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ABSTRACT 
 

Precision Agriculture (PA) and Remote Sensing (RS) technologies are 
increasingly being used as tools to assess crop and soil properties by breeders and 
physiologists.  These technologies are showing potential to improve genotype 
selections over their traditional field measurements, by providing quick access to 
crop properties throughout the crop cycle and yield estimation. The objective of 
this work was to use vegetation indices (VIs) and soil apparent electrical 
conductivity (ECa) as predictor variables of yield. This information was obtained 
from a durum wheat yield trial, aiming to estimate yield of different genotypes 
under full and reduced irrigation. This work was carried out at CIMMYT’s 
experiment station at Ciudad Obregón/Sonora, Mexico, during 2013 wheat crop 
cycle.  There were four yield trials, two with reduced irrigation (RID) and two 
with full irrigation (FIG), which tested 112 different genotypes in a completely 
randomized design with three replications. A flight campaign took place, with six 
flights, once per week from March to April 2013, using a 6-channel multispectral 
camera with 10 nm FWHM filters onboard an airplane flying 300 m above ground 
yielding 0.3 m resolution. The ECa data was collected just before sowing using an 
EM38 device in each plot. Twenty three different VIs ranging from chlorophyll, 
structural, red edge ratios and RGB indices were calculated using the 
multispectral images. A Pearson’s correlation was done using the yield of the 
check genotypes of each experiment with the VIs of each image and ECa, aiming 
to explore the potential of each variable on predicting yield. This approach was 
followed by a subset multiple regression method, using as predictive variables the 
VIs coefficients fitted to each genotype considering a quadratic effect plus ECa, to 
fit the yield of each genotype in a training dataset, and then applied into a 
Bootstrap method in the cross validation dataset. The significant correlations 
among yield from the check genotypes and VIs from all images, plus ECa, ranged 
 
 
 
 



from -0.82 to 0.73 in the RID and from -0.70 to 0.60 in the FIG experiment. The 
correlation coefficients between measured versus predicted yield by the models 
got mean values of 0.51 (RID) and 0.68 (FIG) using the cross validation dataset, 
being 0.27 (RID) and 0.47 (FIG) of r-squared, indicating that the use of different 
VIs together may improve the yield prediction of breeding experiments.  
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INTRODUCTION 
 

The agricultural research sector has been potentially important, aiming to 
develop new technologies and management knowledge to sustainably increase the 
food productivity, to ensure global food security and decrease poverty. Wheat is 
one of the most important crops into this scenario, being among the two most 
important cereal commodities produced worldwide. Inside this context, Mexico is 
one of the most important producers of wheat, harvesting more than 500,000 
hectares in 2012, totaling 3.2 million of tonnes (FAO 2013). One important pillar 
of this platform is a wheat breeding program, which should provide varieties able 
to adapt to different environments.  

The Global Wheat Program (GWP) at the International Wheat and Maize 
Improvement Center (CIMMYT) has been working on the development of wheat 
germplasm for more than 50 years, and recent estimates indicate that CIMMYT 
derived genotypes are planted on more than 64 million hectares in developing 
countries, representing more than 75% of the area planted to modern wheat 
varieties in those countries (CIMMYT 2014).   

Precision Agriculture (PA) and Remote Sensing (RS) technologies can play an 
important role, in the identification, with high accuracy and density, of soil and 
plant properties inside breeding plots, and thus allowing for a quicker and and less 
labor intensive selection of genotypes. 

Proximal soil sensing has become an increasingly common and essential 
element of PA (Bramley 2009, Bramley and Trengove 2012). Most commonly, 
this has involved measurements of apparent electrical conductivity (ECa; Corwin 
and Plant 2005 and references therein) using electromagnetic induction (EMI; e.g. 
Hedley el al. 2004), which gives information related to soil physical properties, 
broadly used in PA to delineate management zones of yield potential (Bramley 
2009).  

In parallel, RS technologies have become in the recent years more inexpensive 
which has improved the availability and flexibility of acquiring images. As a 
consequence, vegetation indices (VI) such as the Normalized Difference 
Vegetation Index (NDVI), has been broadly used to correlate with crop yield in 
agricultural experiments (Mullan 2013 and references therein). Whereas we 
assume that the results presented by those authors were considered useful, it is 
well documented that NDVI data saturate at high Leaf Area Index (LAI) values, 
and is also affected by other factors such as soil background, canopy shadows, 



illumination, atmospheric conditions and variation on leaf chlorophyll 
concentration (Zarco-Tejada et al. 2005). Moreover, there is not much use of 
predictive models and their validation besides the use of simple correlations. So 
here we present how VIs and soil ECa may be able to predict grain yield in 
breeding experiments. This approach is important in terms of improving the 
efficiency of a breeding program, which may be done through a rapid assessment 
of crop characteristics and yield, decreasing field labor and time requirements. 

The objective of this work was to use VIs and soil ECa as predictive variables 
of yield, from a yield trial with different genotypes under full and reduced 
irrigation. 
 
 

MATERIAL AND METHODS 
 

Field site and data collection 
 

The experiments were carried out in the CIMMYT’s experiment station at 
Ciudad Obregón/Sonora, Mexico, during 2013 wheat crop cycle (27.383848⁰ N 
and 109.923878⁰ W). It consisted of four yield trials, two with reduced irrigation 
(RID) and two with full irrigation (FIG), which tested 112 different genotypes 
plus check genotypes in a completely randomized design with three replications 
(Fig. 1). Thus, each experiment (RID) totaled 192 observations, split into three 
replications, which each one contained 56 genotypes plus eight checks; the same 
design was used in the FIG trial. The experiments were sowed on 
November/December 2012 and harvested on May 2013. Yield was measured in 
each plot according the protocol described by Pask et al. (2012). 

The soil sensing of apparent electrical conductivity (ECa) was done through 
electromagnetic induction (EMI) just before sowing using an EM38 device on 
both dipoles, taking one measurement in the center of each plot.  

A flight campaign took place, with six flights, once per week from March to 
April 2013, using a 6-channel multispectral camera with 10 nm FWHM filters 
onboard an airplane flying 300 m above ground. 



 
Fig. 1. CIMMYT’S experiment station at Ciudad Obregón; Full Irrigated 
(FIG) and Reduced Irrigated (RID) trial.  
 
 

The image resolution is 1280×1024 pixels with 10 bit radiometric resolution 
and optics focal length of 8.5 mm, yielding an angular field of view (FOV) of 
42.8º ×34.7º and 0.3 m pixel spatial resolution at 300 m flight altitude. 
Atmospheric correction and radiometric calibration methods were applied to the 
imagery to calculate the spectral reflectance. Radiometric calibration was 
conducted in the laboratory using coefficients derived from measurements made 
with a uniform calibration body (integrating sphere, CSTM-USS-2000C Uniform 
Source System, LabSphere, NH, USA) at four levels of illumination and eleven 
integration times. Radiance values were converted to reflectance using the total 
incoming irradiance simulated with the Simple Model of the Atmospheric 
Radiative Transfer of Sunshine (SMARTS) (Gueymard, 1995, 2005) using 
aerosol optical depth at 550 nm measured with Micro-Tops II sunphotometer 
(Solar LIGHT Co., Philadelphia, PA, USA). This radiative transfer model was 
previously used in other studies such as Berni et al. (2009) and Suárez et al. 
(2010). The geometric calibration was conducted using Bouguet’s calibration 
method (Bouguet 2001) in order to calculate the intrinsic camera parameters 
(Berni et al. 2009). 

 
 
 



Data analysis 
 

Twenty three different VIs ranging from chlorophyll, structural, red edge ratios 
and RGB indices (Table 1) were calculated using all the wavelengths (550, 670, 
700, 710, 750, 800 nm) from each multispectral images. In parallel, the yield 
adjustment of each genotype was done by means of Restricted Maximum 
Likelihood (REML), these adjusted means were used as response variables into 
the modelling process further on. 

As a first step, a Pearson’s correlation was done using the yield of the checks 
genotypes (n=48) of each experiment with the VIs of each image, thermal data 
and ECa (p≤0.05). Line plots were done for each VIs across the images by 
experiment, aiming to check the genotypes behavior across time.  

As there were a total of 144 predictive variables (23 VIs + Thermal x 6 
images) using the images; each genotypes yield were fitted by VIs across time 
through regression analysis considering a quadratic effect (yield ~ intercept + VIs 
+ VIs2), thus selecting the fits coefficients (intercept, linear and quadratic effect) 
of each VI. This process was done prior to the modelling process aiming to reduce 
the total number of predicted variables.  

Each coefficient (plus ECa at both depths) was then used as predictive variables 
into a subset multiple regression approach by means of partial least square 
method, using the adjusted yields of each genotype as response variable. All these 
data process were done for each type of experiments separately (RID and FIG). 
The dataset of each experiment was randomly split into 70% for model fitting 
(training dataset; TD) and 30% for cross validation (CV). The fitted model was 
then applied in the 30% of the dataset into Bootstrap method (Efron 1979) with 10 
thousand interactions, obtaining the distribution of the correlation between 
measured and predicted yield and r-squared (R2) of it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Vegetation Indices calculated from multispectral imagery. 
Vegetation Index Equation Reference 
 Structural Indices  
Normalized Difference 
Vegetation Index (NDVI) (

𝑅𝑁𝐼𝑅 − 𝑅𝑟𝑒𝑑
𝑅𝑁𝐼𝑅 + 𝑅𝑟𝑒𝑑

) Rouse et al. (1974) 

Renormalized DVI 
(RDVI) (

𝑅800 − 𝑅670
�𝑅800 + 𝑅670

) Rougean and Breon (1995) 

Optimized Soil-Adjusted 
Vegetation Index 
(OSAVI) 

(1 + 0.16) ∗ (𝑅800 − 𝑅670)
(𝑅800 + 𝑅670 + 0.16)

 Rondeaux et al. (1996) 

Simple Ratio Index (SR) (
𝑅𝑁𝐼𝑅
𝑅𝑟𝑒𝑑

) Jordan (1969); Rouse et al. 
(1974) 

Modified Simple Ratio 
(MSR) 

𝑅𝑁𝐼𝑅
𝑅𝑟𝑒𝑑

− 1 (
𝑅𝑁𝐼𝑅
𝑅𝑟𝑒𝑑

)0.5 + 1�  Chen (1996) 

Modified Triangular 
Vegetation Index 
(MTVI1) 

1.2 ∗ [1.2 ∗ (𝑅800 − 𝑅550) − 2.5 ∗ (𝑅670 − 𝑅550)] Haboudane et al. (2004) 

Modified Triangular 
Vegetation Index 
(MTVI2) 

1.2 ∗ [1.2 ∗ (𝑅800 − 𝑅550) − 2.5 ∗ (𝑅670 − 𝑅550)]

�(2 ∗ 𝑅800 + 1)2 − �6 ∗ 𝑅800 − 5 ∗ �𝑅670� − 0.5
 Haboudane et al. (2004) 

Modified Chlorophyll 
Absorption in Reflectance 
Index (MCARI1) 

1.2 ∗ [2.5 ∗ (𝑅800 − 𝑅670) − 1.3 ∗ (𝑅800 − 𝑅550)] Haboudane et al. (2004) 

Modified Chlorophyll 
Absorption in Reflectance 
Index (MCARI2)* 

1.2 ∗ [2.5 ∗ (𝑅800 − 𝑅670) − 1.3 ∗ (𝑅800 − 𝑅550)]

�(2 ∗ 𝑅800 + 1)2 − �6 ∗ 𝑅800 − 5 ∗ �𝑅680� − 0.5
 Haboudane et al. (2004) 

 Chlorophyll Indices  
Triangular Vegetation 
Index (TVI) 

0.5 ∗ [120 ∗ (𝑅750 − 𝑅550) − 200
∗ (𝑅670 − 𝑅550)] Broge and Leblanc (2000) 

Modified Chlorophyll 
Absorption in Reflectance 
Index (MCARI) 

[(𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550)] ∗
𝑅700
𝑅670

 Daughtry et al. (2000) 

Transformed CARI 
(TCARI) 3 ∗ [(𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550)] ∗

𝑅700
𝑅670

 Haboudane et al. (2002) 

TCARI/OSAVI 3 ∗ [(𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550)] ∗ 𝑅700𝑅670
(1 + 0.16) ∗ (𝑅800 − 𝑅670) (𝑅800 + 𝑅670 + 0.16)⁄  

Daughtry et al. (2000); 
Rondeaux et al. (1996) 

MCARI/OSAVI [(𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550)] ∗ 𝑅700𝑅670
(1 + 0.16) ∗ (𝑅800 − 𝑅670) (𝑅800 + 𝑅670 + 0.16)⁄  

Daughtry et al. (2000); 
Rondeaux et al. (1996) 

Gitelson and Merzlyak 
(GM1) (

𝑅750
𝑅550

) Gitelson and Merzlyak 
(1997) 

Pigment specific simple 
ratio for chlorophyll a 
(PSSRa)* 

(
𝑅800
𝑅680

) Blackburn (1998) 

 Red Edge ratios  
Zarco-Tejada and Miller (𝑅750

𝑅710
); (𝑅750

𝑅700
); (𝑅750

𝑅670
); (𝑅710

𝑅700
); (𝑅710

𝑅670
) Zarco-Tejada et al. (2001) 

 RGB Indices  
Red; Green (𝑅700

𝑅670
); (𝑅550

𝑅670
) Zarco-Tejada et al. (2005) 

* used 670nm instead of 680nm. 
  

 
 



RESULTS AND DISCUSSION 
 

The correlation analysis among all VIs, temperature and ECa with yield of the 
check genotypes ranged from -0.82 to 0.73 in the RID and -0.70 to 0.60 in the 
FIG experiment. Table 2 shows the best 10 correlations coefficients for both 
experiments. On RID, temperature had the best correlations with yield, while on 
FIG, TCARI and MCARI indices were the best correlated. 

Temperature showed to be highly negatively correlated with yield in reduced 
irrigation environment (RID), followed by NDVI as highly positively correlated. 
On FIG the correlation between temperature and yield varied between -0.50 to 
0.06 across images acquired during the crop cycle, being the higher coefficient 
from the image acquired on 24 April 2013, same image as on the RID experiment. 
Cossani et al. (2012) got similar results analysing canopy temperature (measured 
by infrared thermometry gun; IR) with grain yield, getting -0.66 coefficient of 
correlation under drought environment, and -0.58 under irrigated environment 
condition. Even though the authors claim the speed of measurements, simplicity 
and low cost, as advantages of the use of the IR gun, this equipment may 
compromise the reliability of the data when used in extensive field plots which 
need hours of measurements – this is not a problem when thermal sensors are 
used in remote sensing platforms. TCARI and MCARI had the highest correlation 
coefficients (-0.70; -0.69) with yield in the FIG experiment, although NDVI 
reached slightly smaller coefficient (-0.62). Although throughout the literature it 
is possible to check many other studies reporting high correlations between NDVI 
and grain yield (Ball and Konzak 1993; Inman et al. 2007; Marti et al. 2007; Raun 
et al. 2001; Reynolds et al. 2001; Royo et al. 2003; Prasad et al. 2007), there is 
still a lack of information on the potential use of VIs together into models for 
predicting yield. Those correlation coefficients just indicated the relationship 
between the yield from the check genotypes and VIs, it doesn’t necessarily mean 
power of prediction to different genotypes.  
 
Table 2. Best 10 correlation coefficients between VIs and yield checks 

Checks - RID Yield Checks – FIG Yield 
Temp - 130424 -0.82* TCARI – 130411 -0.70* 
Temp - 130403 -0.80* MCARI – 130411 -0.69* 
Temp - 130411 -0.78* R550/R670 – 130411 -0.68* 
Temp - 130314 -0.77* MTVI2 - 130411 -0.66* 
Temp - 130321 -0.77* MCARI2 - 130411 -0.66* 
Temp - 130326 -0.75* MTVI1 - 130411 -0.65* 
NDVI - 130326 0.73* MCARI1 - 130411 -0.65* 
PSSRa - 130326 0.73* TVI - 130411 -0.63* 
SR - 130326 0.73* NDVI - 130411 -0.62* 
OSAVI - 130326 0.73* OSAVI - 130411 -0.62* 

* - statistically significant at 0.01 probability; Temp – temperature extracted from the thermal 
images; dates are expressed as YYMMDD; R550/R670 – Green VI. 
 

On Figures 2 and 3 is possible to see each genotype response (y axis) across 
time/images (x axis) for each VIs on both experiments. 

 



 
Fig. 2. Line plots of VIs per genotype (RID). Light green label – Chlorophyll 
Indices; Dark green label – Plant structure indices; Red label – Red Edge ratios; 
Red, blue and green label – RGB ratios.  

 
Fig. 3. Line plots of VIs per genotype (FIG). Lighter green label – Chlorophyll 
Indices; Darker green label – Plant structure indices; Red label – Red Edge ratios; 
Red, blue and green label – RGB ratios. 



Through Figures 2 and 3 it is possible to visualize the different behaviours of 
the genotypes across the images, also showing the temporal trend of it, supporting 
the idea of fitting each genotypes yield by VIs across time considering a quadratic 
effect and grabbing the fitted coefficients, reducing the number of predictive VI 
variables to 72 (against the originally 144) without losing temporal information of 
it.  

The REML analysis for adjusting the mean yield across the experiment showed 
significant p-value on f-test, considering just the experimental design on RID and 
the interaction of the plots coordinates as random effect on FIG.  

On the modelling approach, the adjusted yield means were used as response 
variable against VIs coefficients and ECa by means of Subset Regression. It was 
specified a maximum of four variables to get into the model, as we chose to 
include the full VI information (intercept, linear and quadratic effect coefficient) 
of those which just one or two coefficients were selected. This was done aiming 
to keep a ratio of 3:1 between CV observations and predict variables. 

The RID yield model using TD got 0.46 of adjusted r-squared (Radj), with all 
parameters statistically significant at 0.01 of probability. The VIs selected were 
RDVI, NDVI and the ratio TCARI/OSAVI. The FIG yield model got 0.56 of Radj, 
also with all model’s parameters statistically significant at 0.01 of probability. 
The VIs selected were OSAVI, MCARI, GM1 and the ratio MCARI/OSAVI. If 
used just NDVI to fit a yield model using the TD of the RID experiment, which 
was the experiment where NDVI was added in the model together with other VIs, 
the Radj decrease from 0.46 (prior cited) to 0.09, strongly suggesting that the use 
of more VIs together may improve yield prediction.  

As we were interested to check the predictive power of those models, they 
were applied in the CV dataset, into a Bootstrapping method with 10 thousand 
interactions. On Figure 4 (‘a’ and ‘b’) is possible to visualize the distribution of 
the correlation coefficients between measured and predicted yield, obtained as 
output of the Bootstrapping interactions for both experiment’s model.  

 

 
(a) 

 
(b) 

Fig. 4. Histograms of correlation coefficients and R2 from RID (a) and FIG (b) 
experiments. 
 

 



The distribution of predictions’ coefficients (measured versus predicted yield) 
on RID considering 95% confidence interval (CI) is 0.26-0.70, with mean of 0.51; 
and 0.07-0.50 to R2 with mean as 0.27. FIG had CI between 0.46-0.87 and 0.21-
0.75 with means of 0.68 and 0.47 to correlation coefficients and R2, respectively. 
Zarco-Tejada et al. (2005) tested different hyperspectral indices related to 
vegetation structure and canopy chlorophyll concentration, aiming to within-field 
yield variability in cotton crop, indicating that those vegetation indices may be 
used as complementary information to NDVI, for describing yield variation. 
Those authors indicated that VIs such as RDVI, TCARI, OSAVI, and MCARI 
were good indicators to canopy variability related to cotton yield. In the present 
study, with exception of GM1, those same VIs (single and/or as ratios) were 
selected through the modelling approach as predictable variables to estimate yield 
of different genotypes of wheat, indicating its potential on estimating yield on 
breeding experiments. Further analysis should be done using multi sites-cycles 
data, to check if the best VIs are consistent over years, if more VIs could be added 
into the modelling and which would be the best crop stages to acquire RS images.       

 
CONCLUSION 

 
Although the models got from low to high correlations and R2 on the cross-

validation throughout several interactions, this study indicates that grouping VIs 
related to plant structure and chlorophyll content, such as RDVI, TCARI, OSAVI, 
MCARI and GM1, into models and using its temporal information across crop 
cycle, it may be complementary information to traditionally VIs such as NDVI, as 
indicated by Zarco-Tejada et al. (2005), improving the power of prediction of 
yield in breeding experiments and as a consequence being able to select genotypes 
using such technologies.       
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