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A B S T R A C T

In semi-arid conditions, nitrogen (N) is the main limiting factor of crop yield after water, and its accurate
quantification remains essential. Recent studies have demonstrated that solar-induced chlorophyll fluorescence
(SIF) quantified from hyperspectral imagery is a reliable indicator of photosynthetic activity in the context of
precision agriculture and for early stress detection purposes. The role of fluorescence might be critical to our
understanding of N levels due to its link with photosynthesis and the maximum rate of carboxylation (Vcmax)
under stress. The research presented here aimed to assess the contribution played by airborne-retrieved solar-
induced chlorophyll fluorescence (SIF) to the retrieval of N under irrigated and rainfed Mediterranean condi-
tions. The study was carried out at three field sites used for wheat phenotyping purposes in Southern Spain
during the 2015 and 2016 growing seasons. Airborne campaigns acquired imagery with two hyperspectral
cameras covering the 400–850 nm (20 cm resolution) and 950–1750 nm (50 cm resolution) spectral regions. The
performance of multiple regression models built for N quantification with and without including the airborne-
retrieved SIF was compared with the performance of models built with plant traits estimated by model inversion,
and also with standard approaches based on single spectral indices. Results showed that the accuracy of the
models for N retrieval increased when chlorophyll fluorescence was included (r2LOOCV≥ 0.92; p < 0.0005) as
compared to models only built with chlorophyll a+ b (Cab), dry matter (Cm) and equivalent water thickness (Cw)
plant traits (r2LOOCV ranged from 0.68 to 0.77; p < 0.005). Moreover, nitrogen indices (NIs) centered at 1510 nm
yielded more reliable agreements with N concentration (r2= 0.69) than traditional chlorophyll indices (TCARI/
OSAVI r2= 0.45) and structural indices (NDVI r2= 0.57) calculated in the VNIR region. This work demonstrates
that under irrigated and non-irrigated conditions, indicators directly linked with photosynthesis such as chlor-
ophyll fluorescence improves predictions of N concentration.

1. Introduction

Nitrogen (N) content plays an important role in the plant life cycle.
In most situations, N is the major limiting factor of crop yield after
water deficiency, and it is an essential element in plant growth (Lemaire
et al., 2008). It is well documented that an adequate N supply is crucial
for the maintenance of plant biochemistry quality (Nobel, 2009), and
that N deficiency greatly changes the photosynthetic capacity, leading
to a decrease in photosynthetic quantum yield and light-saturated
photosynthetic rate (Khamis et al., 1990). N management of crops has
important economic impacts and environmental implications, although

nitrogen overfertilization is widely used by farmers as a form of in-
surance against uncertain soil fertility (Tremblay et al., 2012). In par-
ticular, a higher N supply causes significant effects on the environment.
Hence, an adequate N management strategy is needed to guide preci-
sion diagnosis of soil status and efficient crop management.

Traditionally, the N concentration is estimated using chemical
analyses based on leaf tissue, such as Kjeldahl-digestion and Dumas-
combustion, due to their reliability in organic N determination.
However, these methods are destructive, time consuming, and need
complex analysis. Moreover, traditional N estimates provide only lim-
ited information, as sampling is based on only a limited number of sites
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in a given field; they are therefore not suitable for the continuous
monitoring of N content in the entire field. For these reasons, remote
sensing and, in particular, hyperspectral imagery, can be useful for
monitoring spatial and temporal variations in crop N content over large
areas (Quemada et al., 2014).

The use of simple empirical models that incorporate hyperspectral
reflectance indices is still the dominant method used to estimate N
(Ferwerda et al., 2005; Stroppiana et al., 2009; Herrmann et al., 2010;
Wang et al., 2012; Li et al., 2014; Mahajan et al., 2016). Several studies
have shown improvements in canopy N quantifications using re-
flectance bands in the near infrared (NIR) and in the short-wave in-
frared (SWIR) regions (Kokaly, 1999; Ferwerda et al., 2005; Herrmann
et al., 2010; Pimstein et al., 2011; Gnyp et al., 2014; Mahajan et al.,
2014), especially when indices calculated from wavelengths centered at
850 and 1510 nm are used, as described in detail by Herrmann et al.
(2010). Serrano et al. (2002) also showed that the combination of the
1510 nm and 1680 nm spectral regions was sensitive to N concentration
in green biomass. Nevertheless, and despite the successful empirical
relationships, nitrogen estimation at the canopy level from remote
sensing requires appropriate modelling strategies due to the large
contribution of structural and shadow effects to canopy reflectance
(Zarco-Tejada et al., 2005). On the other hand, radiative transfer
models offer advantages compared to index-based empirical models
regarding robustness and transferability (Jacquemoud and Baret, 1990;
Zarco-Tejada et al., 2004; Schlerf and Atzberger, 2006; Wang et al.,
2015), and these have been widely proposed as a method for retrieving
chlorophyll content, dry matter, and water content from remote sensing
data (Clevers and Kooistra, 2012; Jacquemoud and Baret, 1990; Zarco-
Tejada et al., 2004). In this context, recent studies have evaluated the
estimation of leaf N content using models built with leaf and canopy
biophysical parameters retrieved by inversion (e.g. Wang et al., 2015),
and these have yielded reasonable success (r2= 0.58).

In recent years, the quantification of chlorophyll fluorescence has
attracted increasing attention in the context of global monitoring of
crop physiology and vegetation functioning, and this method can offer
improvements on the estimation of N status (Tremblay et al., 2012).
Chlorophyll fluorescence is generally considered as a direct proxy for
electron transport rate and hence photosynthetic activity (Genty et al.,
1989; Weis and Berry, 1987). The leaf-level maximum carboxylation
rate (Vcmax; μmol CO2m−2 s−1) is closely related to the chlorophyll
content at leaf scale (Croft et al., 2017; Houborg et al., 2013) and with
solar-induced chlorophyll fluorescence (SIF) (Rascher et al., 2015; Yang
et al., 2015). In this regard, SIF can be considered as a direct link with
Vcmax through its strong connexion to chlorophyll content and pho-
tosynthetic activity (Walker et al., 2014). In fact, recent studies have
demonstrated the link between chlorophyll fluorescence and photo-
synthetic activity at leaf and canopy levels (see e.g. Zarco-Tejada et al.,
2013, 2016; Cendrero-Mateo et al., 2016). The rationale is based on the
dependence of chlorophyll fluorescence emissions on chlorophyll con-
centration and photosystem I (PSI) and II (PsiI) efficiency (Lichtenthaler
et al., 1996). It is well documented that N deficiency affects PsiI pho-
tochemistry, lowering the quantum yield electron transport, the pho-
tochemical efficiency, and therefore the assimilation rate (Lu and
Zhang, 2000; Jin et al., 2015).

Crop water status may alter N balance: crop N demand is reduced
under drought conditions, as growth rate diminishes (Gonzalez-Dugo
et al., 2010). In arid and semi-arid environments, the co-limitation
between nitrogen and water often reduces crop production which
therefore must be considered together (Sadras, 2004). For these rea-
sons, spectral indicators related to the leaf functioning, as chlorophyll
fluorescence, is a potentially important candidate for improving the
quantification of N concentration using passive remote sensing tech-
niques. The present study aimed to explore the contribution of air-
borne-retrieved chlorophyll fluorescence to the quantification of N
concentration using hyperspectral imagery. Specifically, we evaluated
the fluorescence quantification in spring wheat (early sowing) grown

under rainfed and irrigated conditions to assess whether they con-
tributed significantly to the retrieval of N concentration in the context
of precision agriculture and plant phenotyping experiments.

2. Material and methods

2.1. Study area

The study was carried out in 2015 and 2016 at three field trial sites
for durum wheat (Triticum turgidum L. var. durum) and bread wheat
(Triticum aestivum L.) selection in Southern Spain. The sowing date for
all sites was mid-November in the previous year. Regarding fertiliza-
tion, pest and disease management, all the plots received the same
treatment at all trial sites. Fertilization with diammonium phosphate
and urea was carried out in early November, while similar amounts of
fungicides and pesticides were applied at the early and middle growth
stages at all trial sites.

The first trial site was located in Ecija (EC), near Seville, Southern
Spain (37°32ʹ17ʺN, 5°06ʹ57ʺW), which was managed under rainfed
conditions in 2015. The experiment was designed with a balanced
square lattice design using 300 individual plots (6× 1.25m) separated
in four blocks, with 150 varieties of durum wheat and 150 of bread
wheat. Each cultivar was replicated three times per block (Fig. 1a).

The second site trial was in Carmona (CA), also close to Seville,
Southern Spain (37°30ʹ29ʺN, 5°34ʹ42ʺW) in 2015. The experiment
comprised 882 individual plots (7.5× 1.25m) divided into two blocks
managed under rainfed conditions and one block under irrigated con-
ditions. Each block contained a mixture of varieties of durum and bread
wheat, each cultivar replicated three times per block (Fig. 1b).

The third trial site was managed by IFAPA in Santaella (SA), near
Cordoba, Southern Spain (37°31ʹ34ʺN, 4°50ʹ40ʺW) in 2016, where 20
varieties of durum wheat and 20 varieties of bread wheat were re-
plicated three times under irrigated and rainfed conditions (Fig. 1c).
The plot size was 15m2 (10×1.5m).

2.2. Field data

In order to assess the physiology and the leaf optical properties of
the wheat, a series of leaf-level measurements were made concurrently
with the airborne flights at midday (12:00 to 13:00 h local time) at all
the trial sites. A summary of field measurements and airborne cam-
paigns at each trial site is shown in Table 1. The wheat growth stage
during the flight campaigns refers to the stem length at the time of the
first flight in Santaella (SA-1) and grain filling (milking stage) at the
time of the flights in EC, CA and the second flight in Santaella (SA-2).

Leaf water potential (ψL; MPa) was measured using a pressure
chamber (Model 600 Pressure Chamber Instrument, PMI Instrument
Company, Albany, NY, USA) on two sunlit leaves per plot. Assimilation
rate (A; μmolm−2 s−1) and stomatal conductance (Gs; mmol m−2 s−1)
were measured using a photosynthesis measurement system (LCDpro-
SD, ADC Bioscientific Ltd., Herts, UK) on two sunlit leaves per plot.
Steady-state leaf fluorescence yield (Ft) and a SPAD chlorophyll content
indicator were measured on 10–15 leaves per plot using a FluorPen
FP100 (Photon Systems Instruments, Brno, Czech Republic) and a
chlorophyll meter (SPAD-502, Minolta Corp., Ramsey, NJ, USA), re-
spectively. The relationship between chlorophyll concentration and
SPAD readings for wheat found by Uddling et al. (2007) was applied to
convert SPAD data into chlorophyll content (μg cm−2). Total N con-
centration was determined by the Kjeldhal method (Kjeldahl, 1883) on
20–25 sunlit leaves sampled per plot. As in the rest of the physiological
measurements, a random selection of the sunlit leaves was carried out
from the central area of each plot.

2.3. Airborne hyperspectral imagery

A hyperspectral imager covering the visible and near-infrared
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region (Micro-Hyperspec VNIR, Headwall Photonics, Fitchburg, MA,
USA) and a second hyperspectral imager covering the NIR and the SWIR
regions (Micro-Hyperspec NIR-100, Headwall Photonics) were installed
in tandem on a Cessna aircraft operated by the Laboratory for Research
Methods in Quantitative Remote Sensing (QuantaLab), Consejo
Superior de Investigaciones Científicas (IAS-CSIC, Spain). Imagery was
acquired at 250m above ground level with the aircraft flying on the
solar plane during the flight campaigns of 2015 and 2016. The cam-
paigns were flown at midday (local time) to minimize differences due to
sun angle effects between flights.

The micro-hyperspec VNIR was set up with a configuration of 260
spectral bands acquired at 8 nm/pixel and 12-bit radiometric resolution
in the 400–885 nm spectral region, thus yielding a 6.4 nm Full Width at
Half Maximum (FWHM) with a 25-μm slit. The acquisition and storage
module had a 50 fps frame rate with an integration time of 25ms. The
8-mm focal length lens yielded an IFOV of 0.93 mrad and an angular
FOV of 50° with a spatial resolution of 20 cm (Fig. 2a) (further in-
formation regarding the setup of micro‐hyperspec VNIR can be ob-
tained from Zarco-Tejada et al., 2016).

The micro-hyperspec NIR-100 camera was flown with a configura-
tion of 165 spectral bands and 16-bit radiometric resolution in the

spectral region of 950–1750 nm, yielding 6.05 nm FWHM with a 25-μm
slit and an optical aperture of f/1.4. The FWHM and the center wave-
length for each spectral band were derived after spectral calibration
using a Cornerstone 260 1/4m Monochromator (model 74100; Oriel
Instruments, USA) and the XE-1 Xenon Calibration Light Source
(Oceanic Optics, USA). The frame rate on board the aircraft was set to
50 fps with an integration time of 40ms. The 12.5-mm focal length lens
yielded an angular FOV of 38.6° with a spatial resolution of 60 cm
(Fig. 2b).

Radiometric calibration of the hyperspectral cameras and ortho-
rectification of the imagery were carried out as described by Zarco-
Tejada et al. (2016). Atmospheric correction of the imagery was per-
formed using aerosol optical depth (AOD) and weather data to simulate
the incoming irradiance using the SMARTS model (Gueymard, 1995;
Gueymard et al., 2002), measured in the field concurrently with the
airborne flights. The SMARTS model has been used in previous studies
to calculate reflectance from both multispectral and hyperspectral
imagery (Berni et al., 2009; Zarco-Tejada et al., 2012, 2016; Calderón
et al., 2013, 2015). A further step was carried out to apply an empirical
line calibration (Smith and Milton, 1999) using field-measured spectra
to remove noise. The average radiance and reflectance values of se-
lected wheat plots from each trial site are shown in Fig. 3.

2.4. Fluorescence retrieval and calculation of narrow-band indices from the
airborne hyperspectral imagery

The atmospheric O2-A oxygen absorption band at 760.5 nm was
used for the fluorescence retrieval via the in-filling method. In parti-
cular, the Solar Induced Fluorescence (SIF) was quantified from the
radiance spectra (Fig. 3a) using the Fraunhofer Line Depth (FLD)
principle (Plascyk and Gabriel, 1975) as described in Zarco-Tejada et al.
(2013, 2016). The SIF signal calculated using the in filling method was
based on two spectral bands in and out the O2-A feature, as described in
Meroni et al. (2010). The FLD2 method used Lin (L762 nm) in this study
extracted the radiance and Lout (L750 nm) from the airborne imagery,
and the irradiance Ein (E762 nm) and Eout (E750 nm) from irradiance
spectra concurrently measured at the time of the flights. Measurements
were made using an ASD Field Spectrometer (FieldSpec Handheld Pro,
ASD Inc., CO, USA) with a cosine corrector-diffuser probe for the entire

Fig. 1. Scene of the field trial sites at EC (a),
CA (b) and Santaella (c) obtained with a color
infrared camera (CIR; a and b, not used for
analysis in this study) and the hyperspectral
imagery (c) on board the aircraft. Black rec-
tangles indicate plots under rainfed conditions
and blue rectangles indicate plot under irri-
gated conditions. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)

Table 1
Field measurements and flight dates during the 2015 and 2016 campaigns.

Year Site Flight
dates

Type of flighta Field measurements Plots with
field data

2015 EC 28/05 Noon (T+VNIR
+SWIR)

ψL, A, Gs, Ft, SPAD,
N

12b

CA 30/05 Noon (T+VNIR
+SWIR)

ψL, A, Gs, Ft, SPAD,
N

18b

2016 SA-1 17/03 Noon (T+VNIR
+SWIR)

ψL, A, Gs, Ft, SPAD,
N

24b and 45c

SA-2 26/04 Noon (T+VNIR
+SWIR)

ψL, A, Gs, Ft, SPAD,
N

24b and 50c

a T= thermal camera, VNIR=hyperspectral visible and infrared camera
(400–885 nm), SWIR=hyperspectral near-infrared and short-wave infrared
camera (950–1750 nm).

b Number of plots with all leaf measurements.
c Number of plots with only measurements of SPAD and total leaf nitrogen.
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400–1000 nm spectral region. A modelling study by Damm et al. (2011)
quantified the effects of the spectral sampling interval, spectral re-
solution, signal to noise ratio (SNR) and the spectral shift on the ac-
curacy of the fluorescence retrieval using the O2-A feature. They de-
monstrated the feasibility of the SIF retrieval via the FLD methods with
broader spectral bandwidths (i.e., 5–7 nm FWHM) when high spectral
sampling (below 2.5 nm) and SNR higher than 300:1were available.
These results agree with the fluorescence retrievals shown in Zarco-
Tejada et al. (2012) and later in Damm et al. (2015) with APEX. Ac-
cording to these works, the hyperspectral configuration used in this
study is suitable for the SIF retrievals (1.85 nm sampling interval,
6.4 nm bandwidths and SNR of 300:1 with spatial binning).

Narrow-band indices were calculated from the average reflectance
per plot using the 260 spectral bands acquired by the micro-hyperspec
VNIR, and from the 164 spectral bands acquired by the micro-hyper-
spec NIR cameras (Fig. 3b). In the SWIR region, the atmospheric water
absorption spectral region (1330–1490 nm) was masked before ana-
lysis. Table 2 groups the vegetation indices (VIs) calculated from the
micro-hyperspec VNIR into four categories related to: 1) structure, 2)
chlorophyll concentration, 3) chlorophyll fluorescence, and 4) nitrogen
indices (NIs) using NIR and SWIR spectral domains.

2.5. Modelling methods

Radiative transfer simulations were carried out with PROSPECT
(Jacquemoud and Baret, 1990) linked to the SAILH model (Baret et al.,

1992). Biophysical canopy parameters by means of numerical model
inversion were estimated using look-up tables (LUT). The input vari-
ables and their ranges in PROSPECT and SAILH models are shown in
Table 3. The viewing geometry, defined by the solar zenith and azi-
muth, and the viewing angles needed to simulate canopy reflectance
were extracted for each flight date. In order to minimize the impact of
the viewing geometry at each flight date and time, a step of five degrees
around the solar zenith angle during the flights was applied to the
PROSPECT-SAILH radiative transfer model inversions.

In this study two standard model inversions and one inversion
method by steps were performed. The range of variation for Cab was
determined on the basis of prior field information. In the standard
model inversion method, the chlorophyll a+ b, water and dry matter
content were estimated at the same time, while in the inversion method
by steps, the estimation of biophysical canopy parameters required
consecutive steps (e.g.; as in Wang et al., 2015). The spectral range
between 400 and 800 nm measured with the micro-hyperspec VNIR
camera was used in the standard model inversion method (named here
as INV-1), while the entire spectral region (400–1700 nm) from both
hyperspectral VNIR and NIR-100 cameras was used in the full-range
inversion (here called INV-2) and in the inversion model by steps. In the
inversion by steps, the main input parameters were calculated using
specific spectral ranges where the biophysical parameters have the
greatest influence on the reflectance and transmittance. The procedure
was conducted as follows: 1) leaf angle distribution function (LADF)
was estimated over the entire spectral domain (400–1750 nm) with

Fig. 2. Sample hyperspectral VNIR (400–800 nm region) (a)
and hyperspectral NIR (900–1700 nm region) (b) imagery
acquired during the 2015 and 2016 airborne campaigns per-
formed at the trial sites at CA and SA-1, respectively. The
central region of the plot was used to calculate hyperspectral
indices and to quantify chlorophyll fluorescence.

Fig. 3. Mean radiance in W sr−1 m−2 nm−1 (a) and reflectance spectra (b) retrieved from hyperspectral cameras at EC (in blue), CA (in black), SA-1(in red) and SA-2
(in Green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

C. Camino et al. Int J Appl  Earth Obs Geoinformation 70 (2018) 105–117

108



variables Cab, Cw and Cm according to Table 3. LADF was firstly re-
trieved by model inversion, given its key role on canopy structure; 2)
the mesophyll structure parameter (N-struct) and leaf area index (LAI)
were simultaneously determined over the range 960–1300 nm once the
LADF had been fixed to the value retrieved in the first step, and with
variable Cab, Cw and Cm according to Table 3; 3) Cab was determined
over the range 455–690 nm, with Cw and Cm according to Table 3,
fixing LADF, LAI and N determined in previous steps; 4) Cw and Cm

were concurrently retrieved over 900–1700 nm, where water and dry
matter have the largest absorption effects (Baret and Fourty, 1997;
Feret et al., 2008; Fourty et al., 1996; Jacquemoud et al., 2009, 1996).

The accuracy of the estimated parameters (LADF, N-struct, LAI, Cab,
Cw and Cm) via model inversion was evaluated by the RMSE calculated
between the simulated and measured canopy spectral reflectance. For
each standard model inversion, a total of 500000 inversions were car-
ried in forward mode, whereas a total of 200000 inversions were used
for the inversion method by steps. Finally, the coefficient of

determination (r2) was calculated to investigate the relationship be-
tween the retrieved biophysical parameters (Cab, Cw and Cm) obtained
by PROSPECT-SAILH model inversion and the ground-truth physiolo-
gical measurements.

2.6. Statistical analysis

Stepwise multiple regression analysis using forward mode and
leave-one-out-cross-validation (LOOCV) techniques were employed to
select the best model to quantify N concentration using i) biophysical
parameters derived from the different model inversion methods de-
scribed above, ii) using narrow-band spectral indices calculated from
the VNIR and NIR-100 hyperspectral imagery; and iii) evaluating the
performance of the models with the addition of chlorophyll fluores-
cence quantified from the hyperspectral imagery. Therefore, statistical
tests were employed to assess the robustness of each regression model
built for nitrogen quantification with and without including solar-in-
duced fluorescence emission retrieved from hyperspectral imagery. A
residual analysis model was used to assess the independence of the
residual, and the Shapiro-Wilk test for homoscedasticity to verify the
normal distribution. The F-test was used to test the significance of the
linear regression model, and Student’s t-test for the significance of in-
dividual regression coefficients. Independent data sets were used for the
statistical analysis, using a training data set to build a multiple re-
gression, and an independent second data set to assess the performance
of each model under rainfed and irrigated conditions. The training data
set comprised the plots located in EC, CA and SA-1, in which the main
physiological measurements were made. The test data set was built by
SA-1 and SA-2 plots and separated under rainfed and irrigated condi-
tions.

The mean absolute error (MAE), root mean square error (RMSE),
mean percentage error (MPE), mean absolute percentage error (MAPE)
and coefficient of determination (r2) between the measured leaf ni-
trogen content and predicted values were used as skill scores to validate
the performance of each model. The statistical analysis was conducted
in R software (R Core Team, 2015).

Table 2
Summary of the vegetation indices using the VNIR (400–800 nm region) and NIR (900–1700 nm region) hyperspectral airborne imagery.

Indices Equation Reference

Structural indices
Normalized Diff. Veg. Index NDVI= (R800(R670)/(R800+R670) Rouse et al. (1973)
Opt. Soil-Adjusted Veg. Index OSAVI= (1+0.16)(R800−R670)/(R800+R670+ 0.16) Rondeaux et al. (1996)
Renormalized Diff. Veg. Index RDVI= (R800−R670)/(R800+R670)0.5 Roujean and Breon (1995)
MCARI/MTVI2 MCARI/MTVI2 Eitel et al. (2007)
Chorophyll a+ b indices
Transf. Chl. Absorp. Rfl. Index TCARI= 3[(R700−R670)−0.2 (R700−R550)(R700/R670)] Haboudane et al. (2002)
TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002)
Mod. Chl. Absorp. Rfl. Index MCARI= [(R700−R670)−0.2 (R700−R550)](R700/R670) Daughtry (2000)
Pig. Spec. Simpl. Ratio Chl. b PSSRb=R800/R635 Blackburn (1998)
Gitelson and Merzlyak Indices GM1=R750/R550; GM2=R750/R700 Gitelson and Merzlyak (1997)
Vogelmann Index VOG=R740/R720 Vogelmann et al. (1993)
Red-edge CI CI=R750/R710 Zarco-Tejada et al. (2001)
Chlorophyll fluorescence (SIF)
SIF FLD2=d-Rb; where d= L762; R= (L762−L750)/(E762–E750) and b=E762 Moya et al. (2004); Plascyk and Gabriel (1975)
Nitrogen indices (NIs)
Double-peak C. N DCNI= (R720−R700)(R700R670)/(R720−R670)+ 0.3) Chen et al., 2010
TCARI1510nm TCARI1510= 3[(R700−R1510)−0.2 (R700−R550)](R700/R1510) Herrmann et al., 2010
TCARI/OSAVI1510nm TCARI1510/OSAVI1510=TCARI1510/ [(1+ L) (R800−R1510)/(R800+R1510+L)] Herrmann et al., 2010
MCARI1510nm MCARI1510= [(R700−R1510)−0.2 (R700−R550)](R700/R1510) Herrmann et al., 2010
GnyLi GnyLi= (R900×R1050) (R955×R1220)/(R900×R1050)+ (R955×R1220) Gnyp et al., 2014
Norm. Diff. N. Index NDNI= log(1/R1510)−log(1/R1680)/(log(1/R1510) +log(1/R1680) Serrano et al., 2002
N1645,1715 N1645,1715= (R1645−R1715)/(R1645+R1715) Pimstein et al., 2011
N870,1450 N870,1450= (R870−R1450)/(R870+R1450) Pimstein et al., 2011
N850,1510 N850,1510= (R850−R1510)/(R850+R1510) This study

Table 3
Ranges of the main variables used in the PROSPECT-SAILH radiative transfer
model inversions.

Model Symbol Quantity Ranges Step Unit

PROSPECT N-struct Leaf structure
parameter

1.25–1.85 0.1 …

Cab Chlorophyll a+ b
content

10–70 0.5 μg cm−2

Cw Equivalent water
thickness

0.001–0.05 0. 0005 g cm−2

Cm Dry matter content 0.001–0.05 0. 0005 g cm−2

Cs Brown pigment
content

0 … …

Sl Hot-spot parameter 0.001 … …
SAILH LAI Leaf area index 2–5 0.1 …

LADF Leaf inclination
distribution function

1,2,3 and 4* … …

TV Solar zenith angle 45°,60°,85° 5 deg
Phi Viewing zenith angle 0° … deg
PSR Relative azimuth

angle
0° … deg

*Canopy types proposed to define LADF: planophile (1), erectophile (2), pla-
giophile (3) and spherical (4).
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3. Results

3.1. Field measurements

Mean values of the field physiological measurements and chlor-
ophyll fluorescence retrieved from the airborne imagery for each field
site under rainfed and irrigated conditions are shown in Table 4. The
results revealed wide variations in the crop physiological status on all
sites. As expected, the irrigated plots displayed overall better water and
nutritional status than the rainfed plots. There were differences among
the rainfed plots; average values of mean N concentration, assimilation
rate (A), Gs, and SIF were lower in EC and SA-2 compared to CA and SA-
1 (Table 4). The irrigated plots at SA-1, which were at an earlier stage of
growth, and at SA-2, displayed an overall better water and nutritional
status. These data confirmed the water and nutrient stress conditions in
rainfed plots and a large variability among plots.

3.2. Nitrogen concentration and narrow-band hyperspectral indices

The solar induced fluorescence emission and narrow-band re-
flectance indices calculated from hyperspectral imagery were assessed
against field measurements of nitrogen content, chlorophyll content
measured with SPAD, and net assimilation (Table 5). The results
showed that the NIR/SWIR-based NIs were marginally better predictors
of nitrogen content than the VNIR indices, with the MCARI1510 and the
NDNI (Fig. 4a) indices yielding the best correlation with nitrogen
content (r2= 0.69; p-value≤ 0.005) as compared to MCARI
(r2= 0.63) and PSSRb (r2= 0.63). The NIs that were modified to re-
place the 670 nm band by the 1510 nm band due to its relationship with
nitrogen absorption (TCARI1510, MCARI1510, TCARI/OSAVI1510) per-
formed higher at quantifying canopy nitrogen content than their cor-
responding VNIR-based indices. The N1645/1715 using exclusively re-
flectance in the SWIR domain showed significant relationship with N
content (r2= 0.64, p-value < 0.005) but still marginally inferior to
MCARI1510 and NDNI. Table 5 also shows that the indices most sensitive
to canopy structure yielded significant relationships with nitrogen
content (r2= 0.57; p-value < 0.005; NDVI). However, the structural
indices exhibited saturation over dense canopy, as shown in Fig. 4b for
NDVI which tends to saturate due to the higher canopy density at high
nitrogen levels. Among the chlorophyll indices used in this study,
PSSRb (Fig. 4c) obtained the best results for chlorophyll content esti-
mation (r2= 0.57, p‐value≤ 0.0005), yielding better results than NIs.
The airborne-quantified chlorophyll fluorescence was also sensitive to
nitrogen content (r2= 0.51; p-value≤ 0.005) and to the assimilation
rate (r2= 0.74; p-value≤ 0.005; Fig. 4d), confirming other studies that
demonstrated the link between airborne-retrieved chlorophyll fluores-
cence and the photosynthetic activity.

3.3. Nitrogen content and plant traits estimated by model inversion

The coefficient of determination (r2) calculated between chlorophyll
content (Cab), water content (Cw) and dry matter content (Cm) esti-
mated by PROSPECT-SAILH model inversion and leaf-level physiolo-
gical measurements (nitrogen content, net assimilation rate and chlor-
ophyll content) are shown in Table 6. These results correspond with the
method proposed in Wang et al. (2015) that used biophysical para-
meters retrieved by model inversion to evaluate the retrieval of leaf N
concentration. In the present study, Cab estimated by model inversion
by steps correlated with N concentration (r2= 0.71; p‐value≤ 0.0005;
Fig. 5a), field-measured leaf Cab (r2= 0.81; p-value≤ 0.0005; Fig. 5b)
and with the assimilation rate (r2= 0.59; p-value≤ 0.0005; Fig. 5c).
Using this model-inversion approach by steps, the relationship between
estimated and measured Cab content adjusted well with the 1:1 line for
the entire dataset (Fig. 5b), yielding a RMSE=2.04 μg cm−2 and
MAPE=5.44%. The two standard model-inversion methods (INV-1

Table 4
Average N concentration (%), chlorophyll content derived from SPAD (Cab; μg cm−2), net assimilation (A; μmolm−2 s−1), stomatal conductance (Gs; mmol m−2 s−1),
leaf-water potential (ψL; MPa) and chlorophyll fluorescence (SIF in Watt sr−1 m−2 nm−2), under rainfed and irrigated conditions at EC, CA, SA-1 and SA-2. The
standard deviation is also shown.

N concentration Cab (SPAD) A Gs ψL SIF

Rainfed
EC 2.50 ± 0.46 23.4 ± 3.7 7.7 ± 2.1 61.27 ± 2 −2.3 ± 0.2 3.74 ± 0.62
CA 3.28 ± 0.34 28.0 ± 3.6 11.3 ± 2.1 71 ± 24.8 −2.5 ± 0.4 4.22 ± 0.25
SA-1 4.17 ± 0.19 35.0 ± 3.2 17.0 ± 3.3 185.8 ± 56.1 −2.4 ± 0.2 4.88 ± 0.57
SA-2 2.63 ± 0.32 26.0 ± 2.4 10.0 ± 2.5 121.8 ± 40.5 −2.7 ± 0.2 4.01 ± 0.40
Irrigated
CA 3.37 ± 0.04 28.5 ± 2.3 14.7 ± 4.1 270.6 ± 65.4 −2.1 ± 0.1 4.38 ± 0.17
SA-1 4.29 ± 0.28 35.8 ± 4.1 24.4 ± 2.4 354.6 ± 109.4 −1.7 ± 0.2 5.71 ± 0.29
SA-2 2.95 ± 0.31 29.3 ± 3.9 18.3 ± 2.4 283.2 ± 65.2 −2.2 ± 0.1 5.14 ± 0.28

Table 5
Coefficient of determination (r2) and level of significance for the narrow-band
hyperspectral indices and the solar induced chlorophyll fluorescence (SIF;
Watt m‐2 sr‐1 nm−1) quantified from hyperspectral imagery against N con-
centration, chlorophyll content derived from SPAD values (Cab-SPAD; μg cm−2)
and net assimilation (A; micromol m−2/s).

Indices N concentration Cab-SPAD Net assimilation (A)

r2 p-value r2 p-value r2 p-value

Structural Indices
NDVI 0.57 < 2.2e-16 0.53 < 2.2e-16 0.55 1.61e-8
OSAVI 0.56 < 2.2e-16 0.49 < 2.2e-16 0.53 3.23e-8
RDVI 0.56 < 2.2e-16 0.48 < 2.2e-16 0.53 3.92e-8
MCARI/MTVI2 0.40 2.14e-13 0.25 2.14e-13 0.46 5.61e-7
Chlorophyll a+ b indices
TCARI 0.54 < 2.2e-16 0.51 < 2.2e-16 0.60 1.02e-9
TCARI/OSAVI 0.45 1.78e-15 0.30 8.64e-10 0.51 8.59e-8
MCARI 0.63 < 2.2e-16 0.55 < 2.2e-16 0.57 4.78e-9
PSSRb 0.63 < 2.2e-16 0.57 < 2.2e-16 0.66 3.72e-11
GM1 0.36 8.32e-12 0.39 2.90e-13 0.47 3.62e-7
GM2 0.52 < 2.2e-16 0.47 2.22e-16 0.26 4.79e-4
VOG1 0.35 4.65e-10 0.32 1.75e-10 0.66 3.72e-11
CI 0.31 1.31e-11 0.35 1.48e-11 0.47 3.62e-7
Nitrogen Indices
DCNI 0.56 < 2.2e-16 0.50 < 2.2e-16 0.59 1.77e-9
TCARI1510 0.56 < 2.2e-16 0.44 1.78e-15 0.59 1.57e-9
TCARI/

OSAVI1510
0.52 2.35e-18 0.41 7.47e-14 0.63 2.26e-10

MCARI1510 0.69 < 2.2e-16 0.56 < 2.2e-16 0.43 1.86e-6
GnyLi 0.31 3.41e-10 0.31 2.36e-10 0.51 7.98e-8
NDNI 0.69 < 2.2e-16 0.49 < 2.2e-16 0.61 5.75e-10
N1645 0.64 < 2.2e-16 0.52 < 2.2e-16 0.59 1.57e-9
N850–1450 0.64 < 2.2e-16 0.55 < 2.2e-16 0.63 2.26e-10
NI850/1510 0.65 < 2.2e-16 0.53 < 2.2e-16 0.61 5.75e-10
Fluorescence
SIF 0.51 < 2.2e-16 0.35 1.37e-11 0.74 1.19e-11
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and INV-2) displayed quite different behavior; Cab was correctly esti-
mated for plots with N concentration and Cab values that were higher
than 3.5% and 30 μg cm−2 respectively, while the retrievals failed for
the plots with nitrogen and Cab values below these (see outliers in
Fig. 5b). The two standard model inversion approaches thus yielded
weaker results in their estimates of nitrogen content
(RMSE≥ 6.33 μg cm−2 and MAPE≥ 17.68%) than the model inversion
by steps.

Leaf equivalent water thickness retrieval by model inversion was
significantly related to N concentration (r2= 0.66; p-value≤ 0.0005),
while dry matter content showed significant (yet lower coefficients of
determination than for Cw) yielding r2= 0.23 (step inversion method)
and r2= 0.49 (INV-1 method) (in both cases p-value≤ 0.0005). In this
case, the coefficient of determination was significantly affected by
outliers, inducing an artificial increase in the correlation coefficients for
INV-1 as compared to the step inversion method. In summary, the three
leaf biochemical parameters Cab, Cw and Cm estimated by radiative
transfer model inversion from the hyperspectral imagery were sig-
nificantly related to leaf N concentration (p-value≤ 0.0005 in all three
cases), but Cab and Cw yielded higher relationship with N than Cm.

3.4. Leaf N estimation from the airborne hyperspectral imagery accounting
for chlorophyll fluorescence

The stepwise multiple regression and LOOCV methods built to es-
timate N concentration using the leaf biochemical constituents Cab, Cw

and Cm obtained by model inversion, were assessed accounting for the
contribution of adding chlorophyll fluorescence. The statistical models
built using all input parameters, with and without including SIF as
predictor of nitrogen are shown in Table 7. The homoscedasticity and
the normal distribution requirements were satisfied and passed the
statistical test (F-Test). According to the t-test, the regression coeffi-
cients for Cab and SIF were significant at the 5% significance level. In
contrast, Cm and Cw parameters were non-significant in some of the
regression models (see Table 7).

Fig. 4. Relationships between N concentration (in%) vs. NDNI (a) and NDVI (b), Cab vs. PSSRb (c) and A vs. airborne-quantified SIF (d). For all relationships the
significance level was p≤ 0.0005.

Table 6
Coefficient of determination (r2) between estimated leaf Cab, Cm and Cw para-
meters by PROSPECT-SAILH model inversion by steps and by standard inver-
sion methods (INV-1 and INV-2) vs. N concentration, leaf-measured Cab with
SPAD, and net assimilation (A).

N concentration Cab (SPAD) Net Assimilation (A)

Chlorophyll content a+b (Cab)
By step 0.71** 0.81** 0.59**

INV-1 0.012 0.008 0.001
INV-2 0.004 0.002 0
Equivalent water thickness (Cw)
By step 0.66** 0.56** 0.53**

INV-1 0.017 0.008 0.008
INV-2 0.27** 0.25** 0.19*

Dry-matter content (Cm)
By step 0.23** 0.1 0.18**

INV-1 0.49** 0.32** 0.30**

INV-2 0.38* 0.24** 0.23**

**p-value < 0.0005; *p-value < 0.02.

Fig. 5. Chlorophyll content (Cab, μg cm−2) es-
timated by model inversions vs. N concentra-
tion (in%) (a), chlorophyll content derived
from SPAD (Cab-SPAD; μg·cm‐2) (b), and leaf
assimilation rate (A, μmolm−2 s−1) (c). Black
points correspond to inversion by steps, black
crosses using the INV-1 method and open black
circles using the INV-2 model inversion
method. The dashed line is the 1:1 line.
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The ability of each model to predict N concentration was assessed
using the LOOCV scores described earlier, showing the results in
Table 8. Based on these statistical scores, the multiple linear regression
models using SIF as predictive variable considerably improved the ac-
curacy of N estimation (r2LOOCV≥ 0.92; MAE LOOCV≤ 0.19 and RMSE
LOOCV≤ 0.23). As a comparison, regression models without including
fluorescence (SIF) reached significantly lower predictive power (r2

LOOCV≤ 0.77; MAE LOOCV≥ 0.33 and RMSE LOOCV≥ 0.40). The con-
tribution of each variable is shown by standardized coefficients (β0;
Table 8). These results show that in models that include SIF as pre-
dictor, its contribution to the retrieval of N was higher than the rest of
the predictors, being almost double than the contribution of Cab. In the
models that did not use SIF as predictor, the estimated Cab by model
inversion contributed the highest to N estimation.

According to r2, RMSE, MAE and MAPE, the most accurate esti-
mation was achieved by the regression model when the predictors were
Cab, Cw, Cm and SIF, yielding r2LOOCV= 0.93, RMSELOOCV= 0.20,
MAELOOCV= 0.18 and the lowest MAPE (Table 8). Nevertheless, the
rest of models with less number of parameters (therefore simpler) ob-
tained accuracies only marginally lower (e.g. r2= 0.93 & RMSE=0.20
for the most complex model using Cab, Cw, Cm and SIF as compared to
r2= 0.92 & RMSE=0.23 for the model using Cab and SIF). Fig. 6 shows
the scatter plots between the measured and predicted N concentration
using the model without (top plots) and with SIF as predictor (bottom
plots). The models using SIF showed lower RMSE and better perfor-
mance than the rest of the models that did not employ fluorescence as
predictor.

Based on these results, the proposed models combining leaf bio-
chemical constituents with and without SIF were evaluated as pre-
dictors for N concentration separately for rainfed and irrigated condi-
tions. All models showed greater accuracies in predicting N
concentration under rainfed (stress) conditions than under irrigated
(non-water stress) conditions (e.g. best model performance yielded
r2= 0.93 (rainfed) vs. r2= 0.88; (irrigated) (Table 9). As Fig. 7 shows,
the plots were aligned over the 1:1 line for both cases of rainfed

(Fig. 7a) and irrigated conditions (Fig. 7b). Under rainfed conditions,
the models with SIF as predictor yielded significantly higher scores
(r2≥ 0.89, RMSE≤ 0.26 and MAPE≤ 6.8%) than models without SIF
as predictor (r2≥ 0.78, RMSE≤ 0.37 and MAPE≤ 9.46%).

Under irrigated conditions, the models that used SIF as predictor
also showed the best performance. The model built with Cab and SIF
displayed better accuracy in predicting nitrogen concentration
(r2= 0.65, RMSE=0.42 and MAPE≤ 10.6%) than the model with Cab

only (r2= 0.48, RMSE=0.51 and MAPE≤ 12.56%), indicating that
the contribution of SIF was highly significant under both irrigated and
non-irrigated conditions.

These modelling methods enabled the quantification of N con-
centration from the hyperspectral imagery to show its spatial dis-
tribution in the context of precision agriculture and plant phenotyping
experiments. Fig. 8 shows the spatial distribution of N concentration
using Cab, Cw, Cm and SIF as predictors (Fig. 8a) over plots under
rainfed (Fig. 8b) and irrigated conditions (Fig. 8c) at the SA field site
during the 2016 campaign. Higher values of nitrogen concentration
(blue color) from the rainfed plots indicate a better physiological status,
while low N values (red color) indicate stress levels as consequence of
the rainfed conditions. In comparison with irrigated conditions, the N
map clearly showed the lower values obtained in the rainfed fields, with
average values of 3.1 ± 0.18%; under irrigated conditions the average
N concentration was higher (4.2 ± 0.3%). This methodology enables
an operational quantification of canopy N concentration at the field
level using high resolution hyperspectral remote sensing imagery and
radiative-transfer model inversion methods.

4. Discussion

Several studies have focused on the estimation of canopy N con-
centration using remote sensing techniques. The main problem en-
countered is that N does not absorb radiation with distinct features to
enable its direct quantification with reflectance data. Instead, proxies
physiologically related to N which are potentially retrievable from

Table 7
Statistical tests for the validity of the regression models used to estimate N concentration.

F-test Shapiro-Wilk p-value (t-test)

p-value W p-value Cab Cw Cm SIF

Without Fluorescence
N= f(Cab) 2.4E-13 0.98 0.55 2.4e-13
N= f(Cab,Cw) 2.9E-16 0.98 0.64 6.2e-6 0.0003
N= f(Cab,Cm) 7.5E-17 0.98 0.46 7.6e-14 8.2e-5
N= f(Cab,Cw,Cm) 6.4E-17 0.98 ≥0.05 8.7e-6 0.5911 0.0906
With Fluorescence
N= f(Cab, SIF) 8.2E-27 0.97 0.35 7.8e-10 1.1e-14
N= f(Cab,Cw,SIF) 1.4E-28 0.96 0.17 1.0e-6 0.0059 2.7e-13
N= f(Cab,Cm,SIF) 1.1E-27 0.97 0.23 1.9e-10 0.0519 7.2e-12
N= f(Cab,Cw,Cm,SIF) 1.2E-28 0.97 0.2 0.0013 0.0429 0.5395 1.8e-12

Table 8
Performance of the regression models built to estimate N concentration using r2, RMSE, ME, MAE, MAPE and standardized coefficients as performance indicators.

Regression Models r2 RMSE MAE MAPE Standard. coefficients (β0)

Without Fluorescence Cab Cw Cm SIF

N= f(Cab) 0.68 0.47 0.39 12.0% 0.84 … .… …
N= f(Cab, Cw) 0.74 0.41 0.34 9.9% 0.54 0.41 … …
N= f(Cab, Cm) 0.77 0.40 0.33 9.7% 0.77 … −0.31 …
N= f(Cab, Cw, Cm) 0.75 0.41 0.34 10.0% 0.70 0.11 −0.24 …
With Fluorescence
N= f(Cab, SIF) 0.92 0.23 0.19 5.9% 0.43 … … 0.63
N= f(Cab, Cw, SIF) 0.92 0.22 0.18 5.6% 0.34 0.17 … 0.57
N= f(Cab, Cm, SIF) 0.92 0.23 0.19 5.9% 0.44 … −0.10 0.57
N= f(Cab, Cw, Cm, SIF) 0.93 0.20 0.18 5.5% 0.30 0.23 0.05 0.58
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remote sensing spectra are proposed as the only feasible way of de-
tecting nitrogen levels under nutrient-deficiency conditions. An ex-
ample is the widely used SPAD meter, a hand held instrument that
measures chlorophyll content and generally accepted to track N con-
centration at the leaf level (Ravier et al., 2017). Most of the studies that
assess the retrieval of N through non-destructive methods have been
traditionally based on empirical models with spectral indices (i.e.
spectral proxies) calculated from the visible (VIS) and near-infrared
(NIR) regions (Clevers and Kooistra, 2012; Li et al., 2014), while only a
few studies focused on radiative transfer model inversions and the re-
lationships between retrieved parameters (i.e. biophysical parameters
and biochemical constituents as proxies) and nitrogen (Thorp et al.,
2012; Wang et al., 2015). The present study evaluated these standard
hyperspectral remote sensing techniques for the estimation of N con-
centration using narrow-band indices combining the VNIR and the
SWIR region, but focusing on the potential contribution of a new

indicator such as the radiance-based fluorescence SIF for improving the
performance of N estimation. According to the results obtained by the
regression models built with Cab, Cw, Cm and SIF from the stepwise
multiple regression and LOOCV methods, the solar induced chlorophyll
fluorescence quantified from the hyperspectral imagery significantly
increased the performance for the estimation of N. This result confirms
the findings of other studies that suggested a close link between
fluorescence emission and nitrogen (Corp et al., 2003; Schächtl et al.,
2005; Cendrero-Mateo et al., 2016). The contribution of SIF to predict N
concentration was higher than that of Cab and leaf biochemical para-
meters such as dry matter and equivalent water thickness. In fact,
models containing fluorescence emission among their predictors pro-
duced the most reliable nitrogen estimation when compared to models
without SIF. The results indicated that SIF retrieval by the FLD method
from high resolution hyperspectral imagery demonstrated its value for
monitoring N concentration under both rainfed and irrigated conditions
in the context of precision agriculture and plant phenotyping studies.
The solar induced chlorophyll fluorescence provides a potential new
tool to estimate canopy N concentration, due to their close link with
photosynthetic parameters such as the maximum rate of carboxilation
and with plant functioning. These results agree with recent studies that
showed the ability of such methods to evaluate crop physiological
status under conditions of water stress, compared to hyperspectral
narrow-band indices (Herrmann et al., 2010; Ranjan et al., 2012;
Gonzalez-Dugo et al., 2015; Zarco-Tejada et al., 2016). This study also
demonstrates that the biophysical parameters retrieved from a radiative
transfer model at canopy scale are needed for better N concentration
estimation due to the more robust quantification of the parameters as
compared to single narrow-band hyperspectral indices. This agrees with
Wang et al. (2015) who demonstrated that the combination of bio-
physical parameters (leaf chlorophyll, dry matter and water content)
retrieved via PROSPECT model inversion provided a reliable tool to
estimate N at leaf scale. They found a higher correlation between leaf
nitrogen content and dry matter and water content than with chlor-
ophyll. Our results indicate that, in the absence of chlorophyll fluor-
escence as predictor, chlorophyll a+ b was the parameter most related
with nitrogen. This result is in agreement with other studies that in-
dicate that the chlorophyll is the most widely used proxy for N esti-
mation (Herrmann et al., 2010; Homolová et al., 2013). In this regard,
this study displayed that Cw and Cm contributions for predicting ni-
trogen concentration were lower than Cab and SIF in both rainfed and

Fig. 6. Measured vs. estimated N concentration using the best regression LOOCV models without fluorescence (a,b) and with fluorescence (c,d) as a function of Cab

(a), Cab, Cw and Cm (b), Cab and SIF (c) and Cab, Cw, Cm and SIF (d). The dashed line is the 1:1 line.

Table 9
Statistics for r2, RMSE, ME, MAE, MPE and MAPE between measured and
predicted N concentration under rainfed and irrigated conditions.

r2 RMSE MAE MPE MAPE

Rainfed conditions
Without Fluorescence
N= f(Cab) 0.78 0.37 0.29 −1.44% 9.46%
N= f(Cab, Cm) 0.81 0.34 0.27 −1.12% 8.50%
N= f(Cab, Cw) 0.86 0.36 0.23 −0.92% 7.54%
N= f(Cab, Cw, Cm) 0.86 0.29 0.23 −0.84% 7.24%
With Fluorescence
N= f(Cab, SIF) 0.89 0.26 0.21 −0.65% 6.89%
N= f(Cab, Cm, SIF) 0.89 0.26 0.22 −0.64% 6.86%
N= f(Cab, Cw, SIF) 0.92 0.23 0.18 −0.45% 5.68%
N= f(Cab, Cw, Cm, SIF) 0.93 0.22 0.18 −0.45% 5.65%
Irrigated conditions
Without Fluorescence
N= f(Cab) 0.48 0.51 0.44 −2.03% 12.56%
N= f(Cab, Cm) 0.59 0.45 0.37 −1.65% 10.50%
N= f(Cab, Cw) 0.76 0.35 0.29 −0.89% 8.05%
N= f(Cab, Cw, Cm) 0.77 0.34 0.28 −0.85% 7.68%
With Fluorescence
N= f(Cab, SIF) 0.65 0.42 0.36 −1.41% 10.6%
N= f(Cab, Cm, SIF) 0.77 0.34 0.27 −0.93% 7.89%
N= f(Cab, Cw, SIF) 0.84 0.28 0.34 −0.58% 6.77%
N= f(Cab, Cw, Cm, SIF) 0.88 0.25 0.20 −0.47% 5.63%
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irrigated conditions. However, it was observed that under irrigated
conditions the models showed lower accuracy at predicting N con-
centration, especially when Cab was the only predictor. Under the
conditions of this experiment, the lower performance obtained for ir-
rigated vs. rainfed conditions was likely due to the smaller range of
variability found for the predictors in the irrigated than in the rainfed
plots. The results of this study showed that the contribution of SIF
(which can be also derived from VNIR cameras) is superior than the
contribution of the NIR-SWIR camera used here to estimate dry matter
and equivalent water thickness. Considering the cost, complexity of
operation, and the lower resolution generally obtained by SWIR cam-
eras, the interest of retrieving SIF and chlorophyll content from a single
VNIR camera outperforms the SWIR under the conditions and objec-
tives of the present study.

This work also demonstrates that the model inversion by steps
yields more reliable retrievals than traditional inversions, which used
the entire VNIR up to 1700 nm region to retrieve all parameters si-
multaneously. This result shows that model inversions conducted by
steps reduced the ill-posed inverse problems (Combal et al., 2003; Wang
et al., 2007; Yebra and Chuvieco, 2009; Li and Wang, 2011) and

improves the parameter retrievals. Our results also confirm findings by
Li and Wang (2011) regarding this issue.

Another important result obtained in this study shows that the re-
gression models built with parameters obtained by model-inversion
yielded superior results than simple linear models based on spectral
indices (Herrmann et al., 2010; Pimstein et al., 2011; Bao et al., 2013;
Mahajan et al., 2014; Gnyp et al., 2014). This conclusion was true even
when using narrow‐band indices centered at 1510 and 850 nm, which
are highly correlated with N concentration. Regarding hyperspectral
indices, our results confirmed findings reported by Herrmann et al.
(2010) that the use of the SWIR domain significantly improved the
estimation of nitrogen concentration when compared to the visible and
near-infrared region of the spectrum. In our case, the use of the SWIR
spectral range to determine NIs provided better quantification of N
concentration than when only the VNIR region was used, in particular
when using indices from bands centered at 1510 nm (Herrmann et al.,
2010; Serrano et al., 2002). Among all indices, the NIs that combined
1510 nm and VNIR bands yielded the highest agreement with N con-
centration (e.g. r2= 0.69 for MCARI1510 and r2= 0.65 for NI1850/1510).
However, these simple relationships obtained between N concentration

Fig. 7. Measured vs. estimated N concentration for rainfed (a) and irrigated conditions (b) using the model built with Cab, Cm and Cw biochemical constituents
(estimated by model inversion) including fluorescence. The solid line is the 1:1 line.

Fig. 8. Map showing the spatial distribution of
N concentration estimated using the model
built with chlorophyll a+ b (Cab), water con-
tent (Cw), dry matter content (Cm) and solar
induced chlorophyll fluorescence (SIF) esti-
mated from hyperspectral imagery (a) and
used as predictors under irrigated (b) and
rainfed (c) conditions at SA field site during the
2016 airborne campaign.
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and chlorophyll indices are affected by structure and the underlying
soil. By contrast, the structural indices (e.g. NDVI) tend to saturate their
values under dense canopies and with high nitrogen levels (Fig. 4b).
Nevertheless, none of the hyperspectral index combinations out-
performed the results obtained by model inversion when adding
fluorescence (i.e. Cab+ Cm+Cw+SIF), which was by far the best
model for N estimation.

An additional important topic is that the methodology used here for
the airborne retrieval of chlorophyll fluorescence from radiance ima-
gery is based on the work presented in previous studies (e.g.: Damm
et al., 2015; Zarco-Tejada et al., 2016), confirming that the use of hy-
perspectral imagery acquired at broader spectral bands (i.e. with
FWHM 2–7 nm) retains sufficient chlorophyll fluorescence signal to
yield the most significant relationships against field-measured assim-
ilation rates among all other image-derived indicators.

An issue observed in this work is the potential limitations of the plot
sizes normally used by plant breeders during their experimental de-
signs. The plot dimension should be compatible with the spatial re-
solution of the imagery acquired by remote sensing. When the plots are
too small, soil and background effects may play a critical role due to the
mixing of the different components (i.e. soil and shadows) with the
vegetation. This issue is important in the case in of the coarser re-
solution generally obtained by SWIR cameras. New sensors carried on
board drones and low altitude manned aircraft can potentially obtain
high- and ultra-high resolutions, which are compatible with the stan-
dard phenotyping and plant breeding experiments. Nevertheless, plant
breeding experimental design should be compatible with the spatial
resolutions of the remote sensing sensors to be flown over the study
sites. In this way, a line of at least 1/2 to 1 pixel as edge around the
center of the plot is recommended.

5. Conclusions

The present study demonstrates that the airborne-quantified solar
induced chlorophyll fluorescence (SIF) is a critical predictor for the
estimation of N concentration under semi‐arid and arid conditions
when combined with chlorophyll a+ b content and leaf parameters dry
matter (Cm) and equivalent water thickness (Cw) plant traits retrieved
by radiative transfer model inversion. When the models were built with
airborne‐quantified SIF, N estimation performance improved under
both rainfed (water-stress) and irrigated conditions. Additionally, the
models that combined SIF and chlorophyll a+ b content performed
better than standard empirical methods based on simple linear re-
lationships with narrow-band hyperspectral indices. In addition, this
work demonstrates that SWIR-based indices centered at 1510 nm yield
more reliable agreements with N concentration (r2= 0.69) than tradi-
tional chlorophyll indices (TCARI/OSAVI r2= 0.45) proposed as proxy
for N quantification.
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