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Abstract—Two critical limitations for using current satellite
sensors in real-time crop management are the lack of imagery with
optimum spatial and spectral resolutions and an unfavorable re-
visit time for most crop stress-detection applications. Alternatives
based on manned airborne platforms are lacking due to their high
operational costs. A fundamental requirement for providing useful
remote sensing products in agriculture is the capacity to com-
bine high spatial resolution and quick turnaround times. Remote
sensing sensors placed on unmanned aerial vehicles (UAVs) could
fill this gap, providing low-cost approaches to meet the critical
requirements of spatial, spectral, and temporal resolutions. This
paper demonstrates the ability to generate quantitative remote
sensing products by means of a helicopter-based UAV equipped
with inexpensive thermal and narrowband multispectral imaging
sensors. During summer of 2007, the platform was flown over
agricultural fields, obtaining thermal imagery in the 7.5–13-μm
region (40-cm resolution) and narrowband multispectral imagery
in the 400–800-nm spectral region (20-cm resolution). Surface
reflectance and temperature imagery were obtained, after at-
mospheric corrections with MODTRAN. Biophysical parameters
were estimated using vegetation indices, namely, normalized dif-
ference vegetation index, transformed chlorophyll absorption in
reflectance index/optimized soil-adjusted vegetation index, and
photochemical reflectance index (PRI), coupled with SAILH and
FLIGHT models. As a result, the image products of leaf area
index, chlorophyll content (Cab), and water stress detection from
PRI index and canopy temperature were produced and success-
fully validated. This paper demonstrates that results obtained
with a low-cost UAV system for agricultural applications yielded
comparable estimations, if not better, than those obtained by
traditional manned airborne sensors.

Index Terms—Multispectral, narrowband, radiative transfer
modeling, remote sensing, stress detection, thermal, unmanned
aerial system (UAS), unmanned aerial vehicles (UAVs).
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I. INTRODUCTION

R EMOTE sensing for agricultural and crop-management
applications aims at providing spatially and spectrally

derived surface parameters for crop classification and mapping
[1]–[3], crop forecasting and yield predictions [4]–[7], crop
status and condition [8]–[11], weed detection [12]–[14], disease
detection and nutrient deficiency [15]–[17], and photosynthetic
pigment content [18]–[20]. Critical issues such as the optimum
spatial and spectral resolutions, the turnaround time, and repeat
cycle are main factors limiting the usefulness of remote sensing
products for precision crop management [21]; in addition, data
acquisition costs must be weighed against anticipated benefits.
Current satellite-based products have limited application in
crop management due to the low spatial and spectral resolutions
provided and the large revisit periods. Spatial resolution has
been improved in some new satellite sensors such as Ikonos
or Quickbird, however lacking the narrow spectral bands re-
quired for quantitave parameter retrievals on which most of
the applications mentioned before are based. Moreover, thermal
imaging is currently limited to medium-resolution sensors such
as TERRA-ASTER [22], providing 90-m pixel size images
which are impractical for site-specific agricultural applications.

Alternatives based on airborne sensors can deliver higher
spatial and spectral resolutions and are more flexible in terms of
revisit time. Airborne remote sensing has demonstrated capabil-
ities for vegetation condition monitoring due to high spatial and
spectral resolutions used, ranging between 0.5- and 2-m pixel
sizes with 2–20-nm bandwidths in the 400–2500-nm spectral
range. The works conducted for crop management and stress-
detection applications, such as the estimation of chlorophyll
content with the Compact Airborne Spectrographic Imager
[23]–[26], leaf water content from the Airborne Visible Infrared
Imaging Spectrometer [27]–[31], carotenoid estimation [19],
[32], dry matter content [33]–[35], and structural parameters
like ground cover and leaf area index (LAI) minimizing back-
ground effects on traditional indices such as normalized dif-
ference vegetation index (NDVI) [36], are examples of the use
of airborne sensors. In addition, high-spatial-resolution thermal
imagery has demonstrated high potential for water stress detec-
tion in crops because of the increased temperature of stressed
vegetation [37], [38], enabling the detection of water-stressed
trees in orchards for site-specific field management [39]–[41].
However, the high operating costs, long turnaround times due
to high volume of data processing acquired in large airborne
campaigns, and the lack of private corporations providing
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cost-effective products have limited the use of airborne so far
to research activities.

Back in 1977, Jackson et al. [37] envisioned a fleet of
airborne thermal scanners collecting remote sensing imagery
over irrigated fields to generate maps for irrigation scheduling
based on an automated decision support system. However, after
30 years, this vision still seems futuristic due to the mentioned
limitations mostly based on the costs required and the oper-
ational complexity involved. Another potential application of
canopy temperature measurements is its capability for genotype
screening in breeding programs for drought resistance [42],
[43]. A new era of remote sensing is emerging with the arrival
of unmanned aerial vehicles (UAVs) for civil applications.
Scientific interest in this type of platforms is growing, and a
number of experiences have already been reported. Large fixed-
wing UAVs, most of them NASA-funded, have been tested for
agricultural applications, such is the case of the solar-powered
Pathfinder Plus over coffee orchards in Hawaii [44], [45], the
smaller RCATS/APV-3 tested over California vineyards [46],
or the future European Pegasus UAV [47]. Miniaturization and
cost reduction of inertial sensors, GPS devices, and embedded
computers have enabled the use of a new generation of au-
topilots for inexpensive model aircrafts [48], [49]. At present
time, commercial off-the-shelf (COTS) autopilots are readily
available for an easy integration with small model aircrafts.
Rotary-wing UAVs are also available, but complexity of the
flight control system, smaller endurance, and the lack of autopi-
lots supporting helicopter platforms have prevented a wide use
of this platform. However, some successful applications have
also been developed [50]–[52].

Along with the development of low-cost autopilot systems,
also imaging sensors have suffered a critical size, weight, and
price reduction, evolving from large sensors, rack-mounted dat-
aloggers, and control computers to palm size imagers that can
be easily installed into these microaircrafts [44], [48]. An exam-
ple is the development of uncooled thermal instruments which
avoid the use of heavy and expensive cooled sensors yet obtain-
ing similar results at better spatial resolutions. The main prob-
lem concerning this type of microsensors is that they require
spectral and geometric characterization to retrieve physical
values such as ground reflectance or surface temperature. This
is the reason why most of the applications mentioned before fo-
cused only on digital values or visual qualitative interpretation.

This paper describes the integration of COTS optical and
thermal sensors placed on an unmanned aerial platform, fo-
cusing into radiometric quality of the acquired imagery. The
main objective of this paper was to demonstrate that it is
possible to combine successfully an unmanned rotary-wing
platform and digital multispectral and thermal sensors, along
with the appropriate calibrating methodologies, for agricultural
applications. The assessment is conducted on narrowband vege-
tation indices in the 400–1000-nm and thermal spectral regions
for quantitative parameter retrievals. Narrowband vegetation
indices and thermal retrieval from crop canopies were then used
to generate maps that could assist managers in water stress de-
tection and many other site-specific applications in agriculture.
In particular, this paper deals with the estimation of biophys-
ical parameters such as LAI, chlorophyll content, a previsual

indicator of stress based on the Photochemical Reflectance
Index (PRI) [53], and water stress detection using thermal im-
agery. Calibration and atmospheric effects are also considered
and assessed for the correct retrieval of parameters from the
UAV system.

II. METHODS

The UAV helicopter platform was developed to carry a pay-
load with thermal and multispectral imaging sensors for remote
sensing operation. A total of 288 flights were conducted in
spring and summer of 2007 for both flight testing and imagery
acquisitions over crop fields for parameter validation and stress
detection using narrow spectral bands and thermal imagery. A
description of the payload, sensor calibration, physical models
used for parameter retrievals from multispectral imagery, and
thermal corrections to account for atmospheric transmission are
given hereinafter.

A. UAV and Payload Description

The UAV airframe used in this paper was based on a model
helicopter (Benzin Acrobatic, Vario, Germany), modified to
carry the camera system, autopilot, and sensors. Modifications
consist mainly in a larger engine (29 cc), oversized landing
skids, and a container for camera installation. The UAV was
controlled by an autopilot system (model AP04H, UAV Navi-
gation, Madrid, Spain) which provided autonomous navigation
based on waypoints programmed during the mission planning.
The air segment [Fig. 1(a)] consists on a dual CPU logic
which controls an integrated Attitude Heading Reference Sys-
tem (AHRS) based on an L1 GPS board, three-axis accelerom-
eters, yaw rate gyros, and a three-axis magnetometer. The
CPUs continuously monitored internal sensors for battery sta-
tus, internal temperature, and barometric pressure, including an
external revolutions per minute (RPM) sensor. The guidance is
based on standard servos controlled by pulsewidth modulation
outputs from the autopilot. A radio link communicates with
the ground segment sending telemetry of position, attitude,
and status at 20-Hz frequency. The ground segment [Fig. 1(b)]
consists on a control box which contains a CPU that is in
charge of processing the safety manual control and sends the
telemetry to a laptop PC where the user application is running.
This application monitors the status and position of the UAV
and allows the user to upload and modify the flight plan. There
is an additional GPS antenna on the ground control station used
for pointing the telemetry antenna toward the UAV platform.

The flight plans are performed starting with the autonomous
takeoff, continuing with an autonomous flight over a number of
way points at a given altitude, and finally landing (Fig. 2). Flight
altitude was selected depending on the study area to cover,
camera field of view (FOV), and the desired spatial resolution
for remote sensing imagery acquisition. The nominal speed in
autonomous mode was fixed at 30 km/h.

1) Multispectral Camera: The multispectral sensor used
in this paper was a six-band multispectral camera (MCA-6,
Tetracam, Inc., CA, U.S.). The camera consists of six indepen-
dent image sensors and optics with user configurable filters. The
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Fig. 1. Block diagram showing the components for the (a) autopilot and (b) ground control station.

Fig. 2. Sample flight plan undertaken over four study sites, showing the path followed by the platform. Each numbered triangle symbols represent a waypoint
programmed on the autopilot’s flight plan. Four consecutive flights are overlapped, showing the precise paths followed by the UAV.
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TABLE I
MULTISPECTRAL MCA-6 IMAGE SENSOR SPECIFICATIONS

TABLE II
THERMAL FLIR IMAGE SENSOR SPECIFICATIONS

image resolution is 1280 × 1024 pixels with 10-bit radiometric
resolution and optics focal length of 8.5 mm, yielding an
angular FOV of 42.8◦ × 34.7◦. Table I shows a summary of the
multispectral camera sensor specifications. Different bandsets
were used depending on the objectives sought for the remote
sensing study, including 25-mm-diameter bandpass filters of
10-nm full-width at half-maximum (FWHM) (Andover Corpo-
ration, NH, U.S.), with center wavelengths at 490, 550, 670,
700, 750, and 800 nm. The raw images were compressed on a
proprietary format and stored on individual compact flash cards
installed in the camera. Image triggering was activated from the
ground control station when the helicopter reached the desired
study site.

2) Thermal Camera: The thermal imager used in this paper
was the Thermovision A40M (FLIR, U.S.) equipped with a 40◦

FOV lens and connected via IEEE-1394 protocol. The image
sensor is a focal plane array based on uncooled microbolome-
ters with a resolution of 320 × 240 pixels and spectral response
in the range of 7.5–13 μm (Table II). The camera delivers
digital raw images at 16 bits of at-sensor calibrated radiance
with a dynamic range of 233 K–393 K. The sensor implements
an internal calibration for nonuniformity correction and inter-
nal temperature calibration. The camera was controlled by a
PC104 embedded computer (Cool Little Runner 2, LiPPERT,
Germany), storing one raw image on a compact flash card every
2 s over the entire flight. A laboratory calibration was conducted
using a calibration blackbody source (RAYBB400, Raytek, CA,
U.S.). During the calibration, a need for stabilization after
switch on was noticed. Temperature changes over the course
of 30 min show the convergence to the black body temperature
(Fig. 3). Absolute temperature shifts observed were caused by
the internal camera calibration which is automatically activated
when the internal temperature changes above a configured
value. A 1-h camera stabilization procedure was conducted
before each remote sensing campaign.

Fig. 3. Changes of the radiometric temperature measured by the camera after
power-on over the course of 2 h.

TABLE III
FLIR AND MCA CAMERAS INTRINSIC PARAMETERS

3) Camera Geometric Calibration: Several methodologies
are available to conduct an accurate geometric calibration over
nonmetric commercial cameras [54], [55]. The objective of
this calibration is to recover the intrinsic camera parameters
(focal distance, principal point coordinates, and lens radial
distortion). In this case, Bouguet’s calibration toolbox [56] was
used, consisting of placing a calibration checkerboard pattern
on a fixed location and acquiring several images from different
locations and orientations. The grid corner coordinates were
extracted semiautomatically from the images, and the intrinsic
parameters and exterior orientation (EO) were calculated. In
the case of the thermal camera, a calibration pattern was built
using resistive wires to obtain a bright pattern when electricity
circulated through the wires, thus increasing their temperature.
Bouguet’s model uses a different lens distortion model than
the one implemented by the software employed for the aero-
triangulation which is based on the study of Wolf [57]. In the
former, radial and tangential distortion can be estimated. In this
case, tangential distortion was neglected and only the radial
component was taken into account. The equation for Bouguet’s
model is shown in (1), whereas Wolf’s model is described in
(2). A least squares adjustment was conducted to fit (2) to (1)

dr = k1r
2 + k2r

4 + k5r
6 (1)

dr = k0r + k1r
3 + k2r

5. (2)

Table III shows the intrinsic parameters estimated for the
thermal and multispectral cameras used in this paper. For the
multispectral camera, in a second stage, one of the cameras
was used as reference and the relative position of the rest of
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Fig. 4. (a) Multispectral imagery collected by the MCA-6 camera at 0.15-m spatial resolution and six spectral bands with 10-nm FWHM. (b) Spectra extracted
from different image targets in the 400–800-nm spectral region.

the cameras was estimated by solving the system as different
stereo rigs for each reference–camera pair.

B. Multispectral Sensor Calibration and Vegetation Indices
Used for Parameter Estimation

Multispectral image calibration was conducted using the
empirical line method [58] by placing two 2- × 2-m leveled
dark and white targets in a central location within the flight
path of the UAV platform. Field spectral measurements were
taken on the calibration targets with an ASD field spectrom-
eter (FieldSpec Handheld Pro, ASD Inc., CO, U.S.) in the
350–1050-nm spectral range at the time of image acquisition.
The ASD field spectrometer was first calibrated using a Spec-
tralon (SRT-99-180, LabSphere, NH, U.S.) white panel, there-
fore enabling the calculation of white and dark panel reflectance
spectra to be used later for the empirical line calibration
method.

The empirical line calibration method derived the coeffi-
cients needed to fit uncalibrated airborne MCA-6 multispectral

Fig. 5. Validation of the surface reflectance acquired by the MCA-6 multi-
spectral camera as compared with the ASD field spectrometer. The plot shows
90 points from 3 flights over 5 targets (3 corn crop sites, 1 soil target, and
1 cotton site) for 6 spectral bands.
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TABLE IV
NOMINAL VALUES AND PARAMETERS USED FOR LEAF AND CANOPY MODELING WITH PROSPECT AND FLIGHT FOR THE PEACH STUDY SITE

Fig. 6. (a) Algorithm to estimate chlorophyll a + b from TCARI/OSAVI index developed with the FLIGHT radiative transfer model. Input parameters for
simulating the peach orchard canopy reflectance ranged between 0.5 and 7 (LAI) and 15 and 90 μg/cm2(Cab). (b) Sample 3-D scene simulated with FLIGHT
model for developing the scaling-up algorithm to estimate chlorophyll concentration (cLAI = 2, Cab = 45 μg/cm2).

imagery to field-measured reflectance spectra. Fig. 4 shows
sample imagery and reflectance spectra for different field tar-
gets acquired with the MCA-6 multispectral camera onboard
the UAV platform over one of the study sites, which included a
field planted with garlic, bright soil, dark soil, bare soil between
wheat rows, and a wheat field. Spectra from the different
targets clearly show the photosynthetic pigment absorption in
the visible spectral region (400–700 nm) in green vegetation,
with an increased reflectance due to canopy scattering in the
near-infrared region beyond 700 nm. A field validation as-
sessment was conducted to evaluate the calibration method
used to calculate surface reflectance by measuring reflectance
spectra with the ASD field spectrometer over different targets
found on imagery acquired at different times of day. Fig. 5
shows the validation of the calibration method using cotton and
corn fields. UAV airborne flights were conducted three times
over the course of one day in June 2007, acquiring field ASD
spectra over cotton, corn with different canopy densities, and
bare soil. The UAV MCA-6 spectral imagery and field spectra

were compared and generally agreed, yielding an RMSE =
1.17%(n = 90) after empirical line methods were applied at
each flight time.

Three vegetation indices were calculated from the airborne
spectra using the six 10-nm FWHM bands of the multispectral
camera. The NDVI [59] was calculated to assess the estimation
of canopy LAI. The transformed chlorophyll absorption in
reflectance index (TCARI) [60] based on the modified chloro-
phyll absorption in reflectance (MCARI) [61], normalized by
the optimized soil-adjusted vegetation index (OSAVI) [62] to
obtain TCARI/OSAVI, is demonstrated to successfully mini-
mize soil background and LAI variation in crops, providing
predictive relationships for chlorophyll concentration estima-
tion with narrowband imagery in closed crops [60] and in
open tree canopy orchards [25]. Finally, the PRI, originally
developed for xanthophyll cycle pigment change detection [53],
a potential indicator for carotenoid/chlorophyll ratio moni-
toring [32], [63], [64], was calculated to assess its potential
capability for water stress detection from the UAV platform.
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Fig. 7. (a) Simulated atmospheric transmittance and thermal radiation as a function of platform altitude. (b) Effects of flight altitude and atmospheric conditions
Ta(◦C)/%RH on the surface temperature estimation for a back body at 300 K. (c) Distribution of the atmospheric correction effects as a function of the off-nadir
view for a uniform black body at 300 K, atmospheric conditions 20 ◦C/60% RH, flight altitude of 150 m, pitch = 10◦, and roll = 6◦.

The PRI index was calculated with the MCA-6 camera using
additional 10-nm FWHM filters centered at 530- and 570-nm
wavelengths. The three indices are described in the following
equations:

NDV I =
R800 − R670

R800 + R670
(3)

TCARI/OSAV I

=
3 · [(R700 − R670) − 0.2 · (R700 − R550) · (R700/R670)]

(1 + 0.16) · (R800 − R670)/(R800 + R670 + 0.16)

(4)

PRI =
R570 − R531

R570 + R531
. (5)
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Field measurements of crown LAI (cLAI) were conducted with
a plant canopy analyzer (LAI-2000; Li-Cor, NE, U.S.) on an
olive orchard using the method reported in [65]. A total of
six trees were measured and identified on the high-spatial-
resolution imagery acquired with the UAV platform. Field
measurements of canopy LAI were also conducted on a variety
trial corn field, and seven plots planted with different varieties
were assessed. The mean spectral reflectance was calculated for
each tree crown and variety plot, and indices were calculated.
Relationships between field-measured crown and canopy LAI
and the NDVI index were also developed.

Leaf-level radiative transfer model PROSPECT [66] was
linked with the canopy-level Forest LIGHT Interaction Model
(FLIGHT) [67] to obtain predicting algorithms for chlorophyll
concentration (Cab) from the airborne TCARI/OSAVI index.
The modeling method consisted on ranging input chlorophyll
a + b from 15 to 90 μg/cm2 and cLAI from 0.5 to 7. The rest of
the input parameters were fixed for typical and field-measured
structural parameters presented in Table IV. A total of 36 dif-
ferent input combinations were simulated, and TCARI/OSAVI
was calculated from the modeled spectra [Fig. 6(a) and (b)].
Ground truth chlorophyll content was estimated for a total of
41 olive tree and peach crowns using the SPAD meter (SPAD-
502DL, Minolta, Japan). A total of 50 leaves were sampled
from each crown, and mean SPAD measurements were used to
estimate the total chlorophyll content through SPAD–Cab re-
lationships developed for each crop using destructive sampling
methods based on spectrophotometer readings in the laboratory.

To assess the capability of PRI for stress detection from the
UAV platform, the PRI was calculated from the MCA-6 camera.
A variety trial corn field was flown at different times during the
course of the day, and variety plots that differed in water status
were identified on the imagery. Assessment of PRI for stress
detection was conducted by studying the relationships between
PRI and plot temperature obtained from the UAV thermal and
multispectral cameras. To remove the effects of canopy or soil
temperature variations on the vegetation index, comparisons
were made among corn plots with the same NDVI range.

C. Methods for Surface Temperature Estimation

Different methods have been proposed recently to retrieve
surface temperature from thermal sensors. A review of methods
can be found in [68]–[70]. The thermal sensor used in this
paper provided a single band in the range of 7.5–13 μm;
therefore, only techniques developed for single-channel
atmospheric correction were used. Methods based on the ra-
diative transfer equation use (6) to estimate surface tempera-
ture. Needed parameters are atmospheric transmittance (τλ),
emissivity (ελ), downwelling (L↓

atm,λ), and upwelling thermal

radiation (L↑
atm,λ), which are driven mainly by water vapor

content, air temperature, and distance to object

Lsensor,λ =
⌊
ελBλ(TS) + (1 − ελ)L↓

atm,λ

⌋
· τλ + L↑

atm,λ.

(6)

The MODTRAN radiative transfer code [71] was used to
model τλ and L↑

atm,λ, while L↓
atm,λ was measured in the field

Fig. 8. Comparison between ground truth surface temperature (IRT measured)
and that obtained from the thermal camera at 150-m flight altitude before (×)
and after (◦) applying the atmospheric correction.

Fig. 9. Footprints for the images acquired during a flight plan conducted
over an orange orchard. Red rectangles correspond to single image frames.
The yellow rectangle represents the overlapping of two consecutive images
(stereo-pair).

with a thermal sensor (LaserSight, Optris, Germany) pointing
toward the zenith upward with an FOV of 15◦ and a spectral
response of 8–14 μm. Since only vegetation temperature was
retrieved as part of this paper, a surface emissivity of 0.98 was
considered as an accepted value for natural vegetation [72].
Local atmospheric conditions such as air temperature, relative
humidity, and barometric pressure were measured at the time
of flight with a portable weather station (Model WXT510,
Vaisala, Finland) and used as input into MODTRAN model.
A single-layer atmosphere with uniform conditions was con-
sidered for the simulations since the variation for the typical
UAV flight altitude (150–200 m) could be neglected. Both path
transmittance and thermal radiance were simulated at different
sensor altitudes and integrated for the spectral response range of
the thermal camera. Two fourth-grade polynomial relationships
were fitted for transmittance and thermal radiation as a function
of path length. The results for different atmospheric conditions
are shown in Fig. 7(a), demonstrating that flight altitude can
influence surface temperatures, if not corrected for atmospheric
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Fig. 10. (a) Multispectral orthomosaic collected over a peach orchard at 20-cm spatial resolution. The image on the top left is a false color zoom of the study
site, and showing on the bottom right image is the detailed view of the tree crowns at full resolution. (b) Spectral reflectance extracted from different targets from
the image mosaic.

conditions. For instance, a bias of more than 4 K can occur
under high relative humidity and low temperatures.

Due to the camera wide FOV (40◦) and the helicopter tilt
angles, the path lengths for each pixel had to be corrected.
Assuming an image collected at a given time, the principal point
of the camera Po is located at the coordinates (Xo, Yo, Zo) with
an attitude of (ϕ, ω, κ) which are pitch, roll, and yaw, respec-
tively. An approximation of these values was extracted from
the autopilot telemetry, and the calibration for pixel-to-sensor

variations across the image was conducted. For a given point P
with ground coordinates (Xp, Yp, Zp), the image coordinates of
the corresponding pixel reduced to the principal point and with
the effects of lens distortion (x′

p, y
′
p) were estimated using the

collinearity

⎡
⎣

x′
p

y′
p

−c

⎤
⎦ =

1
λp

M

⎡
⎣

Xp − Xo

Yp − Yo

Zp − Zo

⎤
⎦ (7)
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Fig. 11. Thermal orthomosaic obtained from the UAV over the peach orchard at 40-cm resolution. The zoomed image on the top shows the water stressed trees
(warmer, in red and yellow) as compared with the fully irrigated trees (blue). The bottom right image shows a low-altitude image where within-crown thermal
variability is observed.

where M is the rotation matrix obtained from the attitude an-
gles, c is the focal distance, and λp is the associated scale factor.

Equation (7) can be reversed, and therefore, the ground
coordinates for a given pixel can be calculated with (8) and
(9) if the center of projection of the image (Po) and ground
elevation are known, and the terrain is considered flat

Xp =λp

⌊
m11x

′
p + m21y

′
p + m31(−c)

⌋
+ Xo

Yp =λp

⌊
m12x

′
p + m22y

′
p + m32(−c)

⌋
+ Yo

Zp =λp

⌊
m13x

′
p + m23y

′
p + m33(−c)

⌋
+ Zo (8)

where

λp =
m12x

′
p + m23y

′
p − m33c

Zp − Zo
. (9)

Since Zp − Zo can be estimated as the mean altitude above
ground level for a flat terrain, Xp and Yp can be solved. The
distance to the ground point can be expressed as

Do−p =
√

(Xo − Xp)2 + (Yo − Yp)2 + (Zo − Zp)2. (10)

We used this methodology to estimate the sensor-to-pixel
distance across the image, needed to generate a transmittance
and thermal radiation map for each image. The effect of this
correction is shown in Fig. 7(b).

A flight campaign was conducted by measuring simultane-
ously the surface temperature with a thermal gun (LaserSight,
Optris, Germany) over three different surfaces: soil, white, and
black targets (Fig. 8). The RMSE before calibration was 3.44 K,
which was reduced to 0.89 K after atmospheric correction.

D. Automatic Mosaicking With Aerotriangulation Methods

GPS and INS systems used along with photogrammetric
methods enable the estimation of direct platform orientation
without ground control points [73], [74]. Position and atti-
tude were extracted directly from the autopilot AHRS with a
time resolution of 0.05 s. The lack of precise synchronization
between the autopilot time (based on GPS time) and image
triggering prevented the estimation of the direct platform ori-
entation. In the case of the thermal camera, time and mission
time were reset before each flight campaign, acquiring one
image every 2 s. This method enabled the estimation of an
approximate EO for the projection center of each image.

Calibrated images were imported into Leica Photogrammet-
ric Suite (Leica Geosystems, Switzerland) together with the EO
file in plain text format. Images taken during UAV turns and
outside the study sites were removed. The low platform speed
(30 km/h) and low altitude (200 m) of the UAV generated a high
degree of overlapping among images along the flight direction
(80%–90% overlap). The high overlapping obtained was very
important to ensure that only the most nadir part of each image
was considered to avoid viewing directional effects on both
multispectral and thermal imagery. Fig. 9 shows a study area
with red rectangles representing the image footprint over the
orange tree study site, with the yellow rectangle indicating the
overlapping area of a stereo pair. Once the model was created
and configured, tie points were generated automatically, and
a minimum number of ground control and check points were
manually measured on the corresponding images. Aerotriangu-
lation was calculated, and the results were revised until the rms
error of the ground control points was below the estimated pixel
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resolution. Finally, an orthomosaic could be generated using an
existing DTM or a uniform terrain height (Fig. 10).

E. Study Sites

During the validation stage of the remote sensing UAV
system, a total of three study sites were selected to conduct
airborne campaigns with onboard remote sensing instruments
to validate the ability for biophysical parameter retrieval. The
detection of water stress in different crops was conducted on
study sites with plant water status differences.

A commercial peach orchard near Cordoba (Spain) was stud-
ied to assess if water stress levels could be detected with high-
resolution thermal imagery acquired from the UAV platform.
The field studied had part under regulated deficit irrigation
(RDI) [75], while the other part had ample water supply.

Another study was carried out over a corn variety test field
to show the performance of the multispectral camera over
herbaceous crops and the use of narrowband vegetation in-
dices to detect crop water status. The field was divided into
72 individual plots 2.4 × 10 m in size, comprising 24 varieties
replicated three times. The field was last irrigated in mid-
June and was under water stress in July at the time of flight
acquisitions. The study included measurements of stomatal
conductance and leaf water potential in six different cultivars,
taken four times during the day and coincident with the four
flights that were undertaken on the 6th of July.

Finally, an olive variety test orchard was flown to assess the
capability of the multispectral imagery to retrieve biophysical
parameters such as chlorophyll a + b content and LAI over
discontinuous crops at the tree level. The orchard was very
heterogeneous as compared to a commercial olive orchard
because of the large number of varieties that had been planted.

III. RESULTS AND DISCUSSION

Results from the 12 airborne campaigns flown over the peach
orchard in July 2007 at solar noon showed thermal variations
over the entire area due to variation in irrigation level. As
expected, the canopies of trees under RDI were clearly warmer
than those of fully irrigated trees (Fig. 11), with an average
difference of 4.3 K between trees supplied with full ET and
RDI trees. This experiment demonstrated that low-cost thermal
imagers onboard unmanned vehicles successfully estimated the
absolute surface temperature through radiometric calibration
and atmospheric correction methods, enabling the detection of
tree water stress levels.

Results on the corn field experiment flown four times on
June 6, 2007 with multispectral [Fig. 12(a)] and thermal cam-
eras demonstrated that spectral reflectance was successfully
calibrated as compared with ground ASD measurements, yield-
ing 1.17% RMSE. The mean spectral reflectance and tem-
perature extracted for each variety plot showed a relationship
between the vegetation index proposed as an indicator of stress
(PRI) and plot temperature as an indicator of canopy conduc-
tance. The reflectance spectra in the PRI region between 520
and 580 nm showed a positive slope between 530 and 570 nm
[Fig. 12(b)], typical of plants under water stress [64]. The phys-

Fig. 12. (a) Corn plots of different varieties imaged by the MCA-6 camera
onboard the UAV system. (b) Extracted reflectance spectra in the 530–570-nm
spectral region for the calculation of the PRI index used for stress detection.

iological indicator of stress (PRI) and the canopy temperature
for each plot were constrained to NDVI values ranging between
0.76 and 0.78 to minimize structural and soil effects on the in-
dices. The results shown in Fig. 13(a) prove the lack of relation-
ship between NDVI and canopy temperature for such a small
range of NDVI values. These results suggest that the differences
in plot temperature were due to canopy conductance and water
stress levels, but not due to structural parameters or differences
in ground coverage. On the other hand, physiological indica-
tors of stress such as PRI and canopy temperature showed a
good relationship within the same NDVI levels (r2 = 0.69)
[Fig. 13(b)], suggesting that both visible (400–700-nm spectral
range, PRI) and thermal regions (7.5–13 μm) were able to
detect crop water stress levels from the low-cost UAV platform.

One important application in plant breeding would be to use
the canopy temperature measurements from the UAV platform
for screening different genotypes for drought avoidance. This
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Fig. 13. (a) Relationships obtained between the FLIR thermal camera and spectral indices calculated from the multispectral camera over corn blocks under same
NDVI levels for (a) block T versus NDVI and (b) block T versus PRI. These plots demonstrate the sensitivity of PRI as indicator of water stress.

Fig. 14. Thermal images acquired over the corn field at 0.4-m pixel resolution showing the Tc − Ta changes at four different times of day. The greatest thermal
variability between corn variety plots is obtained at midday, continuing during the afternoon.

approach was successfully used in wheat sometime ago [42]
and has been tried in other breeding programs (i.e., [43]), but
it has been limited by operational difficulties associated with
the use of sensors at ground level. The results obtained from
the flights over the corn variety trial illustrate the potential
of this platform for genotype screening. Fig. 14 shows the
genotypic variability in canopy temperatures measured from
the UAV at four different times on the 6th of July. On that

day, there was significant water stress, as indicated by mid-
day leaf water potential values that varied between −1.3 and
−1.5 MPa. Canopy temperatures in the morning were quite uni-
form among corn cultivars, but they started to diverge as the day
went on. Fig. 15 shows the genotypic differences between two
cultivars that had very similar NDVI but that clearly differed in
their stress response. In the morning, both canopies were cooler
than the air, and the stomatal conductance values were quite
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Fig. 15. Diurnal stomatal conductance (G) and canopy Tc − Ta acquired from two corn cultivars. Differences found in the stomatal conductance at noon for
both cultivars yielded variations that could be tracked by the thermal imagery.

Fig. 16. Ground truth chlorophyll content (Cab) measured in olive and peach
trees compared with UAV-estimated Cab through the TCARI/OSAVI index and
predictive algorithms.

high, indicating high transpiration rates. As water stress set in,
the stomata close and canopy temperatures increase. By early
afternoon, the time of maximum evaporative demand, the stom-
ata are quite closed and the canopies are warmest. However,
one genotype is cooler than the other and has higher stomatal
conductance and, hence, transpiration (Fig. 15). It should be
emphasized that such genotypic differences were detected in
our flights among commercial varieties, while differences of
greater magnitude should be expected among breeding lines.

The estimation of chlorophyll concentration from the mul-
tispectral instrument onboard the UAV used the Mahalanois
supervised classification method to extract pure crown regions
of interest for each individual tree in the olive and peach

Fig. 17. (a) Relationships between NDVI and LAI for corn and olive trees.
(b) Validation of LAI estimates from the UAV versus ground truth LAI
measurements.
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Fig. 18. Sample multispectral imagery acquired over an olive orchard with the MCA-6 camera at 10-nm FWHM bandwidths onboard the UAV platform (0.15-m
spatial resolution), showing the chlorophyll content and LAI maps obtained.

orchards. The TCARI/OSAVI chlorophyll index calculated
from the mean crown spectra extracted from the imagery suc-
cessfully estimated chlorophyll a + b concentration. A compar-
ison between field-measured Cab and airborne-estimated Cab

yielded an RMSE of 4.2 μg/cm2 and r2 = 0.89 (Fig. 16),
demonstrating the capabilities of the multispectral MCA-6
camera onboard the UAV platform for estimating chlorophyll
content at the crown level.

NDVI and LAI relationships were studied for olive and corn
[Fig. 17(a)]. In the case of olive trees, NDVI was calculated
for each individual tree using the mean spectra from the same
regions of interest that were used for chlorophyll content
estimation. For the corn field, NDVI was calculated using
the average spectrum from each block. In both cases, NDVI
correlated with the ground truth LAI (r2 = 0.5 for corn; r2 =
0.88 for olive trees). The lower correlation in the corn field is
probably related to the differential responses of corn canopy
architecture to water deficits, as the leaves of some cultivars

had rolled and become more erected to reduce plant radiation
load. The resulting RMSE for the estimated LAI was 0.16
[Fig. 17(b)]. From the extracted crown spectra in the olive
orchard [Fig. 18(a)], maps of mean chlorophyll a + b content
[Fig. 18(b)] and LAI [Fig. 18(c)] were generated using the
relationships described earlier. The resulting maps show the
spatial variability of chlorophyll content and LAI over the
orchard obtained from the UAV system.

IV. CONCLUSION

This paper demonstrated the ability to generate quantitative
remote sensing products by means of a helicopter-based UAV
equipped with COTS inexpensive thermal and multispectral
imaging sensors. The low cost and operational flexibility, along
with the high spatial, spectral, and temporal resolutions pro-
vided at high turnaround times, make this platform suitable
for a number of applications, including precision farming or
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irrigation scheduling, where time-critical management is re-
quired. The laboratory and field calibration methods provided
a six-band 10-nm FWHM multispectral imagery with RMSE
of 1.17% in ground reflectance and less than 0.2-m spatial
resolution. For the thermal camera, the atmospheric effects
on transmittance and atmospheric thermal path radiation were
found to be very important even for low-altitude flights where
errors higher than 4 K could be achieved if those effects
were not considered. Atmospheric correction methods based
on MODTRAN radiative transfer model showed the successful
estimation of surface temperature images of 40-cm spatial
resolution, yielding RMSE < 1 K.

Appropriate bandset configurations selected for the mul-
tispectral camera enabled the calculation of several tradi-
tional narrowband vegetation indices (NDVI, TCARI/OSAVI,
and PRI) which were linked to biophysical parameters using
quantitative methods based on physical approaches such as
PROSPECT, SAILH, and FLIGHT models. The validation
results obtained for the estimation of LAI in corn (r2 = 0.5)
and olive trees (r2 = 0.88), chlorophyll a + b concentration
(RMSE = 4.2 μg/cm2; r2 = 0.89), and the relationships be-
tween canopy temperature and stomatal conductance in corn
revealed results comparable to those obtained in similar ex-
perimental campaigns using current state-of-the-art imaging
spectrometer of multiband sensors onboard manned aircraft
[25], [36], [40] and open way to the use of this platform as
a screening tool in drought resistance breeding programs. The
PRI used for stress detection demonstrated on imagery acquired
over corn fields that the vegetation index was well related with
canopy temperature (r2 = 0.69), suggesting its use as a good
indicator of water stress.

Photogrammetric techniques were required to register the
frame-based imagery to map coordinates. Cameras were geo-
metrically characterized with their intrinsic parameters, achiev-
ing location errors within one pixel size. These techniques,
along with the position and attitude data gathered from the
autopilot, enabled the generation of large mosaics semiautomat-
ically with the minimum use of ground control points. The main
limitations encountered for this platform were the endurance
(20 min) and the low flight speed (30 km/h), limiting the
productivity to 70 hectares per flight. However, the operating
flexibility of vertical takeoff and landing platforms make it ideal
for experimental purposes. For large commercial agricultural
applications, where hundreds of hectares should be monitored
quickly, the use of fixed-wing UAVs with enhanced endurance,
moderate cruise speeds, and easier operation would be preferred
to rotary-wing aircrafts. UAV-based remote sensing platforms
are expected to fill the gap in the extended use of remote sensing
in agriculture. With the cost reduction of autopilots and imaging
sensors, it will soon become an invaluable tool to monitor
the water status of crops, with the aim of achieving Jackson’s
envision in the 1970s for real-time irrigation scheduling and
crop monitoring.
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