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ABSTRACT 

 

Traditional methods to identify biotic-induced 

plant stress are time-consuming and costly. 

Airborne hyperspectral and thermal imagery has 

shown promise in identifying disease symptoms 

caused by pathogens in several plant species. 

Specifically, to detect Xylella fastidiosa (Xf) and 

Verticillium dahliae (Vd), previous studies have 

aimed to detect symptomatic and asymptomatic 

trees with high accuracy. Nevertheless, these 

studies did not explore the progressive changes in 

plant traits with increasing disease severity levels. 

In this study, we investigate the dynamics of plant 

traits as a function of disease severity. 

Moreover, we focus on the plant traits derived 

from hyperspectral data that contribute the most to 

disease detection, assessing how their role is 

redistributed as a function of disease severity. 

Finally, we evaluate the contribution of the plant 

traits in asymptomatic trees undetectable by visual 

inspection, using as a reference qPCR analysis. 

The findings revealed that specific traits such as 

the NPQI and PRIn indices and SIF and Anth 

were the most crucial. 

Index Terms— Hyperspectral, Plant traits, Biotic 

stress detection, Disease progression. 

 

1. INTRODUCTION 

 

Conventional methods for biotic-induced plant 

stress detection require in situ monitoring 

techniques which are time-consuming and 

expensive. The large-scale detection using 

airborne hyperspectral and thermal imagery has 

helped to detect disease symptoms induced by 

pathogens in several host plant species [1-3]. In 

such studies, the prediction methods relied on 

detecting asymptomatic vs. symptomatic diseased 

trees. In particular, the discrimination between 

two pathogens triggering similar symptoms was 

achieved using a three-stage modeling approach 

[1], while disentangling abiotic vs. biotic sources 

of stress was achieved by identifying divergent 

plant traits [2]. Nevertheless, such studies focused 

on symptomatic (infected) vs. asymptomatic 

(healthy) trees via visual assessment and 

quantitative molecular polymerase chain reaction 

assays (qPCR), while the dynamics of the plant 

traits to track progressively increasing levels of 

infections have not been attempted. Previous tests 

suggested that the most sensitive trait expressed 

with increasing levels of disease severity on 

infected trees (i.e., initial vs. advanced stages) was 

solar-induced fluorescence (SIF) emission. At the 

same time, the importance of CWSI decreased 

after the initial disease severity stage. These 

results demonstrated that understanding the 

dynamics of the plant traits as a function of 

increasing levels of biotic stress could play a key 

role in understanding the physiological changes of 

infected vegetation. Therefore, in this study, we 

investigated the dynamics of the plant traits as a 

function of disease severity levels. Moreover, we 
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focus on the plant traits derived from 

hyperspectral data that contribute the most to 

disease detection, assessing how their role is 

redistributed as a function of disease severity. 

Finally, we compared the contribution of the plant 

traits to determine their role in cases of 

asymptomatic infections undetectable by visual 

disease assessment. This analysis was performed 

by comparing trees whose infection by the 

pathogen tested by qPCR were negative and 

assessed as asymptomatic (true negatives) against 

trees tested positive by qPCR that were evaluated 

as asymptomatic by the naked eye (false 

negatives).  

 

2. MATERIALS AND METHODS 

 

2.1. Airborne hyperspectral imagery and visual 

assessment of the infection 

 

2.1.1. Visual assessment and qPCR analysis of 

infected trees 

Visual assessment of olive trees infected with 

Xylella fastidiosa (Xf) or Verticillium dahliae (Vd) 

in outbreak zones was conducted in Italy and 

Australia, respectively. Visual assessments of the 

disease severity were performed, where trees 

without visible symptoms were evaluated as 

asymptomatic (SEV=0), and trees with visual 

symptoms were assessed using a scale of 1–4 

based on the extent of foliar symptoms. 

In Apulia, Italy, 7,296 olive trees were assessed 

during 2016 and 2017, where 4,045 were reported 

as asymptomatic and 3,251 as symptomatic (45%, 

SEV = 1; 41%, SEV = 2; 11%, SEV = 3; and 3%, 

SEV = 4). In the Mallee region, Victoria, 

Australia, 1,036 olive trees were assessed during 

2020 and 2022, with 355 being asymptomatic and 

681 being symptomatic 42%, SEV = 1; 18%, SEV 

= 2; 23%, SEV = 3 and 17%, SEV = 4), on 2020-

2021. While in 2021–2022, 1,296 olive trees were 

assessed, where 258 were reported as 

asymptomatic and 1,038 as symptomatic (23%, 

SEV = 1; 27%, SEV = 2; 27%, SEV = 3; and 

23%, SEV = 4). 

 

2.1.2. Airborne hyperspectral imagery collection 

and processing 

Narrow-band hyperspectral data were collected 

over both study sites alongside field assessments. 

In Apulia, a Headwall Photonics VNIR linear 

hyperspectral sensor (Microhyperspec A-Series) 

captured 260 bands ranging from 400 to 885 nm 

with a 6.4-nm full-width at half maximum 

(FWHM). In the Mallee region, the hyperspectral 

imager (Hyperspec VNIR E-Series model, 

Headwall Photonics) captured 371 bands ranging 

from 400 to 1000 nm with a 5.8-nm FWHM. 

Radiometric calibration was performed on the 

hyperspectral imagery collected by both sensors, 

applying to each image the coefficients obtained 

from different illumination levels with a constant 

light source using a CSTM-USS-2000C and a 

SPARC-A060L integrating sphere (LabSphere, 

North Sutton, NH, USA) for the 6.4-nm and the 

5.8-nm FWHM sensors, respectively. The 

atmospheric correction and irradiance calculation 

to convert radiance values to reflectance was 

conducted with the SMARTS model [4]. The 

aerosol optical depth at 550 nm was derived from 

readings obtained at various wavelengths using a 

Microtops II sun photometer (Solar LIGHT Co.), 

while meteorological parameters were obtained 

from portable weather stations (Transmitter 

PTU30 and WXT510, Vaisala, respectively). 

The calibrated and atmospherically corrected 

hyperspectral images were ortho-rectified using 

PARGE (ReSe Applications Schläpfer, Wil, 

Switzerland), which utilized GPS/INS data 

synchronized onboard (IG500, SBG Systems, 

Carrières-sur-Seine, France, for Italy; VN-300, 

VectorNav Technologies LLC, Dallas, TX, USA, 

for Australia). Pure tree-crown radiance was used 

for the quantification of sun-induced chlorophyll 

fluorescence at 760 nm (SIF) using the O2-A in-

filling Fraunhofer Line Depth (FLD) method [5]. 

In addition, pure tree-crown reflectance was used 

to 1) calculate the set of narrow-band 

hyperspectral indices (NBHIs) and 2) to retrieve 

leaf biochemical and canopy structural parameters 

obtained by inversion of radiative transfer models 

(methodology described in section 2.2.1). 

 

2804

Authorized licensed use limited to: University of Melbourne. Downloaded on October 23,2023 at 00:34:09 UTC from IEEE Xplore.  Restrictions apply. 



2.2. Modelling methods 

2.2.1. Plant traits quantification 

Leaf pigments such as carotenoids (Cx+c), 

chlorophyll a+b (Ca+b), and anthocyanins (Anth.) 

and canopy structural properties, including leaf 

area index (LAI) and the leaf inclination 

distribution function (LIDF) were obtained by 

inverting radiative transfer models. The 

PRO4SAIL model was used to create a look-up 

table of 100,000 simulations. SVR algorithms 

were used to train models to invert the plant traits 

(more information can be found in [1-3]). 

 

2.2.2. Disease detection and quantification of the 

contribution of plant traits 

The detection of disease symptoms was performed 

by training RF algorithms to classify 

asymptomatic (SEV = 0) vs the following stages: 

i) early stage, which included trees assessed as 

symptomatic with SEV = 1; ii) middle stage, 

which included trees assessed as symptomatic 

with SEV= {1,2}; and iii) all levels of infection, 

which included all trees assessed as symptomatic 

SEV= {1,2,3,4}.   

Following the methodology in [1,2], Random 

Forest (RF) algorithms were trained using a 

balanced dataset of asymptomatic trees and trees 

from the described three categories. The following 

plant traits were inputs to the RF model: Ca+b, 

Anth., Cx+c, LAI, LIDF, SIF and non-colinear 

NBHI. The latest was obtained by reducing their 

dimensionality and a subsequent recursive feature 

selection. The dimensionality of the NBHI pool of 

indices was reduced by the variance inflation 

factor (VIF) analysis, and indices with a VIF > 5 

were removed. A recursive feature elimination 

approach was then performed, and the models did 

not include indices that did not improve the 

classification accuracies (OA) and the kappa 

coefficients (κ). Finally, the hyperparameters of 

the models were optimized using a Bayesian 

optimization method in MATLAB.  

For each dataset, the importance of each predictor 

was determined using the permutation of the out-

of-bag method [8]. Then, a further analysis was 

focused on the early stages of the infection by 

using the plant traits with the highest contribution. 

3. RESULTS 

The Normalized Phaeophytinization Index 

(NPQI), SIF, and the Normalized Photochemical 

Reflectance Index (PRIn), Ca+b, and Anth were the 

plant traits that showed the highest relative 

importance in detecting all the stages of infection. 

NPQI and SIF showed an increase as a function of 

severity, while PRIn showed its highest 

importance for the early stages of the infection. 

Anth was stable across all levels of infection. For 

the detection of early stages of infection, indices 

and plant traits related to carotenoids such as 

CRI700M and Cx+c contributed the least. Structural 

parameters such as LAI and LIDFa had their 

lowest contribution when detecting all stages of 

infection (Fig. 1). 
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Fig. 1: Progression of the spectral plant traits’ 

importance in detecting early, middle, and all 

symptomatic severity levels 

 

Results when assessing only the most important 

traits showed a redistribution on their contribution 

(Fig. 2). We observed that both PRIn and NPQI 

had the highest and almost equal contribution. 

When PRIn was not included in the assessment, 

NPQI had the greatest contribution with more 

than double of the importance achieved by Anth. 

Notably, NPQI and Anth took the significance of 

SIF. These results are relevant because PRIn was 

shown to track xanthophyll cycle dynamics, a 

pigment indirectly related to NPQI and 

chlorophyll a+b degradation. 
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Fig. 2: Assessment of the most important plant 

traits’ dynamics to detect early Xylella fastidiosa 

infection stages. 

 

These results were confirmed by the true negative 

vs false positive analysis, where we observed that 

the plant trait that showed the highest contribution 

was Anth, closely followed by PRIn (Fig. 3).  

These plant traits played a complementary 

relationship. When Anth was removed, PRIn 

almost doubled its original contribution and vice 

versa. The remaining plant traits did not exhibit 

significant changes in their contributions. 
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Fig. 3: Assessment of the most important plant 

traits for assessing True Negative vs False 

Positive rates from the qPCR analysis. 

 

4. CONCLUSIONS 

 

This study aimed to identify the contribution and 

the progression of the most sensitive spectral 

indices and traits for the detection of vascular 

pathogens affecting olive trees from hyperspectral 

imagery through the inversion of RTM using 

SVM algorithms. Results showed that the plant 

traits with the highest contribution were SIF, 

NPQI and Anth., and Ca+b. This was consistent 

with the False Positive vs True Negative results 

analysis comparing molecular qPCR assays and 

visual assessments. 
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