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Summary 

The light energy absorbed by plant leaves drives fundamental 

physiological processes such as photosynthesis. The absorption of light 

occurs within the 400-700 nm spectral region, so it is called Photosynthetic 

Active Radiation, PAR. Thus, the fraction of intercepted PAR is called 

fIPAR. This thesis studies the estimation of fIPAR with high spatial 

resolution sensors and radiative transfer models in heterogeneous orchards. 

The objective is to obtain maps showing the spatial variability of fIPAR 

within the field. In previous works, relationships between spectral vegetation 

indices (SVI) and fIPAR have been obtained for homogeneous crops. 

However, studies were lacking where these kind of relationships were 

explored for heterogeneous orchards. The heterogeneous orchards are more 

structurally complex than homogeneous crops; therefore previous 

relationships might not be applicable in a general way. This work explored 

these relationships in heterogeneous canopies. This study required extensive 

field measurements of architecture of the canopy, fIPAR as well as analysis 

of airborne imagery acquired by a sensor on board and unmaned aerial 

vehicle (UAV). The different studied canopies were orange, peach, olive and 

vineyard orchards. Moreover, the use of radiativa transfer models allowed 

the evaluation of the influence of different parameters such as, solar 

geometry or row orientation on SVI, fIPAR as well as on the relation 

between them. 
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Resumen 

La radiación solar interceptada por un cultivo es un factor determinante 

en numerosos procesos de importancia para la planta como lo es la 

fotosíntesis. La energía absorbida por el cultivo para llevar a cabo estos 

procesos es la comprendida en la región del espectro 400 – 700 nm, y se 

denomina radiación fotosintéticamente activa o de su traducción al inglés 

radiación PAR. Así, la fracción de radiación PAR interceptada es llamada 

fIPAR. En este trabajo se aborda la estimación de fIPAR en cultivos 

discontinuos, como árboles frutales, mediante sensores de alta resolución 

espacial y modelos de transferencia radiativa. El objetivo es crear mapas de 

variabilidad espacial de fIPAR útiles para el manejo del cultivo en 

agricultura de precisión. En trabajos previos se han obtenido índices de 

vegetación (IV) mediante teledetección demostrando su relación con fIPAR 

en cultivos homogéneos. Sin embargo no existen muchos trabajos donde se 

investiguen este tipo relaciones en cultivos heterogéneos, cuya estructura 

más compleja hace que relaciones obtenidas en estos trabajos anteriores, 

puedan no ser aplicables de forma general. Para estudiar estas relaciones en 

este tipo de cubiertas se llevaron a cabo medidas estructurales y de radiación 

interceptada en fincas de naranjo, melocotón, olivar y viñedo. El 

procesamiento y análisis de imágenes se llevó a cabo mediante métodos 

innovadores basados en vehículos aéreos no tripulados (UAVs). Con el fin 

de evaluar la estimación de radiación interceptada se usaron modelos de 

transferencia radiativa. Estos modelos permitieron simular distintos 

escenarios de plantación y estudiar de qué manera parámetros, como la 

posición del sol, la orientación del cultivo o el tipo de suelo, influyen a la 

variación de índices de vegetación, fIPAR, y la relación entre ellos. 
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1.1 Introduction 

Biomass production and therefore crop yield is directly related to the 

capacity of plants to convert the intercepted solar radiation in the 

accumulation of crop mass (Monsi & Saeki, 1953; Monteith, 1969, 1972, 

1977). The light energy absorbed by plant leaves drives fundamental 

physiological processes such as photosynthesis. The absorption of light 

occurs within the 400-700 nm spectral region, so it is called Photosynthetic 

Active Radiation, PAR. Absorbed radiation influences plant secondary 

processes such as plant growth, the vertical structure and crown shape, leaf 

morphology, and the uptake and emission of trace gases involved in 

biogeochemical cycles and atmospheric chemistry (Baldocchi & Collineau, 

1994; Larcher, 1995).  

The first attempts to study the light levels on crops related with 

physiological process and mass accumulation are dated in the late 1950s, 

with works of De Wit in (1959), and Loomis and Williams in (1963). It was 

in 1972 when John Monteith published a paper establishing experimental 

and theoretical ground for the relationship between accumulated crop dry 

matter and intercepted solar radiation. Several studies followed, which 

focused on the estimations of intercepted radiation as related to growth of 

herbaceous crops (Gallagher & Biscoe, 1978; Gosse et al., 1986; Dalezios et 

al., 2001) as well as fruit trees (Palmer & Jackson, 1977; Jackson, 1980; 

Green et al., 2003). The supply of PAR sets a limit to the potential 

production, which is determined by the incident radiation conditions as well 

as by the optical and architectural properties of the stand (Ross, 1981). This 

assumption boosted the research of models to study the response between 

photosynthetic response of leaves and the distribution of radiation on these 
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phytoelements. A review of models of radiation attenuation in homogeneous 

canopies can be found in Myneni et al. (1989). Discontinuous canopies, such 

as row structured orchards, present not only a more complex architecture, 

but also exhibit the influence of the background between the rows among 

other factors. As such, homogeneous canopy models are not directly 

applicable for this kind of crops. Mariscal et al. (2000) reviewed models 

suitable for such row structured orchards, and proposed a model to estimate 

the fraction of intercepted PAR (fIPAR) in olive trees. None or little work 

has been found on heterogeneous canopies such as the row-structured 

open-tree canopies; some examples are Friday & Fowness (2001); Annadale 

et al. (2004); Oyarzun et al. (2007), and recently Casadesus et al. (2011). 

In the following sections, the differences regarding the fIPAR estimation 

on homogeneous and heterogeneous canopies is explained. Examples 

showing the structure of different crop canopies mentioned above are shown 

in Figure 1.1. 
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a)  

b)  

c)  

Figure 1.1. Architectural differences of herbaceous crops (homogeneous canopy) (a), citrus 
(b) and vineyards (c) orchards, showing the orchard and row-structured canopies. 
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Continuous vs row-structured canopies for radiation interception estimation 

In continuous canopies, the amount of intercepted radiation is usually 

estimated based on the leaf area index (LAI) (Asrar et al., 1984, Clevers, 

1997). In contrast, orchard systems grow as discontinuous canopies leaving 

stripes of bare soil between rows, and the leaves are located within an 

envelope that is distributed in the space according to a planting pattern and 

row orientation. These issues make a direct measurement of LAI difficult 

and often not feasible (Villalobos et al., 1995; Mariscal et al., 2000). A 

revision about devices used in the field to measure fIPAR in orchards may 

be found in Jackson (1980). An appropriate measurement of fIPAR may be 

performed using tube solarimeters beneath the canopy compared to the 

values above the canopy (Szeicz et al., 1964; Monteith, 1981). Alternatively, 

a pyranometer used for measuring the incident solar radiation and a sensing 

bar containing photodiodes installed above and below the canopy was the 

system used in Casadesus et al. (2011). The tube solarimeters measure total 

solar radiation. Other instruments, ceptometers, are available to measure the 

PAR region only (Wunsche et al., 1995, Cohen et al., 1997, Huemmrich, 

2001). Figure 1.2 shows an example of ceptometer. Another device is based 

on hemispherical photographs to determine patterns of light penetration 

(Smart, 1973; Lopez-Lozano, 2009) from analyzing upward-looking fisheye 

photographs taken beneath the plant canopy. The photographs show the 

proportion of the sky which can be seen from any given point below the 

canopy and hence the size and frequency of canopy gaps. 
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a)  b)  

Figure 1.2. Sensor measuring PAR above the canopy (a), and a portable ceptometer device 
making spot measurements below the canopy (b). 

The amount of solar energy intercepted by the crop is the difference 

between incident radiation above the canopy and the amount transmitted 

beneath the canopy. To calculate the solar energy absorbed, the radiation 

reflected from the ground towards the canopy, and the radiation reflected by 

the overall crop are also accounted for (Bonhomme, 2000).  

The instruments can be used to measure the fraction of intercepted PAR 

(fIPAR) at canopy level at different locations within a crop field, therefore 

enabling the assessment of the spatial variability of intercepted radiation. 

Such within-field spatial variability is more easily measured on small plots 

for optimal management strategies (Robert et al., 1995; Stafford, 2000). At 

larger scales the use of such tools is impractical, as measurements of IPAR 

and/or the related fraction of intercepted PAR (fIPAR) can be time 

consuming when accounting for both spatial and temporal variability. In this 

context, remote sensing techniques may be useful, enabling the generation of 
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maps showing the spatial variability of fIPAR at the field level, at different 

times of the day as well as during the critical phenological stages of the 

growing season.  

Remote sensing methods to estimate fIPAR 

Maps of estimated fIPAR using remote sensing could be helpful for 

precision crop management (Moran et al., 1997). Several studies have 

investigated the use of optical vegetation indices obtained from remote 

sensing methods to estimate fIPAR. In particular, spectral vegetation indices 

(SVI) based on contrasting canopy reflectance in the red and near-infrared 

bands have been applied to assess fIPAR from the canopy-level up to the 

global scale, finding that the Normalized Difference Vegetation Index 

(NDVI) was the best correlated (Asrar et al., 1992; Myneni & Williams, 

1994; North, 2002). Relationships between SVI and fIPAR have been 

obtained in homogeneous canopies, such as wheat, maize or soybean crops 

(e.g., Daughtry et al., 1983; Asrar et al., 1984; Moriondo et al., 2007) as well 

as in forest canopies (e.g., Zhang et al., 2009, Fensholt et al., 2004, Bacour et 

al., 2006). These studies were focused mainly on randomly distributed 

canopy elements and closed canopy forest areas, but have not yet been 

extended to discontinuous canopies, such as row-structured orchards. The 

relationships between fIPAR and SVI are more complex for discontinuous 

canopies than for homogeneous canopies because more parameters are 

required to define their architecture. The sunny and shaded soil proportions 

between rows contributes greatly to the canopy reflectance, and determined 

by row orientation, row structure, crop dimensions, viewing direction, and 

sun position Zhao et al., (2010). Huete (1989), Choudhury (1987) or 

Huemmrich & Goward (1997) have assessed the sensitivity of these fIPAR-
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SVI relationships to changes in canopy architecture, the optical properties of 

the canopy elements and the background. 

These relationships are too often considered as unique and constant 

(Bégué, 1993). In fact, studies such as Bacour et al. (2006) or Zhang et al. 

(2009) that worked with satellite images of coarse resolution cannot be 

applicable in a general way, since they present strong limitations due to the 

spatial resolution. High spatial resolution allows to separate pure crown from 

pure soil as well as sunny and shaded scene components. This separation is 

needed to study the influence of all these factors in the canopy reflectance, 

SVI calculated from the canopy reflectance, and on the measured fIPAR. In 

this sense, appropriate modeling strategies are required to simulate the row 

structure to account for the effects of canopy structure, dimensions, row 

orientation and soil and shadow effects on the canopy reflectance. Different 

types of canopy reflectance models are explained below. 

Canopy reflectance models 

The canopy radiation regime depends largely on canopy configuration, as 

well as solar incident radiation and the optical properties of vegetation and 

background (Goel, 1988). The link between canopy properties and sensor-

measured radiation becomes more complex when we move from 

homogeneous to heterogeneous canopies. The mathematical and physical 

sophistication of the techniques used to understand these interactions have 

increased considerably. Canopy reflectance (CR) models can be classified 

into different categories depending upon the assumptions and theory used in 

its formulation:  
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(i) Turbid medium: the vegetation canopy is assumed to be a planar 

horizontally medium. The architecture of the canopy is defined by LAI and 

leaf angle distribution function (LADF), and no geometrical effects other 

than the leaf inclinations are considered. The Scattering by Arbitrarily 

Inclined Leaves (SAIL model) (Verhoef, 1984) is an example of turbid 

medium model widely used. These kinds of models are typically suitable for 

dense vegetation canopies. The emphasis is on one-dimensional, plane-

parallel formulation, but three-dimensional cases and heterogeneous 

canopies are outlined. 

(ii) Geometrical optical: the canopy here is designed with elements with 

known dimensions and shape, placed and distributed in different 

configurations. Geometric models are used primarily in non-dense canopies. 

Most of these models and their applications have been evaluated in the 

review of Chen et al. (2000).  

(iii) Hybrid models: when the vegetation canopy does not totally fit into 

any of previous category, hybrid CR models better represent the canopy by 

combination of elements of both. Geometric shapes are taken into account; 

therefore the canopy is designed by elements with known size, relative 

positions and distances. Thus, these models include the row effects. Some 

example of this kind of CR models are Markov canopy reflectance model 

with addition of row effects (rowMCRM) used in Zarco-Tejada et al. (2005), 

and Meggio et al. (2008). It is assumed that the vegetation canopy along 

rows is formed by periodic rectangular prisms of plant material, with bare 

soil in between prisms. However, these row models stemmed from the 

classical theory of radiation transfer in turbid media. 

10 



General Introduction 

(iv) Computer simulation models: these models simulate positions and 

orientation of the elements forming the vegetation in a very realistic way. 

The most common is to use Monte Carlo method to follow the trajectory of 

the photon. The trajectory is followed from its origin to its absorption or 

reflection and detection by the sensor. North (1996) calculated forest 

directional reflectance using the Monte Carlo radiative transfer theory, in the 

model FLIGHT. They are typically suitable for complex simulations for 

canopy radiation regimes as horizontally heterogeneous or discontinuous 

canopies such as row crops, or orchards with isolated tree crowns.  

Therefore, the choice of approach to simulate the canopy must be 

considered carefully, bearing in mind the objectives of the study and the 

output variables (Louarn et al., 2008). It is also important to consider that the 

quality of remotely sensed fIPAR products requires ensuring a proper 

verification of the physically based radiative transfer model (RTM) that 

contribute to the retrieval of algorithms used to estimate these products 

(Widlowski, 2010). Real imagery and field data measurements are needed 

for a good validation of the models. To work with real imagery and to 

acquire good quality of imagery face several steps: calibration of the 

imagery, correction of the atmospheric effects, geometrically 

calibrate/orthorectify the imagery, as well as work conducted in the field to 

measure the structural parameters, such as dimensions, height, LAI and 

LADF. Modeling methods once validated will demonstrate the feasibility of 

parameter retrieval using model inversion or scaling up methods. In the 

different chapters of this thesis, these processes are discussed and 

methodologies to create maps showing the spatial variability of fIPAR for 

different row structured orchards is explained. 
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Mapping fIPAR variability from remote sensing imagery 

The studies of light interception provide a scientific basis for the 

practical management of canopies. For homogeneous crops, optical remote 

sensing can provide information about fIPAR during growing season 

(Clevers, 1997). However, while methods for estimate fIPAR in 

homogeneous canopies are relatively mature, further research is needed for a 

robust estimation of fIPAR in open canopies, to understand the effect of row 

orientation, soil background or viewing geometry on remote sensing indices 

and canopy reflectance to estimate instantaneous fIPAR. This research deals 

with the understanding of the relationships between spectral vegetation 

indexes and fIPAR, and mapping the spatial variability of fIPAR in 

heterogeneous crop using remote sensing techniques together with modelling 

strategies. Field data measurements were collected in citrus, peach, olive and 

vineyard orchards to characterize different types of discontinuous row 

structured orchards. Peach and citrus orchards were selected to study row 

structured trees with overlapped crowns. The olive orchard is presented as 

isolated trees with a planting pattern of 7 m x 6 m and vineyards as a wall 

structure (3 m x 1.5 m). High spatial resolution airborne imagery (15-cm 

pixel size) and fIPAR measurements were acquired at different locations and 

sun geometries, obtaining a wide data base of spatial and temporal variability 

of fIPAR and canopy reflectance. The study areas were simulated with the 

RTMs to check their feasibility for modelling this kind of canopies. Different 

modelling approaches were used and compared in this thesis. For peach and 

orange orchards, the 3-D Forest Light interaction model, FLIGHT, (North, 

1996), based on the Monte Carlo ray tracing theory was used. FLIGHT has 

as outputs canopy reflectance and fIPAR. For olive orchards, FLIGHT was 

used to simulate canopy reflectance and was coupled with a model to 
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simulate fIPAR in olive orchards, Orchard Radiation Intercepted Model 

ORIM, developed by Mariscal et al. (2000). In the case of vineyards, 

simulations of canopy reflectance were carried out with FLIGHT and 

compared with two hybrid models, the Markov-Chain Canopy Reflectance 

Model (MCRM) and the Scattering by Arbitrary Inclined Leaves (SAIL) 

model, both modified to simulate the row crop structure (rowMCRM and 

rowSAIL, respectively).  
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1.2. Objectives and outline of the thesis 

The general objectives of this thesis are: 

i) To study the relationships between SVI and fIPAR in 

row-structured orchards. 

ii) To understand the effects of architectural and leaf optical 

parameters on the relationship previously defined, using RT 

models. 

iii) To study alternative methodologies to estimate fIPAR from 

high spatial resolution imagery obtained from sensors on board 

unmanned platforms. The high spatial resolution allows the 

discrimination of the different component of the image. 

iv) Mapping the spatial variability of instantaneous fIPAR in this 

kind of complex canopies, assessing the errors obtained for each 

crop and methodology used. 

To achieve these objectives, the following tasks were conducted: 

- Validation of RT models to simulate the studied crop canopies 

using field measurements 

- Study area selection comprising a wide range of optical and 

structural properties, to enable a study of spatial variation of canopy 

reflectance and fIPAR 

- Measurements of canopy reflectance and fIPAR to study the 

diurnal changes as a function of the architecture and row orientation. 
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The thesis is presented as chapters, each one dealing with the objectives 

previously described and focused on the different crops studied. 

Chapter 2 describes the use of remote sensing data coupled with RT 

modelling approaches to estimate fIPAR in citrus and peach orchards using 

visible (VIS) and near infrared (NIR) bands, as well as to assess the effects 

of sun angle, row orientation, canopy architecture and background on the 

canopy reflectance and SVI used to estimate fIPAR.  

Chapter 3 follows the same scheme for an olive orchard; this canopy is 

presented as individual crowns in contrast to the overlapped crowns in citrus 

and peach orchards.  

Chapter 4 deals with vineyard canopies. A wide database which includes 

a range in row orientation, percentage of vegetation cover, and background 

was used to validate RT models in vineyards. The canopy reflectance was 

simulated using hybrid models and a more complex approach based on the 

Monte Carlo ray tracing method. Model simulations with both approaches 

were compared against 15-cm resolution imagery acquired with a 

multispectral sensor and 10-nm full width at half maximum (FWHM) 

bandset.  

Chapter 5 focused on the estimation of fIPAR in vineyards using the high 

spatial resolution to separate areal fractions and pure reflectance from the 

different component of the image (vegetation, shaded and sunlit soil). This 

analysis was compared with a medium spatial resolution analysis. The SVI 

vs fIPAR relationships in vineyards using FLIGHT were applied for 

aggregated pixels.  
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Chapter 2 
 
Mapping radiation interception in row-structured orchards 
using a 3D simulation and high resolution airborne imagery. 
The case of peach and citrus orchards. 
 

Abstract 
This study was conducted to model the fraction of intercepted 

photosynthetically active radiation (fIPAR) in heterogeneous row-structured 
orchards, and to develop methodologies for accurate mapping of the 
instantaneous fIPAR at field scale using remote sensing imagery. The 
generation of high-resolution maps delineating the spatial variation of the 
radiation interception is critical for precision agriculture purposes such as 
adjusting management actions and harvesting in homogeneous within-field 
areas. Scaling-up and model inversion methods were investigated to estimate 
fIPAR using the 3-D radiative transfer model FLIGHT. The model was 
tested against airborne and field measurements of canopy reflectance and 
fIPAR acquired on two commercial peach and citrus orchards, where study 
plots showing a gradient in the canopy structure were selected. High-
resolution airborne multi-spectral imagery was acquired at 10 nm bandwidth 
and 15 cm spatial resolution using a miniaturized multi-spectral camera on 
board an unmanned aerial vehicle (UAV). In addition, simulations of the 
land surface bidirectional reflectance were conducted to understand the 
relationships between canopy architecture and fIPAR. Input parameters used 
for the canopy model, such as the leaf and soil optical properties, canopy 
architecture, and sun geometry were studied in order to assess the effect of 
these inputs on canopy reflectance, vegetation indices and fIPAR. The 3D 
canopy model approach used to simulate the discontinuous row-tree 
canopies yielded spectral RMSE values below 0.03 (visible region) and 
below 0.05 (NIR) when compared against airborne canopy reflectance 
imagery acquired over the sites under study. The FLIGHT model assessment 
conducted for fIPAR estimation against field measurements yielded RMSE 
values below 0.08. The simulations conducted suggested the usefulness of 
these modeling methods in heterogeneous row-structured orchards, and the 
high sensitivity of the Normalized Difference Vegetation Index (NDVI) and 
fIPAR to background, row orientation, percentage cover and sun geometry. 
Mapping fIPAR from high-resolution airborne imagery through scaling-up 
and model inversion methods conducted with the 3D model yielded RMSE 
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error values below 0.09 for the scaling-up approach, and below 0.10 for the 
model inversion conducted with a look-up table (LUT). The generation of 
intercepted radiation maps in row-structured tree orchards is demonstrated to 
be feasible using a miniaturized multi-spectral camera on board UAV 
platforms for precision agriculture purposes. 

 
 
 
Keywords: fIPAR, NDVI, airborne imagery, row-structured tree canopies, radiative transfer 
model, scaling-up, model inversion. 
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2.1. Introduction 

Intercepted photosynthetically active radiation (IPAR) by a crop canopy 

is the main factor determining dry matter production under non-limiting 

water and nutrients supply conditions (Gallagher & Biscoe, 1978 and Hunt, 

1994). The influence of radiation levels on crop photosynthesis and biomass 

accumulation was proposed in the late 1950s by work developed by De Wit 

(1959) and Loomis & Williams (1963), which showed a close link between 

the amount of radiation received by a crop and its growth. It was Monteith 

(1972) who first distinguished the crop function in absorbing and 

transforming the intercepted solar energy into biomass. Further studies 

investigated the relationships between the incident solar radiation and the 

limiting factors determining the light interception in crop canopies, showing 

that leaf area index (LAI) is the dominant factor in the case of continuous 

canopies (e.g., Lang et al., 1985). Fruit tree orchards, however, are grown as 

discontinuous canopies, and the amount of PAR intercepted depends 

primarily on the orchard architecture, which varies with planting system, tree 

spacing, tree shape, tree height, alley width, row orientation as well as LAI 

(Jackson, 1980 and Robinson & Lakso, 1991). Examining within-field 

variability to optimize crop yield and production has been a target of 

precision agriculture in the early 80s. In this context, maps of fIPAR 

variability, crop yield or crop nutrient, derived from image-based remote 

sensing techniques, have been presented as potential benefits for precision 

crop management (Moran et al., 1997). 
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Several previous studies investigated the feasibility of estimating the 

fraction of intercepted photosynthetically active radiation (fIPAR) and 

absorbed (fAPAR) using methods based on optical remote sensing. 

Measurements of IPAR and/or the related fraction of intercepted PAR 

(fIPAR) can be time consuming because of the need to sample for spatial 

and temporal variability. In this context, remote sensing techniques are 

useful enabling the assessment of large areas. Spectral vegetation indices 

(SVI) based on contrasting canopy reflectance in the red and near-infrared 

bands were applied to assess fIPAR and fAPAR at canopy-level scales, 

finding that the Normalized Difference Vegetation Index (NDVI) was the 

best correlated (Asrar et al., 1992; North, 2002). Empirical and modeled 

relationships between SVI and fIPAR were obtained in homogeneous 

canopies, such as wheat, maize or soybean crops (e.g., Daughtry et al., 1983; 

Hall et al., 1992 and Moriondo et al., 2007) and forest canopies (e.g., 

Myneni & Williams, 1994; Huemmrich, 2001 and Zhang et al., 2009). Later, 

the sensitivity of these relationships between SVI and the fraction of PAR, 

absorbed or intercepted, was investigated using 3D models of radiative 

transfer in plant canopies. Work developed by Huete (1989), Choudhury 

(1987) and Huemmrich & Goward (1997) showed the sensitivity of these 

relationships with the canopy architecture, the optical properties of the 

canopy elements and the background. However, these studies were focused 

on randomly distributed canopy elements and closed canopy forestry areas. 

Only a limited number of studies have focused on heterogeneous canopies 

such as the row-structured open-tree canopies, therefore the application of 

such random-distribution scenarios on these relationships may not be valid. 

The effects due to the row orientation, soil background and the viewing 

geometry on remote sensing vegetation indices and canopy reflectance used 
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to estimate instantaneous fIPAR need appropriate modeling strategies. In 

particular, radiative transfer models that aim at deriving the amount and 

distribution of fIPAR by the crop canopy were reviewed by Mariscal et al. 

(2000) who developed a model to simulate fIPAR in non-homogeneous olive 

canopies. Later, the 3-D Forest Light Interaction Model (FLIGHT) (North, 

1996) was used to estimate fAPAR in forest canopies (North, 2002; Prieto-

Blanco et al., 2009), and model simulations showed the need for accounting 

for the row structure in orchard canopies (Kempeneers et al., 2008). While 

methods for modeling and estimating fIPAR in homogenous vegetation are 

relatively mature, further research is needed for a robust estimate of fIPAR 

in open canopies, in particular where the architecture of oriented row 

planting violates the common modeling assumption of angular invariance 

with respect to solar azimuth. In this research work, a dedicated remote 

sensing study aiming at assessing the estimation of radiation interception 

from high-resolution imagery was conducted using an unmanned aerial 

vehicle. The quality of remotely sensed fIPAR and fAPAR products requires 

ensuring a proper verification of the physically-based radiative transfer 

models that contribute to the retrieval of algorithms used to estimate these 

products (Pinty et al., 2002). Therefore, 3D radiative transfer models that 

allow the simulation of local radiation measurements in complex canopy 

architectures under realistic illumination and sampling conditions are needed 

(Widlowski, 2010). Thus, the objectives of this study were: (i) to use remote 

sensing data coupled with 3D modeling approaches (forward and inverse) to 

estimate fIPAR in heterogeneous row-tree canopies using visible (VIS) and 

near-infrared (NIR) bands acquired from a miniaturized multi-spectral 

camera on board an UAV platform in the context of precision agriculture; 

and (ii) to assess the effects of the sun angle, row orientation, canopy 
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architecture and background on the canopy reflectance and NDVI used to 

estimate fIPAR in discontinuous row-tree crop canopies. 

2.2. Materials and Methods 

2.2.1. Study area description and field data collection 

The ground truth data and airborne imagery required for this study were 

acquired in 2007 and 2008 in a commercial peach (90-ha) and a citrus (80-

ha) orchard located in southern Spain, Cordoba (37º 48’N, 4º 48’W) and 

Seville (37º 20’N, 5º 50’W), respectively. The area has a Mediterranean 

climate with approximately 600 mm average annual rainfall, mostly 

concentrated in the Autumn-Spring period. 

The study in the Prunus persica (L.) Batsch orchard was conducted in 

nectarine (cv. Sweet Lady) and peach (cv. Babygold 8) plantations. The 

nectarine and peach trees were planted in 1990 at 6 m x 3.3 m (500 tree ha-1) 

and in 1993 at 5 m x 3.3 m (600 tree ha-1), respectively, on a deep alluvial 

soil of loam to clay-loam texture, with rows oriented in the north-south 

direction. Eight plots were selected from the peach orchard with trees 

covering a range of LAI from 2 to 4.2, tree height between 2.2 to 4 m, and 

horizontal crown diameters of 1.4 to 3.5 m. The study in the citrus orchard 

was conducted in sweet-orange (Citrus sinensis L. Osb cv. Navelina) and 

clementine-mandarin (C. clementina Hort. ex Tan. Cv. Orornules) 

plantations. The orange and mandarin trees were planted in 1997 at 7 m x 3 

m (476 tree ha-1) on a sandy-loam, with rows in east-west direction. Sixteen 

plots were selected with a range of LAI from 1 to 4, tree height between 1.5 

and 4 m, and horizontal crown diameters ranging from 0.8 to 4.5 m. The 

field campaign was carried out in summer months. Peach trees were fully 
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dressed and had fruits. Orange trees were also fully dressed, as they are 

perennials, not having fruits at that period. None of them had flowers. In 

peach orchards, and in general in deciduous fruit orchards, the irrigation 

season coincides when the trees are fully dressed. Therefore, from an 

agronomic point of view, the determination of IPAR is critical at this period. 

The terms intercepted PAR and absorbed PAR are often used 

interchangeably in the literature; the intercepted PAR (IPAR) is understood 

as the difference in the PAR flux density above (Io) and below the plant 

canopy (the transmittance, Tc). The difference between absorbed PAR and 

intercepted PAR is Rs – Rc, where Rs is the PAR flux density reflected by 

soil, and Rc the PAR flux density reflected by the canopy.  
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This difference is very small for full green canopies (Daughtry et al., 

1992). In this study, IPAR and fIPAR were used. Ground measurements 

were conducted on these selected plots concurrent with the airborne over-

flights. The interception of solar radiation by the orchard canopies at each 

time of day was estimated with a ceptometer (SunScan Canopy Analysis 

System, Delta-T Devices Ltd, Cambridge, UK). The instrument is composed 

of two units: (i) a probe, portable instrument 1-m long, for measuring the 

transmitted photosynthetically active radiation (PAR) flux beneath the 

canopy; and (ii) a beam fraction sensor (BFS) that measures PAR incident on 

the canopy at the same time. The BFS incorporates two photodiodes, one of 
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which can be shaded from direct solar radiation by the shade ring. This 

allows the direct and diffuse components of PAR to be separated. As 

expected, the fraction of intercepted PAR by a tree is influenced by the rest 

of the surrounding trees and background. In addition, the crowns are highly 

overlapped in row-structured tree crops. Therefore, the area comprising the 4 

central trees of each study area was selected to conduct the field 

measurements of fIPAR. Figure 2.1a shows imagery acquired by the multi-

spectral airborne sensor at 15 cm spatial resolution, representing two fields 

used in this study with extreme row orientation angles, and the block of 4-

trees selected on each study site for field data collection of radiation 

interception. The high spatial resolution acquired enabled targeting pure 

scene components, such as pure soil and vegetation, separately as well as on 

aggregated pixels. The image reflectance extracted for a pure crown, bare 

soil and aggregated pixels are shown in Figure 2.1b. The measurements of 

transmitted PAR made within the area beneath the four central trees of each 

plot were in a 1 x 0.25 m grid, concurrent with the airborne over-flights 

(Figure 2.2). For the assessment of the spatial variation of fIPAR among the 

different selected plots with a gradient in structural parameters, 

measurements were conducted at 10.00 GMT (+/- half-hour). In addition, 

transmitted and incident PAR measurements were repeated every hour from 

dawn to noon in one plot per orchard, to assess the diurnal variation of 

interception solar radiation. The study area where the PAR measurements 

were conducted and the diurnal variation of interception solar radiation are 

shown in Figure 2.3. The airborne image in this figure shows the bands B: 

530nm, G: 800nm and R: 670nm. 
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Figure 2.1. Multi-spectral reflectance image acquired at 10 nm FWHM and 15 cm spatial 
resolution acquired from the UAV platform, showing the two fields used in the study, peach 
(a) and citrus (b). Canopy reflectance obtained from pure crowns and pure soil pixels, and 
by aggregating tree crowns, shadows and soil background (c). 
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Figure 2.2. Schematic view of the grid (1 m x 0.25 m) used for field measurements made by 
the ceptometer between the four trees per plot (the instrument was orientated in such a way 
that user’s shadow did not affect the measurements). 
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Figure 2.3. Airborne imagery acquired from the UAV platform showing one of the study 
sites (orange orchard, 2007, 14th August, the 3 bands are: B: 530nm G: 800nm R: 670nm). 
and diurnal variation of PAR measured by ceptometer at soil level (area shown is the same 
as in Figure 2.2). 

Figure 2.3. Airborne imagery acquired from the UAV platform showing one of the study 
sites (orange orchard, 2007, 14th August, the 3 bands are: B: 530nm G: 800nm R: 670nm). 
and diurnal variation of PAR measured by ceptometer at soil level (area shown is the same 
as in Figure 2.2). 

  

  

11.00 GMT 

9.00 GMT 

10.00 GMT 

8.00 GMT 

12.00 GMT 

PAR Airborne Imagery 
(mol m-2 s-1) 

33 



Chapter 2 

Parameters used as input for the FLIGHT model were measured in the 

field at each study plot. Table 2.1 shows the input parameters required by the 

model. Single leaf reflectance and transmittance measurements were 

acquired on leaf samples using an Integrating Sphere (Li-Cor 1800-12, Inc., 

Lincoln, NE, USA), coupled with a 200-μm diameter single mode fibre to a 

spectrometer (Ocean Optics Inc. model USB2000, Dunedin, FL, USA). The 

single leaf values for reflectance (ρ) and transmittance (τ) were acquired as 

described in the manual of the Li-Cor 1800-12 system (Li-Cor Inc., 1984) 

and in Zarco-Tejada et al. (2005). More than 150 leaves of peach and orange 

trees were measured to characterize the leaf optical properties of each crop. 

Sunlit soil reflectance was extracted from the airborne imagery at the time of 

each flight. Figure 2.4 shows the mean leaf reflectance and transmittance 

measured on peach and orange leaves and used as input for the 3D canopy 

modeling conducted. 
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Table 2.1. Nominal values and range of parameters used for canopy modelling conducted 
with FLIGHT for the orchard study sites 
 

 
FLIGHT input parameters Description 

Leaf optical and structural parameters  
Hemispherical reflectance and transmittance  
of green leaves 

Integrating Sphere 
 (see fig. 2.4) 

Hemispherical reflectance and transmittance  
of senescent leaves 

Not used 

Leaf equivalent radius 0.025 m 

Canopy layer and structural parameters  
Leaf area index of vegetation m2/m2 (see Table 2.2) 
Fractional cover  4 – 70 % 
Leaf angle distribution function 9 parameters (see fig. 2.5) 
Fraction green leaves 1 
Fraction senescent leaves 0 
Fraction of bark 0 
Hemispherical reflectance and transmittance  
of bark 

Not used 

Number of stands and position coordinates Coordinates (m) 
Crown shape Elliptical 
Crown height and radius m (see table 2.2) 
Trunk height and radius m 

Background and viewing geometry 
Solar zenith and azimuth angles Degrees (see table 2.2) 
Sensor zenith and azimuth angles Degrees (see table 2.2) 
Incident PAR Measured by BFS 
Soil reflectance Image extracted 
Soil roughness 0 
Aerosol optical depth (AOD) 0.15 
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Figure 2.4. Reflectance and transmittance measured by integrating sphere for orange and 
peach leaves. 

Leaf area index (LAI) was estimated from the equation (Lang, 1987): 
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    [2.3] 

where G (θ), named the G-function, is the mean projection of unit leaf 

area on a plane normal to the beam; T (θ) is the transmittance sunbeam, and 

θ is the solar zenith angle. Taking transmittance measurements with the 

ceptometer at the time where θ = 1- radian (57.3º), where G-function is close 

to 0.5 (Ross, 1981) the equation yields: 

)1(1.1 LnTLAI      [2.4] 

The leaf angle distribution function for adult peach and orange trees was 

calculated according to Lemeur (1973). Random leaf azimuth was assumed. 

The leaf angle range (0º-90º) was split into 9 intervals of 10º each. The leaf 

angle distribution function (LADF), were obtained as the relative frequency 
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of leaves with angle α in each α interval (Figure 2.5). The leaf inclination 

was measured in the field with an inclinometer (Fisco Solatronic 

Inclinometer, Essex, UK), as the angle between the vertical and the normal 

vector to the upper leaf surface. For each crop, the number of measured 

leaves of peach and orange was 4000. 
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Figure 2.5. Leaf angle distribution function in 10º intervals measured for peach and orange 
trees. 
 

The crown radius and shape, and the height of the fruit trees were 

measured using a scale pole. The architectural properties for the four central 

trees of each plot were measured. The trees were divided into its eight 

octants for measuring horizontal radii and shape (Figure 2.6a). In each 

octant, the tree silhouette was estimated by measuring the upper and the 

lower limits of the tree-crown with a vertical pole, which was systematically 

moved away from the tree-trunk in 0.2 m increments (Villalobos et al., 1995) 

as is shown in Figure 2.6b. Table 2.2 shows the mean values measured for 

each study plot. Table 2.2, and Figure 2.4 and Figure 2.5 show the field 
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measurements collected on each study site. These data are later used for the 

3D canopy modeling assessment of aggregated reflectance and fIPAR 

estimation. 

 

Nadir view 
20 cm

 
a)                                                                       b) 

 
Figure 2.6. Schematic view of the nadir (a) and profile (b) view used to measure tree’s 
silhouette. 
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Table 2.2. Main characteristics of peach and citrus orchard used for FLIGHT model 
validation: 14th August 2007 (peach), 16th September 2008 (citrus). 
 

Peach orchard (Lat. 37º 49’N; Long 4º 53’W) Row orientation 20º NW-SE 

Plot  
Time (GMT) and  

Solar angles at 
image acquisition (SZº-SAº) 

Planting grid  
(m x m) 

Rx (m) Ry (m)  
Tree  

height (m) 

1 8.00 62.27º-87.36º 5 x 3.3 1.8 1.7 4 
1 9.00 50.59º-77.06º 5 x 3.3 1.8 1.7 4 
1 10.00 35.02º-69.5º 5 x 3.3 1.8 1.7 4 
1 11.00 29.73º-44.51º 5 x 3.3 1.8 1.7 4 
2 10.00 35.02º-69.5º 5 x 3.3 1.6 1.4 3.6 
2 12.00 23.78º-14.68º 5 x 3.3 1.6 1.4 3.6 
3 10.00 35.02º-69.5º 5 x 3.3 0.8 0.6 2.2 
3 12.00 23.78º-14.68º 5 x 3.3 0.8 0.6 2.2 
4 10.00 35.02º-69.5º 5 x 3.3 0.9 0.6 2.4 
4 12.00 23.78º-14.68º 5 x 3.3 0.9 0.6 2.4 
5 10.00 35.02º-69.5º 5 x 3.3 0.85 0.7 2.3 
5 12.00 23.78º-14.68º 5 x 3.3 0.85 0.7 2.2 
6 10.00 35.02º-69.5º 6 x 3.3 1.6 1.5 3.8 
6 12.00 23.78º-14.68º 6 x 3.3 1.6 1.5 3.8 
7 10.00 35.02º-69.5º 6 x 3.3 1.4 1.2 3 
8 10.00 35.02º-69.5º 6 x 3.3 1.4 1.2 3 

Orange orchard (Lat. 37º20’N; Long 5º48’W ) Row orientation 70º NE-SW 
1 8.00 68.11º-76.39º 7 x 3 1.75 2.3 4 
1 9.00 56.85º-65.21º 7 x 3 1.75 2.3 4 
1 10.00 47º-49.2º 7 x 3 1.75 2.3 4 
1 11.00 38.74º-32.31º 7 x 3 1.75 2.3 4 
1 12.00 34.58º-8.05º 7 x 3 1.75 2.3 4 
2 10.00 47º-49.2º 7 x 3 1.33 1.56 2.48 
3 10.00 47º-49.2º 7 x 3 1.6 2.45 3.15 
4 10.00 47º-49.2º 7 x 3 1.8 2.7 4 
5 10.00 47º-49.2º 7 x 3 1.5 2.05 2.3 
6 10.00 47º-49.2º 7 x 3 1.15 1.31 2.04 
7 10.00 47º-49.2º 7 x 3 2 2.3 3.5 
8 10.00 47º-49.2º 7 x 3 0.4 0.4 1.5 
9 10.00 47º-49.2º 7 x 3 1.42 2.2 3.2 

10 10.00 47º-49.2 7 x 3 1 0.9 1.8 
11 10.00 47º-49.2º 7 x 3 1.5 1.5 2.56 
12 10.00 47º-49.2º 7 x 3 1.26 2.1 3 
13 10.00 47º-49.2º 7 x 3 1.6 1.6 2 
14 10.00 47º-49.2º 7 x 3 1.8 1.6 2.6 
15 10.00 47º-49.2º 7 x 3 1.8 1.8 3.4 
16 10.00 47º-49.2º 7 x 3 2 1.7 3.8 

Rx : crown radius in the row direction 
Ry : crown radius between rows 
SZ: solar zenith (degrees from the North) 
SA: solar azimuth (degrees from South, clockwise negative) 
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2.2.2. Airborne campaigns 

The sensor used in this study was a 6-band multi-spectral camera (MCA-

6, Tetracam Inc., California, USA) used for biophysical parameter 

estimation over crops (Berni et al., 2009) and stress detection studies using 

chlorophyll and PRI bands (Suárez et al., 2009; 2010). An unmanned aerial 

vehicle (UAV) platform for remote sensing research carried the camera 

(details about the UAV operation can be found in Berni et al., 2009; Zarco-

Tejada et al., 2008 and Zarco-Tejada et al., 2012). The UAV platform 

operated in this experiment consisted of a 2-m fixed-wing platform capable 

of carrying a 3.5 kg payload for 1 h endurance at 5.8 kg take-off weight 

(TOW) (mX SIGHT, UAV Services and Systems, Germany). The UAV was 

controlled by an autopilot (AP04, UAV Navigation, Madrid, Spain) for 

autonomous flight to follow a flight plan using waypoints. The camera 

consisted of 6 independent image sensors and optics with user-configurable 

spectral filters. The image resolution was 1280 x 1024 pixels with 10-bit 

radiometric resolution and optical focal length of 8.5 mm, yielding an 

angular field of view (FOV) of 42.8º x 34.7º and 15-cm pixel spatial 

resolution at 150-m flight altitude. High-resolution multi-spectral images 

acquired over the peach and citrus orchards enabled the identification of 

each study site used for field measurements of crop structure and fIPAR. The 

flight plan was designed to image each study plot at nadir. The plots were 

marked in the field using bright ground control points easily detectable on 

the imagery. The bandsets selected for this study comprised centre 

wavelengths at 670 and 800 nm with 10 nm full width at half maximum 

(FWHM) used for computing the Normalized Difference Vegetation Index 

(NDVI) and bands centered at 490, 530, 570 and 700 nm to compute other 
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spectral indices such as the Photochemical Reflectance Index (PRI) for stress 

detection studies, and the red edge for chlorophyll estimation. 

Diurnal campaigns were conducted for both airborne imagery acquisition 

and intercepted PAR field measurements collected every hour from 8.00 to 

12.00 GMT (8.00-12.00 GMT on citrus in 2007; 8.00-11.00 GMT on peach 

in 2008; 10.00 and 12.00 GMT on peach in 2007), thus a total of 11 airborne 

images were acquired over the selected plots for each orchard. The objective 

was to study the diurnal variation of the intercepted radiation over the course 

of the day as a function of the sun geometry. Additionally, to assess the 

effects of the variability of the intercepted solar radiation and reflectance 

bands as a function of orchard architecture, a total of 30 additional airborne 

images were collected over the study plots. Atmospheric correction and 

radiometric calibration methods were applied to the imagery to calculate the 

spectral reflectance. Radiometric calibration was conducted in the laboratory 

using coefficients derived from measurements made with a uniform 

calibration body (integrating sphere, CSTM-USS-2000C Uniform Source 

System, LabSphere, NH, USA) at four levels of illumination and eleven 

integration times. Radiance values were converted to reflectance using the 

total incoming irradiance simulated with SMARTS (Gueymard, 2005) using 

aerosol optical depth at 550 nm measured with Micro-Tops II sunphotometer 

(Solar LIGHT Co., Philadelphia, PA, USA) collected in the study areas at 

the time of the imagery acquisition. This radiative transfer model has been 

previously used in other studies such as Berni et al. (2009) and Suárez et al. 

(2010). The algorithms used by SMARTS were developed to match the 

output from the MODTRAN complex band models within 2%, but uses 

AOD (aerial optical depth) as input. The geometric calibration was 
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conducted using Bouguet’s calibration method (Bouguet, 2001) in order to 

recover the intrinsic camera parameters (Berni et al., 2009). 

2.2.3. 3D simulation of row-structured tree canopies 

A detailed simulation of the land surface bidirectional reflectance was 

undertaken in order to understand the relationships between canopy 

architecture and the intercepted PAR as a function of the vegetation canopy 

structure, tree spatial distribution, and leaf and background optical 

properties. A 3-D model of light interaction with vegetation canopies 

(FLIGHT) was used for this study. FLIGHT was selected because it allowed 

simulation of row orientations, tree dimensions, soil background effects, and 

to generate 3D scenes to assess the effects of the architecture, crown 

structure and biochemical inputs. The FLIGHT model is based on the Monte 

Carlo ray tracing method as a tool to simulate the radiative transfer in a 

canopy structure (North, 1996). Monte Carlo simulation allows highly 

accurate estimation of light interception and bidirectional reflectance (Barton 

& North, 2001; Disney et al., 2000). The technique requires sampling of the 

photon free-path within a canopy representation, and simulation of the 

scattering event at each iteration. An accurate treatment of light interception 

and multiple scattering between foliage elements and the soil boundary is 

obtained by iteration (North, 2002). In addition to calculating absorbed or 

intercepted radiation, the model also allows direct calculation of canopy 

photosynthesis, accounting for structure and anisotropic down-welling 

radiation field (Alton et al., 2007). The FLIGHT model has been assessed 

with other three-dimensional codes as part of the Radiation Model 

Intercomparison (RAMI) project (Widlowski et al., 2007). The recent 

analysis within RAMI of six selected three-dimensional models, including 
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FLIGHT, showed dispersion within 1% over a large range of canopy 

descriptions (Widlowski et al., 2008).  

2.2.3.1. Canopy model assessment for simulating row tree orchards 

The FLIGHT model inputs consisted of: (i) geometric characteristics: 

crown shape, height, and radius, leaf angle distribution, LAI and location of 

each single crown in the scene, as well as trunk geometry, total scene size 

and vegetation coverage; (ii) optical properties: soil reflectance and green 

leaf reflectance and transmittance; (iii) sun and view azimuth and zenith 

angles; and (iv) other parameters such as soil roughness, aerosol optical 

thickness and the number of photons simulated. Table 2.1 shows the input 

parameters required to run the FLIGHT model for the scenes simulated in 

this study. The output of the model simulation is a 3D hyperspectral image 

with the same number of bands as the input leaf spectral signature and the 

estimated intercepted PAR (IPAR) for the scene.  

A detailed simulation of the canopy reflectance was undertaken to assess 

the performance of the FLIGHT model for this type of row-tree structure 

canopy. Table 2.2 shows the selected plots used for the 3D canopy model 

assessment. The study areas were selected to assure spatial variability, 

showing a wide range in vegetation cover fraction: 9%-60% in peach, and 

4%-75% in citrus orchards, as well as different row orientations (N-S; E-W) 

and tree heights (1.8-4 m). In addition, flights conducted at different times 

enabled the assessment of the diurnal evolution of canopy reflectance and 

fIPAR estimated by the 3D model. FLIGHT simulations were conducted 

with structural and optical measurements collected at each plot (see Figure 

2.4 for the optical properties and Table 2.2 for the structural parameters 

used). Model assessment for the canopy reflectance simulations was 
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conducted by comparisons between the modeled reflectance and the airborne 

imagery reflectance acquired on each plot and flight time, calculating the 

RMSE. 

Assumptions considered in the modeling work consisted of fixed leaf 

angle distribution for all trees on the scene. In addition, the trees in a 3D 

scene had the same shape, which corresponded to the mean value measured 

for the four central trees on each site. The woody material (NPV) was not 

considered as field measurements conducted indicated less than 8% NPV, 

and negligible effects were found on the reflectance and NDVI values used 

to relate with fIPAR. Fruits for peach trees were not considered in the 

simulations. 

2.2.3.2 Scaling up and Model Inversion methods for fIPAR estimation 

The FLIGHT model was tested to assess the accuracy of the simulations 

for fIPAR in row-structured tree canopy scenes. To assess the influence of 

the architecture on the canopy reflectance, on the aggregated NDVI and on 

fIPAR, the FLIGHT input parameters were varied and the simulated 

reflectance per plot was aggregated by the four central trees of the plot, 

including the soil between tree rows and shadows (see Figure 2.1a and 

Figure 2.1b). Scaling-up and model inversion methods were conducted to 

estimate the instantaneous fIPAR in the row-tree orchards using the airborne 

imagery acquired on each study site.  

For the scaling-up method, the objective was to develop predictive 

relationships NDVI-fIPAR calculated under specific canopy assumptions. 

The predictive relationships for the peach and citrus orchards were obtained 

with input parameters fixed according to mean field measurements for each 
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orchard: leaf angle distribution function, leaf optical properties, row 

orientation and soil reflectance extracted from the airborne image, and the 

solar geometry depending on the time of flight. The methods used in this 

study are relevant for fully dressed peach trees and for the entire season in 

perennial citrus orchards. A specific set of input parameters for the FLIGHT 

model typical for these orchards to define the canopy structure were: 0.5 to 2 

m in the case of crown radii, tree height ranged from 1.4 to 4 m, and LAI 

from 2 to 6. Table 2.3 shows a summary of all input parameters used for the 

scaling-up method. The modeled relationships NDVI vs fIPAR obtained for 

each orchard were then applied to the multi-spectral airborne imagery 

reflectance to estimate the instantaneous fIPAR for each flight time and 

study site. This methodology enabled the application of sensor-derived 

optical indices for scaled-up relationships NDVI-fIPAR that are a function of 

canopy structure, optical properties and the viewing geometry. 

The estimation of fIPAR based on model inversion was conducted by 

using look-up tables (LUT) developed independently for each orchard type, 

using the specific leaf spectral properties, row orientation and sun geometry. 

The range of parameters used to define the canopy structure was the same as 

in the scaling-up methodology, while including the variability in the soil 

optical properties (Table 2.3). In our analysis, three different types of soil 

reflectance were considered, representing dark, medium and bright soils 

(Figure 2.7). A total of 1000 synthetic spectra were generated using the 

FLIGHT model with random input parameters within the ranges previously 

proposed. The 1000 synthetic spectra were composed of 9 bands with 

wavelength centres at 400, 450, 500, 570, 600, 670, 700, 750 and 800 nm to 

simulate the bands acquired by the airborne sensor. The FLIGHT model used 

for fIPAR estimation was first tested with synthetic spectra using a 
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numerical model inversion method. A subset of 500 synthetic spectra was 

used to build the LUT, and the remaining subset used for model inversion to 

assess the retrieval of fIPAR. This step was conducted to assess the 

robustness of the FLIGHT model for retrieving fIPAR. Next, the reflectance 

spectra obtained from the imagery for each study site were used as input for 

the model inversion method to estimate fIPAR for each study area. For this 

step, the 1000 synthetic spectra LUT was used, and the error calculation 

consisted of determining the set of reflectance spectra which minimized the 

merit function Δ2, Equation [2.5]. 

     
n

iim rr
2*2   

 
   [2.5] 

where rm(λi) is the canopy spectral reflectance from the LUT; r*(λi) is the 

canopy spectral reflectance inverted . In the present study, two methods were 

used in the inversion procedure, (i) using reflectance bands centred at 

wavelength 570, 670, 700 and 800 nm; and (ii) building the merit function 

based on the NDVI index. This methodology has been previously applied by 

Weiss et al. (2000) and Koetz et al. (2005) for LAI estimation.  
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Figure 2.7. Spectral reflectance for three different soil brightness levels. 
 
 
Table 2.3. Variables used to generate predictive relationships and look-up tables for the 
scaling- up and model inversion methods. Coefficients of determination and RMSE values 
obtained between the ground-measured fIPAR and the estimated fIPAR by scaling-up and 
model inversion for both peach and citrus orchards. 
 

 Predictive relationship Model inversion (LUT) 
Leaf (ρ and τ) See Figure 2.4 Leaf (ρ and τ) See Figure 2.4 
LADF See Figure 2.5 LADF See Figure 2.5 
Row orientation NS (peach) 

EW (orange) 
Row orientation NS (peach) 

EW (orange) 
Sun geometry SZ:35.02º; SA:69.5º 

(peach) 
SZ: 47º; SA: 49.2º 
 (orange) 

Sun geometry SZ:35.02º; SA:69.5º 
(peach) 
SZ: 47º; SA: 49.2º 
(orange) 

Soil (ρs) Image extracted   

Fixed  
parameters 

    
Tree radius (m) 0.5 – 2 Soil (ρs) See Figure 2.7 
Tree height (m) 1.4 – 5 Tree radius (m) 0.5 – 2 
LAI 2 – 6 Tree height (m) 1.4 – 5 

Variable 
 parameters 

  LAI 2 – 6 
Results  r2 ;(RMSE)  r2 ; RMSE 

Peach 0.87; (0.08) Peach 0.84; (0.12) 
NDVI 

Citrus 0.88; (0.09) Citrus 0.85; (0.08) 
Peach 0.82; (0.11). 4 bands  

(570, 670, 700 800 nm) --------- --------- 
Citrus 0.76; (0.08) 

SZ: solar zenith (degrees from the North) 
SA: solar azimuth (degrees from South, clockwise negative) 
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2.3. Results and Discussion 

2.3.1 Using the FLIGHT model for row-structured tree canopies: canopy 
reflectance assessment. 

A sample FLIGHT simulation scene corresponding to the orange orchard 

at different sun angles is shown in Figure 2.8a. Block spectra (Figure 2.1) 

were extracted from the airborne imagery and simulation scenes, and 

vegetation indices calculated. Reflectance spectra comparisons were made 

between model simulations and airborne imagery, assessing the canopy 

reflectance simulations for the visible and near-infrared (NIR) wavelengths. 

Figure 2.8 shows image-extracted and simulated canopy reflectance for the 

peach orchard (Figure 2.8b) and orange orchard (Figure 2.8c) at different 

times. Leaf optical properties and LADF data appear in Figure 2.4 and 

Figure 2.5, respectively. The image data used in this study were collected in 

2 years. The multi-spectral sensor has configurable bandsets. Thus, during 

2007, the selected wavelengths were 530,570,670,715,730 and 800 nm and, 

in 2008, the bands used were 530,550,570,670,700 and 800 nm. Both 

datasets had the bands required for NDVI calculation. The trend observed in 

the airborne imagery as a function of sun angle showed an increasing canopy 

reflectance with time due to the reduced shadow proportions, which were 

well captured by the model. This effect is more evident in N-S oriented 

orchards (Figure 2.8b), as the shaded contribution changes more 

significantly in this orientation than in E-W orientation (Figure 2.8c).  
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Figure 2.8. UAV airborne imagery acquired from one study site, and the corresponding 
simulations conducted with FLIGHT at 8.00, 9.00 and 10.00 GMT (a). Spectra obtained for 
aggregated vegetation-soil pixels: multispectral image spectra collected at 8.00 GMT and 
12.00 GMT, and canopy simulations conducted with FLIGHT on peach (b) and orange (c) 
orchards. 
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The green (570 nm), red (670 nm) and NIR (800 nm) bands extracted 

from the imagery acquired over the study plots were compared against 

simulations conducted with the FLIGHT model (Figure 2.9a). The FLIGHT 

input parameters used were measured for each study site (Table 2.2, Figure 

2.4-Figure 2.5). The simulations for the green spectral band (10 nm FWHM) 

yielded RMSE values of 0.011 and 0.024 for orange and peach, respectively; 

similar results were obtained for the red band (RMSE=0.017 and 0.031). For 

the NIR band, the errors increased slightly (RMSE~0.05). Higher errors were 

obtained for N-S orientation as compared to E-W due to higher changes in 

reflectance over the diurnal course. The RMSE values obtained for all bands 

in the visible were below 0.03, and below 0.05 in the NIR. 
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Figure 2.9. Relationships obtained for canopy reflectance at 570, 670 and 800 nm (a), NDVI 
(b), and fIPAR (c) calculated from multispectral airborne imagery and FLIGHT simulations.  

Assessments conducted for NDVI and fIPAR simulated with FLIGHT 

and obtained from the airborne imagery (NDVI) and ceptometer (fIPAR) are 

shown in Figure 2.9b and 2.9c, respectively. The analysis of NDVI yielded 

RMSE=0.06-0.07 in orange and peach orchards, respectively, obtaining 

RMSE values of 0.06 (peach) and 0.08 (orange) for fIPAR. Plots with low 

vegetation cover fraction presented higher errors in the simulations 
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conducted for fIPAR estimation. Considering the complex canopy 

architecture simulated, the large number of field measurements required for 

simulations and the atmospheric and image calibration issues, these results 

seemed acceptable for simulating the 3D row structure architecture 

conducted with FLIGHT. 

2.3.2 Simulation results for fIPAR in row-structured tree canopies 

Simulations with FLIGHT were conducted to understand the sensitivity 

of input parameters, such as vegetation cover fraction, sun angles, row 

orientation, LAI and the soil reflectance, on the canopy reflectance (ρ), 

NDVI and fIPAR simulations. The red (670 nm) and NIR (800 nm) bands 

used for NDVI calculation and fIPAR were simulated as a function of the 

sun angle for N-S and E-W row orientations for a range of vegetation cover 

fraction (30-70%) and soil spectra (bright, medium and dark). The effects of 

the row orientation on NDVI and fIPAR were studied by generating different 

canopy scenarios on a summer day as shown in Figure 2.10. The figure 

illustrated three scenarios: NS row oriented tress (Figure 2.10a), EW row 

oriented trees (Figure 2.10b) and randomly distributed trees (Figure 2.10c) at 

8.00, 10.00 and 12.00 GMT. All three cases had the same cover vegetation 

fraction, but variable percentage shadow due to the tree spatial distribution. 

The vegetation cover fraction was 48% and LAI=4 in all cases, the height of 

the trees was set to 2.7 m, and a spherical leaf angle distribution function 

was assumed. This figure highlights the importance of considering row 

orientation in the simulations. As such, the analysis focused on row-

orientated orchards, while excluding the random distribution simulations. 
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North - South East- West Random 
                   (a)                                          (b)                                          (c) 

   
Time 8.00 GMT: SZ: 58.32º; SA: 91.81º 

   
Time 10.00 GMT: SZ: 35.02º; SA: 69.47º 

   
Time 12.00 GMT: SZ: 18.24º; SA: 14.84º 

 
SZ: Solar zenith (degrees from North) 
SA: Solar azimuth (degrees from South, clockwise negative) 
 
Figure 2.10. FLIGHT model simulations conducted generating orchard scene at different 
times of day (8.00, 10.00 and 12.00 GMT) for two different row orientations, NS and EW (a 
and b, respectively) and a random distribution (c). LAI=4, fractional cover=0.48, leaf 
size=0.025, fraction of green leaves=0.85, fraction of bark=0, ladf=spherical, crown 
shape=ellipsoidal, crown radius=1.5 m, tree height=2.7 m, soil roughness=0, aerosol optical 
thickness=0.1. 
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The effects of the background were assessed because it is well accepted 

that variations in soil spectral reflectance have significant effects on NDVI 

(Huete et al., 1985), especially in open canopies. For North-South row 

orientations (Figure 2.11a, d and g), larger differences on ρ, NDVI and 

fIPAR were found as a function of sun angles. NIR and red bands increased 

up to 0.20 for bright soils from morning until midday, while the diurnal 

variation of ρ on scenes with dark soils was around 0.10. These differences 

found between ρ at morning and noon appeared slightly smaller for greater 

ground cover (70%) (Figure 2.11a). For NDVI, a decrease of up to 0.4 was 

shown for a dark soil background from 8.00-12.00 GMT. Soil spectra had 

significant influence on NDVI, mainly at midday (Figure 2.11d). The trend 

for fIPAR was similar to NDVI, decreasing between 0.3-0.4 for both canopy 

cover values, but with little effect caused by the background (Figure 2.11g). 

On the contrary, simulations conducted demonstrated the small sun angle 

effect on ρ, NDVI and fIPAR for E-W orientations (Figure 2.11b, e and h, 

respectively). As expected, row-tree lines oriented in the solar plane made 

the shaded soil component variation a very small contribution to the canopy 

reflectance (Figure 2.11b and e), and on fIPAR (Figure 2.11h). However, 

large differences on canopy reflectance, NDVI and fIPAR were found when 

the vegetation cover fraction was varied, as expected. Changes in soil 

reflectance affected the canopy reflectance simulations and NDVI (Figure 

2.11b and e), while fIPAR simulation was less affected by the background 

(Figure 2.11h). Variations in the LADF had small effects (Figure 2.11c, f, i). 

These results demonstrate the importance of canopy modeling methods to 

understand the behaviour of reflectance, NDVI and fIPAR for different 

canopy scenarios on row-structured canopies. 
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Figure 2.11. Simulations obtained with FLIGHT: variance analysis due to effect of the sun geometry on reflectance 
(670 and 800 nm), NDVI and fIPAR, considering row orientation N-S (a,d,g) and E-W (b,e,h) as a function of 
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The instantaneous NDVI-fIPAR relationships as a function of fixed and 

variable inputs were calculated to build scaling-up relationships. The sun 

geometry was fixed to 10.00 GMT for a summer day (zenith=35.02º from 

North; azimuth=69.47º from South, clockwise negative) and variation was 

driven by the vegetation cover fraction (4-70%). The architectural canopy 

parameters such as tree height (z) were varied for three different levels 

(z=1.7; 2.9; 4 m) showing a marginal effect on the NDVI-fIPAR relationship 

(Figure 2.12a). Similar results were found for the LAI variation (data not 

shown), which confirms previous studies, such as Goward & Huemmrich 

(1992). The instantaneous NDVI-fIPAR relationships for N-S and E-W row 

orientations, in combination with changes in the soil optical properties, were 

also studied for two different sun angles: morning (8.00 GMT) (Figure 

2.12b) and midday (12.00 GMT) (Figure 2.12c). At 8.00 GMT, soil 

reflectance had a significant effect on the NDVI-fIPAR relationship for the 

E-W row orientation (Figure 2.12b), being less important for North-South 

row orientation because the soil is completely shaded at such a sun angle 

(8.00 GMT). On the other hand, shadows almost disappeared at 12.00 GMT. 

Soil optical properties caused large effects on both East-West and North-

South orientations (Figure 2.12c). For example, for NDVI=0.4, differences 

of 0.17 in fIPAR were found as a function of bright and dark soils (Figure 

2.12c) for both orientations. The canopy model results showed high 

sensitivity of the NDVI-fIPAR relationships to the soil optical properties and 

row orientation, dependant on the sun geometry.  
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b)                                                                 c) 
Figure 2.12. Variance in the NDVI-fIPAR relationship as a function of the tree height (a), 
soil type and row orientation for 8.00 GMT (b) and 12 GMT (c).  

 

2.3.3. Estimating intercepted radiation by scaling up and model inversion 
methods 

An analysis of fIPAR estimation with remote sensing imagery was first 

conducted by obtaining relationships between vegetation indices calculated 
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from the airborne imagery and fIPAR measured with a ceptometer (Figure 

2.13). The aggregated image reflectance from the four central trees of the 

orchard, including exposed soil and shadows, was used to compute spectral 

vegetation indices, such as NDVI. The diurnal variation of NDVI for the 

same plot over the course of the day as related to fIPAR (Figure 2.13a) was 

mainly driven by soil and shadow variation as a function of the sun 

geometry. The spatial variation of NDVI vs fIPAR (Figure 2.13b) was 

obtained through measurements conducted at selected plots with different 

architectural canopy characteristics at 10.00 GMT (+/- half hour). The results 

showed high coefficients of determination for NDVI vs fIPAR with r2 > 0.9 

for the diurnal trial, and r2 > 0.8 for the spatial variation study. 

Methodologies to estimate instantaneous fIPAR through scaling-up and 

model inversion methods were then investigated. 
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a)                                                               b) 

Figure 2.13. Relationships obtained between NDVI, calculated from high resolution 
airborne imagery, and field-measured fIPAR at different sun angles (diurnal variation) for 
an individual site (a) and multiple sites imaged at solar zenith angle = 35º (spatial variation) 
(b). 
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Modeled relationships NDVI vs fIPAR were obtained by the scaling-up 

methodology (Figure 2.14a). Parameters used to obtain these relationships 

can be found in Table 2.3. After previous understanding of the influence of 

different parameters on the relationship NDVI-fIPAR, parameters known for 

each study area were used, such as row orientation, soil reflectance obtained 

from the airborne imagery and sun geometry function of the time of each 

flight. Other canopy architecture parameters were varied within a range 

(Table 2.3). Estimation of fIPAR by scaling-up was compared against 

ground-measured fIPAR for each plot. Relationships obtained for the citrus 

orchard yielded estimates with relative RMSE of 0.10 and r2=0.88. For the 

peach orchard, a relative RMSE of 0.08 and r2=0.87 were obtained (Figure 

2.14b). 
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Figure 2.14. Relationships between fIPAR and NDVI obtained for FLIGHT for citrus and peach 
orchards (a). Estimated intercepted radiation using scaling-up equations developed in a), versus 
measured fIPAR (b). 

The simulation study to investigate the retrieval of fIPAR through 

FLIGHT radiative transfer model inversion was conducted by iteration from 

the synthetic spectra for peach (Figure 2.15a) and orange orchards (Figure 

2.15b). The fIPAR estimates shown in Figure 2.15 were obtained using two 

approaches. In the first case, only 4 of the 9 bands, 570, 670, 700 and 800 
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nm, were used for the inversion, and the second case using NDVI. In 

addition, during the model inversion, some parameters were fixed and others 

were varied (see Table 2.3) to simulate the typical set of parameters 

potentially known and unknown. That is the reason for the scatter in the plots 

between estimated fIPAR and fIPAR calculated from the synthetic spectra. 

Relative RMSE below 0.09, and coefficients of determination around 0.8 

were obtained by using the four bands and NDVI for the model inversion 

method for both orchards. The modeling exercise conducted with synthetic 

spectra demonstrated the feasibility of the proposed model inversion method 

to retrieve fIPAR with the FLIGHT model. 
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                                           c)                                                                                 d) 
Figure 2.15. Coefficients of determination and RMSE obtained between fIPAR obtained 
from synthetic spectra for peach (a) and citrus orchards (b). Coefficient of determination and 
RMSE obtained between field-measured fIPAR and estimated fIPAR by inversion for peach 
(c) and citrus orchards (d). 

Subsequently, the estimation of fIPAR by inversion using airborne 

imagery was compared with ground measured fIPAR for each plot. LUTs 

were generated as indicated in Table 2.3. Results obtained from comparing 

the estimated fIPAR by radiative transfer model inversion against the field-

measured fIPAR (Figure 2.15c and d) yielded a relative RMSE of 0.08 and 
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0.10 for orange and peach orchards, respectively. Building the merit function 

with (i) four bands, and (ii) NDVI, did not show significant differences. 

Results obtained by comparing the estimated fIPAR against field 

measurements demonstrated the feasibility of the model inversion approach 

for fIPAR estimation using the FLIGHT model. 

A direct application of these methodologies enabled obtaining a map of 

the instantaneous intercepted radiation at orchard scale using airborne 

imagery. Three orange plots showing a varying percentage cover, together 

with the downscaled NDVI map, and the estimated fIPAR are shown in 

Figure 2.16. Large differences can be observed between the three plots, with 

values of intercepted radiation ranging from 0.18 to 0.88. The intercepted 

radiation varied within each plot, even for apparent constant ground cover. 

As shown in Figure 2.16, fIPAR values ranged between 0.7 and 0.9 (first 

plot), 0.45 to 0.63 (second plot) and from 0.15 to 0.25 (third plot). Figure 

2.17 and Figure 2.18 show the complete citrus and peach orchard 

respectively, the mosaic of canopy reflectance is shown in Figure 2.17a and 

Figure 2.18a and the fIPAR obtained from apply this methodology are 

shown in Figure 2.17b and Figure 2.18b. 
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Figure 2.16. Example of three maps of the intercepted radiation at the orchard scale for plots 
with different plant densities.  
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Figure 2.17. Multi-spectral mosaic of the citrus orchard acquired from the UAV platform (a) 
used to generate a map of fIPAR calculated from the FLIGHT model (b) 
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Figure 2.18. Multi-spectral mosaic of the peach orchard acquired from the UAV platform (a) 
used to generate a map of fIPAR calculated from the FLIGHT model (b). 
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2.4. Conclusions 

This work examines the relationship between canopy reflectance and 

instantaneous fIPAR in peach and citrus orchards using the 3-D radiative 

transfer FLIGHT model and measurements conducted with ground and 

remote instruments on board an unmanned aerial vehicle. Visible and NIR 

canopy reflectance and fIPAR simulations conducted with FLIGHT were 

assessed for these row-structured canopies, obtaining a RMSE below 0.03 

for the visible bands, and below 0.05 for the NIR band. The main drivers of 

the relationship NDVI-fIPAR in these heterogeneous canopies were the 

background optical properties and the row orientation, both as a function of 

the sun geometry. The background reflectance had significant effects on the 

aggregated NDVI at midday, when the proportion of shaded soil is minimal. 

As a consequence, the NDVI-fIPAR relationships were independent of the 

row orientation at noon. It was demonstrated that the NDVI-fIPAR 

relationship changes as a function of the soil optical properties and row 

orientation, due to their large effects on NDVI in non-homogeneous orchard 

canopies. 

This study demonstrated that a robust NDVI-fIPAR relationship can be 

obtained for row-structured peach and citrus orchards using 3D simulations 

when accounting for the soil optical properties, sun angles and row 

orientation. The proposed methods, based on scaling-up and model inversion 

techniques, may be applied to NDVI pixels acquired over heterogeneous 

orchards to obtain maps of instantaneous intercepted radiation. The 

methodology demonstrates the feasibility for estimating the spatial 

distribution of fIPAR in citrus and peach row-structured orchards, yielding 

RMSE below 0.10. The generation of high-resolution maps of the 
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intercepted radiation using multi-spectral cameras mounted on operational 

UAV platforms may be of critical interest for precision agriculture tasks 

such as the agronomic management of homogeneous zones and the 

discrimination of potential fruit quality areas for harvest. 
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Chapter 3 
 
Mapping radiation interception in an olive orchard using a 
physical model and airborne imagery.  
 

Abstract 

This study was conducted to estimate the fraction of Intercepted Photosinthetically 
Active Radiation (fIPAR) in an olive orchard. The method proposed to estimate fIPAR in 
olive canopies consisted on a coupled radiative transfer model which linked the 3-D Forest 
Light Interaction Model (FLIGHT) and the Orchard Radiation Interception Model (ORIM). 
Methods to assess the estimation of instantaneous fIPAR as a function of planting grids, 
percentage cover and soil effects were conducted. The linked model was tested against field 
measurements of fIPAR acquired on a commercial olive orchard, where study plots showing 
a gradient in the canopy structure and percentage cover were selected. High-resolution 
airborne multispectral imagery was acquired at 10 nm bandwidth and 15-cm spatial 
resolution, and the reflectance used to calculate vegetation indices from each study site. In 
addition, simulations of the land surface bidirectional reflectance were conducted to 
understand the relationships between canopy architecture and fIPAR on typical olive 
orchard planting patterns. Input parameters used for the canopy model, such as the leaf and 
soil optical properties, the architecture of the canopy, and sun geometry were studied in 
order to assess the effect of these inputs on the vegetation index NDVI and fIPAR 
relationships. FLIGHT and ORIM models were independently assessed for fIPAR 
estimation using structural and ceptometer field data collected from each study site, yielding 
RMSE values of 0.1 for the FLIGHT model, while the specific olive simulation model by 
ORIM yielded lower errors (RMSE=0.05). The reflectance simulations conducted as a 
function of the orchard architecture suggested the usefulness of the modeling methods for 
this heterogeneous olive crop, and the high sensitivity of the Normalized Difference 
Vegetation Index (NDVI) and fIPAR to background, percentage cover and sun geometry on 
these heterogeneous orchard canopies. The fIPAR estimations obtained from the airborne 
imagery through scaling-up yielded RMSE error values of 0.11 when using FLIGHT to 
simulate both the canopy reflectance and the fIPAR of the study sites. The coupled 
FLIGHT+ORIM model yielded better results, obtaining RMSE=0.05 when using airborne 
remote sensing imagery to estimate fIPAR. 

 

Keywords: Olive orchards, remote sensing, fIPAR estimation, radiative transfer 
modeling 
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3.1 Introduction 

The olive industry have experimented several major technological 

changes during the last two decades (Villalobos et al., 2006). Traditional 

olive cultivation, grown in rain-fed condition with low density (80-90 olive 

trees/ha), have been very well adapted and able to survive periods of intense 

drought with acceptable production (Fernandes-Silva et al., 2010; Pastor et 

al., 2007). Nevertheless, such traditional olive orchards are being substituted 

by new intensive, drip irrigated and fertilized plantation for high early yields 

(Beede and Goldhammer, 1994; Villalobos et al., 2006; Pastor et al., 2007). 

This transition requires a better understanding of the olive orchard, including 

longer term effects of these structural changes to better adapt the required 

management for these canopies. Therefore, the interest in the research 

community for the olive tree cultivation and management practices is 

growing considering the historical importance of this crop throughout the 

Mediterranean countries (Ben-Gal et al., 2011; Vossen, 2007). A 

comprehensive review of scientific research in olive crops can be found in 

Connor and Fereres (2005). In such study, the authors emphasized that future 

research should prioritize studies of olive trees as a whole, rather than just 

leaf-level analyses. Subsequent studies conducted in olive orchards have 

focused on optimizing water use at tree level (Testi et al., 2006; Orgaz et al., 

2007; Iniesta et al., 2009; Fernandes-Silva et al., 2010), optimizing the tree 

density (Pastor et al., 2007), or determining biophysical parameters (Gómez 

et al., 2011). Some of these studies used the Orchard Radiation Interception 

Model (ORIM) to estimate the fIPAR in olive orchards (Mariscal et al., 

2000). The rationale is that a first step in productivity assessment is the 

estimation of radiation interception (Connor and Fereres, 2005), therefore 
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requiring simulation models to quantify the relationships with the orchard 

architecture. In fact, biomass production is directly related to the intercepted 

radiation (Monteith, 1977), and this has been shown to be true for olive 

canopies (Mariscal et al., 2000). Therefore, the use of crop simulation 

models is required as a consequence of the wide variability and complexity 

of these canopies (Villalobos et al., 2006). The field measurements of IPAR 

and/or the related fraction of intercepted PAR (fIPAR) would be inefficient 

and time consuming in these orchards. The large variation that olive orchards 

show in tree dimensions, canopy architecture and ground cover are 

consequence of the transformation from rain-fed to irrigation schemes, with 

high density in areas of chronic water shortages (Testi et al., 2006). 

Moreover, olive tree orchards are grown as horizontally non-homogeneous 

canopies, and the amount of PAR intercepted is defined by the combination 

of tree spacing (row and inter-row), tree height, row orientation, vertical 

projection of the canopy cover and canopy volume (Connor and Fereres, 

2005). In this context, along with radiative transfer modelling efforts, remote 

sensing methods are useful for the assessment of large areas and to map the 

within-field and between orchard spatial variability of biophysical 

parameters. 

This study is focused on the estimation of the intercepted 

photosynthetically active radiation (IPAR) in olive orchards using remote 

sensing imagery and radiative transfer modelling methods. It was 

emphasized in the previous chapter that in other studies, empirical and 

modelled relationships between vegetation indices and fIPAR have been 

developed for homogeneous canopies, such as wheat, maize or soybean 

crops (e.g., Daughtry et al., 1983; Asrar et al., 1984; Wiegand et al., 1991; 

Hall et al., 1992 and Moriondo et al., 2007) and forest canopies (e.g., 
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Myneni and Williams, 1994; Roujean and Breon, 1995; Huemmrich and 

Goward, 1997; Huemmrich, 2001; De Castro and Fetcher, 1998; and Zhang 

et al., 2009). With the development of 3-D canopy reflectance models, the 

sensitivity of these relationships between vegetation indices and the fraction 

of PAR, absorbed or intercepted, can be investigated considering 

architectural characteristics of the canopy. However, these studies focused 

on herbaceous crops and closed-canopy forestry areas are not applicable to 

non-homogeneous, open-canopy olive orchards. A first step to model the 

implications of the structure on the instantaneous fIPAR requires appropriate 

simulation methods to account for the canopy optical properties and 

background. In fact, previous works indicated that the use of radiative 

transfer models capable of handling row orientations is a requisite for remote 

sensing in horticulture (Stuckens et al., 2009; Kempeneers et al., 2008). 

Along these efforts, radiative transfer models that aim at deriving the amount 

and distribution of fIPAR in non-homogeneous crop canopies have been 

reviewed by Mariscal et al. (2000) who developed a model to simulate 

fIPAR in olive orchard canopies. The 3-D Forest Light Interaction Model 

(FLIGHT) (North, 1996) was proposed to estimate fAPAR in forest canopies 

(North, 2002 and Prieto-Blanco et al., 2009), and more recently in orange 

and peach canopies (chapter 2). While methods for modeling and estimating 

fIPAR in homogenous vegetation are relatively mature (Mariscal et al., 

2000), further research is needed for robust estimate of fIPAR in open 

canopies. The objectives of this study were: (i) to evaluate modelling 

strategies to asses the estimation of instantaneous fIPAR in olive orchards; 

and, (ii) to use remote sensing imagery and modeling methods to estimate 

instantaneous fIPAR in olive canopies using visible (VIS) and near-infrared 
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(NIR) bands, as well as to generate a maps of the spatial variability of 

fIPAR. 

3.2. Materials and Methods 

3.2.1. Study area 

The experimental field was located at “La Conchuela” farm, Córdoba, 

Spain (37º 48’N, 4º 48’W) at 147 m above sea level. The olive orchard was 

planted in 1993 with trees at 6 m x 7 m spacing (238 tree ha-1) with rows 

oriented 64º from North. Figure 3.1 shows six of the eight plots selected for 

the ground measurements. They were selected to ensure a gradient in 

fraction of vegetation cover, ranging between 30% and 60%. The study sites 

comprised a range of crown leaf area densities (LAD) ranging from 0.45 to 

1.02, tree heights between 3.5 and 5.2 m, and horizontal crown diameters 

between 1.8 and 2.9 m (Figure 3.1 and Table 3.1). The field campaign was 

conducted in summer 2008. The ground measurements were conducted on 

the selected plots coincident with the airborne flight campaigns. 
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Figure 3.1. Multispectral reflectance images acquired at 10 nm FWHM and 15 cm spatial 
resolution, showing six study plots used in the study. The central block area of 4 trees 
selected on each study site for field data collection is shown. 
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Table 3.1. Structural data collected from each study area. 
 
Stand Crown  

radio (m) 
Tree  
height (m) 

LAD  
(m2m-3) 

LAI  
(m2m-2) 

Fraction of vegetation 
fraction (%) 

1 2.3 4.4 0.54 0.57 39.5 
2 1.8 3.5 1.02 0.6 24.2 
3 2.9 5.2 0.43 0.9 63 
4 2.0 4.1 0.62 0.5 30 
5 2.8 4.9 0.45 0.8 58.6 
6 2.1 3.8 0.97 0.9 33 
7 2.5 4.0 0.56 0.7 46.7 
8 2.3 4.0 0.54 0.6 39.5 

Planting grid: 7 m x 6 m 

3.2.2 Ground and remote sensing airborne campaigns 

Field campaigns were conducted for both airborne imagery acquisition 

and intercepted PAR field measurements collected to asses the effects of the 

variability of the intercepted solar radiation and reflectance bands as a 

function of orchard architecture. The interception of solar radiation by the 

orchard canopy on each study site was measured with a ceptometer 

(SunScan Canopy Analysis System, Delta-T Devices Ltd, Cambridge, UK). 

The instrument comprises two units, as it was detailed in previous chapter: 

(i) a probe, portable instrument of 1-m long, for measuring the transmitted 

photosynthetically active radiation (PAR) flux beneath the canopy; and (ii) a 

beam fraction sensor (BFS) that measures PAR incident over the canopy at 

the same time. Therefore, the area comprising the 4 central trees of each 

study area was selected to conduct the field measurements of fIPAR. The 

measurements of transmitted PAR made in the area beneath the four central 

trees of each plot were in a 1 m x 0.5 m grid. A schematic view is shown in 

Figure 3.2a, and the actual measurements for two study areas are depicted in 

Figure 3.2b. For the assessment of the spatial variation of fIPAR among the 

different selected plots with a gradient in structural parameters, 

measurements were conducted at 10.00 GMT (+/- half-hour). 
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7 m 

 
                            a) 

 

  
b) 

Figure 3.2. Schematic view of the 1 m x 0.5 m grid used for field measurements conducted 
with the ceptometer (a); PAR data measured by ceptometer at the ground level (b). 

 

Additional ground-level efforts were made to collect in situ 

measurements of crown structure, leaf and soil optical properties to 

characterize the different study plot and used as input for the models. 

Dimensional properties, namely crown height and crown width, were 

6 m 

1 m

0.5 m 

PAR 
(mol m-2 s-1) 
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measured at multiple points within a given olive tree. The crown was divided 

into eight sections, in each one the tree silhouette was estimated by 

measuring the upper and lower limits of the canopy with a vertical scaled 

pole which was systematically moved away from the tree centre outwards in 

0.2 m increments (Villalobos et al., 1995). In addition to in situ 

measurements of crown dimensions, the LAI-2000 Plant Canopy Analyzer 

(PCA) was used to estimate leaf area index at the individual crown level 

used before in olive canopies by Villalobos et al (1995) and more recently 

Moorthy et al. (2011) and Gómez et al. (2011). This device measured the 

fraction of diffuse incident radiation transmitted through a plant canopy by 

calculating the ratio of the below and above-canopy radiation measurements. 

It has a set of optical sensors that simultaneously measure diffuse radiation 

in five range of zenith angles (this methodology is described in detail in 

Gómez et al., 2011).The leaf angle distribution function used was the ones 

measured by Mariscal et al. (2000) in adult trees (Figure 3.2). 
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Figure 3.3 Leaf angle distribution function in 10º intervals measured for olive adults trees 
(Mariscal et al., 2000). 
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The multispectral sensor used in this study was a 6-band multispectral 

camera (MCA-6, Tetracam Inc., California, USA). The sensor was on board 

an unmanned aerial vehicle (UAV) as it was specified in previous chapter. 

Also details about the camera are described in chapter 2. High resolution 

multispectral images acquired over the olive orchards enabled the 

identification of each study site used for field measurements of crop 

structure and fIPAR. The plots were marked in the field using bright ground 

control points easily detectable on the imagery. The bandsets selected for 

this study comprised centre wavelengths at 670 and 800 nm with 10 nm full 

width at half maximum (FWHM) used for computing the Normalized 

Difference Vegetation Index (NDVI) and bands centered at 490, 530, 570 

and 700 nm to compute other spectral indices such as the Photochemical 

Reflectance Index (PRI) for stress detection studies, and the red edge for 

chlorophyll estimation. Figure 3.1 shows the imagery acquired by the 

multispectral airborne sensor at 15 cm spatial resolution, representing six 

fields used in this study with a range in fraction of vegetation cover, and the 

block of 4-trees selected on each study site for field data collection of 

radiation interception. The high spatial resolution acquired enabled targeting 

pure scene components, such as pure soil and vegetation, separately as well 

as on aggregated pixels. Atmospheric correction and radiometric calibration 

methods were applied to the imagery to calculate the spectral reflectance. 

These methods are explained previously in chapter 2. 

Leaf optical properties, reflectance and transmittance measurements, 

were acquired on leaf samples using an Integrating Sphere (Li-Cor 1800-12, 

Inc., Lincoln, NE, USA), coupled with a 200-μm diameter single mode fibre 

to a spectrometer (Ocean Optics Inc. model USB2000, Dunedin, FL, USA), 

with a 1024 element detector array, 0.5 nm sampling interval, and 7.5 nm 
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spectral resolution in the 340-940 nm range. The single leaf values for 

reflectance (ρ) and transmittance (τ) were acquired as described in the 

manual of the Li-Cor 1800-12 system (Li-Cor, 1983) and in Zarco-Tejada et 

al. (2005), using a custom-made port of 0.5 cm diameter suited to typical 

olive leaf dimensions and thereby obtaining the leaf optical properties. A 

total of 300 leaves were sampled. Figure 3.4a shows the mean leaf 

reflectance and transmittance measured on olive leaves. The spectral range 

for the leaf optical properties used as input for the models was selected 

according to the bandset used in the airborne imagery (Figure 3.4b). Sunlit 

soil reflectance was extracted from the airborne imagery (Figure 3.5).  

Table 3.1 and Figure 3.3, Figure 3.4 and Figure 3.5 show the field 

measurements collected on each study site. They will be later used as inputs 

for the 3D canopy modelling work conducted with FLIGHT on the 

aggregated reflectance and fIPAR estimation, as well as for the ORIM 

model. Table 3.2 shows the input parameters required by these models. 
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a)                                                              b) 

 
Figure 3.4. Reflectance and transmittance spectra measured by integrating sphere for olive 
leaves (a); reflectance and transmittance spectra for the olive leaves with the bandset used in 
this study (b). 
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Figure 3.5. Soil optical properties of the study area. 
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Table 3.2. Nominal values and range of parameters used for canopy modelling with 
FLIGHT and ORIM models. 

 
FLIGHT model. Input parameters Values /Unit used 

Leaf optical and structural parameters  

Hemispherical reflectance and transmittance  
   of green leaves 

Integrating Sphere 

Hemispherical reflectance and transmittance  
   of senescent leaves 

Not used 

Leaf equivalent radius  m 
Canopy layer and structural parameters  
Leaf area index of vegetation See table 3.1 
Fractional cover  30 – 60 % 
Leaf angle distribution function Empirical 
Fraction green leaves 1 
Fraction senescent leaves 0 
Fraction of bark 0 
Hemispherical reflectance and transmittance  
   of bark 

Not used 

Number of stands and position coordinates Coord. (m) 
Crown shape Elliptical 
Crown height and radius m (see table 3.1) 
Trunk height and radius m (see table 3.1) 
Background and viewing imagery geometry 
Solar zenith and azimuth angles Degrees 
Sensor zenith and azimuth angles Degrees 
Soil reflectance From image 
Soil roughness 0 
Aerosol optical depth (AOD) 0.15 
  

ORIM model. Input parameters Values /Unit used 
Crown height and radius m 
Planting pattern m x m 
LAD (leaf area density) m2 m-3 

Row and column angles Degrees 
Soil PAR reflectance From image 
Latitude 37.8° N 
Internal parameters  
G-function 
Leaf reflectance and transmittance 

measured (Mariscal et al., 2000) 
measured (Mariscal et al., 2000) 
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3.2.3. fIPAR estimation in olive orchards from remote sensing data 

3.2.3.1. FLIGHT and ORIM models for simulating fIPAR in olive orchards 

Two models are proposed in this manuscript to estimate fIPAR in olive 

orchards: a 3-D model of light interaction with vegetation canopies FLIGHT 

(North, 1996) and ORIM (Mariscal et al., 2000) a model of PAR interception 

by olives canopies. The FLIGHT model is based on the Monte Carlo ray 

tracing method as a tool to simulate the radiative transfer in a canopy 

structure (North, 1996). In the FLIGHT model, an accurate treatment of the 

light interception and multiple scattering between foliage elements and soil 

boundary is obtained by iteration (North, 2002). In this study, FLIGHT was 

selected because it allowed the simulation of row orientations, tree 

dimensions, soil background effects, making easily to generate several 3D 

scenes for the assessment of the effects of the architecture, crown structure 

and biochemical inputs. This model has been previously used in other work 

simulating row-orientated orchards, such as orange and peach, with 

successful results (Suárez et al., 2009, 2010; and chapter 2). The FLIGHT 

model inputs consist of: (i) geometric characteristics (ii) optical properties; 

(iii) sun and view azimuth and zenith angles; and (iv) other parameters such 

as soil roughness, aerosol optical thickness and the number of photons 

simulated. Table 3.2 shows the input parameters required to run the model. 

The output of FLIGHT is a 3D hyperspectral image and the estimated 

intercepted PAR (IPAR) for the scene. 

The ORIM model is reliable for estimating radiation intercepted by any 

olive orchard at instantaneous and daily levels (Mariscal et al., 2000). The 

model works at an hourly time step, integrating the radiation reaching a 

convenient number of spatial cells. It was later modified to obtain a 
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simplified PAR interception model for practical purposes with daily time 

steps (Orgaz et al., 2007). This model allows simulating row orientation, tree 

dimensions and slope of the field. It has been used by Iniesta et al. (2009) 

and Fernandes-Silva et al. (2010), among others, to estimate the amount of 

annual IPAR. The inputs required by ORIM are the planting pattern, row and 

column angles, soil PAR reflectance, latitude, height, tree perpendicular radii 

of the crown, and leaf area density (LAD) (Table 3.2). Leaf reflectance and 

transmittance, and G-function are internal parameters calculated for olive 

trees. ORIM model outputs are estimations of all the components of the 

radiation balance for hourly, daily and seasonal periods. 

A detailed simulation of fIPAR was undertaken to assess the 

performance of both FLIGHT and ORIM models for this type of row-tree 

structure olive canopies. The study areas were simulated using the structural 

and optical measurements collected at each plot (see Figure 3.3, Figure 3.4 

and Figure 3.5 for leaf angle distribution function and the leaf and soil 

optical properties, and Table 3.1 for the structural measurements used). 

Model assessment for the fIPAR simulations was conducted by comparing 

the modelled fIPAR obtained from each model against the ceptometer 

measurements acquired on each plot, calculating the RMSE obtained. Once 

the two models were assessed for fIPAR estimation from field datasets, a 

second step consisted on testing each model for fIPAR estimation on all 

plots from the airborne remote sensing imagery acquired. This second 

assessment was carried out with predictive relationships developed between 

NDVI and fIPAR obtained through modelling; two methods were used (i) 

obtaining the canopy reflectance and fIPAR from FLIGHT; (ii) using 

simulated canopy reflectance from FLIGHT coupled with ORIM model 

(FLIGHT + ORIM). Therefore, FLIGHT and ORIM models were assessed 
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for their capability to estimate fIPAR both from field data and airborne 

imagery (Figure 3.6). The aggregated image reflectance from the four central 

trees of the orchard, including exposed soil and shadows, was used to 

compute spectral vegetation indices, such as NDVI. 

 

                 Inputs                                                  Models                             Outputs            Methodology 

 
 
Figure 3.6. Schematic view of the coupling method between FLIGHT and ORIM models to 
develop predictive relationships between NDVI and fIPAR. 

Previous to the estimation of fIPAR using airborne remote sensing 

imagery, a study was carried out with modelling methods to understand the 

influence of the architecture of the canopy on aggregated NDVI and fIPAR. 

The fraction of vegetation cover was varied from 20 to 60 % for three 

different solar angles (solar zeniths 70.9º; 43.1º and 29.6º) and two types of 

soil reflectance spectra were used to study their effects on NDVI and fIPAR. 
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Reflectance 

ii 
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3.2.3.2 fIPAR estimation from remote sensing imagery using modelling 
methods 

Relationships between NDVI and fIPAR were developed to estimate the 

instantaneous fIPAR in the olive orchards using the airborne imagery 

acquired on each study site using pixels that integrated each study site. In 

particular, the objective was to develop predictive relationships NDVI-

fIPAR calculated under specific canopy assumptions valid for the study sites 

under study. These relationships were obtained (i) with FLIGHT; (ii) with 

the canopy reflectance module from FLIGHT linked to the ORIM fIPAR 

estimation model (Figure 3.6). 

The fIPAR predictive relationships for the olive canopies were developed 

with input parameters fixed according to mean field measurements: leaf 

angle distribution function, leaf optical properties, planting grid and soil 

reflectance extracted from the airborne image, and the solar geometry 

depending on the time of flight. The specific input parameters varied within 

the typical range of variation for these orchards to account for the canopy 

structure. In the case of crown radii variation was 0.5 to 3 m, tree height 

ranged from 2 to 6 m, and LAI from 0.1 to 1 (Table 3.3). The modeled 

relationships NDVI vs fIPAR obtained for each study plot were then applied 

to the multispectral airborne imagery reflectance to estimate the 

instantaneous fIPAR for each study site. Relationships were obtained for the 

olive orchard with both model approaches: i) FLIGHT; and ii) FLIGHT + 

ORIM (Figure 3.6). This methodology enabled the application of sensor-

derived optical indices for NDVI-fIPAR that are a function of canopy 

structure, optical properties and the viewing geometry. Relationships 

between vegetation indices and fIPAR have been suggested in previous 

works, mainly in studies dedicated to herbaceous crop or forest canopy. To 
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assess the behaviour on heterogeneous open-tree orchards of these 

relationships originally developed for homogeneous canopies, a relationship 

by Myneni and Williams (1994) (fAPAR = 1.1638*NDVI – 0.1426) was 

applied to the study plots selected on this work, and the error obtained was 

calculated. 

 
Table 3.3: Inputs used to generate predictive fIPAR-NDVI algorithms. Determination 
coefficients and RMSE values obtained between the ground-measured fIPAR and the 
estimated fIPAR from FLIGHT and FLIGHT + ORIM. 

 
Inputs parameters for predictive relationships NDVI vs fIPAR 

LADF Measured (figure 3.3) 
Leaf (ρ and τ) Measured (figure 3.4b) 
Row orientation 63º from North  
Sun geometry SZ:35.02º; SA:69.5º  
Soil (ρs) Obtained from image (figure 3.5) 

Fixed parameters 

  
Tree radius (m) 0.5 – 3 
Tree height (m) 2 – 6 
LAI 0.1 – 1 

Variable parameters 

  

Results  r2 ;(RMSE) 
FLIGHT  0.85; 0.11 
FLIGHT + ORIM  0.83; 0.05 
SZ: solar zenith (degrees from the North) 
SA: solar azimuth (degrees from South, clockwise negative) 

 

3.3. Results 

3.3.1 Results for fIPAR estimation from FLIGHT and ORIM models 

The simulations corresponding with the different study plots in the olive 

orchard were assessed with both models to evaluate the correspondence of 

the simulations with fIPAR field measurements. Figure 3.7 illustrates four 

scenarios corresponding with four different study plots in the olive orchard. 

Error assessments conducted for fIPAR estimated with FLIGHT and ORIM 

models using ceptometer field data are shown in Figur 3.8a and Figure 3.8b, 

respectively. The estimation of fIPAR yielded RMSE=0.10 with coefficient 
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of determination of r2=0.5 when using FLIGHT, and RMSE=0.05, r2=0.81 

for ORIM simulations. The ORIM model therefore yielded better results 

than FLIGHT for simulating fIPAR from field-measured architectural and 

structural parameters in olive canopies. The simulations conducted with 

FLIGHT and ORIM models to assess the sensitivity of the input parameters, 

such as fraction of vegetation cover, sun angles and the soil reflectance on 

NDVI and fIPAR were investigated generating canopy scenarios (Figure 

3.9a for NDVI, and Figure 3.9b for fIPAR). It is observed from Figure 3.9a 

and Figure 3.9b the larger effect of soil optical properties on the aggregated 

NDVI than in fIPAR estimates. In scenes with 60% vegetation cover and 

solar zenith angle 43.1º, NDVI varied from 0.53 for a dark soil to 0.43 for a 

bright soil, while fIPAR for the same canopy scenario changed only from 

0.50 to 0.48. The large soil reflectance variation largely affects the NDVI vs 

fIPAR relationship as a function of the background. The solar angle showed 

to have effects on both fIPAR and NDVI, as expected. For a north-south 

rectangular planting grid orchard, the intercepted PAR was higher at high 

zenith angles: fIPAR varied from 0.7 in the morning (sz=70.9º) to 0.4 at 

midday (sz=43.1º) for a 60% vegetation cover and dark soil (Figure 3.9b). 

The differences found in NDVI for different solar angles were caused also 

by the soil reflectance and the amount of shadows; nevertheless the effect 

was smaller than in fIPAR. NDVI varied from 0.5 to 0.4 for a 60% 

vegetation cover and dark soil, and from 0.62 to 0.48 in a bright soil (Figure 

3.9a). The study showed that NDVI vs fIPAR relationships cannot be readily 

applied to open canopy orchards due to the large effects caused by 

parameters such as soil reflectance and sun angle, and appropriate modelling 

techniques are needed to develop accurate relationships for the fIPAR 

estimation in these orchards. 
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Figure 3.7. Model simulations conducted with FLIGHT to generate orchard scenes for 
different fractions of vegetation cover. 
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                              a)                                                                           b) 
Figure 3.8. Relationships between fIPAR ground measurements and fIPAR estimations 
using FLIGHT (a) and ORIM (b). The input parameters used for both models were the 
ground measurements collected at each study site (Table 3.1, Figure 3.3). 
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sz: Solar zenith (degrees from North) 
sa: Solar azimuth (degrees from South, clockwise negative) 
 
Figure 3.9. Variance analysis to study the effect of the sun geometry, soil optical properties 
and fraction of vegetation cover on NDVI (a) and fIPAR (b) using the FLIGHT model. It 
was considered row orientation N-S, LAI=0.8, leaf size=0.0075, fraction of green 
leaves=1.0, fraction of bark=0, LADF defined by user, ellipsoidal crown shape, soil 
roughness=0, and aerosol optical thickness=0.1. 
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3.3.2. Estimating fIPAR using FLIGHT and the coupled FLIGHT+ORIM 
model 

An analysis on fIPAR estimation with remote sensing imagery was 

conducted by developing relationships between vegetation indices calculated 

from the airborne imagery and fIPAR measured with a ceptometer (Figure 

3.10). The variation of NDVI vs fIPAR (Figure 3.10) was obtained through 

measurements conducted at selected plots with different architectural canopy 

characteristics at 10.00 GMT (+/- half hour). The results showed high 

coefficient of determination for NDVI vs fIPAR with r2 > 0.9 for a 

polynomial regression.  

 
Figure 3.10. Relationships between airborne imagery NDVI and field-measured fIPAR for 
the eight study sites imaged at solar zenith angle = 43.1º. 
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The modeled relationships NDVI vs fIPAR were obtained with FLIGHT 

model (Figure 3.11a) and with FLIGHT and ORIM model (Figure 3.11b). 

Input parameters were field-measured, while the inputs related with canopy 
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architecture were ranged within the typical range of variation for these 

orchard crops (see Table 3.3). Relationships obtained for the olive orchard 

with both models: i) FLIGHT, and ii) FLIGHT + ORIM (Figure 3.6), yielded 

slightly different results, showing better agreements with FLIGHT + ORIM 

coupled simulation model (Figure 3.11b). Estimation of fIPAR by predictive 

relationships was compared against ground measured fIPAR for each plot. 

The fIPAR output from FLIGHT was slightly underestimated when 

compared against FLIGHT+ORIM. Relationships obtained for the orchard 

yielded fIPAR estimates with relative RMSE of 0.11 and r2=0.85 when 

FLIGHT was used, and RMSE=0.05 and r2=0.83 for FLIGHT+ORIM 

coupled models. 
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Figure 3.11. Predictive relationships obtained between NDVI and fIPAR from FLIGHT (a) 
and FLIGHT + ORIM (b) for olive orchards. Estimated fIPAR using predictive relationships 
developed in a) and b) versus measured fIPAR (c). 

The assessment of the Myneni et al. (1994) relationship developed for 

homogeneous crop (fAPAR = 1.1638*NDVI – 0.1426) when applied to the 

study plots selected for this work yielded an error of RMSE=0.24. This result 

demonstrates that higher errors were obtained as compared to FLIGHT 
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(RMSE=0.11) and FLIGHT + ORIM (RMSE=0.05) simulations (Figure 

3.12). 
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Figure 3.12. Estimated fIPAR using the predictive relationships developed in this 
manuscript versus the one published for homogeneous crops (Myneni et al., 1994). 

Finally, a high-resolution multispectral mosaic acquired over one of the 

study areas (Figure 3.13a) was used to generate a map of the spatial 

variability of the radiation interception. The map was generated following 

the methodology described in this chapter. The aggregated reflectance and 

NDVI was calculated from a grid, each comprised of four trees, shadows and 

soil. The FLIGHT+ORIM predictive relationships were then applied to the 

grid NDVI scene of the olive orchard, generating a map of the spatial 

variability of the instantaneous fIPAR (Figure 3.13b). 
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a)  

b)  0.80 

0.05 

fIPAR (0-1) 

 
Figure 3.13. Multispectral mosaic of the olive orchard (a) used to generate a map of fIPAR 
calculated from the coupled FLIGHT+ORIM model (b) using the methodologies described 
in this study. 
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3.4. Conclusions 

A remote sensing study focused on estimating fIPAR on olive tree 

canopies was conducted in this chapter. This work investigated the 

relationship between canopy reflectance and instantaneous fIPAR in olive 

orchards using radiative transfer modelling methods and field measurements. 

The PAR intercepted by the orchard canopy was simulated through two 

approaches: i) using the FLIGHT 3D model; and ii) using a specific 

simulation approach to estimate fIPAR in olive orchards, ORIM model. Both 

models were firstly assessed using input parameters measured in the field at 

different study plots. The FLIGHT model yielded a RMSE of 0.1 for fIPAR, 

while the ORIM model obtained better results with a RMSE of 0.05 when 

compared against fIPAR ground-measured data. In conclusion, these results 

demonstrated better fIPAR estimates when using the ORIM model and 

ground data collected over the study sites used for the model assessment. In 

addition, this study examined the effect of varying background optical 

properties, sun angles and fraction of vegetation cover on fIPAR and NDVI 

index when aggregating the canopy reflectance from the four central trees of 

the simulated scenes. The NDVI-fIPAR relationships were showed not to be 

applicable to all canopy types due to the important effects caused by soil and 

shadows. In a set of simulations conducted on two scenes with varying soil 

reflectance results showed important effects on NDVI, with an almost 

negligible influence on fIPAR. In such set of simulations, NDVI varied from 

0.35 to 0.45 for two different soil types, while fIPAR changed from 0.37 to 

0.39 for the same fraction of vegetation cover and solar angles due only to 

the different soils backgrounds. In conclusion, the NDVI vs fIPAR 

relationship is critically affected by the soil optical properties in such open 
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tree orchards, requiring the use of radiative transfer models for an accurate 

estimation of fIPAR in olive canopies. 

The results obtained from predictive NDVI-fIPAR relationships showed 

that the ones from the coupled FLIGHT + ORIM model were more accurate 

than the results obtained with FLIGHT only. The trend showed a polynomial 

relationship between NDVI and fIPAR with FLIGHT+ORIM, while 

FLIGHT showed a linear trend. The application of the predictive algorithms 

for fIPAR estimation yielded a relative RMSE of 0.11 (r2=0.85) for FLIGHT 

model, and a RMSE of 0.05 (r2=0.83) for the combination of FLIGHT + 

ORIM models. Although FLIGHT performed well for fIPAR estimation, the 

ORIM model showed superior performance. The ORIM model was 

formulated, calibrated and validated specifically for olive orchards. 

The methodology presented demonstrates the feasibility for estimating 

the spatial distribution of the instantaneous fIPAR in complex non-

homogeneous orchard canopies. As expected, the use of NDVI-fIPAR 

relationships obtained in previous works for homogeneous canopies yielded 

a higher error, with RMSE = 0.24. Thus the particularities of the different 

type of canopies need to be accounted for when estimating fIPAR and others 

biophysical parameters. Further work will focus on other plant-grid 

plantations, such us the current intensive olive plantations, including diurnal 

studies to investigate the variability and uncertainties associated with these 

methodologies. In addition, the estimation of daily PAR interception from 

estimated instantaneous fIPAR on these non-homogeneous complex 

canopies will be assessed. Obtaining maps of the spatial variability of fIPAR 

may provide valuable information for decision makers to design new 

plantations according to water availability and crop potential. 
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Chapter 4 
 
Evaluating hybrid and 3D ray tracing canopy models for 
vineyard canopy reflectance and vegetation index simulation 
using high-resolution diurnal airborne imagery. 

Abstract 

Current research efforts in precision viticulture and the temporal and spatial monitoring 
of Vitis vinifera L. require the development of remote sensing modeling methods for the 
accurate estimation of vine biophysical variables such as vine density, shape, size, and 
vigour. These are key parameters required for early assessment of crop conditions and 
successful monitoring of the vineyard physiological condition. However, these row-
structured crops are complex because bare soil and shadows between the vine rows 
contribute substantially to the canopy reflectance (CR). The use of radiative transfer models 
is needed for an understanding of the influence of vineyard architecture and viewing 
geometry on canopy reflectance. In this study, vineyard canopy reflectance is simulated 
using hybrid models, such as the Markov-Chain Canopy Reflectance Model (MCRM) and 
the Scattering by Arbitrary Inclined Leaves (SAIL) model, both modified to simulate the 
row crop structure (rowMCRM and rowSAIL, respectively). In addition, a more complex 
approach was applied, based on a Forest Light Interaction Vegetation Model (FLIGHT), 
which in turn was based on the Monte Carlo ray tracing method that enabled the generation 
of 3D scenes as a function of vineyard architecture and viewing geometry. Model 
simulations with both approaches were compared against 15-cm resolution imagery 
acquired with a multispectral sensor and 10-nm full-width at half-maximum (FWHM) 
bandset. For the green band, a relative root mean square error (rRMSE) below 0.28 was 
obtained from the rowMCRM and rowSAIL models, and was approximately 0.11 for 
FLIGHT. For the near-infrared (NIR) band (800 nm), rowMCRM and FLIGHT yielded a 
rRMSE between 0.08 and 0.12, with higher errors for rowSAIL (rRMSE = 0.26). The 
Normalized Difference Vegetation Index (NDVI), Transformed Chlorophyll Absorption in 
Reflectance Index/Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI) and 
Photochemical Reflectance Index (PRI) were also simulated with the three models and 
compared against the airborne images. A rRMSE between 0.15 and 0.26 were obtained with 
FLIGHT for the three indices assessed. FLIGHT and rowMCRM were the models yielding 
lower rRMSE values, with rowSAIL yielding larger errors for the NIR region. 
 
Keywords: radiative transfer modeling, vineyards, high spatial and temporal resolution, 
LAI estimation 
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4.1 Introduction 

Grape production is an important economic activity where an early 

assessment of crop conditions is critical to maximize grape, and 

consequently, wine quality (Pieri, 2010). Grapevine (Vitis vinifera L.) health 

and productivity are influenced by vine biophysical variables such as crop 

density, shape or size, while leaf biochemicals such as chlorophyll a+b (Cab) 

and carotenoid (Car), anthocyanins (Anth) and xanthophyll content, are 

related to nutrient and water stress (Hall et al., 2002; Zarco-Tejada et al., 

2005; Martín et al., 2007). The spatial variation in these factors causes 

variability in grape quality and yields within vineyards, and can result in 

suboptimal wine quality and volume (Hall et al., 2002). For this reason, the 

use of remote sensing for precision viticulture to obtain the correct 

assessment of grapevine leaf and canopy status has had a growing interest. 

Recently, numerous studies have been published focused on the estimation 

of biophysical and structural parameters (e.g., Hall et al., 2002; 2003; 2008; 

2010; Delenne et al., 2008; 2010; Johnson et al., 2001; López-Lozano et al., 

2009) and leaf biochemistry, such as Cab content (Zarco-Tejada et al., 2005; 

Meggio et al., 2008, 2010) using remote sensing methods. These studies 

highlighted the importance of employing high spatial resolution imagery 

linked to canopy reflectance (CR) models for the successful retrieval of leaf 

and canopy parameters. The models are needed to interpret the optical 

remote sensing data which aggregate different scene components, such as 

sunlit and shadows soil and vegetation areas, as a function of canopy 

architecture and viewing geometry. The complexity in vineyards arises 

because they are planted in rows, and the bare soil and shadows between 

rows contribute substantially to the canopy reflectance observed by satellite 

sensors used for vegetation monitoring. To overcome the difficulties of these 
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canopies, the mathematical and physical complexity of canopy reflectance 

models used to estimate these parameters have increased considerably. They 

have mainly evolved from simple empirical approaches to more physically 

based approaches that are greatly rooted in our understanding of the 

radiation regime of the vegetation canopies (Liang, S., 2004). Early models 

that have impacted this field significantly are Suits (1972), in which the 

canopy is assumed to consist of only vertical and horizontal leaves, and the 

model is parameterized with canopy structure and solar/viewing geometry. 

Verhoef (1984) developed SAIL, which allowed the variation of leaf angles. 

A year later, Kuusk (1985) introduced the hotspot effects in the canopy 

reflectance according to the assumption that scatterers are randomly 

distributed in space and therefore gap probabilities obeys the Poisson 

distribution. These approaches work well in dense homogeneous canopies. 

In an effort to include new formulations for row-structured and 

heterogeneous canopies, new models were developed based on these. Suits 

(1972) was modified by Verhoef and Bunnik (1976) and later by Suits 

(1983) including the row effect by adding the concept of density modulation. 

Kuusk developed the so-called Markov canopy reflectance model, MCRM 

(1995a, 1995b, 1996, 2001) including Markov stand geometry, which 

considers that the correlation of leaf positions in adjacent layers influences 

the gap probability in a stand, and consequently, the canopy reflectance and 

its angular distribution. Plant row effects in this model were added by J. 

Praks in 2001. Input parameters defining the geometrical structure, such as 

vine width and length, and distance between rows, as well as row orientation 

described the canopy structure. Proportions of sunlit soil, shaded soil and 

vegetation from the nadir field of view are computed by the model. This 

model was developed within the framework of Crop Reflectance operational 
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Models for Agriculture (CROMA) project, and it was called rowMCRM. 

The rowMCRM model has been previously validated in other studies, like 

that of Meggio et al. (2008) who used the rowMCRM model to improve the 

estimation of Cab proposed by Zarco-Tejada et al. (2005), considering the 

effects of row orientation and sun geometry on the TCARI/OSAVI index 

(Haboudane et al., 2002) suggested for chlorophyll content estimation. The 

SAIL code was modified by V. Lefèvre in 2002 where the inputs to describe 

rows as a rectangular cross-section with bare soil in between were also 

included. The model was called rowSAIL, which has not been validated yet. 

A new row model based on a novel mathematical treatment of the four-

stream SAIL model has been recently developed by Zhao et al. (2010). This 

type of row models are a hybrid integration of turbid medium modeling 

techniques with geometrical models, and are therefore suitable for handling 

sparse vegetation canopies with regularly shaped crowns (Liang, S., 2004). 

A more accurate computation of the radiation distribution over complex 

canopy configuration is given by Monte Carlo ray tracing models, based on a 

sampling of photon trajectories within the vegetation canopies. A review of 

the Monte Carlo methods for optical canopy reflectance modeling may be 

found in Disney et al. (2000). 

In this study, vineyard canopy reflectance was simulated with two 

modeling techniques: a 3D model based on the Monte Carlo ray tracing 

method (FLIGHT), and two hybrid canopy models. The FLIGHT model is 

flexible and can simulate 3D canopy scenes with different crown shapes, 

including vineyard trellises. Monte Carlo simulation allows highly accurate 

estimation of light interception and bidirectional reflectance (Barton and 

North, 2001). The hybrid canopy models were the rowMCRM and rowSAIL, 

previously described. Validation of such crop models required the collection 
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of a large imagery database comprising study areas with structurally diverse 

canopies with extreme row orientations, as well as architectural properties. 

The simulations conducted with the three row-structured simulation 

approaches were compared against high-resolution reflectance imagery 

acquired with a multispectral airborne sensor. The objective was to show if 

simulations obtained from simple models, such as rowMCRM and rowSAIL 

provide accurate results in comparison with more computationally intensive 

models, such as FLIGHT. 

4.2. Materials and Methods 

4.2.1. Study area and description 

The ground truth data and airborne imagery required for this study were 

acquired in commercial row-structured vineyard orchards located in western 

Ribera del Duero Apellation d’Origin, northern Spain (41º 22’ N; 4º 4’ W), 

at an altitude of 800 m above sea level during the summers of 2008 and 

2009. The distance between rows was 3 m with 1.5 m between vines. The 

study sites used for ground and airborne data collection were selected to 

ensure a large variation in the vegetation cover fraction (12%-57%) and row 

orientations (1º-103º from the north). A total of 8 fields were selected for 

architectural parameter measurements, comprising a total of 21 plots flown 

with the airborne sensor (Table 4.1). Field sampling was conducted in these 

areas concurrent with airborne overflights for testing and validating row-

structured models to retrieve canopy reflectance and vegetation indices. 

Figure 4.1 shows six false-colour images acquired with the multispectral 

airborne sensor at 15-cm spatial resolution, displaying a wide variability in 

percent vegetation cover, row orientations and soil brightness levels. 
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Figure 4.1 Multispectral reflectance imagery acquired at 10 nm FWHM and 15 cm spatial 
resolution showing variability of row orientation and cover vegetation fraction in six of the 
selected regions of interest. 
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4.2.2. Airborne and field campaigns 

The multispectral sensor used in this study was a 6-band multispectral 

camera (515, 530, 570, 670, 700 and 800 nm) consisting of 6 independent 

image sensors and optics with user-configurable 10-nm full-width at half-

maximum (FWHM) spectral filters (Berni et al., 2009). The image resolution 

is 2592 x 1944 pixels with 10 bit radiometric resolution, optics focal length 

of 8.4 mm, and angular field of view (FOV) of 38.04º x 28.53º, yielding 15 

cm spatial resolution at 150 m flight altitude. Multispectral images acquired 

over each vineyard plot enabled the identification of the study area for field 

validation purposes. The bandsets selected for this study comprised centre 

wavelengths at 670 and 800 nm used for computing the Normalized 

Difference Vegetation Index (NDVI) (Rouse et al., 1974), with bands 570, 

670, 700 and 800 nm used to calculate the Transformed Chlorophyll 

Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index 

(TCARI/OSAVI) index for chlorophyll content estimation (Haboudane et al., 

2002), and bands at 530 nm and 570 nm used to calculate the Photochemical 

Reflectance Index (PRI) (Gamon et al., 1992). The three indices are 

described in equations [4.1-4.3]. 
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Where R stands for reflectance at the specific band. 
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Atmospheric correction and calibration methods were applied to all images 

to calculate the spectral reflectance. Radiometric calibration was conducted 

using coefficients derived from measurements made in the laboratory with 

an uniform calibration body (integrating sphere, CSTM-USS-2000C 

Uniform Source System, LabSphere, NH, USA) at 4 levels of irradiance and 

11 different integration times. Radiance values were converted to reflectance 

using the total incoming irradiance. The irradiance at the time of the flights 

was simulated with SMARTS (Gueymard, C.A., 2005) using Microtops II 

sunphotometer data (Solar Light Co., Philadelphia, PA, USA) collected in 

the study area at the time of data acquisition to derive aerosol optical depth 

at 550 nm. The airborne flight campaigns and the sunphotometer data were 

collected under clear sky conditions. 

The diurnal field campaigns and the airborne imagery acquisition were 

conducted every two hours from 07.00 GMT until 13.00 GMT in summer 

2009 (Table 4.1). The objective was to acquire a large number of images to 

account for the variation of canopy reflectance and vegetation indices over 

the diurnal cycle as a function of soil shaded area due to sun geometry and 

row orientation. Figure 4.2 shows the diurnal variation of the shadow 

proportions in a vineyard with a North-South (N-S) oriented rows. The 

image reflectance extracted from 6 m x 3 m study plots including soil and 

shadows (Figure 4.1a) and pure vegetation pixels (Figure 4.3b) were later 

used to compute spectral vegetation indices. The diurnal variation of the 

aggregated CR (Figure 4.3c) deviates from the diurnal sun-angle effects 

found on pure vine reflectance (Figure 4.3d) due to the large effects caused 

by shadows on aggregated pixels. These images were later used to validate 

the modeling methods employed by the hybrid and ray tracing approaches,  
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07.00 GMT                                                   09.00 GMT 

       
                      (a)                                                                  (b) 
 

11.00 GMT                                                 13.00 GMT 

      
                      (c)                                                                  (d) 

 
Figure 4.2. Time course of shadow are in a vineyard with N-S oriented rows at the four 
times of the airborne flights (3rd September 2009) 
 
 
 
 
 
 
 
 
 
 
 
 
 

117 



Chapter 4 

      
a)                                                                            b) 

0

0.1

0.2

0.3

0.4

0.5

450 650 850
Wavelength (nm)

R
e

fle
ct

a
n

ce
 (
ρ

)

7.00 GMT
9.00 GMT
11.00 GMT
13.00 GMT

Pure crown

0

0.1

0.2

0.3

0.4

0.5

450 650 850
Wavelength (nm)

R
e

fle
ct

a
n

ce
 (
ρ

)

7.00 GMT
9.00 GMT
11.00 GMT
13.00 GMT

Crown + soil
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igure 4.3. Multisp  study area to 

n each vineyard 

F ectral image (15-cm spatial resolution) with the selected
study the aggregate spectra (a). Detail of the components of the scene: pure vegetation 
(green), shadows (pink), and sunlit soil (white) (b). Pure crown (c) and aggregated spectra 
(d) at the four times of the airborne flights. (3rd September 2009) 

conducting the simulations with input parameters collected o

field concurrent with airborne overflights. Architectural vegetation 

parameters, such as width and canopy height, leaf area index (LAI) were 

measured. Crown height (without considering the trunk) and width of the 

rows were measured at three different places of the stand within the 6 m x 3 

m plot, obtaining the mean values for each site (Table 4.2). The LAI was 
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calculated using the methodology from Perez et al., 2002, and Carbonneau et 

al., 1976. Specific leaves were selected from 20 tendrils within the vineyard. 

The central nerve length (L) is measured for every third leaf along each 

tendril and the calculation of foliar area (A) is calculated as: 

 
)10(23713115.0)10(01055412.0 2  LLA    [4.4] 

As such the foliar area for the plant (Av) is calculated using the following 

Equation [4.5] 

 3AAv nºtrendrils/plant      [4.5] 

where:  

nºtrendrils/plant ~ 16, (is the average value found in this area). 

 

The leaf area index (LAI) of the vineyard is then calculated by dividing the 

Av by the ground area, per plant (4.5 m2). 
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Table 4.1. Solar geometry of multispectral data acquisition 
 
Imagery details  
Imagery acquired on 3rd September 2009 at four different times: 

1. SZ:80.02º SA:88.40º 
2. SZ:57.23º  SA:110.08º 
3. SZ:37.40º SA:147.6º 
4. SZ:34.00º SA:190º 

SZ : solar zenith; SA: solar azimuth (degrees from North) 
 
Airborne multispectral imagery  
Wavelength selection: 515, 530, 570, 670, 700 and 800 nm 
15 cm pixel size 
 

Table 4.2. Measured parameters for the vine study sites used for the simulation work. 
 

Vineyards (Ribera del Duero, Lat 41º 22’ N; Long 4º 4’ W) 
Plantting grid (m x m) 3 x 1.5 

Plot Row orientation (º) 
(degrees from North) 

Width (m) Height (m) LAI LAD 

1 96.05 0.6 1.3 1.1 4.23 
2 93.06 0.55 1.4 0.8 3.12 
3 20.07 0.2 0.8 0.3 5.63 
4 20.07 0.4 0.8 0.5 4.69 
5 103.1 0.5 1.15 0.96 5.01 
6 103.1 0.6 1.05 1.15 5.48 
7 93.06 0.7 1.32 1.26 4.09 
8 75.2 0.9 1.5 1.4 3.11 
9 1.02 0.8 1.4 1.4 3.75 

10 1.02 0.6 1.2 0.8 3.33 
11 93.06 0.41 0.7 0.4 4.18 
12 93.06 0.7 1.5 1.2 3.43 
13 47.5 0.6 1.2 0.75 3.13 
14 47.5 0.55 0.9 0.6 3.64 
15 47.5 0.8 1.1 0.8 2.73 
16 28.5 0.9 1.3 1.48 3.79 
17 28.5 1.1 1.7 1.3 2.09 
18 49.5 0.8 1.45 1.07 2.77 
19 49.5 0.6 1.45 1.25 4.31 
20 61.42 0.75 1.4 1.56 4.46 
21 61.42 0.85 1.35 1.37 3.58 
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4.2.3. Vineyard canopy reflectance simulations with rowMCRM, rowSAIL 
and FLIGHT models. 

4.2.3.1 Canopy model testing for simulating vineyard architecture 

The rowMCRM and rowSAIL hybrid models were tested to simulate 

bidirectional reflectance in vineyards. These models were linked to 

PROSPECT leaf radiative transfer model (Jacquemoud & Baret, 1990; 

Jacquemoud et al., 1996) to simulate the leaf optical properties. The inputs 

required for the linked PROSPECT-row models used in this study are shown 

in Table 4.3. Leaf optical properties, as well as the leaf angle distribution 

function (LADF), relative leaf size, Markov parameter, factor for refraction 

index (used for the calculation of specular reflection of the leaf surface) and 

leaf hair index were the nominal range parameters proposed in Zarco-Tejada 

et al. (2005). The rest of the canopy structural parameters such as the visible 

soil strip, background and viewing geometry were measured for each plot 

(Table 4.2). The visible soil strip width is the space between the edges of two 

vineyards in parallel rows, and corresponds to visible soil as seen from nadir. 

The soil reflectance was measured from the airborne image at the beginning 

of the row for each single study site. It was measured for all flight times 

(Table 4.1) at each location. Sun azimuth and row orientation angles are 

linked in the model by the alpha-row parameter (ψ), calculated as the angular 

difference between sun azimuth and row orientation, both of which were 

measured in a clockwise direction from north.  

In a previous study, a comparison between the rowMCRM canopy 

reflectance simulation and the Compact Airborne Spectrographic Imager 

(CASI) airborne imagery for two viewing geometries (Zarco-Tejada et al., 

2005; Meggio et al., 2008) enabled the validation of TCARI/OSAVI scaling 
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up relationships for Cab estimation. In this study, the rowSAIL and FLIGHT 

models were also used. To simulate vineyard architecture with FLIGHT, 

overlapped ellipsoids were generated (Figure 4.4), with the smaller radius 

corresponding to the canopy width (Table 4.3). Figure 4.4 shows the scene 

for two plots with North-South (N-S) orientation at 09.00 GMT (Figure 4.4a) 

and 13.00 GMT (Figure 4.4b), and East-West (E-W) orientation for the same 

sun angles (Figure 4.4c and Figure 4.4d, respectively). 
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Table 4.3 Nominal values and range of parameters used for leaf and canopy simulation with 
PROSPECT, rowMCRM, rowSAIL and FLIGHT for vine study sites. 

 Nominal values and range 
PROSPECT 
Leaf parameters 

 

Chlorophyll a+b Cab (ug cm-2) 40 
Leaf water content, Cw (cm) 0.025 
Leaf dry matter content, Cm (g cm-2) 0.0035 
Leaf internal structure parameter, N 1.62 
rowMCRM and rowSAIL  
Canopy layer and structure parameters  
Leaf area index (LAI) See Table 4.2 
Leaf angle distribution function (LADF) Є = 0.95; θn=45º (plagiophile) 
Relative size (hs) 0.083 
Markov parameter (λz) 1.1 
Refraction index (0.7-1.2) 0.9 
Leaf hair index (Ih) 0.1 
Canopy height, (CH) See Table 4.2 
Crown width, (CW) See Table 4.2 
Visible soil strip length, (Vs) See Table 4.2 
Row orientation  1-103º 
Background and viewing geometry  
Soil reflectance, ρs Specific for each site 
Armstrong turbidity factor (β) 0.18 
Sun azimuth angle See Table 4.1 
Sun zenith angle (θ) See Table 4.1 
FLIGHT  
Leaf optical and structural parameters  
Hemispherical reflectance and transmittance of green leaves PROSPECT simulations 
Hemispherical reflectance and transmittance of senescent leaves Not used 
Leaf equivalent radius 0.083 m 
Canopy layer and structural parameters  
Leaf area index (LAI) See Table 4.2 
Fractional cover 12-60% 
Leaf Angle Distribution Function (LADF) plagiophile 
Fraction of green leaves 1 
Fraction of senescent leaves 0 
Fraction of bark 0 
Number of stands and position coordinates Not used 
Crown shape Elliptical 
Crown height and radius See Table 4.2 
Trunk height and radius Not used 
Background and viewing imagery geometry  
Solar zenith and azimuth angles See Table 4.1 
Sensor zenith and azimuth angles Degrees 
Soil reflectance Specific for each site 
Soil roughness 0 
Aerosol Optical Depth (AOD) 0.15 
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a)                                                             b) 

 

      
c)                                                             d) 

 
Figure 4.4. Sceneries obtained with FLIGHT using ellipsoids to simulate the geometry of 
vineyards. North-South rows at 09.00 GMT (a) and 13.00 GMT (b), and East-West 
orientation at 09.00 GMT (c) and 13.00 GMT (d). 

 

Simulations conducted with the three models were then compared 

against the high spatial resolution imagery. Band-to-band and vegetation 

index comparisons between model-simulated reflectance and the airborne 

reflectance were then used to calculate the relative RMSE (rRMSE) for all 

the study sites. The TCARI/OSAVI index, used as an indicator of Cab 

concentration, NDVI index used to track structural changes on the canopy, 
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and PRI, used as an indicator of xanthophyll pigments and recently proposed 

for water stress detection in crops, were all modeled for each plot and 

compared with the measured values, indices calculated from the airborne 

imagery, focusing on configuration parameters, such as the sun azimuth, sun 

zenith and the row orientation angles, soil reflectance and structural 

parameters.  

4.2.3.2 Sensitivity analysis. 

Simulations were conducted to understand the sensitivity of CR to the 

input parameters (row orientation, solar view geometry, LAI and 

background) by varying the inputs independently, keeping the remaining 

parameters fixed. In the same way, the sensitivity of the Spectral Vegetation 

Indices (SVI) to canopy geometry, soil optical properties and sun angle were 

evaluated to assess the influence of the architecture and observational 

geometry on the aggregated NDVI, TCARI/OSAVI and PRI indices, the 

input parameters were varied and the simulated reflectance per plot was 

aggregated, including the soil between vineyards rows and shadows (see 

Figure 4.3a and Figure 4.3b). Simulations were carried out by the three 

models. While ray tracings methods are based on a sampling of photon 

trajectories within the vegetation, geometrical optical models assume that the 

reflectance of the canopy is the area-weighted sum of different sunlit/shadow 

components. The fractions of different components are calculated based on 

the geometric optical principles. Thus, differences in canopy reflectance and 

SVI obtained between models are influenced by the physical theory 

assumptions of each model. As such, differences in inherent model 

assumptions were tested in terms of the description of the component 
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fractions and the corresponding reflectance values for both hybrids and ray 

tracing models. 

4.3. Results and Discussion 

4.3.1. Comparisons between rowSAIL, rowMCRM and FLIGHT vineyard 
simulations and diurnal airborne imagery 

Reflectance spectra comparisons for 21 vineyard plots were obtained 

with the three models by studying canopy reflectance simulations from 

visible to near-infrared wavelengths for four different sun view geometries 

and a wide range of row orientations. The reflectance spectra increased along 

the entire spectrum when zenith angles decreased. This effect is more 

evident in N-S orientated row plots since the shaded soil contribution 

changes more in this orientation. Figure 4.5Figure 4.5 shows two study 

areas with similar percent vegetation cover and two different row 

orientations, N-S (Figure 4.5a, c and e) and E-W (Figure 4.5b, d and f). The 

trend observed in the airborne imagery between 07.00 and 13.00 GMT, 

showing vineyard reflectance increasing with time due to reduced shaded 

area, was captured by the three models.  
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Figure 4.5. Spectra obtained for aggregated vegetation-soil pixels: Multispectral image 
spectra collected at 07.00 and 13.00 GMT (3rd September 2009) and canopy spectra 
simulation conducted with rowMCRM (a,b), rowSAIL (c,d) and FLIGHT (e,f). Left column 
corresponds to North-South and right column to East-West row orientated plots. 
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128 

Results of the relationships between the simulated and measured 

reflectance are shown in Table 4.4. A rRMSE value between 0.20 and 0.30 

was found for all spectral bands at the different flight times for the 

rowMCRM model. Similar results were obtained with the rowSAIL model, 

excepting the first time that present lower accuracy. The 3D FLIGHT model 

simulations yielded a rRMSE between 0.10 and 0.20. When all the times are 

considered together excepting the lower zenith angle, the simulations for the 

red region (670 nm) yielded rRMSE values below 0.16 for the rowMCRM 

and rowSAIL models (Figure 4.6a and c, respectively). FLIGHT yielded 

better results, with rRMSE = 0.09 (Figure 4.6e). For NIR, 800 nm, rRMSE 

are 0.08 and 0.10 for FLIGHT and rowMCRM respectively (Figure 4.6a and 

e), being underestimated with rRMSE of 0.20 for rowSAIL (Figure 4.6b). 

Although rowSAIL presented higher errors in the NIR region, smaller errors 

compared with the other two models were found for SVI. Thus rRMSE of 

0.12 is obtained for NDVI with rowSAIL (Figure 4.6d), and rRMSE 0.17 

and 0.14 with rowMCRM and FLIGHT (Figure 4.6b and f, respectively). 

The validation and evaluation of canopy reflectance together with SVI is 

needed to study the weakness of the different models. The SVI minimize the 

variability to external factors and they are developed to establish functional 

relations between crop characteristic and remote spectral. The use of 

radiative transfer models helps to understand these relations as well as 

understand the influence of different optical and geometrical parameters on 

SVI.  
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Table 4.4 Relative RMSE obtained from multispectral airborne imagery and simulations canopy reflectance for the study sites at four solar 
geometries.  

    07.00 GMT 09.00 GMT 11.00 GMT 13.00 GMT 
  rowMCRM rowSAIL FLIGHT rowMCRM rowSAIL FLIGHT rowMCRM rowSAIL FLIGHT rowMCRM rowSAIL FLIGHT 

530 0.530  0.323  0.174  0.362  0.201  0.065  0.252  0.118  0.108  0.258  0.227  0.104 

570 0.503  0.345  0.173  0.293  0.211  0.054  0.195  0.145  0.112  0.290  0.239  0.098 

670 0.558  0.198  0.288  0.207  0.298  0.101  0.196  0.158  0.086  0.180  0.225  0.112 

700 0.461  0.223  0.151  0.151  0.338  0.060  0.149  0.184  0.123  0.128  0.252  0.091 

N
S 

800 0.203  0.248  0.117 0.112 0.287 0.079 0.083  0.283  0.095 0.049 0.244 0.108

PRI 0.165  0.144  0.229  0.297  0.173  0.140  0.245  0.107  0.081  0.288  0.114  0.126 

TCARI/OSAVI 0.384  0.451  0.451  0.275  0.557  0.243  0.312  0.216  0.228  0.274  0.457  0.223 SV
I 

NDVI 0.421  0.272  0.276 0.199 0.133 0.183 0.241  0.289  0.211 0.237 0.173 0.206

 

129 



Chapter 4 

a)

y = 0.81x + 0.05
rRMSE = 0.10

y = 0.94x + 0.02
rRMSE = 0.15

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
670 & 800 nm airborne

67
0 

&
 8

00
 n

m
 s

im
ul

at
ed

670
800

row MCRM

b)

y = 0.86x - 0.01
rRMSE = 0.17

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
NDVI airborne

N
D

V
I s

im
ul

at
ed

row MCRM

 

c)

y = 0.59x + 0.06
rRMSE = 0.20

y = 0.77x + 0.01
rRMSE = 0.16

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
670 & 800 nm airborne

67
0 

&
 8

00
 n

m
 s

im
ul

at
ed

670
800

row SAIL

d)

y = 0.86x + 0.03
rRMSE = 0.12

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
NDVI airborne

N
D

V
I s

im
ul

at
ed

row SAIL

 

e) 

y = 0.88x + 0.01
rRMSE = 0.08

y = 0.88x + 0.02
rRMSE = 0.09

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
670 & 800 nm airborne

67
0 

&
 8

00
 n

m
 s

im
ul

at
ed

670
800

FLIGHT

f) 

y = 0.82x + 0.01
rRMSE = 0.14

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
NDVI airborne

N
D

V
I s

im
ul

at
ed

FLIGHT

 
Figure 4.6. Relationships between actual and simulated reflectance at 670 nm and 800 nm 
(a, c, e) and NDVI (b, d, f) with rowMCRM, rowSAIL and FLIGHT respectively 
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4.3.2. Simulated CR and vegetation indices as a function of viewing 
geometry and canopy structure. 

Simulations with the three models were conducted for row orientations 

of 0º, 30º, 60º and 90º under fixed sun angles. Differences in CR ranging 

between 0.04 at the green region and 0.1 at the NIR were observed between 

E-W and N-S orientations (Figure 4.7a). The effect of solar view geometry 

was studied by varying the angles from sunrise until noon, with the 

remaining parameters fixed (Figure 4.7b). In addition, different LAI values 

with fixed dimensions of the canopy were used as input for the models, 

observing important differences when leaf area index increased from 0.5 to 

2, with smaller effects as LAI increased beyond 2 (Figure 4.7c). The 

background effect was also studied, using dark, medium and bright soil 

reflectance spectra as input. Results demonstrated differences in CR ranging 

between 0.02 at the green region and 0.1 at the NIR as a function of the soil 

reflectance levels (Figure 4.7d).  
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c)                                                        d) 

Figure 4.7. Effect of row orientation (a), sun angle variation (b), LAI (c), and soil 
reflectance (d) on row-canopy reflectance. Simulations obtained with rowMCRM 

 

The NDVI, TCARI/OSAVI and PRI indices as a function of sun angle 

(Figure 4.8) were simulated with FLIGHT for N-S and E-W vine row 

orientations (named as αrow). N-S orientation (αrow = 0º) (Figure 4.8a, c 

and e) and E-W orientation (αrow = 90º) (Figure 4.8b, d and f) for a range of 

soil spectra (bright, medium, dark) and visible soil strip widths of 1.7 m. 

Simulations demonstrated the small sun angle effect on the three indices for 

E-W row orientations (Figure 4.8b, d and f). As expected, row lines oriented 
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in the solar plane made the shaded soil component variation very small on 

the three indices studied.  

For N-S row orientations (Figure 4.8a, c and e), large differences in the 

thre

 

e indices were found as a function of the sun position: NDVI decreased 

from 0.8 down to 0.42 from early morning to midday (Figure 4.8a); 

TCARI/OSAVI varied from 0.11 to 0.2 for the same time frame for bright 

soil backgrounds, showing smaller variation for darker soils (Figure 4.8c); 

PRI varied from 0.15 up to 0.27 from sunrise to midday for a visible soil 

strip of 2.3 m and bright soil (Figure 4.8e). 
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Figure 4.8. Simulations obtained with FLIGHT: effect of the sun geometry on NDVI, 
TCARI/OSAVI and PRI, considering row orientation variation N-S (a, c and e) and E-W (b, 
d and f) as a function of different soil backgrounds, setting the LAI = 1.6, visible soil strip = 
1.7 m and the Cab content to 40μg·cm-2. 
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Simulations conducted for the NDVI, TCARI/OSAVI and PRI indices as 

a function of sun angle, visible soil strip and background (Figure 4.9) 

demonstrated the effects due to the variation of canopy leaf area: LAI = 0.5 

(Figure 4.9a, c and e) and LAI = 1.6 (Figure 4.9b, d and f) for N-S row 

orientation were simulated with rowMCRM. The three indices varied as a 

function of sun angles from early morning to midday for both LAI values, 

showing larger effects for higher LAI due to the effects on the shadow 

proportions, as expected. These results demonstrate the importance of 

canopy modeling to understand the diurnal behaviour of the indices used for 

vegetation monitoring in row-structured canopies. As expected, a low 

diurnal variation in the indices was found for low LAI canopies (Figure 4.9a, 

c and e) due to the smaller shadow component casted by the vegetation. 
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Figure 4.9. Simulations obtained with rowMCRM: effect of the sun geometry on NDVI, 
TCARI/OSAVI and PRI, considering LAI variation, LAI = 0.5 (a, c and e) and LAI = 1.6 
(b, d and f) as a function of different soil backgrounds, fixing the row orientation to N-S, 
Vs=1.7m and the Cab content to 40μg·cm-2. 
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The study focused on the simulation of each fraction of the scene 

components (sunlit and shaded soil and vegetation) was conducted for a 

scene with vegetation cover fraction of 30%, LAI = 1.6, height = 1.7 m, 

modeled for different sun geometries for NS and EW row orientation (Figure 

4.10 and Figure 4.11). Figure 4.10 shows the sunlit and shaded soil fractions 

computed by rowMCRM and FLIGHT models. Differences among models 

for the simulated fraction of sunlit (Figure 4.10a) and shaded soil (Figure 

4.10c) reached 26% in the morning for North-South orientation, being 

negligible at midday. For East-West row orientation, differences between 

scene components were minimal early in the morning and late in the 

afternoon, reaching differences of up to 16 % at midday (Figure 4.10b and 

Figure 4.10d). An important difference between both modeling methods is 

that the fractions of sunlit and shaded leaves are not computed for the 

rowMCRM model, while FLIGHT separates both fractions. Figure 4.11 

shows the percentage of shaded and sunlit vegetation simulated by FLIGHT 

for row orientations NS and EW (Figure 4.11a and Figure 4.11b, 

respectively). The percentage of shaded vegetation varied from 25% in the 

early morning down to 11% at midday for EW orientation. For NS 

orientation, the percentage of shaded vegetation varied from 19% in the early 

morning down to 12% at midday. These results are consistent given that the 

shadows are casted into the vegetation at large zenith angles for the EW 

orientation, while shadows are casted into the soil for the NS orientation. 
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Figure 4.10. Percentage of sunlit soil component over total scenery simulated by FLIGHT 
and rowMCRM model for NS (a) and EW orientation (b). Percentage of shaded soil 
simulated by FLIGHT and rowMCRM model for NS (c) and EW orientation (d). 
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Figure 4.11. Percentage of sunlit and shaded vegetation components simulated by FLIGHT 
model for NS (a) and EW orientation (b). 

 

4.4. Conclusions 

Row crops are a complex target for radiative transfer models since 

canopy reflectance is affected by background. This study investigated the 

use of hybrid models, rowMCRM and rowSAIL, to simulate canopy 

reflectance in vineyards as a function of row orientations and sun viewing 

geometry, as well as canopy architectural parameters. The capability of the 

models to adequately describe diurnal changes as a function of input 

parameters was validated against canopy reflectance obtained by an airborne 

multispectral sensor acquiring high-resolution imagery in the visible and 

near-infrared regions. A large airborne and field dataset acquired at different 

sun angles was required in order to validate the modeling approaches and 

hypotheses. These results were also compared against simulations obtained 

with a model based on the Monte Carlo ray tracing method (FLIGHT). This 

was conducted to assess the differences found with both types of radiative 

transfer models with varying complexities and assumptions. 
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The agreement between measured and simulated canopy reflectances 

were explored. The FLIGHT model yielded rRMSE values below 0.12, 

when all visible and NIR bands were considered, whereas row-structured 

models showed an error greater than 0.20. Higher errors (rRMSE = 0.26) in 

the NIR region were obtained with rowSAIL, likely due to the poor 

modeling of the multiple-scattering contributions to canopy reflectance, as 

suggested in Zhao et al. (2010). Regarding optical vegetation indices (NDVI, 

TCARI/OSAVI and PRI), FLIGHT yielded better results with rRMSE values 

between 0.1 and 0.25 for all indices, while row models yielded higher errors 

(rRMSE = 0.3). This study shows that more work should be done to improve 

the accuracy of row models. Nevertheless this investigation also revealed 

that the models correctly simulate the trends of canopy reflectance under 

different optical and geometric conditions. Furthermore, these models can 

adequately explain the influence of different parameters on overall canopy 

reflectance, as well as on specific spectral vegetation indices. 

In this chapter, we demonstrated the validity of discrete row models 

(rowMCRM, rowSAIL) as well as 3D model (FLIGHT) to simulate vineyard 

canopy reflectance. Simulations using rowMCRM and rowSAIL are 

computationally simpler and faster. The row models are found to be practical 

when look-up table methodologies are used for biophysical and biochemical 

parameter extraction, where a high number of simulations is needed. 

However, if more detailed input parameters are available, FLIGHT was 

shown to be more accurate. In addition, FLIGHT yielded detailed radiation 

interception values, which will be the focus of the research in Chapter 5. 
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Chapter 5 
 
Mapping radiation interception in vineyards using 3D 
simulation and high resolution airborne imagery. 
 

Abstract 

Methods for fIPAR estimation in vineyards using high resolution multispectral imagery 
acquired from an unmanned aerial vehicle (UAV) have been developed in this study. 
Airborne campaigns provided imagery over a total of 21 study sites from 8 Vitis vinifera L. 
fields using a multispectral sensor for different sun geometries and a wide range of row 
orientations. Imagery was acquired using a 6-band multispectral camera yielding 15 cm 
resolution. At the time of the airborne flights, field measurements of fIPAR were conducted 
with a ceptometer together with structural data to characterize the study sites. Airborne 
imagery acquisitions were conducted diurnally every two hours from sunrise until midday, 
collecting data at four times of the day, while fIPAR measurements were performed hourly. 
Two methodologies are used to estimate fIPAR, using high or medium spatial resolution. In 
the first one, the high spatial analysis allowed to classify each study plot in three pure 
components, vegetation, shaded and sunlit soil, the fraction of each component as well as 
the pure reflectance was used to estimate the fIPAR in each study area. This methodology is 
named as analysis of component in the image. The accuracy obtained with this methodology 
is compared with the fIPAR estimated from aggregated reflectance pixels (medium spatial 
resolution study). The imagery was rescaled to a pixel size of 6 m x 3 m, and the aggregated 
pixels were used to compute spectral vegetation indices (SVI). Relationships between SVI 
and fIPAR were established to estimate fIPAR from the imagery. The SVI used for this 
study was the Normalized Difference Vegetation Index (NDVI). As it was shown in 
previous chapters, the relationships between indices and fIPAR were affected by solar 
angles, row orientation and the soil background. Thus the use of radiative transfer models 
was required, and a modeling approach was conducted to understand the influence of the 
vineyard architecture and viewing geometry on the canopy reflectance for accurate fIPAR 
estimation. In this study, a 3-D radiative transfer model based on the 3-D Forest Light 
Interaction Model (FLIGHT) was used. The fIPAR model simulations conducted with 
modeling approach was compared against the fIPAR field measurements obtained on each 
site, yielding a root mean square error RMSE=0.1. The estimation of instantaneous fIPAR 
using component analysis yielded RMSE=0.08 while spectral indices from the airborne 
imagery was conducted using scaling-up techniques yielding RMSE=0.12 

Keywords: vineyards, fIPAR, radiative transfer models, remote sensing, NDVI, high 
spatial resolution airborne imagery. 
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5.1 Introduction 

The photosynthetically active radiation (PAR) intercepted by the 

vineyard is a critical process that determines biomass production and 

potential yield as well as the quality characteristics in terms of sugar 

concentration and must and wine colour (Robinson and Lakso, 1991, 

Dokoozlian and Kliewer, 1995, Poni et al., 1996, Baeza et al., 2010). Solar 

radiation fluxes have a dominating effect on grapevine physiology acting 

through photosynthetic, thermal and phytochrome response systems (Smart, 

1989). These critical implications of light distribution in viticulture 

production have been known from the beginning of the 60’s (May and 

Antcliff, 1963; May, 1965). In homogeneous crops, leaf area index (LAI) 

and vegetation cover fraction have been used in conjunction with light 

interception as a basis for estimating canopy productivity (Monteith, 1973; 

Jackson, 1980). However, in heterogeneous stands, where leaves are located 

within an envelope that is distributed in space according to planting pattern 

and row orientation, the architecture of the stand must be taken into account 

for light interception studies as a basis for yield estimation (Mariscal et al., 

2000). The interactions between fIPAR in vineyards and architecture have 

been the focus of several studies (Smart, 1973; Smart, 1985; Mabrouk et al., 

1997; Pieri and Gaudillere, 2003; López-Lozano, 2011). As in the case of 

fruit tree orchards, vineyards are grown in a discontinuous- row-structured 

architecture that makes their geometrical structure more complex to study 

than in homogeneous canopies, such as grassland or wheat (Mabrouk and 

Sinoquet, 1998; Lopez-Lozano et al., 2011). Structural changes such as the 

row orientation, spacing, pruning, and soil surface management, affect the 

microclimate of the vineyards, influencing the spatial variability of the 
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berries as well as the must/wine quality (Pieri, 2010). Due to the large 

variability found in vineyards, extrapolation of locally-derived relationships 

between indices and fIPAR should be taken with caution (Acevedo-Opazo et 

al., 2008). Because of this within-field spatial variability precision viticulture 

aiming at maximizing grapevine production is showing a growing interest in 

remote sensing techniques together with the use of canopy models (Hall et 

al., 2002). The radiative transfer models are needed in these complex 

canopies to interpret the optical remote sensing spectra which aggregate 

different scene components, such as sunlit and shaded soil and vegetation 

areas, as function of canopy architecture and viewing geometry. It was 

Smart, in 1973, the first one developing a specific model for grapevine to 

evaluate the effects of variables such as plant shape, size, planting distance 

or row orientation in relation to the light microclimate. Since then, other 

models have been formulated where the amount of detail to simulate the 

vineyard canopy has increased substantially (Riou et al., 1988, Sinoquet and 

Bonhomme, 1992; Mabrouk et al., 1997, Mabrouk and Sinoquet, 1998; 

Lebon et al., 2003; Louarn et al., 2008; García de Cortazar, 2009). However, 

these models do not include canopy reflectance as an output. A review of 

models including canopy reflectance as output variable may be found in 

chapter 4 where the evolution of canopy reflectance models from simpler to 

more physical sophisticated models is shown. This progress, focused on the 

ability to quantitatively relate canopy reflectance and vegetation canopy 

attributes, enables monitoring vegetation biophysical parameters by remote 

sensing (Goel and Grier, 1987, Houborg and Boegh, 2008). Regarding the 

estimation of intercepted radiation by vegetation, red and near-infrared SVI 

were used by authors such as Daughtry et al. (1983), Steven et al. (1983), 

Hatfield et al. (1984; 2008); Asrar et al. (1992); and Moriondo et al. (2007), 
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among others. In particular, the relation between spectral vegetation indices 

(SVI) and fIPAR was investigated using radiative transfer models by Huete 

(1989), Choudhury (1987) or Huemmrich and Goward (1997), showing how 

the relationships vary with changes in the canopy architecture and in optical 

properties of the canopy components and the background. However, many of 

these studies were focused on randomly distributed canopy elements and 

closed canopy forest areas. Only a limited number of studies have focused 

on heterogeneous canopies such as the row-structured open-tree canopies, 

where such random-distribution assumptions may not be valid. The objective 

of this chapter was to estimate fIPAR in row-structured vineyards using high 

resolution multispectral remote sensing imagery and radiative transfer 

models. The high spatial resolution images acquired for this study enabled 

the discrimination of vegetation, shaded and sunlit soil component. As such, 

we can obtain their fractional areas as well as the pure reflectance of each 

component. The high spatial details allow an accurate assessment of 

FLIGHT’s ability to simulate fIPAR and canopy reflectance for this complex 

canopy architecture. A database including spatial and diurnal variability of 

fIPAR, as well as, canopy reflectance was collected to achieve these 

objectives. In this chapter, two different assessment methodologies are used. 

The first approach exploits the spatial details of the high resolution data to 

determine fIPAR through scene component analysis. The second method, 

assumes lower level spatial detail (aggregated pixel analysis) to estimate 

fIPAR using spectral vegetation indices. As such, we can potentially use the 

SVI-fIPAR relationships for predictive modelling. 
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5.2. Materials and Methods 

5.2.1. Field data collection 

Field data were collected in August-September 2009 in the western area 

of Ribera del Duero Appellation d’Origine (northern Spain). A total of 8 

vineyards belonging to a plot network currently monitored by the local 

government were selected to assure appropriate variability in vegetation 

cover fraction and row orientation (Figure 4.1, chapter 4). The distance 

between rows was 3 m with 1.5 m between vines. The field data was 

determined on 21 sub-areas of 6 m x 3 m located in each of the 8 selected 

vineyards (Table 4.2, chapter 4). The vineyards under study ranged in 

canopy structure, soil background, and planting row orientation. 

Field sampling was conducted in these areas concurrent with airborne 

overflights for testing and validating row-structured models. The 3-D 

radiative transfer model FLIGHT (North, 1996) is used in this study. This 

model was previously validated for canopy reflectance and vegetation 

indices in vineyards (chapter 4).  

The ground measurements conducted on these selected plots involved 

measurements of canopy architecture and fraction of intercepted radiation. 

The interception of solar radiation by the orchard canopies at each time of 

day was measured with a ceptometer (SunScan Canopy Analysis System, 

Delta-T Devices Ltd, Cambridge, UK). The measurements were done 

hourly, starting at the time of the first airborne campaign for imagery 

acquisition. The ceptometer is composed of two units: (i) a probe, portable 

instrument of 1-m long, for measuring the transmitted photosynthetically 

active radiation (PAR) flux beneath the canopy; and (ii) a reference sensor 
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that measures PAR incident on the canopy. The measurements of transmitted 

PAR made within the area beneath the 6 m x 3 m of each plot were in a 1 m 

x 0.5 m grid (Figure 5.1). The measurements were carried out for every 

study plot assessing the spatial variation of fIPAR. The measurements, 

repeated every hour from dawn to noon, capture the diurnal variation of the 

intercepted solar radiation. Figure 5.2 shows the shadow diurnal variation 

during the day at the airborne imagery (Figure 5.2, left) and as measured 

with the ceptometer (Figure 5.2, right).  

 
 
 
 
 
 
 
 
 
 
 
 
    ceptometer 
 
Figure 5.1. Schematic view of the grid (1 m x 0.5 m) used for field measurements made by 
the ceptometer between the four trees per plot. 
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Figure 5.2. Airborne imagery showing one of the study sites at 7.00, 9.00 and 11.00 GMT 
(2009, 03rd September) (left) and diurnal variation of PAR measured by ceptometer at soil 
level (area shown is marked area in the airborne image) (right). 

SZ 37.40º
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Other additional structural and optical parameters were measured to 

characterize each plot, and used later as input for the canopy model. The leaf 

optical properties were simulated with PROSPECT leaf radiative transfer 

model (Jacquemoud and Baret, 1990; Jacquemoud et al., 1996) (Figure 5.3). 

The inputs required for PROSPECT are shown in Table 5.1. The canopy 

structural parameters, such as canopy height, visible soil strip and leaf area 

index (LAI), calculated as in Perez (2002) and explained in chapter 4 were 

measured in each study plot (mean is shown in Table 4.1). The soil 

reflectance was measured at each flight time for each location. Sun azimuth 

and row orientation were both measured in a clockwise direction from north. 

These data were used as inputs for the model to simulate canopy reflectance 

and fIPAR, and to validate fIPAR simulations with the measurements taken 

with the ceptometer in each study plot. 
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Figure 5.3. Leaf spectral reflectance and transmissivity simulated with PROSPECT. 
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Table 5.1. Nominal values and range of parameters used for leaf and canopy simulation with 
PROSPECT and FLIGHT for vine study sites. 
 

 Nominal values and range 
PROSPECT 
Leaf parameters 

 

Chlorophyll a+b Cab (ug cm-2) 40 
Leaf water content, Cw (cm) 0.025 
Leaf dry matter content, Cm (g cm-2) 0.0035 
Leaf internal structure parameter, N 1.62 
FLIGHT  
Leaf optical and structural parameters  
Hemispherical reflectance and transmittance of green leaves PROSPECT simulations 
Hemispherical reflectance and transmittance of senescent leaves Not used 
Leaf equivalent radius 0.083 m 
Canopy layer and structural parameters  
Leaf area index (LAI) See Table 4.2 
Fractional cover 12-60% 
Leaf Angle Distribution Function (LADF) plagiophile 
Fraction of green leaves 1 
Fraction of senescent leaves 0 
Fraction of bark 0 
Number of stands and position coordinates Not used 
Crown shape Elliptical 
Crown height and radius See Table 4.2 
Trunk height and radius m 
Background and viewing imagery geometry  
Solar zenith and azimuth angles See Table 4.1 
Sensor zenith and azimuth angles Degrees 
Soil reflectance Specific for each site 
Soil roughness 0 
Aerosol Optical Depth (AOD) 0.15 

 

5.2.2. Airborne campaigns 

Airborne campaigns were conducted in 2009 with a narrow-band 

multispectral camera. Flights were conducted using an unmanned aerial 

vehicles (UAVs) operated by the Laboratory for Research Methods in 

Quantitative Remote Sensing (QuantaLab, IAS-CSIC, Spain) (Berni et al., 

2009b; Zarco-Tejada et al., 2008; 2012). This platform was used to fly the 

multispectral camera over the study sites in 2009. The multispectral sensor 

flown was a 6-band multispectral camera consisting of 6 independent image 

155 



Chapter 5 

sensors and optics with user-configurable 10 nm full-width at half maximum 

(FWHM) spectral filters (Berni et al., 2009a; Zarco-Tejada et al., 2009). The 

image resolution is 2592 x 1944 pixels with 10 bit radiometric resolution, 

optics focal length of 8.4 mm, and angular field of view (FOV) of 38.04º x 

28.53º, yielding 15 cm spatial resolution at 150 m flight altitude. The 

bandsets selected for this study comprised centre wavelengths located at 515, 

530, 570, 670, 700 and 800 nm. The multispectral images acquired over each 

vineyard field enabled the identification of the study areas used for the leaf 

sampling and ground structural measurements. The airborne campaign was 

conducted at 7.00, 9.00, 11.00 and 13.00 GMT. Figure 5.4 shows the 

multispectral imagery of two study sites with North-South and East-West 

row orientation at three times of the day. As expect, the percentage of soil 

shadows change more drastically along the day for NS than for EW row 

orientation. For identification purposes, each plot was marked in the field 

using ground control points detectable in the imagery. In chapter 4, the 

processing required for the multispectral imagery to calculate the spectral 

reflectance is explained in detail. The multispectral imagery acquired 

enabled successfully separating pure vine from shaded and sunlit soil 

reflectance in most cases (Figure 5.5a), obtaining the fraction of each 

component separately (Figure 5.5b). The high spatial resolution enabled the 

extraction of the mean reflectance for the spectral bands acquired for 

vegetation index calculation from the different components identified from 

each study site (Figure 5.5c). 
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                     North-South                                                        East-West            

a)  b)  

c)  d)  

e)  f)  
 
Figure 5.4. Shadows evolution in a N-S study area at 7.00, 9.00 and 11.00 GMT (a, c, e, 
respectively), and a E-W area at the same times (b, d, f), in the summer of 2009. 
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c) 
Figure 5.5. Example of multispectral reflectance imagery showing the region of interest, 
including vegetation, shadows and sunlit and shaded soil (a), and the classified image (b). 
The pure crown, sunlit and shaded soil and aggregated spectra obtained (c). 
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5.2.3. fIPAR validation for FLIGHT 

A detailed simulation of the land surface bidirectional reflectance was 

undertaken by radiative transfer models approach. The 3-D Forest Light 

Interaction Model, (FLIGHT) is based on Monte Carlo ray tracing method as 

a tool to simulate the radiative transfer in a canopy structure (North, 1996). 

At the top of canopy, the interaction of radiation within the vegetation 

depends on the contribution of several components such as leaves, stems, 

soil background, illumination and view properties of each canopy elements 

as well as on their number, orientation and location in space (Goel and 

Thompson, 2000; Koetz et al., 2005). The technique requires sampling the 

photon free-path within a canopy representation, and the simulation of the 

scattering event at each iteration. An accurate treatment of the light 

interception and multiple scattering between foliage elements and the soil 

boundary is obtained by iteration (North, 2002). The FLIGHT radiative 

transfer model has been previously applied to row-structured olive orchards 

(Suárez et al., 2008, and chapter 3) and to peach and orange orchards 

(chapter 2). In this work, the FLIGHT model was used to simulate vineyard 

canopy reflectance and fIPAR. 

The model allows simulating the effects of row orientation, tree 

dimensions, soil and leaf optical properties and sun geometry. The simulated 

orchard is a set of rows and columns referenced by four angles in the 

coordinate system NSWE-vertical. A tree is positioned at each row-column 

intersection. The orchard size is dimensioned so that all trees potentially 

contribute to the interception of radiation. 

The model FLIGHT was run with inputs parameters measured in the 

field. Simulations were done for every single plot whose architectural 
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characteristics can be found in Table 4.2. Leaf optical properties were 

obtained with PROSPECT (Figure 5.3) and soil optical properties were 

obtained from the airborne imagery at each study site. The output fIPAR for 

FLIGHT was validated at the four different times. Observed (oi), 

measurements with the ceptometer, and simulated (pi) were compared by 

regression analysis. The root mean square error was calculated as: 

 

 





Ni

i
ii op

N
RMSE

1

21
                                                                            [5.1] 

 

The validation for canopy reflectance in vineyards with FLIGHT model 

was conducted previously in chapter 4. 

The model was used to study the influence of different parameters, such 

as row orientation, sun position and other architectural properties on canopy 

reflectance and fIPAR. A detailed study about canopy reflectance in 

different scenarios appears in chapter 4. The same situations were studied 

now to analyse the influence of these factors on fIPAR. To show the 

influence in the relationships between row orientation and fIPAR, FLIGHT 

was used to simulate different sceneries with the same vegetation cover 

fraction and different row orientation and varying LAI 0.5, 1 and 2 for three 

different vegetation cover fractions.  

 

 

 

160 



Mapping fIPAR. The case of vineyards 

5.2.4. Retrieval of fIPAR using components analysis in the scene and NDVI 

5.2.4.1. Component analysis 

The high spatial resolution imagery was analyzed to obtain the 

percentage of each component of the scene, vegetation, shaded and sunlit 

soil, as well as their reflectances. This information is then used to estimate 

instantaneous fIPAR. The factors determining the intercepted radiation 

regime in vegetation canopies are the architecture of the entire canopy, 

optical properties of vegetation elements and the soil and the spectral 

composition of the incident radiation field (Wang et al., 2003). The fIPAR 

for the different study areas is computed as: 











PARss

PARshs
shspshs rfl

rfl
frfrfIPAR 1                                                                 [5.2] 

where frshs is the fraction of shaded soil and τp is the vegetation 

transmisivity in the PAR region (400-700 nm), computed as 1 minus the 

reflectance of sunlit soil ( rfl ) divided by reflectance of shaded soil 

( ). 

PARss

PARshsrfl

Each study site is classified into three components, vegetation, shaded 

and sunlit soil (Figure 5.5b) using a supervised classification methodology. 

The nadir view does not allow the discrimination of the fraction of shaded 

soil directly under the vegetation, thereby leading to underestimation in the 

fIPAR. As a result, a distinction is made between shaded soil visible from 

above and shaded soil that is hidden as a result of vegetation cover. In this 

study, it was assumed that the soil under the vegetation was shaded soil, 

therefore the frshs was computed as the sum of the fraction of shaded soil 

seen from above plus the fraction of vegetation. 
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To check the influence of row orientation and sun geometry in this 

methodology an analysis with FLIGHT was carried out. The same fraction of 

vegetation (25%) was simulated at different times of the day to generate 

difference fraction of shadows, the fIPAR estimated by this methodology 

was then compared with the output of fIPAR computed by FLIGHT. This 

methodology was also applied to the different study areas simulated by 

FLIGHT and fIPAR estimated was compared with the fIPAR obtained with 

FLIGHT. Additionally the method was validated using the field 

measurements of fIPAR.  

5.2.4.2. Calculation of fIPAR using NDVI. Aggregated pixel analysis. 

Several optical indices existing in the literature have been correlated with 

various vegetation parameters such as LAI, biomass, chlorophyll 

concentration, and photosynthetic activity, among others. Haboudane et al. 

(2004) presented a review of studies showing the prediction power of optical 

indices to canopy parameters. Here, the Normalized Difference Vegetation 

Index (NDVI) (Rouse et al., 1974) was used here to test their relationship 

with fIPAR. 

)(

)(

670800

670800

RR

RR
NDVI




                                                                                                 [5.3] 

In previous chapters, we demonstrated the good correlation between 

NDVI and fIPAR for peach, orange and olive orchards. This relationship is 

also checked here for vineyard fields. Sensitive analysis carried out also 

previously showed the important effect of row orientation, sun geometry and 

soil optical properties on NDVI-fIPAR relationships. However, detailed 

information, such as soil optical properties is not possible to obtain if high 

spatial resolution is not available. In this chapter, methodology to estimate 
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fIPAR through predictive relationships is evaluated considering a medium 

spatial resolution. Thus, predictive algorithms NDVI-fIPAR were calculated 

under specific canopy assumptions. The predictive algorithms for vineyard 

orchards were obtained with input parameters fixed according to mean field 

measurements for each plot: leaf angle distribution, row orientation, and 

solar position depending on the time of flight. A specific set of input 

parameters for the models was varied, with a range for the canopy height 

from 0.6 to 2.0 m; width from 0.2 to 1.0 m, and LAD from 2 to 5. The soil 

reflectance was extracted from the airborne imagery as mean for all study 

sites. The soils were calcareous and poor in organic matter, with a medium-

weighed texture and an average pH of 8.7. Concentrations of active 

carbonate (up to 17.6%) and DPTA extractable Fe (1.2 to 7.6 mg·kg-1) were 

highly heterogeneous within the study areas. The high spatial resolution 

allows extracting the soil reflectance for each study area. However, the 

medium spatial resolution would not allow it, thus a soil spectra of medium 

reflectance from the area of study was used. 

The aggregated information to obtain the SVI was used considering 

vegetation, soil and shadows together. The pixel resolution in this approach 

was 6m x 3m. 

The predictive relationships were obtained for three different solar angles 

corresponding to three flight times. The earlier flight time (SZ 80.02º, SA 

88.40º) was not used in the study since low zenith angles created a large 

error in the atmospheric correction of the imagery acquired at that time. This 

methodology enabled the application of sensor-derived optical indices for 

predictive algorithms NDVI-fIPAR that are a function of canopy structure, 

optical properties and the viewing geometry. The modelled relationships 
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NDVI vs fIPAR obtained for each orchard were then applied to the 

multispectral airborne imagery reflectance to estimate the instantaneous 

fIPAR for each flight time at each study site.  

Finally, methodologies such as the component analysis and aggregated 

pixel analysis were applied to the different study areas to obtain maps 

showing the spatial variation of the instantaneous fIPAR. 

 

5.3. Results 

5.3.1. Validation of FLIGHT to simulate fIPAR in vineyards 

The validation of modelled fIPAR is shown in Figure 5.6. The 

comparison between simulations and field data indicated a good 

performance of the models, with RMSE below 0.1 when three different sun 

geometries were considered (Figure 5.6a). The same analysis was conducted 

showing each time independently, with higher errors at 9.00 GMT, with 

RMSE 0.12 (Figure 5.6b). While the RMSE for 11.00 and 13.00 GMT was 

0.07 (Figure 5.6c and Figure 5.6d).  
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c)                                                                d) 

Figure 5.6. Variation of fIPAR measured by the ceptometer versus FLIGHT simulation for 
all the study plots at three different times (9.00, 11.00 and 13.00 GMT, 03rd September 
2009) (a) and for these three times independently, 09.00 GMT (b), 11.00 GMT (c) and 13.00 
GMT (d). 

The analysis showed previously in chapter 4 with simulations conducted 

to understand the sensitivity of input parameters on the canopy reflectance 

and SVI, were now studied here for fIPAR showing the behaviour of fIPAR 

under different situations. Thus, in a simulation with a North-South row 

orientation, LAI=1.6, visible soil strip=1.7 m and bright soil, NDVI 

decreased from 0.8 to 0.42 from early morning to midday, while fIPAR 
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varied from 0.86 to 0.3. For the East-West row orientation changes in NDVI 

and fIPAR were negligible during the day, as expected, as changes in 

percentage of shadows on the soil during the day are minimal (see Figure 

5.4).  

The relation between fIPAR and row orientation showed that the range 

of variation for stands with the same vegetation cover fraction as function of 

row orientation (Figure 5.7) was higher when the vegetation cover fraction 

was smaller. For a vineyard canopy with LAI=1, the fIPAR varied from 0.5 

to 0.55 (vcf=50%) and from 0.25 to 0.5 for vcf=15%. The LAI was varied 

without modify architecture of the canopy, thus the variation was in the 

vegetation density. Therefore vineyards with same cover fraction may have 

large variations in radiation interception. 
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         c) 

Figure 5.7. Relationships between fIPAR and φs (difference between solar azimuth and row 
orientation) obtained with FLIGHT simulations for vegetation cover fraction of 15% (a) 
25% (b) and 50% (c). 

 

The model FLIGHT showed to simulate with adequate accuracy fIPAR 

in vineyards. The sensitivity analysis of parameter carried out with this 

model show that fIPAR is highly affected by row orientation and sun 

geometry. 
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5.3.2. Using component analysis and NDVI for fIPAR estimation in 
vineyards 

5.3.2.1. Component analysis 

Simulations carried out to check equation [5.2] showed that the formula 

did not work well when the shaded soil percentage is very small and the 

reflectance of shaded soil is similar to the sunlit soil (Figure 5.8a, estimated 

fIPAR1). For these situations when the fraction of shaded soil is lower than 

0.10 or the relation between reflectance of shaded and sunlit soil higher than 

0.5, the fIPAR was assumed to be equal to the sum between vegetation and 

shaded soil fraction (Figure 5.8a, estimated fIPAR2).  

The comparisons between the estimated fIPAR obtained from equation 

[5.2] applied to the simulated study areas modelled with FLIGHT, and the 

fIPAR simulated with FLIGHT yielded a RMSE of 0.024 with a correlation 

coefficient of 0.96.  
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Figure 5.8. Relationships between fIPAR and fraction of shaded soil for the same percentage 
of vegetation changing φs (difference between solar azimuth and row orientation) obtained 
for FLIGHT, the fIPAR estimated with eq [5.2] (a) . Comparisons between the fIPAR 
simulated by FLIGHT and fIPAR estimated for simulations of the study areas with 
component analysis methodology. 
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This algorithm with these two restrictions was applied to the different 

study areas at the different times of the day to estimate fIPAR. The estimated 

fIPAR compared with the field measured fIPAR by ceptometer yielded 

RMSE of 0.08 (Figure 5.9) 
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Figure 5.9. Comparison between the fIPAR simulated by FLIGHT and fIPAR estimated for 
multispectral imagery of the study areas with component analysis methodology. 

5.3.2.2. Retrieval of fIPAR with NDVI 

The relationships between instantaneous fIPAR and the aggregated 

spectral vegetation indices (including vegetation, exposed soil and shadows) 

demonstrated that NDVI yielded better results in the linear regression 

analysis. As expected, the relationships exhibited a considerable scatter 

mainly at low zenith angles. As example, Figure 5.10 shows the relation 

between NDVI obtained from airborne imagery and field fIPAR measured 

showing to be highly influenced by solar angles, therefore the relation are 

not applicable in a general way and these indices need to be parameterized 

using radiative transfer models. 
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Figure 5.10 Aggregated NDVI computed from high resolution airborne imagery against 
field-measured intercepted radiation for several study sites acquired at four different times 
(7.00, 9.00, 11.00 and 13.00 GMT, 03rd September 2009). 

The methodology to estimate instantaneous fIPAR through predictive 

relationships was applied and the results obtained from comparisons between 

fIPAR estimations and field data measured by ceptometer appear in Table 

5.2. Better results were obtained mainly at times when the percentage of 

shadows are smaller, near midday (Table 5.2). The RMSE was 0.12 without 

considering sun geometry.  

 
Table 5.2. fIPAR estimations with predictive relationships. 
 

 Time   NDVI 

RMSE 0.140 
10.45 

r2 0.80 

RMSE 0.10 
13 

r2 0.76 

RMSE 0.12 
14.45 

r2 0.77 

RMSE 0.12 

F
LI

G
H

T
 

All times 
together r2 0.75 

                                                       (p< 0.001) 
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A direct application of both methodologies, component analysis with 

high spatial resolution and predictive relationships with aggregated pixel 

analysis enabled the mapping of the spatial variation of fIPAR at orchard 

scale using airborne imagery (Figure 5.11 and Figure 5.12, respectively). 

Figure 5.13 shows the maps obtained for the same area for both 

methodologies using medium resolution with a medium soil reflectance 

(Figure 5.13a) and high spatial resolution (Figure 5.13b). The differences 

between both methodologies appear in Figure 5.13c, differences of 0.14 are 

found between them. 
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a)  b)  

c)  d)  
 
Figure 5.11 Multispectral mosaic of the vineyard (a, c) used to generate a map of fIPAR 
calculated from high spatial resolution (b, d) using the methodology of component analysis. 
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a) b) c)  
 
Figure 5.12. Multispectral mosaic of the vineyard (a) used to generate a map of fIPAR 
calculated from medium spatial resolution (b) using scaling-up with the FLIGHT model and 
the interpolated map generated (c).  
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a)                                                                       b)  
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c) 

Figure 5.13. Maps of fIPAR calculated from medium spatial resolution (a) using aggregated 
pixel analysis and high spatial resolution (b) using component analysis. Relationships 
between fIPAR obtained for both methodologies (c) 
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5.4. Conclusions 

This work investigated methodologies to estimate fIPAR in vineyards 

using radiative transfer modelling and measurements conducted with ground 

and remote instruments. Vineyards are grown as canopies that 

discontinuously cover the ground, leaving free space for crop management. 

Limited work has been published where field canopy reflectance and fIPAR 

measurement were compared with simulated scenarios obtained by models. 

The model used to simulate fIPAR in this study, FLIGHT (North, 1996) was 

validated against fIPAR field measurements. This study provided a wide 

database to demonstrate that fIPAR can be simulated with FLIGHT. The 

model was also used to study the variability of fIPAR for the same 

vegetation cover fraction under different row orientations. The row 

orientation and architecture of the canopy is needed to be considered in this 

kind of row structured orchard to estimate fIPAR. Two methodologies were 

explored, first exploiting the detailed information obtained by high spatial 

resolution, and secondly using medium spatial resolution. The high spatial 

resolution of the multispectral imagery allowed classifying the images in 

pure components, vegetation, shaded and sunlit soil. The pure reflectance 

and the fractions of the different components were used to estimate fIPAR. 

The component analysis methodology yielded an error below 0.08 for 

comparisons with field fIPAR measurements. Other methodology using 

aggregated pixel information based on obtaining relationships between 

vegetation indices and fIPAR was also evaluated. The aggregated pixel does 

not allow having detail information of soil spectral properties, thus a soil of 

medium reflectance was used in this case. The potential utility of these 

indices to estimate fIPAR has been shown in previous chapter and also tested 

here for vineyards. These relationships are highly influenced by variables, 
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such as solar angles or background, therefore these indices need to be 

parameterized using radiative transfer modelling. The aggregated pixel 

analysis using NDVI-fIPAR relationships yielded RMSE of 0.12 for the 

estimation of fIPAR. It is concluded that high spatial resolution yielded 

better results. The medium resolution imagery, unable to get detailed 

information of the soil variability within the study area, leaded into 

difference of RMSE=0.14 between both methodologies for one of the study 

areas selected. Future studies will be focused on obtaining daily fIPAR maps 

at larger scales. 
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General discussion 

The primary objective of this research was to test the accuracy of the 

fraction of intercepted photosynthetic active radiation (fIPAR) using high-

resolution airborne imagery. Radiative transfer models were used in order to 

study the link between spectral vegetation indices and instantaneous fIPAR 

at different sun geometries, vegetation fraction cover, backgrounds, row 

orientation, and the architecture of the canopy such as in the cases of 

overlapped and isolated crown and hedgerows. 

Different studies have already shown that fIPAR is related to spectral 

vegetation indices. However, studies focused on row-structure orchards were 

lacking. Among the vegetation indices tested, the Normalized Difference 

Vegetation Index (NDVI) yielded consistently the best results for the crop 

canopies studied in this thesis. An important factor was the understanding of 

the structural and optical parameters that contribute to the measured 

reflectance by the multispectral airborne camera. The use of radiative 

transfer models was needed to understand the aggregation of scene 

components on these complex canopies, such as sunlit and shaded soil and 

vegetation proportions. The background soil influenced the aggregated 

NDVI on row-structured canopies, varying almost 0.2 between darker or 

brighter soil, while fIPAR was only 0.04. Therefore, the NDVI-fIPAR 

relationships change as a function of the soil optical properties, due to its 

large effects on NDVI in these complex open crop canopies. This thesis 

demonstrates using both experimental and model simulation approaches that 

previous relationships found for herbaceous or forest canopies between 

vegetation indices and fIPAR are not valid for row structure orchards. The 

relationships obtained by Myneni & Williams in 1994 for a heterogeneous 
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canopy simulated as clumps of leaves randomly distributed were used to 

estimate fIPAR in an olive orchard yielding a large RMSE=0.24. 

Nevertheless, the errors decreased to less than 0.1 when accounting for the 

architecture using physical models.  

The orchard systems evaluated in this thesis were peach, citrus, olive and 

vineyards, proposing for each of them a different methodology to account for 

their architecture. Peach and orange orchards have overlapped crowns within 

a planting pattern ranging from 5 m x 3 m and 7 m x 3 m. The olive orchard 

is presented as isolated trees with a planting pattern of 7 m x 6 m, while 

vineyards form hedgerows (3 m x 1.5 m). Each crop was characterized by 

study sites used for structural and optical measurements and fIPAR 

measurements, showing a wide range in vegetation cover fraction and row 

orientation. The models were validated for each crop under the specific 

conditions measured for these plots. The 3D radiative transfer forest light 

interaction model (FLIGHT) simulated adequately canopy reflectance in 

peach and citrus orchards, yielding RMSE lower than 0.03 and 0.02 

respectively for the visible region and 0.05 for the NIR region. This model is 

a Monte Carlo radiative transfer model able to simulate different kind of 

architectures, providing good predictions of the diurnal variability of canopy 

reflectance. This was in agreement with previous studies, such as Suárez et 

al., (2008), where FLIGHT was used to simulate olive orchards. The 

FLIGHT model showed its feasibility for modelling this kind of canopies, as 

well as for vineyards orchards. Adequate simulations of fIPAR were also 

performed with RMSE 0.06 for peach, 0.08 for citrus and 0.1 for olive and 

vineyard orchards. 
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The capability of two discrete row models, rowMCRM and rowSAIL, to 

simulate vineyard canopy reflectance was also assessed. The simulation of 

the canopy reflectance with the rowMCRM yielded closer results to FLIGHT 

as compared to rowSAIL, obtaining a RMSE = 0.07 for the NIR region. This 

study emphasizes that these models are computationally simpler and less 

time consuming than other complex models that need larger number of input 

parameters. 

Two models were used to simulate fIPAR in olive orchards, FLIGHT 

and a specific model to simulate fIPAR in olive canopies (ORIM). The 

ORIM model showed to be more robust than FLIGHT when compared 

against field fIPAR measurements (RMSE = 0.05).  

The field work carried out in this thesis was critical for the correct 

assessment of the models. The high spatial resolution imagery enabled the 

evaluation of the canopy reflectance and the influence of the pure optical 

properties of each component of the scene, as well as the validation process 

of the models.  

The estimation of fIPAR in these row-structured orchards required the 

development of predictive relationships and model inversion techniques 

from high spatial resolution airborne imagery. The assessment for these type 

of canopies was conducted on peach and orange orchards, yielding RMSE 

lower than 0.1. For olive orchards, the predictive relationships using 

FLIGHT yielded RMSE of 0.1 as well, while using ORIM the RMSE was 

greater (0.05). The study carried out in vineyards considered wider database 

than previous chapter. In this case, the fIPAR was measured in a diurnal 

setting at different study plots for different sun angles. Therefore, 
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methodologies were studied for different sun geometries, using two different 

approaches. In the first approach, we used high spatial resolution for a 

component analysis of the image. Subsequently, the estimation of fIPAR 

with medium spatial resolution was checked using an aggregated pixel of the 

image of 6 m x 3 m. For the aggregated pixel analysis, NDVI-fIPAR 

relationships obtained with FLIGHT were used to estimate fIPAR. As 

conquence, the soil optical properties are known for component analysis 

methodology while the aggregated pixel study is assumed a mean soil 

reflectance for all the study areas. The detailed information about soil optical 

properties clearly improved the estimation of fIPAR. The best results were 

obtained for component analysis obtaining a RMSE of 0.08. 

The development of remote sensing methods for generating maps of the 

spatial variability of fIPAR has large potential but still faces many 

challenges that have been studied in this dissertation. In light of the results, it 

can be concluded that this study demonstrates the possibility of obtaining the 

variability of fIPAR at field scale in complex open crop canopies, yielding 

errors lower than 10%. 



Conclusions 

Conclusions 

1. Modelling methods were investigated to obtain relationships between 

vegetation indices calculated from airborne imagery and instantaneous 

fIPAR measured in the field on peach, citrus, olive and vineyards crops. 

2. The Normalized Difference Vegetation Index (NDVI) yielded 

consistently the best results among the vegetation indices tested, yielding 

high significant relationships (p<0.001) and coefficients of determination 

r2>0.85 for estimating fIPAR on the four crops under study. 

3. The NDVI index routinely used in estimating fIPAR in homogeneous 

crops is not applicable to complex canopies: NDVI-fIPAR relationships 

obtained in previous studies for homogeneous canopies yielded errors in 

fIPAR of RMSE=0.24, while methodologies proposed in this thesis specific 

for heterogeneous orchards yielded errors between 0.05 and 0.1. 

4. The simulations conducted with different radiative transfer models 

demonstrated that NDVI is highly influenced by the background soil 

properties and the row orientation architecture, both as a function of the sun 

geometry. Differences in fIPAR higher than 0.2 are obtained as consequence 

of row orientation while the rest of the parameters yield constant. 

5. The radiative transfer models used in this thesis showed to be robust to 

simulate different row structured canopies and the diurnal changes in canopy 

reflectance. Either the 3D model FLIGHT used to simulate the four different 

studied crops, as well as the hybrid models rowMCRM and rowSAIL used to 

simulate vineyards yielded errors below 0.03 for the visible region and 

below 0.05 for the NIR. 
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6. The model FLIGHT used to simulate fIPAR showed to be adequate 

for all the studied crops with RMSE lower than 0.09. For olive canopies the 

specific model to simulate fIPAR in olives (ORIM) showed better results 

than FLIGHT with RMSE of 0.05.  

7. Work conducted to study fIPAR estimation in row structured canopies 

focused on predictive relationships and numerical model inversion 

approaches. Estimations of fIPAR were obtained with errors below to 0.10. 

In some cases, when model inversion techniques were based on canopy 

reflectance instead of NDVI the results were slightly improved (RMSE of 

0.07). 

8. The estimations of fIPAR carried out using the airborne imagery and 

the 3D RT model FLIGHT in peach and citrus orchards yielded RMSE of 

0.08 and 0.09 respectively, when predictive-relationships are used. Similar 

results (RMSE = 0.08) are obtained for both crops with model inversion 

techniques based on canopy reflectance used for the inversion. The inversion 

with NDVI yielded RMSE of 0.12 for peach and 0.10 for citrus orchards.  

9. The estimations of fIPAR in olives orchards were conducted with 

models FLIGHT and a coupled FLIGHT+ORIM approach. The results 

improved with the use of the specific model to estimate fIPAR in olive 

orchards developed by Mariscal et al. (2000), (RMSE = 0.05), as compared 

to RMSE=0.1 obtained with FLIGHT only. 

10. For vineyards, estimations of fIPAR were carried with component 

analysis of the image using high spatial resolution and with aggregated pixel 

using NDVI-fIPAR relationships obtained with FLIGHT. Component 
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analysis methodology yield RMSE=0.08. The detailed information about soil 

optical properties clearly improved the estimation of fIPAR. 

11. This study demonstrates that obtaining maps of the spatial variability 

of fIPAR in non-homogeneous canopies is feasible when using remote 

sensing imagery linked to physical models, yielding errors below 

RMSE=0.10. 
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