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Summary 
This thesis deals with the retrieval of canopy variables from remotely sensed data with 
the main objective to detect iron chlorosis in olive orchards. Iron chlorosis leads to a 
reduced uptake and distribution of iron in plants, which in turn hampers the creation of 
chlorophyll and thus the photosynthesis and tree’s production. Iron chlorosis can 
therefore be identified through monitoring for trees with a decreased chlorophyll a + b 
content (CAB). As changes in CAB have a pronounced effect on the leaf reflectance, we 
can monitor this CAB by means of remote sensing. CASI images were available for the 
three study sites at two resolutions: CASISPATIAL having 8 bands with 1 meter spatial 
resolution   and CASISPECTRAL having 72 bands with a spatial resolution of 4 meter. 
Two retrieval strategies using the CASI observations have been studied: the inversion of 
a coupled radiative transfer model (the leaf model PROSPECT + the canopy reflectance 
model FLIGHT) by means of neural networks and the application of statistical relations 
between canopy reflectance and the chlorophyll content. 
The leaf reflectance and transmittance were modelled with PROSPECT and resampled 
to match the CASI bands. These resampled leaf reflectance and transmittance were used 
together with variables describing the canopy (leaf area index (LAI), tree dimensions, leaf 
angle distribution (LAD) etc.), scene conditions (fCOVER, background/soil reflectance etc.) 
and viewing geometry as an input for the FLIGHT model to obtain the canopy 
reflectance for that scene. Variation was introduced in the inputs for PROSPECT (N, CM 
and CAB) and for FLIGHT (LAI, fCOVER). For the CASISPECTRAL simulations, we have also 
created three classes of soil brightness to be able to study the effect of different 
background signals on the retrieval methods. The simulations where N and CM have a 
constant value (with all other variables being non-constant) are referred to as PF-set 1 
and the simulations with variation in N and CM will be referred to as PF-set 2. 
Two different approaches using neural networks (NN) were tested for the retrieval of 
canopy variables (CV) from CASISPATIAL. The first approach consisted of the ‘classical’ 
inversion where the NN were estimating the CV from the canopy reflectance. In the 
second approach, the NN were doing the reverse: the CV were obtained by inverting this 
NN estimating the canopy reflectance from a first guess for the CV. The estimated CV 
were updated using an optimalisation algorithm minimising the difference between the 
estimated reflectance and the observed reflectance. It was found that the classical NN 
has a better performance, as the second method had greater uncertainties due to the 
combination of the imperfect training and inversion of the NN. For the classical NN it 
was furthermore observed that the use of a-priori information improved the estimation 
of CAB from PF-set 2, especially knowledge of N and CM proved to be important. Fixing 
these two parameters (PF-set 1) resulted in an RMSE of 1.98 μg/cm2. Reducing the 
number of input bands from 7 (band 6 was not used as it corresponds to an oxygen 
absorption band) to 2 greatly increased the error and indicates that indices using only 
these 2 bands may have strong limitations. However, the estimation of fCOVER and LAI in 
addition to CAB from PF-set 1 resulted in an RMSE for CAB of 2.57 μg/cm2, for fCOVER it 
was 3.91% and for LAI 0.52 m2/m2. We concluded that theoretically it is well possible to 
retrieve multiple variables simultaneously using an inversion of a leaf+canopy model, 
provided that important crop characteristics (here N and CM) are known or can be 
considered constant. 
In parallel to the NN approach, we have developed relations between vegetation indices 
and the chlorophyll content. It was found to be most important to study the effect of 
other non-constant factors, such as LAI or the soil brightness on the behaviour of an 
index, as changes in these other factors may induce a trend that could be confused with a 
change in the main variable under study (the chlorophyll content in this study). The best 
performing indices in terms of RMSE were the approximated MTCI and MERIS red 



 

 

edge indices and the developed CASI red edge index. These indices were found to have a 
fairly constant performance over all tested spatial resolutions (1, 4, 32 and 300 m). 
Subsequently we have described the performance of the trained NN and the derived 
relations between VI and CAB when these were applied to the real CASI imagery. The 
results were very poor for two of the studied plots and somewhat better for the third 
plot. The cause for these results was identified in a mismatch between the simulated 
reflectances and the measured reflectances similar to (Tan et al. 2005). Possible sources 
of these errors are incorrect parameterisation of the PROSPECT+FLIGHT models such 
as approximations made on the dimensions of the olive trees or an unrepresentative soil 
spectrum, limitations of the FLIGHT model at high spatial resolutions, or calibration 
artefacts in the CASI images. It has shown that careful validation of the results should be 
done after application of model based relations.  
Finally we have concluded that iron chlorosis, observable as reduced chlorophyll 
contents, can in theory be identified using both vegetation indices and model inversion 
even at medium spatial resolutions. Non-constant factors influencing the retrieval (like 
the soil reflectance) should be studied before application of model-based retrieval 
methods. We recommend testing both retrieval methods with real imagery in an up-
scaling study to see the limitations of these methods when confronted with changing 
influencing factors with changing spatial resolution. 
 
 



 

 

Index 
RETRIEVING OPEN CANOPY VEGETATION PARAMETERS ......................... I 
USING VEGETATION INDICES AND MODEL INVERSION............................. I 
1 Introduction...........................................................................................................................1 

1.1 Problem definition.......................................................................................................1 
1.1.1 Estimation of biophysical parameters from remote sensing.............................1 
1.1.2 Plant stresses - iron chlorosis ................................................................................3 

1.2 Research objectives......................................................................................................3 
1.3 Research questions.......................................................................................................4 
1.4 Setup of this report......................................................................................................4 

2 Modelling of leaf and canopy reflectance..........................................................................6 
2.1 Leaf optical properties.................................................................................................6 

2.1.1 The leaf mesophyll structure (structural parameter N)......................................6 
2.1.2 The chlorophyll content (CAB) ...............................................................................7 
2.1.3 The water content (CW) ..........................................................................................8 
2.1.4 The dry matter content (CM)..................................................................................8 
2.1.5 Other leaf biochemicals..........................................................................................8 
2.1.6 Leaf trichomes .........................................................................................................8 

2.2 Modelling of canopy reflectance................................................................................8 
2.2.1 Leaf area index (LAI)..............................................................................................9 
2.2.2 Leaf angle distribution (LAD) ...............................................................................9 
2.2.3 Canopy structure .................................................................................................. 10 
2.2.4 Fractional coverage (fCOVER) ................................................................................ 11 
2.2.5 Sun-object-sensor geometry ............................................................................... 11 
2.2.6 Aerosol optical depth........................................................................................... 12 
2.2.7 Diffuse fraction..................................................................................................... 12 
2.2.8 Soil background .................................................................................................... 13 

2.3 Spectral (vegetation) indices .................................................................................... 15 
2.4 Model inversion......................................................................................................... 15 

2.4.1 Ancillary data......................................................................................................... 16 
2.5 Up-scaling .................................................................................................................. 16 
2.6 Measurement error in remote sensing and derived products ............................. 16 

3 Data and models ................................................................................................................ 18 
3.1 Study area and datasets............................................................................................. 18 

3.1.1 Measurement of chlorophyll content ................................................................ 18 
3.1.2 Airborne imagery.................................................................................................. 19 

3.2 Data pre-processing.................................................................................................. 20 
3.2.1 Co-registration ...................................................................................................... 20 
3.2.2 Conversion to reflectance ................................................................................... 21 
3.2.3 Data subsetting and soil classification............................................................... 21 
3.2.4 Masking of the vegetated areas........................................................................... 21 

3.3 The FLIGHT model ................................................................................................ 21 
3.4 Preparation of the Flight scenarios ........................................................................ 22 

3.4.1 FLIGHT inputs derived from the PROSPECT model.................................. 23 
3.4.2 Other FLIGHT constant input parameters ..................................................... 25 

3.5 Simulations with the PROSPECT+FLIGHT models ........................................ 27 
4 Application of neural networks to retrieve biophysical parameters ........................... 29 

4.1 Neural networks........................................................................................................ 29 
4.2 Retrieval of canopy variables using neural networks........................................... 30 

4.2.1 Inversion of FLIGHT using neural networks.................................................. 30 
4.2.2 Inversion of forward neural networks............................................................... 32 



 

 

4.3 Results......................................................................................................................... 34 
4.3.1 NN configuration................................................................................................. 34 
4.3.2 Results for the inversion of PROSPECT+FLIGHT by means of NN....... 34 
4.3.3 Results inversion forward NN ........................................................................... 35 

4.4 Conclusions and discussion..................................................................................... 36 
5 Application of vegetation indices to retrieve the chlorophyll content from canopy 
reflectance data ............................................................................................................................ 37 

5.1 Retrieval of CAB from vegetation indices............................................................... 37 
5.1.1 Application of indices at 1 m spatial resolution and with CASISPATIAL bands
 37 
5.1.2 Performance of indices for increased spectral resolution to retrieve CAB.... 39 
5.1.3 Performance of vegetation indices with increasing spatial resolution.......... 41 

5.2 Results......................................................................................................................... 41 
5.2.1 Application of vegetation indices using CASISPATIAL bands at 1m ................ 41 
5.2.2 Application of vegetation indices for the retrieval of CAB using CASISPECTRAL 
bands 46 
5.2.3 Application of vegetation indices at different spatial resolutions ................. 47 

5.3 Comparison with the results obtained from model inversion by neural 
networks................................................................................................................................... 49 
5.4 Conclusions and discussion..................................................................................... 50 

6 Chapter 6: Application of retrieval algorithms to CASI imagery................................ 51 
6.1 Retrieval algorithms developed with simulated data applied to real CASI data
 51 
6.2 Identification of a mismatch between simulated and measured CASI data..... 53 
6.3 Creation of VI-CAB relations from real data.......................................................... 55 
6.4 Conclusions................................................................................................................ 57 

7 Conclusions and recommendations ................................................................................ 58 
8 References ........................................................................................................................... 62 
9 Acronyms, abbreviations and symbols ........................................................................... 69 
Appendix I Alterations of the source code of Flight version 5.0 ....................................A 
Appendix II Relating VI with reflectance at the leaf level..................................................B 
Appendix III Obtained fit results for the individual fields..............................................C 
Appendix IV Chlorophyll contents of CLO3 and CLO4 estimated by 
MCARI/OSAVI E 
 



 

 

List of figures 
FIGURE 1-1: OVERVIEW OF THESIS STRUCTURE (CHAPTER 3 TILL 6)..........................................................4 
FIGURE 2-1: SENSITIVITY OF THE PROSPECT MODEL TO VARIATIONS IN THE STRUCTURAL PARAMETER 

N (UPPER LEFT), CHLOROPHYLL CONTENT (UPPER RIGHT), WATER CONTENT (BOTTOM LEFT) AND 
THE DRY MATTER CONTENT (BOTTOM RIGHT). BLUE (RED) VALUES REFER TO THE REFLECTANCE 
(TRANSMITTANCE) MATCHING THE LOWER THRESHOLD SPECIFIED IN THE TITLE WITH INCREASING 
OBSCURITY LEADING TO THE MAXIMUM THRESHOLD. IF VARIABLES WERE FIXED, THE FOLLOWING 
VALUES WERE USED: N = 3, CAB = 75 ΜG/CM2, CW = 0.025 G/CM2 AND CM =0.01 G/CM2. THIS 
FIGURE HAS BEEN CREATED USING SIMULATIONS WITH PROSPECT...............................................7 

FIGURE 2-2: LEAF ANGLE DISTRIBUTION FUNCTIONS AFTER (KING 1999) (FULL LINES) AND (SMITH ET 
AL. 1977) (DOTTED LINES; NOTED AS ALTERNATIVE: ‘ALT’). ...........................................................9 

FIGURE 2-3: SUN-OBJECT-SENSOR GEOMETRY WITH ZENITH AND AZIMUTH ANGLES (LEFT) AND WITH 
PHASE ANGLE (RIGHT). THE THICK BLACK LINE IN THE HORIZONTAL SURFACE INDICATES THE 
POSITION OF THE NORTH................................................................................................................11 

FIGURE 2-4: SOLAR ZENITH ANGLE WITH RESPECT TO THE NORMAL N....................................................11 
FIGURE 2-5: CHANGE IN DIFFUSE FRACTION WITH WAVELENGTH Λ AND SOLAR ZENITH ΘS. VALUES 

CALCULATED WITH AOD EQUAL TO 0.12. THIS FIGURE WAS MADE WITH RESULTS FROM THE 
ADJUSTED VERSION OF THE FLIGHT MODEL (SEE APPENDIX I). ......................................................13 

FIGURE 2-6: REFLECTANCE OF A BRIGHT SOIL AT NADIR FOR DIFFUSE RADIATION (GREY LINES), DIRECT 
RADIATION (BLUE LINES) AND TOTAL RADIATION (BLACK LINES) FOR SIMULATIONS AT DIFFERENT 
SOLAR ZENITH ANGLES (COLUMNS: TOP: ΘS = 0°, DOWN: ΘS = 30°) AND SOIL ROUGHNESS INDEX 
VALUES (LEFT TO RIGHT: 0 TO 0.8 WITH STEPS OF 0.4). THIS FIGURE WAS MADE WITH RESULTS 
FROM THE ADJUSTED VERSION OF THE FLIGHT MODEL (SEE APPENDIX I). NOTE THAT THE 
OXYGEN ABSORPTION FEATURE (762 NM) HAS BEEN OMITTED IN THE FIGURE (BAND REPLACED 
WITH INTERPOLATED POINT). .........................................................................................................14 

FIGURE 3-1: CASI IMAGERY OF CAB-STUDY SITES (SITES INDICATED WITH A RED POLYGON). CAB SITE 1 
(LEFT), CAB SITE 3 (MIDDLE) AND CAB SITE 4 (RIGHT) ....................................................................19 

FIGURE 3-2: SHIFT BETWEEN CASISPECTRAL (LEFT) AND CASISPATIAL (RIGHT) BEFORE CO-REGISTRATION
......................................................................................................................................................21 

FIGURE 3-3: EXAMPLE OF AN ANGLE BIN GRID AS USED BY THE FLIGHT MODEL...................................22 
FIGURE 3-4: FLOWCHART OF INPUTS INTO PROSPECT AND FLIGHT WITH THEIR OUTPUTS .................23 
FIGURE 3-5: EXAMPLE OF ADDING NORMALLY DISTRIBUTED NOISE (BETWEEN PLUS/MINUS 5%) TO THE 

LEAF REFLECTANCE. BLACK LINE INDICATES THE ORIGINAL SPECTRUM (N=1.8, CAB =42 ΜG/CM2, 
CM = 0.0158 G/CM2 AND CW = 0.049 G/CM2), BLUE LINE SHOWS THE NOISY SIGNAL AND THE 
DOTTED BLUE LINE INDICATES THE PLUS OR MINUS 5% BORDER. ..................................................23 

FIGURE 3-6: REFLECTANCE OVER 500 TO 800 NM FROM 30 OLIVE LEAF MEASUREMENTS AVERAGED OVER 
5 NM INTERVALS ............................................................................................................................24 

FIGURE 3-7: ADJUSTED LEAF REFLECTANCE (LEFT) AND TRANSMITTANCE (RIGHT) FOR THE CASISPECTRAL 
(LEFT) AND THE CASISPATIAL (RIGHT) SENSORS. ORIGINAL PROSPECT SIMULATIONS ARE IN BLUE, 
RESAMPLED SIMULATIONS ARE PLOTTED AS BLACK DOTS. USED PARAMETERS FOR THIS EXAMPLE: 
N = 3.5, CAB = 75 ΜG/CM2, CW = 0.025 G/CM2 AND CM = 0.01 G/CM2. ............................................25 

FIGURE 3-8: SOIL SPECTRA USED IN FLIGHT SIMULATIONS. LEFT: CASISPATIAL SOIL SPECTRUM, RIGHT: 
CASISPECTRAL SOIL SPECTRA. THE DIP AT 760 NM (OXYGEN ABSORPTION FEATURE) HAS BEEN 
OMITTED IN THE FIGURE (DOTTED LINES).......................................................................................26 

FIGURE 3-9: LOCATION OF OBSERVED CROWN (BLUE/GREY SURROUNDINGS) WITH RESPECT TO THE 
OBSERVED SCENE (BLACK SQUARE). POSITION OF THE CROWN IS MOVED TO SIMULATE DIFFERENT 
FCOVER AND DIFFERENT DEGREES OF SHADOWING. .........................................................................28 

FIGURE 4-1: FLOWCHART OF A TWO-LAYER NN. P IS THE INPUT DATA, W ARE THE WEIGHTS, Β ARE THE 
BIASES, O ARE THE INPUTS FOR THE TRANSFER FUNCTIONS F, T ARE INTERMEDIATE RESULTS AND R 
ARE THE OUTPUT RESULTS. FIGURE ADAPTED AFTER (HAGAN ET AL. 1996). .................................29 

FIGURE 4-2: FLOWCHART OF THE METHODOLOGY TO RETRIEVE BIOPHYSICAL CANOPY VARIABLES USING 
A NEURAL NETWORK (NN) TRAINED WITH OUTPUT FROM PROSPECT+FLIGHT TO ESTIMATE THE 
CORRESPONDING CANOPY VARIABLES (TARGET PATH IN PINK) USED TO RUN THE RTM. THE PATH 
IN BLUE SHOWS THE VALIDATION DURING THE TRAINING PHASE AND COMPARES ALL ESTIMATED 
CANOPY VARIABLES WITH THE ‘KNOWN’ VALUES. ITEMS SHOWN IN LIGHT YELLOW ARE NON 
CONSTANT. DIFFERENT FRACTIONAL COVERS ARE CREATED THROUGH CHANGES IN X AND Y (SEE 
FIGURE 3-9). ..................................................................................................................................31 

FIGURE 4-3: FLOWCHART OF THE METHODOLOGY FOR THE RETRIEVAL OF BIOPHYSICAL VARIABLES BY 
MEANS OF AN INVERSION OF A NEURAL NETWORK (NN). NN IS TRAINED WITH THE VARIABLE 
INPUTS TO PROSPECT+FLIGHT AND WITH THE OUTPUT OF THE LINKED MODELS AS THE TARGET 



 

 

(TARGET PATH INDICATED IN PINK). THE TRAINED NN IS SUBSEQUENTLY INVERTED USING A 
MINIMISATION ALGORITHM THAT MINIMISES THE RMSE BETWEEN THE ESTIMATED AND 
MODELLED REFLECTANCE. THE ALGORITHM ITERATIVELY UPDATES THE INPUT CANOPY VARIABLES 
FOR THE NN (BLUE PATH), UNTIL IT REACHES MINIMAL RMSE OR AN UPPER/LOWER BOUNDARY 
FOR THE CV. THE FINAL ESTIMATED CV ARE COMPARED WITH THE TRUE CV (DENOTED AS 
VARIABLE INPUTS) DURING THE VALIDATION (GREEN PATH).........................................................33 

FIGURE 5-1: OBTAINED R2 AND NORMALISED RMSE VALUES FOR THE FITTED EQUATIONS RELATING CAB 
CONTENT WITH VISPATIAL AT 1 METER APPLIED TO THE VALIDATION SET.......................................42 

FIGURE 5-2: MCARI/OSAVI UNDER DIFFERENT CAB, LAI AND FCOVER CONDITIONS. GREEN CIRCLES: 
FCOVER=13; BLUE STARS: FCOVER=38; RED SQUARES: FCOVER=95; DARKNESS INDICATES RELATIVE 
SHADOWING OF THE OBSERVED SCENE. .........................................................................................43 

FIGURE 5-3: TCARI/OSAVI FOR DIFFERENT FRACTIONAL COVERAGES, LAI AND CHLOROPHYLL 
CONTENTS. DARKNESS INDICATES RELATIVE SHADOWING OF THE OBSERVED SCENE. ...................44 

FIGURE 5-4: NDVI TRENDS WITH CAB FOR DIFFERENT LAI AND FRACTIONAL COVERAGES (GREEN 
CIRCLES: FCOVER=13; BLUE STARS: FCOVER=38; RED SQUARES: FCOVER=95). OBSCURITY 
REPRESENTS SHADOWING. .............................................................................................................44 

FIGURE 5-5: R2 BETWEEN CAB ESTIMATED FROM VI-CAB RELATION AND MODELLED CAB FOR CLO4.....45 
FIGURE 5-6: R2 (LEFT) AND NORMALISED RMSE (RIGHT) FOR THE CAB ESTIMATION USING VISPECTRAL AT 

4 METER.........................................................................................................................................47 
FIGURE 5-7: RESPONSE OF ANMB TO CHANGES IN BACKGROUND, LAI (SHOWN AS BRIGHTNESS WITH 

HIGHER VALUES HAVING A HIGHER LIGHT INTENSITY) AND CAB. FCOVER = 23%, N = 4...................48 
FIGURE 5-8: COMPARISON OF THE PERFORMANCE OF VEGETATION INDICES AT 4 M, 32 M AND 300 M. 

LEFT: R2, RIGHT: NORMALISED RMSE...........................................................................................49 
FIGURE 6-1: APPLICATION OF THE RELATIONS DERIVED BETWEEN VI AND CAB FROM 

PROSPECT+FLIGHT ..................................................................................................................51 
FIGURE 6-2: MEASURED CAB CONTENT VERSUS ESTIMATED CAB BY NN. APPLICATION OF TWO MASKS IS 

SHOWN: FIRST MASK = MANUAL SELECTION OF TREE PERIMETERS (INCLUDES PARTIAL SOIL 
SIGNAL), SECOND MASK = NDVI THRESHOLD OF 0.3 OVER THE FIRST APPLIED MASKS. ................53 

FIGURE 6-3: MEAN REFLECTANCE (FULL LINES) ± 1 STANDARD DEVIATION (DASHED-DOTTED LINES) OF 
THE FLIGHT SIMULATIONS (IN BLUE) AND THE CASISPATIAL IMAGE FOR CLO3 AFTER 
APPLICATION OF AN NDVI FILTER (NDVI>0.3) ON BOTH DATASETS TO OBTAIN VEGETATION 
SIGNALS ONLY ...............................................................................................................................54 

FIGURE 6-4: EXAMPLE OF TREE WITH OBSERVATION SCENE (INDICATED WITH THE RED BOX) ................54 
FIGURE 6-5: ESTIMATES VERSUS MEASUREMENTS FOR THE CHLOROPHYLL CONTENT OF 127 TREES IN 

CLO 1, 3 AND 4 BY APPLYING FITTED RELATION BETWEEN MCARI/OSAVI AND MEASURED CAB56 
FIGURE 6-6: TOP: CHLOROPHYLL CONTENT ESTIMATED FOR CLO1 BY APPLYING RELATION WITH 

MCARI/OSAVI. DOWN: CHLOROPHYLL CONTENT ESTIMATED FOR CLO1 BY APPLICATION OF 
RELATION WITH MTCI. BLACK (WHITE) POINTS WERE HAVING ESTIMATED VALUES BELOW 0 
(ABOVE 100) ΜG/CM2.....................................................................................................................56 

FIGURE IV-1: CAB ESTIMATES FOR CLO3 BY MCARI/OSAVI..…………………………………………E 
FIGURE IV-2: CAB ESTIMATES FOR CLO4 BY MCARI/OSAVI..…………………………………………E 
 
 



 

 

List of tables 
TABLE 3-1: AVERAGE CHLOROPHYLL A + B CONCENTRATION [ΜG/CM2] FOR THE DIFFERENT IRON 

CHELATE TREATMENTS AND THE THREE STUDY SITES....................................................................18 
TABLE 3-2 CASISPATIAL BAND POSITIONS................................................................................................19 
TABLE 3-3 CASISPECTRAL BAND POSITIONS .............................................................................................19 
TABLE 3-4: SOLAR ZENITH AND AZIMUTH ANGLES MATCHING THE SOLAR POSITION DURING IMAGE 

ACQUISITION..................................................................................................................................26 
TABLE 3-5: FRACTION OF LEAVES IN 10 DEGREE ZENITH ANGLES (LAD5 = 0-10°) FOR A PLAGIOPHILE 

DISTRIBUTION, ESTIMATED AFTER (SMITH ET AL. 1977) ................................................................27 
TABLE 3-6: AVAILABLE VARIATION FOR CASI SIMULATIONS IN SPATIAL MODE. × INDICATES THAT THE 

VARIABLE WAS HAVING A RANGE OF VALUES. ...............................................................................27 
TABLE 3-7: AVAILABLE VARIATION FOR CASI SIMULATIONS IN SPECTRAL MODE..................................28 
TABLE 4-1: ESTIMATION OF CAB FROM CASISPATIAL BANDS USING A NEURAL NETWORK INVERSION......34 
TABLE 4-2: ESTIMATION OF BIOPHYSICAL PARAMETERS FROM CASISPATIAL BANDS USING A NEURAL 

NETWORK INVERSION. N AND CM WERE SET TO A FIXED VALUE. ...................................................35 
TABLE 4-3: RMSE [-]AND R2 BETWEEN THE MODELLED AND ESTIMATED REFLECTANCES OF THE 

CASISPATIAL BANDS .......................................................................................................................35 
TABLE 5-1: VEGETATION INDICES USED IN CASISPATIAL CONFIGURATION...............................................37 
TABLE 5-2: EQUATIONS OF THE TESTED FITTING EQUATIONS ..................................................................39 
TABLE 5-3: VEGETATION INDICES USED IN CASISPECTRAL CONFIGURATION ............................................39 
TABLE 5-4: FITTED EQUATIONS FOR THE 3 BEST PERFORMING INDICES FOR THE THREE STUDY SITES .....42 
TABLE 5-5: COMPARISON OF FITTING RESULTS FOR PF-SETS 1 AND 2 .....................................................46 
TABLE 5-6: FITTING RESULTS FOR THE MTCI, MERIS AND CASI RED EDGE INDICES. NRMSE WAS 

CALCULATED BY DIVIDING THE RMSE BY THE MEAN CAB OF THE DATASETS................................49 
TABLE 6-1: BEST ESTIMATES FOR CAB COMPARED TO MEASURED CAB IN CLO3 FOR DIFFERENT MASKS 52 
TABLE 6-2: ESTIMATION RESULTS FOR APPLICATION FOR CLO3 OF PF-TRAINED NN.............................52 
TABLE 6-3: FITTING RESULTS FOR VISPATIAL FOR ALL THREE CLO FIELDS TOGETHER. MEAN CAB = 68.75 

ΜG/CM2, STANDARD DEVIATION = 11.46 ΜG/CM2 ..........................................................................55 
TABLE III-1: FIT RESULTS FOR CLO1……………………………………………………………………C 
TABLE III-2: FIT RESULTS FOR CLO3……………………………………………………………………C 
TABLE III-3: FIT RESULTS FOR CLO4……………………………………………………………………C 
 
 
 



 

1 Introduction  
The habitat of the olive trees (Olea europea L.) is concentrated between the 30° and 45° 
latitudes, in the climate zone specified as Mediterranean, having very warm and dry 
summers. The plant is belonging to the botanical family Oleaceae and it is the only 
comestible species of the 35 species belonging to the genus Olea.  
Olives are estimated to have been cultivated for already 6000 years with its origin in the 
Middle East. The largest cultivation is nowadays taking place in Spain, with 60% of the 
production in the autonomous community of Andalucía (Barranco et al. 1999). In 2004, 
about 1.5 million hectares were used for the production of olives in this region (Junta de 
Andalucía - Consejería de agricultura y pesca 2005). The total acreage under agricultural 
usage in this year was slightly over 4 million hectares (Junta de Andalucía - Consejería de 
agricultura y pesca 2005), which indicates the importance of this crop for Andalucía. 
Olive production can be hampered by stresses experienced by the trees during various or 
all development phases. These plant stresses can be defined as the ensemble of 
environmental (a-)biotic factors negatively influencing the performance of the plant’s 
physiological processes, such as photosynthesis (Lambers et al. 1998). A plant may for 
instance suffer from stress because of limited water or nutrient availability, predation by 
pests, or competition for light with other vegetation.  
Remote sensing (RS) techniques can be applied to monitor vegetation and to provide a 
fast way to detect stress in the vegetation that could lead to a production loss. These 
stresses are visualised by a change in pigment content of the leaves, resulting in a 
different spectral signature, especially in the green peak and along the red edge 
(Baranoski and Rokne 2005; Schlemmer et al. 2005; Stone et al. 2001; Zhao et al. 2005). 
Furthermore, the leaf area index (LAI) is strongly related to the photosynthetic 
assimilation and as a consequence, the crop yield. LAI is defined as the total surface area 
covered by green leaves over one unit area of ground surface. Frequent acquisition of 
LAI data will help to increase the accuracy of crop growth models’ forecasts. 
A third variable of importance besides the pigment content and LAI is fCOVER: the 
fraction of green vegetation covering a unit area of a horizontal soil, ranging from 0 (bare 
soil) to 1 (full coverage). It corresponds to the gap fraction in the nadir direction and it 
can be used to decouple vegetation and soil contribution in energy balance processes and 
especially evapotranspiration (Weiss et al. 2000). 
 
Different sensors are available to acquire remotely sensed information. We can make a 
first distinction between airborne and satellite sensors. The airborne sensors usually have 
a higher spatial resolution, but the data acquisition is not taking place regularly. Secondly, 
the collection of airborne data is expensive. Satellite sensors normally provide data for 
one region with a fixed time interval. This does not allow alternative timing, which is a 
large disadvantage for areas with frequent cloud coverage. 
At this moment, the design of a satellite sensor is limited to either having bands with a 
high spatial resolution or bands having a high spectral resolution. Airborne sensors can 
overcome this problem by flying at a lower altitude and thereby increasing the ground 
spatial resolution. Through the linking of airborne data with satellite data, we can attempt 
to get information with a high temporal, spectral and spatial resolution. 

1.1 Problem definition 

1.1.1 Estimation of biophysical parameters from remote sensing 
For the estimation of important biophysical variables from remote sensing data, we can 
use empirical relationships such as spectral vegetation indices and a more physically-
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based approach which involves model inversion. Such an inversion can be achieved using 
look-up tables (LUT), neural networks (NN), expert systems and genetic algorithms 
(GA) (Myneni et al. 1995), simulated annealing (Kirkpatrick et al. 1983), tabu search 
(Glover 1986) and other optimisation techniques. 
 
Spectral vegetation indices (VI) can be seen as optimised regressions based on an 
empirical relation between reflectance at specific wavelengths and the variable under 
study. This method includes very simple (single ratio) to complex (combined indices) 
approximations. Some indices – such as SAVI (Huete 1988), MSAVI (Qi et al. 1994) and 
TSAVI (Baret et al. 1989) – attempt to correct for the influence of the soil, whilst other 
indices (e.g. ARVI (Kaufman and Tanre 1992)) try to reduce atmospheric noise. The use 
of the combined index MCARI/OSAVI (Haboudane et al. 2002) has proved to be 
successful for the estimation of chlorophyll in olive orchards using 1-m ROSIS data 
(Zarco-Tejada et al. 2004b). 
However, due to the different sensor configurations and the resulting differences in 
spectral resolutions, a vegetation index that was designed for one sensor cannot always 
be directly applied to another sensor. Additionally, the relations that were found are 
often strongly related to the atmospheric condition at the time of measuring, the crop 
variety under study and the characteristics of the area. This greatly reduces the overall 
applicability of such indices and this is why physically-based methods may be preferable 
in some situations, even though they require the acquisition of many input variables and 
they are far more computationally demanding. 
 
A physically-based method involves inversion of a radiative transfer model (RTM) by 
adjusting input canopy variables to match the simulated hemispherical-directional 
reflectance factor (HDRF) with the measured reflectance, which equals the HCRF 
(hemispherical-conical reflectance factor) for most satellite and airborne sensors 
(Schaepman-Strub 2004). This difference (HDRF versus HCRF) introduces some small 
uncertainties besides the model approximation. 
We can further find that a calculated HDRF does not have to give a unique solution to 
the inversion, but it may be the result of different combinations of input canopy 
variables. This ill-posedness (see definition by (Garabedian 1964) in (Combal et al. 2002)) 
is also a consequence of measurement and model inaccuracies. The use of prior 
information, in the form of ancillary measurements, information on canopy architecture 
or knowledge of the distribution of input canopy variables, can be used to restrict the 
number of solutions and to overcome the ill-posedness problem (Combal et al. 2002). 
 
Many RTM are available at different scales. The 1-D PROSPECT leaf model 
(Jacquemoud and Baret 1990) and the SAIL(H) model (Verhoef 1984) working at canopy 
level have been frequently applied for many vegetation types (Goel and Thompson 
1984b; Jacquemoud 1993; Weiss et al. 2000; Zarco-Tejada et al. 2004a; Zhang et al. 
2005). Due to their simplicity, they have the advantage of being quick and easily 
applicable. 
 
Nevertheless, most of the available techniques have been developed for relatively 
homogeneous and spatially continuous crops. Olive trees are grown in regular patterns 
with six to twelve meters in between of tree trunks and with an average LAI of 0.5 to 1.5 
(Zarco-Tejada et al. 2004b). This results in an open canopy with a large influence of the 
soil on the obtained reflectance, especially at a low resolution when the pixels contain 
mixed information. Additionally, the system is complicated further by shadow effects.  
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Therefore, VI and the two models mentioned before will only produce reliable results at 
a high resolution where we can clearly separate the green vegetative parts from the 
(shadowed) soil. When the information inside one pixel is a combination of the three 
elements (soil, shadows and vegetation), we will need to make use of 3-D models which 
can include the structure of the vegetation. The simulated reflectance at different 
wavelengths and pixel sizes can be used to study the effect of up-scaling on the spectral 
vegetation indices (Zarco-Tejada et al. 2001). 
 
Unfortunately, 3-D models require a lot of computations to solve the radiative transfer 
and its inversion. To reduce the amount of computations, we can make use of genetic 
algorithms (GA) and neural networks (NN) to perform the inversion. 
A genetic algorithm is an optimisation technique that has originated from cellular 
automata. A random set of possible solutions is created. From this set, a subset is chosen 
based on a fitness criterion. The solutions in this subset can evolve as a clone to the next 
generation (elitist selection), cross-over (recombination of two solutions) or mutate. 
Subsequently the new generation is checked for having solved the defined problem upon 
which the process stops, or it will continue to evolve until a solution has been found 
(Wikipedia 2006b). 
Artificial neural networks can be seen as a simplified representation of the biological 
nerve system, both in its architecture and in the way information is presented to the 
system (Pal and Mitra 1999). Information is sorted and passed on through connected 
nodes and the weights of the connections between nodes are continuously updated as the 
problem is being described with more details.   

1.1.2 Plant stresses - iron chlorosis 
Olive trees often suffer from a lack of iron, which is required by the plant to create 
chlorophyll molecules. An iron deficiency will therefore lead to a reduction of the 
chlorophyll content (CAB) in new tissue. The first visible signs of this phenomenon called 
(iron) chlorosis can be found near the leaf veins and young leaves as the tissue is lighter 
green or even white in full absence of chlorophyll. 
The main cause of an iron deficiency is a high soil pH, as the solubility of iron 
(hydr)oxids decreases with increasing pH (Janssen and Beusichem 2000). This is called 
lime induced chlorosis.  
Under some circumstances, the chlorosis can be overcome by adding iron chelates to the 
soil or directly to the plant as a spray. This gives us a perfect opportunity to study the 
spectral behaviour of chlorophyll to relate it afterwards to the natural conditions and the 
associated plant stresses. 

1.2 Research objectives 
In this study we will investigate biochemical and biophysical properties (e.g. CAB, LAI 
and fCOVER) of olive orchards at different spatial resolutions (between 1 and 300 meters).  
Our first research objective is to determine the capabilities of hyperspectral indices and 
RTM for the detection of iron chlorosis, considering different scales. 
Our second research objective is to investigate whether it is possible to correctly estimate 
CAB, LAI and fCOVER in open canopies through inverse modelling (at different scales, for 
different sensors and whether it is possible to retrieve these biophysical properties 
simultaneously).  
As open canopies such as olive orchards present a large spatial heterogeneity and the 
background (soil) plays an important role, the use of a three-dimensional radiative 
transfer model would be strongly recommended for the simulation of such a complex 
scene (Gastellu-Etchegorry et al. 1996; North 1996). Therefore, in this study we will 
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work with the PROSPECT leaf model coupled with the FLIGHT (Forest LIGHT 
interaction model) canopy reflectance model. 

1.3 Research questions 
The research objectives lead us to the following research questions 
- Which spectral/spatial prerequisites need to be fulfilled to detect iron chlorosis? 
- Is it possible to quantify the uncertainties in the estimated biophysical parameters with 
respect to the spatial resolution? 
- Can vegetation indices be successfully used on reduced spatial resolution data to 
retrieve CAB? 
- Can we estimate chlorophyll accurately if we use 30 m pixel size imagery from olive 
orchards despite their heterogeneous architecture? 
- Can we correctly retrieve multiple variables simultaneously considering the ill-
posedness of the radiative transfer? 

1.4 Setup of this report 
This report has been organised as follows. Chapter two gives an introduction into the 
modelling of leaf and canopy reflectance. The structure of chapters three till six is 
visualised in Figure 1-1.  

 
Figure 1-1: Overview of thesis structure (chapter 3 till 6) 
 
As we want to retrieve biophysical and biochemical variables of the trees in the olive 
orchards, we will follow two approaches: (i) by means of modelling the radiative transfer 
or (ii) by statistically relating these properties to vegetation indices. In chapter three we 
describe the study area, the used datasets and the simulations done with the radiative 
transfer models PROSPECT and FLIGHT. Chapter four covers the application of 
neural networks for the retrieval of canopy biophysical/biochemical variables (CV) from 
canopy reflectance data based on these PROSPECT+FLIGHT simulations. Chapter five 
then presents the application of relations between vegetation indices and the modelled 
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canopy reflectance to retrieve the chlorophyll content specifically. In chapter six, both 
trained retrieval methods (neural networks and vegetation indices) will be applied to real 
canopy reflectance data. Conclusions and recommendations are presented in the final 
chapter (7). 
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2 Modelling of leaf and canopy reflectance 
The reflectance of a leaf or canopy can be modelled using various approaches. 
Commonly, a leaf (optical) model, describing the leaf’s structural and biochemical 
components, is linked with a canopy model describing the position and inclination of the 
leaf, the viewing geometry and the background. When dealing with 3D models, the 
vertical and horizontal distributions of vegetated and other parts have to be incorporated 
as well. With some models it is also possible to incorporate woody elements such as the 
trunk and branches of different orders. 
The canopy HDRF has been modelled in various ways. We can divide these approaches 
into three categories: empirical (mathematical relations that have no physical base), semi-
empirical (having mathematical approximations for physical relations) and physical 
models (based on physical relations and a ‘constructed’ modelled canopy) (Boyd and 
Danson 2005).  
We can also distinguish the different types of models: there are for instance geometric, 
optical, turbid medium, plate, ray tracing and hybrid models. A number of 3D models 
have been compared in the RAMI I and II exercises (Pinty et al. 2001; Pinty et al. 2004). 
 
In section 2.1 we will describe the facts that are important for the individual leaf 
reflectance. Section 2.2 describes the relevant canopy, surface and geometric properties 
leading to the observed (total) reflectance signal. Spectral vegetation indices are briefly 
introduced in section 2.3. Section 2.4 deals with model inversion and the use of a-priori 
knowledge. The application of vegetation indices and model derived relations at lower 
spatial resolutions is discussed in the section Up-scaling (2.5). The chapter concludes 
with a summary of the sources of error in remote sensing and the error propagation 
when using this data to derive canopy properties (2.6).  

2.1 Leaf optical properties 
We will illustrate the effect of leaf characteristics on the leaf reflectance and 
transmittance using the PROSPECT leaf model in the following sections (2.1.1 through 
2.1.4). 
The PROSPECT leaf optical properties model is a one-dimensional radiative transfer 
model working at the leaf scale. It requires the input of the leaf structural parameter N, 
the chlorophyll a+b content (CAB), the water content CW and in later versions the dry 
matter content CM as well. 
The first version of the PROSPECT leaf model was based on measurements of plant 
tissue. The spectral samples were taken every 4 nm in the range 400 to 800 nm with a 
bandwidth of 1 nm. Additional samples were obtained for the range 800 to 2500 nm with 
steps of 17 nm and a bandwidth of 2 nm (Jacquemoud and Baret 1990). During the 
LOPEX93 experiment, complementary samples were taken with steps of 1 nm that were 
later averaged to blocks of 5 nm (Jacquemoud et al. 1996). The model was proven to be 
numerically invertible in 1993 (Jacquemoud 1993). 
As an output, the model will give the leaf’s hemispherical reflectance and transmittance 
for the spectral range of 400 to 2500 nm with steps of 5 nm and a bandwidth of 1 nm 
(Jacquemoud 2006) matching the specified leaf characteristics as described by the 
parameters N, CAB, CW and CM. The effects of changing these characteristics will be 
described in the sections below.  

2.1.1 The leaf mesophyll structure (structural parameter N) 
As PROSPECT is based on Allen’s plate model, it has incorporated the same plate (or 
elementary layer) structure to represent a leaf’s internal structure. The thickness (number 
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of layers) is affecting the radiative transfer inside the medium through scattering and 
absorption. A value of N close to 1 indicates a monocotyledon leaf type, whereas 
dicotyledon leaves are represented by values between 1.5 and 2.5. Values over 2.5 point 
at senescent leaves, as their internal structure is rather chaotic (Jacquemoud and Baret 
1990). 
As we can see in Figure 2-1 top left, an increase of the structural parameter will lead to 
an increased reflectance and decreased transmittance over the full spectrum. The effect is 
most pronounced in the NIR plateau.  

2.1.2 The chlorophyll content (CAB) 
Chlorophyll pigments are essential for plant photosynthesis. In most plants, two types of 
chlorophyll are active: chlorophyll a (C55H72O5N4Mg) and b (C55H70O6N4Mg) (Wikipedia 
2006a). 
Although other pigments such as carotenoids are present in the leaf, chlorophyll has the 
strongest influence on the radiative transfer as it occurs in higher concentrations. The 
two chlorophyll types can be distinguished by their absorption spectra, but are usually 
summed together as CAB. 
An increase in CAB reduces both the reflectance and the transmittance in the spectral 
region between 400 and 750 nm (Figure 2-1 upper right). Beyond this wavelength, a 
change in CAB does not influence the leaf reflectance or the leaf transmittance.  
 

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

R
ef

le
ct

an
ce

N ranging from 1 to 1.4

λ [nm]
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1

C
ab

 ranging from 1 to 100 µg/cm²

λ [nm]
500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500
0

0.5

1

R
ef

le
ct

an
ce

C
w

 ranging from 0.004 to 0.04 g/cm²

λ [nm]
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1
500 1000 1500 2000 2500

0

0.5

1

C
m

 ranging from 0.002 to 0.016 g/cm²

λ [nm]
500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

500 1000 1500 2000 2500

0

0.5

1

T
ra

ns
m

itt
an

ce

 
Figure 2-1: Sensitivity of the PROSPECT model to variations in the structural parameter N (upper 
left), chlorophyll content (upper right), water content (bottom left) and the dry matter content 
(bottom right). Blue (red) values refer to the reflectance (transmittance) matching the lower 
threshold specified in the title with increasing obscurity leading to the maximum threshold. If 
variables were fixed, the following values were used: N = 3, CAB = 75 μg/cm2, CW = 0.025 g/cm2 
and CM =0.01 g/cm2. This figure has been created using simulations with PROSPECT. 
 



 

2.1.3 The water content (CW) 
The water content is specified as the amount of water per square centimetre leaf 
[μg/cm2]. An increase of the leaf water content induces a reduced transmittance and 
reflectance in the range 900-2500 nm (Figure 2-1 lower left). 

2.1.4 The dry matter content (CM) 
With increasing dry matter content, we experience a relatively small reduction of the 
reflectance and transmittance. This effect is very small in the visible range, but most 
pronounced on the NIR plateau (Figure 2-1 lower right).  

2.1.5 Other leaf biochemicals  
Fourty et al. (Fourty et al. 1996) have studied the retrieval of biochemical components in 
dry leaves from measurements in the range 1300 to 2400 nm. Sugar, cellulose and hemi-
cellulose contributed more to absorption in this range than lignin and protein contents. 
The first four compounds have similar absorption features as starch and are difficult to 
separate. Nitrogen in the proteins shows a strong absorption peak around 1900-2000 nm, 
but the proteins could not be successfully retrieved with the PROSPECT version used in 
that study. The highest retrieval accuracy was found for grouping all the components 
together, which has been implemented in later versions of the PROSPECT model. 

2.1.6 Leaf trichomes 
Leaf reflectance is influenced by the leaf’s biochemical composition, the surface 
smoothness and the internal leaf structure. In addition, the leaf reflectance – and, as a 
consequence, vegetation indices – is also influenced by the presence and density of 
trichomes (leaf hairs). Levizou et al. (Levizou et al. 2005) found that most indices are 
strongly affected even at low trichome densities.  
The removal of the trichomes of olive leaves led to a reduced reflectance in the VIS, 
especially in the abaxial (lower side) surface (up to 50% reduction), and an increased 
reflectance in the NIR (up to 4 %). For the adaxial (top) surface, which is mainly of 
influence for the reflectance measured by remote sensors, the differences caused by the 
trichomes were a maximal reduction of 16 percent in the VIS and almost no difference in 
the NIR. 
Although relations found in literature are assumed to be applicable to leaves of the same 
species, some of the leaf structural components such as trichomes are altering with the 
leaf’s growth stage, nutrient stress of the plant, leaf damaging by pests, prevalent light 
conditions plus the range in humidity and temperature of the plant’s environment 
(Levizou et al. 2005). 
The final effects of the occurring leaf structural differences within a tree may be difficult 
to assess. For instance, shadowing of a leaf leads to thinner leaves (Lambers et al. 1998; 
Larcher 2003) and may also lead to lower chlorophyll contents (Demarez et al. 1999), 
reducing an index such as the NDVI. However, this shadowing also causes the leaf to 
have a lower trichome density, resulting in an increase of the NDVI. The best 
performance for the VI under study was given by the red edge index, even at very high 
leaf hair densities (Levizou et al. 2005). 

2.2 Modelling of canopy reflectance 
It has been shown that the (hemispherical) reflectance of leaves is not sufficient to 
describe the canopy reflectance, as other factors such as background signals, wooden 
materials and shadows strongly influence the latter (Colwell 1974).  
In the following subsections of paragraph 2.2, we will describe the factors that are 
influencing the canopy reflectance. 
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2.2.1 Leaf area index (LAI) 
The leaf area index is usually defined as half of the total surface area of leaves per unit 
ground area. As it describes the present biomass, knowledge of this variable is essential 
for the modelling of plant/crop growth, calculation of the net primary production 
(Gower et al. 1999), to monitor the carbon balance (Aragão et al. 2005) amongst other 
processes. 
The LAI can be measured directly through area harvest, application of allometric 
equations to stand diameter data and the collection of fallen leaves in autumn (Gower et 
al. 1999). Alternatively, it can be measured indirectly using non-destructive instruments 
measuring light transmittance in the field. Finally, it can also be estimated by inferring a 
relation with remotely sensed data (Berterretche et al. 2005; Lee et al. 2004). 
Applying general allometric equations may lead to large errors, because the coefficients 
of the equations should be adjusted for biotic and abiotic factors concerning the area 
under study (Gower et al. 1999). 

2.2.2 Leaf angle distribution (LAD) 
The leaf angle distribution describes the orientation of the leaf surface with respect to the 
normal. A number of distributions have been described in literature and can be 
approximated as functions as shown in Figure 2-2. Notice that different approximations 
exist depending on the author (shown as full versus dotted lines). 
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Figure 2-2: Leaf angle distribution functions after (King 1999) (full lines) and (Smith et al. 1977) 
(dotted lines; noted as alternative: ‘alt’). 
 
Goel and Thompson (Goel and Thompson 1984c) showed that the average leaf 
inclination angle (ALA) could be derived  from crop reflectance data through inversion 
of the SAIL model for a soybean canopy (fCOVER = 100%), given that the leaf reflectance 
and transmittance, the soil reflectance and the fraction of diffuse light are known. 
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2.2.3 Canopy structure 
A canopy can be split into photosynthetically active (green) and non-photosynthetically 
active parts. Amongst the second class we can find flowers, fruits and woody elements 
(e.g. stem, branches and twigs). It is important to consider that the composition will 
change throughout a growing season; deciduous vegetation will have no 
photosynthetically active elements in winter periods and flowering as well as fruiting is 
limited to specific periods. In addition, care should be taken when using different 
viewing geometries (see section 2.2.5). Finally, the composition or structure of vertically 
heterogeneous vegetations should be modelled with sufficient detail to ensure that the 
HDRF corresponds to the RS observations. 

2.2.3.1 Canopy hotspot 
The canopy hotspot is occurring when the phase angle (see section 2.2.5) is close to zero 
(Camacho-De Coca et al. 2004). In other words, this is when the sun – or in general the 
light source – and observer are aligned so that no shadow is seen. Information regarding 
the canopy structure can be derived by studying the changes of this phenomenon 
resulting from changes in viewing and illumination directions (Jupp and Strahler 1991). 
Through simulations was found that canopies with large leaves might show an increased 
HDRF of 20 to 40% over a wide range of directions due to the hot-spot (Andrieu et al. 
1997).  
In many radiative transfer models (for example SAIL) a ‘hotspot parameter’ [m/m] has 
been implemented to correct for the increase of the canopy reflectance in the backward 
direction. A frequently used estimation of this hotspot parameter is the ratio between the 
average leaf length and the canopy height (Jacquemoud et al. 2000; Kuusk 1995).  

2.2.3.2 Effects of shadowing 
The arrangement of leaves inside a canopy is optimised to capture incoming radiation as 
efficiently as possible. As a plant grows more leaves, the top leaf layer will intercept most 
of the light and older leaves, now in less illuminated positions, have to adapt to the 
changed light conditions. This is done by altering the size and number of the chloroplasts 
inside the leaf and the thickness of the shaded leaf itself (Lambers et al. 1998). 
The chlorophyll per dry mass is higher for shaded leaves compared to sunlit leaves 
(Larcher 2003). The ratio between chlorophyll a and b is normally lowered with 
decreasing sunlight (Lambers et al. 1998). Shaded leaves tend to be thinner due to a 
reduced palisade parenchyma (Lambers et al. 1998). As shown in (Gausman 1984), the 
reflectances of a sunlit leaf and a shaded leaf are therefore distinct. 
The changes of chlorophyll content per area for different illumination conditions are not 
stable considering the available literature. According to (Lambers et al. 1998; Larcher 
2003), no difference should occur for most plants, although shaded leaves of some 
species do show an increased chlorophyll content per area (Lambers et al. 1998). This 
was also described by (Anthony et al. 2002; Barták et al. 1999), whereas the opposite was 
found by (Demarez et al. 1999; Levizou et al. 2005). Most likely, this variation is caused 
by a species-specific behaviour and because of the difficulty of converting the total 
chlorophyll content per unit mass to a chlorophyll content per unit area. 
In addition to the leaf biochemical changes, shadowing may also result in changed 
background reflectances, as the biological activity and the soil moisture content change. 
Besides the leaf angle distribution it is important to consider the shading effects of the 
branching architecture of a canopy as well (Read et al. 2006). 
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2.2.4 Fractional coverage (fCOVER) 
The fractional coverage was defined as the fraction of vegetation over a unit area 

⎟⎟
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⎞
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⎝

⎛

TOTAL

VEGETATED

A
A

. When given as a percentage, the fraction should be multiplied by 100%. 

An fCOVER of 1 or 100% indicates that the soil is not directly visible, whereas an fCOVER of 
0 or 0% is representative of a bare soil or other type of surface. 

2.2.4.1 Vegetation spatial distribution 
Besides the fCOVER, we must also consider the spatial distribution of the vegetation inside 
the scene: we can distinguish regular distributions and random distributions. Regular 
distributions (vegetation planted in rows or on a regular grid) may show a strong 
variation in the reflectance signal with changing viewing geometry due to shadowing 
effects and the (in)visibility of the soil areas intersecting the rows of aligned plants (Boyd 
and Danson 2005; Goel and Grier 1987). Many models have been adjusted to work with 
crops planted in rows, such as the Walthall, SAIL and Kuusk models. 

2.2.5 Sun-object-sensor geometry 

 
Figure 2-3: Sun-object-sensor geometry with zenith and azimuth angles (left) and with phase 
angle (right). The thick black line in the horizontal surface indicates the position of the North. 
 
The phase angle is the angle between the illuminator-object and object-observer (see 
Figure 2-3, right part). When it is equal or close to 0, we will observe the hot spot effect 
(see section 2.2.3.1). The other angles relevant for the viewing geometry are described 
below. 

2.2.5.1 Solar zenith θS 
The solar zenith angle is defined as the angle between the normal and the position of the 
sun seen in a 2-D vertical slice (see Figure 2-4 and green surface in Figure 2-3, left part). 
A solar zenith angle of 0° corresponds with the nadir position. 

 
Figure 2-4: Solar zenith angle with respect to the normal N 
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2.2.5.2 Solar azimuth angle ΦS 
The solar azimuth angle is defined as the angle between the North (0°) and the position 
of the sun seen in a 2-D horizontal slice. A solar azimuth angle of 90° corresponds with 
the sun being positioned in the East. See coral surface in the left part of Figure 2-3. 

2.2.5.3 View zenith θV 
In a similar fashion as the solar zenith, the view zenith is defined as the angle between 
the normal and the position of the observer. See the light blue surface in Figure 2-3 (left). 

2.2.5.4 View azimuth ΦV  
The view azimuth corresponds to the angle between the observer and the north on a 
horizontal plane, as displayed in blue in Figure 2-3 (left part). 

2.2.6 Aerosol optical depth 
The aerosol optical depth (AOD) is defined as the integrated extinction coefficient over a 
column of air reaching from the surface to the top of the atmosphere (Veefkind 1999) 

or: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

ln
I
IAOD , where I is the light intensity and I0 is the initial intensity. The 

higher the AOD, the greater quantity of light is reduced over a given distance, hence, the 
less direct and more diffuse light. The AOD is dependent on the measured wavelength, 
as the spectral properties of the aerosols are changing with particle size and shape. Note 
that the particle size may increase due to adhesion of water with increasing relative 
humidity. 

2.2.7 Diffuse fraction 
The diffuse fraction is derived from the AOD, solar zenith angle and the wavelength.  
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= 0.008569, c2 = 0.0113 and c3 = 0.00013 (North 1996). 
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( )AEROSOLRAYLEIGHedir ττ +−=  
( ) ( )AEROSOLRAYLEIGH efefdif AEROSOLRAYLEIGH

ττ −− −×+−×= 11 , where fRAYLEIGH and fAEROSOL 
equal the fractions of Rayleigh and aerosol scattered light to reach the ground surface 
(0.5 and 0.75 respectively). 

The diffuse fraction is then calculated as 
difdir

dif
f DIF +

= . 

Naturally, the diffuse fraction increases with an increasing AOD. In Figure 2-5 we can 
observe that the fraction of diffuse radiation fDIF is decreasing with increasing wavelength 
and decreasing solar zenith. The total reflectance ρTOT can be derived from the diffuse 
(ρDIF) and direct (ρDIR) reflectance calculated by: ( ) DIRDIFDIFDIFTOT ff ρρρ ×−+×= 1 .  

 12
 



 

400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

λ [nm]

di
ffu

se
 fr

ac
tio

n

 

 
θ

s
 = 0

θ
s
 = 30

θ
s
 = 60

 
Figure 2-5: Change in diffuse fraction with wavelength λ and solar zenith θS. Values calculated 
with AOD equal to 0.12. This figure was made with results from the adjusted version of the Flight 
model (see Appendix I). 

2.2.8 Soil background 
In addition to the vegetation signal, the measured reflectance is also influenced by the 
soil composition of the area under study. The reflectance signal of a given soil type is 
determined by the mineral composition of the surface of this soil, as well as the organic 
matter and soil moisture contents.  
The relevance of this signal depends on the fCOVER, the LAI, the presence of leaf litter, 
the terrain surface and the soil’s roughness and brightness. Unless the area under study is 
very small and level, the soil signal cannot be considered constant due to the spatial 
variation of the soil surface properties. 
The influence of the soil on the measured reflectance has been described by Rondeaux et 
al. in relation to the canopy leaf area index as: 1-e-K*LAI (Rondeaux et al. 1996), where the 
factor K is an extinction coefficient related to the LAD (section 2.2.2).  

2.2.8.1 Soil roughness index 
The soil roughness index is used to indicate the roughness of the soil surface. A value of 
0 (smooth) indicates that the surface can be represented by a Lambertian surface, 
whereas a value of 1 (rough, with mean slope of 60°) leads an approximated HDRF 
based upon a look-up table (North 1996). 
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Figure 2-6: Reflectance of a bright soil at nadir for diffuse radiation (grey lines), direct radiation 
(blue lines) and total radiation (black lines) for simulations at different solar zenith angles 
(columns: top: θS = 0°, down: θS = 30°) and soil roughness index values (left to right: 0 to 0.8 with 
steps of 0.4). This figure was made with results from the adjusted version of the FLIGHT model 
(see Appendix I). Note that the oxygen absorption feature (762 nm) has been omitted in the figure 
(band replaced with interpolated point). 
 
Figure 2-6 shows that the differences between the diffuse and direct radiation increase 
with increasing wavelength. However, the magnitude of the role that the diffuse radiation 
is playing decreases with the wavelength (see Figure 2-5) and therefore the total 
reflectance (Figure 2-6 in black) seems to follow the direct reflectance trend (in blue).  
Secondly, the differences are enlarged by increasing soil roughness. Furthermore, for the 
tested configurations, the diffuse radiation always decreased with increasing soil 
roughness, whereas the direct radiation showed an increase for the simulations with solar 
zenith equal to 0 changing into a decrease for large zenith angles (not shown). Our third 
observation is that a lower sun position (increase of solar zenith) leads to a decreased 
direct reflectance and a minor increased diffuse reflectance, which is also clear from 
Figure 2-5. 

2.2.8.2 Soil brightness 
Huete et al. (Huete et al. 1985) studied a number of indices related to canopy greenness 
and found that the soil brightness strongly influenced these indices. They suggest that the 
canopy and soil spectra interact in a non-linear way that is partly correlated. 
The greenness vegetation index (GVI) has been shown to be sensitive to the soil type 
and the soil moisture status – even if there was one unique soil type. The perpendicular 
vegetation index (PVI) is also showing a response to variations in the soil moisture 
content. Ratio indices such as NIR/RED or the NDVI were shown to have higher 
greenness values for darker backgrounds when fCOVER was kept constant. In contrast, 
orthogonal indices showed the opposite response to soil brightness. 
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Reflectance in the red region remained constant (dark soil) or decreased (lighter soils) 
with increasing vegetation cover. In the near-infrared region, reflectance increased 
practically linearly with fCOVER with steeper slopes for darker soils and a steeper slope for 
the last 10% to full coverage. They conclude that the soil background cannot be 
normalised to a constant ratio, because this only removes the soil spectral influence, not 
the soil brightness influence. 

2.3 Spectral (vegetation) indices 
Many attempts to relate remotely sensed data to ground observed variables can be found 
in literature. As most of these statistical relations have been designed for vegetation, they 
are referred to as vegetation indices (VI). Commonly, these VI are described through a 
regression between the leaf or canopy reflectance in one or more bands/wavelengths and 
the variable under study. The VI can be grouped according to the spectral regions used 
(VIS, VIS+NIR, VIS+SWIR, red-edge, broad bands versus narrow bands, etc.), 
according to their function (accounting for soil background and/or atmospheric effects, 
sensitivity to chlorophyll or LAI etc.) or according to their mathematical structure (single 
ratio, derivatives, etc.).  
In (Grossman et al. 1996) it was shown that the band selection in a study relating leaf 
biochemical components to leaf reflectance through stepwise multivariate regression 
could not be linked to the absorption features of these components. They found that the 
band selection was also very sensitive to the samples included in the dataset, the unit of 
the expressed variable and dataset itself (i.e. selection may differ for different dates 
and/or locations). Therefore,  statistical relations found between biochemical properties 
and corresponding reflectance spectra may not always be applicable to other sites and/or 
years (Grossman et al. 1996; Zarco-Tejada et al. 2001). This is why the usage of, or the 
combination with, models is preferred when looking for general relations. 

2.4 Model inversion 
The reflectance of a given canopy is considered to be a result of this canopy’s 
biochemical, biophysical and structural properties. These relations have been modelled in 
numerous canopy reflectance models. Many of these – for instance SAIL (Scattering by 
arbitrarily inclined leaves) (Goel and Thompson 1984b), PROSPECT (Jacquemoud 
1993), Suits’ model (Goel and Strebel 1983; Goel et al. 1984; Goel and Thompson 1984a) 
and INFORM (Invertible Forest Reflectance Model) (Schlerf and Atzberger 2006) – 
have been proven to be mathematically invertible to obtain various canopy variables 
using the canopy reflectance in a number of wavelengths as an input.  
The model inversion is often ‘approximated’ by creating a so-called look-up table of 
reflectances corresponding to combinations of biophysical, biochemical and structural 
parameters for given illumination and background conditions. Rather than to 
mathematically invert the model or to minimise the error through model iterations 
(sequential runs), the measured reflectances are looked up in the table and the matching 
(originally input) parameters are retrieved. This method can be very time efficient, but 
depending on the data density and number of requested parameters, no (e.g. because of 
low sampling of the input variable space) or multiple combinations may be found. The 
second problem is called ill-posedness, which can be overcome by introducing ancillary 
data (see section 2.4.1). The first problem (no spectrum found in the look-up table 
exactly matching the measured spectrum) can for instance be worked around by the 
application of neural networks trained with the same look-up table. The NN tries to 
learn the general rules relating canopy variables with the corresponding spectra and will 
be capable of ‘interpolating’ in between of the known data.  
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Many other techniques exist (see section 1.1.1), but in general an optimisation technique 
is used to minimise a merit function, which usually consists of the difference (for 
instance as RMSE) between measured and modelled reflectance and/or transmittance.  

2.4.1 Ancillary data 
Ancillary – or a-priori – data can help to reduce the number of possible solutions caused 
by the ill-posedness in the inversion process. It can consist of a restricted first guess 
(Combal et al. 2002) or the use of an additional variable, such as fCOVER. This additional 
information can be determined in various ways. For instance for fCOVER, some available 
methods are fieldwork (creation of a vegetation map that will be intersected with the 
remotely sensed grid), spectral unmixing (into vegetation/non vegetated signals), pattern 
recognition software and neural networks. 

2.5 Up-scaling  
Up-scaling can be defined as the process which ensures that the values of a given 
biophysical/biochemical property at a given spatial resolution are consistent (equal to the 
arithmetic average) with the values of that same property independently derived from a 
higher spatial resolution (Tian et al. 2003). 
Four different up-scaling methods have been identified to derive biophysical or 
biochemical properties from measured canopy reflectance (Zarco-Tejada et al. 2001): 

- The creation and application of statistical relations (vegetation indices) linking 
these properties directly to the canopy reflectance. 

- The application of vegetation indices relating the leaf reflectance to the 
biophysical or biochemical property at the canopy level. 

- The scaling-up of vegetation indices derived at the leaf-level through radiative 
transfer modelling.   

- The inversion of a linked canopy+leaf RTM to derive the canopy property from 
the measured canopy reflectance. 

The first two methods are only applicable to a given study site, for the crop under study 
and viewing geometry.  
The optical indices can also be scaled up by means of canopy reflectance models. These 
scaled-up leaf-level relations can be directly applied to the measured canopy reflectance 
when the canopy structure and viewing geometry have been accounted for in the 
modelling (Zarco-Tejada et al. 2001). 
With the fourth methodology, there is no need to relate the biophysical or biochemical 
properties with the reflectance at the leaf level. However, only properties that are used in 
the leaf model can be derived.  
Notice that some leaf properties cannot be up-scaled directly to canopy-aggregate 
properties and require a transition via other leaf or canopy properties (Read et al. 2006). 

2.6 Measurement error in remote sensing and derived products 
Remote sensing data has been frequently used to describe ground conditions through 
statistical relations. In many cases, this is in the form of a regression function. Most of 
these regressions are of the type ε++= baxy , where a and b are estimated coefficients, 
x is the remotely sensed data, y is the variable to be estimated and ε is the residual error. 
Although in statistics it is normal that y is the dependent variable and x the independent, 
in remote sensing studies x is in fact the dependent variable as the measured reflectance 
is (partially) a consequence of the ground conditions. 
Knowing that sensors do not provide perfect measurements, the x presented to the 
regression model contains measurement errors. This leads to a biased (underestimated) 
factor a (â = a/(1+(σe

2/σx
2 )), where σe

2 = variance from measurement errors in x and σx
2 
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= variance originating from real variation in x). When a is a positive factor, this leads to 
overestimates for values greater than the mean and to underestimates for values below 
the mean. 
Errors in ground measurements originate from two sources. The first consists of errors 
in the measuring device that are normally constant and can be accounted or corrected 
for. The second error is related to the sampling density and surface, which adds more 
uncertainty when pixel sizes increase (e.g. how to obtain LAI measurements over a 
region of 30 by 30m? The error will depend on the number of samples taken inside that 
area). 
Errors in remotely sensed variables have seven sources (Curran and Hay 1986): 

♣ irradiance variation (low and high frequency noise) 
♣ sensor calibration error (primary standard, calibration of and from lab. integrating 

sphere) 
♣ sensor radiometric resolution (signal and noise, spectral sensitivity) 
♣ sensor drift (signal distortion with time) 
♣ signal digitization (conversion of the signal to digital numbers) 
♣ atmospheric attenuation (very variable error) 
♣ atmospheric path radiance (very variable error) 

To this, we can add the uncertainty added because of the point spread function (PSF). 
Imperfections of the imaging sensor and diffraction of the light cause a signal coming 
from a point to be somewhat blurred out. This response can be mathematically described 
by the PSF. It has been estimated that only about half of the radiance value for each pixel 
can be attributed to the ground area that it is representing (Curran and Hay 1986). 
Errors in the correlation of RS variables with ground-based variables can also be 
attributed to errors in geo-location causing mis-registration and differences caused by 
time differences between RS image acquisition and ground-based measurements. The 
latter error will depend on the variation with time of the studied variable (leaf moisture 
content will fluctuate more than leaf area index, thus requiring a more restricted time 
frame for both observation moments). 
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3 Data and models 
This chapter describes the study area and datasets (section 3.1), followed by the data pre-
processing in section 3.2, the description of the FLIGHT model in section 3.3 and the 
preparation of the FLIGHT simulations in section 3.4. 

3.1 Study area and datasets 
Four study sites with olive trees have been established in the Spanish province of Seville 
and one in Jaén to study leaf biochemistry in open canopy crops. In this study we have 
worked with the data of three sites, namely Cañaveralejo (referred to as CLO1), Tobalico 
(referred to as CLO3), and Las Aguilillas (CLO4), as one of the study sites was missed by 
the plane during the date of image acquisition.  The following varieties are planted in the 
selected test sites:  
1) Hojiblanca intensivo (used for the production of olive oil) at CLO1 
2) Manzanilla (used for table olives) at site CLO3  
3) Arbequina (used for the production of a sweet olive oil) at CLO4.  
CLO1 and CLO4 were irrigated whereas CLO3 was rain-fed. 
 
In order to create different levels of chlorophyll content, the study sites have received 
four different treatments with iron chelates: 

a) Control 
b) Received one application of 2.3% iron chelate (Q Fe 2.3 ortho-ortho). 
c) Received one application of 4.8% iron chelate (Q Fe 4.8). 
d) Received one application of Q Fe 4.8 with a 33% higher dose than of group c. 
e) Received an application of Q Fe 4.8 with a double dose compared to group c. 

The chlorophyll content is expected to increase with application of iron chelates as this is 
reducing the chlorosis. In CLO1 and CLO4, there are 100 treated trees of which 50 have 
been selected for evaluation (10 per group). In study site CLO3, we have 40 trees (8 per 
group). 

3.1.1 Measurement of chlorophyll content 
Chlorophyll concentration data has been collected for the 3 study sites in 2003. 12 leaves 
per tree were sampled around the crown, placed in bags and stored at -23 °C prior to 
analysis. Two 2.3 cm circle samples were cut out of each leaf. One circle was ground into 
liquid N2, weighed, and placed in a 15 ml centrifuge tube. The second circle was weighed, 
oven-dried at 80 °C for 24 h, and re-weighed. Ten milliliters of N,N-dimethylformamide 
(Spectralanalyzed grade, Fisher) was added to the tube, and 3 ml of supernatant was 
placed in a cuvette and the absorbance measured at 663.8, 646.8 and 480 nm with a Cary 
1 spectrophotometer. Chlorophyll a, chlorophyll b, and total carotenoid concentrations 
were calculated using the extinction coefficients derived by (Wellburn 1994). 
Subsequently, the retrieved chlorophyll levels were averaged per tree. The results are 
shown in Table 3-1. Note that some of the trees were not sampled. 
 
Table 3-1: Average chlorophyll a + b concentration [μg/cm2] for the different iron chelate 
treatments and the three study sites 

Group 
Site 

a b c d e Total #

CLO1 59.82 69.31 72.57 74.71 79.40 48
CLO3 51.69 60.64 54.49 57.70 57.08 40
CLO4 74.55 76.08 78.21 80.05 82.85 39
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We can observe that on site CLO3 the iron chelate application has not (yet) resulted in 
the anticipated behaviour of an increased CAB content with an increasing application 
dose. However, in this study we only require the availability of a range of CAB and 
therefore this is not a problem. 

3.1.2 Airborne imagery 

 
Figure 3-1: CASI imagery of Cab-study sites (sites indicated with a red polygon). CAB site 1 (left), 
CAB site 3 (middle) and CAB site 4 (right) 
 
On the 20th of July 2003, images of the study sites were collected at 1 m and 4 m pixel 
size with the compact airborne spectrographic imager (CASI) over the 3 sites where CAB 
had been measured (Figure 3-1). 
CASI was the first commercially available airborne hyperspectral sensor that was 
programmable (Lillesand and Kiefer 1999). It has a maximum of 288 bands between 0.4 
and 0.9 μm. In this study we have used 8 bands in the spatial mode (1 m) and 72 bands 
in the spectral mode (4 m), see Table 3-2 and Table 3-3. The 12-bit radiometric 
resolution data collected by CASI were processed to at-sensor radiance using calibration 
coefficients derived in the laboratory by the Centre for Research in Earth and Space 
Technology (CRESTech). The aerosol optical depth that was determined in the field 
during image acquisition at 550 nm was used to subsequently process the image data to 
ground reflectance with the CAM5S atmospheric correction model (O'Neill et al. 1997; 
Zarco-Tejada et al. 2001). 
 
Table 3-2 CASISPATIAL band positions 

Band Band center [nm] FWHW [nm]
1 490.744 12.3317
2 550.623 12.3805
3 670.355 10.5794
4 700.709 6.7989
5 750.191 6.8137
6 762.591 4.9087
7 775.004 6.8209
8 799.864 10.6563

 
Table 3-3 CASISPECTRAL band positions  

Band Band center [nm] FWHW [nm] Band Band center [nm] FWHW [nm] 
1 408.924 4.2789 37 678.884 4.3442 
2 416.337 4.2808 38 686.471 4.346 
3 423.755 4.2827 39 694.062 4.3477 
4 431.178 4.2846 40 701.658 4.3494 
5 438.606 4.2865 41 709.259 4.3511 
6 446.039 4.2884 42 716.864 4.3528 
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7 453.477 4.2902 43 724.474 4.3545 
8 460.921 4.2921 44 732.088 4.3562 
9 468.369 4.294 45 739.707 4.3579 

10 475.822 4.2958 46 747.331 4.3596 
11 483.28 4.2977 47 754.959 4.3613 
12 490.743 4.2995 48 762.591 4.363 
13 498.21 4.3014 49 770.228 4.3647 
14 505.683 4.3032 50 777.869 4.3663 
15 513.161 4.305 51 785.515 4.368 
16 520.643 4.3069 52 793.165 4.3697 
17 528.131 4.3087 53 800.82 4.3713 
18 535.623 4.3105 54 808.479 4.373 
19 543.12 4.3123 55 816.143 4.3746 
20 550.622 4.3141 56 823.811 4.3763 
21 558.129 4.3159 57 831.483 4.3779 
22 565.641 4.3178 58 839.159 4.3796 
23 573.157 4.3195 59 846.84 4.3812 
24 580.678 4.3214 60 854.526 4.3828 
25 588.204 4.3231 61 862.216 4.3845 
26 595.735 4.3249 62 869.91 4.3861 
27 603.27 4.3267 63 877.608 4.3877 
28 610.811 4.3285 64 885.31 4.3893 
29 618.356 4.3302 65 893.017 4.3909 
30 625.905 4.332 66 900.729 4.3925 
31 633.46 4.3338 67 908.444 4.3941 
32 641.019 4.3355 68 916.164 4.3957 
33 648.582 4.3373 69 923.888 4.3973 
34 656.151 4.339 70 931.616 4.3988 
35 663.724 4.3408 71 939.348 4.4004 
36 671.301 4.3425 72 947.085 4.402 

 

3.2 Data pre-processing 

3.2.1 Co-registration 
The CASI images have been recorded without differential GPS. This resulted in a shift 
between images covering the same site (see Figure 3-2). To correct for this, we have co-
registered the CASISPECTRAL with CASISPATIAL re-sampled to 4 meter, using the CASISPATIAL 
at 1 meter as a reference through a geographic link with the 4 meter CASISPATIAL. (This is 
because ENVI does not correctly co-register images of different pixel sizes.) 
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Figure 3-2: Shift between CASISPECTRAL (left) and CASISPATIAL (right) before co-registration 
 
For the images containing field CLO4, we have collected 20 ground control points. 
Using a 1st degree polynomial warp, the RMSE is 0.407. The procedure was repeated for 
CLO3, giving an RMSE of 0.456 for 20 ground control points. Similarly, for CLO1, we 
obtained an RMSE of 0.498 for 30 ground control points. 

3.2.2 Conversion to reflectance 
The data values had been transformed from double to long integer to save disk space. 
Therefore, they had to be converted back to reflectance by applying the following 

formula according to: 1.0
50000

−
x . 

3.2.3 Data subsetting and soil classification 
In order to reduce storage and computational requirements, the CASISPECTRAL images 
were spatially subset to regions of 100 by 100 pixels.  

3.2.4 Masking of the vegetated areas 
In order to identify the vegetation and individual crowns within the CASI images, four 
different vegetation masks have been created and tested. 
These masks consisted of:  
1) a manual selection of the crowns,  
2) tree surroundings where NDVI > 0.3,  
3) tree surroundings where NDVI > 0.4, and  
4) sunlit, vegetated areas of the tree where NDVI > 0.4.  
The last mask was created by applying a maximum likelihood classification over the 
CASI image trained by a selection of prototype spectra for sunlit or shaded 
vegetation/background. All pixels other than sunlit vegetation were subsequently masked 
out. 

3.3 The FLIGHT model 
Heterogeneous canopies such as forests and open canopies present complex radiative 
transfer systems, both on a detailed level (interactions within the canopy) as well as on a 
scene level (influence of the background signal, mutual shadowing, etc.). The FLIGHT 
model (Forest LIGHT interaction model) (North 1996) was designed to deal with this 
kind of canopies and their associated multiple scattering events.  
The 3-D model is based on Monte Carlo simulation of photon transport and simulates 
the bidirectional reflectance of a scene with a forest canopy represented by geometrical 
elements. A single tree can be modelled as a sphere or cone of leaves (the crown) with 
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the possibility of adding senescent leaves and woody elements (through a fraction of bark 
and/or the presence of a stem). The dimensions of this crown need to be specified as 
well as the position of the tree with respect to the scene centre. Furthermore, the model 
requires as an input the optical properties of the green leaves (reflectance and 
transmittance) together with its spatial distribution (LAD), the leaf size and the leaf area 
index, as well as the optical properties of the senescent leaves and bark, if applicable. The 
atmospheric conditions are estimated from the aerosol optical depth (see section 2.2.6 
for the calculation of the fraction of diffuse and direct radiation) and the soil background 
reflectance signal has to be presented in combination with an estimate of the soil 
roughness index (section 2.2.8.1). These inputs are completed with the viewing geometry, 
the extent of the scene (choice of pixel size) and the setting of the output hemi-spherical 
grid (in terms of ФV & θV) and the number of photons (# photons) to be used in the 
simulation. The latter affects the accuracy of the estimated HDRF, which can be 

estimated as (North 1996): the mean error [%] = 
photons

gridgrid
#

100
φθ ×

×  , where θGRID and 

ФGRID are specifying the number of angle bins sampling the grid in terms of θV and ФV 
(see Figure 3-3; each polygon (enclosed by the lines) corresponds to one angle bin). 

 
Figure 3-3: Example of an angle bin grid as used by the FLIGHT model 
 
In this study we want to retrieve biophysical and biochemical properties (canopy 
variables (CV)) of the olive trees in the CLO fields. To do so, we can follow 2 
approaches, namely by means of modelling the radiative transfer for these fields or by 
statistically relating vegetation indices with these properties. The first approach is 
described in chapter 4 and requires simulations with the PROSPECT and the FLIGHT 
model. The preparation of these simulations will be described in following parts of this 
chapter. 
The second approach to retrieve biochemical/biophysical parameters using vegetation 
indices is described in chapter 5, where we focus on the retrieval of CAB.  
We have made some adjustments to version 5.0 of the FLIGHT model. These 
adjustments can be found in Appendix I. 

3.4 Preparation of the Flight scenarios 
This section describes the inputs and runs of the PROSPECT+FLIGHT model to 
obtain the canopy reflectances for different canopy and scene conditions. Figure 3-4 
describes the inputs for and results of the PROSPECT and FLIGHT models. 
 

 22
 



 

 
Figure 3-4: Flowchart of inputs into PROSPECT and FLIGHT with their outputs 

3.4.1 FLIGHT inputs derived from the PROSPECT model 
The FLIGHT model requires the input of leaf transmittance and reflectance data. To 
obtain these, we have used the PROSPECT leaf model. The model uses CAB, CM, CW and 
N as an input. The factor CW does not influence the reflectance or transmittance over the 
wavelengths used in our study and can therefore be set to a constant value. As CM and N 
are normally considered to be constant for a specific species under the same conditions 
(i.e. in the same field) (Zarco-Tejada et al. 2005), an estimate of these values for olive 
leaves has been made. The reflectance (ρ) and transmittance (τ) of 30 olive leaves were 
measured in a laboratory. These spectra have been used to invert the PROSPECT model 
(section 3.4.1.1). To test whether genetic algorithms (GA) could outperform a least 
squares minimisation function, first a set of simulated spectra was created. Both methods 
used the same evaluation function that consisted of the RMSE between the measured 
and estimated leaf ρ & τ. It was observed that the GA performed very slowly and that 
the minimisation function reached a lower RMSE, especially if noise (±5%, see Figure 
3-5) was added to the spectra. Therefore it was chosen to apply the minimisation 
function to invert the measured spectra to obtain the CV.  
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Figure 3-5: Example of adding normally distributed noise (between plus/minus 5%) to the leaf 
reflectance. Black line indicates the original spectrum (N=1.8, CAB =42 μg/cm2, CM = 0.0158 
g/cm2 and CW = 0.049 g/cm2), blue line shows the noisy signal and the dotted blue line indicates 
the plus or minus 5% border. 
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3.4.1.1 Inversion of PROSPECT to retrieve N and CM 
To obtain a first guess for the structural parameter N and the dry matter content CM, we 
have used the reflectance and transmittance spectra of 30 olive leaves that were measured 
in a laboratory (see Figure 3-6). The leaves had been measured between 352 nm and 1001 
nm, but for the inversion we have only used the range between 500 and 800 nm, as 
outside of this range the signal was very noisy – especially before 400 nm and after 900 
nm. To further reduce the noise, the leaf reflectance and transmittance were spectrally 
resampled by averaging to an interval of 5 nm as in (Jacquemoud et al. 1996). 
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Figure 3-6: Reflectance over 500 to 800 nm from 30 olive leaf measurements averaged over 5 nm 
intervals 
 
These resampled reflectances and transmittances were subsequently inverted by adjusting 
the input parameters for Prospect according to a minimisation of the RMSE between the 
simulated ρ & τ between 500 and 800 nm and the measured ρ & τ. 
The chosen initial values were N = 2, CAB = 20 μg/cm2 and CM = 0.01 g/cm2. As stated 
in section 1.3, the water content does not influence the spectra in the chosen range and 
can therefore be chosen freely (chosen was CW = 0.02 g/cm2). 
The mean retrieved structural parameter was 3.8 with a standard deviation of 0.29 
(7.5%). The dry matter content was estimated to be 0.009 g/cm2 on average with a 
standard deviation of 0.004. These retrieved values differ from those used in (Zarco-
Tejada et al. 2004b) (N = 2.8; CM = 0.025 g/cm2), but can be considered normal for olive 
trees (P. Zarco-Tejada, personal communication).  
With different first guesses, the means for the parameters do not change substantially (0-
6%).  

3.4.1.2 Spectral resampling of the Prospect leaf model to match the CASI sensor characteristics 
The Prospect model was designed to return leaf reflectance and transmittance between 
400 and 2500 nm with steps of 5 nm (see section 2.1). These radiometric estimates will 
be used as input for the Flight model. However, the model does not have the concept of 
bandwidths implemented and therefore we have to adjust the Prospect output to the 
observed bands and corresponding band widths. 
In order to do this, each 5 nm interval of the Prospect model is linearly interpolated. 
Subsequently, we average this continuous dataset per band over the observed 
wavelengths. These new reflectance and transmittance data are then used as inputs for 
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the Flight model and correspond exactly with the wavelengths used by the CASI sensor. 
See the figure below for two examples. 
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Figure 3-7: Adjusted leaf reflectance (left) and transmittance (right) for the CASISPECTRAL (left) and 
the CASISPATIAL (right) sensors. Original Prospect simulations are in blue, resampled simulations 
are plotted as black dots. Used parameters for this example: N = 3.5, CAB = 75 μg/cm2, CW = 0.025 
g/cm2 and CM = 0.01 g/cm2. 

3.4.2 Other FLIGHT constant input parameters 
This section will describe the other parameters that have been used for the FLIGHT 
simulations. 

3.4.2.1 Tree dimensions (EZ, EXY and h) 
The horizontal dimensions of the trees were estimated from the CASI imagery at 1 
meter. The 50 trees in plot CLO4 were first identified. Subsequently, the image was 
classified using a maximum likelihood classification into sunlit + shadowed vegetation 
and background. The perimeters of the trees were then intersected with the areas 
classified as vegetation (both sunlit and shadowed). As each pixel covers an area of 1 m2, 
we can estimate the vegetated area per tree by summing the total number of vegetated 
pixels. As we need to approximate the tree dimensions with an ellipsoid, the radius of the 
ellipsoid in the horizontal plane can be estimated by taking the square root of the area 

divided by pi. In summary: 
π

∑
= vegetatedn

pixels
r . 

 
We find that in CLO4 the mean tree radius (EXY) equals 1.91 meter, with a standard 
deviation of 22 cm. This was rounded to 1.9 meter. 
The tree height (h) is mainly of interest to correctly estimate the length of the shadows. 
With a solar azimuth of approximately 45°, the height of the tree is smaller than, or at 
maximum equals the length of a tree’s shadow. Considering the extent of the tree’s 
shadow and the shape of the crown, we can get a rough estimation of the tree height. For 
plot CLO4, it was found to range between 2.5 and 3.5 meters. This is consistent with the 
value used in (Zarco-Tejada et al. 2004b). We will work with a crown centre located at 
2.25 above the ground, reaching one meter up and one meter down (minimum height = 
1.25 m and maximum height = 3.25 m, EZ = 2 m). For the retrieval of biophysical 
parameters, the uncertainty related to this estimation is not of relevance, as long as we 
obtain at least one simulated spectrum of a shadowed background for different fCOVER 
and LAI.  
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Applying the same procedure for the two other fields, we find a mean tree radius of 3.04 
m with a standard deviation of 25 cm for CLO3 and a mean tree radius of 1.88 m with a 
standard deviation of 24 cm for CLO1. The latter is very similar to the values found for 
CLO4 and therefore we can use the same rounded dimensions. We have to simulate a 
different set of tree dimensions for CLO3, which will be a crown radius of 3.0 meters, a 
tree height of 5 m and a crown vertical radius of 2 m.  

3.4.2.2 AOD and viewing geometry 
The AOD used in this study was determined during image acquisitions and was found to 
be 0.12 at 550 nm. This value is considered to reflect a nearly clean (upper limit) 
atmosphere over a continental surface (Veefkind 1999). 
The solar zenith (θS) and azimuth (ΦS) angles have been set corresponding to the sun 
position during image acquisition (Table 3-4). FLIGHT uses the following coordinate 
convention: the azimuth is counted counter clockwise with 0° being located in the East. 
Therefore the ΦS values were transposed to match a compass orientation (0° = North, 
90° = East),  
The model calculates the HDRF for different viewing zenith (θV) and azimuth (ΦV) 
angles based on θGRID and ФGRID. 10 bins were selected for the zenith plane (θGRID) and 36 
bins were selected for the azimuthal plane (ФGRID), resulting in angle bins of 10°, except 
for zenith angles between 0 - 5° and 85 - 90° where the bin size equals 5°. 
 
Table 3-4: Solar zenith and azimuth angles matching the solar position during image acquisition 
 θS [°] ΦS [°] 
CLO1 39.0620 103.4390 
CLO3 43.0197 99.4169 
CLO4 45.4886 97.0938 

3.4.2.3 Background signal 
The soil spectra have been taken from the CASI imagery (CLO4). For the simulations 
with CASISPATIAL only a single soil spectrum has been used as an input (Figure 3-8 left). 
We have included 3 soils with different grades of brightness for the simulations in 
spectral mode (Figure 3-8 right). 
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Figure 3-8: Soil spectra used in Flight simulations. Left: CASISPATIAL soil spectrum, right: 
CASISPECTRAL soil spectra. The dip at 760 nm (oxygen absorption feature) has been omitted in the 
figure (dotted lines). 
 
The soil roughness index (sri) was set to 0, which corresponds to a smooth surface. 
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3.4.2.4 Leaf angle distribution 
The olive leaves have been considered plagiophile with a distribution as specified in 
Table 3-5. 
 
Table 3-5: Fraction of leaves in 10 degree zenith angles (LAD5 = 0-10°) for a plagiophile 
distribution, estimated after (Smith et al. 1977)  

LAD Fraction 
5 0.02 

15 0.03 
25 0.05 
35 0.15 
45 0.5 
55 0.15 
65 0.05 
75 0.03 
85 0.02 

3.4.2.5 Canopy composition 
As during fieldwork no measurements of the bark of the olive trees had been done, both 
the spectral signal and the fraction of visible bark (in branches, twigs and stems) were 
unknown. For this reason it was assumed that the trees as seen from nadir position only 
consist of green vegetation. The Flight model then only requires the input of leaf 
reflectance and transmittance, which has been modelled using the Prospect leaf model. 
No trunk was modelled. 

3.5 Simulations with the PROSPECT+FLIGHT models 
Using the values described in the previous section, the PROSPECT + FLIGHT models 
have been run for CLO3 at a spatial resolution of 1 m and the CASISPATIAL spectral 
resolution using different values for CAB, LAI, fCOVER and the position of the observed 
part of the vegetation with respect to the crown centre (resulting in differences in light 
intensity/shadowing). These simulations will be referred to as PF-set 1. Considering that 
there may be an uncertainty in the estimation of N and CM as they have not been 
validated, more simulations have been done where N and CM were not constant. This set 
will be referred to as PF-set 2. 
In addition to these simulations for CLO3 at 1 m with CASISPATIAL spectral properties, 
we have also simulated CLO1 and CLO4 at this resolution (see Table 3-6) and together 
with CLO3 at 4 m with CASISPECTRAL properties. Furthermore, we have also simulated 
CLO4 at additional resolutions (see Table 3-7): 32 m to assess the retrieval methods 
corresponding to spatial resolutions of sensors like Landsat and 300 m to work at 
medium resolution resolutions such as used for MODIS and MERIS. 
 
Table 3-6: Available variation for CASI simulations in spatial mode. × indicates that the variable 
was having a range of values. 
field pixel size [m] x* y fCOVER CM N LAI CAB Total # sim 
CLO1 1 × × × ×  × × 1792 
CLO3 1 × × × × × × × 5764 
CLO4 1 × × ×  × × × 3567 

Min -3 -3 0 0.01 2.5 0.5 25 Range of 
variation Max 3 3 100 0.025 3.5 5.5 100

- 
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Table 3-7: Available variation for CASI simulations in spectral mode 
field pixel size [m] x y fCOVER CM N LAI CAB soil Total 

# sim 
CLO1 4 × × ×   × × × 5800 
CLO3 4 × × × ×  × × × 5880 
CLO4 4 × × ×   × × × 7203 
CLO4 32     × × × × 1170 
CLO4 300**   × × × × × × 368 
* At high spatial resolutions, different illumination conditions and fCOVER have been 
introduced by varying the position of the tree with respect to the observation area (see 
Figure 3-9). 
** Note that for this simulation the tree dimensions have been varied in order to 
generate 2 values for fCOVER.  
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Figure 3-9: Location of observed crown (blue/grey surroundings) with respect to the observed 
scene (black square). Position of the crown is moved to simulate different fCOVER and different 
degrees of shadowing. 
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4 Application of neural networks to retrieve biophysical parameters 

4.1 Neural networks 
Environmental modelling is nowadays no longer restricted by technical complexity, yet 
by the lack of input data at the right scale. Remote sensing can provide many of these 
data, but we need easily applicable methods to extract the information from the remotely 
sensed images. Neural networks (NN) can provide such a method, as they have been 
found to be quite capable of dealing with datasets having a great internal diversity, 
especially when the relationships between inputs and output are not (fully) understood 
(Pal and Mitra 1999; Schultz and Wieland 1997). Different applications of neural 
networks in remote sensing can be found in literature (see (Egmont-Petersen et al. 2002) 
for an extensive review on the usage of NN for image processing), amongst which 
detection of clouds (Jang et al. 2006), change detection (Nemmour and Chibani 2006) 
and the retrieval of biophysical canopy variables (Atzberger 2004; Bacour et al. 2006; 
Gong et al. 1999; Weiss et al. 2000). 
Neural networks (NN) are composed of simple elements operating in parallel, inspired 
by the human nervous system. As in the human system, the network function depends 
on the connections/nodes between the elements (neurons). When the input is passing 
through a connection (see Figure 4-1), the values are multiplied by the weight of the 
connection and if biases are included in the model, those are added after the 
multiplication.  
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Figure 4-1: Flowchart of a two-layer NN. P is the input data, w are the weights, β are the biases, o 
are the inputs for the transfer functions f, t are intermediate results and r are the output results. 
Figure adapted after (Hagan et al. 1996). 
 
The obtained value is used as input for a transfer function which will return an output. 
NN can be trained to simulate a function by repetitively feeding it an input and a 
matching target output. During this supervised learning (we inform the system about the 
a-priori knowledge of the output), the connections (weights and biases) between the 
elements will be adjusted until a proper weighting between them leads to (a close 
approximation of) the desired output. Different configurations of neurons can be chosen 
(# in layer, # of layers), as well as a set of training functions and transfer functions.  
The major advantage of using NN is that we can solve a problem when we do not know 
what exactly the function is that converts the input into a given output. However, we 
should be careful not to overfit a network to the input dataset and therefore a proper 
validation is required. Over-fitting means that the network has been adapted to (almost) 
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perfectly match the given training input to the given targets. Three main techniques are 
available to attempt to prevent this. The first technique is called early stopping. To ensure 
that the network is not overfitting to the training input data, we can add a validation set 
to the training. If the error for the validation set has increased when the error for the 
training set is still decreasing, the function has overfit and the process is stopped. The 
weights and biases obtained for the smallest error over the validation set will be used. A 
smoother response can be retrieved with the second technique: regularisation. 
Regularisation adds a parameter to the system that is being solved. The regularisation 
parameter gives information about the size or complexity of the model. The system will 
attempt to reduce the error (reach the goal), whilst keeping the complexity of the model 
as low as possible. A third solution to increase generalisation is to prune the network after 
training it. This is done by removing a number of weights. In this study we have selected 
the early stopping technique because contrarily to the two other techniques, it can be 
easily implemented and does not require objective decisions. 
One of the disadvantages of using neural networks is that the optimal number of layers 
and neurons cannot be predetermined (de Vos and Rientjes 2005) and that for each 
application the network should be tested with different designs. Also the initialisation 
parameters might play a role (see section 4.3.1). The best NN can be chosen from this 
series by minimising the RMSE of the output provided by each network.  
Amongst the several types of NN that are available, feed forward backpropagation NN 
are commonly used for model inversion (Bacour et al. 2006; Gong et al. 1999; Kimes et 
al. 2002). These networks are also known as multi-layer perceptrons (MLP). MLP can 
give reasonable estimates when they are presented with input that they have never ‘seen’, 
provided that the network is properly trained. In this study we will apply MLP to retrieve 
canopy variables (CV) from CASI imagery. The construction of the NN and training 
with simulated data will be described in the following paragraphs of this chapter. 

4.2 Retrieval of canopy variables using neural networks 
In this section we describe the retrieval of CV using neural networks. First we shall 
explain two methodologies used: the classical approach – training a network with the 
observed reflectance values as an input to estimate the CV as the target – followed by the  
opposite case: the inversion of a neural network trained with the CV as input to estimate 
the corresponding canopy reflectance as a target. This is in principle describing the 
problem more naturally: the reaction – changes in canopy reflectance – is the result of a 
cause (changes in canopy variables), whereas the first approach deals with the reverse as 
was described in section 2.6. We will illustrate both cases for CLO3 at 1 m spatial 
resolution and the CASISPATIAL band configuration. 

4.2.1 Inversion of FLIGHT using neural networks 
We have trained MLP with canopy reflectance as modelled by the FLIGHT model for 
CLO3 in CASISPATIAL configuration. These simulations have been described in section 
3.5. The networks were taught to estimate CV based on 7 CASISPATIAL bands (band 6 was 
excluded because it is measuring at an oxygen absorption peak). The general procedure is 
illustrated in Figure 4-2. 
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Figure 4-2: Flowchart of the methodology to retrieve biophysical canopy variables using a neural 
network (NN) trained with output from PROSPECT+FLIGHT to estimate the corresponding 
canopy variables (target path in pink) used to run the RTM. The path in blue shows the validation 
during the training phase and compares all estimated canopy variables with the ‘known’ values. 
Items shown in light yellow are non constant. Different fractional covers are created through 
changes in x and y (see Figure 3-9). 
 
First, the leaf reflectance and transmittance are calculated using PROSPECT with N, 
CAB, CM and CW. This information is passed on to the FLIGHT model together with a 
number of constant input parameters and the non-constant LAI, x and y position of the 
tree centre and consequently fCOVER. The canopy reflectance at given viewing conditions 
as calculated by the FLIGHT model is then presented to the NN, which is trained to 
estimate the values of the desired canopy variables (CAB or CAB + LAI + fCOVER) through 
learning which changes in the CV lead to particular features in the modelled canopy 
reflectance. The trained NN is subsequently validated by letting the NN estimate CV 
from a set of canopy reflectance values and comparing these estimates with the CV 
corresponding to the modelled canopy reflectances. 
 
In this section we will test the response of the network to the complexity of the 
simulated reflectances. This is done by using the two sets (PF-sets 1 and 2) that have 
been described in section 3.5. First we will train the NN for the complex case in which 
the variability is large. Secondly, the NN are trained for the simplified case in which N 
and CM are constant (PF-set 1). Both sets have been split into input data for training 
(90%) and validation (10%). The training data was furthermore split into 8/9 for the 
actual training and 1/9 to prevent overfitting using the early stopping technique. The 
validation results have been used to select the best NN and to assess the quality of the 
inversion in terms of RMSE and R2. 
 
To reduce the ill-posedness of the system, we can provide the NN with a-priori 
information in addition to the modelled reflectance (Combal et al. 2002). We have 
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examined the influence of knowing LAI, CM, N and fCOVER on the performance of the 
retrieval method for CAB using PF-set 2. Even though these variables do not influence 
the chlorophyll content, they do influence the canopy reflectance, which the NN should 
be able to detect.  
As it is common in remote sensing that a high spatial resolution is achieved at the cost of 
the spectral resolution, we have also investigated the restriction of the canopy reflectance 
to two bands. One band in the red (band 3) and one band in the NIR (band 8) have been 
selected as many vegetation indices efficiently make use of these wavelengths to estimate 
CV (Baret and Guyot 1991; Broge and Leblanc 2000; Daughtry et al. 2000; Stenberg et al. 
2004). 
Finally, for environmental modelling it is of interest to simultaneously retrieve other 
variables than CAB from remotely sensed images. Therefore, we have tested the possibility 
of retrieving multiple variables (CAB, fCOVER and LAI) simultaneously. This also allows us 
to assess the reduction in the accuracy of the retrieval of CAB by comparing with the 
retrieval of CAB as the single CV.  
 
As mentioned in the introduction of this chapter (section 4.1), the configuration of the 
NN has to be optimised for each specific problem. In this study we have carried out a 
number of tests to find out the most suitable NN configuration (# of layers, # of 
neurons, type of neurons, type of training and learning functions). 

4.2.2 Inversion of forward neural networks 
It is also possible to train the NN to mimic PROSPECT+FLIGHT for a given set of 
input parameters (scene composition, viewing geometry, etc.) and to subsequently invert 
the NN. If the NN has learned the “rules” of these models, although it is an 
approximation, the model should be able to interpolate between the known 
combinations used for training. The inversion of this NN can be done much faster than 
by directly inverting PROSPECT+FLIGHT. The NN is taught to estimate the canopy 
reflectance as was modelled by PROSPECT+FLIGHT by training it with the same 
variable inputs (CV: fCOVER, LAI, CAB, etc.) that were used as input for 
PROSPECT+FLIGHT (see Figure 4-3). The NN should thus learn how each CV affects 
the canopy reflectance in a given wavelength. This is why we call this type of NN 
‘forward’ NN. 
After the training is completed, the NN will be inverted for each ‘pixel’ (corresponds 
here to a single simulation with PROSPECT+FLIGHT). This inversion is done using a 
constrained minimisation algorithm that is first calculating the RMSE between the 
estimated canopy reflectance from a first guess for the CV and the modelled reflectance. 
The values of the estimated CV ( ) are slightly altered and a new value for the canopy 
reflectance is calculated. The algorithm will iteratively update the whilst attempting 
to minimise the RMSE, until a minimum has been found (successful inversion) or a 
lower/upper boundary for CV has been reached (unsuccessful inversion). The final 
estimates for CV are then compared with the true CV in the validation process. 

VĈ
VĈ

As before, we test the sensitivity of the NN to the complexity of the simulations by 
comparing NN trained with PF-set 1 and 2. The modelled simulations have been split 
into 80% for training, 5% to ensure that the neural network does not overfit, 5% to 
evaluate the training and 10% for inversion of the network.  
 

 32
 



 

 
Figure 4-3: Flowchart of the methodology for the retrieval of biophysical variables by means of an 
inversion of a neural network (NN). NN is trained with the variable inputs to 
PROSPECT+FLIGHT and with the output of the linked models as the target (target path 
indicated in pink). The trained NN is subsequently inverted using a minimisation algorithm that 
minimises the RMSE between the estimated and modelled reflectance. The algorithm iteratively 
updates the input canopy variables for the NN (blue path), until it reaches minimal RMSE or an 
upper/lower boundary for the CV. The final estimated CV are compared with the true CV 
(denoted as Variable inputs) during the validation (green path). 

4.2.2.1 Individual band estimation followed by inversion of all bands simultaneously 
For each wavelength, a single NN has been created to estimate the reflectance at nadir in 
that band using the position of the tree inside the scene, the fractional cover, the dry 
matter content, the chlorophyll content, the leaf parameter N and the leaf area index, 
considering all other factors such as the viewing geometry constant. The used 
simulations correspond to PF-set 2. 
The trained networks have been inverted using a minimisation algorithm, evaluating the 
root mean square error between all of the estimated and observed reflectances given by 
the 7 NN together by optimising the prior input parameters (position (x and y), fCOVER, 
CAB, CM, N and LAI).  

4.2.2.2 All bands simulated by a single NN  
In this step, one forward NN has been trained to estimate all 7 bands simultaneously 
from the 7 input variables that have been described before. Again the used simulations 
for training and the inversion correspond to the complex case (PF-set 2).  
The trained networks have been inverted using a minimisation algorithm, evaluating the 
root mean square error between the estimated and observed reflectances by optimising 
the prior input parameters (position, fCOVER, CAB, CM, N and LAI).  

4.2.2.3 All bands simulated by a single NN, estimation of CAB, LAI and fCOVER 
Subsequently, one forward NN has been trained to estimate all 7 bands simultaneously 
from only CAB, LAI and fCOVER. In this less complex situation, the dry matter content and 
the parameter N are kept constant (i.e. PF-set 1 was used). The variation in shadowing 
due to the position of the observed canopy part with respect to the illumination source is 
still present in the data, but is now no longer used as an input for the network. In the 
inversion, CAB, LAI and fCOVER are retrieved by minimising the RMSE between the 
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modelled reflectance in all seven bands and the estimated reflectances by the NN 
through optimisation of these three parameters. 

4.3 Results 
This section will first describe the chosen NN configuration followed by the results of 
the classical inversion making use of a NN and concluding with the results of the 
inversion of the forward NN. 

4.3.1 NN configuration 
After some initial tests, we have decided to work with a two-layer network, see Figure 
4-1. Such a network consists of one hidden layer and an output layer. In the hidden layer, 
we have chosen to have double the number of input variables of neurons. This is 
consistent with (Kanellopoulos and Wilkinson 1997) where it is stated that for a single 
hidden layer, the number of neurons should be at least equal to the number of inputs or 
outputs (whichever is greater). The layer is of the type tangent-sigmoid neurons which 
can deal well with inputs at different scales and input values ranging from -∞ to ∞ are 

rescaled to values between -1 and 1 using ii

ii

ee
eeO −

−

+
−

= , where O is the output and i is the 

input (Hagan et al. 1996).  
The output layer is filled with linear (purelin) neurons, where the number is depending 
on the number of output vectors (1 vector requires 1 neuron). The output layer will take 
the values ranging between -1 and 1 coming from the hidden layers and convert them 
linearly to any output range. The training algorithm giving the best results was trainlm, 
which uses the Levenberg-Marquardt optimisation to update the weights and biases. The 
default learning function was used. 
We note here that based on initialisation tests where it was found that a random 
combination of initialisation values might result in a dysfunctional network, it was 
decided to re-create each network in a given configuration for at least 20 initialisation 
tests. The best model was then chosen from these NN based on the lowest RMSE of the 
validation set. The effect of this initialisation randomness was larger than the influence of 
the number of used neurons and therefore preference was given to work around the 
initialisation problem over further optimising the number of neurons for the individual 
study cases. 

4.3.2 Results for the inversion of PROSPECT+FLIGHT by means of NN 

4.3.2.1 Use of a-priori knowledge 
Table 4-1 shows the comparison of having a-priori knowledge and training a NN only 
with reflectance data. The mean CAB of the validation set is approximately 60 μg/cm2, 
therefore the error is between 4 and 8%. 
 
Table 4-1: Estimation of CAB from CASISPATIAL bands using a neural network inversion 

 Input variables RMSE of CAB [μg/cm2] R2

All bands + N     2.38 0.9896 
All bands + CM     2.53 0.9882 
All bands + LAI     3.08 0.9826 
All bands + fCOVER     3.51  0.9773 
All bands without a-priori 4.66  0.9601 
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As expected, the RMSE without a-priori knowledge is greater than when the NN have 
additional information. Even though the modelled variation in N and CM is smaller than 
that of LAI and fCOVER, the neural network benefited more from knowing N or CM.  

4.3.2.2 Effect of constant (known) N and CM  
Rather than specifying N and CM as a-priori variables, for a species under specific 
conditions we can consider that N and CM are constant. Using PF-set 1, we then further 
reduce the uncertainties in the estimation: the RMSE for the NN trained with only the 
reflectance where N and CM were fixed equalled 1.98 μg/cm2 with the coefficient of 
determination equal to 0.9926, which indicates that the use of a known N and CM indeed 
improves the estimation of the chlorophyll content.  

4.3.2.3 Band reduction to single red + NIR bands 
To see the applicability of this type of NN for broad-band sensors, we can restrict the 
input bands to a band in the red domain + a NIR band (CASISPATIAL bands 3+8). The 
found RMSE for CAB was 17.21 μg/cm2 with R2 = 0.4408. These results are worse than 
for the estimation from all bands with variable N and CM. We must hence conclude that 
the information from the supplementary bands adds more value than knowledge of the 
values for N and CM. 

4.3.2.4 Simultaneous estimation of multiple CV 
As stated in the methodology, for environmental modelling it is of interest to be able to 
simultaneously retrieve information on multiple variables from the same source. We have 
studied the retrieval of CAB together with LAI and fCOVER from the reflectance in seven 
bands with known CM and N (PF-set 1). 
Although the CAB estimate is somewhat worse than estimating only CAB from reflectance, 
the accuracy of the fCOVER and LAI estimates are quite fair (Table 4-2).  
 
Table 4-2: Estimation of biophysical parameters from CASISPATIAL bands using a neural network 
inversion. N and CM were set to a fixed value. 

 Input variables Output variable RMSE R2

CAB 2.57 μg/cm2 0.9874 
fCOVER    3.91% 0.9905 All bands  
LAI 0.5201 m2/m2 0.7528 

 
 
 
 
 

4.3.3 Results inversion forward NN 

4.3.3.1 Single NN per band, simultaneous inversion of all NN 
We have created one NN for each of the seven bands where the position, CAB, CM, LAI, 
fCOVER and N were used as input for the network to estimate the canopy reflectance for 
the given wavelength corresponding to the used input variables. 
The training results were very good: the errors were less than 1.8% (RMSE/mean(ρλ)), 
see Table 4-3. 
 
Table 4-3: RMSE [-]and R2 between the modelled and estimated reflectances of the CASISPATIAL 
bands 
 B1 B2 B3 B4 B5 B7 B8 
RMSE 0.0019 0.0029 0.0025 0.0032 0.0054 0.0048 0.0049 
R2 0.9997 0.9995 0.9998 0.9996 0.9972 0.9978 0.9977 
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The inversion was applied for 200 samples using the same minimisation algorithm 
calculating the RMSE between the 7 estimated and observed reflectance values. It was 
observed that this minimisation did not manage to solve the system of equations 
properly: the algorithm constantly reached one or more of the upper or lower limits.  
Theoretically these NN could give a good performance, as they are highly specialised, but 
unfortunately the results were not very promising. This can be attributed to the ill-
posedness of the system (multiple combinations of canopy/scene properties may lead to 
the same reflectance) and the fact that the uncertainties of 7 networks are combined.  

4.3.3.2 One NN to estimate ρ in 7 bands, followed by inversion to retrieve 7 CV 
To reduce the uncertainties due to the linking of 7 networks, we have created a single 
NN that was taught to estimate the reflectance in all 7 bands from the 7 input variables. 
This network was inverted as in the previous section and gave more consistent results: 
the RMSE for CAB was 16.79 μg/cm2 and for fCOVER it was 0.1679. Considering that 7 
variables had to be estimated, these results are relatively good. 

4.3.3.3 One NN to estimate ρ in 7 bands, followed by inversion to retrieve CAB, fCOVER and LAI 
To reduce the ill-posedness of the inversion procedure, we have restricted the number of 
CV to be inverted to CAB, LAI and fCOVER. CM and N were set to fixed quantities (PF-set 
1). 
The RMSE for CAB equalled 8.15 μg/cm2, for fCOVER this was 0.0456 and for LAI 1.20 
m2/m2, which is worse than an estimate equal to the mean of the dataset would be 
(considering a standard deviation of 1.04 m2/m2). 

4.4 Conclusions and discussion 
In conclusion, the classical NN were successful in retrieving the CV. The use of a-priori 
knowledge led to an increased accuracy of the estimates. Simultaneous retrieval of LAI, 
CAB and fCOVER had very good results for the last two variables (R2 = 0.99, RSME for CAB 
was 2.57 μg/cm2 and the RMSE for fCOVER was < 4%) and a reasonable accuracy for LAI 
(RMSE= 0.52 m2/m2). 
Although it appears more natural to model the radiance as a result of a set of biophysical 
parameters (giving a known and constant viewing geometry etc.), training a neural 
network to run in forward mode did not give very promising results at high spatial 
resolutions. As shown in this chapter, the uncertainties due to imperfect training and ill-
posed inversion led to a significantly reduced performance of these networks with 
respect to the classical inversion. 
One source of uncertainties when applying NN trained with these simulated datasets to 
real imagery is shadowing. As the FLIGHT model does not consider vegetated parts that 
are outside of the scene, but that would influence the reflectance of that scene by casting 
shadows upon it, the modelled photon path is therefore not corresponding to the reality. 
Shadowed bare soils could for instance not be modelled and it is likely that this will cause 
misinterpretations when the retrieval algorithm is presented with such an input spectrum. 
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5 Application of vegetation indices to retrieve the chlorophyll 
content from canopy reflectance data 

A vegetation index (VI) is defining a relationship between the reflectance of a leaf or 
canopy measured by a sensor and a property of that leaf or canopy which we shall call 
CV. Mathematically, the VI approximates how the reflectance ρ is changing with an 

observed change of CV: VI = f(
CV∂
∂ρ ). Ideally, it should be sensitive only to that specific 

property and not influenced by other factors. Although vegetation indices have been 
found to be applicable only under a number of restrictions, they have the advantage that 
they can be computed much faster than canopy reflectance models can be inverted 
(Houborg et al. 2007). 
In this chapter we present the retrieval of chlorophyll content from canopy reflectance 
data using vegetation indices. All relations and results are based on simulations with 
PROSPECT+FLIGHT. Section 5.1 describes the used indices and the relations used for 
the retrieval of CAB using vegetation indices. The results of these relations applied to the 
validation data are presented in section 5.2 and a comparison with the NN results can be 
found in section 5.3 with the concluding remarks in paragraph 5.4. 

5.1 Retrieval of CAB from vegetation indices  
In this study, we have CASI imagery at 1 and 4 m with different spectral resolutions. In 
this chapter we will first present the relations with CAB based on VI derived from 
modelled reflectance at CASI 1 m in spatial configuration for the three plots (5.1.1). In 
section 5.1.2 we present the relations between CAB and CASISPECTRAL simulated 
reflectance, where we also have introduced a variability in the soil brightness. The 
performance of these indices has been evaluated at different spatial resolutions (4, 32 and 
300 m) in section 5.1.3.  

5.1.1 Application of indices at 1 m spatial resolution and with CASISPATIAL bands 
A number of vegetation indices have been tested in this study for the retrieval of 
biophysical properties and the sensitivity to other non-constant variables. Table 5-1 
describes those VI used for the CASI images in spatial configuration. We will refer to the 
indices used with the CASI sensor in spatial configuration as VISPATIAL. The majority of 
the enlisted indices have proven to be suitable for the estimation of CAB; MTVI1 and 
RDVI, as well as the NDVI have been associated with LAI (Haboudane et al. 2004a; 
Stenberg et al. 2004) and VARI was found to be suitable for the estimation of fCOVER 
(Gitelson et al. 2002). OSAVI – sensitive to LAI and fCOVER but not to the soil 
background – has been included because of its usage in the ratio of indices 
TCARI/OSAVI and MCARI/OSAVI. 
 
Table 5-1: Vegetation indices used in CASISPATIAL configuration 
Index name Original wavelengths Used bands Source 
GM1 R750/R700 R750: B5 

R700: B4 
(Gitelson and 
Merzlyak 1996) 

GM2 R750/R550 R750: B5 
R550: B2 

(Gitelson and 
Merzlyak 1996) 

G R554/R677 R677: B3 
R554: B2 

(Zarco-Tejada et 
al. 2005) 

NDVI = PSNDa (RNIR - RRED)/(RNIR + RRED) 
(R800 - R675)/ (R800 + R675) 

RNIR: B8 
RRED: B3 

(Blackburn 
1998) 
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RDVI (R800 - R670)/(R800 - R670)0.5 R800: B8 
R670: B3 

(Haboudane et 
al. 2004a) 

RVI = NIR/R RNIR/RRED or R800/R675 RNIR: B8 
RRED: B3 

(Jordan 1969) 

VARI (RGREEN - RRED)/(RGREEN + RRED - 
RBLUE) 

RRED: B3 
RGREEN: B2 
RBLUE: B1 

(Gitelson et al. 
2002) 

TVI 0.5 ×(120 × (R750 - R550) - 200 × 
(R670 - R550) 

R750: B5 
R670: B3 
R550: B2 

(Broge and 
Leblanc 2000) 

MTVI1 1.2 × (1.2 ×(R800 - R550) - 2.5 × 
(R670 - R550)) 

R800: B8 
R670: B3 
R550: B2 

(Haboudane et 
al. 2004a) 

MCARI ((R700-R670) - 0.2 × (R700-R550)) × 
(R700/R670) 

R700: B4 
R670: B3 
R550: B2 

(Daughtry et al. 
2000) 

TCARI 3 × ((R700-R670) - (0.2 × (R700-R550) 
× (R700/R670))) 

R700: B4 
R670: B3 
R550: B2 

(Baret et al. 
1989) 

OSAVI (1 + 0.16) × (R800-R670)/(R800 + 
R670 + 0.16) 

R800: B8 
R670: B3 

(Rondeaux et al. 
1996) 

MCARI/OSAVI  " (Daughtry et al. 
2000) 

TCARI/OSAVI  " (Haboudane et 
al. 2002) 

MTCIa (R753.75 – R708.75)/(R708.75 - R681.25) R753.75: B5 
R708.75: B4 
R681.25: B3 

(Dash and 
Curran 2004) 

MERIS red-edgea 705 + (48.75 ×(((R665 + R775)/2-
R705)/(R753.75-R705)) 

R775: B7 
R753.75: B5 
R705: B4 
R665: B3 

(Clevers et al. 
2002) 

CASI red-edgeb 700.7088 +  
(49.4822 ×(((R670 + R775)/2-
R701)/(R750-R701)) 

R775: B7 
R750: B5 
R701: B4 
R670: B3 

(Guyot and 
Baret 1988) 

a Note that the actual MERIS band configuration may differ (for instance, metadata of a 
MERIS image taken in 2003 indicated that MERIS band 9 was located at 708.42 nm). 
b The coefficients used in the CASI red-edge indices have been calculated according to 
(Guyot and Baret 1988). 
 
For the three study sites, the simulated HDRF at 1 m have been used to calculate each of 
the indices. The corresponding CAB content was then related to the VI by describing the 
relation through a trend line. Eight functions have been tested to fit such a trend line, 
which are given in Table 5-2.  
Three parameters (α, β and δ) were iteratively optimised using an unconstrained non-
linear minimisation of the RMSE between the estimated CAB from the fitted equation and 
the observed CAB. The best fitting function was chosen for each VI based upon the 
highest R2 of the fitted equations. This model was then validated using a validation 
dataset and the quality of this best fit assessed in terms of R2 and RMSE. 
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Table 5-2: Equations of the tested fitting equations  
Model Equation 
1 ( )( )βδα ×+×= VICAB log  
2 ( )βδα +×= VICAB  
3 ( ) βδα ×+×= VI

AB eC  
4 ( )( )( )βδα ×+×−= VICAB log1  

5 ( )( )βδα +×−= VICAB 100  
6 ( ) βδα ×+×−= VI

AB eC 1  
7 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−×=

β
δα VICAB 1log  

8 δβα ++×= VICAB * 
* Note that the term δ is redundant in this equation.  
 
To have an indication of how sensitive the VI are to fCOVER and/or LAI, two subsets of 
the simulations have been created. The first set is limited to values for fCOVER greater than 
0.5 and the second set was limited to fCOVER greater than 0.2 together with LAI greater 
than 2. These partially overlapping subsets with a stronger vegetation signal will be 
compared with the full dataset.  
As we have seen that the NN showed an increased estimation capability for cases when 
CM and N were known (see section 4.4), we will also compare the performance of the 
indices for this situation. 
The input data have been split into a calibration dataset consisting of 70% of the data 
and a validation set containing the remaining 30% of the data. All fitted indices have 
been evaluated using the coefficient of determination R2 and the (normalised) RMSE 
between the estimated CAB values on the trend line and the modelled CAB concentration 
of the validation sets as this allows for comparison with the results of the NN. 

5.1.2 Performance of indices for increased spectral resolution to retrieve CAB 
In this section we describe the estimation of CAB using vegetation indices derived at 
spectral resolutions matching the CASI sensor in spectral mode. 
Some absorption features can only be observed over very narrow wavebands. By 
increasing the spectral resolution and adding more bands, we want to see if we can 
improve the estimation of CAB. These new bands offer the usage of additional VI. All 
used indices and band combinations are listed in Table 5-3. They will be referred to as 
VISPECTRAL. 
 
Table 5-3: Vegetation indices used in CASISPECTRAL configuration 
Index name Original wavelengths Used bands Source 
GM1 R750/R700 R750: B46 

R700: B40 
(Gitelson and 
Merzlyak 1996) 

GM2 R750/R550 R750: B46 
R550: B20 

(Gitelson and 
Merzlyak 1996) 

MCARI ((R700-R670) - 0.2 × (R700-R550)) × 
(R700/R670) 

R700: B40 
R670: B36 
R550: B20 

(Daughtry et al. 
2000) 

TCARI 3 × ((R700-R670) - (0.2 × (R700-R550) 
× (R700/R670))) 

R700: B40 
R670: B36 
R550: B20 

(Baret et al. 
1989) 
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OSAVI (1 + 0.16) × (R800-R670)/(R800 + 
R670 + 0.16) 

R800: B53 
R670: B36 

(Rondeaux et al. 
1996) 

MCARI/OSAVI  " (Daughtry et al. 
2000) 

TCARI/OSAVI  " (Haboudane et 
al. 2002) 

NDVI = PSNDa (RNIR - RRED)/(RNIR + RRED) 
(R800 - R675)/ (R800 + R675) 

RNIR: B53 
RRED: B36 

(Blackburn 
1998) 

TVI 0.5 ×(120 × (R750 - R550) - 200 × 
(R670 - R550) 

R750: B46 
R670: B36 
R550: B20 

(Broge and 
Leblanc 2000) 

G R554/R677 R677: B37 
R554: B20 

(Zarco-Tejada et 
al. 2005) 

RDVI (R800 - R670)/(R800 - R670)0.5 R800: B53 
R670: B36 

(Haboudane et 
al. 2004a) 

MTVI1 1.2 × (1.2 ×(R800 - R550) - 2.5 × 
(R670 - R550)) 

R800: B53 
R670: B36 
R550: B20 

(Haboudane et 
al. 2004a) 

MTCIa (R753.75 – R708.75)/(R708.75 - R681.25) R753.75: B47 
R708.75: B41 
R681.25: B37

(Dash and 
Curran 2004) 

MERIS red-edgea 705 + (48.75 ×(((R665 + R775)/2-
R705)/(R753.75-R705)) 

R775: B50 
R753.75: B46 
R705: B40 
R665: B36 

(Clevers et al. 
2002) 

VARI (RGREEN - RRED)/(RGREEN + RRED - 
RBLUE) 

RRED: B36 
RGREEN: 
B20 
RBLUE: B12

(Gitelson et al. 
2002) 

NPCI (R680 - R430)/(R680 + R430) R680: B37 
R430: B4 

(Peñuelas et al. 
1994) 

Red/green RRED/RGREEN RRED: B36 
RGREEN: 
B20 

(Gamon and 
Surfus 1999) 

Sipi (R800 - R445)/(R800 + R680) R800: B53 
R680: B37 
R445: B6 

(Peñuelas et al. 
1995) 

PSSRa = RVI R800/R675 = RNIR/RRED R800: B53 
R675: B36 

(Blackburn 
1998) 

PSSRb R800/R650 R800: B53 
R650: B33 

(Blackburn 
1998) 

Yellowness index (R(λ– 1) + 2 ×R(λ0) + R(λ+1))/∆λ2

Implemented as: (B24 – 2×B30 + 
B36) 
/(((671.3019-625.9056)/1000)2) 

B36 
B30 
B24 

(Adams et al. 
1999) 

CASI red-edgeb 701.6588 + (38.049 ×(((R664 + 
R778)/2-R702)/(R740-R702)) 
 

R778: B51 
R740: B45 
R702: B40 
R664: B36 

(Guyot and 
Baret 1988) 
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where n equals the total number 
of bands for the wavelengths 
between 650 and 725 nm with 
j=1 equal to the first band within 
this range, etc. 

B33 until 
B43 

(Malenovský et 
al. 2006) 

a The actual MERIS band configuration may differ (for instance, metadata of a MERIS 
image taken in 2003 indicated that MERIS band 9 was located at 708.42 nm). MTCI2 
uses B46 instead of B47 and B40 instead of B41. 
b The coefficients used in the CASI red-edge indices have been calculated according to 
(Guyot and Baret 1988). 
 
Similar to section 5.1.1, we will estimate the CAB content by relating its values with 
simulated VI.  

5.1.3 Performance of vegetation indices with increasing spatial resolution  
In this section we first explore the response of one chosen VI – the ANMB index – to 
demonstrate the influence of other factors than CAB on the performance of VI-CAB 
relations. This index was developed for the estimation of CAB under conditions of 
relatively high LAI (2 to 9 m2/m2) and for a very high spatial resolution (Malenovský et 
al. 2006). First, the size of the observed scene/pixel (ASCENE) was set to 1 m2 and fCOVER 
was kept constant (100%) and a total of 11 bands was used with a dark soil background. 
The simulated chlorophyll contents ranged from 20 microgram/cm2 to 80 
microgram/cm2 with steps of 5. LAI was simulated from 0.5 to 4.5 (step size 1 m2/m2). 
The performance of the index was compared with simulations done with ASCENE = 32 
×32 m2, where fCOVER was corresponding to field conditions. As this involved a large 
proportion of bare soil, the behaviour of the index was studied for different soil 
brightness conditions. 
Subsequently, the performance of all VISPECTRAL at 4, 32 and 300 m is compared. 

5.2 Results  
Note that all presented results in this section refer to the (n)RMSE and R2 of the 
validation datasets. 

5.2.1 Application of vegetation indices using CASISPATIAL bands at 1m 
In Figure 5-1 we have presented the results of the fitting procedure for all study sites at 1 
m using the full input datasets. We can see that most indices give a normalised RMSE 
(nRMSE = RMSE/ ABC ) of around 0.4. The two red-edge indices and the MTCI have 
the best performance (see Table 5-4), followed by MCARI/OSAVI and TCARI/OSAVI 
for fields CLO1 and CLO4. All of these 5 indices had a worse performance for CLO3 
compared to CLO1 and CLO4. Considering that the trees in this plot have greater 
dimensions (EXY, EZ and h), this might be explained by the trees having a greater 
structural complexity and more intense differences between sunlit and shaded parts of 
the canopy. On the other hand, the fCOVER was on average greater than for the CLO1 and 
CLO4 datasets and therefore the soil background signal was weaker. 
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Figure 5-1: Obtained R2 and normalised RMSE values for the fitted equations relating CAB content 
with VISPATIAL at 1 meter applied to the validation set. 
 
Table 5-4: Fitted equations for the 3 best performing indices for the three study sites 
Field Index Equation RMSE R2

MTCI ( )( )05.037.2835.43100 −−×−= VIC AB
 9.21 0.79 

MERISRE CAB=7.08 × VI - 5095 11.30 0.69 CLO1 
CASIRE CAB=6.98 × VI - 4992 11.30 0.69 
MTCI 

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−×=
70.3

99.01log32.59 VIC AB
 13.17 0.65 

MERISRE CAB=6.77 × VI - 4870 15.37 0.51 
CLO3 

CASIRE CAB=6.67 × VI - 4770 15.37 0.51 
MTCI 

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−×=
93.4

79.11log79.73 VIC AB
 8.28 0.85 

CASIRE CAB=10.15 × VI - 7293 9.65 0.78 CLO4 
MERISRE

⎟
⎠
⎞

⎜
⎝
⎛

×−
−

−××= 9
9

1057.2
6181log1032.1 VIC AB  

20.38 0.78 

RMSE is given in μg/cm2 and can be converted to nRMSE by dividing by the mean CAB of each 
dataset (50.39 for CLO1, 60.01 for CLO3 and 56.67 for CLO4). Note that for CLO4 the error is 
relatively high when estimating with the MERIS red-edge index. GM1 and GM2 had a lower 
RMSE, yet their R2 was very low. 

5.2.1.1 Influence of other CV on relation VISPATIAL-CAB 
In the following part we highlight the influence of other variables on the VISPATIAL-CAB 
relations by means of the behaviour of four chosen indices as examples. 
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Figure 5-2: MCARI/OSAVI under different CAB, LAI and fCOVER conditions. Green circles: 
fCOVER=13; blue stars: fCOVER=38; red squares: fCOVER=95; Darkness indicates relative shadowing of 
the observed scene. 
 
In Figure 5-2 the MCARI/OSAVI index is presented for different conditions of CAB, 
LAI and fCOVER. We can see that small variations in MCARI/OSAVI exist for the same 
combination of LAI and CAB. These are mainly a result of (self) shadowing by the 
vegetation (sun position with respect to the observed canopy part) and partially because 
of small differences in the observed tree volume. Furthermore, we can see that this index 
is sensitive to changes in LAI for LAI<2: the index has increasing values for increasing 
LAI. In these cases, the index cannot be used correctly to retrieve CAB unless LAI is 
known. 
Figure 5-3 shows the TCARI/OSAVI index for different fCOVER. For low fCOVER, sunlit 
scenes have a lower value for TCARI/OSAVI than shadowed scenes. The differences 
between sunlit and shadowed scenes get smaller with increasing LAI. 
Under fCOVER =38% sunlit scenes still have a lower value than shadowed pixels, unless 
LAI > 2 and CAB <= 50 µg/cm². Scenes with a high fractional coverage (95/100%) that 
are sunlit have a higher value than shadowed areas for LAI > 0.5. The index becomes 
less sensitive to CAB at high values of CAB. We can conclude that the response of the 
index is a complex combination of LAI, fCOVer, CAB and the light conditions. 
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Figure 5-3: TCARI/OSAVI for different fractional coverages, LAI and chlorophyll contents. 
Darkness indicates relative shadowing of the observed scene. 
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Figure 5-4: NDVI trends with CAB for different LAI and fractional coverages (green circles: 
fCOVER=13; blue stars: fCOVER=38; red squares: fCOVER=95). Obscurity represents shadowing. 
 
For the NDVI (Figure 5-4) it is clear that sunlit areas have a lower value than shadowed 
vegetation. This can lead to confusion with sunlit areas with a higher fractional cover 
(Figure 5-4). The NDVI response shows a decreasing sensitivity for increasing 
chlorophyll contents as well as a saturation for LAI > 2.5. These effects have been 
extensively described in literature (see for instance (Gitelson et al. 1996; Haboudane et al. 
2004b; Stenberg et al. 2004; Thenkabail et al. 2000)) . 
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We conclude that the index may be of use to retrieve CAB for areas with a high fractional 
coverage and high LAI, so that a small change in fCOVER or LAI is not influencing the 
index and as a result the retrieval of CAB. The index is also sensitive to changes in the 
structural parameter N (not shown), which should therefore be known or constant. 
Vegetation with low LAI and/or low fractional coverage can show large confusion with 
the background spectrum, especially for soils with a high brightness. Under those 
circumstances, the index should not be applied to retrieve CAB. 

5.2.1.2 Reduction of the non-vegetation signal 
We have compared the use of all simulated spectra with the use of spectra that have a 
minimal proportion of vegetation inside the observed pixel. Two of such thresholds were 
tested, namely setting the fCOVER to a minimum of 0.5 and secondly, restricting fCOVER to a 
minimum of 0.2 and the LAI to values over 2. 
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Figure 5-5: R2 between CAB estimated from VI-CAB relation and modelled CAB for CLO4 
 
Figure 5-5 presents the R2 between the estimated and modelled CAB contents for CLO4. 
We see that all indices computed with a greater average vegetation proportion have 
resulted in a better fit, especially the GM and *CARI* indices (MCARI, TCARI, 
MCARI/OSAVI and TCARI/OSAVI). The extent of the improvement depends on the 
sensitivity of each vegetation index to background effects (low fCOVER and/or low LAI 
values). Some indices are therefore not very suitable for CAB estimation in open canopies 
whereas the red edge indices and the MTCI appeared to be well applicable for both open 
and more closed canopies.  

5.2.1.3 A-priori knowledge of N and CM 
Table 5-5 presents the results for the comparison of VISPATIAL created with PF-sets 1 (N 
and CM are constant) and 2 (N and CM were not constant in simulations) for CLO3 at 1m 
spatial resolution. We see that all VISPATIAL except the MCARI, TCARI and 
MCARI/OSAVI indices have an improved coefficient of determination when N and CM 
are constant. For all indices, the nRMSE has improved. This corresponds with generally 

 45
 



 

good fits of vegetation for site- and species specific conditions that are often found 
(Baret and Guyot 1991; Fang et al. 2003). We must note here that the fitting procedure 
does not necessarily reproduce the same fit when run with the same settings.  
 
Table 5-5: Comparison of fitting results for PF-sets 1 and 2 

R² nRMSE 
 PFset 1 PFset 2 PFset 1 PFset 2 
GM1 0.23 0.21 0.33 0.35
GM2 0.21 0.19 0.33 0.35
MCARI 0.13 0.15 0.38 0.38
TCARI 0.19 0.19 0.38 0.38
OSAVI 0.01 0.01 0.37 0.38
TCARI/OSAVI 0.11 0.09 0.38 0.39
MCARI/OSAVI 0.14 0.15 0.38 0.38
NDVI 0.01 0.01 0.37 0.38
TVI 0.00 0.00 0.37 0.56
G 0.00 0.00 0.37 0.39
RDVI 0.01 0.01 0.37 0.38
MTVI1 0.00 0.00 0.37 0.38
MTCI 0.79 0.65 0.18 0.22
MERIS red edge 0.67 0.51 0.23 0.26
CASI red edge 0.67 0.51 0.23 0.26
VARI 0.00 0.00 0.37 0.38
RVI 0.15 0.12 0.34 0.36

 

5.2.2 Application of vegetation indices for the retrieval of CAB using CASISPECTRAL bands 
Figure 5-6 shows the performance of the VISPECTRAL for the estimation of CAB for the 
three plots. Although CLO3 presents a higher degree of complexity as CM is not constant 
as with CLO1 and CLO4, the average fCOVER is higher due to the larger tree dimensions 
(see Table 3-7). The latter however also increases the differences in shadowing. 
We can observe that this causes different responses by the indices for the three plots. In 
general, the nRMSE is lowest for CLO3, with the exception of the CASI red edge index. 
The performance in terms of the coefficient of determination decreases on CLO3 for the 
indices with an R2 > 0.2 except YI, MTCI2 and TCARI/OSAVI. In this case we do see 
that the R2 improves for MCARI and TCARI if they are taken as a ratio with OSAVI to 
correct for the influence of the soil. Furthermore, we see that the nRMSE is ranging 
between 0.20 and 0.40, which is similar to the values found for the VISPATIAL in section 
5.2.1. This points out that the variability in soil brightness gives a similar effect in terms 
of error as having variability in N and/or CM. 

 46
 



 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

GM_1

GM_2

MCARI

TCARI

OSAVI

TCARI/OSAVI

MCARI/OSAVI

NDVI

TVI

G

RDVI

MTVI1

MTCI

MTCI2

MERIS red-edge

CASI red-edge

VARI

NPCI

Red/Green

SIPI

RVI

PSSRb

YI

ANMB

nRMSE

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

GM_1

GM_2

MCARI

TCARI

OSAVI

TCARI/OSAVI

MCARI/OSAVI

NDVI

TVI

G

RDVI

MTVI1

MTCI

MTCI2

MERIS red-edge

CASI red-edge

VARI

NPCI

Red/Green

SIPI

RVI

PSSRb

YI

ANMB

R2

CLO4
CLO3
CLO1

 
Figure 5-6: R2 (left) and normalised RMSE (right) for the CAB estimation using VISPECTRAL at 4 
meter. 

5.2.3 Application of vegetation indices at different spatial resolutions 
We have chosen one VISPECTRAL – the ANMB index – to illustrate the sensitivity to other 
factors than CAB and the dependence of these factors on the spatial resolution. 
Under constant fCOVER (100%) and with a dark soil background, simulations have been 
carried out with the PROSPECT+FLIGHT model. The simulated chlorophyll contents 
ranged from 20 microgram/cm2 to 80 microgram/cm2 with steps of 5 μg. LAI was 
simulated from 0.5 to 4.5 with steps of 1 m2/m2. 
We have made the following observations: 

• The index increases with increasing LAI, but shows a saturation for higher values 
(largest response to increases at low values).  

• The lower the chlorophyll content, the larger the response to LAI. 
• Increase of the structural parameter N leads to a decrease in ANMB. 
• Increase of LAI leads to a higher ANMB. 
• Increase of CAB leads to a higher ANMB. 

For greater pixel sizes, we will have a lower fractional coverage, as the olive trees do not 
have overlapping crowns and thus some background signal will be recorded. We have 
investigated the use of this index at a pixel size of 32 m where we have a fractional 
coverage of 23%. As this involves a large proportion of bare soil, we have also simulated 
three different soil brightness classes.  
The role of the background signal was found to significantly influence the usage of the 
index (see Figure 5-7). On the darkest soil, the index was showing the desired response 
of an increase with increasing chlorophyll contents. However, on the light soil, after an 
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initial increase, the index was remaining equal (for low LAI) or started to decrease (LAI 
> 1.5) for chlorophyll contents over 50-60 μg/cm2. 
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Figure 5-7: Response of ANMB to changes in background, LAI (shown as brightness with higher 
values having a higher light intensity) and CAB. fCOVER = 23%, N = 4. 
 
For other indices, a similar checking should be carried out to identify possible error 
sources, as the responses of indices cannot be generalised. When considering the same 
variation in other variables, the influence of, for example, the soil brightness on the trend 
of an index with changes in CAB has been found to be a complex relation. For instance, 
the position of the MERIS red-edge shifted to lower wavelengths for increased soil 
brightness (not shown). This effect was however reduced when the chlorophyll content 
increased. The MTCI2 had a large variation in values for the index with a dark soil 
background while the MTCI with only slightly different wavelengths was more clearly 
concentrated (not shown). This indicates that care should be taken to investigate the 
sensitivity of an index to CV other than the single variable which will be related to by 
that index, when heterogeneity of these other CV is known to exist in a given study area. 
 
At high spatial resolutions, the positions of each tree with respect to the plot are not of 
relevance as we observe parts of a tree up to the full tree. At low spatial resolutions we 
cannot distinguish the individual tree crowns and rather see the forest or plot. The 
spacing between trees becomes important with respect to fCOVER and mutual shadowing, 
as well as the soil background signal. At an intermediate resolution, the reflectance is 
both influenced by tree and inter-tree characteristics (Colwell 1974). 
In Figure 5-8 we compare the performance of all VISPECTRAL at different spatial 
resolutions for CLO4. We see that several indices such as Red/Green, TCARI and 
MCARI and the Greenness index (G) have suddenly an increased performance at 32 m. 
This can be partially attributed to the fact that the fCOVER and CM were constant for 
simulations at this spatial resolution. 
When we compare the results for MTCI and MTCI2, we also see that the chosen 
wavelengths, even though very close, do matter. Surprisingly, the MCARI/OSAVI and 
TCARI/OSAVI have a better performance at 300 m than at 4 m in this study, although 
the indices were developed for high spatial resolutions (Zarco-Tejada et al. 2004b). They 
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were also specifically designed to work with open canopy crops, such as olive trees, but 
the performance was much lower than that of the red edge indices and of MTCI. 
Finally, Appendix II summarises a short study on the retrieval capabilities of VI at the 
leaf level. 
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Figure 5-8: Comparison of the performance of vegetation indices at 4 m, 32 m and 300 m. Left: R2, 
right: normalised RMSE. 

5.3 Comparison with the results obtained from model inversion by neural networks 
The results given by the indices can be compared with those obtained by the NN 
approaches. For this comparison, we have taken the simulations carried out with the 
CASISPATIAL simulations for CLO3 with PF-sets 1 and 2. The three indices with the best 
performance have been shown in Table 5-6 together with the results for the classical NN 
approach. 
 
Table 5-6: Fitting results for the MTCI, MERIS and CASI red edge indices. nRMSE was 
calculated by dividing the RMSE by the mean CAB of the datasets 

R² nRMSE 
 PF-set 1 PF-set 2 PF-set 1 PF-set 2 
MTCI 0.79 0.65 0.18 0.22
MERIS red edge 0.67 0.51 0.23 0.26
CASI red edge 0.67 0.51 0.23 0.26
NN only CAB 0.99 0.96 0.03 0.08
NN CAB + fCOVER 
+ LAI - 0.99 - 0.04
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5.4 Conclusions and discussion  
Indices should be evaluated for their response to non-constant variables other than the 
one we seek to find a relation with. In literature it has been stated that the goodness of fit 
should be presented in the form of a derivative (Baret and Guyot 1991; Huete et al. 1994; 
Ji and Peters 2007) rather than as a single value. Such an evaluation would for instance 
allow easy identification of saturation of the index. However, the performance of the NN 
cannot be evaluated in such a way as they do not describe a single relation.  
Medium spatial resolution sensors such as MODIS and MERIS provide coverage of the 
Earth’s surface with a relatively high temporal frequency. Although the spatial resolution 
does not allow for a detailed analysis of individual trees, it gives us an opportunity to 
monitor the field status throughout the growing season. As MERIS contains 15 bands in 
the VIS+NIR region with a resolution of 300 meter, a number of spectral indices have 
been developed for this sensor to derive canopy characteristics. The first index that was 
evaluated in this study is the MERIS terrestrial chlorophyll index (MTCI (Dash and 
Curran 2004)). The second index that we have evaluated is the MERIS red edge index 
(λRE_MERIS (Clevers et al. 2002)). Together with the developed CASI red edge index, these 
indices have proven to work most efficiently at both a high spatial resolution and lower 
spatial resolutions and to remain stable under conditions of low vegetation proportions. 
However, we have seen that the neural networks were much better able to retrieve the 
chlorophyll content from the same datasets. Even when the inversion was complicated 
by adding two more CV to be retrieved, the results are still better. The only classical 
network that had a similar accuracy to that of the best indices was the one trained with 
only one band in the red and a single band in the NIR (R2 was 0.44, nRMSE = 0.29). 
Considering that the MTCI has used three bands and the red edge indices have used four 
bands, we can conclude that some of the lower performance can be attributed to the 
fewer amount of available spectral information, yet the NN appear to be more flexible in 
relating CAB to the reflectance. In addition, indices have been shown to have a larger 
sensitivity to other CV and may show saturation effects. Further research is needed to 
identify which wavelengths are essential to not only derive chlorophyll but to 
compensate for influences by other CV. 
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6 Chapter 6: Application of retrieval algorithms to CASI imagery 

6.1 Retrieval algorithms developed with simulated data applied to real CASI data 
In this section we show the results of the retrieval algorithms that were trained in chapter 
four and five. The CASI images were masked to identify each individual tree. The four 
masks (k) that have been described in section 3.2.4 were applied iteratively. For the VI, 
the mean spectrum of each masked crown was used to calculate all VISPATIAL and the 
relations derived in chapter five were applied (see Figure 6-1). The estimated chlorophyll 
content was compared with the measured chlorophyll content for each tree.  
A similar strategy was followed for the NN: the trees were identified, masked and the 
mean reflectance spectrum of each crown was used as input for the NN. The estimated 
CAB values were compared with those measured for each of the trees. 

 
Figure 6-1: Application of the relations derived between VI and CAB from PROSPECT+FLIGHT 
 
The relations that were developed between the VI and the CAB from the modelled 
simulations gave bad results for most VISPATIAL when applied to the real data.  
On CLO1, most VISPATIAL underestimated CAB except for the red edge indices. The 
restriction to more ‘vegetation signal’ increased the RMSE. The lowest RMSE were 
obtained with the red-edge indices (RMSE = 9.30 μg/cm2 compared to a standard 
deviation in the observations of 9.65 μg/cm2), but the R2 only reached 0.11. 
On CLO4, all relations based on the indices let to an underestimated CAB. The RMSE 
was always greater than the standard deviation σ of the observations. The best estimates 
were given by the relation based on the MTCI trained with fCOVER > 0.5: RMSE =13.861 
μg/cm2 (compared to σ=4.979 μg/cm2) with a low R2 of 0.19. 
For CLO3, the CAB estimates produced by the VISPATIAL were most often overestimating 
the chlorophyll content, except for GM1, GM2, MTCI and RVI that always produced an 
underestimation (Table 6-1). When restricting the training set to a higher degree of 
vegetation in the spectrum (minimum fCOVER and/or LAI threshold, see Table 6-1), we 
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see that more indices (NDVI, VARI, OSAVI, RDVI and MTVI1) produce an 
underestimation of CAB for some k.  
 
Table 6-1: Best estimates for CAB compared to measured CAB in CLO3 for different masks  
Set  k Index Mean est. RMSE R2

1 MCARI/OSAVI 50.80 6.845 0.26 
2 MTCI 49.47 8.550 0.35 
3 MTCI 50.33 7.916 0.33 

fCOVER>0 
LAI>0 

4 MTCI 48.64 9.355 0.30 
1 MCARI/OSAVI 58.66 6.383 0.26 
2 MTCI 52.76 6.162 0.34 
3 MTCI 53.74 5.768 0.32 

fCOVER>0.2 
LAI > 2 

4 MTCI 51.79 7.023 0.30 
1 MCARI/OSAVI 60.80 7.389 0.26 
2 MTCI 55.39 5.037 0.34 
3 MTCI 56.41 5.104 0.32 

fCOVER>0.5 
LAI > 0 

4 MTCI 54.38 5.664 0.30 
Observations μ=56.62 σ=6.07 n/a 
μ=mean, σ=standard deviation 
 
Inversion of the forward NN resulted in the minimisation algorithm continuously 
reaching the upper boundary for chlorophyll and was therefore unsuccessful. 
In Table 6-2 we see that most classical NN also overestimated the chlorophyll content. 
Only the NN that were trained to estimate CAB, LAI + fCOVER from all 7 CASISPATIAL 
bands underestimated CAB for k 2, 3 and 4. The NN producing the lowest RMSE had a 
very low R2, indicating that all estimates were close to the mean observed CAB, but 
uncorrelated with the observations.  
 
Table 6-2: Estimation results for application for CLO3 of PF-trained NN 
# bands # CV PF-set Mean est. RMSE R2 k 

60.58 10.05 0.19 1 
44.34 14.71 0.25 2 
43.63 15.50 0.22 3 

7 3 1 

41.54 17.02 0.16 4 
205.52 166.52 0 1 
-213.45 300.63 0.02 2 
-256.89 330.24 0.05 3 

7 3 2 

-107.55 234.80 0.03 4 
213.80 157.86 0.04 1 
228.61 173.26 0.11 2 
215.71 161.69 0.05 3 

7 1 1 

127.90 78.86 0 4 
142.70 153.78 0 1 
1066 1028.6 0 2 
1092 1064.9 0 3 

7 1 2 

694 684.3 0 4 
59.30 6.61 0.02 1 
58.73 6.36 0.01 2 
57.83 6.20 0 3 

2 1 1 

58.55 6.27 0.03 4 
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57.12 6.39 0.04 1 
69.05 13.89 0.02 2 
69.12 14.05 0 3 

2 3 1 

71.09 15.70 0.10 4 
Observations μ=56.62 σ=6.07 n/a n/a 

μ=mean, σ=standard deviation 
The best estimation (shown in Figure 6-2) was done by the NN trained with PF-set 1 to 
estimate CAB, LAI and fCOVER. The smallest RMSE equalled 10.04 (using mask 1, R2 = 
0.188) and the largest R2 was found with mask 2 (0.254 with RMSE = 14.71). 
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Figure 6-2: Measured CAB content versus estimated CAB by NN. Application of two masks is 
shown: first mask = manual selection of tree perimeters (includes partial soil signal), second mask 
= NDVI threshold of 0.3 over the first applied masks. 

6.2 Identification of a mismatch between simulated and measured CASI data 
In this section we describe the main reason for the bad results of the application of the 
retrievals with VI and NN. A substantial mismatch was found between the simulated and 
the observed canopy reflectances (see Figure 6-3), which strongly influenced the 
estimation of chlorophyll using the relations created based on the simulated data. The 
NDVI mask was applied as the overall means would not be comparable due to the large 
proportion of bare soil spectra, whereas with the simulations data few bare soil spectra 
were present to avoid redundancy. 
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Figure 6-3: Mean reflectance (full lines) ± 1 standard deviation (dashed-dotted lines) of the 
FLIGHT simulations (in blue) and the CASISPATIAL image for CLO3 after application of an NDVI 
filter (NDVI>0.3) on both datasets to obtain vegetation signals only 
 
The overestimation of the chlorophyll content in CLO3 is contrarily to what might be 
expected from the offset between the CASI simulations and real data, as an increase in 
CAB causes the leaf reflectance in the VIS to decrease whereas the observations required 
an increase in the VIS. However, at the canopy level we found for the crown pixels used 
to generate Figure 6-3 that the measured chlorophyll content was completely 
uncorrelated with the measured reflectance (absolute coefficient of correlation < 0.1 for 
bands 1 till 4). 
 
Different reasons for the mismatch between the simulated and real data can be thought 
of. It could be caused by incorrect parameterisation of the PROSPECT+FLIGHT 
models, the processing of the CASI images and/or limitations of the 
PROSPECT+FLIGHT model. For instance, the FLIGHT model was not specifically 
designed to work at high spatial resolutions. One of the problems that we have 
encountered is that the illumination and shadowing was inappropriate; the model is only 
considering the objects (vegetation) that is present in the observed ‘pixel’ (see red area in 
Figure 6-4).  

 
Figure 6-4: Example of tree with observation scene (indicated with the red box) 
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If we consider that this pixel covers a part of the tree crown on the shaded side, we know 
that the radiation reaching this part has already passed through other parts of the canopy. 
This is however not considered by the model causing a disagreement with the true 
illumination conditions, and as a result of the modelled reflectance. Additionally, under 
conditions of low LAI, the neglecting of non-vegetation elements (stem, branches, etc.) 
may have led to further deviations from the observed reflectances. Further work is 
therefore required to optimise the model for high spatial resolutions and to optimise the 
parameters to reduce differences between simulated and measured reflectances. 
 
A similar mismatch problem was found by (Tan et al. 2005) in the LAI retrieval 
algorithm for MODIS. They revised the look-up tables by tuning the albedos for the red 
and NIR bands to maximise the overlap between the modelled and observed 
reflectances. (Malenovský 2007) has experienced such a problem as well when modelling 
a spruce forest stand at high spatial resolutions with the DART model. Simulated 
reflectances are thought to deviate from the AISA measurements because of the tree 
shape approximation and model parameterisation. 

6.3 Creation of VI-CAB relations from real data 
In this section we test the estimation capabilities of VI derived from CASISPATIAL for CAB 
to see what minimum error could potentially be achieved. 
The first step consisted in identifying the individual trees. Subsequently, iteratively one of 
the masks was applied over the selected pixels. The obtained spectra were then used to 
calculate the indices. The relation between the indices and the measured CAB was 
calculated using the procedure described in section 5.1. The fit was evaluated in terms of 
RMSE and R2. 
Table 6-3 presents the results of fitting the VISPATIAL to the CAB for all three fields 
together (see Appendix III for the individual fields). Note that these numbers refer to all 
the available measurements that were used for the calibration and that therefore this only 
gives an indication of the best possible accuracy. We see that amongst the best indices 
again we find the MTCI. The lowest RMSE is given by MCARI/OSAVI (see also Figure 
6-5 and Figure 6-6). Although TCARI/OSAVI has the highest R2, its RMSE is one of 
the highest, indicating a systematic bias in the estimates. VARI did not have very good 
results with the simulated data, but with the real CASI images it is performing very well. 
 
Table 6-3: Fitting results for VISPATIAL for all three CLO fields together. Mean CAB = 68.75 μg/cm2, 
standard deviation = 11.46 μg/cm2  
Index Mask Fitting model R2 RMSE 
GM1 3 6 0.088 10.904
GM2 3 6 0.131 10.644
MCARI 2 8 0.338 9.290
TCARI 1 3 0.358 11.504
OSAVI 1 8 0.155 10.499
TCARI/OSAVI 2 6 0.515 11.544
MCARI/OSAVI 2 8 0.497 8.097
NDVI 1 8 0.126 10.676
TVI 1 5 0.280 9.670
G 1 6 0.467 11.567
RDVI 1 8 0.195 10.248
MTVI1 1 3 0.304 11.802
MTCI 4 5 0.497 8.230
MERIS red edge 1 8 0.271 9.572
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CASI red edge 1 8 0.271 9.572
VARI 1 8 0.468 8.329
RVI 1 3 0.138 12.081
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Figure 6-5: Estimates versus measurements for the chlorophyll content of 127 trees in CLO 1, 3 
and 4 by applying fitted relation between MCARI/OSAVI and measured CAB 
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Figure 6-6: Top: Chlorophyll content estimated for CLO1 by applying relation with 
MCARI/OSAVI. Down: Chlorophyll content estimated for CLO1 by application of relation with 
MTCI. Black (white) points were having estimated values below 0 (above 100) μg/cm2 

 

 56
 



 

When we compare the relations with MTCI and MCARI/OSAVI applied for CLO1 
(Figure 6-6), we see that the chlorophyll contents found for the trees correspond quite 
well. However, the values for bare soil are in some places very different. Care should 
therefore be taken to isolate the canopy. A mask could be applied over the soil pixels to 
avoid confusion. See Appendix IV for the estimates using MCARI/OSAVI over CLO3 
and CLO4. 
The results for CLO3 (Appendix III Table III-2) showed that the RMSE and the R2 for 
the estimation using the measured CASI reflectances and the MTCI-derived relation 
based on simulations are very close to the best fit-results based on measured reflectance. 
We can conclude that this band combination compensated quite well for the mismatch 
between the simulations and measured reflectances of CLO3. 

6.4 Conclusions 
We conclude that the application of retrieval algorithms based on simulated data should 
be done with care ensuring that the simulations respond to what is seen in the field. 
Sources of error should be identified to give an indication of the quality of the retrieved 
estimates. The mismatch that was found between the simulated and measured ρ led to a 
large overestimation of the chlorophyll content. 
For the simulated data at 1 m, the best VISPATIAL to estimate CAB were MTCI and the 
CASI and MERIS red edge indices. Relations based on simulated data applied to the 
CASI images showed that CAB was mostly underestimated and badly estimated on CLO1 
and CLO4. Best performing indices were the red-edge indices (CLO1) and the MTCI 
(CLO4). The results were somewhat better for CLO3, although here CAB was often 
overestimated. The best results were achieved with MCARI/OSAVI (no masking) and 
MTCI (tree crowns are masked with NDVI threshold). The estimates for CLO3 by the 
NN trained with simulated data were worse than these indices.  
Relations derived from the real data indicated that the chlorophyll content could be best 
assessed with MCARI/OSAVI, MTCI or VARI. The differences in best performance 
between simulated and real data may originate from the CASI calibration or 
discrepancies between simulated and field variability.  

 57
 



 

7 Conclusions and recommendations 
This chapter summarises the conclusions of this thesis and our answers to the research 
questions. 
One of main objectives of this work was to test methods for the retrieval of chlorophyll 
content (CAB) in open canopies from remotely sensed data to identify trees affected by 
iron chlorosis. Two main methods were tested: 1) retrieval of canopy variables (CV) 
through the inversion of the linked PROSPECT+FLIGHT models by means of neural 
networks, and 2) application of empirical relations between vegetation indices (VI) and 
CAB that were defined using PROSPECT+FLIGHT simulations. The simulations and the 
collection of inputs for the models have been described in chapter three. The chlorophyll 
content was varied in addition to the structural parameter N, the dry matter content CM, 
leaf area index (LAI) and fCOVER. Different soil brightness classes were used for the 
simulations in spectral mode. Two sets of simulations were distinguished: PF-set 1 where 
the dry matter content CM and the leaf structural parameter N were set to a fixed value 
and PF-set 2 where these two variables were varied.  
Chapter four relates about creating the neural networks (NN) for the retrieval of CV. 
Two approaches were defined: the “classical” approach and the inversion of a “forward” 
neural network. In the classical approach, the NN were trained with simulated 
reflectances (PF-set 2) from PROSPECT+FLIGHT in seven bands matching the 
CASISPATIAL wavelengths to estimate CV that were used to generate those reflectances. It 
was found that the use of a-priori information significantly increased the estimation 
accuracy of CAB (RMSE decreased from 4.66 μg/cm2 to 2.38 μg/cm2 for training with N 
as additional information besides the reflectance ρ). N and CM were found to be 
providing the most useful information, followed by LAI and finally fCOVER. Upon using 
PF-set 1 (with constant N and CM) estimation of CAB from the same seven bands 
improved further to reach an RMSE of 1.98 μg/cm2. When limiting the training inputs to 
two bands (one red and one NIR), estimates were worse (RSME =17.21 μg/cm2) than 
with variable N and CM. We therefore concluded that the information from the 
supplementary bands added more value than knowledge of the values for N and CM. The 
simultaneous retrieval of LAI and fCOVER in addition to CAB was also tested using the ρ of 
the seven input bands and PF-set 1. The RMSE for CAB then equalled 2.57 μg/cm2, for 
fCOVER it was 3.91% and for LAI 0.52 m2/m2. We conclude that theoretically it is well 
possible to retrieve multiple variables simultaneously using an inversion of a leaf+canopy 
model, provided that important crop characteristics (here N and CM) are known or can 
be considered constant. 
In the second approach, the NN were trained with the CV as an input to estimate the 
canopy ρ. The trained NN were subsequently inverted to find the CV corresponding to 
the canopy ρ. The accuracy of the retrievals was lower than for the classical approach. 
This was attributed to the combination of the training uncertainties with the uncertainties 
in the inversion process. It was concluded that the classical approach led to a higher 
stability of the retrievals. 
In chapter five we have developed relations between vegetation indices and the 
chlorophyll content. It was found to be most important to study the effect of other non-
constant factors, such as LAI or the soil brightness on the behaviour of an index, as 
changes in these other factors may induce a trend that could be confused with a change 
in the main variable under study (the chlorophyll content in this study). The best 
performing indices in terms of RMSE were the approximated MTCI and MERIS red 
edge indices and the developed CASI red edge index. These indices were found to have a 
fairly constant performance over all tested spatial resolutions (1, 4, 32 and 300 m). 
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In chapter six we have described the performance of the trained NN and the derived 
relations between VI and CAB when applied to the real CASI imagery. The results were 
very poor for CLO1 and CLO4 and not very good for CLO3. We identified a mismatch 
between the simulated reflectances and the measured reflectances similar to (Tan et al. 
2005). Possible sources of error are incorrect parameterisation of the 
PROSPECT+FLIGHT models such as approximations made on the dimensions of the 
olive trees or the chosen soil spectrum that may not have been representative, limitations 
of the FLIGHT model at high spatial resolutions and calibration artefacts in the CASI 
images. It was shown that careful validation of the results should be done after 
application of model based relations. Although the simulated spectra can be transformed 
to correspond better to the measured reflectances (Tan et al. 2005), this could increase 
uncertainties and therefore requires a thorough analysis of the error propagation. 
 
The first research question “Which spectral/spatial prerequisites need to be fulfilled to 
detect iron chlorosis?” can be answered by examining the effects of iron chlorosis on a 
plant, causing a distorted iron uptake and distribution. Iron is required by the plant to 
create chlorophyll molecules. An iron deficiency will therefore lead to a reduction of the 
chlorophyll content in new tissue. The first visible signs of this phenomenon called (iron) 
chlorosis can be found near the leaf veins and young leaves as the tissue is lighter green 
or even white in full absence of chlorophyll. 
The following factors play a role in iron chlorosis (Janssen and Beusichem 2000): 

- a high concentration of bi-carbonates + a high pH as a result of a high lime 
content of the soils 

- a high sequence of precipitative events resulting in a reduced gas exchange in the 
soil followed by an increase of the concentration of bi-carbonates 

- a high application dose of alkaline fertilisers 
- a high light intensity 
- an excess of heavy metals such as cadmium, cupper and nickel 
- a high concentration of phosphorus in the soil or inside the plant 
- specific viruses. 

The extent of the area affected by iron chlorosis depends on the cause of the iron 
chlorosis. As stated before, if the iron chlorosis has recently been induced, it will 
practically only be visible in the new leaves. To be able to detect such a stress, a high 
spatial resolution is required. 
However, the main cause of an iron deficiency is a high soil pH, as the solubility of iron 
(hydr)oxids decreases with increasing pH (Janssen and Beusichem 2000). As the soil pH 
does not increase suddenly under normal conditions, this means that most of the iron 
chlorosis will appear over large areas where most to all of the plant has been affected by 
the chlorosis during its life cycle. As a result, areas with lime induced chlorosis (iron 
chlorosis caused by a high soil pH) will show a uniform lower chlorophyll level than 
areas without iron chlorosis. In that case, the remotely sensed imagery does not have to 
be very spatially detailed to identify the affected areas, as the red edge indices and the 
MTCI showed to be well applicable for simulated olive orchards at a spatial resolution of 
300 m. 
With respect to the spectral resolution, we have seen in chapters 4 and 5 that the 
reflectance in at least three wavelengths was needed for both the best VI and the best 
NN. There was no significant difference in the obtained accuracy between the best 
indices applied from CASISPATIAL or from CASISPECTRAL. We have shown that indices that 
required many narrow spectral bands such as the ANMB do not necessarily perform 
better. Nevertheless, no true broad bands have been tested in this study and therefore we 
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cannot indicate what the maximum band widths are with which accurate retrievals can be 
done. 
 
We can only partially answer the second research question “Is it possible to quantify the 
uncertainties in the estimated biophysical parameters with respect to the spatial 
resolution”. With changing resolution, the factors that play a role in the reflectance 
observed at the sensor change as well. For instance, shadowing will be an important 
factor at high spatial resolutions, but at medium to low resolutions, it will be far less 
relevant than the very strong background (soil) signal present in open canopies.  
This change in disturbing factors with upscaling may cause indices to work well at an 
intermediate resolution, whilst giving worse results at low or high resolutions. The 
applicability of an index on a certain scale will therefore depend on its sensitivity to the 
most important factors at that resolution. In this study we have seen that for the 
simulated and real data, the MTCI was a very good estimator of chlorophyll at all 
resolutions (leaf level, 1 m to 300 m) despite the different factors influencing the 
observed reflectance. A series of images with different spatial resolutions should be 
obtained with a single sensor to be able to validate if the observed behaviour of the 
indices with simulated data corresponds with the real situation. 
We conclude that a general answer to this question does not exist. The uncertainties will 
depend on the complexity of the observed landscape, the used spectral resolutions and 
the used methodology to retrieve the biophysical parameters. 
 
The third research question “Can indices be successfully used on reduced spatial 
resolution data to retrieve CAB?” has been answered positively in the discussion of the 
previous question, although we must note that at least it holds true for simulated data. 
Again, we recommend testing with real imagery of different spatial resolutions. 
 
The fourth question “Can we estimate chlorophyll accurately if we use 30 m pixel size 
imagery from olive orchards despite their heterogeneous architecture?” can be answered 
positively as well. We believe that the use of deriving relations between the chlorophyll 
content and indices based on modelling of the olive orchards should be well applicable 
provided that the simulations match the observed reflectances. Inversion of these models 
by means of neural networks is expected to give a greater accuracy, especially if a-priori 
knowledge can be incorporated into the retrieval process. 
 
We have attempted to answer the fifth question “Can we correctly retrieve multiple 
variables simultaneously considering the ill-posedness of the radiative transfer” only by 
means of inversion of the PROSPECT+FLIGHT model using neural networks. If 
“correct” is interpreted as having a certain accuracy in the retrieval, the answer will 
depend on the purpose of the retrieval. If we seek to identify different groups (ranges), 
this will definitely be possible. In chapter 4 it was shown that from simulated data, the 
simultaneous retrieval of CAB, LAI and fCOVER could be done with a reasonable accuracy 
for the three variables (RMSE for CAB = 2.57 μg/cm2, RMSE for fCOVER = 3.91% and for 
LAI was 0.52 m2/m2). However, if a very high accuracy is required, retrieval of each 
variable separately (by creating a NN for each variable) may give better results as the NN 
would be highly specialised. Finally, the combination of indices estimating different CV 
using the same input image may give satisfactory results as well. 
 
As indicated before, we stress that it is very important to test the sensitivity of an index 
to other factors than the one you are interested in. All possible sources of variation in the 
study site should be assessed to see which variables can cause conflictive changes in the 
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index. This is also of most interest when the application of the index at different spatial 
resolutions is intended, as the sources of variation will change.  
We further recommend testing the retrieval by means of neural networks using CASI 
spectral images. It would be interesting to test which bands are most optimal to have a 
stable retrieval considering all other factors influencing the canopy reflectance. In 
addition, identifying the soil brightness by means of a classification of the bare soil visible 
in the CASI images to present this as a-priori knowledge to the NN may have a 
considerable positive effect on the accuracy of the estimated CV. 
Finally, we must realise that modelling will always be an approximation of reality: “The 
best model of a cat is another cat, or preferably the same cat” (Wiener and Rosenblueth 
1945). 
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9 Acronyms, abbreviations and symbols 
θS  solar zenith 
θv  viewing azimuth 
Φs  solar azimuth 
Φv  viewing azimuth 
3-D  three-dimensional 
ASCENE  surface (area) of the scene 
B#  band number 
CAB  chlorophyll a + b content [μg/cm2] 
CASI  Compact Airborne Spectrographic Imager 
CM  dry matter content [g/cm2] 
CV  canopy (biophysical/biochemical) variables 
CW  water content [g/cm2] 
DART  discrete anisotropic radiative transfer model 
EXY  Radius of the tree (horizontal plane) 
EZ  Radius of the tree crown (vertical plane) 
fCOVER  fractional coverage (ground cover) 
FLIGHT Forest LIGHT interaction model 
g  gram 
GA  genetic algorithm(s) 
h  height of the tree 
HCRF  hemispherical conical reflectance factor 
HDRF  hemispherical directional reflectance factor 
LAD  leaf angle distribution (function) 
LAI  leaf area index 
LUT  look-up table(s) 
m  meter 
μ  micro (10-6) or mean 
MERIS  MEdium Resolution Imaging Spectrometer 
MODIS MODerate resolution Imaging Spectroradiometer 
n  nano (10-9) 
N  nitrogen or leaf structural parameter N 
NIR  near infrared region of the electromagnetic spectrum (700 to 1300 nm) 
NN  neural network(s) 
LAI  leaf area index 
PSF  point spread function 
ρ  reflectance 
Rxxx  Reflectance in band or wavelength xxx 
RS  remote sensing 
RTM  radiative transfer model(s) 
σ  standard deviation 
SWIR  short wave infrared (1300 to 2400 nm) 
τ  transmittance 
TIR  thermal infrared 
VI  vegetation index/indices 
VIS  visible region of the electromagnetic spectrum (400 nm to 700 nm) 
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Appendix I Alterations of the source code of Flight version 5.0 
In this appendix we have listed the lines of code that were altered to make the Flight 
model run correctly. 
 
Original lines 669:673: 
 while ((WLIST[wno][i]>=0) && (NOSTANDS>0) && (res<=0)) { 
  res=inside_stand(photon,WLIST[wno][i]); 
   i++; 
  } 
 } 
Replaced line 669 with: 
 while ((WLIST[wno][i]>=0) && (NOSTANDS>0) && (res<=0) && (i<NOSTANDS)) 
{ 
Justification: i was increasing unlimited and accessing illegal (non-existing) stand 
numbers, resulting in segmentation faults in line 2264 (access beyond array stands inside 
the function inside_stand with stands[stand_number]). 
 
Original lines 2431:2438: 
 while ((inflag==0) && (NOSTANDS>0) && (WLIST[wno][i]>=0) ) { 
    if (inside_stand(photon,WLIST[wno][i])>0) 
    { 
     stand_number=WLIST[wno][i]; 
     inflag=1; 
    } 
    i++; 
 } 
Replaced line 2431 with: 
  while ((inflag==0) && (NOSTANDS>0) && (WLIST[wno][i]>=0) && 
(i<NOSTANDS) ) { 
Justification: As with the previous error, i was increasing unlimited and accessing illegal 
(non-existing) stand numbers, resulting in segmentation faults in line 2264 (access 
beyond array stands inside the function inside_stand with stands[stand_number]). 
 
Original line 2727: 
 for (theta_o=0;theta_o< PYVAL ;theta_o=theta_o++) { 
Replaced with: 
 for (theta_o=0;theta_o< PYVAL ; theta_o++) { 
Justification: theta_0= was obsolete and introduced loop problems with some compilers. 
 
Original line 5245: 

if ((MODE!='s') && (FRAC_COV>0.0) && (TOTAL_LAI>0.0)) { 
Replaced with:  

if ((MODE!='s') && (FRAC_COV>0.0) && ((TOTAL_LAI>0.0) || (FIELD_DATA 
==1))) { 
Justification: The hot spot array was not read and the green vegetation was ignored if the 
LAI was specified independently per tree (TOTAL_LAI<0). 
 
Line inserted at 5601: 
 fflush(fplog);fclose(fplog); 
Justification: The log files of the direct and diffuse radiation were not written and closed.  
This caused a segmentation fault upon re-use of fplog and the two log files were empty. 
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Appendix II Relating VI with reflectance at the leaf level 
We have also conducted an analysis of the estimation capabilities of VI for CAB. 
Simulations were done with the PROSPECT leaf model with the modelled reflectance 
resampled to match the CASI spectral configurations. In the first step, only CAB was 
varied. Secondly, 5% noise was added to these simulations. In the third step, CAB, CM and 
N were all three varied. Subsequently, 5% noise was added to these reflectances. For the 
four sets we calculated the VI from the reflectances. These VI were related to the input 
CAB. The spectra from the 30 leaves that were inverted in section 3.4.1.1 were resampled 
to be able to calculate the VI. The original leaf spectra were inverted using the 
PROSPECT model to estimate the CAB level of each leaf by minimising the RMSE 
between the modelled and measured leaf reflectance and transmittance. Subsequently, the 
relations that were derived from the simulations were applied to the VI values derived 
for the leaves. These estimated CAB contents were finally compared with the ones 
retrieved from the inversion of PROSPECT. The standard deviation equals 24.53 
μg/cm2 for the full dataset (3 free variables) and 25.25 μg/cm2 for the simple dataset (2 
fixed variables, only CAB free). For the 30 leaves, the mean estimated CAB content is 62.40 
μg/cm2 with a standard deviation of 28.17 μg/cm2. 
 
At the leaf level, RVI, GM1, GM2 and MTCI were the VISPATIAL having the best relation 
with the chlorophyll content. Best results were obtained for the set where noise had been 
added to the spectra simulated with variation in CAB only. In the simple dataset with 
‘known’ CM and N, we can observe that the TVI and MTVI1 have a bad performance; 
they do not appear to be sensitive to changes in chlorophyll. If we add variation in CM 
and N, we see that G, VARI and MCARI are now loosing their abilities to observe 
changes in CAB. We also see that even though MCARI/OSAVI and TCARI/OSAVI 
have a reasonably good R2, the RMSE is very high. Finally, when we add 5% noise to the 
input spectra, the overall performance of the indices is lowered as expected, but only 
moderately. 
For VISPECTRAL, the best index was GM1 that was trained with variation in CAB + 5% 
noise. The other well-performing indices (MTCI, GM2 and MTCI2) were trained with 
variation in CAB only. RMSE was around 2.9-3.4 μg/cm2 for the estimation of the 30 
leaves. MCARI/OSAVI and TCARI/OSAVI had a good coefficient of correlation for 
the fit-line, but a high RMSE and have therefore been taken out of the ‘top five’. 
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Appendix III Obtained fit results for the individual fields 
Table III-1: Fit results for CLO1.  
μ: 71.2262 σ: 9.6525 min: 50.4060 max: 90.8650 n: 48 
Index Mask Fitting model R2 RMSE 
GM1 3 1 0.105 9.039
GM2 3 1 0.068 9.222
MCARI 2 8 0.133 8.890
TCARI 2 8 0.136 8.878
OSAVI 3 1 0.060 9.263
TCARI/OSAVI 2 8 0.153 8.790
MCARI/OSAVI 2 8 0.160 8.750
NDVI 3 4 0.043 9.345
TVI 3 3 0.052 9.262
G 2 3 0.053 9.658
RDVI 3 3 0.070 9.222
MTVI1 3 6 0.047 9.234
MTCI 4 4 0.120 8.961
MERIS red edge 2 8 0.107 9.540
CASI red edge 2 8 0.107 9.540
VARI 2 3 0.052 9.632
RVI 3 1 0.041 9.356
 
Table III-2: Fit results for CLO3. 
 μ: 56.5154 σ: 6.0689 min: 44.4011 max: 69.9001  n: 40 
Index Mask Fitting model R2 RMSE 
GM1 4 1 0.033 5.892
GM2 3 1 0.088 5.722
MCARI 3 8 0.216 5.307
TCARI 2 8 0.2155 5.321
OSAVI 1 5 0.033 6.240
TCARI/OSAVI 2 8 0.255 5.173
MCARI/OSAVI 2 8 0.279 5.090
NDVI 1 5 0.037 6.184
TVI 4 3 0.119 5.625
G 2 8 0.090 5.715
RDVI 4 3 0.077 5.777
MTVI1 4 3 0.115 5.639
MTCI 2 3 0.357 4.806
MERIS red edge 2 7 0.262 5.974
CASI red edge 2 7 0.262 5.795
VARI 2 8 0.091 5.714
RVI 1 6 0.034 5.891
 
Table III-3: Fit results for CLO4. 
 μ: 78.2504 σ: 4.9789 min: 65.9451 max: 86.3960 n: 39 
Index Mask Fitting model R2 RMSE 
GM1 2 1 0.047 4.799
GM2 2 1 0.083 4.707
MCARI 1 8 0.025 4.913
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TCARI 1 8 0.011 4.888
OSAVI 2 5 0.092 4.683
TCARI/OSAVI 1 5 0.036 4.995
MCARI/OSAVI 1 5 0.084 4.981
NDVI 2 1 0.081 4.712
TVI 2 5 0.142 21.656
G 2 3 0.066 4.749
RDVI 2 5 0.097 4.671
MTVI1 4 6 0.093 4.680
MTCI 3 4 0.201 4.396
MERIS red edge 3 8 0.182 4.445
CASI red edge 3 8 0.182 4.445
VARI 2 6 0.068 4.744
RVI 2 4 0.068 4.745
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Appendix IV Chlorophyll contents of CLO3 and CLO4 estimated 
by MCARI/OSAVI 
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Figure IV-1: CAB estimates for CLO3 by MCARI/OSAVI 
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Figure IV-2: CAB estimates for CLO4 by MCARI/OSAVI 
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