
R
ep

ro
du

ce
d 

fr
om

 A
gr

on
om

y 
Jo

ur
na

l. 
 P

ub
lis

he
d 

by
 A

m
er

ic
an

 S
oc

ie
ty

 o
f A

gr
on

om
y.

  A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

Agronomy Journal
Volume 97 May–June 2005 Number 3

Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton
and High-Spatial Hyperspectral Remote Sensing Imagery

P. J. Zarco-Tejada,* S. L. Ustin, and M. L. Whiting

ABSTRACT tion in agriculture in the study of the relationships be-
tween red and near-infrared (NIR) reflectance and cropTraditional remote sensing methods for yield estimation rely on
yield and development. During the development of thebroadband vegetation indices, such as the Normalized Difference

Vegetation Index, NDVI. Despite demonstrated relationships be- Landsat sensors, MSS and TM, spectral channels were
tween such traditional indices and yield, NDVI saturates at larger selected to maximize the collection of agricultural and
leaf area index (LAI) values, and it is affected by soil background. We other vegetation indicators while minimizing the sensor
present results obtained with several new narrow-band hyperspectral payload and data download. Common methods to ob-
indices calculated from the Airborne Visible and Near Infrared tain spatial and temporal crop status based on these sen-
(AVNIR) hyperspectral sensor flown over a cotton (Gossypium hirsu- sors rely on calculating vegetation indices such as the tra-
tum L.) field in California (USA) collected over an entire growing

ditional NDVI. The NDVI is built on normalized red andseason at 1-m spatial resolution. Within-field variability of yield moni-
NIR spectral bands, which are affected by both pigmenttor spatial data collected during harvest was correlated with hyper-
absorption (red) and the scattering by the mediumspectral indices related to crop growth and canopy structure, chloro-
(NIR), a function of the arrangement of elements ofphyll concentration, and water content. The time-series of indices

calculated from the imagery were assessed to understand within-field the canopy (structure). Therefore, NDVI is sensitive to
yield variability in cotton at different growth stages. A K means clus- vegetation greenness and canopy scattering, causing its
tering method was used to perform field segmentation on hyper- relationship with crop growth (Yuzhu, 1990; Benedetti
spectral indices in classes of low, medium, and high yield, and confu- and Rossini, 1993; Plant et al., 2000). For example, Plant
sion matrices were used to calculate the kappa (�) coefficient and et al. (2000) used false color infrared aerial photography
overall accuracy. Structural indices related to LAI [Renormalized to calculate NDVI, studying its relationship to cotton
Difference Vegetation Index (RDVI), Modified Triangular Vegeta-

yield. Defoliation, boll opening, and regrowth controltion Index (MTVI), and Optimized Soil-Adjusted Vegetation Index
in cotton were evaluated with NDVI calculated from(OSAVI)] obtained the best relationships with yield and field segmen-
color infrared digital images (Yang et al., 2003), sug-tation at early growth stages. Hyperspectral indices related to crop
gesting potential applications of remote sensing data forphysiological status [Modified Chlorophyll Absorption Index (MCARI)

and Transformed Chlorophyll Absorption Index (TCARI)] were su- cotton defoliation strategies. In a different study, growth
perior at later growth stages, close to harvest. From confusion matrices conditions and yield variation were mapped in cotton,
and class analyses, the overall accuracy (and kappa) of RDVI at early sorghum [Sorghum bicolor (L.) Moench], and corn (Zea
stages was 61% (� � 0.39), dropping to 39% (� � 0.08) before harvest. mays L.) using three spectral bands and four vegetation
The MCARI chlorophyll index remained sensitive to within-field yield indices calculated from color infrared digital images (Yang
variability at late preharvest stage, obtaining overall accuracy of 51% et al., 2001), showing the applicability of remote sensing
(� � 0.22).

to study within-field variability and growth conditions.
Other successful attempts to relate time series NDVI
images calculated from digital color infrared data with

Remote sensing reflectance imagery provides spa- spatial yield (Yang and Everitt, 2002) demonstrated that
tial and temporal information on cotton plant growth the best relationships occurred at the peak development

and development (Plant et al., 2000). Traditionally, aerial
photography and digital broadband multispectral sen-

Abbreviations: AVNIR, Airborne Visible and Near Infrared; Ca�b,sors have been used to obtain remote sensing informa- chlorophyll a and b; CARI, Chlorophyll Absorption in Reflectance
Index; DGPS, differential global positioning system; LAI, leaf area
index; MCARI, Modified Chlorophyll Absorption Index; MSAVI,Cent. for Spatial Technol. and Remote Sensing (CSTARS), Dep. of
Improved Soil-Adjusted Vegetation Index; MSR, Modified SimpleLand, Air, and Water Resour. (LAWR), One Shields Ave., The Barn,
Ratio; MTVI, Modified Triangular Vegetation Index; NDVI, Normal-Univ. of California, Davis, CA 95616-8671, USA. Received 20 Oct.
ized Difference Vegetation Index; NDWI, Normalized Difference2003. Remote Sensing. *Corresponding author (pzarco@ias.csic.es).
Water Index; NIR, near infrared; OSAVI, Optimized Soil-Adjusted
Vegetation Index; PWI, Plant Water Index; RDVI, RenormalizedPublished in Agron. J. 97:641–653 (2005).

doi:10.2134/agronj2003.0257 Difference Vegetation Index; SAVI, Soil-Adjusted Vegetation Index;
SRWI, Simple Ratio Water Index; TCARI, Transformed Chlorophyll© American Society of Agronomy

677 S. Segoe Rd., Madison, WI 53711 USA Absorption Index; TVI, Triangular Vegetation Index.
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stage in sorghum. In addition, the temporal stability of for precision agriculture purposes, e.g., yield variability
and field segmentation methods.within-field cotton variation was studied with Landsat-

This study presents results obtained when comparingTM imagery for 11 yr, demonstrating a strong degree of
spatial cotton yield data, collected with a yield monitor,stability that enabled the use of temporal remote sensing
with narrow-band indices related to pigment concentra-imagery to derive regions of yield similarity (Boydell
tion, canopy water content, LAI, and canopy structure.and McBratney, 2002). Several other studies showed
The temporal dependence of such narrow-band indiceshigh correlations between broadband NDVI and yield
with yield as function of biochemical and biophysicalfor different crops (Yuzhu, 1990; Benedetti and Rossini,
information were studied for an entire growing season1993) through seasonal integration of NDVI (Denison
with airborne hyperspectral imagery collected bimonthlyet al., 1996; Wiegand et al., 1991) as well as by calculation
at 1-m spatial resolution. Field segmentation techniquesof the fraction of absorbed photosynthetically active
to obtain homogeneous yield classes from hyperspec-radiation (FPAR) from optical remote sensing measure-
tral indices were assessed using unsupervised cluster-ments (Clevers, 1997).
ing methods.Despite these successes for yield and crop status eval-

uation using the NDVI calculated from multispectral
sensors, it is well documented that NDVI data saturate MATERIALS AND METHODS
at high LAI values substantially below the LAI charac-

Hyperspectral Remote Sensing Indices for Crop Statusteristic of high-productivity crops. The NDVI becomes
A potential indicator of the status of vegetation stress issaturated at LAI of 3 to 4 for most ecosystems (Sellers

chlorophyll a and b (Ca�b) content because of its direct roleet al., 1986) while crop LAI often exceeds this value at
in the photosynthetic processes of light harvesting and initia-peak development stages. The NDVI is especially af-
tion of electron transport and its responsiveness to a range offected by dense and multilayered canopies, showing a
crop stresses. In the chloroplast, light energy is harvested andnonlinear relationship with green LAI (Lillesaeter, 1982; processed by two functional units, Photosystem I and II, which

Baret and Guyot, 1991). Moreover, NDVI is affected by produce oxygen and energy through a series of reduction–
other factors such as soil background, canopy shadows, oxidation reactions to transport electrons. Stressed vegetation
illumination, atmospheric conditions, and variation in leaf undergoes various physiological perturbations in the light-

dependent reactions of photosynthesis, including disruptionchlorophyll concentration, requiring uncoupling methods
of electron transfer and structural damage to photosyntheticthrough simulation strategies to assess their impact on
pigments. Differences between healthy and stressed vegeta-predicting green LAI (Haboudane et al., 2002, 2004).
tion in remotely sensed reflectance that are due to changesNew methods that use hyperspectral remote sensing
in Ca�b levels have been detected at the green peak (≈550 nm)enable the calculation of several other narrow-band veg- and over the red edge spectral region (690 to 750 nm) (Rock

etation indices related to biophysical and biochemical et al., 1988; Vogelmann et al., 1993; Carter, 1994), thereby
crop variables, suggested as potentially useful for preci- enabling the feasibility of remote detection of crop stress.
sion agriculture (Deguise et al., 1999; Willis et al., 1999). Chlorophyll a and b and other leaf biochemical constituents
Several new vegetation indices have been proposed that such as dry matter and water content may be used as indicators

of plant stress and nutritional deficiencies caused by N andrelate crop physiological status to hyperspectral data
other elements such as P, K, Fe, Ca, Mn, Zn, and Mg (Marsch-through their relationships to biochemical constituent
ner et al., 1986; Fernández-Escobar et al., 1999; Jolley andconcentrations, such as chlorophyll (Vogelmann et al.,
Brown, 1999; Chen and Barak, 1982; Wallace, 1991; Tagliavini1993; Carter, 1994; Gitelson and Merzlyak, 1996; Zarco-
and Rombolà, 2001). Besides, the estimation of leaf N contentTejada et al., 2001; Haboudane et al., 2002), carotenoids at the canopy level from estimates of total chlorophyll concen-

(Fuentes et al., 2001; Sims and Gamon 2002, 2003), water tration may be obtained because the majority of leaf N is
(Gao, 1996; Peñuelas et al., 1997), cellulose, lignin, and contained in chlorophyll (Daughtry et al., 2000; Yoder and
dry matter (Jacquemoud et al., 1996). These relation- Pettigrew-Crosby, 1995) and ribulose-1-5-bisphosphate car-

boxylase/oxygenase (Rubisco) molecules (Evans, 1983; Evansships are useful for obtaining information about the
and Seemann, 1989; Nakano et al., 1997; Woodrow and Berry,physiological and stress conditions that could potentially
1988). Many studies have demonstrated a direct relationshipaffect crop yield. Indices based on these biochemical
among the rate of photosynthesis, light absorbance, leaf Nattributes may produce more accurate predictive rela-
concentrations, and dry matter production (Alt et al., 2000).tionships that could be extended with greater confidence Monitoring canopy N from hyperspectral techniques has im-

than broadband indicators. In addition, hyperspectral portant implications for fertilization of agricultural crops and
data enable calculation of narrow-band indices using N deposition, which affects C storage and generates vegetation
combined spectral bands that minimize undesired back- injury after prolonged N additions (Schulze et al., 1989) and

increases N losses by gaseous and solute pathways in the C–Nground effects when estimating green LAI (Huete, 1988;
system. A management goal for agriculture is to supply ade-Rondeaux et al., 1996). These hyperspectral vegetation
quate N while minimizing N losses (Daughtry et al., 2000) inindices perform better than traditional broadband in-
the C–N system, besides limiting other economic and environ-dices (such as NDVI), avoiding saturation at high LAI
mental effects (Rejesus and Hornbaker, 1999).(Haboudane et al., 2004). Therefore, hyperspectral re- Attempts to remotely quantify total leaf N are confounded

mote sensing also enables the estimation of crop struc- by the dynamic vertical distribution of N and chlorophyll within
tural variables, such as LAI, which in addition to bio- crop canopies, changes in LAI associated with fluctuations
chemical constituent estimation, may serve as robust in N availability, and phenological shifts. While suboptimal

canopy N is easily detectable in reduced chlorophyll concen-indicators of crop development and physiological status
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Table 1. Vegetation indices for biochemical and leaf area index (LAI) estimation calculated from multispectral and hyperspectral imagery.

Vegetation index Equation Reference

Structural indices
Normalized Difference Vegetation Index NDVI � (RNIR � Rred)/(RNIR � Rred) Rouse et al. (1974)

(NDVI)
Modified Triangular Vegetation Index MTVI1 � 1.2 � [1.2 � (R800 � R550) � 2.5 � (R670 � R550)] Haboudane et al. (2004)

(MTVI1)
Modified Triangular Vegetation Index Haboudane et al. (2004)

MTVI2 �
1.5 � [1.2 � (R800 � R550) � 2.5 � (R670 � R550)]
√(2 � R800 � 1)2 � (6 � R800 � 5 � √R670) � 0.5(MTVI2)

Renormalized Difference Vegetation Index Rougean and Breon (1995)RDVI � (R800 � R670)/√(R800 � R670)
(RDVI)

Simple Ratio Index (SR) SR � RNIR/Rred Jordan (1969); Rouse et al. (1974)

Modified Simple Ratio (MSR) Chen (1996)
MSR �

RNIR/Rred � 1
(RNIR/Rred)0.5 � 1

Modified Chlorophyll Absorption in MCARI1 � 1.2 � [2.5 � (R800 � R670) � 1.3 � (R800 � R550)] Haboudane et al. (2004)
Reflectance Index (MCARI1)

Modified Chlorophyll Absorption in Haboudane et al. (2004)
MCARI2 �

1.5 � [2.5 � (R800 � R670) � 1.3 � (R800 � R550)]
√(2 � R800 � 1)2 � (6 � R800 � 5 � √R680) � 0.5Reflectance Index (MCARI2)

Soil Adjusted Vegetation Index (SAVI) SAVI � (1 � L ) � (R800 � R670)/(R800 � R670 � L ) [L ε (0,1)] Huete (1988); Qi et al. (1994)
Improved SAVI with self-adjustment Qi et al. (1994)

MSAVI �
1
2
�2 � R800 � 1 �factor L (MSAVI)

√(2 � R800 � 1)2 � 8 � (R800 � R670)]
Optimized Soil-Adjusted Vegetation Index OSAVI � (1 � 0.16) � (R800 � R670)/(R800 � R670 � 0.16) Rondeaux et al. (1996)

(OSAVI)
Chlorophyll indices

Greenness Index (G) G � R554/R677 –
Modified Chlorophyll Absorption in MCARI � [(R700 � R670) � 0.2 � (R700 � R550)] � (R700/R670) Daughtry et al. (2000)

Reflectance Index (MCARI)
Transformed CARI (TCARI) TCARI � 3 � [(R700 � R670) � 0.2 � (R700 – R550) � (R700/R670)] Haboudane et al. (2002)
Triangular Vegetation Index (TVI) TVI � 0.5 � [120 � (R750 � R550) � 200 � (R670 � R550)] Broge and Leblanc (2000)
Zarco-Tejada & Miller ZTM � R750/R710 Zarco-Tejada et al. (2001)

Water indices
Normalized Difference Water Index NDWI � (R860 � R1240)/(R860 � R1240) Gao (1996)

(NDWI)
Simple Ratio Water Index (SRWI) SRWI � R858/R1240 Zarco-Tejada et al. (2003)
Plant Water Index (PWI) PWI � R970/R900 Peñuelas et al. (1997)

Red edge spectral parameters

�p �pr � �max(680–750); �p1g � �max(500–600); �p2g � �min(500–600) Hare et al. (1984); Bonham-Carter (1988)
Ro Ro � Rmin(650–700) Hare et al. (1984); Bonham-Carter (1988)
Rs Rs � Rmax(700–770) Hare et al. (1984); Bonham-Carter (1988)
� � � shape parameter as defined by the inverted-Gaussian Hare et al. (1984); Bonham-Carter (1988)

curve-fit model
Other indices mentioned but not used in this study

Simple Ratio Pigment Index (SRPI) SRPI � R430/R680 Peñuelas et al. (1995)
Normalized Phaeophytinization Index NPQI � (R415 � R435)/(R415 � R435) Barnes (1992)

(NPQI)
Photochemical Reflectance Index (PRI) PRI1 � (R528 � R567)/(R528 � R567) PRI2 � (R531 � R570)/(R531 � R570) Gamon et al. (1992)
Normalized Pigment Chlorophyll Index NPCI � (R680 � R430)/(R680 � R430) Peñuelas et al. (1994)

(NPCI)
Carter indices Ctr1 � R695/R420 Ctr2 � R695/R760 Carter (1994); Carter et al. (1996)
Lichtenthaler indices Lic1 � (R800 � R680)/(R800 � R680); Lic2 � R440/R690; Lic3 � Lichtenthaler et al. (1996)

R440/R740; Lic4 � �
680

450

R

Structure Intensive Pigment Index (SIPI) SIPI � (R800 � R450)/(R800 � R650) Peñuelas et al. (1995)
Vogelmann indices Vog1 � R740/R720; Vog2 � (R734 � R747)/(R715 � R726); Vog3 � Vogelmann et al. (1993); Zarco-Tejada

(R734 � R747)/(R715 � R720) ;Vog4 � D715/D705 et al. (1999)
Gitelson and Merzlyak G_M1 � R750/R550 Gitelson and Merzlyak (1997)

G_M2 � R750/R700

Curvature Index (Fluorescence) CUR � (R675·R690)/(R683
2) Zarco-Tejada et al. (2000)

Double-Peak Ratio indices DPR1 � D�p(680–750)/D�0�12; DPR2 � D�p(680–750)/D�0�22; DP21 � Zarco-Tejada et al. (2001)
D�p(680–750)/D703; DP22 � D�p(680–750)/D720

Area Red Edge Peak (ADR) Zarco-Tejada et al. (2001)ADR � �
760

680

D

tration (Schröder et al., 2000), excess N is poorly estimated by Traditional broadband remote sensing methods for vegeta-
tion monitoring rely on the calculation of normalized indicesCa�b concentration (Wood et al., 1993; Dwyer et al., 1995;

Varvel et al., 1997). However, Blackmer et al. (1994) demon- such as NDVI, Simple Ratio Index, Modified Simple Ratio
(MSR), and the Greenness Index as indicators of LAI, a criti-strated that reflectance measured at 550 nm provided a good

correlation between leaf N and chlorophyll determinations cal parameter for estimating evapotranspiration, photosynthe-
sis, primary productivity, and C cycling (Running et al., 1999).over a range of N availabilities from deficient to abundant.
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Fig. 1. Ikonos image obtained on 7 July 2001 showing the cotton field
used for this study in upper center of the frame. The coordinate
grid is Universal Transverse Mercator, Zone 11.

Leaf area index for many crops and forests often exceeds the
saturated NDVI estimates for LAI (Sellers et al., 1986), mak-
ing these predicted LAI greatly underestimate the fluxes of
CO2 and H2O and inaccurately estimate biomass accumu-
lation.

On the other hand, several hyperspectral indices track and
quantify chlorophyll concentration (Vogelmann et al., 1993;
Gitelson and Merzlyak, 1997; Carter, 1994; Zarco-Tejada et al.,
2001), allowing remote detection of vegetation stress and map-
ping through the chlorophyll content variation (Zarco-Tejada
et al., 1999). These physiologically based vegetation indices are,
among others (see Zarco-Tejada, 2000, and Zarco-Tejada
et al., 2001, for a full review) (Table 1), visible ratios such
as the Simple Ratio Pigment Index (SRPI), the Normalized
Phaeophytinization Index (NPQI), the Photochemical Reflec-
tance Index (PRI), Normalized Pigment Chlorophyll Index
(NPCI), Carter indices, the Greenness Index (G), Lichten-
thaler indices in the visible/NIR, and the Structure Intensive
Pigment Index (SIPI). Ratio indices of red edge reflectance
calculated in the 690- to 750-nm region are Vogelmann indices,
Gitelson & Merzylak, Carter, Curvature Index, and calcula- Fig. 3. Reflectance spectral measurements obtained from the air-
tion of the area of the derivative under the red edge. Finally, borne image showing two areas of low and high growth. This black
spectral and derivative red edge indices are the red edge inflec- and white reproduction is of a AVNIR image color composite of
tion wavelengths and maximum chlorophyll depth wavelength, band centers at 454.92, 455.00, and 804.12 nm.
�p and �o, respectively, and the shape parameter (�) using in-
verted Gaussian curve fitting of the red edge (Miller et al., Vegetation Index (SAVI) (Huete, 1988) and OSAVI (Ron-

deaux et al., 1996) were proposed as soil-line vegetation indices1990), as well as other spectral indices calculated from deriva-
tive analysis such as the double-peak indices DPR1, DPR2, that could be combined with MCARI to reduce contributions

from background reflectance (Daughtry et al., 2000). As anDP21, and DP22 (Zarco-Tejada et al., 2001).
In agricultural canopies, with large spectral contributions example, Ca�b was successfully estimated for corn canopies at

different growth stages using the combined TCARI/OSAVIby the soil background and LAI variation in different growth
stages, combined indices have been proposed to minimize index, proving its robustness to LAI and background influence

variations (Haboudane et al., 2002).background soil effects while maximizing sensitivity to Ca�b.
The Chlorophyll Absorption in Reflectance Index (CARI) Besides estimating Ca�b concentration, several studies dem-

onstrated the existing link between leaf-level reflectance over(Kim et al., 1994) was shown to reduce the variability of pho-
tosynthetically active radiation due to nonphotosynthetic ma- the 400- to 2500-nm spectral region and the amount of water

in the leaf through optical indices, regression analysis, andterials. The MCARI (Daughtry et al., 2000) was a modification
of CARI to minimize the combined effects of the soil reflec- radiative transfer modeling (Gausman et al., 1970; Allen et al.,

1971; Hunt et al., 1987; Carter, 1991, 1993; Danson et al., 1992;tance and the nonphotosynthetic materials. The Soil-Adjusted
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Fig. 4. Time series of (a and b) hyperspectral reflectance and (c and d) chlorophyll-related indices (TCARI), leaf area index related indices
(RDVI and NDVI), and OSAVI calculated for areas of (a and c) low and (b and d) high growth development for the entire growing season.

Aldakheel and Danson, 1997; Jacquemoud and Baret, 1990; Hyperspectral Airborne Acquisitions
Ceccato et al., 2001). The effects of water content on leaf re- and Field Data Collection
flectance were studied by Carter (1991), who showed that

Cotton Study Site Selectionsensitivity to water content was greatest in spectral bands
centered at 1450, 1940, and 2500 nm where liquid water has The cotton study site was located on the western side of the
major absorption features. Indirect effects of water content northern San Joaquin Valley of California, USA. This highly
on reflectance were also found at 400 nm and in the red edge fertile region is well known as a top producer of cotton, garlic
at 700 nm (Filella and Peñuelas, 1994). Other studies demon- (Allium sativum L.), tomato (Lycopersicon esculentum Mill.),
strated that leaf-level optical indices and ratios centered at pistachio (Pistacia vera L.), alfalfa (Medicago sativa L.), hay,
the secondary water absorption bands at 940 and 1200 nm and grain. The site is a NASA/USDA Ag20/20 Demonstration
obtained good correlation with leaf water thickness (Ustin Precision Agriculture research site, located near the city of
et al., 1998; Gao and Goetz, 1995). Peñuelas et al. (1997) de- Lemoore in Kings County. This Ag20/20 cotton project involves
veloped the Plant Water Index (PWI, R970/R900), Gao (1996) collaborative research from University of California–Davis,
developed the Normalized Difference Water Index (NDWI) University of California Cooperative Extension and Field Sta-
calculated as (R860–R1240)/(R860�R1240) and Zarco-Tejada et al. tions agents, USDA, farm advisors, and commercial vendors
(2003) the Simple Ratio Water Index (SRWI, R858/R1240). in precision agriculture. The cotton field of interest is 36.6� N

Other indices developed to avoid saturation at high LAI lat and 120.0� W long, denoted in the upper center of an
levels and yet be sensitive to chlorophyll concentration changes Ikonos image collected in July 2001 (Fig. 1).
were also tested in this study. These indices, such as MTVI2 The soils in the study area formed in alluvial deposits from
and MCARI2 among others (Table 1), are discussed in depth Cretaceous marine sediments of the California Coast Range

to the west and alluvium from the Kings River emanatingin Haboudane et al. (2004).
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Table 2. Correlation coefficients calculated between hyperspectral indices and within-field yield data for all images acquired during the
growing season.

Index 20 June 5 July 11 July 25 July 31 July 8 Aug. 21 Aug. 28 Aug. 4 Sept. 27 Sept. 11 Oct. 17 Oct.

Structural indices
NDVI 0.54 0.59 0.61 0.56 0.56 0.48 0.46 0.45 0.45 0.22 0.01 0.06
MTVI1 0.59 0.57 0.60 0.57 0.55 0.51 0.49 0.47 0.47 0.20 0.04 0.10
MTVI2 0.59 0.59 0.61 0.57 0.56 0.51 0.49 0.47 0.47 0.20 0.03 0.09
RDVI 0.59 0.61 0.61 0.58 0.53 0.52 0.49 0.48 0.47 0.22 0.03 0.10
SR 0.49 0.56 0.59 0.54 0.56 0.48 0.46 0.45 0.43 0.22 0.01 0.05
MSR 0.51 0.57 0.60 0.55 0.57 0.49 0.47 0.46 0.44 0.22 0.01 0.06
MCARI1 0.59 0.57 0.60 0.57 0.55 0.51 0.49 0.47 0.47 0.21 0.05 0.13
MCARI2 0.59 0.58 0.60 0.57 0.56 0.51 0.49 0.47 0.47 0.22 0.05 0.14
OSAVI 0.57 0.61 0.61 0.57 0.58 0.51 0.48 0.48 0.47 0.22 0.03 0.09
MSAVI 0.59 0.59 0.61 0.57 0.57 0.51 0.49 0.48 0.47 0.22 0.05 0.12

Chlorophyll indices

R750/R710 0.55 0.50 0.56 0.56 0.57 0.49 0.48 0.43 0.40 0.04 �0.08 0.03
G 0.37 0.48 0.58 0.51 0.55 0.44 0.42 0.41 0.40 0.07 �0.05 �0.02
MCARI 0.51 0.56 0.52 0.52 0.54 0.47 0.43 0.45 0.47 0.43 0.27 0.08
TCARI 0.52 0.57 0.50 0.52 0.52 0.47 0.44 0.45 0.48 0.41 0.27 0.08
TCARI/OSAVI 0.43 0.42 0.03 0.18 0.24 0.33 0.13 0.18 0.19 0.20 0.29 0.07
TVI 0.59 0.57 0.60 0.56 0.54 0.51 0.48 0.47 0.47 0.17 0.02 0.06
Ca�b f(TCARI/OSAVI) �0.02 �0.31 �0.06 �0.15 �0.09 �0.28 �0.09 �0.13 �0.11 �0.11 �0.29 �0.07

Water indices
mNDWI 0.06 0.07 0.15 0.19 0.17 0.16 0.19 0.13 0.11 �0.14 �0.09 �0.14
mSRWI 0.06 0.06 0.15 0.19 0.17 0.15 0.19 0.13 0.11 �0.14 �0.08 �0.14
PWI 0.02 0.14 0.30 0.35 0.37 0.32 0.33 0.31 0.30 0.03 �0.07 �0.12

Red edge spectral parameters

�o 0.02 0.40 0.34 0.52 0.08 0.40 0.42 0.40 0.34 0.00 �0.09 0.00
�p �0.05 0.07 0.26 0.34 0.04 0.29 0.34 0.29 0.19 �0.09 �0.14 0.08
Ro �0.23 �0.22 �0.50 �0.52 �0.52 �0.42 �0.42 �0.33 �0.41 �0.22 0.02 0.04
Rs 0.41 0.41 0.50 0.52 0.50 0.50 0.47 0.46 0.45 0.13 0.11 0.28
� �0.05 �0.16 0.10 �0.31 �0.25 �0.26 �0.19 �0.28 �0.27 �0.13 �0.07 0.08

Combination indices
LAI (MCARI2)·Cab f(TC/OS) 0.01 0.50 0.52 0.49 0.49 0.48 0.45 0.42 0.42 0.08 �0.10 0.01
LAI (MTVI2) 0.55 0.53 0.55 0.48 0.47 0.46 0.44 0.42 0.44 0.20 0.03 0.08
LAI (MCARI2) 0.56 0.52 0.55 0.48 0.47 0.46 0.44 0.42 0.44 0.22 0.04 0.12
LAI (MTVI2)·Cab f(TC/OS) 0.01 0.51 0.52 0.49 0.49 0.47 0.45 0.42 0.42 0.08 �0.10 0.00
MCARI2·(TCARI/OSAVI) 0.54 0.56 0.51 0.53 0.51 0.47 0.45 0.46 0.48 0.41 0.27 0.10
MCARI2/(TCARI/OSAVI) 0.00 0.08 0.25 0.28 0.33 0.28 0.47 0.35 0.27 0.01 �0.09 0.00
NDVI·(TCARI/OSAVI) 0.51 0.56 0.50 0.50 0.52 0.46 0.42 0.43 0.47 0.40 0.24 0.07
NDVI·(TCARI/OSAVI)·PWI 0.50 0.55 0.53 0.50 0.51 0.45 0.42 0.43 0.47 0.39 0.20 0.05
MCARI·(TCARI/OSAVI)·PWI 0.54 0.55 0.54 0.52 0.50 0.46 0.44 0.45 0.48 0.39 0.23 0.09

from the Sierra Nevada mountain range to the east in aridic and a length of 1- to 5-s increments of DGPS collection, which
is integrated with the speed of the harvester. The yield pixelsand aquic soil moisture regimes. Hydrology strongly influences

soil characteristics in the region. In many areas, including were approximately 4.5 m2. The yield and position data were
displayed as raster maps using manufacturer-supplied map-the study site, perched ground water over deep clay layers

transports salts from the upper alluvial fans and concentrates ping software in the on-board computer and downloaded as
ASCII text and database files. The instantaneous yield datathem in the lower fans, basin, and basin rim, requiring preci-

sion water and drainage management. The soils in the studied are shown in Fig. 2 (see page 650), revealing the spatial vari-
ability in yield.field are clay loam surfaces of coarse-loamy, mixed (calcare-

ous), thermic Typic Torriorthents and fine, montmorillonitic, In addition to yield data, the grower provided detailed infor-
mation on farming practices, including fertilizer and irrigationthermic Typic Natragrids. They are very deep, well-drained

and moderately well-drained soils though the permeability is schedules. Fertilizer recommendations and applications were
based on soil and petiole testing for maximum yields andvery slow or moderately slow (USDA-NRCS, 1978).
applied to the entire field. Irrigation was applied every 2 to
3 wk depending on the outcome of frequent leaf water reten-Cotton Yield and Management Data Collection
tion pressure measurements, which were timed to reduce stress

Yield data were collected at harvest using a cotton yield during the growing season. The last irrigation was applied on
monitor (Model AG700, AGRIplan, Stow, MA, USA; www. 18 Aug. 2001, before the 21 Oct. 2001 harvest.
agriplaninc.com; verified 28 Jan. 2005). The monitor measures
the flow of the cotton in the chute using infrared light beams, Airborne Hyperspectral Imagery Acquisitioncalculating the momentary yield for the differential global
positioning system (DGPS) position. The accuracy of the yield An airborne campaign was conducted at bimonthly inter-

vals from June until October 2001 with the AVNIR hyperspec-estimates range from 95 and 98%, measured in the field in
the calibration process and validated with trials conducted tral sensor (OKSI, Inc., Torrance, CA, USA). The AVNIR

images acquired at 1500 m above ground level obtained 1-msimultaneously. The DGPS positions were instantaneously dif-
ferentiated with Wide Area Augmentation System (WAAS) spatial resolution with 60 bands, covering the 430- to 1012-nm

spectral range at 10-nm bandwidth. The sensor provided 652data for submeter accuracy. The yield pixel width is a function
of the number and width of the cotton rows picked by har- cross-track pixels at 12 bits of radiometric resolution. A total of

12 images were acquired over the 2001 growing season, withvester, with the yield weight averaged over the pixel width
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Fig. 5. Correlation coefficients (r ) obtained between spatial yield data and hyperspectral indices as function of time. The best correlation
coefficient for any index is labeled MAX compared with indices (a) NDVI, RDVI, and MTVI1; (b) MCARI, TCARI, and OSAVI; (c) red
edge parameters �p, �o, and Rs; and (d) water indices PWI, mNDWI, mSRWI.

dates 20 June, 5 July, 11 July, 25 July, 31 July, 8 Aug., 21 Aug., of spectral reflectance and index calculations. Low growth
areas were a mixture of stunted vegetation and soil back-28 Aug., 4 Sept., 27 Sept., 11 Oct., and 17 Oct. Imagery was

processed to at-sensor radiance, and atmospheric calibration ground, greatly diminishing the reflectance due to the aggrega-
tion of vegetation, soil, and shadow components at this openwas performed using the empirical line method with white

and black reference calibration panels located immediately canopy stage. Areas of advanced development at the closed-
canopy stage did not exhibit soil background effects in theoutside the field. Images were georeferenced and registered

using four white panels placed at the corners of the field spectra and had higher reflectance in the NIR and lower reflec-
tance in the visible region than open canopies due to the higherwith submeter DGPS locations. Geometric distortions in the

airborne imagery are normally due to variations in altitude chlorophyll and carotenoid absorptions. The spectra and indices
from these locations, when sequenced by date, let us study theand attitude (roll, pitch, and yaw) at the time of data acquisi-

tion. More than 100 ground control points were collected from effects of crop development and growth stage throughout the
growing season on the hyperspectral signatures.each image at field boundaries and ground features inside the

fields, using a thin plate spline transformation for registration
and obtaining a georeferencing error less than the pixel size Analysis Methods(1 m). Data sets registered to a common source of ground
control points allowed comparison among hyperspectral imag- Coregistered multidate hyperspectral images and the spatial

yield data, collected at harvest and resampled to a commonery acquired on separate dates and the spatial yield image. A
time series of hyperspectral imagery was produced that en- 1-m pixel size, were compared. Image processing and statistical

analysis were conducted using ENVI 3.6 software (Researchabled a temporal study of the full spectra of each pixel and
the calculation of vegetation indices at 1-m spatial resolution. Systems, Inc., Boulder, CO, USA).

A selection of 34 hyperspectral indices related to LAI, Ca�bThe poor and healthy growth stands within the field were
captured by the imagery (Fig. 3), allowing spatial extraction (therefore, a potential indicator of leaf N status), canopy water
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Table 3. Kappa (�) and overall accuracy (%) obtained between airborne hyperspectral imagery and yield spatial data using K means
classification clustering method into three classes of low, medium, and high yield.

Index 20 June 5 July 11 July 25 July 31 July 8 Aug. 21 Aug. 28 Aug. 4 Sept. 27 Sept. 11 Oct. 17 Oct.

kappa (�)
NDVI 0.28 0.36 0.36 0.30 0.30 0.11 0.15 0.19 0.20 0.08 �0.01 �0.01
RDVI 0.35 0.39 0.39 0.34 0.30 0.27 0.26 0.25 0.26 0.08 0.00 0.00
MCARI 0.28 0.34 0.28 0.27 0.31 0.22 0.21 0.24 0.27 0.22 0.13 0.01
PWI 0.01 0.03 0.12 0.15 0.15 0.13 0.14 0.12 0.11 0.00 �0.03 �0.04
OSAVI 0.33 0.40 0.38 0.33 0.34 0.24 0.24 0.25 0.24 0.08 0.00 0.00
NDVI, RDVI, PWI, OSAVI 0.31 0.40 0.37 0.33 0.36 0.24 0.24 0.25 0.24 0.08 �0.01 �0.01
60 bands 0.09 0.14 0.28 0.25 0.25 0.25 0.24 0.22 0.23 0.14 0.16 0.16

overall accuracy, %
NDVI 53.80 58.60 58.97 54.43 54.41 39.84 43.04 46.42 46.69 39.42 33.21 31.72
RDVI 58.09 61.01 61.24 58.14 56.00 53.18 52.64 52.26 52.27 39.85 33.89 33.07
MCARI 53.90 57.59 53.66 53.14 55.64 50.71 49.09 51.28 52.98 50.71 43.37 35.36
PWI 36.00 35.70 43.12 45.11 46.00 44.83 45.09 43.78 42.82 35.52 33.56 32.98
OSAVI 56.97 61.93 60.48 56.91 57.90 50.57 49.86 51.67 50.14 39.74 33.94 32.55
NDVI, RDVI, PWI, OSAVI 55.85 61.64 60.21 56.80 58.74 50.51 50.20 51.70 50.18 39.41 33.33 32.80
60 bands 41.12 42.94 53.91 51.48 52.08 52.47 50.69 49.74 50.10 42.66 43.30 46.22

content, and red edge parameters were calculated from the and 11 July. At later stages, less strong relationships be-
hyperspectral reflectance images (Table 1). A time series of re- tween yield and the vegetation indices were found, sug-
flectance spectra and hyperspectral indices were derived from gesting that within-field yield variability may be captured
the imagery for representative areas of high and low growth, with remote sensing indices at early stages of develop-
showing the effects of crop development and growth stage on ment. The best relationships with yield (with r � 0.6) werethe hyperspectral signature. Variation in hyperspectral reflec-

found for indices MTVI1, MTVI2, RDVI, MSR, NDVI,tance, chlorophyll-related indices (TCARI), LAI-related indi-
TVI (Triangular Vegetation Index), MCARI1, MCARI2,ces (RDVI and NDVI), and OSAVI were calculated for these
OSAVI, and MSAVI (improved SAVI). Water-basedareas of low- and high-growth development (Fig. 3) over the
indices and red edge indices did not perform well, ob-entire growing season (Fig. 4). The lower NIR reflectance and

a decrease in absorption in the visible spectrum after the last taining lower success (r 	 0.4). Combined indices be-
irrigation were due to reductions in green vegetation and a tween structural and chlorophyll indices, such as NDVI ·
corresponding increase in the dry matter of the cotton canopy (TCARI/OSAVI), did not obtain better results than
before harvest. single indices alone. Among the red edge spectral pa-

Coefficients from correlation analysis were obtained from rameters, �o and Rs produced the best results (r � 0.5)
comparison of the within-field spatial yield data and each cal- but were inferior in all cases to OSAVI, MCARI, orculated index on each acquisition date over the growing season

RDVI indices.(Table 2). The best indices for obtaining yield variability infor-
Figure 5 shows the maximum correlation coefficientmation in cotton were assessed, producing a time dependence

among the indices obtained for each image date (labeledfor specific indices.
as MAX) as well as indices NDVI, RDVI, and MTVI1To study the capability of the proposed indices for deriv-

ing within-field areas of homogeneous yield, an unsupervised (Fig. 5a); MCARI, TCARI, and OSAVI (Fig. 5b); �p, �o,
K-means method was applied to the spatial yield data and and Rs (Fig. 5c); and PWI, modified NDWI (mNDWI),
all hyperspectral image indices. The K-means unsupervised and modified SRWI (mSRWI) (Fig. 5d). Table 2 and
classification method calculates initial class means that are Fig. 5a and Fig. 5b indicate that structural indices related
evenly distributed in the data space, iteratively clustering the to LAI (NDVI, RDVI, and MTVI1) and OSAVI obtained
pixels into the nearest class using a minimum distance tech- better results at earlier and middle growth stages (untilnique (Tou and González, 1974). A total of three classes were

30 August). At later stages, from the 4 Sept. date until har-obtained using the K-means clustering method, deriving areas
vest, structural indices such as NDVI poorly captured theof high, medium, and low yield. Confusion matrices were cal-
yield variability, with low correlation coefficients reducedculated for all index images, combinations of indices, and
due to canopy dry down and defoliant application (Ta-individual reflectance bands using the yield data set as the

ground truth. The confusion matrix, overall accuracy value, ble 2). At such an advanced growth stage, chlorophyll
and the kappa (
) coefficient, which gives an overall accuracy indices such as MCARI and TCARI performed better
assessment for the classification based on commission and because they do not appear to be as sensitive to the
omission errors for all classes (Richards, 1994), were calculated loss of turgor and leaf drop (Fig. 5b). The differential
to evaluate the index performance and the appropriate time behavior of indices as function of time and, therefore,for the best separation of the field into management zones as

to different growth stages may indicate that structuralfunction of yield variability.
indices related to canopy light scattering and growth
are better indicators of spatial yield variability at early

RESULTS AND DISCUSSION stages while chlorophyll-related indices are more suit-
able closer to harvest.Correlation coefficients (r) obtained between all hy-

The ground-truth spatial yield image collected withperspectral indices and yield data for all images acquired
the yield monitor and the images of hyperspectral indi-over the entire season are shown in Table 2. Results in-
ces calculated for each date in the time series were useddicate that the relationships obtained between vegetation
for field segmentation. Results of 
 and overall accuracyindices and spatial yield data varied over time, obtaining

the best relationships in early growth stages between 5 calculated between segmented field for each vegetation
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for field segmentation at later stages close to harvest,
being superior to NDVI and structural indices at such
advanced growth (on 27 Sept., results were 
 � 0.22
and 50.7% accuracy with MCARI vs. 
 � 0.01 and
39.4% accuracy with NDVI). The segmentation accu-
racy decreased with time for OSAVI and RDVI; never-
theless, they obtained better segmentation accuracies
than the NDVI index (Fig. 6). The three yield classes
are shown for the ground-truth image (Fig. 7a), from
the 60 reflectance bands (Fig. 7b), NDVI (Fig. 7c), and
OSAVI (Fig. 7d) at the time of maximum accuracy
(5 July). The close visual agreement between ground-
measured yield monitor classes and OSAVI classes can
be seen, yielding better results than when NDVI is used
for segmentation. A large overestimation of classes and
poor field segmentation were obtained with direct com-
parison of reflectance bands, demonstrating that hyper-
spectral indices built on specific bands related to crop
condition were better suited in this experiment for seg-
menting the field into zones of homogeneous yields due
to their lower sensitivity to undesirable effects through
normalizing the image.

The 
 and overall accuracies shown in Table 3 dem-
onstrate that the accuracies for the field segmentation
of homogeneous yield classes are time dependent. The
variation in class size and distribution by date for the
OSAVI index segmentation is shown in Fig. 8 compared
with homogeneous classes calculated from the spatial
yield image. It suggests that a large variation of class size
and distribution is a function of the time of acquisition,
with better agreement between index-derived classes
and within-field yield variability at earlier and middle
growth stages.

CONCLUSIONS
This study indicates that new hyperspectral indices

related to vegetation structure and canopy chlorophyll
concentration provide complementary information about
within-field yield variability to traditionally used indices,
such as NDVI. Results show that the relationships be-
tween hyperspectral indices and spatial yield variability
depend on the time of image acquisition, with the best

Fig. 6. Kappa coefficient (�) and overall accuracy calculated between relationships at mid- and earlier growth stages. Within-
segmented yield image data and airborne imagery from spectral field yield variability was best captured at earlier stagesindices using an unsupervised K-means clustering method to pro-

with indices MTVI1, MTVI2, NDVI, RDVI, MSR, TVI,duce low-, medium-, and high-yield classes.
MCARI1, MCARI2, OSAVI, MCARI and MSAVI, with
water-based indices and red edge indices performingindex and ground-truth yield classes are shown in
poorly. It suggests that water content indices are unableTable 3 and Fig. 6 for a selected set of the best-per-
to capture canopy variability related to cotton yieldforming indices. The RDVI and OSAVI indices pro-
spatial distribution. Structural indices related to LAIduced the best results, with overall accuracy greater
(NDVI, RDVI, MTVI1, OSAVI) obtained better re-than 60% and 
 � 0.4. Water indices did not perform
sults at earlier and middle growth stages than at laterwell for segmenting the field, obtaining 
 � 0.1 with
stages before harvesting. At advanced growth stages andthe PWI, indicating that water indices are not good
preharvest, chlorophyll-related indices such as MCARIindicators of yield variability. Better results were ob-
and TCARI were better indicators of canopy heteroge-tained in all cases with optical indices than with the 60
neity associated with yield variability. The behavior ofabsolute reflectance bands used as input for the segmen-
indices as a function of growth stage indicate that struc-tation method (
 � 0.4 with RDVI vs. 
 � 0.14 with
tural indices related to canopy scattering and growththe 60 absolute reflectance bands). Chlorophyll indices

such as MCARI again obtained the best performance are better indicators of field variability at earlier stages,
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for assessment. The RDVI and OSAVI indices obtained
the best results for field segmentation in homogeneous
yield classes, with overall accuracy � 60% and 
 � 0.4
while water indices performed poorly (
 � 0.1). Better
results were obtained with optical indices when used as
inputs for the classification, demonstrating that indices
are superior to absolute reflectance bands for field seg-
mentation. Optical indices have the advantage of mini-
mizing undesirable effects through normalizing the image
although in some cases, the indices alone may prevent the
use of information from other spectral regions not used
in the calculation of the index. At advanced growth stages
close to harvest, chlorophyll indices such as MCARI pro-
duced the best performance for field segmentation and
better captured the yield variability, being superior to
structural indices related to LAI.

This research, using a temporal data set of hyper-
spectral imagery over the entire season, indicates thatFig. 2. Yield image for the cotton field, collected by the AGRIplan
the accuracies for the field segmentation into zones ofAG700 yield monitor, at 4.5-m spatial resolution.
homogeneous yield are, as expected, time dependent,

with chlorophyll-related indices more suitable at stages showing the time dependence of different indices as the
closer to harvest. cotton crop develops. Although similar relationships be-

The unsupervised K-means clustering technique used
to test field segmentation methods with different hyper-
spectral indices and reflectance bands produced three
classes of potentially low, medium, and high yield. Classes
obtained from the different spectral indices were com-
pared with yield classes using a confusion matrix that
calculated the overall accuracy and kappa coefficient

Fig. 7. Unsupervised K means clustering method for low (red)-, me-
dium (green)-, and high (blue)-yield classes calculated from the
hyperspectral airborne image that obtained the highest correlation
with yield (5 July 2001). It shows better performance for OSAVI Fig. 8. Time series of segmented imagery using the OSAVI index for
than NDVI index, with poor segmentation performance when 60 low (red)-, medium (green)-, and high (blue)-yield through K-means
absolute reflectance bands are used. Airborne image pixels shown method, enabling the visual comparison with classes calculated from
are only those where yield data were collected with the yield the spatial yield data. Airborne image pixels shown are only those

where yield data were collected with the yield monitor.monitor.
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Sens. Environ. 12:247–254. canopy water content of chaparral shrubs using optical methods.

Marschner, H., V. Romheld, and M. Kissel. 1986. Different strategies Remote Sens. Environ. 65:280–291.
in higher plants in mobilization and uptake of iron. J. Plant Varvel, G.E., J.S. Schepers, and D.D. Francis. 1997. Ability of in-
Nutr. 9:695–713. season correction of nitrogen deficiency in corn using chlorophyll

Miller, J.R., E.W. Hare, and J. Wu. 1990. Quantitative characterization meters. Soil Sci. Soc. Am. J. 61:1233–1239.
of the vegetation red edge reflectance: An inverted-Gaussian Vogelmann, J.E., B.N. Rock, and D.M. Moss. 1993. Red edge spectral
model. Int. J. Remote Sens. 11:1755–1773. measurements from sugar maple leaves. Int. J. Remote Sens. 14:

Nakano, H., A. Makino, and T. Mae. 1997. The effect of elevated 1563–1575.
partial pressures of CO2 on the relationship between photosynthetic Wallace, A. 1991. Rational approaches to control of iron deficiency
capacity and N content in rice leaves. Plant Physiol. 115:191–198. other than plant breeding and choice of resistant cultivars. Plant
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Peñuelas, J., J. Piñol, R. Ogaya, and I. Filella. 1997. Estimation of Paul, MN. 19–22 July 1998. ASA, CSSA, and SSSA, Madison, WI.
plant water concentration by the reflectance Water Index (R900/ Wood, C.W., D.W. Reeves, and D.G. Himelrick. 1993. Relationships
R970). Int. J. Remote Sens. 18:2869–2875. between chlorophyll meter readings and leaf chlorophyll concen-

Plant, R.E., D.S. Munk, B.R. Roberts, R.L. Vargas, D.W. Rains, R.L. tration, N status, and crop yield: A review. Proc. Agron. Soc.
Travis, and R.B. Hutmacher. 2000. Relationships between remotely N. Z. 23:1–9.
sensed reflectance data and cotton growth and yield. Trans. ASAE Woodrow, I.E., and J.A. Berry. 1988. Enzymatic regulation of photo-
43(3):535–546. synthetic CO2 fixation in C3 plants. Annu. Rev. Plant Physiol. Plant

Qi, J., A. Chehbouni, A.R. Huete, Y.H. Keer, and S. Sorooshian. Mol. Biol. 39:533–594.
1994. A modified soil vegetation adjusted index. Remote Sens. Yang, C., J.M. Bradford, and C.L. Wiegand. 2001. Airborne multispec-
Environ. 48:119–126. tral imagery for mapping variable growing conditions and yields

Rejesus, R.M., and R.H. Hornbaker. 1999. Economic and environ- of cotton, grain sorghum, and corn. Trans. ASAE 44(6):1983–1994.
Yang, C., and J.H. Everitt. 2002. Relationships between yield monitormental evaluation of alternative pollution-reducing nitrogen man-



R
ep

ro
du

ce
d 

fr
om

 A
gr

on
om

y 
Jo

ur
na

l. 
 P

ub
lis

he
d 

by
 A

m
er

ic
an

 S
oc

ie
ty

 o
f A

gr
on

om
y.

  A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

ZARCO-TEJADA ET AL.: TEMPORAL AND SPATIAL RELATIONSHIPS 653

data and airborne multidate multispectral digital imagery for grain Zarco-Tejada, P.J., J.R. Miller, G.H. Mohammed, and T.L. Noland.
2000. Chlorophyll fluorescence effects on vegetation apparent re-sorghum. Precis. Agric. 3:373–388.
flectance: I. Leaf-level measurements and simulation of reflectanceYang, C., S.M. Greenberg, J.H. Everitt, T.W. Sappington, and J.W.
and transmittance spectra. Remote Sens. Environ. 74(3):582–595.Norman, Jr. 2003. Evaluation of cotton defoliation strategies using

Zarco-Tejada, P.J., J.R. Miller, G.H. Mohammed, T.L. Noland, andairborne multispectral imagery. Trans. ASAE 46(3):869–876.
P.H. Sampson. 1999. Canopy optical indices from infinite reflec-Yoder, B.J., and R.E. Pettigrew-Crosby. 1995. Predicting nitrogen and
tance and canopy reflectance models for forest condition monitor-chlorophyll content and concentrations from reflectance spectra
ing: Application to hyperspectral CASI data. In IEEE 1999 Int.(400–2500 nm) at leaf and canopy scales. Remote Sens. Environ.
Geosci. and Remote Sensing Symp., IGARSS’99, Hamburg, Ger-53:199–211.
many. 28 June–2 July 1999. Proc. of the IEEE, Piscataway, NJ.Yuzhu, L. 1990. Estimating production of winter wheat by remote Zarco-Tejada, P.J., J.R. Miller, G.H. Mohammed, T.L. Noland, and

sensing and unified ground network: II. Nationwide estimation P.H. Sampson. 2001. Scaling-up and model inversion methods with
of wheat yields. p. 149–158. In M.D. Steven and J.A. Clark (ed.) narrow-band optical indices for chlorophyll content estimation in
Applications of remote sensing in agriculture. Butterworths, London. closed forest canopies with hyperspectral data. IEEE Trans. Geo-

Zarco-Tejada, P.J. 2000. Hyperspectral remote sensing of closed forest sci. Remote Sens. 39(7):1491–1507.
canopies: Estimation of chlorophyll fluorescence and pigment con- Zarco-Tejada, P.J., C.A. Rueda, and S.L. Ustin. 2003. Water content
tent. Ph.D. diss. Graduate Program in Earth and Space Sci., York estimation in vegetation with MODIS reflectance data and model

inversion methods. Remote Sens. Environ. 85(1):109–124.Univ., Toronto, ON, Canada.


