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Residual Effect and N Fertilizer Rate Detection by
High-Resolution VNIR-SWIR Hyperspectral

Imagery and Solar-Induced Chlorophyll
Fluorescence in Wheat
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Pablo J. Zarco-Tejada , and Miguel Quemada

Abstract— Adjusting nitrogen (N) fertilization and accounting
for the legacy of past N fertilizer application (i.e., residual N)
based on remote sensing estimation of crop nutritional
status may increase resource efficiency and promote sustain-
able management of cropping systems. Our main goal was to
evaluate the potential of hyperspectral airborne imagers and
ground-level sensors for identifying N fertilizer rates and the
residual N effect from the previous crop fertilization in a
maize/wheat rotation. A two-season field trial that provided
various combinations of N rates and residual N response was
established in central Spain. Ground-level sensors and aerial
hyperspectral images were used to calculate vegetation indices
(VIs). In addition, the solar-induced chlorophyll fluorescence
(SIF760) was estimated by the Fraunhofer line-depth method
using high-resolution hyperspectral imagery, and together with
biophysical modeling, biochemical and biophysical constituents
at canopy scales were retrieved. N uptake, N output, grain
N concentration, and proximal sensors discriminated between
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different N fertilizer rates and identified the residual effect
when it was relevant. Structural, photosynthetic pigments and
short-wave infrared region (SWIR)-based VIs, together with
SIF760 and the chlorophyll a +b (Cab), biomass, and the leaf area
index (LAI), performed similarly on N rate detection. However,
the residual effect of nitrification inhibitors was only detected
by the structural (NDVI and OSAVI), chlorophyll (CCCI and
NDRE), blue/green, NIR-SWIR (N850,1510) indices, SIF760, Cab,
biomass, and the LAI. This study confirmed the ability of remote
sensing to identify N rates at early growth stages and highlighted
its potential to detect residual N in crop rotation.

Index Terms— Nitrification inhibitors, precision farming,
proximal sensors, radiative transfer model, remote sensing,
soil N pool, vegetation indices (VIs).

I. INTRODUCTION

THE use of nitrogen (N) mineral fertilizers has increased
in the last few decades, and its demand will reach

119 million tons by the end of 2021 [1]. However, only about
half of the N applied is assimilated by crops [2], whereas
a large fraction is released to the environment, contribut-
ing to groundwater pollution, ammonia redeposition, global
warming, and stratospheric ozone depletion [3]. Improving
fertilizer management through the optimization of the timing
and fertilizer rate is essential for reducing the environmental
impact while maintaining crop productivity [4]. Proximal and
remote sensors are rapid, nondestructive, and highly accurate
tools that can contribute to optimizing N fertilizer use since
they provide measurements or indices that are sensitive to
crop N status [5]. Recent research has emphasized that the
N supply to crops not only comes from the fertilizer applied
each year but also from the previous fertilization legacy,
which is called residual N [6], [7]. The importance of the
residual N effect arises when fertilizer application approaches
suboptimal levels, and so it is particularly relevant in countries
seeking a reduction in N fertilizer use due to environmental
concerns [8]. A lot of research has been devoted to using
sensors to identify crop differences between various levels of
fertilizer application [9], [10]; however, detecting the residual
N effect with proximal or remote sensors remains a challenge.

Determining the residual N supplied by the soil is compli-
cated to implement at the field scale because the sources are
multiple and the analysis uncertain. Measuring soil mineral
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available N is used to adjust N fertilization but is not enough
to account for the residual effect, as other N sources, such
as the soil organic matter pool, microbial biomass, or crop
residues and roots, are not accounted for [11]. Available N is
slowly released from these sources during the crop growth, and
estimating the crop nutritional status might allow identifying
the residual effect and adjusting N fertilizer application to
crop requirements. In long-term field experiments in France,
Sebilo et al. [6] estimated that 12%–15% of the fertilizer
applied was still present in the soil N pools 30 years after
application and continued to be released, either to be taken up
by crops or to leak toward groundwaters. In China, the residual
N fertilizer taken up by crops in the years after application
obtained from comparison of long- and short-term experiments
was estimated at 10%–18% of the applied fertilizer N [12].
Lower amounts (6.5%) of residual N recovered by crops
during the subsequent five seasons were reported in a summary
of experiments conducted in Africa, South America, and
Asia [13]. Therefore, the residual N effect is usually a minor
source of N compared to the annual application; however,
the cumulative effect should be considered when developing
strategies to increase fertilizer N efficiency.

The use of nitrification inhibitors is a reliable technique to
mitigate N gaseous emissions to the atmosphere and, in some
cases, to improve fertilizer use efficiency [14]. N fertilizers
blended with nitrification inhibitors delay the oxidation of
ammonium to nitrate, mitigating N losses but also enhancing
soil N retention [15]. Studies focused on the enhancement
of the residual N effect in the subsequent crop caused by
the application of nitrification inhibitors are limited [16]–[18]
and show that the relevance depends on soil and local con-
ditions [19]. Detection of the residual effect after nitrification
inhibitors could allow a better adjustment of fertilizer appli-
cation to the subsequent crop and contribute to sustainable
management of N fertilization in crop rotations.

Remote sensing estimation of the crop N nutritional status
is a valuable tool to support fertilization management and is
based on the spectral properties of plants [20]. Most of the veg-
etation indices (VIs) that estimate crop status use narrow bands
placed in the visible and near-infrared region (VNIR) [21].
Other VIs use solely the short-wave infrared region (SWIR) to
assess the N content directly [22]. In this regard, recent studies
have found a better estimation of plant N concentration using
VIs that included wavelengths in the SWIR using a hand-held
FieldSpec spectroradiometer [23] or aerial sensors [24], [25].
Nevertheless, the VIs do not employ all the relevant spectral
information, and consequently, several studies demonstrated
that the radiative transfer models enhanced transferability and
robustness compared to the VIs [26]–[28]. However, few
studies have highlighted the utility of physical models for
the accurate estimation of leaf N content [25], [29]. In this
regard, Wang et al. [29] showed that the model estimated leaf
parameters (leaf chlorophyll content, leaf mass per area, and
equivalent water thickness) were able to successfully track the
N content.

Moreover, physical models have the advantage of providing
explicit representation of the interactions between electro-
magnetic radiation and vegetation structures, allowing direct

simulation and inversion of the reflectance acquired [30].
In this context, the leaf optical properties (PROSPECT) and
the scattering by arbitrary inclined leaves (SAIL) models
are usually coupled (PROSAIL) to simulate bidirectional
reflectance and estimate biochemical and biophysical para-
meters simultaneously [26]. Applying PROSAIL to wheat,
several authors found that inverted chlorophyll [31] and the
leaf area index (LAI) [27] were reliable indicators of plant
traits to estimate wheat N status. These models are constantly
evolving, and a new PROSPECT version (PROSPECT-PRO)
developed by Féret et al. [30] directly estimated N content in
leaf proteins, opening the opportunity to improve N rates and
residual effect detection.

On another note, the use of chlorophyll fluorescence is
another approach to diagnose vegetation status, based on the
electromagnetic signal emitted in the 650–850-nm spectrum
wavelengths as a response to photosynthesis [32]. Chlorophyll
fluorescence is a direct proxy for electron transport rate and,
hence, photosynthetic activity [33]. It is well documented
that N deficiency could affect photosystem II photochemistry,
lowering the photochemical efficiency, quantum yield electron
transport, and, therefore, the assimilation rate [34], [35].
In addition, SIF760 is strongly correlated to the leaf-level maxi-
mum carboxylation rate (Vcmax) of the enzyme Rubisco [36],
which is probably one of the most abundant proteins on earth
and a major sink for plant N. Thus, the use of SIF760 can help
to improve the estimation of N status due to the direct link
between fluorescence emission and plant photosynthesis.

In addition, chlorophyll fluorescence can be measured with
active methods based on pulse-amplitude modulation fluorom-
eter systems [37] or laser-induced fluorescence [38]. However,
at the field scale, the use of active techniques that rely on artifi-
cial light to excite the leaf is limited. Instead, passive methods
that the SIF760 is based on solar irradiance and the radiance
emitted by vegetation through the use of atmospheric O2

absorption features [39] allow application at a regional scale.
Therefore, passive methods are a tool widely used for detecting
plant diseases [40]–[42] and water stress in woody and cereal
crops [43]. However, to date, few studies have used SIF760

to assess the crop N status [44]. In this regard, some studies
have demonstrated the link between chlorophyll fluorescence
and photosynthetic activity at leaf and canopy levels [45], [46];
Camino et al. [25] found that the physical models that included
SIF760 achieved higher accuracy in predicting N concentration
in wheat than models built only with inverted chlorophyll a+b
(Cab), dry matter (Cm), or equivalent water thickness (Cw),
suggesting that SIF760 could contribute to the detection of crop
N status and residual effect. Therefore, we further explored,
in this study, the capability of fluorescence emission retrievals
for the detection of crop N status and residual effect.

Finally, agronomic studies confirmed that the best indicator
to determine crop N status is the N nutrition index (NNI),
which estimates the N required for maximum growth as
the ratio between the actual crop N concentration and the
critical N concentration [47]. The critical N concentration
is the minimum N concentration (%N) needed for providing
the maximum growth rate for given biomass. In many field
studies, the NNI has been successfully applied to various
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Fig. 1. Study area of the field experiment in Aranjuez, Madrid, Central Spain, Southern Europe. (a) Location of the experiment with the different maize N
treatments established in 2018. (b) Split-plot of wheat experiment in three different N rates in 2019.

crops, including wheat [48]–[50]. Therefore, the ability of a
sensor, proximal or remote, to assess NNI is a reference for
its potential to support N management.

For these reasons, the general objective of this study was to
evaluate the capacity of ground-level and hyperspectral aerial
sensors to improve N assessment in winter wheat (Triticum
aestivum L.). Specific research addressed: 1) the capacity of
innovative spectral plant traits quantified by each of the sensors
to distinguish among N fertilization rates and 2) the potential
of identifying the residual N effect from previous years’
fertilization. To this purpose, the performance of ground-level
sensors, by plant traits estimated by physical model inversion,
as well as SIF760 and VIs based on VNIR and SWIR to
assess grain yield, grain N concentration, N exported in grain
(N output), and the NNI, was evaluated.

II. MATERIAL AND METHODS

A. Field Experiment

The field experiment was established at the Chimenea
research station (40◦03� N, 03◦31� O, and 550 m a.s.l.)
located in Aranjuez (Madrid, Spain). The climate is classified
according to Köppen as a cold semiarid climate (Bsk), with a
hot, dry summer. The mean annual temperature is 14.2 ◦C, and
the cumulated annual rainfall is 373 mm, which mainly takes
place in autumn and spring. Weather data were recorded by a
climatic station located 100 m from the field plot. The soil at
the field site is classified as Haplic calcisol [51]; it has medium
topsoil organic matter content (10.1 g kg−1 organic carbon and
1.0 g kg−1 total N) and a silty clay loam texture with low stone
content and pH ≈ 8.1 throughout the soil profile. More details
on the soil characteristics can be found in [52].

A maize/wheat rotation was conducted from April 2018 to
July 2019, and the experiment was designed to study crop
N status under different fertilizer rates and to identify

the residual effect of mineral fertilizers on bread wheat
(Triticum aestivum L., cv. Nogal). The experiment was sown
with maize (Zea mays L., Pioneer P1574, FAO 700) in
April 2018 at a plant density of 80 000 seeds ha−1. Sixteen
plots (8 m × 10.5 m) were randomly distributed in four
treatments with four replications [see Fig. 1(a)]. The treat-
ments were: Control (no N application), conventional fertilizer
calcium ammonium nitrate (CAN, 27% N) and ammonium
sulfate nitrate (ASN, 26% N) blended with the nitrification
inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) (ASN +
DMPP); CAN enriched with sulfur (CAN(S), 27% N) together
with the nitrification inhibitor 3, 4-dimethylpyrazole succinic
(DMPSA) (CAN+DMPSA). All fertilizer treatments received
the recommended rate (200 kg N ha−1). After the maize har-
vest (October 2018), wheat (Triticum aestivum L., cv. Nogal)
was planted on November 15, 2018, at a rate of 220 kg ha−1,
and each plot was split into three subplots (3.5 m × 8 m)
[see Fig. 1(b)]. Each subplot received no N (N0), conven-
tional fertilizer (CAN, 27% N) to provide N available at the
recommended rate (150 kg N ha−1; N1), or an extra N rate for
increasing grain N content (190 kg N ha−1; N2) (see Fig. 1(b)
and Table I).

N fertilizer was split into two applications and hand-
broadcasted to plots in two growth stages (GSs) [53]: over
the maize crop at three leaves unfolded (GS13, 28/05/2018)
and stem elongation (GS38, 02/07/2018); and over the wheat
crop at tillering (GS22, 30/01/2019) and at the end of stem
elongation (GS39, 15/04/2019) (see Table I). The N available
for wheat was obtained by adjusting the fertilizer rates accord-
ing to the inorganic N content in the upper 0.50-m soil layers,
determined before the first N application (January 30). Before
sowing the crops, 70 kg ha−1 P2O5 and 120 kg ha−1 K2O
were applied to all plots to ensure phosphorus and potassium
availability. After harvest, the residues of both crops were
incorporated into the soil.
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TABLE I

WHEAT N FERTILIZER APPLIED IN THE EXPERIMENT AND TOTAL N AVAILABLE FOR THE VARIOUS N RATE
TREATMENTS IN 2019, DEPENDING ON 2018 TREATMENTS

During spring and summer, irrigation water was delivered
using a center-pivot system to match crop evapotranspiration
calculated using daily local data. The total water input was
732 mm for maize in the first season and 209 mm for wheat in
the second season. Wheat suffered water stress during winter
due to scarce rainfall and limited irrigation water availability.

B. Crop Analysis

In the first season, a central 1.5-m-wide strip was harvested
from each plot using an experimental combiner, leaving a
1-m buffer at the beginning and end of each plot. A grain
subsample was oven-dried (65 ◦C) and weighed to correct
maize yield by moisture content.

In the second season, a sample of wheat plants from a
0.25-m2 square was hand-harvested at flowering (GS65) in
all plots of the experiment when maximum N uptake was
expected. A subsample of each plant component (spikes and
the rest of the aboveground biomass) was oven-dried (65 ◦C),
weighed, and ground. At harvest, a central 1.4-m-wide strip
was harvested from each plot by an experimental combiner,
leaving a 1-m buffer at the beginning and end of each plot.
A grain subsample from each plot was oven-dried (65 ◦C),
weighed, ground, and saved for analysis. The total N concen-
tration of plant components was determined by the Dumas
combustion method (LECO FP-428 analyzer, St. Joseph, MI,
USA). The N content of plant components was calculated by
multiplying dry biomass (kg ha−1) by N concentration (%N).
At flowering, the wheat crop N uptake (kg N ha−1) was
calculated by totaling the N content in spikes and the rest
of the aboveground biomass, and the NNI was calculated
as the ratio between the actual crop N concentration and
the critical N concentration that allows maximum growth for
given biomass [48]. The critical N concentration was obtained
from Pancorbo et al. [50] who developed an N dilution
curve for a winter wheat crop under similar environmental
conditions. At harvest, N output (kg N ha−1) was calculated
as the product of grain yield (kg ha−1) multiplied by grain N
concentration (%N).

C. Soil Inorganic N Content (Nmin)

In the experiment, soil samples were taken to determine
the soil inorganic N (Nmin) before the first topdressing of
N fertilizer in wheat (January 2019). Three soil cores per
plot were taken and combined by soil layer. Samples were
taken by 0.25-m intervals down to a 0.50-m depth with an
Eijkelkamp helicoidal auger (Eijkelkamp Agrisearch Equip-
ment, Geisbeek, The Netherlands). Samples were placed in a
plastic box and firmly closed immediately, transported, and
refrigerated (4 ◦C–6 ◦C). Within the five subsequent days, a
soil subsample from each box was extracted with 1 M KCl
(∼30 g of soil: 150 ml of KCl), centrifuged, and decanted,
and a subsample of the supernatant volume was stored in
a freezer until later analysis. The nitrate concentration was
determined by the Griess–Ilosvay method [54] and ammonium
by the salicylate-hypochlorite method [55]. Nitrate (NO−

3 -N)
and ammonium (NH+

4 -N) contents were calculated for each
layer and plot, and Nmin as the sum of nitrate and ammonium
content.

D. Ground-Level Optical Measurements

Different commercial optical sensors were used to assess N
fertilization rates and the residual effect on the wheat, coming
from the different fertilizer treatments applied in the previous
season. The two devices chosen were Dualex Scientific (Force-
A, Orsay, France) and GreenSeeker (Handheld Crop Sensor
Model HCS-100, Trimble, Sunnyvale, CA, USA).

The Dualex Scientific is a leaf clip sensor that estimates the
crop N status and measures chlorophyll (Chl) content as the
difference between the light transmitted at the far red (710 nm)
and the infrared wavelengths (850 nm) [56]. In addition,
this device measures leaf epidermal flavonoid (Flav) and
anthocyanin (Anth) content, based on the screening effect of
polyphenols on chlorophyll fluorescence [56]. Chlorophyll flu-
orescence is induced by a reference red LED that is transmitted
through the epidermis without being absorbed by polyphenols
and by a second specific light (UV for Flav and green for Anth)
absorbed by polyphenols. The ratio of chlorophyll fluorescence
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emitted under red and UV excitation provides the Flav and
under read and green provides the Anth content per unit of
leaf area. The N balance index (NBI) is calculated as the ratio
between the Chl and Flav contents.

The GreenSeeker is an active light proximal sensor that
generates its own red and near-infrared (NIR) lights for
measuring the normalized difference vegetation index (NDVI).
Measurements are taken 1 m above the crop surface, and the
GreenSeeker readings are calculated as (RNIR-RRed)/(RNIR +
RRed), where RNIR is the reflectance of active NIR light
(774 nm) and RRed is the reflectance of the active red light
(656 nm).

Readings with both optical sensors were taken at ground
level at three different GSs: initial stem elongation (GS32), end
of stem elongation (GS39), and full flowering (GS65). On each
sampling date, six measurements were taken per plot, and
the representative value was determined as the average of the
readings. Dualex measurements were taken at the uppermost
fully developed leaf, avoiding midribs.

E. Remote Sensing Data Collection

Ground-level measurements were synchronized with air-
borne hyperspectral image acquisition carried out at the same
three sampling dates (GS32: 11/03/2019; GS39: 12/04/2019;
and GS65: 16/05/2019). All subplots were georeferenced with
real-time kinematic technology to compare different VIs and
wheat inverted parameters with ground-level measurements.
A perimeter buffer (1 m) was considered for extracting spectral
information from each plot to ensure that readings were
representative of each treatment.

1) Aircraft Hyperspectral Imagery: The hyperspectral
images were taken under clear sky conditions onboard a
Cessna aircraft flying at 330 m over the experimental plots
and 70 knots ground speed with heading on the solar plane
at 11 GMT using a VNIR hyperspectral imager (Hyperspec
VNIR model, Headwall Photonics, Fitchburg, MA, USA) and
a Hyperspec linear array imager (NIR-100 model, Headwall
Photonics, Fitchburg, MA, USA). The VNIR hyperspec sensor
captured reflectance in the 400–850-nm spectral region with
a spectral resolution of 6.5-nm full-width at half-maximum
(FWHM) and a spatial resolution of 0.2 m, and the hyper-
spec NIR-100 sensor covered the 950–1750-nm region with
165 spectral bands at the 16-bit radiometric resolution, with
6.05-nm FWHM with a spatial resolution of 0.6 m. Hyperspec
VNIR and NIR-100 sensors were radiometrically calibrated
with an integrating sphere (CSTM-USS-2000C LabSphere,
North Sutton, NH, USA) using four levels of illumination and
six integration times. Atmospheric correction of the hyperspec-
tral images was performed using incoming irradiance mea-
sured with a field spectrometer and simulated by the SMARTS
model [57], [58]. In addition, we conducted an empirical line
calibration [59] using field-measured spectra to ensure the
radiometric quality of the hyperspectral imagery and remove
spectral noise. For that, we acquired reflectance measurements
at the flight time over soil surfaces using a handheld field spec-
trometer (Analytical Spectral Devices, Boulder, CO, USA).
Orthorectification of hyperspectral imagery was performed fol-
lowing Zarco-Tejada et al. [46]. Spectral data were smoothed

using the Savitzky–Golay method with a filter length of 9
interpolated to 1 nm. Wavelengths between 1085–1185 and
1320–1500 nm were removed due to atmospheric water vapor
absorption.

2) Modeling Methods: We retrieved the canopy structural
parameters (LAI and leaf angle distribution, LIDFa) and leaf
biophysical and biochemical constituents from each plot using
the PROSAIL-PRO model. The PROSAIL-PRO radiative
transfer model couples the PROSPECT-PRO leaf reflectance
model [30] and the 4SAIL turbid medium canopy radiative
transfer model [60]. PROSPECT-PRO enabled the separation
of the N-based constituents (proteins) from the carbon-based
constituent (including cellulose, lignin, hemicellulose, starch,
and sugars). The SAIL model is based on the 1-D model devel-
oped by Suits [61] to simulate the bidirectional reflectance
of a canopy. The inversion of PROSAIL-PRO consisted of
an iterative-optimization numerical approach to estimate leaf
traits and canopy parameters from reflectance across the
observed hyperspectral spectrum. The inversion method esti-
mated the root mean square error (RMSE) between the sim-
ulated reflectance and the hyperspectral image reflectance by
successive input parameter iteration. The iterative optimization
process selected the simulated spectra with the lowest RMSE
with respect to the observed spectra. Then, we calculated the
average for each plant trait based on the selected simulations
(0.1–0.25%) with the lowest RMSE values [62]. The iterative-
optimization numerical approach was designed to estimate the
average of the best modeled spectra that yielded the best fit
against the observed spectra.

To invert each leaf and canopy traits using the cou-
pled PROSAIL-PRO model, we built a lookup table (LUT)
of 20 000 simulations for the proposed inversion method. The
input variables and their ranges in the PROSPECT-PRO and
4SAIL models are shown in Table S1 in the Supplementary
Material. The input parameters were constrained to specific
ranges to avoid potential ill-posed inversion solutions. In par-
ticular, we used uniform distribution for the main parameters,
except for Cw and Cm for which a Gaussian distribution was
used. The ranges were established based on field measure-
ments (i.e., Dualex readings) and existing literature. The result-
ing LUT covered the variability of wheat canopies measured
by both hyperspectral sensors. The solar geometry and the
viewing angles needed to simulate canopy reflectance were
extracted for the flight date. All reflectance spectra simulated
were convoluted to the bandwidth of the hyperspectral sensors
used in this study. The spectral convolution was conducted
through a Gaussian band spectral response function using the
FWHM of each sensor (6.5 nm for the VNIR hyperspectral
sensor and 6.05 nm for the NIR-100 hyperspectral sensor).

In this study, the spectral range between 400 and 800 nm
measured with the hyperspec VNIR camera was used to
estimate Cab, carotenoids (Car), and anthocyanin (Anth), while
the 400–1700-nm spectral region was used to retrieve struc-
tural parameters (LAI and LIDFa), Cw and Cm . In addition,
the biomass (i.e., LAI × Cm g/cm2) was also calculated to
compare its estimation with biomass field measurement.

The accuracy of the parameters estimated with model
inversion was evaluated by the RMSE calculated between the
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TABLE II

VEGETATION INDEX EQUATIONS USED IN THIS STUDY FOR HYPERSPECTRAL DATA

simulated and measured canopy spectral reflectances. Finally,
the coefficient of determination (R2) and RMSE between the
retrieved biophysical parameters (Cab, Car, Anth, biomass,
and LAI) obtained by PROSAIL-PRO model inversion and
the crop nutritional status was calculated to investigate their
relationship.

3) Vegetation Indices and SIF760 Calculation: The aver-
age radiance and reflectance spectra calculated for each
experimental plot were used to extract several VIs related
to: 1) crop structure; 2) photosynthetic pigments (xantho-
phyll, blue/green/red, and chlorophyll); and 3) N content (see
Table II). The VIs were related to greenness or crop structure
when based on the normalized ratio between bands from the
NIR and the visible or SWIR, to photosynthetic pigment when
narrow bands from the red edge region were incorporated,

and SWIR bands combined with NIR were used to build VIs
related to N.

The solar-induced fluorescence (SIF760) was estimated using
the Fraunhofer line-depth (FLD) principle [39] by combining
solar irradiance and radiance emitted by the canopy crop
using the atmospheric O2 absorption features [32]. This step
is important when attempting to estimate SIF760 with coarser
spectral resolution sensors (5–6 nm), mainly because the
fluorescence emitted is strongly affected by scattering and
reabsorption processes at the canopy level. Damm et al. [63]
demonstrated that hyperspectral sensors with 5–6 nm FWHM
spectral bands can be successfully used to estimate chlorophyll
fluorescence using the FLD approach, which is traditionally
estimated using instruments with a spectral resolution below
0.5 nm. The SIF760 signal calculated in this study was based
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Fig. 2. (a) Wheat crop N uptake at flowering and (b) grain N concentration at harvest for the various N rate treatments (N0, N1, and N2) in 2019. Treatments
on the X-axis were applied in the previous 2018 season. For further treatment descriptions, see the main text. Letters above bars indicate significant differences
between wheat N rate treatments within the previous year’s fertilizer treatments according to Tukey’s test at P ≤ 0.05.

on two spectral bands in and out of the O2-A feature. The FLD
method used the radiance L in (L762 nm) and Lout (L750 nm)
from the airborne imagery and the irradiance Ein (E762 nm)
and Eout (E750 nm) from irradiance spectra concurrently
measured at the time of the flights. We simulated the incoming
irradiance using the SMARTS model [57], [58] according to
the aerosol properties and weather conditions of the flights.
For that, we used the aerosol properties (i.e., aerosol optical
depth, Ångström exponent, and air mass) extracted from the
nearest ground-based available observations from the AErosol
RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov).
As a further step, the simulated irradiance was interpolated
and convoluted to the bandwidth of the hyperspectral sensor.

F. Statistical Analysis

Statistical analyses were carried out to assess the potential
of different sensors and parameters for detecting N rates and
residual effect. After verification of data normality and vari-
ance homogeneity, a linear mixed model was used in crop data
and sensor readings to evaluate their detection at three different
GSs. The fertilizers applied in 2018, the N rates applied
in 2019, and the interaction between them were considered
as a fixed effect, whereas the subplot was considered as a
random effect for the analysis of variance. In addition, one-
way ANOVA was performed to determine differences between
treatments of soil inorganic N content. Means were separated
by Tukey’s test at the 0.05 probability level (P ≤ 0.05).
Finally, the coefficient of determination (R2) and RMSE were
calculated to analyze the goodness of fit between the NNI and
the sensor indicators of crop N status. All statistical analyses
were performed using the software R [72].

III. RESULTS

A. Crop Analysis

In the first season, the maize grain yield (14% moisture con-
tent) in Control (10.6 Mg ha−1) was significantly lower than
in the fertilized treatments, which did not present differences

among them. In the second season, the average wheat grain
yield was 3.9 Mg ha−1, and no differences were found among
treatments, probably due to the low winter rainfall that limited
wheat tillering and yield (see Table S2 in the Supplementary
Material). The response to second-year N fertilization became
evident in the data collected at flowering (GS65) since the N
uptake and NNI responded to fertilizer application when the
previous year’s treatments were Control or CAN (see Fig. 2(a),
and see Table S2 in the Supplementary Material). At harvest,
grain N reinforced the effect of the N fertilizer rates, as all
treatments fertilized in 2019 increased grain N concentration
[see Fig. 2(b)] and most grain N output (see Table S2 in the
Supplementary Material) with respect to N0.

The N residual effect was observed at wheat flowering and
harvest (see Fig. 3). At flowering, when comparing N uptake
and NNI in the unfertilized wheat plots (N0), the treatment
that received CAN + DMPSA in the previous year showed a
higher value than Control (see Fig. 3(a), and see Table S2 in
the Supplementary Material). In addition, the treatments
that received fertilizer with nitrification inhibitors in 2018
(ASN + DMPP or CAN + DMPSA) did not show differences
in N uptake and the NNI at flowering between N rates in 2019
(see Fig. 2(a), and see Table S2 in the Supplementary Mater-
ial). At harvest, the N output in N0 wheat plots was higher fol-
lowing maize fertilized with CAN+DMPSA compared to the
Control, while ASN+DMPP and CAN had intermediate values
[see Fig. 3(b)].

Before wheat fertilization, there were no differences in Nmin

in the upper 0.5 m among maize fertilized treatments in 2018
(see Fig. S3 in the Supplementary Material). The previous fer-
tilized treatments presented higher Nmin (118 kg N ha−1) than
Control (60 kg N ha−1), and the contribution of ammonium
accounted for <10% of the total soil Nmin.

B. Comparison Between Field-Measurements
and Inverted Parameters

Considering the three GSs of this study, the best correlation
between inverted and measured parameters was achieved by
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Fig. 3. (a) Wheat NNI at flowering and (b) N output at harvest for the various N rate treatments (N0, N1, and N2) applied in 2019. Treatments in the legend
were applied in the previous 2018 season: 0 kg N ha−1 (Control) or 200 kg N ha−1 as CAN, as ASN blended with nitrification inhibitor 3, 4-dimethylpyrazole
phosphate (ASN + DMPP) or as CAN blended with the nitrification inhibitor 3, 4-dimethylpyrazole succinic (CAN + DMPSA). Letters above bars indicate
significant differences between maize fertilizer treatments the previous year within N rate treatments according to Tukey’s test at P ≤ 0.05.

Fig. 4. Wheat pair values of (a) chlorophyll content (µg cm−2) estimated by model inversion (Cab) and measured with Dualex (Chl-D) and (b) anthocyanin
(µg cm−2) estimated by model inversion (Anth) and measured with Dualex (Anth-D, d.u: dualex units) at three GSs (symbols): initial stem elongation (GS32),
end of stem elongation (GS39), and flowering (GS65). Each symbol is the mean value of each plot assigned to the various N rate treatments (N0, N1, and N2)
applied in 2019. The solid line is the linear regression with the corresponding equation, the coefficient of determination (R2), and RMSE.

chlorophyll concentration [R2 = 0.55; see Fig. 4(a)], followed
by anthocyanins [R2 = 0.41; see Fig. 4(b)]. The chlorophyll
relationship improved when only the values obtained at the end
of stem elongation and flowering were considered [R2 = 0.78;
see Fig. S4(a) in the Supplementary Material], indicating that
soil pixels affected the parameter estimation at the beginning
of stem elongation. In addition, LAI and biomass estimated
by model inversion also reached a significant correlation with
biomass measured at flowering [R2 = 0.53 and 0.61; see
Fig. S4(b) and (c) in the Supplementary Material]. In general,
the results indicate that the inverted parameters analyzed in this
experiment increased their correlation with field measurements
as GSs advanced, achieving the best results at the end of stem
elongation and flowering.

C. Fertilizer Rate Detection
1) Ground-Level Sensors and Parameters Estimated

by Model Inversion: Fertilizer rates were detected by
GreenSeeker, Dualex, and the parameters estimated by model
inversion (see Table III). As early as initial stem elongation
(GS32), differences were detectable by GreenSeeker only.
At the end of stem elongation (GS39), GreenSeeker and
chlorophyll or anthocyanins, either measured with Dualex
or estimated by model inversion, were able to distinguish
between fertilized (N1 & N2) and unfertilized (N0) treatments.
At flowering (GS65), GreenSeeker differentiated three N rates,
whereas Chl, Flav, NBI from Dualex and inverted biomass,
Cab, and LAI distinguished between fertilized (N1 & N2) and
unfertilized (N0) treatments. Finally, anthocyanins measured
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TABLE III

WHEAT GREENSEEKER, DUALEX READINGS [CHLOROPHYLL (CHL-D), FLAVONOIDS (FLAV-D), ANTHOCYANINS (ANTH-D), AND N BALANCE INDEX
(NBI-D)], AND PARAMETERS ESTIMATED BY MODEL INVERSION (BIOMASS, CHLOROPHYLL a +b (Cab), CAROTENOIDS (CAR), ANTHOCYANINS

(ANTH), AND THE LAI) AT THREE DIFFERENT WHEAT GSS [INITIAL STEM ELONGATION (GS32), END OF STEM ELONGATION (GS39),
AND FLOWERING (GS65)] FOR THE VARIOUS N RATE TREATMENTS (N0, N1, AND N2) APPLIED IN 2019

Fig. 5. Wheat average reflectance spectra from the various N rate treatments (N0, N1, and N2) obtained from images acquired by hyperspectral sensors
[visible (400–740 nm), NIR (740–1000 nm), and SWIR (1000–1700 nm)] mounted on an aircraft at (a) initial stem elongation (GS32), (b) end of stem
elongation (GS39), and (c) flowering (GS65) in 2019. Treatment N0 received 0 kg N ha−1 as fertilizer in 2019, N1 90 or 50 kg N ha−1, and N2 130 or
90 kg N ha−1 in Control or fertilized plots in 2018.

with the Dualex device and the rest of the parameters (Anth
and Car) estimated by model inversion did not separate
fertilizer rates (see Table III).

2) Reflectance Spectra and Vegetation Indices: The differ-
ent fertilizer rates applied in 2019 were also detected in the
spectral data obtained from the aircraft (see Fig. 5). At the
initial stem elongation (GS32), few differences were observed
[see Fig. 5(a)]. Nevertheless, differences between reflectance
spectra appeared at GS39, where the fertilized treatments
(N1 & N2) presented lower reflectance in the visible region

and SWIR than the unfertilized treatment (N0) [see Fig. 5(b)].
At GS65, the three N rate treatments were differentiated in the
visible region, NIR and SWIR [see Fig. 5(c)].

In agreement with the spectra, at GS32, no differences
in VIs were found between the N rate treatments, whereas,
after GS39, differences between treatments appeared (see
Table IV). At GS39, NDVI, blue/green/red indices, all chloro-
phyll (except MCARI), and all VNIR-SWIR (except N1510,660)
indices also differentiated between N0 and fertilized treatments
(N1 & N2). At GS65, all structural, xanthophyll, BRI1,
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TABLE IV

WHEAT VIS EXTRACTED FROM THE REFLECTANCE SPECTRA ACQUIRED BY AIRBORNE HYPERSPECTRAL SENSORS AT THREE DIFFERENT GSS [INITIAL
STEM ELONGATION (GS32), END OF STEM ELONGATION (GS39), AND FLOWERING (GS65)] FOR THE VARIOUS N RATE TREATMENTS

(N0, N1, AND N2) APPLIED IN 2019

chlorophyll (NDRE, CCCI, and SIF760), and all VNIR-SWIR
indices distinguished the three fertilizer rates (see Table IV).
Furthermore, in GS39 and GS65, the VNIR-SWIR indices that
were modified to replace the 670-nm band with the 1510-nm
band (OSAVI1510, MCARI1510, and TCARI/OSAVI1510) were
better N rate detectors than their corresponding VNIR indices,
showing the potential of the SWIR.

D. Residual Effect Detection

1) Ground-Level Sensors and Parameters Estimated by
Model Inversion: At the earliest stage of wheat (GS32),
the residual effect was not detected, whereas, at the end of
stem elongation (GS39) and flowering (GS65), the residual
effect was similarly detected by the GreenSeeker and Cab

estimated by model inversion (see Table V). At both GSs,
in the unfertilized wheat treatment (N0), the plots that received
CAN+DMPSA in the previous season showed higher readings
than the Control plots, with the readings of the plots fertilized
with CAN or ASN + DMPP between these two readings.
Moreover, at GS65, inverted biomass and the LAI detected the
residual effect in all fertilized treatments in 2018. By contrast,
the ability to detect the residual effect was low for Dualex
readings (Chl, Anth, and the NBI showed differences between
treatments at GS39 only) and the rest of the parameters
estimated by model inversion (Anth and Car).

2) Reflectance Spectra and Vegetation Indices: Similar to
ground-level sensors and inverted parameters, the residual
effect was only detected in the spectra acquired from the

unfertilized wheat treatments (see Fig. 6). At the initial stem
elongation (GS32), differences between fertilized and Con-
trol treatments began to appear in the NIR [see Fig. 6(a)].
At GS39 and GS65, the three fertilized treatments presented
lower reflectance in the visible region and SWIR and higher
reflectance in the NIR than the Control [see Fig. 6(b) and (c)].
The CAN+DMPSA treatment, which showed the largest resid-
ual effect in the crop variables, GreenSeeker readings, and
inverted Cab, also presented the largest difference with the
Control in the spectrum.

In addition, the structural (NDVI and OSAVI), blue/green
(BGI1) and chlorophyll (NDRE and CCCI) indices, and SIF760

were able to detect the residual effect at the end of stem
elongation (GS39), whereas, at flowering (GS65), it was
detected by the structural (NDVI and OSAVI), chlorophyll
(NDRE), and NIR-SWIR (N850,1510) indices (see Table VI).
The rest of the VIs calculated did not detect the residual
effect (see Table S5 in the Supplementary Material). The
values of the indices that detected the residual effect were
higher in the CAN + DMPSA than in the Control plots, with
the values of the plots previously fertilized with CAN or
ASN + DMPP showing intermediate values. At the beginning
of stem elongation (GS32), the residual effect was not detected
(see Table S5 in the Supplementary Material). Therefore,
SIF760 together with VIs that combine visible with blue, NIR,
or red edge bands were the best residual effect detectors at
the end of stem elongation, while the NIR-SWIR combination
performed better at flowering.
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TABLE V

WHEAT GREENSEEKER, DUALEX READINGS [CHLOROPHYLL (CHL-D), FLAVONOIDS (FLAV-D), ANTHOCYANINS (ANTH-D), AND N BALANCE INDEX
(NBI-D)] AND PARAMETERS ESTIMATED BY MODEL INVERSION (BIOMASS, CHLOROPHYLL a + b (Cab), CAROTENOIDS (CAR), ANTHOCYANINS

(ANTH), AND THE LAI) AT THREE DIFFERENT WHEAT GSS [INITIAL STEM ELONGATION (GS32), END OF STEM ELONGATION (GS39),
AND FLOWERING (GS65)] IN THE UNFERTILIZED PLOTS (N0) IN 2019

Fig. 6. Wheat average reflectance spectra from unfertilized N plots (N0) obtained from images acquired by hyperspectral sensors [visible (400–740 nm),
NIR (740–1000 nm), and SWIR (1000–1700 nm)] mounted on an aircraft at (a) initial stem elongation (GS32), (b) the end of stem elongation (GS39), and
(c) flowering (GS65) in 2019. Treatments in the legend were applied in the previous 2018 season and were 0 kg N ha−1 (Control) or 200 kg N ha−1 as
CAN, as ASN blended with the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (ASN + DMPP) or as CAN blended with the nitrification inhibitor 3,
4-dimethylpyrazole succinic (CAN + DMPSA).

E. Nitrogen Nutrition Index Detection by Ground-Level
and Remote Sensors

Due to the good ability of the NNI in detecting N rates
and the residual effect at flowering (see Fig. 3(a), and see

Table S2 in the Supplementary Material), its correlation with
ground-level sensors, inverted parameters, and VIs was evalu-
ated as a proxy of detection (see Table VII). The highest cor-
relations of the NNI with ground-level sensors were achieved
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TABLE VI

WHEAT VIS EXTRACTED FROM THE REFLECTANCE SPECTRA ACQUIRED BY AIRBORNE HYPERSPECTRAL SENSORS AT TWO DIFFERENT GSS
[END OF STEM ELONGATION (GS39) AND FLOWERING (GS65)] IN THE UNFERTILIZED PLOTS (N0) IN 2019

TABLE VII

COEFFICIENT OF DETERMINATION (R2), RMSE, AND LEVEL OF SIGNIFICANCE (P-VALUE) FOR THE NNI AND GROUND-LEVEL SENSORS
[GREENSEEKER, DUALEX READINGS (CHLOROPHYLL (CHL-D), FLAVONOIDS (FLAV-D), ANTHOCYANINS (ANTH-D), AND THE N BALANCE

INDEX (NBI-D)], PARAMETERS ESTIMATED BY MODEL INVERSION (BIOMASS, CHLOROPHYLL a + b (Cab), CAROTENOIDS (CAR),
ANTHOCYANINS (ANTH), AND THE LAI) AND DIFFERENT VIS EXTRACTED FROM THE REFLECTANCE SPECTRA ACQUIRED BY

HYPERSPECTRAL SENSORS AT FLOWERING (GS65). ABBREVIATIONS: ns, NOT SIGNIFICANT

by the GreenSeeker (R2 = 0.75 and RMSE = 0.052) and the
NBI from Dualex (see Table VII). Furthermore, the best per-
formance among all pigments (either measured with Dualex or
estimated by model inversion) was reached with chlorophyll.
In this respect, Cab estimated by model inversion obtained a
greater correlation (R2 = 0.72 and RMSE = 0.059) than the
Chl measured with Dualex (R2 = 0.65 and RMSE = 0.062),
indicating that estimation of chlorophyll improves crop N
status prediction. In addition, other inverted parameters, such
as the LAI and biomass, also achieved a high correlation with
the NNI. Finally, the rest of Dualex (Flav-D and Anth-D)

and inverted pigments (Anth and Car) obtained the lowest
correlations with the NNI (see Table VII).

Among the VIs, the best correlations with the NNI were
obtained by chlorophyll-related indices, with the highest for
SIF760 (R2 = 0.88 and RMSE = 0.049) followed by CCCI
and NDRE (see Table VII). The greenness or structural
indices were also significantly correlated with NNI, and the
PRIm4 xanthophyll index had a better correlation than the
PRI. Finally, among the VNIR-SWIR indices, the OSAVI1510

outperformed the others, achieving a similar correlation to
its analog in the VNIR (OSAVI). Introducing the SWIR
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information slightly increased the correlation with NNI in the
MCARI1510 and slightly decreased in the TCARI/OSAVI1510

(see Table VII).
Hence, these results emphasize that Cab estimated by model

inversion, SIF760, the CCCI, and the indices that combine
NIR-Red or NIR-Red Edge reflectance showed a better cor-
relation than ground-level sensors in assessing crop N status,
which reinforced their capability for N rates and residual effect
detection.

IV. DISCUSSION

The results of this study confirm the potential of ground and
remote sensors for detecting wheat fertilized with different
N rates and demonstrate, for the first time, the potential of
these sensors for identifying the N residual effect in the crop.
The ability of remote sensing to distinguish among N rates is
relevant since it can provide information on the crop N status.
However, most studies have traditionally been based on the
application of spectral indices [21], while only a few studies
have investigated the radiative transfer model inversions or
solar-induced chlorophyll fluorescence [25], [27]. The earlier
this detection occurs, the more suitable it would be for making
recommendations prior to mid-season fertilization although,
at early GSs, estimating the crop N status can be masked
due to greater variations in biomass, the LAI, water availabil-
ity conditions, or canopy structure [68]. Another limitation
related to early fertilizer recommendation is crop water status
and the presence of diseases and pests [2], which could be
overcome by combining reflectance and thermal information
in some cases [50], [71]. In this experiment, at the end
of stem elongation, GreenSeeker readings, chlorophyll, and
anthocyanin pigments (measured with Dualex and estimated
by model inversion) are differentiated between unfertilized
and fertilized treatment. Besides, in the reflectance spectra,
distinctions between N rates were evident in the visible region
and SWIR, caused by changes in photosynthetic activity, cell
structure, and chemical bonds [73]. Higher N fertilization rates
allow the plant to produce higher chlorophyll concentration
and N-H bonds, increasing the light absorption in the visible
region and SWIR. Therefore, most of the VIs differentiated
between unfertilized and fertilized treatment, similar to other
research that detected different N rates with hyperspectral [9]
or proximal [74] sensors in wheat. Later at flowering, the
reflectance spectra differentiated between N rates in the VNIR
and SWIR, and consequently, most of the VIs and SIF760 also
distinguished between the three N fertilizer rates, agreeing
with other studies [75], [76]. At harvest, the effect of the
fertilizer rates was observed on wheat grain N concentration
and N output in the field samples analyzed. In relation
to the yield, many authors observed an improvement with
increasing N fertilizer application [74], [75] but, in our par-
ticular conditions, characterized by low rain during the end of
winter and early spring, produced low tillering and limited
the yield response to N. As a similar yield was recorded
in all plots, differences between fertilizer rates appeared in
grain N, which is usually harder to detect by remote sens-
ing than in yield [77]. Besides, the crop data collected at
flowering allowed the determination of the N uptake and

the NNI calculation that reinforced the N fertilizer rate
effect.

Beyond the benefits of nitrification inhibitors for reducing
gaseous N losses, some authors explored the temporary soil N
retention of these compounds [15], which may be an N source
for the subsequent crops in the rotation [16]. Nitrification
inhibitors may, therefore, be a valuable source of residual N,
whose detection and quantification in crop rotations have not
yet been solved, and to date, it has not been explored through
remote sensing tools. In this study, the N residual effect was
detected by spectral reflectance at the end of stem elongation
and wheat flowering, showing the largest difference between
the Control and CAN + DMPSA treatments. The reflectance
was lower in the visible and SWIR, and higher in the NIR for
CAN + DMPSA treatment, indicating a more healthy wheat
crop. Therefore, several VIs and SIF760 showed the ability
to detect the residual effect from DMPSA application in a
maize/wheat rotation at the same GSs. The VIs that detected
the residual effect in this experiment were the structural or
greenness (NDVI and OSAVI), blue/green (BGI1) indices,
chlorophyll (NDRE and CCCI), or NIR-SWIR (N850,1510).
Furthermore, the N residual effect was also detected by
ground-level sensors and Cab, biomass, and the LAI estimated
by model inversion at the same GSs, coinciding with the
results found by Quemada et al. [19] in a similar rotation.
This suggests that inverted parameters, SIF760, and VIs that
include a red edge or at least one NIR band could be used
to identify the N residual effect, making it possible to adjust
fertilizer rates to actual crop requirements. This result is in
agreement with previous studies that emphasize the advantage
of using red edge narrow bands and NIR for estimating crop N
status in wheat [77]. The crop data collected at flowering and
harvest supported the residual effect detected with sensors.

In the same location, Alonso-Ayuso et al. [17] observed
that ASN blended with the nitrification inhibitor DMPP had
a higher residual effect than the conventional fertilizer in a
maize/sunflower rotation. However, in this study, the residual
effect coming from DMPP or conventional fertilizer was not
observed in the following wheat crop. This apparent contro-
versy may be due to the multiple factors that affect the N
residual effect. On the one hand, high soil inorganic N content
after crop harvest may lead to an N residual effect in the
following crop. However, determining soil inorganic N may
not be enough to account for this effect in the short term,
as N retained in the crop litter and microbial biomass is slowly
released over time [6], [19]. In addition, the residual effect
may become evident when N fertilizer application is adjusted
to crop requirements, whereas N overfertilization masks the
residual effect [7].

Another novel result obtained in this experiment shows
that SIF760 retrieval by the FLD method obtained a higher
correlation with the NNI than the parameters estimated by
model inversion and the VIs evaluated. This result agrees with
recent studies that showed the ability of SIF760 to estimate
crop physiological status [25] and differentiate between N
treatments [44], [45]. This work confirmed the sensitivity of
chlorophyll fluorescence to track changes in the photosynthetic
capacity under different N treatments. Therefore, including
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chlorophyll fluorescence as an indicator of N deficiency
enabled the tracking of the photosystem II photochemistry
and the quantum yield of PSII electron transport reductions.
This high correlation is probably due to the SIF760 emission
originating exclusively from plants; therefore, its retrieval is
not affected by the soil background. In addition, this study
also demonstrates that the inverted Cab had a greater correla-
tion with crop N status than field measurements conducted
with Dualex, reinforcing the potential of radiative transfer
models and chlorophyll as the most reliable pigment for
assessing N [23], [76].

Finally, some authors found significant relationships when
comparing N concentration with NIR-SWIR-based indices in
wheat [73], [25], trees and shrubs [24], and potato [23].
Nonetheless, in our study, the NIR-SWIR-based indices did
not show an advantage over the structural and photosynthetic
pigment indices based on the visible and NIR to detect N.
The residual effect was only detected by N850,1510 at flowering,
suggesting that NIR-SWIR-based indices performed similar to
the structural and photosynthetic pigment indices, while the
VNIR-SWIR-based indices were unable to detect the residual
effect. The main NIR-SWIR indices focused on the 1510-nm
band, which is useful to pick up the absorption features
corresponding to proteins (i.e., N-H bond stretches) [78].
However, in this subtle domain, the sharp absorption of water
in the reflectance spectra introduces a bias that decreases
the sensitivity for detecting N. Another possible explanation
for not finding NIR-SWIR-based indices more sensitive than
VNIR to crop N status is that wheat suffered from water
stress during the growth cycle. Even if irrigation was uniformly
delivered to compensate for water scarcity, SWIR bands are
very sensitive to water presence and might have lost part of
their capacity to identify crop nutritional status due to het-
erogeneous water availability. For all that, and considering the
cost, the complexity of the operation, and the coarse resolution
generally obtained by SWIR cameras [25], the contribution
of SIF760 and VNIR indices is more convenient than VNIR-
SWIR-extracted information. However, further investigation
under rainfed conditions and with other crops remains nec-
essary to define this information as accurately as possible.

V. CONCLUSION

Proximal and aerial sensors provided useful information for
identifying wheat N fertilizer rates and residual effects. Optical
ground-level sensors, plant traits estimated using biophysical
modeling, solar-induced chlorophyll fluorescence (SIF760), and
VIs extracted by airborne hyperspectral sensors distinguished
unfertilized and fertilized plots at wheat stem elongation and
flowering, opening the opportunity to adjust N fertilization
rates to crop demand. The residual effect of the conven-
tional fertilizer blended with the DMPSA nitrification inhibitor
applied on the previous maize in the rotation was detected by
ground-level sensors, the estimated Cab by model inversion,
SIF760 and structural (NDVI and OSAVI), blue/green (BGI1),
chlorophyll (NDRE and CCCI), and NIR-SWIR (N850,1510)
VIs calculated from the aircraft at the wheat stem elongation
and flowering stages. Therefore, remote sensing has shown

important potential as a tool to detect N fertilizer rates and
the legacy of previous fertilizer applications in crop rotations.
Further research will focus on understanding the differences
in the residual effect of different fertilizers and fine-tune its
detection using these technologies.
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