
Evaluating the performance of xanthophyll, chlorophyll
and structure-sensitive spectral indices to detect water
stress in five fruit tree species

C. Ballester1,2 • P. J. Zarco-Tejada3 • E. Nicolás4 •

J. J. Alarcón4 • E. Fereres3,5 • D. S. Intrigliolo1,4 •

V. Gonzalez-Dugo3

� Springer Science+Business Media New York 2017

Abstract This study assessed the capability of several xanthophyll, chlorophyll and

structure-sensitive spectral indices to detect water stress in a commercial farm consisting of

five fruit tree crop species with contrasting phenology and canopy architecture. Plots

irrigated and non-irrigated for eight days of each species were used to promote a range of

plant water status. Multi-spectral and thermal images were acquired from an unmanned

aerial system while concomitant measurements of stomatal conductance (gs), stem water

potential (Ws) and photosynthesis were taken. The Normalized Difference Vegetation

Index (NDVI), red-edge ratio (R700/R670), Transformed Chlorophyll Absorption in

Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/

OSAVI), the Photochemical Reflectance Index using reflectance at 530 (PRI) and 515 nm

[PRI(570–515)] and the normalized PRI (PRInorm) were obtained from the narrow-band

multi-spectral images and the relationship with the in-field measurements explored. Results

showed that within the Prunus species, Ws yielded the best correlations with PRI and

PRI(570–515) (r
2 = 0.53) in almond trees, with TCARI/OSAVI (r2 = 0.88) in apricot trees

and with PRInorm, R700/R670 and NDVI (r2 from 0.72 to 0.88) in peach trees. Weak or no

correlations were found for the Citrus species due to the low level of water stress reached

by the trees. Results from the sensitivity analysis pointed out the canopy temperature (Tc)

and PRI(570–515) as the first and second most sensitive indicators to the imposed water

conditions in all the crops with the exception of apricot trees, in which Ws was the most
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sensitive indicator at midday. PRInorm was the least sensitive index among all the water

stress indicators studied. When all the crops were analyzed together, PRI(570–515) and

NDVI were the indices that better correlations yielded with Crop Water Stress Index, gs
and, particularly, Ws (r

2 = 0.61 and 0.65, respectively). This work demonstrated the fea-

sibility of using narrow-band multispectral-derived indices to retrieve water status for a

variety of crop species with contrasting phenology and canopy architecture.

Keywords Fruit crop � Multispectral imagery � Remote sensing � Water stress detection

Abbreviations
gs Stomatal Conductance

Ws Stem Water Potential

CWSI Crop Water Stress Index

Tc Canopy Temperature

UAS Unmanned Aerial System

NDVI Normalized Difference Vegetation Index

R700/R670 Red Edge Ratio (reflectance at 700 nm divided by the reflectance at 670 nm)

TCARI Transformed Chlorophyll Absorption in Reflectance Index

OSAVI Optimized Soil Adjusted Vegetation Index

PRI Photochemical Reflectance Index (using reflectance at 530 and 570 nm)

PRInorm Normalized Photochemical Reflectance Index

PRI(570–515) Photochemical Reflectance Index (using reflectance at 515 and 570 nm)

Introduction

Continuous advances in technology have promoted the use of unmanned aerial systems

(UAS) for a large range of applications (Anderson and Gaston 2013). Precision agriculture

is one of the most promising applications (Mulla 2013; Gago et al. 2015) since low-cost

UAS can be equipped with robust sensors providing very high resolution, such as

miniaturized narrow-band and hyperspectral and thermal cameras used to remotely mon-

itor vegetation (Bendig et al. 2012). Farm assessment by remote sensing using UAS

enables crop monitoring from a closer range and a higher frequency than is currently

possible with satellites. Inter- and intra-field variability of crops can then be assessed in

detail providing farmers with crucial information to better optimize farm management and

increase farmers’ profitability (Mulla 2013).

Water availability is becoming the most limiting factor for crop production in much of

the world (Field 2014). This fact has increased the emphasis that policy-makers are placing

on both demand and supply options to water management. Remote sensing takes on special

significance within this context since it enables a better monitoring of large cultivated areas

making it easier to assess the proper functioning of irrigation systems (for example, by

identifying water-stressed areas or irrigation leaks with thermal images) and the precise

management of plants water stress, which has been extensively pointed out in the literature

(Taghvaeian and Neale 2011) as a key factor to ensure the success of water-saving irri-

gation strategies based on irrigating plants below their full water requirements.

High resolution thermal imagery has been successfully used in a variety of crops to

assess the variability in plant water status at the field and farm scales (Bellvert et al. 2013;

Berni et al. 2009; Gonzalez-Dugo et al. 2012). Bellvert et al. (2013) mapped the spatial

variability in leaf water potential of different vineyards based on high resolution thermal
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imagery and then used that information for scheduling irrigation. Similarly, Gonzalez-

Dugo et al. (2013) identified water-stressed areas from thermal images in a farm composed

of five fruit tree crops and based on the relationship between the Crop Water Stress Index

(CWSI) and the stem water potential (Ws) established a CWSI threshold for scheduling

irrigation.

Notwithstanding the suitability of thermal sensing for plant water stress assessment,

alternative indices less sensitive to variations in the air vapor pressure deficit and more

related to biophysical parameters such as the chlorophyll or xanthophylls pigment content

are currently of interest (Zarco-Tejada et al. 2013). That is because in the field, in order to

cope with drought, plants usually exhibit adaptive mechanisms at leaf level such as the

dissipation of excitation energy (associated with an increase in the concentration of de-

epoxidized xanthophyll cycle components), decrease in leaf chlorophyll concentration and

down-regulation of photosynthesis (Chaves et al. 2002).

Greenhouse experiments have shown that water stress periods of even eight days may

have a significant effect on the content and organization of chlorophyll in the mesophyll

(Albert and Thornber 1977). A variety of narrow-band optical indices obtained from

remote sensing data have been related to leaf chlorophyll concentration (Haboudane et al.

2002; Zarco-Tejada et al. 2004). Combination of indices such as the Transformed

Chlorophyll Absorption in Reflectance Index (TCARI) and the Optimized Soil Adjusted

Vegetation Index (OSAVI) to give the TCARI/OSAVI index (Table 1), have been shown

as more robust indices to estimate chlorophyll concentration than simple indices because of

a lower sensitivity to soil background and crop leaf area index variations (Haboudane et al.

2002; Zarco-Tejada et al. 2004).

The narrow-band Photochemical Reflectance Index (PRI, Table 1) proposed by Gamon

et al. (1992), which is based on the xanthophylls cycle activation as a mechanism to

dissipate the excess of energy when photosynthesis declines under conditions of stress, has

been also successfully tested as a water stress indicator in several studies (Peguero-Pina

et al. 2008; Suárez et al. 2010; Hernández-Clemente et al. 2011). These authors, however,

also pointed out that PRI is highly affected by factors such as canopy structure, viewing

and illumination geometry effects, and background, which challenge its widespread use as

a water stress indicator. Different formulations of PRI (based on different wavelength

Table 1 Formulations used to obtain the vegetation indices: Photochemical Reflectance Index (PRI),
normalized PRI (PRInorm), PRI using the reflectance band at 515 nm [PRI(570–515)], red edge ratio (R700/
R670), Normalized Difference Vegetation Index (NDVI) and Transformed Chlorophyll Absorption in
Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI)

Index Formulation References

PRI (R570 - R530)/(R570 ? R530) Gamon et al. (1992)

PRI(570–515) (R570 - R515)/(R570 ? R515) Hernández-Clemente
et al. (2011)

PRInorm PRI570/[RDVI (R700/R670)] Zarco-Tejada et al.
(2013)

R700/R670 R700/R670 Part of TCARI index

NDVI (R800 - R670)/(R800 ? R670) Rouse et al. (1974)

TCARI/
OSAVI

[3[(R700 - R670) - 0.2 (R700/R550) (R700/R670)]]/[(1 ? 0.16)
(R800 - R670)/(R800 ? R670 ? 0.16)] R700/R670

Haboudane et al.
(2002)

Within the formulation column, Rk means the reflectance signal at ‘‘k’’ nm wavelength
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references) have been studied in this sense searching to overcome these limitations

(Hernández-Clemente et al. 2011). Recently, Zarco-Tejada et al. (2013) proposed a

modified PRI-based index (PRInorm) to track the diurnal trends of water stress using a

combination of a structural index (Renormalized Difference Vegetation Index, RDVI) and

an index sensitive to the leaf chlorophyll content (the red edge ratio, R700/R670) to nor-

malize PRI. The PRInorm index was tested in an experimental vineyard site in a diurnal

setting, yielding higher correlations than PRI with the CWSI and the commonly used water

stress indicators, leaf water potential and stomatal conductance (gs).

Spectral indices have been usually evaluated in orchards consisting of a single crop. It is

not uncommon for farms to be made up of several crop species with different canopy

architectures, nutrient status and even phenological stages. Under these circumstances, the

possibility of using a single multi-spectral index that could provide reliable information

regarding the plant water status of all the co-existing crops in the farm would considerably

simplify the farm assessment.

With that objective in mind, a study was performed in a commercial farm consisting of

five fruit tree crop species in which the capability of xanthophyll, chlorophyll and struc-

ture-sensitive spectral indices to track the effects of water stress on trees was assessed. The

sensitivity of these indices to the imposed drought conditions were assessed by means of a

sensitivity analysis as other authors (Goldhamer et al. 1999; Moriana and Fereres 2002;

Intrigliolo and Castel 2006) have reported for the evaluation of alternative indirect

physiological indicators. Thus, the specific objectives of the present work were: (i) to

assess the sensitivity of xanthophyll, chlorophyll and structure-sensitive spectral indices to

water stress conditions; (ii) to explore the relationship between the spectral indices and Ws,

gs and CWSI for each of the fruit tree crop species studied, and; (iii) to identify which of

the spectral indices could more accurately track the water stress effects on trees when the

five fruit tree crop species were assessed together.

Materials and methods

Site characteristics and irrigation treatments

The study was performed in July 2010 in the same 42-ha commercial farm described in

Pérez-Sarmiento et al. (2010) and Gonzalez-Dugo et al. (2013), located in the Mula Valley

(37�550N, 1�260W), Murcia (Spain), where the climate is considered as semi-arid

Mediterranean. The annual reference evapotranspiration (ET0) and rainfall for the exper-

imental season were 1182 and 445 mm, respectively.

The farm consisted of five orchards planted in 1999 with almond (Prunus dulcis cv.

Garrigues and cv. Ramillete), apricot (Prunus armeniaca cv. Bulida), peach (Prunus

persica cv. Catherine), orange (Citrus sinensis cv. Lane Late) and lemon (Citrus x limon

cv. Fino 49) trees. Each orchard was divided into 2–4 irrigation units, which enabled

different irrigation managements and the development of contrasting plant water status.

The number of irrigation units and other characteristics such as tree spacing, canopy

ground cover and number of emitters per tree used within each orchard are shown in

Table 2. At the time of the study (July), almond, peach, lemon and orange trees were being

irrigated daily. In order to generate different levels of tree water status in these orchards,

irrigation was withheld for eight days prior to the measurements in one single irrigation

unit in the almond, lemon and orange orchards, and in two irrigation units in the peach
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orchard. Apricot trees, on the other hand, had already been harvested and water had not

been applied since 24 days before the measurements date. Thus, to generate different water

status in the apricot orchard, irrigation was resumed in one single unit eight days prior to

the measurements.

Airborne imagery and image processing

Multispectral images were acquired on July 7th at 13.00 h (local time; UTC ? 1 h) with a

6-band multispectral camera (MCA-6, Tetracam Inc., California, USA) installed on a two-

meter wingspan fixed–wing UAS platform. The image resolution was 1280 9 1024 pixels

with 10-bit radiometric resolution and optical focal length of 8.5 mm. The UAS (mX-

SIGHT, UAV Services and Systems, Germany) was controlled by an autopilot for

autonomous flying (AP04, UAV Navigation, Madrid, Spain) following a flight plan of

around 1 h at 350 m above the ground and 5.8 kg take-off weight using waypoints to

acquire imagery from the entire orchards under study. At this flight altitude, the camera

delivered a ground resolution of 200 mm pixel-size. The autopilot had a dual CPU con-

trolling an integrated attitude heading reference system (AHRS) based on a L1 GPS board,

3-axis accelerometers, gyros and a 3-axis magnetometer (Berni et al. 2009). The ground

control station and the UAS were radio-linked, transmitting position, altitude and status

data at 20 Hz frequency.

The bandsets chosen for this study were centered at 515, 530, 570, 670, 700 and 800 nm

(10 nm bandwidths). The high-resolution of the multispectral imagery enabled the iden-

tification of every single crown within the orchard. A region of interest was established in

the center of each crown to extract pure vegetation reflectance and to avoid soil back-

ground effect. Then, the different indices were calculated at the object level (crown). The

average crown reflectance derived from the imagery of well-watered and deficit-irrigated

trees for each of the five tree crop species studied is shown in Fig. 1. Reflectance values

obtained for the six spectral bands enabled the calculation of vegetation indices sensitive to

variations in canopy structure, chlorophyll and xanthophyll pigment content (Table 1).

The Normalized Difference Vegetation Index (NDVI) was used to track changes in

canopy structure. Effect of treatments on the leaf chlorophyll concentration was assessed

with the red edge index (R670/R700), which uses the reflectance at 670 and 700 nm

wavelengths, and the Transformed Chlorophyll Absorption in Reflectance Index normal-

ized by the Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI). Finally, PRI, PRI

using reflectance at 515 nm [PRI(570–515)] instead of 530 and PRInorm were also

determined.

Table 2 Tree spacing, canopy ground cover (CGC) and number of emitters used per tree for each of the
orchards in the study. The number of irrigation units established per orchard is also shown

Species Tree spacing (m) CGC (%) # emitters tree-1 (4 l h-1) # irrigation units

Almond 6 9 8 40 5 3

Apricot 6 9 8 65 5 2

Peach 4 9 6 48 3 4

Lemon 6 9 8 41 5 2

Orange 4 9 6 51 3 3
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The spectral indices were compared with Tc and CWSI, which were determined in a

parallel study by Gonzalez-Dugo et al. (2013) in the same trees. Thermal images were

obtained from a thermal camera (MIRICLE 307, Thermoteknix Systems Ldt., Cambridge,

UK) also installed on the UAS during the study.

Field data collection

Concomitant measurements of Ws and gs were taken during the flight in selected irrigated

and non-irrigated trees from each species. Measurements were carried out by five teams

composed of 3–5 people each with experience taking in-field determinations.

The Ws determinations were carried out with five Scholander pressure chambers (Model

600 Pressure Chamber, PMS Instrument Company, Albany, USA) in two mature leaves per

tree covered with aluminum foil for at least 90 min before measurements. The number of

trees used for theWs and other in-field determinations within each irrigation unit are shown

Fig. 1 Average crown reflectance derived from the imagery of well-watered (WW) and deficit irrigated
(DI) trees for each of the five fruit tree crops studied
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in Table 3. The gs was measured in 2-4 sunny leaves per tree using a diffusion porometer

(SC-1 porometer, Decagon, WA, USA) in the lemon, orange and peach crops and a

portable photosynthesis system (LI-6400 Li-Cor, Lincoln, NE, USA) equipped with a LI-

6400/40 Leaf Chamber Fluorometer and a LICOR 6400-01 CO2 injector in the almond and

apricot crops. Leaf gas exchange was measured on fully expanded leaves placed in a

200 mm2 leaf cuvette. The CO2 concentration in the cuvette was maintained at

400 lmol�mol-1 (&ambient CO2 concentration). Measurements were performed at satu-

rating light intensity of 1800 lmol�m-2�s-1 and at ambient temperature and relative

humidity. The airflow was set to 300 lmol�s-1, which enabled also recording the leaf net

CO2 assimilation. Additionally, three leaf samples were taken from selected irrigated and

non-irrigated trees of all the species with the exception of peach to determine the leaf

chlorophyll content (Table 3). For the leaf chlorophyll determination, approximately

30 mg leaves were sampled from the same, avoiding major veins. Chlorophyll was eluted

from the leaf by submerging them in 3 ml of N, N-dymethylformamide in the dark for at

least 72 h. The amount of absorbance was read at 647 nm and 664.5 nm with a Thermo

Spectronic (model Helios alpha, UVA No. 092009, England) and used to calculate fresh

mass-based chlorophyll content according to the equations of Inskeep and Bloom (1985).

Weather conditions at the time of flights were recorded with a portable weather station

(Model WXT510, Vaisala, Finland) placed just outside the orchard. Mean values for the air

temperature, vapor pressure deficit and wind speed at the time of flight were 31.9 �C,
3.76 kPa and 1.9 m s-1, respectively.

Statistical analysis

Sensitivity of the spectral indices related to the water stress conditions was assessed by

means of a sensitivity analysis (sensitivity defined as signal to noise ratio) based on that

proposed by Goldhamer and Fereres (2001) and comparison with traditional indicators of

plant water status. When there were significant differences between treatments, the value

‘‘signal’’ for Ws, Tc and the vegetation indices was calculated as the ratio between the

average value for the water-stressed and control treatments while, for gs, it was obtained

from the ratio between the average value for the control and water-stressed treatments. The

‘‘noise’’ was defined as the average coefficient of variation (CV) among trees from the

same treatments as the signal value.

Table 3 Number of trees in which measurements of stem water potential (Ws), stomatal conductance (gs),
leaf net CO2 assimilation (photosynthesis) and leaf chlorophyll content (Chl) were taken within each
irrigation treatment

Species Ws gs Photosynthesis Chl

WW DI WW DI WW DI WW DI

Almond 10 12 10 12 10 12 6 6

Apricot 6 4 6 4 6 4 6 4

Peach 5 5 5 5 – – – –

Lemon 5 5 5 5 – – 4 4

Orange 12 6 5 3 – – 6 6

‘‘WW’’ and ‘‘DI’’ mean well-watered and deficit irrigated trees, respectively
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The relationship between the spectral indices and Ws, gs or CWSI for each of the crop

species studied, as well as when data from all the crops were pooled together, was explored

by correlation analyses.

Results and discussion

Sensitivity of the indicators to detect water-stressed areas

Results obtained from the sensitivity analysis showed that Tc was the indicator with the

lowest variability and highest sensitivity in three out of the four crop species included in

the analysis (Table 4). Data from the orange orchard were not included in the analysis due

to the non-significant differences in plant water status observed between treatments.

Apricot was the only crop in which Ws resulted in the most sensitive indicator to the

imposed irrigation treatments, followed by PRI(570–515) and Tc. These results were mainly

Table 4 Sensitivity analysis of the stem water potential (Ws), stomatal conductance (gs), Crop Water Stress
Index (CWSI), Photochemical Reflectance Index (PRI), normalized PRI (PRInorm), PRI using the reflectance
band at 515 nm [PRI(570–515)], red edge ratio (R700/R670), Normalized Difference Vegetation Index (NDVI)
and Transformed Chlorophyll Absorption in Reflectance Index normalized by the Optimized Soil Adjusted
Vegetation Index (TCARI/OSAVI) for each of the species assessed in the experiment

Ws gs Tc NDVI R700/
R670

TCARI/
OSAVI

PRI PRI(570–515) PRInorm

Almond

Signal 2.04 4.38 1.06 1.12 1.01 1.31 1.66 1.11 1.58

Noise 0.16 0.27 0.02 0.12 0.12 0.11 0.20 0.03 0.45

Sensitivity
(signal/noise)

12.66 16.47 56.06 9.37 8.29 11.39 8.41 41.97 3.52

Lemon

Signal 1.18 1.11 1.05 1.02 1.20 1.09 0.98 1.01 0.85

Noise 0.09 0.26 0.01 0.03 0.08 0.04 0.18 0.02 0.36

Sensitivity 13.44 4.36 124.10 35.40 14.81 25.43 5.48 65.12 2.38

Apricot

Signal 1.76 3.90 1.13 1.13 0.94 1.51 0.91 1.07 0.79

Noise 0.02 0.19 0.05 0.07 0.07 0.07 0.07 0.04 0.28

Sensitivity 77.18 20.32 24.91 16.21 13.86 21.60 13.59 25.74 2.82

Apricot (11:00)

Signal 2.11 2.21 1.08

Noise 0.07 0.40 0.02

Sensitivity 31.24 5.51 52.74

Peach

Signal 2.84 2.95 1.17 1.14 0.75 0.92 0.91 1.13 0.51

Noise 0.22 0.59 0.03 0.13 0.19 0.08 0.17 0.08 0.39

Sensitivity 12.76 5.02 40.47 9.08 3.96 9.08 5.22 14.30 1.30

Data obtained from measurements taken at 13:00 h. Bold numbers highlight the highest sensitivity value
obtained for each species
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due to the low CV observed in Tc within trees from the same treatment in the almond,

lemon and peach orchards, and the low tree to tree variability observed in Ws in apricot

trees at 13:00 h compared to the other indicators (Table 4). Gonzalez-Dugo et al. (2013)

determined Tc in trees of the same orchards used in this experiment at different times

(09:00, 11:00 and 13:00 h). Their results (Gonzalez-Dugo et al. 2013) showed, in fact, that

apricot was the species with the highest variability in Tc at any of the three measurement

times and that CV within this crop was lowest at 11:00 h. Taking this information into

account, the analysis was repeated for this species with Ws, gs and Tc data obtained at

11:00 h (Table 4). For this time frame, results revealed that sensitivity of Tc was higher

than that of Ws and gs (no multispectral data were available at 11:00 h).

Interestingly, PRI(570–515) was found to be the second most sensitive indicator to the

imposed water-stressed conditions in all the cases. The results obtained for PRI(570–515)
contrast with those obtained for PRInorm which, along with gs, was the indicator with the

highest noise and least sensitivity. The multispectral indices NDVI, TCARI/OSAVI, R700/

R670 and PRI570 had, in general, intermediate values of sensitivity (Table 4).

Relationships between the spectral indices and Ws, gs or CWSI within each
orchard

Scaling up observations of plant water status from the leaf to the field, or even the farm

level, requires validation of remote sensing data with ground-truth data. Here, data

obtained from the multispectral imagery of selected trees within each orchard were

compared with those of in-field measurements of Ws and gs as well as CWSI, which had

been already validated for this particular farm by Gonzalez-Dugo et al. (2013).

Within the Citrus species, only indices sensitive to leaf chlorophyll content were sig-

nificantly correlated with Ws, gs or CWSI (Table 5). When R700/R670 was plotted against

gs, orange trees yielded a coefficient of determination (r2) of 0.62 (p\ 0.05). In lemon

trees, however, R700/R670 and TCARI/OSAVI were significantly correlated with Ws

(r2 = 0.41; p\ 0.05) and CWSI (r2 = 0.64; p\ 0.001), respectively. The structural and

photochemical indices were not correlated with Ws, gs or CWSI in any of the Citrus

species, which could be related to the small range of plant water status reached in these two

orchards compared to the others. The evaluation of structure, xanthophyll and chlorophyll

sensitive indices in orange trees to detect plant water stress has been also studied by Zarco-

Tejada et al. (2012). These authors found that in spite of the wide range of Ws reached in

that study (from -0.5 to -2.0 MPa) compared to the work presented here, PRI, TCARI/

OSAVI and NDVI, although sensitive, were poorly correlated with Ws. In that case, the

PRI using the band 515 as a reference, proposed by Hernández-Clemente et al. (2011), and

the structure-sensitive indicators RDVI, MTVI1 or TVI were shown as more robust water

stress indicators for orange trees. Other recent studies (Romero-Trigueros et al. 2016),

however, have reported significant changes in NDVI in grapefruit and mandarin trees as a

consequence of short-term changes in Ws.

Better correlations than in Citrus were obtained for the crops from the genus Prunus

(Table 5). In almond trees, PRI(570–515), PRI, NDVI and TCARI/OSAVI indices were

statistically correlated withWs, gs and CWSI with r2 ranging from 0.32 to 0.79. TheWs was

better correlated with PRI(570–515) and PRI (r2 = 0.53 and 0.52, respectively; p\ 0.001).

The gs yielded the highest correlation with TCARI/OSAVI (r2 = 0.65; p\ 0.001) while

CWSI yielded the highest correlation with PRI(570–515) and NDVI (r2 = 0.79 and 0.70,

respectively; p\ 0.001). Measurements of photosynthesis taken in almond trees were

highly correlated with TCARI/OSAVI (Fig. 2). No correlations, however, were obtained
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with the other chlorophyll sensitive indicator, R700/R670. When comparing results from the

two almond cultivars used in the study (cv. ‘Garrigues’ and cv. ‘Ramillete’), the rela-

tionships obtained between PRI(570–515) or TCARI/OSAVI and Ws, gs and CWSI were

similar. Nevertheless, PRI and NDVI relationships with Ws, gs and CWSI were weaker for

cv. ‘Ramillete’ (r2 ranging from 0.13 to 0.68) than for cv. ‘Garrigues’ (r2 ranging from 0.46

to 0.89).

Table 5 Coefficients of determination obtained for the relationships between the Photochemical Reflec-
tance Index (PRI), normalized PRI (PRInorm), PRI using the reflectance band at 515 nm [PRI(570–515)], red
edge ratio (R700/R670), Normalized Difference Vegetation Index (NDVI) and Transformed Chlorophyll
Absorption in Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/
OSAVI) and the more classical water stress indicators: stem water potential (Ws), stomatal conductance (gs)
and Crop Water Stress Index (CWSI) for each of the crops and cultivars studied

PRI PRI(570–515) PRInorm R700/R670 NDVI TCARI/OSAVI

Almond

Ws 0.52*** 0.53*** 0.13 0.01 0.33** 0.39**

gs 0.52*** 0.45** 0.14 0.01 0.32* 0.65***

CWSI 0.32** 0.79*** 0.01 0.07 0.70*** 0.45**

Almond
‘Garrigues’

Ws 0.46* 0.66** 0.21 0.00 0.74*** 0.37*

gs 0.75*** 0.78*** 0.49* 0.10 0.75*** 0.72***

CWSI 0.55** 0.77*** 0.31 0.03 0.89*** 0.57**

Almond
‘Ramillete’

Ws 0.68** 0.72** 0.24 0.00 0.13 0.54*

gs 0.36 0.59** 0.07 0.01 0.51* 0.61**

CWSI 0.37 0.79*** 0.07 0.05 0.65** 0.79***

Orange

Ws 0.16 0.10 0.11 0.02 0.02 0.04

gs 0.25 0.20 0.32 0.62* 0.13 0.00

CWSI 0.08 0.07 0.10 0.06 0.00 0.07

Lemon

Ws 0.02 0.02 0.10 0.22 0.02 0.41*

gs 0.15 0.38 0.14 0.23 0.00 0.08

CWSI 0.03 0.03 0.19 0.64*** 0.14 0.18

Apricot

Ws 0.00 0.16 0.03 0.04 0.32 0.88***

gs 0.10 0.06 0.23 0.21 0.42* 0.77***

CWSI 0.06 0.18 0.38 0.34 0.69** 0.82***

Peach

Ws 0.21 0.58* 0.81*** 0.88*** 0.72** 0.29

gs 0.27 0.56* 0.84*** 0.93*** 0.71** 0.31

CWSI 0.17 0.61*** 0.67*** 0.62*** 0.68*** 0.20

* p\ 0.05; ** p\ 0.01; *** p\ 0.001
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Apricot trees were in the stage of postharvest when the experiment was performed. In

contrast to that obtained for almond trees, no correlations were found between Ws, gs or

CWSI and any of the PRI formulations studied. NDVI was significantly correlated with gs
(r2 = 0.42; p\ 0.05) and CWSI (r2 = 0.69; p\ 0.01) but not with Ws. Among the

spectral indices, TCARI/OSAVI was the indicator that yielded the best correlations in

apricot trees with Ws, gs and CWSI (r2 ranging from 0.77 to 0.88; p\ 0.001). TCARI/

OSAVI is an index related to the chlorophyll content and not an index directly linked with

the water status. Nevertheless, all the trees in this study were managed similarly before the

beginning of the experiment. As aforementioned, apricot had already been harvested and

water had not been applied for 24 days before the measurements date. In this case, and in

order to increase the range of water status for this crop, irrigation was resumed in one

single unit eight days prior to the measurements. Thus, the variation that is observed in the

index might be related to the contrasted water status and the natural variability observed in

the field.

As also observed in almond trees, TCARI/OSAVI was highly correlated with photo-

synthesis (Fig. 2). Differences observed in the relationship between TCARI/OSAVI and

photosynthesis between apricot and almond trees may be related to differences in the

phenological stage between these two crops.

Results obtained in the peach orchard were somewhat different from those reported for

almond and apricot trees (Table 5). High correlations were obtained for all the spectral

indices with the exception of PRI and TCARI/OSAVI. PRI(570–515), PRInorm, R700/R670 and

NDVI yielded similar r2 compared with CWSI (0.61 to 0.68; p\ 0.001). PRInorm and R700/

R670, however, were the spectral indices with the highest correlations with Ws and gs (r
2

from 0.81 to 0.93; p\ 0.001).

The PRInorm has been reported as a more reliable water stress indicator (r2 = 0.82 when

compared against Ws) than PRI (r2 = 0.53) in grapevines (Zarco-Tejada et al. 2013). Here,

that was the case for peach trees but the opposite was observed for almond trees (Table 5).

Most of the studies found in the literature assessing the use of spectral information to

detect plant water stress have been conducted in one particular crop, generally crops of

high economic interest such as olive (Berni et al. 2009; Suárez et al. 2008; Zarco-Tejada

et al. 2004) and grapevines (Gago et al. 2015 and references therein). In the present study,

multi-spectral indices were assessed in a farm composed of crops with different canopy

architecture, nutrient status and phenology, which meant that a specific indicator per-

formed better in some crops than in others. The use of a single multi-spectral indicator that

Fig. 2 Relationships between
photosynthesis (lmol m-2 s-1)
and TCARI/OSAVI obtained in
almond (r2 = 0.67; p\ 0.001)
and apricot (r2 = 0.75;
p\ 0.001) trees
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would be sensitive enough to variations in the plant water status of several crops would

facilitate the assessment of irrigation needs at the farm scale.

Relationships between the spectral indices and Ws, gs or CWSI at farm scale

Pooling data from all the fruit tree crops species together, PRI(570–515), PRInorm, R700/R670

and NDVI showed a statistically significant correlation with Ws with r2 ranging between

0.15 and 0.65 (Table 6). Linear relationships were found for PRI(570–515), PRInorm and

NDVI while R700/R670 was best-fitted by a polynomial curve (Fig. 3). Among these

indicators, PRI(570–515) and NDVI were those which yielded the highest r2 (0.61 and 0.65,

respectively; p\ 0.001).

Although weak, statistically significant correlations were also found between

PRI(570–515), PRI and NDVI with gs (r
2 of 0.16–0.18; p\ 0.01), and between PRI(570–515),

PRInorm, R700/R670 and NDVI with CWSI (r2 ranging from 0.19 to 0.33; p\ 0.01)

(Table 6).

Mean chlorophyll content within the farm ranged from 0.10 lg mm-2 in lemon trees to

0.41 lg mm-2 in almond trees (Table 7). Both, the TCARI/OSAVI and the R700/R670

indices were statistically correlated with leaf chlorophyll concentration when data from all

the species were pooled together (Fig. 4). The red edge ratio yielded higher r2 (0.67;

p\ 0.001) than TCARI/OSAVI (0.40; p\ 0.001).

The PRInorm, which was originally formulated to deal with contrasting canopy archi-

tecture and pigment content, did not perform as was expected. The non-linear relationship

observed between water potential and the red edge ratio (R700/R670) shown in Fig. 3 might

be responsible for the low performance observed for this index. Results obtained for the

NDVI were also surprising considering that water restrictions were just applied during

eight days and considerable canopy structure effects were not expected. Instead of that,

NDVI yielded the best correlations with Ws. Recent studies, however, have also shown a

response of NDVI to short-term changes in Ws (Romero-Trigueros et al. 2016).

Overall, NDVI and the PRI(570–515) were the indices able to retrieve water status when

the five fruit tree crops species were assessed together. These results suggest that these

indicators could be used to detect water-stressed areas in farms composed of a variety of

crop species with contrasting phenology and canopy architecture.

Table 6 Coefficients of determination obtained for the relationships between the Photochemical Reflec-
tance Index (PRI), normalized PRI (PRInorm), PRI using the reflectance band at 515 nm [PRI(570–515)], red
edge ratio (R700/R670), Normalized Difference Vegetation Index (NDVI) and Transformed Chlorophyll
Absorption in Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/
OSAVI) and the stem water potential (Ws), stomatal conductance (gs) or Crop Water Stress Index (CWSI)
when data for all the species were pooled together

PRI(570–515) PRI PRInorm R700/R670 NDVI TCARI/OSAVI

Ws 0.61*** 0.01 0.15** 0.42*** 0.65*** 0.06

gs 0.18** 0.18** 0.02 0.00 0.16** 0.05

CWSI 0.19*** 0.06 0.23*** 0.27*** 0.33*** 0.10

* p\ 0.05; ** p\ 0.01; *** p\ 0.001
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Conclusions

The work presented here evaluated the capability of a series of narrow-band indices

sensitive to biophysical parameters of different nature to track water stress effects on a

farm composed of five fruit tree crop species. Structure, chlorophyll and xanthophyll

sensitive indices were all able to detect differences between irrigation treatments. Nev-

ertheless, not all the indices were correlated with Ws in all the fruit tree crop species

studied. Weak or no correlations were found for the Citrus species. While best correlations

in almond trees were obtained with the PRI and PRI(570–515) indices, TCARI/OSAVI was

Fig. 3 Relationships between the stem water potential (Ws) and the Photochemical Reflectance Index
(PRI), normalized PRI (PRInorm), PRI using the reflectance band at 515 nm [PRI(570–515)], red edge ratio
(R700/R670), Normalized Difference Vegetation Index (NDVI) and Transformed Chlorophyll Absorption in
Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) for all the
fruit species together
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the index that best correlated with Ws in apricot trees. Both chlorophyll and xanthophyll

sensitive indices, on the other hand, correlated well with Ws in peach trees.

Comparison of the sensitivity analysis performed for direct and indirect physiological

water stress indicators measured in the study, pointed out Tc and PRI(570–515) as the first

and second most sensitive indicators to the imposed water conditions in all the crops with

the exception of apricot trees. In fact, PRI(570–515), along with NDVI, were the spectral

indices that better tracked differences in plant water status (r2 = 0.61 and 0.65, with Ws,

respectively) between treatments when all the fruit tree crop species were assessed toge-

ther. These results demonstrate the feasibility of using multi-spectral narrow-band indices

(i.e. 10 nm bandwidths) acquired from miniature cameras on board a UAS to retrieve water

status for a variety of crop species with contrasting phenology and canopy architecture.
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Table 7 Mean leaf chlorophyll content (Chl) in well-watered and deficit-irrigated trees of each tree crop.
The coefficient of variation (C.V.) within each fruit tree crop studied and the number of measurements
(n) taken in each case are also shown

Chl (lg mm-2)

Well watered Deficit irrigated C.V. n

Almond 0.35 ± 0.04 0.28 ± 0.02 25.71 12

Almond cv. Ramillete 0.28 ± 0.05 0.27 ± 0.03 23.74 6

Almond cv. Garrigues 0.41 ± 0.02 0.29 ± 0.04 21.80 6

Orange 0.12 ± 0.04 0.17 ± 0.04 28.07 12

Lemon 0.14 ± 0.03 0.10 ± 0.00 35.61 8

Apricot 0.35 ± 0.04 0.29 ± 0.03 26.61 10

Fig. 4 Relationships between leaf chlorophyll content and: a the Transformed Chlorophyll Absorption in
Reflectance Index normalized by the Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) and; b the
red edge ratio (R700/R670) for all the crop species together
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