

161



Steele, D., Stegman, E. C., & Gregor, B. (1994). Field comparison of irrigation
scheduling methods for corn. Transactions of the ASAE, 37(4), 1197-1203.

Stern, P. C., & Easterling, W. E. (1999). Making climate forecasts matter (Vol. 175).
Washington, DC: National Academy Press.

Stockle, C. 0., & Dugas, W. A. (1992). Evaluating canopy temperature-based indices
for irrigation scheduling. Irrigation Science, 13, 31-37.

Struthers, R., Ivanova, A, Tits, L., Swennen, R., & Coppin, P. (2015). Thermal infrared
imaging of the temporal variability in stomatal conductance for fruit trees.
International Journal of Applied Earth Observation and Geoinformation, 39, 9-17.

Sun, Y. G., Zhao, D. Z., Guo, W. Y., Gao, Y., Su, X,, & Wei, B. Q. (2013). A review on the
application of remote sensing in mangrove ecosystem monitoring. Acta Ecologica
Sinica, 33(15), 4523-4538.

Tanner, C. (1963). Plant Temperature. Agronomy Journal, 55(3), 210-211.

Tsouros, D. C.,, Bibi, S, & Sarigiannidis, P. G. (2019). A review on UAV-based
applications for precision agriculture. Information, 10(11), 349.

Verburg, K., Cocks, B., Manning, B., Truman, G., & Schwenke, G. D. (2017). APSoil
plant available water capacity (PAWC) characterisation of select Liverpool Plain
soils and their landscape context.

Veysi, S., Nasri, A, Hamzeh, S., & Bartholomeus, H. (2017). A satellite-based crop
water stress index for irrigation scheduling in sugar canes. Agricultural Water
Management, 189, 70-86.

Waha, K, Clarke, ]J., Dayal, K., Freund, M., Heady, C., Parisi, L., & Vogel, E. (2022). Past
and future rainfall changes in the Australian midlatitudes and implications for
agriculture. Climatic Change, 170(3-4), 29.

Wahab, [, Hall, 0., & Jirstrom, M. (2018). Remote sensing of yields: Application of
uav imagery-derived ndvi for estimating maize vigor and yields in complex farming
systems in sub-Saharan Africa. Drones, 2(3), 28.

Waller, R. A, & Sale, P. W. G. (2001). Persistence and productivity of perennial
ryegrass in sheep pastures in south-western Victoria: a review. Australian Journal
of Experimental Agriculture, 41(1), 117-144.

Wan, R, Wang, P.,, Wang, X,, Yao, X,, & Dai, X. (2018). Modeling wetland aboveground
biomass in the Poyang Lake National Nature Reserve using machine learning
algorithms and Landsat-8 imagery. Journal of Applied Remote Sensing, 12(4),
046029-046029.

Wang, B, Liu, D. L., Evans, J. P, Ji, F., Waters, C., Macadam, I,, ... & Beyer, K. (2019).
Modelling and evaluating the impacts of climate change on three major crops in

south-eastern Australia using regional climate model simulations. Theoretical and
Applied Climatology, 138, 509-526.

Wang, E., He, D., Zhao, Z., Smith, C. ]J., & MacDonald, B. C. (2020). Using a systems
modelling approach to improve soil management and soil quality. Frontiers of
Agricultural Science and Engineering, 7(3), 289-295.

162



Wang, J., Xiao, X., Bajgain, R,, Starks, P., Steiner, ., Doughty, R. B., & Chang, Q. (2019).
Estimating leaf area index and aboveground biomass of grazing pastures using

Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and
Remote Sensing, 154, 189-201.

Wanjura, D., Kelly, C., Wend, C., & Hatfield, ]. (1984). Canopy temperature and water
stress of cotton crops with complete and partial ground cover. Irrigation Science,
36-46.

Wanjura, D., Upchurch, D., & Mahan, J. (2006). Behavior of temperature-based water
stress indicators in BIOTIC-controlled irrigation. Irrigation Science, 24, 223-232.

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural
applications: A meta-review. Remote sensing of environment, 236, 111402.

Xue, X, Lan, Y., Sun, Z., Chang, C., & Hoffmann, W. C. (2016). Develop an unmanned
aerial vehicle based automatic aerial spraying system. Computers and electronics in
agriculture, 128, 58-66.

Zarco-Tejada, P. ., Poblete, T., Camino, C., Gonzalez-Dugo, V., Calderon, R., Hornero,
A, .. & Navas-Cortes, J. A. (2021). Divergent abiotic spectral pathways unravel
pathogen stress signals across species. Nature Communications, 12(1), 6088.

Ziervogel, G., Bithell, M., Washington, R., & Downing, T. (2005). Agent-based social
simulation: a method for assessing the impact of seasonal climate forecast
applications among smallholder farmers. Agricultural systems, 83(1), 1-26.

163



