Monitoring biochemical limitations to photosynthesis in N and P-limited radiata pine using plant functional traits quantified from hyperspectral imagery

Michael S. Watt\textsuperscript{a},*, Henning Buddenbaum\textsuperscript{b}, Ellen Mae C. Leonardo\textsuperscript{c}, Honey Jane Estarija\textsuperscript{c}, Horacio E. Bown\textsuperscript{b}, Mireia Gomez-Gallego\textsuperscript{e}, Robin J.L. Hartley\textsuperscript{c}, Grant D. Pearse\textsuperscript{c}, Peter Massam\textsuperscript{c}, Liam Wright\textsuperscript{c}, Pablo J. Zarco-Tejada\textsuperscript{f,g}

\textsuperscript{a} Scion, 10 Kyle St, Christchurch 8011, New Zealand
\textsuperscript{b} Environmental Remote Sensing and Geoinformatics, Trier University, 54286 Trier, Germany
\textsuperscript{c} Scion, PO Box 3020, Rotorua, New Zealand
\textsuperscript{d} Faculty of Forestry, Universidad de Chile, Casilla 9206, Santiago, Chile
\textsuperscript{e} Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
\textsuperscript{f} The University of Melbourne, Melbourne, Victoria 3010, Australia
\textsuperscript{g} Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain.

\textbf{ARTICLE INFO}

\textbf{Keywords:}

High resolution hyperspectral
\( J_{\text{max}} \)
N/P ratio
Nutrient limitation
Physically based models
Radiative transfer
Reflectance
\( V_{\text{cmax}} \)

\textbf{ABSTRACT}

The prediction of carbon uptake by forests across fertility gradients requires accurate characterisation of how biochemical limitations to photosynthesis respond to variation in key elements such as nitrogen (N) and phosphorus (P). Over the last decade, proxies for chlorophyll and photosynthetic activity have been extracted from hyperspectral imagery and used to predict important photosynthetic variables such as the maximal rate of carboxylation (\( V_{\text{cmax}} \)) and electron transport (\( J_{\text{max}} \)). However, little research has investigated the generality of these relationships within the nitrogen (N) and phosphorus (P) limiting phases, which are characterised by mass based foliage ratios of N/P ≤ 10 for N limitations and N/P > 10 for P limitations.

Using measurements obtained from one year old \textit{Pinus radiata} D. Don grown under a factorial range of N and P treatments this research examined relationships between photosynthetic capacity (\( V_{\text{cmax}}, J_{\text{max}} \)) and measured N, P and chlorophyll (Chl\textsubscript{a}+\textsubscript{b}). Using functional traits quantified from hyperspectral imagery we then examined the strength and generality of relationships between photosynthetic variables and Photochemical Reflectance Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) and chlorophyll \textit{a}+\textit{b} derived by radiative transfer model inversion.

There were significant (\( P < .001 \)) and strong relationships between photosynthetic variables and both N (\( R^2 = 0.82 \) for \( V_{\text{cmax}} \), \( R^2 = 0.87 \) for \( J_{\text{max}} \)) and Chl\textsubscript{a}+\textsubscript{b} (\( R^2 = 0.85 \) for \( V_{\text{cmax}} \), \( R^2 = 0.86 \) for \( J_{\text{max}} \)) within the N limiting phase that were weak (\( R^2 < 0.02 \)) and insignificant within the P limiting phase. Similarly, there were significant (\( P < .05 \)) positive relationships between P and photosynthetic variables (\( R^2 = 0.50 \) for \( V_{\text{cmax}} \), \( R^2 = 0.58 \) for \( J_{\text{max}} \)) within the P limiting phase that were insignificant and weak (\( R^2 < 0.33 \)) within the N limiting phase.

Predictions of photosynthetic variables using Chl\textsubscript{a}+\textsubscript{b} estimated by model inversion were significant (\( P < .001 \)), positive and strong (\( R^2 = 0.64 \) for \( V_{\text{cmax}} \), \( R^2 = 0.63 \) for \( J_{\text{max}} \)) within the N limiting phase but insignificant and weak (\( R^2 < 0.05 \)) within the P limiting phase. In contrast, both SIF and PRI exhibited moderate to strong positive correlations with photosynthetic variables within both the N and P limiting phases. These results suggest that quantified SIF and PRI from hyperspectral images may have greater generality in predicting biochemical limitations to photosynthesis than proxies for N and chlorophyll \textit{a}+\textit{b}, particularly under high foliage N content, when P is limiting.
1. Introduction

The use of optical data to predict biochemical, structural and physiological traits from leaves and plant canopies has increased rapidly over the last two decades (for reviews see Hill et al., 2019; Watt et al., 2019). Key attributes of interest that have been successfully estimated include water content (Buddenbaum et al., 2011; Buddenbaum et al., 2015; Colombo et al., 2008; Fang et al., 2017; Malenovsky et al., 2006; Riaño et al., 2005), leaf morphological traits such as specific leaf area (Asner and Martin, 2008) and leaf mass per area (Asner et al., 2011b; Doughty et al., 2011), pigments such as chlorophyll (Croft et al., 2014; Curran et al., 2001; Gitelson et al., 1996; Tsay et al., 1982; Yoder and Pettigrew-Crosby, 1995; Zarco-Tejada et al., 2019), carotenoids (Hernández-Clemente et al., 2012; Hernández-Clemente et al., 2014) and foliar concentrations of most key nutrients, particularly nitrogen (N) and phosphorus (P) (Asner and Martin, 2008; Asner et al., 2011a; Curran et al., 2001; Dechant et al., 2017; Gillon et al., 1999; Luther and Carroll, 1999; Masaitis et al., 2014; Petisco et al., 2005; Schlerf et al., 2010; Serbin et al., 2014; Stein et al., 2014; Tsay et al., 1982; Wang et al., 2018; Wang et al., 2015; Yoder and Pettigrew-Crosby, 1995). However, the remote sensing of attributes associated with photosynthesis has progressed at a far slower rate.

The rate of carbon assimilation under ambient conditions (A) is strongly influenced by light intensity, air temperature, water availability and leaf biochemistry (Farquhar et al., 1980; Leuning, 1995). These factors have been combined into a C₅ photosynthesis model that shows the rate of carbon assimilation to be limited under ambient conditions by the maximal rate of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (V_{\text{max}}) and the maximal electron transport rate driving regeneration of RuBP (J_{\text{max}}). In combination V_{\text{max}} and J_{\text{max}} define the plants biochemical limitations to photosynthesis and these two variables will be, hereafter, collectively termed photosynthetic capacity.

Previous research shows that photosynthetic capacity ranges widely both within and among species, and is sensitive to variation in environmental conditions (Groenendijk et al., 2011; Xu and Baldocchi, 2003). Despite this variation, a fixed value for V_{\text{max}} is often assumed in Terrestrial Biosphere Models which provide the main means of predicting regional and global estimates of terrestrial carbon (Beer et al., 2010). Many studies have investigated the use of plant functional traits such as leaf phosphorus (P), specific leaf area (SLA) and leaf nitrogen (N) to account for variation in photosynthetic capacity (Walker et al., 2014). As N is a primary component of Rubisco and the light-harvesting complexes that regulate photosynthesis (Ninemets and Tenhunen, 1997), studies have often successfully used N to predict photosynthetic capacity (Dechant et al., 2017), although seasonal variation in partitioning of N to photosynthetic fractions can complicate predictions (Croft et al., 2017). Chlorophyll content has also been found to be a useful predictor of photosynthetic capacity (Croft et al., 2017) as this pigment is involved in light harvesting and there is a direct relationship between this pigment and J_{\text{max}} (Collatz et al., 1991; Sellers et al., 1992), which in turn is usually strongly and linearly related to V_{\text{max}} across a large range of species (Medlyn et al., 2002).

Chlorophyll fluorescence has been widely shown to serve as a proxy for electron transport rate and photosynthetic activity (Genty et al., 1989; Weis and Berry, 1987). As chlorophyll fluorescence is dependent on chlorophyll concentration, which has been found to be closely aligned to photosynthetic capacity (Croft et al., 2017; Houborg et al., 2013), a strong link has also been shown between Sun Induced Chlorophyll Fluorescence (SIF) and V_{\text{max}} (Rascher et al., 2015). A recent review has outlined the progress in SIF retrievals over the last 50 years (Mohammed et al., 2019) and research has demonstrated the utility of SIF in predicting photosynthetic activity at both the leaf and the canopy scales from a range of remote sensing platforms (Cendoro-Mateo et al., 2015; Zarco-Tejada et al., 2013a; Zarco-Tejada et al., 2016).

A parallel line of investigation over the last two decades has focussed on the use of Photochemical Reflectance Index (PRI) to predict photosynthetic activity of vegetation. This index, which is determined from narrow band reflectance at 531 and 570 nm (Gamon et al., 1992; Gamon et al., 1997) and in closely related bands in derivative versions (Gamon et al., 1993), has been widely used to predict photosynthetic status across a range of vegetation types. PRI provides a linkage with the efficiency of photosystem II through characterising variation in xanthophyll pigments and as such quantities changes in non-photochemical quenching and light use efficiency (Gamon et al., 1997). This index has been successfully used to predict photosynthetic rate (Drolet et al., 2008; Fuentes et al., 2006; Gamon et al., 1997; Guo and Trotter, 2004; Hilker et al., 2008; Middleton et al., 2009; Nichol et al., 2000; Penuelas et al., 1995; Stylinski et al., 2000) and the photosynthetic response of plants subject to a range of stresses (Dobrowski et al., 2005; Hernández-Clemente et al., 2011; Scholten et al., 2019; Suárez et al., 2008) and is responsive to seasonal changes in pigments (Gitelson et al., 2017). PRI can be readily used to scale photosynthesis to the canopy level as recently launched satellite based hyperspectral imagers (e.g. PRISMA, DESIS) and planned missions (e.g. EnMAP) are capable of measuring this variable. In addition, Sentinel-2 and in particular the Sentinel-3 satellite OLCI and SLSTR sensors enable the estimation of vegetation pigments using the red edge spectral region and spectral bands centered at the green region for the assessment of the xanthophyll pigment dynamics and V_{\text{max}} at global scales using the SCOPE model (Prikaziuk and van der Tol, 2019). Although many studies show that PRI is an effective proxy for photosynthesis (Hernández-Clemente et al. 2019) the index has been shown to be affected by canopy structure, leaf pigments and background (Suárez et al., 2009; Suárez et al., 2008), which can negatively impact predictions of photosynthesis (Rascher and Pieruschka, 2008).

In this context, physically based modelling has been widely used as a method for generalising the spatial prediction of important vegetation traits. As these models are able to account for the influence of variations in background, canopy architecture and conditions during the image acquisition on reflectance they can be more generally applied than other approaches (Hill et al., 2019; Watt et al., 2019). One of the most widely used models is PROSAIL which uses PROSPECT (Jacquemoud and Baret, 1990) to simulate leaf reflectance and transmittance which are then fed into SAIL (Verhoef, 1984), which predicts canopy reflectance from this input and soil optical properties and illumination geometry (Berger et al., 2018). When PROSAIL is run in inverse mode this model can be used to predict chlorophyll content and other biochemical constituents of foliage from canopy reflectance (Le Maire et al., 2008; Zarco-Tejada et al., 2004b; Zhang et al., 2005). Given the importance of chlorophyll in the photosynthetic process, predictions of this pigment from PROSAIL have considerable potential for spatially describing variation in key photosynthetic variables. As described in the review by Jacquemoud et al. (2009) PROSAIL has been developed for homogeneous and uniform canopies, and requires more complex approximations to account for forest architecture. For this purpose, radiative transfer approaches such as DART (Gastellu-Etchegorry et al., 1996), 4-Scale (Chen et al., 1997) and FLIGHT (North, 1996) have been used with success but these require a large number of inputs.

Considerable research has demonstrated that N and P independently limit both plant growth and photosynthetic capacity and that the N:P ratio can be used to partition ranges that are either limited by N or P (Bown et al., 2007; Domingues et al., 2010; Ingestad, 1971, 1979; Ingestad and Lund, 1986). The underlying premise of this approach is that a N:P ratio of 10 (Knecht and Göransonn, 2004) marks a threshold and deviations from this lead to nitrogen (N:P ≤ 10) or phosphorus (N:P > 10) deficiencies (Aerts and Chapin, 2000; Marschner, 1995; Reich and Schoettle, 1988). This assumption of independent limitations clearly influences how models linking photosynthetic capacity to predators derived from hyperspectral data are interpreted. These hyperspectral predictors may have a stronger association with photosynthetic capacity within either the N or P limiting range or alternatively could
be applied using a single equation across both ranges. Despite this, we are unaware of any research that has examined how generalisable relationships between key hyperspectral variables and photosynthetic capacity are within N and P limiting ranges.

Within the southern hemisphere Pinus radiata D. Don (radiata pine) is the most widely planted plantation species and is particularly abundant within New Zealand where it constitutes 90% of the 1.7 M ha plantation area (NZFOA, 2018). A key limitation of photosynthesis and growth in P. radiata plantations is nutrient supply (Raison and Myers, 1992; Sheriff et al., 1986; Watt et al., 2005) and previous research has established relationships between \( V_{\text{max}} \), \( J_{\text{max}} \) and foliar concentration of N and P in this species (Bown et al., 2007; Walcroft et al., 1997). However, we are unaware of any research that has investigated the utility of hyperspectral imagery for predicting photosynthetic capacity in P. radiata.

In this study, measurements of hyperspectral imagery, foliage nutrition and photosynthesis were taken from an experiment that included a factorial combination of N and P treatments applied to P. radiata. Using this data, the overall goal of this research was to better understand the key determinants of photosynthetic capacity and how hyperspectral imagery can best be used to predict photosynthetic capacity. Specifically, we examined relationships between photosynthetic capacity and measured chlorophyll (\( \text{Chla+b} \)), N and P within both the N and P limiting ranges. Using plant functional traits derived from hyperspectral data we then explored the strength and generality of relationships between photosynthetic capacity and PRI, SIF and chlorophyll \( a + b \) derived by radiative transfer model inversion.

2. Methods

2.1. Experimental set up

The experiment was undertaken within the Scion nursery, located in Rotorua, New Zealand. A total of 120 P. radiata seedlings were transplanted into pots with a 15 l volume during October 2018. The medium into which the plants were transplanted consisted of a mixture of perlite and vermiculite which are silica-based products without any nutritional content. Plants were grown in a thermostatically controlled greenhouse where temperature in spring fluctuated between 10 and 24 °C during the day and between 10 and 16 °C during the night. These plants were watered weekly over the duration of the trial so that root-zone water content did not limit growth. This study reports on detailed measurements taken from a subsample of 30 trees, within this trial, that included six trees from each of the five treatments.

The five fertiliser treatments consisted of a factorial combination of N and P that were applied as 500 ml of nutrient solution per plant every fortnight starting on the 20th February 2019. These five treatments included application of water only (Control), low N–low P (N0P0), low N–high P (N0P1), high N–low P (N1P0) and high N–high P (N1P1). Nutrient solutions consisted of two levels of nitrogen (N0 = 1.43 and N1 = 7.14 mol m\(^{-3}\)) and phosphorus (P0 = 0.084 and P1 = 0.420 mol m\(^{-3}\)). Following Ingestad (1979) N was provided at concentrations of 100 ppm (7.14 mM) and P at 13 ppm (0.420 mM) as the high-N and high-P supply regimes. The low-N (1.43 mM) and low-P (0.084 mM) supply regimes were chosen as one-fifth of the high-N and high-P concentrations, respectively. Nitrogen was supplied as \( \text{NH}_4\text{NO}_3 \) and phosphorus as KH\(_2\)PO\(_4\) and nutrients other than N and P were provided in optimum proportions in relation to N, as defined by Ingestad (Ingestad, 1971, 1979).

2.2. Hyperspectral data capture

2.2.1. Data capture

A hyperspectral camera (FX10, Specim, Spectral Imaging Ltd., Oulu, Finland) was used to acquire hyperspectral imagery outside of the greenhouse, under clear sky conditions, from 10:30 am to 1:30 pm on the 4th October 2019. This push-broom camera captures 448 bands with wavelengths ranging from 400 to 1000 nm with a spectral full width at half maximum (FWHM) of 5.5 nm. The camera is designed for industrial applications and as such has a high maximum frame rate of 9900 frames per second with one band, and 330 frames per second using the full range of bands, as well as a high Signal-to-Noise Ratio (SNR) of 600:1. Within the field of view of 38° the spatial sampling comprises 1024 pixels. We used the Lumo Recorder software interface to manage the image acquisition.

The camera was mounted 2 m above ground on a cross beam that was supported by two posts, and a conveyor belt was used to move the plants through the field of view. The speed of the conveyor belt was adapted to fit the frame rate of the camera, which in turn was dependent on the exposure time, which had to be adjusted to the current illumination conditions. During the measurements, the conveyor belt speed and frame rate were kept constant and the exposure time was adjusted to avoid over or undersaturation. A diffuse white reference standard (Spectralon, North Hutton, NH, USA) was placed so that it was visible in every frame allowing calibration of the imagery as a function of the changing illumination conditions.

2.2.2. Pre-processing of hyperspectral data

All pre-processing of the hyperspectral data was carried out using Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) following the methods described in Buddenbaum et al. (2019). Pixels with NDVI \( \geq 0.5 \) and reflectance at 780 nm \( \geq 0.2 \) were selected as
vegetation pixels. Pixels with absolute first difference values ≥ 0.1 were
masked out. Sample reflectance spectra for trees that are representative
of the treatments are shown in Fig. 1. Following these steps the number of
pixels selected ranged from 16,000–112,000 pixels/tree, with an
average of 52,267 pixels/tree. The mean of all pixels for each tree was
calculated to represent the whole plant.

Following these steps, the tree level spectra were smoothed using the
Savitzky-Golay filter (Mouazen et al., 2010) as this filter has consis-
tently been found to be one of the best available pre-processing
transformations (Vasques et al., 2008). This smoothing used a third
order polynomial which was applied across a moving window of 27
spectral bands. Reflectance and the 1st derivative of reflectance were
extracted from these smoothed spectra. As there was considerable noise
at either end of the smoothed spectral data, the 52 bands that occurred
both below 415 nm and above 951 nm, were excluded from further
analyses. Following these exclusions, 396 bands (415–951 nm) de-
scribing reflectance and 395 bands (416–951 nm) describing the 1st
derivative of reflectance were available for analyses.

2.2.3. Radiative transfer model inversion

Pure vegetation reflectance spectra extracted from the hyperspectral
data acquired from the seedlings was used to invert PROSAIL to esti-
mate chlorophyll a + b content (Chla+b PROSAIL). Although SAIL is
designed for homogeneous canopies and this condition was not met by
our experimental set-up, an inversion of PROSAIL was undertaken
(Jacquemoud et al., 2009) using the spectra extracted from pure vege-
tation pixels (as in Zarco-Tejada et al., 2018). The PROSPECT model
has been demonstrated to be valid for simulating needle reflectance in
Jack Pine (Pinus banksiana Lamb.) stands for chlorophyll a + b content estimation (Zarco-Tejada et al., 2004a). The proposed PROSPECT and
SAIL models used here were successful for chlorophyll content esti-
mation when targeting pure vegetation pixels in forest areas (Zarco-
Tejada et al., 2001). Thus, we used a combination of PROSPECT-D
(Féret et al., 2017) and 4SAIL (Verhoef et al., 2007) model versions, and
inverted the spectra using the function lsqcurvefit in Matlab, following
an approach by Jay et al. (2016). Parameters with low sensitivity were
fixed so that only a limited number of parameters needed to be opti-
mized. The leaf inclination distribution type was set to 2 so that the
average leaf inclination angle (ALA) was included in the model. The
soil spectrum was also fixed. The model code includes spectra for a dark
wet and a bright dry soil. We used a linear combination of 10% dark soil
and 90% bright soil. Further model parameters are listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1 Model parameters used within PROSAIL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Mesophyll structure parameter</td>
</tr>
<tr>
<td>Chlorophyll a + b</td>
</tr>
<tr>
<td>Carotenoids</td>
</tr>
<tr>
<td>Anthocyanins</td>
</tr>
<tr>
<td>Water content</td>
</tr>
<tr>
<td>Dry matter content</td>
</tr>
<tr>
<td>Average leaf inclination angle</td>
</tr>
<tr>
<td>Leaf area index</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Brown pigments</td>
</tr>
<tr>
<td>Hot spot parameter</td>
</tr>
<tr>
<td>Observation zenith angle</td>
</tr>
<tr>
<td>Illumination zenith angle</td>
</tr>
<tr>
<td>Relative azimuth angle</td>
</tr>
</tbody>
</table>

2.2.4. Calculation of PRI and sun induced chlorophyll fluorescence

The reflectance spectra were interpolated to a 1 nm resolution
within Matlab. Using the interpolated spectra, calculations of PRI
(PRI531,570) were made using the following (Gamon et al., 1992),

\[
PRI = \frac{(R_{531} - R_{570})}{(R_{531} + R_{570})}
\]

We also trialled an alternative formulation of PRI (PRI528,567) that
utilised 528 nm and 567 nm (Gamon et al., 1993) and this variation was
used in analyses as it was more precisely correlated to photosynthetic
capacity than PRI531,570. Although PRI was developed to track changes
in xanthophyll pigments, it has been reported that such spectral bands
in the 530–570 nm region are also influenced by confounding effects
related to the absorption of other photosynthetic pigments, structure
of the canopy, and the soil and background (Suárez et al., 2009; Suárez
et al., 2008; Zarco-Tejada et al., 2013b). Thus, changes observed in PRI
are potentially due to the combined changes of chlorophyll and xan-
thophylls, and structural effects over the course of the experiment.

Sun-Induced Chlorophyll Fluorescence (SIF) was quantified using the
760 nm O₂-A band using the in-filling method based on the
Fraunhofer Line Depth principle (FLD) calculated from a total of three
spectral bands (FLD3) as follows,

\[
SIF = \frac{E_{out} L_{oA} - E_{in} L_{out}}{E_{out} E_{in}}
\]

where radiance, L, corresponds to \( L_{oA} \) (L761), \( L_{out} \) (average of L747 and
L790 bands), and the irradiance, \( E \), to \( E_{in} \) (E761), and \( E_{out} \) (average of E747
and E780 bands). Values of SIF were rescaled through addition of an
offset value to ensure that calculations of SIF from Eq. 2 were not ne-
gative.

2.3. Photosynthetic capacity

Measurements of photosynthetic capacity were made using a cou-
pled chlorophyll fluorescence and gas-exchange system (Imaging-PAM
M-Series and GFS-3000, Walz, Effeltrich, Germany) from the 7th to
16th of October 2019 following measurements of hyperspectral data.
For each of the 30 plants, the response of assimilation to intercellular
CO₂ concentration (A/C) response was measured on two to three fully
expanded young fascicles that were selected from the upper third of
the canopy. These needles were arranged inside the 6 cm² cuvette without
overlap and the area for these needles was determined by differen-
tiating thresholded pixels using the Imaging-Win software of the
coupled system. During the course of the measurements, conditions in
the cuvette were maintained at 20 °C, with a relative humidity of 60%
and an irradiance of 1000 μmol photons m⁻² s⁻¹. The external CO₂
concentration (Cₑ) supplied to the plants included the following series:
400, 300, 200, 100, 75, 50, 400, 600, 800, 1000, 1200, 1500,
2000 μmol mol⁻¹. Measurements were recorded after values of A, Cₑ
and gₑ were stable.

A/C curves were analysed using Farquhar-type equations (Long and
Bernacchi, 2003). A generalised nonlinear least squares regression (gnls
function, nlme package in R) was used to estimate \( V_{max} \) and \( J_{max} \).

2.4. Determination of foliage N, P and chlorophyll

Following the completion of the A/Cᵢ response curves, approxi-
mately 10 fully extended fascicles, were selected from the upper third
of the crown of each plant. These fascicles were dried at 70 °C for at least
48 h to constant dry mass and transported to the Landcare Research
laboratory (Palmerston North, New Zealand) for analysis of N and P.
Foliage samples were finely ground, acid digested by the Kjeldahl
method, and the N and P concentrations were determined color-
metrically (Blakemore et al., 1987). Approximately 20 fully extended
fascicles were selected for measurements of chlorophyll \( a + b \) (Chla+b).
These needles were placed in tubes and frozen at –80 °C before being
transported with dry ice to Plant and Food Laboratory (Lincoln, New
Zealand) where analysis was undertaken using Chl$_{a+b}$ estimation by spectrometry. From finely ground foliage samples, plant materials were extracted with acetone. This extraction was undertaken in the dark and the samples were kept on ice throughout the process to avoid pigment degradation. The absorbance of the extracts in the wavelengths 645, 652, 663, and 700 nm were read against 80% acetone and these values were then used to compute the chlorophyll concentration (Holden, 1965). All values of chlorophyll reported here refer to the total chlorophyll (Chl$_{a+b}$).

Specific leaf area, (SLA) was determined from needles sampled for chlorophyll and expressed on a hemisurface leaf area basis. Following Bown et al. (2009b) leaf area was determined from \[ \text{area} = \frac{\text{nd}(1 + \pi n)/2}{1 + \pi/n} \]

where \( \text{area} \) is fascicle diameter, \( l \) is fascicle length and \( n \) is the number of needles per fascicle. SLA was expressed in μg cm$^{-2}$ as the quotient of dry weight and leaf area. Measurements of SLA were used to convert foliage nutrient and pigment concentrations to a hemisurface area basis.

### 2.5. Measurements of tree dimensions

Tree height, root collar diameter and crown diameter were measured on the 22nd October 2019. Crown diameter was measured in two perpendicular directions at the widest point and these measurements were averaged. Electronic calipers were used to measure root collar diameter and both height and crown width were measured using a tape.

### 2.6. Data analysis

All analyses were undertaken at the plant level using a combination of Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) and R (R Development Core Team, 2011). Matlab was used to plot the spectra and invert PROSAIL while all other analyses were undertaken using R.

#### 2.6.1. Treatment differences

Tree dimensions, foliage nutrient content, photosynthetic variables, and PROSAIL output were tabulated and one-way analysis of variance was used to test for treatment differences between these variables. Multiple range testing, using the Tukey test, was used to determine which treatments significantly differed for all variables in which treatment had a significant effect.

Treatment variation in hyperspectral variables was plotted. We undertook a one-way analysis of variance across each of the 396 reflectance bands to identify which bands were most sensitive to the treatments. This band level ANOVA was also undertaken on four different treatment contrasts to isolate the influence of N and P on reflectance. The influence of N was determined through contrasting reflectance for low and high N treatments at both low (N0P0 vs N1P0) and high P (N0P1 vs. N1P1). Similarly, the influence of P on reflectance was identified through contrasting low and high P treatments at both low (N0P0 vs N0P1) and high N (N1P0 vs N1P1). Using a Bonferroni correction these contrasts were deemed to be significant at \( P < .0125 \).

#### 2.6.2. Prediction of photosynthetic variables

Nutrient ratios were used to separate the dataset into plants that were either N or P limiting to gain greater insight into the processes regulating photosynthetic capacity within each of these two phases. Following previous literature (Aerts and Chapin, 2006; Knecht and Göransson, 2004; Marschner, 1995; Reich and Scothtle, 1988) trees with an N:P ratio (expressed on a mass basis) of \( \leq 10 \) were categorised as N deficient, while those with N:P > 10 were categorised as P deficient. The foliage N:P within sampled trees ranged from 2.6–27.9, of which 9 observations were P limited while the remaining 21 were N limited (Fig. 2).

Following Kattenborn et al. (2019) all modelling used nutrient concentrations expressed on an area basis. Initial analyses examined correlations between N, P, and PRI and SIF. Bivariate relationships were then developed between the photosynthetic variables and N, P, Chl$_{a+b}$ to examine the role that these variables played in regulating photosynthetic capacity. The potential of predicting \( V_{\text{cmax}} \) and \( J_{\text{max}} \) from hyperspectral data was then investigated through development of models that included either Chl$_{a+b}$ PROSAIL, PRI or SIF. In all developed models only significant variables were included in the models and variables were used in the models in either linear formulations, and where significant, in a polynomial formulation.

### 3. Results

#### 3.1. Tree characteristics

All physical dimensions varied significantly between treatments (Appendix 1) and dimensions for the two high N treatments were markedly greater than those for the three low N treatments. Mean height, root collar diameter and crown width in N1P1 were, respectively, 85.8 cm, 15.9 mm and 31.6 cm, which exceeded corresponding mean values for these three dimensions in the Control, N0P1 and N0P1, by respectively, 58, 31 and 64%. There were no significant treatment differences in SLA and values averaged 2467 μg cm$^{-2}$ across treatments (Appendix 1).

#### 3.2. Foliar nutrition

The applied treatments resulted in a wide range in N and P (Fig. 2) and both elements significantly varied between treatments when expressed on either a mass or area basis (Appendix 1). Values of N ranged from 0.41–2.00% when expressed on a mass basis and 11.1–45.8 μg cm$^{-2}$ on an area basis while P varied from respectively 0.41–2.00% when expressed on a mass basis and 1.41–6.47 μg cm$^{-2}$. The relationship between N and P was weakly significant (Fig. 2) when data was expressed on a mass basis (\( P = .03; R^2 = 0.224 \)) but insignificant when expressed on an area basis (\( P = .10; R^2 = 0.155 \)). The relationship between N and Chl$_{a+b}$ was positive, highly significant and very strong when expressed on either a mass (\( P < .001; R^2 = 0.887 \)) or area basis (\( P < .001; R^2 = 0.870 \)).

When expressed on an area basis there were no significant differences in N or Chl$_{a+b}$ (Appendix 1) between the two high N treatments (N1P0, N1P1) or the two low N treatments (N0P0, N0P1). Similarly, P
did not significantly differ between the two low P treatments (N0P0, N1P0) or the two high P treatments (N0P1, N1P1). There was an identical significance pattern for N, P and Chla+b expressed on a mass basis (Appendix 1), except for the pairwise comparison of N for the two high N treatments (N1P0 and N1P1) which exhibited significant differences. This low level of lack of significance provided a sound basis for the pairwise testing of the impacts of N and P on both photosynthetic capacity and hyperspectral imagery, that is described below.

3.3. Photosynthesis capacity

Differences between treatments were highly significant for both $V_{cmax}$ and $J_{max}$ (P < .001). The mean values of $V_{cmax}$ and $J_{max}$ for N1P1, were respectively, 34.9 and 90.5 μmol m$^{-2}$ s$^{-1}$ which exceeded those in the Control treatment by ca. three-fold for both variables (Appendix 1). Most variation between the treatments was attributable to addition of N (Appendix 1). Values for the two high N treatments (N1P0, N1P1) significantly exceeded those of the two low N treatments, with equivalent P additions (N0P0, N0P1) by respectively 55 and 51% for $V_{cmax}$ and $J_{max}$ (Appendix 1). Addition of P to the low N treatment (i.e. N0P0 vs N1P0) increased $V_{cmax}$ and $J_{max}$ by respectively 7.8 and 3.3%, while addition of P to the high N treatment (i.e. N1P0 vs N1P1) resulted in greater increases to $V_{cmax}$ and $J_{max}$ of respectively, 11.5 and 16.2% (Appendix 1).

3.4. Hyperspectral data

Fig. 3 shows variation in canopy reflectance and the 1st derivative of canopy reflectance against wavelength. Treatment identity is denoted by lines with differing colours.

Fig. 3. Tree level variation in (a) canopy reflectance and (b) the 1st derivative of canopy reflectance against wavelength. Treatment identity is denoted by lines with differing colours.

The first derivative of reflectance for the three low N treatments exhibited marked increases between 500 and 550 nm (Fig. 3b), compared to the two high N treatments and peak values for the first derivative were reached at lower wavelengths, with both features being most marked for the Control treatment (Fig. 3b). Significant treatment differences were noted in the first derivative in almost all wavelengths between 422 and 811 nm with the most significant differences occurring at wavelengths centred around 497 and 647 nm (Fig. 5).

Analysis of variance, using treatment combinations that partitioned the impact of N and P, showed that treatment differences were mainly attributable to variation in N. For reflectance, comparisons of low and high P at similar values of N, that were either low (i.e. N0P0 vs. N0P1, red circles, Fig. 6a) or high (i.e. N1P0 vs. N1P1, blue circles, Fig. 6a) did not significantly differ. The small influence of P on reflectance is also clearly evident in figures showing spectral changes across discrete ranges which shows these two P contrasts almost overlap between 400
and 700 nm (Figs. 4b–d). Similarly, for the first derivative, these two treatment comparisons were mostly non-significant, with the exception of a few wavelengths, scattered across the spectral range (Fig. 6b).

In contrast, comparisons of reflectance for low and high N, made at low values of P (green circles, Fig. 6a) or high values of P (black circles, Fig. 6a) showed significant differences between treatments from ca. 500–730 nm, reaching highest significance for both comparisons in the red edge region, and at wavelengths centred around 534 nm for N0P1 vs. N1P1 (Fig. 6a). Treatment contrasts shown for discrete spectral regions (Figs. 4b–d) show that higher N markedly reduces reflectance, compared to low N, for both contrasts and that these differences are particularly marked within the green peak region (Fig. 4c).

Treatment comparisons were in general more significantly different for the first derivative of reflectance than reflectance (Fig. 6b).

Differences in the first derivative for these two N treatment comparisons were significant across most of the spectral range, from ca. 432–763 nm, with the most significant values occurring in the red-edge region for N0P0 vs. N1P0 and at wavelengths centred around 504, 608 and 651 nm for N0P1 vs. N1P1 (Fig. 6b).

When expressed by the type of limitation, trees that were limited by N had higher reflectance than P limited trees within both the red edge range and visible spectrum above 430 nm (Fig. 4e). These differences were most marked within the green peak region (Fig. 4g). There was also a marked shift in the lower wavelengths of the red edge for the N limited plants compared to those that were P limited (Fig. 4h).

Fig. 4. Variation in (a, e) canopy reflectance across the entire spectrum and between (b, f) 400–500 nm, (c, g) 500–600 nm and (d, h) 600–700 nm for data averaged by (a – d) treatment and (e – h) limitation type.
3.5. Relationships between nutrient content and spectral indices

Within the N limiting range there were significant positive relationships between N and both PRI \((P < .001; R^2 = 0.83; \text{Fig. 7a})\) and SIF \((P < .001; R^2 = 0.59; \text{Fig. 7c})\) but relationships between N and both of these variables were insignificant and weak, within the P limiting range \((\text{Fig. 7a, c})\). In the P limiting range, strong significant positive relationships were found between P and both SIF \((P < .01; R^2 = 0.697)\) and PRI\(_{528, 567}\) \((P < .001; R^2 = 0.792)\), as shown by the filled teal circles, respectively, in Figs. 7d and b. Within the N limiting range, the relationship between P and SIF was insignificant and weak \((P = .23; R^2 = 0.076)\), while the relationship between P and PRI\(_{528, 567}\) was only marginally significant but very weak \((P = .048; R^2 = 0.190)\).

3.6. Models of photosynthetic capacity

3.6.1. Use of measured variables

Under both N and P limiting conditions Chl\(_{a+b}\) was most strongly related to both \(V_{cmax}\) \((P < .001; R^2 = 0.85)\) and \(J_{max}\) \((P < .001; R^2 = 0.82)\) and both relationships were positive \((\text{Fig. 8a, c; Table 2})\). There were strong positive relationships between N and both \(V_{cmax}\) \((P < .001; R^2 = 0.84)\) and \(J_{max}\) \((P < .001; R^2 = 0.82)\), that were only marginally weaker than the relationships with Chl\(_{a+b}\) \((\text{Fig. 9a, c; Table 2})\). Under N limiting conditions these relationships generally remained at similar strength, although N was a slightly stronger predictor of \(J_{max}\) than Chl\(_{a+b}\) \((R^2 = 0.87 \text{ vs. } 0.86)\). Under P limiting conditions, relationships between photosynthetic capacity and either N \((\text{Fig. 9a, c; Table 2})\) or Chl\(_{a+b}\) \((\text{Fig. 8a, c})\) were very weak \((R^2 < 0.02)\) and insignificant \((\text{Table 2})\).

Under P limiting conditions, relationships between P and both \(V_{cmax}\) \((\text{Fig. 9b})\) and \(J_{max}\) \((\text{Fig. 9d})\) were positive, significant and of a moderate strength, with respective \(R^2\) of 0.50 and 0.58 \((\text{Table 2})\). In contrast, relationships between P and photosynthetic capacity \((V_{cmax}, J_{max})\) were insignificant under either N limiting conditions or across the entire dataset \((\text{Figs. 9b, d; Table 2})\).

3.6.2. Use of derived variables

There was a strong linear relationship \((R^2 = 0.88)\) between area based measured chlorophyll \((C_{a+b}\) PROSAIL) and chlorophyll predicted by model inversion \((C_{a+b} \text{ PROSAIL})\). Values of \(C_{a+b}\) were overpredicted by \(C_{a+b} \text{ PROSAIL}\) at low values and underpredicted at high values, but there was little treatment bias in the predictions \((\text{Fig. 10})\).

Using all the data, Chl\(_{a+b}\) \text{ PROSAIL} exhibited strong positive linear relationships \((\text{Fig. 8b, d})\) with both \(V_{cmax}\) \((P < .001; R^2 = 0.79)\) and \(J_{max}\) \((P < .001; R^2 = 0.76)\). These relationships remained significant and relatively strong using data restricted to N limiting conditions \((\text{Table 2})\). However, there was no significant relationship between Chl\(_{a+b}\) \text{ PROSAIL} and either \(V_{cmax}\) or \(J_{max}\) under P limiting conditions, with \(R^2 < 0.04\) for both relationships \((\text{Table 2; Fig. 8b, d})\).

Using all the data there were strong relationships between PRI\(_{528, 567}\) and both \(V_{cmax}\) \((P < .001; R^2 = 0.84)\) and \(J_{max}\) \((P < .001; R^2 = 0.84)\) that were best described using quadratic terms \((\text{Table 2; Fig. 11a, c})\). These relationships remained strong, but the precision was slightly reduced when data was restricted to N limiting conditions \((\text{Table 2})\). Under P limiting conditions positive correlations of moderate strength were found between \(\text{PRI}_{528, 567}\) and \(V_{cmax}\) \((P = .06; R^2 = 0.42)\) and \(J_{max}\) \((P = .029; R^2 = 0.51)\), that were generally aligned with predictions under N limiting conditions \((\text{Table 2; Fig. 11a, c})\).

Using all the data SIF exhibited strong positive linear relationships with both \(V_{cmax}\) \((P < .001; R^2 = 0.78)\) and \(J_{max}\) \((P < .001; R^2 = 0.80)\), which were slightly reduced in strength when data was restricted to N limiting measurements \((\text{Table 2; Fig. 11b, d})\). Under P limiting conditions, SIF was moderately related to \(V_{cmax}\) \((P = .09; R^2 = 0.35)\) and strongly related to \(J_{max}\) \((P < .01; R^2 = 0.68)\) and these relationships aligned very well with predictions made under N limiting conditions \((\text{Fig. 11b, d})\).

4. Discussion

Our results show that N and P were only significantly related to \(V_{cmax}\) and \(J_{max}\) within the N and P limiting ranges, respectively,
suggesting that photosynthetic capacity is independently regulated by these elements. Predictions of photosynthetic capacity ($V_{c_{\text{max}}}$, $J_{\text{max}}$) using variables derived from hyperspectral imagery showed contrasting generality across the dataset. Strong positive relationships were observed between Chla+b PROSAIL and both $V_{c_{\text{max}}}$ and $J_{\text{max}}$ in the N limiting phase but these relationships were insignificant in the P limiting range. However, both SIF and PRI$_{528, 567}$ exhibited moderate to strong positive relationships with photosynthetic capacity in both the N and P limiting phases suggesting that these variables are more generalisable than Chla+b PROSAIL.

The treatments used here created a wide range in N and P that exceeded the ranges in content and N:P ratio typically found in field grown P. radiata. When expressed on a mass basis foliage N ranged from 0.41 to 2.0% while foliage P ranged from 0.05 to 0.28%. Within a designed field experiment, located at 20 sites spanning almost all variation in soil fertility found in New Zealand plantations, ranges were markedly lower varying from 0.75–1.64% for N and from 0.09–0.18% for P (Watt et al., 2009). Our reported values in N and P covered ranges considered to be deficient, marginal and sufficient for both elements (Mead, 2013).

The use of ratios provided a useful means of separating N from P limitations. Nutrient ratios have been extensively used to identify optimum nutrition and account for particular nutrient limitations (Ingestad, 1971, 1979; Ingestad and Lund, 1986). In terrestrial plants an optimum N:P ratio of 10 has been found for a wide range of species (Knecht and Göranson, 2004) which agrees with our results that show photosynthetic capacity peaks at ratios of 9.3–11.3 (data not shown). Several authors (Aerts and Chapin, 2000; Marschner, 1995; Reich and Schoettle, 1988) suggest that deviations from this N:P ratio of 10 should lead to nitrogen (N:P ≤ 10) or phosphorus (N:P > 10) deficiencies. Our results strongly support this suggestion through showing that N and P were only significantly related to $V_{c_{\text{max}}}$ and $J_{\text{max}}$, within the N and P limiting ranges, respectively.

Overall our results show that Chla+b and N had the largest influence on photosynthetic capacity. The strong relationships found here between photosynthetic capacity and both Chla+b and N under N limiting conditions have a sound physiological basis. Nitrogen is a major component of Rubisco (Niinemets and Tenhunen, 1997) and at least 50% of leaf nitrogen is invested in the photosynthetic apparatus of plants (Niinemets and Sack, 2006). As Rubisco catalyses the carboxylation reaction, there is a mechanistic link between the leaf Rubisco content and the maximum capacity of carboxylation, $V_{c_{\text{max}}}$.

Similarly, chlorophyll also plays an important role in photosynthesis. Chlorophyll which is embedded in the thylakoid membranes of

Fig. 6. Variation in treatment significance, as indicated by the $P$-value, for (a) reflectance and (b) the first derivative of reflectance, for comparisons of P under low (red circles) and high N (blue circles) and comparisons of N under low (green circles) and high P (black circles). The grey region shown at the top of the figure outlines the area of insignificance at $P > .0125$ while the dashed line is drawn at $P = .001$. The y-axis is shown as a logarithmic scale to highlight the significance strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
chloroplasts, provides the principal means of harvesting light (Croft et al., 2017). This light harvest provides the energy to supply electrons, via the cytochrome $b_6f$ complex, to produce nicotinamide adenine dinucleotide phosphate (NADPH) and chemical energy as adenosine triphosphate (ATP), for the reactions of the Calvin–Benson cycle. Chlorophyll content has been shown to be related to the amount of light harvested across a range of species (Collatz et al., 1991; Evans, 1996), and photosynthetically active radiation absorbed by the leaf drives the potential rate of electron transport, $J$ (Collatz et al., 1991; Sellers et al., 1992). Although chlorophyll is theoretically more closely related to $J_{\text{max}}$, in practice a strong linear relationship between $V_{\text{cmax}}$ and $J_{\text{max}}$ is often observed across a range of species (Medlyn et al., 2002) as was found for our data ($P < .001; R^2 = 0.939$). This tight coupling, which is thought to reflect coordination between these two rate-limiting biochemical cycles (Kattge and Knorr, 2007; Leuning, 1997; Medlyn et al., 2002; Walker et al., 2014), means that in practice Chla+b can be used as a predictor for both variables.

Under N limiting conditions, relationships between photosynthetic capacity and both Chl a+b and N were found to have a very similar precision. This suggests that wavelengths associated with N in the SWIR range are not as important for predicting photosynthetic capacity in P. radiata as those associated with chlorophyll in the VNIR range. Examination of spectral differences between treatments confirm the importance of chlorophyll as a key predictor of photosynthetic capacity. These analyses show the most significant treatment differences occur within the green and red edge spectral regions which have previously been found to be key spectral predictors of chlorophyll content (Carter, 1994; Gitelson and Merzlyak, 1996; Horler et al., 1983; Rock et al., 1988; Vogelmann, 1993).

The significant positive relationships that we found between P and both $V_{\text{cmax}}$ and $J_{\text{max}}$ within the P limiting range were associated with high values of N. Results from a P. radiata nutrition experiment with a similar design (Bown et al., 2009a), that investigated relationships between nutrition and photosynthetic capacity, were very similar to ours and found a significant relationship between P and photosynthetic capacity in the P limiting range. This result is also consistent with a meta-study undertaken by Walker et al. (2014) who observed little gain in $V_{\text{cmax}}$ and $J_{\text{max}}$ under increasing P at low N, but a doubling of modelled gross carboxylation rates across a P range under high N levels, which is analogous to the P limiting range in our study. The importance of P in regulating $V_{\text{cmax}}$ and $J_{\text{max}}$ has a sound theoretical basis as the availability of P has an impact on many important aspects of photosynthesis including membrane solubility, ATP, and NADPH production (Marschner, 1995; Taiz et al., 2015).

Our results demonstrate very little spectral alteration associated with P but do show significant relationships between P and both PRI528,
and SIF within the P limiting range. After controlling for N, results clearly show little discernible change in reflectance or the first derivative of reflectance between plants with high or low P. This is consistent with previous literature as P does not directly absorb energy in the shortwave spectrum and consequently predictions of P typically rely on strong positive correlations with N (Asner and Martin, 2008; Gillon et al., 1999; Porder et al., 2005). While this is a useful approach for vegetation with normal ratios of N and P, this empirical relationship is likely to break down when ratios of N and P deviate from normal values, and there is little correlation between N and P. Within the P limiting range there were moderate to strong positive, linear relationships between P and both SIF and PRI suggesting that these variables may act as proxies for P and the effect of this element on photosynthetic capacity.

Although the three variables, derived from the hyperspectral data, used to predict photosynthetic capacity had similar precision, there were marked differences in their utility for predicting photosynthetic capacity. The significant relationship found here between Chl\textsubscript{a+b} PROSAIL and photosynthetic capacity is consistent with previous research that has used chlorophyll derived from physically based models to predict $V_{cmax}$ and $J_{max}$ (Croft et al., 2017; Dechant et al., 2017). Our results generally support Croft et al. (2017), who advocate the use of chlorophyll as a potentially useful proxy for photosynthetic capacity but extend these findings through showing that chlorophyll should be used with caution under P limiting conditions, where we found this relationship to be weak and insignificant.

SIF was strongly correlated with both $V_{cmax}$ and $J_{max}$ and, in contrast to Chl\textsubscript{a+b} PROSAIL predictions exhibited relatively robust

---

**Table 2**

Summary of model precision, as denoted by the coefficient of determination ($R^2$) for models describing the maximal carboxylation capacity ($V_{cmax}$) and the maximal electron transport rate ($J_{max}$). Measured predictors include area based measurements of nitrogen (N), phosphorus (P) and chlorophyll (Chl\textsubscript{a+b}). Predictors that were derived from hyperspectral data included Photochemical Reflectance Index (PRI), Sun-Induced Chlorophyll Fluorescence (SIF) and chlorophyll derived from the PROSAIL inversion (Chl\textsubscript{a+b} PROSAIL).

<table>
<thead>
<tr>
<th>Predictor(s)</th>
<th>All data</th>
<th>N limiting</th>
<th>P limiting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{cmax}$</td>
<td>$J_{max}$</td>
<td>$V_{cmax}$</td>
</tr>
<tr>
<td>Measured variables</td>
<td>0.84***</td>
<td>0.82***</td>
<td>0.87***</td>
</tr>
<tr>
<td></td>
<td>0.04ns</td>
<td>0.06ns</td>
<td>0.31**</td>
</tr>
<tr>
<td></td>
<td>0.85***</td>
<td>0.82***</td>
<td>0.85***</td>
</tr>
</tbody>
</table>

| Derived predictors    | 0.79***   | 0.76**     | 0.63**     | 0.03**    | 0.04**    |
|                       | 0.78***   | 0.80**     | 0.79**     | 0.35**    | 0.68**    |
|                       | 0.84***   | 0.84**     | 0.73**     | 0.42**    | 0.51**    |

---

**Fig. 8.** Relationships between measured chlorophyll\textsubscript{a+b} and inverted chlorophyll\textsubscript{a+b} and (a, b) $V_{cmax}$ and (c, d) $J_{max}$ under N (open brown circles) and P limiting conditions (filled teal circles). Lines have been fitted to relationships that are significant at $P < .05$ with the brown lines fitted to N limited data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
correlations across both the N and P limiting ranges. Although SIF has been widely used to predict gross primary productivity (Meroni et al., 2009; Porcar-Castell et al., 2014; Rascher et al., 2015), and photosynthesis (Frankenberg et al., 2011; Guanter et al., 2014; Smith et al., 2018), in a range of species, with few exceptions (Camino et al., 2019) little research has linked SIF to \( V_{\text{cmax}} \) and \( J_{\text{max}} \) at a fine scale. As found here, there is generally a strong relationship between chlorophyll and SIF as leaves with a higher chlorophyll will absorb more light and produce a higher leaf SIF, although this effect is complicated by the fact that emitted SIF is scattered and reabsorbed throughout the canopy (Verrelst et al., 2015). It has been hypothesised that SIF is a useful predictor of photosynthetic capacity as it can be used to selectively measure the quantity of absorbed light in chlorophyll (Rascher et al., 2015). However, in contrast to Chla+b, our results suggest that SIF can at least partially account for the role of P on photosynthetic capacity at high values of N as supported by the strong relationship found between SIF and P under P limiting conditions.

Similarly, PRI was also strongly related to photosynthetic capacity and was able to account for variation in \( V_{\text{cmax}} \) and \( J_{\text{max}} \) across both N and P limitations. Research has widely demonstrated the utility of PRI for predicting light use efficiency (Garbulsky et al., 2011; Peñuelas et al., 2011) and key photosynthetic parameters under a range of stresses including severe drought conditions (Ripullone et al., 2011), cold winter temperatures (Gamon et al., 2016; Wong and Gamon, 2015a, 2015b) and herbicide damage (Scholten et al., 2019). The relationship found here between PRI and photosynthetic capacity is consistent with Scholten et al. (2019) and has a strong theoretical basis as PRI can track plant photosynthetic activity through its intimate link with the dissipation of excess energy by nonphotochemical quenching (NPQ) via the xanthophyll cycle. The xanthophyll cycle is activated during periods of excess excitation energy in the leaf and through this process violaxanthin is de-epoxidized to zeaxanthin. These increased concentrations in zeaxanthin reduce reflectance at wavelengths around
531 nm, which results in reductions in PRI. Nevertheless, PRI has been demonstrated to be related to the absorption of chlorophyll content, in addition to the xanthophyll pigments, as well as by the canopy structure and soil (Suárez et al., 2009; Suárez et al., 2008; Zarco-Tejada et al., 2013b). Results found in this experiment show the potential contribution of both xanthophylls and chlorophyll in the observed relationships with photosynthetic capacity. As with SIF, our results suggest that PRI may provide a more generalisable means of predicting photosynthetic capacity under a range of nutritional limitations than chlorophyll derived from physically based models.

Predictions of photosynthetic capacity estimated by PRI and SIF could be scaled up using satellite imagery. As summarised in Mohammed et al. (2019) measurements of SIF are currently taken from a number of satellite platforms (e.g. GOME-2, OCO-2) and the first satellite mission designed for SIF measurement, FLEX, is scheduled for launch in 2022. The recently launched PRISMA and DESIS hyperspectral imagers, and the EnMAP sensor, which is scheduled for launch in 2021, are particularly suitable for estimating PRI and will provide imagery at a spatial resolution of 30 m with a relatively fine spectral resolution of up to 6.5 nm within the VNIR range (Guanter et al., 2015). In addition, Sentinel-3 has been proposed for \( V_{cmax} \) estimation at global scales using radiative transfer models such as SCOPE (Prikaziuk and van der Tol, 2019).

In conclusion, results from this study clearly demonstrate the utility of SIF and PRI for prediction of photosynthetic capacity across both the N and P limiting ranges. Although results clearly highlight the importance of N and Chl\(_{a+b}\) as key predictors of photosynthetic capacity we also show that these relationships break down within the P limiting range. The use of a N:P ratio to separate N from P limitations provided insight into relationships that would have otherwise have been concealed. Further research should examine the utility of this approach for development of models that link nutrient content and hyperspectral data to photosynthesis at increased scale across a broader range of species.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to Kendra Newick who assisted with the preparation of the nutrient solutions. The project was partly funded through the Resilient Forests programme, which is funded through Scion SSIF as well as the Forest Grower’s Levy Trust. Funding was also received from the National Institute for Forest Products Innovation (Project Number NIF073-1819), which comprised contributions from the Australian Government, Australasian Forestry Companies and South Australian and Tasmanian State Governments.
Appendix A. Treatment variation in tree characteristics, photosynthetic variables, foliage nutrition, and predictor variables derived from hyperspectral data. Values shown include the mean followed by the standard deviation. Values presented for the ANOVA include the F-value followed by the P category, in which asterisks ***, **, * represent significance at P = .001 and 0.01, respectively, ns = non-significant at P = .05. For all variables with significant treatment differences multiple range testing was undertaken using the Tukey test. Treatment values followed by the same letter were not significantly different at P = .05.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>N0P0</th>
<th>N0P1</th>
<th>N1P0</th>
<th>N1P1</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>54.2 (5.11)a</td>
<td>66.3 (7.07)a</td>
<td>63.2 (7.27)a</td>
<td>85.3 (19.8)b</td>
<td>85.8 (6.70)b</td>
<td>10.4**</td>
</tr>
<tr>
<td>Tree diam. (mm)</td>
<td>13.2 (1.88)a</td>
<td>12.9 (1.50)a</td>
<td>12.1 (1.45)a</td>
<td>14.7 (1.95)a</td>
<td>15.9 (1.08)a</td>
<td>5.9**</td>
</tr>
<tr>
<td>Crown diam. (cm)</td>
<td>20.1 (3.70)a</td>
<td>22.4 (3.83)a</td>
<td>19.2 (3.25)a</td>
<td>26.5 (3.33)b</td>
<td>31.6 (2.36)c</td>
<td>14.3***</td>
</tr>
<tr>
<td>SLA (µg cm⁻²)</td>
<td>2858 (573)</td>
<td>2306 (518)</td>
<td>2406 (226)</td>
<td>2288 (234)</td>
<td>2478 (647)</td>
<td>1.44*</td>
</tr>
<tr>
<td>Photosynthetic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vmax (µmol m⁻² s⁻¹)</td>
<td>13.5 (3.60)a</td>
<td>20.6 (1.61)b</td>
<td>22.2 (2.87)b</td>
<td>31.3 (3.73)c</td>
<td>34.9 (3.16)c</td>
<td>46.6***</td>
</tr>
<tr>
<td>Lmax (µmol m⁻² s⁻¹)</td>
<td>31.6 (10.8)a</td>
<td>54.7 (7.31)b</td>
<td>56.5 (8.36)b</td>
<td>77.9 (11.7)c</td>
<td>85.0 (10.3)c</td>
<td>32.3**</td>
</tr>
<tr>
<td>Foliage nutrition – mass based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (%)</td>
<td>0.447 (0.045)a</td>
<td>0.758 (0.120)b</td>
<td>0.759 (0.131)c</td>
<td>1.81 (0.127)c</td>
<td>1.58 (0.194)d</td>
<td>119***</td>
</tr>
<tr>
<td>P (%)</td>
<td>0.065 (0.019)a</td>
<td>0.093 (0.011)b</td>
<td>0.214 (0.075)c</td>
<td>0.078 (0.013)ab</td>
<td>0.162 (0.039)c</td>
<td>15.7***</td>
</tr>
<tr>
<td>Chla+b (%)</td>
<td>0.399 (0.165)a</td>
<td>0.878 (0.140)b</td>
<td>0.849 (0.113)c</td>
<td>1.78 (0.192)c</td>
<td>1.68 (0.162)c</td>
<td>85.3***</td>
</tr>
<tr>
<td>Foliage nutrition – area based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (µg cm⁻²)</td>
<td>12.0 (1.21)a</td>
<td>18.4 (2.93)b</td>
<td>17.6 (3.05)c</td>
<td>41.4 (2.91)c</td>
<td>36.7 (4.50)b</td>
<td>105***</td>
</tr>
<tr>
<td>P (µg cm⁻²)</td>
<td>1.74 (0.51)</td>
<td>2.26 (0.26)a</td>
<td>4.98 (1.74)</td>
<td>1.79 (0.29)a</td>
<td>3.76 (0.89)b</td>
<td>14.3***</td>
</tr>
<tr>
<td>Chla+b (%)</td>
<td>10.7 (4.42)</td>
<td>21.4 (3.41)c</td>
<td>19.7 (2.63)b</td>
<td>40.6 (4.39)c</td>
<td>39.0 (3.76)c</td>
<td>71.2**</td>
</tr>
<tr>
<td>Derived predictor traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverted Chla (µg cm⁻²)</td>
<td>14.9 (3.47)a</td>
<td>23.7 (2.82)b</td>
<td>22.4 (1.86)</td>
<td>34.5 (3.27)c</td>
<td>33.7 (1.51)c</td>
<td>56.6***</td>
</tr>
<tr>
<td>PRI</td>
<td>2.85 (0.018)</td>
<td>3.25 (0.006)</td>
<td>0.115 (0.012)c</td>
<td>0.089 (0.004)c</td>
<td>0.078 (0.004)c</td>
<td>42.4**</td>
</tr>
<tr>
<td>SIF (W m⁻² nm⁻² s⁻¹)</td>
<td>1.14 (1.11)</td>
<td>3.08 (0.67)ab</td>
<td>2.46 (0.65)</td>
<td>4.90 (0.54)c</td>
<td>6.04 (1.08)c</td>
<td>32.1**</td>
</tr>
</tbody>
</table>

References


Pinus silvestris L. trees by laboratory.


