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a Universidad Politécnica de Madrid, CEIGRAM, Madrid, Spain 
b European Commission (EC), Joint Research Centre (JRC), Ispra, Italy 
c Ecotoxicology of Air Pollution, CIEMAT, Madrid, Spain 
d Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-INAGEA), Madrid, Spain 
e School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences (FVAS) & Melbourne School of Engineering (MSE), University of Melbourne, 
Melbourne, VIC, Australia 
f Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain   
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A B S T R A C T   

Remote sensing is a valuable tool for reducing the environmental impact of agricultural practices by detecting 
crop nitrogen (N) and water status for site-specific N fertilization and irrigation. The interaction between N and 
water status may produce confounding effects in the acquired spectral reflectance, making it difficult to separate 
crop deficiencies. The objective of this study was to evaluate the potential of visible and infrared hyperspectral 
and thermal imaging sensors for N and water status assessment with reduced confounding effects. A winter wheat 
(Triticum aestivum L.) field experiment combining four N and two irrigation levels was conducted in Central Spain 
over 2 years. The Nitrogen Nutrition Index (NNI) was monitored (mid stem elongation, final stem elongation, 
flowering stage) and the crop water status was measured with a leaf porometer at flowering. Two hyperspectral 
sensors covering the visible and near infrared regions (400–850 nm) and part of the short-wave infrared 
(950–1750 nm) together with a thermal camera were installed on-board an aircraft to acquire images 300 m 
above the experiment. In addition, canopy reflectance (400− 1000 nm) was measured with a handheld spec-
troradiometer at ground level. The relationship between the ground-based determination of N and water status 
with indicators based on remote sensors was analyzed. The planar domain Canopy Chlorophyll Content Index 
(CCCI) reduced soil background noise and correlated with the NNI in all cases (R2 > 0.44; P < 0.001). Reliable 
assessment of water status was achieved by using the Water Deficit Index (WDI), which is calculated using the 
Vegetation Index-Temperature trapezoid. The CCCI distinguished between N levels reducing the confounding 
effect of the water status, in contrast to the WDI which was mostly affected by the water status. Combining the 
CCCI and WDI to assess the crop NNI reduced the root mean square error to 0.109, suggesting that the combi-
nation of spectral and thermal information could improve the adjustment of N fertilization and irrigation to crop 
requirements. However, the approach must be validated in other cultivars and environments before making N 
fertilization and irrigation recommendations.   

1. Introduction 

According to the FAO, in 2018, 15 % of the total area harvested in the 
world by primary crops was wheat, which received 17 % of total world 
nitrogen (N) fertilizer consumption (FAOstat, 2020). Adjusting fertil-
ization and irrigation to winter wheat requirements is a crucial strategy 
for increasing N use efficiency (NUE) and water use efficiency (WUE) 

while reducing water and soil pollution (Arregui et al., 2006) and 
greenhouse gas emissions (Aguilera et al., 2013). In recent years many 
attempts have been made to develop accurate techniques to determine 
crop status and adjust fertilization and irrigation to crop demand. 
However, each crop requires a specific strategy for adjusting N fertilizer 
application because crop N demand changes with time, biomass accu-
mulation and crop development (Sticksel et al., 1999). Along these lines, 
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monitoring temporal variations of crop N status could allow adapting N 
application to crop N requirements (Quemada et al., 2014). In winter 
wheat, a common strategy is to split fertilization into two topdressing N 
fertilizer applications: one at the beginning of tillering and the rest 
during stem elongation to ensure yield (Arregui et al., 2006). Conse-
quently, it is crucial to determine crop status at early stages to adjust 
fertilizer rates (Raun et al., 2005; Ravier et al., 2017). Additionally, N 
and water availability between the late boot stage and early grain filling 
determine grain quality (Ottman et al., 2000) and so crop status infor-
mation is crucial for guiding crop management during these growth 
stages (Zhao et al., 2005; Diacono et al., 2013). 

The Nitrogen Nutrition Index (NNI) is a well-known indicator of crop 
N status (Justes et al., 1994). NNI compares N concentration in leaves 
and shoots (%N) with the critical %N at a given biomass. Critical %N is 
the minimum %N that produces the maximum growth rate of biomass. 
Critical %N decreases with biomass production, given the N critical 
dilution curve (CDC) that is enveloped by minimum and maximum 
limits (Greenwood et al., 1990). For a given biomass, if the actual NNI 
value is below the minimum threshold, N is limiting crop growth. Water 
deficit has a direct effect on plant N demand because it reduces growth 
and affects the partitioning between structural and metabolic tissues 
(Sadras and Lemaire, 2014). For this reason, efforts have been made to 
develop an alternative CDC for winter wheat under water deficit regimes 
(Hoogmoed and Sadras, 2018; Neuhaus et al., 2017) or for spring wheat, 
often exposed to limited water availability (Ziadi et al., 2010). 

Based on the CDC approach, N demand can be monitored by 
continuous determination of %N in a representative sample of known 
aerial biomass (Mistele and Schmidhalter, 2008). However, this pro-
cedure is expensive, slow and hard to apply to large fields (Haboudane 
et al., 2002; Min and Lee, 2005). In addition, by the time the results are 
available, in many cases the phenological stage of the crop has changed 
and it is of little support for making decisions related to fertilization. 
These limitations could be overcome by remote sensing techniques 
(Raya-Sereno et al., 2021). Even though its widespread use is relatively 
new (Weiss et al., 2020), this approach provides valuable insights into 
improving the estimation of N status in large areas (Hatfield et al., 
2008). The remote sensing techniques are based on a sensor that mea-
sures surface temperature or canopy reflectance at different wave-
lengths of the electromagnetic spectrum, requiring corrections because 
of atmospheric disturbances (Griffin and Burke, 2003). Canopy reflec-
tance is affected by vegetation structure, crop photosynthetic pigments 
related to the N concentration (Gabriel et al., 2017) and other factors 
affecting crop development, such as water content (Chen et al., 2005). 

Moreover, a number of limitations arise when using spectral infor-
mation for estimating crop biophysical parameters: when canopy 
reflectance is measured with different sensors, discrepancies can be 
found due to differences in spectral resolution, view angle or atmo-
spheric corrections, among others (Cross et al., 2018). At early growth 
stages (GS), before achieving full canopy cover, soil background affects 
the reflectance, making it difficult to distinguish between soil and plant 
spectral components. This is a critical issue because decisions based on N 
fertilization rates are made at early stages (Basso et al., 2009). Thus, 
reliable N estimations at early GS have been the focus of research, such 
as the development of the Canopy Chlorophyll Content Index (CCCI) 
(Barnes et al., 2000), which is a planar domain Vegetation Index (VI) 
that measures plant biophysical parameters in a mixed soil/plant pixel 
by analyzing the relationship between one chlorophyll and one biomass 
related VI plotted in a two dimensional space (Clarke et al., 2001). 
Another limitation when determining crop N status is that most VIs have 
been developed to estimate chlorophyll content or biomass without 
considering the N dilution effects (Mistele and Schmidhalter, 2008). 
Nevertheless, optimal %N is dependent on the biomass, and it changes 
with crop development (Lemaire et al., 2008; Sadras and Lemaire, 
2014). Also, water and N shortage affect the reflected light acquired by 
the sensor, and it can be difficult to identify the stress suffered by the 
crop (Barnes et al., 2000; Osborne et al., 2002; Tilling et al., 2007; 

Cossani and Sadras, 2018). In addition, the ability of estimating crop 
parameters through VIs is reduced when the crop is experiencing water 
stress (Schepers et al., 1996; Kusnierek and Korsaeth, 2015). 

Stomatal conductance depends on different environmental factors 
including soil water availability and is directly related to plant photo-
synthesis and transpiration (Constable and Rawson, 1980). A reliable 
assessment of this variable can be achieved with a leaf porometer 
(Möller et al., 2007; Masseroni et al., 2017). The transpiration rate is 
inversely correlated with leaf temperature; for this reason, foliar tem-
perature has long been used to detect plant water stress (Tanner, 1963) 
and the correlation of temperature-based indicators with stomatal 
conductance is well documented (Jones, 1999; Grant et al., 2007). The 
foliage and air temperature difference has proven to be a reliable 
method to detect plant water stress (Idso et al., 1977). However, this 
alone is not enough to detect plant water stress because other environ-
mental factors different from water supply influence plant temperature 
(Walker, 1980; Heitholt et al., 1991). To overcome this limitation, Idso 
et al. (1981) developed the Crop Water Stress Index (CWSI) by 
normalizing the foliage-air temperature difference with the vapour 
pressure deficit (VPD), allowing comparison between vegetation at 
different environmental conditions and dates. The CWSI is based on the 
ratio between actual and potential transpiration, calculated as the 
relationship between the distance to minimum and maximum water 
stress baselines. Some problems are present when applying the CWSI 
with airborne thermal sensors under partially vegetated fields: the in-
formation is taken from soil-plant mixed pixels, and soil and plant 
thermal emission can be drastically different (Jackson et al., 1981; 
Rodriguez et al., 2005). To solve this problem, Moran et al. (1994) 
proposed the Water Deficit Index (WDI), which is calculated by plotting 
in a two dimensional space the canopy-air temperature difference and 
the ground cover simulated by a spectral VI using the concept of the 
Vegetation index-Temperature (VIT) trapezoid. 

The aim of this study was to evaluate the potential of different 
spectral- and temperature-based indicators for simultaneous crop N and 
water status assessment by reducing the potential confounding effects in 
winter wheat. In order to reinforce the results, the reflectance was 
measured at ground level and with an airborne platform 300 m above 
the experiment using two hyperspectral sensors. The specific objectives 
were i) to identify the best hyperspectral VI and temperature-based in-
dicator for the NNI and water status assessment ii) to combine the best 
NNI and water status predictors to develop an improved indicator for N 
status monitoring, and iii) to evaluate the capacity of the indicators to 
identify N and water levels with minimum confounding effects. 

2. Materials and methods 

2.1. Experimental design 

The study was carried out at La Chimenea farm station (40◦04′N, 
03◦32′W, 550 m a.s.l.), near Aranjuez (Madrid, Spain) during two 
consecutive growing seasons: 2017/2018 and 2018/2019 (hereinafter 
referred to as 2018 and 2019, respectively). The study site was flat 
(slope < 1%) and the soil, representative of the medium Tajo River 
terraces, is mapped as Haplic Calcisol (World Reference Base for Soil 
Resources, 2014), with a pH ≈ 8.1, medium organic matter content 
(topsoil organic C 1.01 g kg− 1), and a silty clay loam texture with low 
stone content throughout the soil profile. The climate of the area is 
classified as cold semi-arid (Bsk) according to the Köppen classification, 
with a mean annual temperature of 14.2 ◦C and 373 mm of average 
rainfall. Usually, spring and summer are characterized by a substantial 
water deficit that is compensated by irrigation, water-delivered since 
April. High inter-annual variability is characteristic of the region; 
therefore, relevant climate variables were recorded hourly throughout 
the experimental period with a weather station located at the farm. 

The experiment was conducted in a field irrigated by a full circular 
pivot (220 m radius) for uniform and adjustable water delivery. At the 
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beginning of each growing season (02/11/2017; 17/11/2018) a 
different quarter of the field was sown with winter wheat (Triticum 
aestivum L, cv. Nogal) at a seeding rate of 220 kg seeds ha− 1 (5.6 × 106 

seeds ha− 1). To ensure uniformity and low levels of soil inorganic N 
content, both quarters of the field had a maize crop (Zea mays L.) that did 
not receive mineral N fertilizer previous to the wheat and had not 
received organic amendments during the 4 years prior to the beginning 
of the trial. To establish a factorial experiment, 32 plots (25 × 25 m in 
2018 and 22 × 22 m in 2019) were marked and randomly assigned into 
four N and two water levels, with four replications (Fig. 1). The plots 
were georeferenced by RTK (Real Time Kinematic) through the National 
Geodetic Network of Reference Stations GNSS (ERGNSS) technique, 
using the permanent Sonseca (Toledo) and Aranjuez (Madrid) stations 
due to their proximity, with a Topcon HiPer Pro receptor® (Topcon 
Singapore Holdings Pte. Ltd, Singapore). 

The four N levels were established by applying N fertilizer (calcium 
ammonium nitrate) from 0 to above the recommended dose, in 50 kg N 
ha− 1 increments. The wheat N requirements were calculated as the 
product of the expected grain yield (6.5 Mg ha− 1) times an extraction 
coefficient of 30 kg N Mg− 1 (Arregui et al., 2006). Fertilizer rates applied 
to each N level were 0, 50, 100 and 150 kg N ha− 1 for N0, N1, N2 and 
N3, respectively in 2018; and 0, 42, 92 and 142 kg N ha− 1 in 2019. N 
fertilizer was hand-broadcasted to plots in two growth stages (Zadoks 
et al., 1974): two thirds at tillering (Z22; 25/01/2018 and 30/01/2019) 
and one third at stem elongation (Z35; 22/03/2018) or final stem 
elongation (Z39; 15/04/2019). Before the first fertilizer application 
each year, soil samples from 0− 0.6 m in 0.2 m depth intervals were 
taken from each plot to determine soil mineral N content (kg N ha− 1). 
Soil sub-samples were extracted with 1 M KCl, and analyzed for N-NH4

+

and N-NO3- (Keeney and Nelson, 1982). Soil mineral N was calculated as 
the addition of N-NH4

+ and N-NO3- content in the top 0.60 m, and was 
36 kg N ha− 1 in 2018 and 57 kg N ha− 1 in 2019. The N available in each 
treatment was calculated by adding the N applied with the fertilizer to 
the soil mineral N content before fertilizer application. Before sowing 
wheat, phosphorus (50 kg P ha− 1) and potassium (70 kg K ha− 1) were 
applied so that crop growth would not be limited. 

To evaluate the effect of water availability on monitoring crop N 
status by optical and thermal sensors, half of the plots (Fig. 1) were 
irrigated at the beginning of flowering (Z63) in both experimental years. 
In 2018, half of the plots received 25 mm of water on May 8th. In 2019, 
half of the plots were irrigated in two events (30 mm on May 7th and 

9 mm on May 10th). Additionally, due to the scarcity of winter rainfall in 
2019 all plots were irrigated twice with 25 mm at Z32 (13/03/2019) and 
Z39 (15/04/2019) (Fig. 2). In the text, the plots that did not receive 
irrigation at flowering are referred to as W1, and the others as W2. 

2.2. Crop analyses 

Two samples (0.5 × 0.5 m) of aerial biomass per plot were collected 
three times each experimental year at mid stem elongation, final stem 
elongation, and flowering (Table 1). The samples were dried at 65 ◦C for 
48 h and weighed to determine aerial biomass (kg ha− 1). A subsample 
was analyzed to calculate N concentration (%N) by using the Dumas 
combustion method (LECO FP-428 analyzer, St. Joseph, MI, USA). At 
flowering, spikes and the rest of aerial biomass were analyzed separately 
and %N was calculated using the relative weights of shoots + leaves and 
spikes. 

The first sampling campaign was conducted between the first and 
second N fertilizer application, as it might be important for adjusting the 
second N application. The second sampling campaign was conducted 
just before flowering, when maximum ground cover and N uptake were 
reached. Crop N status measurements at this stage indicate if foliar N 
application would increase grain protein content (Angus and Fischer, 

Fig. 1. Normalized Difference Vegetation Index (NDVI) retrieved from the airborne hyperspectral VNIR imager at final stem elongation in 2019. The 32 plots 
monitored each year separated by water levels (W1, W2) are shown. 

Fig. 2. Total amount of rainfall (mm) and irrigation over the two experimental 
years. Only half of the experiment was irrigated at flowering. Dots indicate the 
dates of on-ground sampling. 
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1991). The third sampling campaign was carried out at full flowering, 
when N translocation to spikes had already started and the experiment 
was split into two water levels. 

To determine crop N status, the NNI was calculated by using the CDC 
(Eq. 1) for winter wheat proposed by Justes et al. (1994):  

%Nc= a x Biomass − b                                                                      (1) 

where %Nc is the minimum N concentration that produces the maximum 
growth at a given shoot Biomass, and a = 5.35 and b = 0.442 are esti-
mated parameters. The parameter a represents the total shoots biomass 
for 1 Mg DM ha− 1, and b the coefficient of dilution. The actual ratio of % 
N and aerial biomass determined in the samples collected from the 
experimental plots was used to calculate the NNI following the equation: 

NNI =
%N
%Nc

(2) 

Therefore, values of NNI close to 1 represent vegetation with N 
fertilization adjusted to crop requirement, while values above 1 repre-
sent overfertilized vegetation and below 1, vegetation with N 
deficiencies. 

Additionally, the CDC adjusted to the specific conditions of the 
experiment was calculated following the methodology proposed by 
Greenwood et al. (1990) with Eq. 1 fitted to the selected points. For each 
year and sampling date, the biomass dry weight was compared among 
the N treatments using one-way ANOVA and the treatment with the 
highest mean biomass (P < 0.1) was selected to determine the rela-
tionship between %Nc and shoot biomass. If more than one treatment 
resulted in similarly high biomass, the N treatment resulting in the 
lowest shoot N concentration was selected. If differences among N 
treatments were not significant, the data from that sampling date were 
not used. Then, Eq. 1 was fitted to the %Nc and Biomass selected data by 
a nonlinear regression iterative procedure and the coefficients were 
estimated by least-squares. 

To build a ground-truth dataset of water status, the leaf conductance 
was determined by measuring the stomatal conductance of the leaf flag 
in three representative plants per plots with a clip leaf porometer 
(Decagon Leaf Porometer, Decagon Devices, Inc. Pullman, WA, USA) 
within 2 h of local solar noon on May 13th 2019. The leaf porometer 
measures stomatal conductance by placing the leaf in series with two 
known conductance elements, and comparing the humidity measure-
ments between them (Sanad et al., 2019). The leaf porometer calculates 
the stomatal resistance between the inside and outside of the leaf by 
estimating the flux of water vapor along a diffusion path. 

2.3. Spectral and thermal measurements 

Canopy reflectance was measured as close as possible to the crop 

sampling campaigns ensuring cloud-free sky conditions with three 
hyperspectral sensors: one at ground level and two installed on board a 
manned aircraft. 

Ground-level reflectance spectra were acquired with a portable ASD 
FieldSpec® Hand-Held VNIR spectroradiometer (Analytical Spectral 
Devices, Boulder, CO, USA). For each plot, 15 independent spectra, each 
of these the average of 10 spectra, were randomly acquired 1 m above 
canopy in a nadir orientation. A reflectance spectrum for each plot was 
determined as the average of the 15 spectra, and a mean spectrum per 
treatment was calculated as the average of the four plot replications. The 
fiber optics provided a 25◦ field of view with a spectral resolution of 
3 nm, resampled to 1 nm over the 325- to 1075-nm wavelength, which 
resulted in an effective range of 400–900 nm due to noise levels at both 
ends of the spectrum. Readings were continuously calibrated and opti-
mized by recording the black and baseline reflectance with a Spectralon 
reference panel (Spectralon, Labspehere Inc., North Sutton, NH, USA) to 
convert measurements to reflectance values (Quemada and Daughtry, 
2016). In each experimental year, three ground-level acquisition cam-
paigns were conducted at the same Zadoks stage as the crop sampling 
collection: at mid stem elongation, final stem elongation, and flowering 
(Table 1). 

The airborne imagery acquisitions were conducted with a Cessna 
aircraft flying 300 m above ground and at 70 knots ground speed with 
heading on the solar plane. The sensors carried by the aircraft were a 
visible and near infrared (VNIR) hyperspectral imager (Micro-Hyperspec 
VNIR model, Headwall Photonics, Fitchburg, MA, USA) which collected 
reflectance in the 400- to 850-nm spectral region with a spectral reso-
lution of 6.5 nm and a spatial resolution of 0.2 m, and a Hyperspec 
linear-array imager (NIR-100 model, Headwall Photonics, Fitchburg, 
MA, USA) capturing a portion of the short-wave infrared (SWIR) region 
from 950 to 1750 nm with 165 spectral bands at 6.05 nm FWHM and 16- 
bit resolution, yielding 0.6 m spatial resolution. The VNIR and NIR-100 
sensor radiometric calibrations were conducted with an integrating 
sphere (CSTM-USS-2000C LabSphere, North Sutton, NH, USA) using 
four levels of illumination and six integration times. Hyperspectral im-
agery was atmospherically corrected measuring incoming irradiance 
with a field spectrometer and also simulated by the SMARTS model 
(Gueymard, 1995; Gueymard, 2001). Smoothing of the airborne spectra 
was performed using the Savitzky-Golay method with a filter length of 9 
interpolated to 1 nm. Wavelengths between 1320–1500 and 
1085–1185 nm were removed due to atmospheric water vapor absorp-
tion (Gao et al., 2009). 

RTK coordinates were used to extract the mean spectrum per plot 
from the hyperspectral imagery, using a 2-m buffer at each side to ensure 
treatment representativeness. Two airborne campaigns were conducted 
in 2018: at final stem elongation with the VNIR sensor and at flowering 
with the VNIR and NIR-100 sensors. Three campaigns were conducted in 
2019: at mid stem elongation with the VNIR sensor and at final stem 
elongation and flowering with the VNIR and NIR-100 sensors (Table 1). 

In addition, the aircraft recorded canopy temperature with a thermal 
camera (SC655 model, FLIR Systems, Wilsonville, OR, USA) with a res-
olution of 640 × 480 pixels, 16-bit radiometric resolution, 13.1-mm 
focal length, and 45 × 33.7 ◦FOV yielding a spatial resolution of 
0.25 m. Thermal imagery was calibrated using ground temperature data 
collected with a handheld infrared thermometer (LaserSight, Optris, 
Germany) on each flight date. The mean canopy temperature was 
extracted from each plot with a 2-m buffer to estimate crop water status 
at flowering in the two years. 

2.4. Calculation of hyperspectral and thermal indices 

The airborne canopy reflectance and temperature images were used 
to calculate various commonly used VIs from the literature. The VIs were 
calculated per plot to analyze the relationships with the crop parameters 
and the potentials for distinguishing the N and water levels without 
confounding effects. The VIs were classified according to their main 

Table 1 
Growth stages, dates and Zadoks stages (Z) of biomass sampling and sensor 
measurement acquisition.   

Mid stem elongation Final stem 
elongation 

Flowering  

Dates Zadoks Dates Zadoks Dates Zadoks 

Biomass 

22/03/ 
2018 Z34 

17/04/ 
2018 Z37 

11/05/ 
2018 Z65 

11/03/ 
2019 

Z32 12/04/ 
2019 

Z39 13/05/ 
2019 

Z65 

FieldSpec 

22/03/ 
2018 

Z34 17/04/ 
2018 

Z37 11/05/ 
2018 

Z65 

08/03/ 
2019 Z32 

12/04/ 
2019 Z39 

14/05/ 
2019 Z65 

Aircraft 
– – 

19/04/ 
2018 Z37 

15/05/ 
2018 Z65 

11/03/ 
2019 

Z32 12/04/ 
2019 

Z39 16/05/ 
2019 

Z65  
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sensitivity to i) canopy structure, ii) chlorophyll a + b and other 
photosynthetic pigments, iii) canopy N status, and iv) water status 
(Supplementary material S1). The structural indices are based on the 
relationship between bands from the NIR and the visible regions. The 
structural VIs used in this study were the NDVI (Rouse et al., 1973), 
GNDVI (Gitelson et al., 1996), OSAVI (Rondeaux et al., 1996) and EVI 
(Huete et al., 2002). The photosynthetic pigment VIs are based on bands 
from visible and red edge regions, sometimes normalized by the NIR. 
The photosynthetic pigment VIs used were the PRI (Gamon et al., 1992), 
CI (Zarco-Tejada et al., 2001:2018), TCARI (Haboudane et al., 2002), 
DCNI (Chen et al., 2010), mND705, mSR705 (Sims and Gamon, 2002), 
NDRE (Barnes et al., 2000), and N850,1510 (Camino et al., 2018). 

The “canopy N status indices” comprise VIs that compensate the soil 
effect by combining a structural and a photosynthetic pigment index, 
such as in the TCARI normalized by the OSAVI, forming the TCARI/ 
OSAVI index (Haboudane et al., 2002), or in other cases by estimating 
the two components of the CDC using a planar domain approach (Clarke 
et al., 2001). The Canopy Chlorophyll Content Index (CCCI) is the most 
common planar domain index and uses a structural VI as proxy for crop 
biomass, and a chlorophyll-related VI as proxy for crop N concentration 
(Barnes et al., 2000; Fitzgerald et al., 2010). The CCCI value of each plot 
was calculated in a two-dimensional space by representing the NDVI on 
the X-axis, and NDRE on the Y-axis. Consequently, the value of CCCI was 
calculated by comparing the distance of each point to the upper and 
bottom line that involves the cloud of points from the coordinate origin. 
N-sufficient plots will be located in the graph close to the upper line, 
whereas N-deficient plots will approach the bottom line. 

Two VIs based on the reflectance in the SWIR region (NDWI1240 
(Gao, 1996) and NDWI1640 (Jackson et al., 2004)) were selected to test 
their ability to determine crop water status, given that they are related to 
water content (Gao et al., 2015). The SWIR region was not covered by 
the FieldSpec spectral range and therefore, these NIR/SWIR VIs were 
calculated only from the aircraft imagery. The accuracy in determining 
water status using SWIR based VIs was compared against indices based 
on canopy temperature. The temperature-based indicators used in this 
study were the canopy-air temperature difference (Tc-Tair) (Idso et al., 
1977) and the Water Deficit Index (WDI) (Moran et al., 1994). The WDI 
is an indicator of crop water status that adapts the Tc-Tair to partially 
vegetated fields. To calculate WDI, the Vegetation Index-Temperature 
(VIT) trapezoid was plotted in a two-dimensional space created by the 
surface-air temperature differential on the X-axis, and a fractional 
vegetation cover VI on the Y-axis. As proposed by Moran et al. (1994), 
the soil-adjusted vegetation index (SAVI; Huete, 1988) was used as a 
surrogate for the fractional vegetation cover. The VIT trapezoid was 
defined by two horizontal lines at full ground cover and at bare soil. The 
value of the full ground cover was the maximum SAVI obtained in all 
spectral imagery. The bare soil value was the minimum SAVI extracted 
from 30 pixels randomly located at the pivot-track, half in each water 
level. The dry and wet bare soil vertices were determined using the 
image mean temperature of the dry and wet pixels located in the 
pivot-track of the W1 and W2 zones, respectively. The maximum and 
minimum water stress vertices at full canopy cover were derived based 
on the baselines proposed for post-heading winter wheat by Idso (1982). 
The air vapor water pressure was calculated from the relative humidity 
and air temperature recorded at the time of image acquisition by the 
weather station located at the experimental farm. The minimum water 
stress line of the VIT connects the vertices of wet bare soil and minimum 
water stress at full canopy cover. Vegetation points close to this line 
experience minimum water stress. The maximum water stress line links 
the dry soil vertex with the maximum water stress at full canopy cover. 
The WDI was calculated for each plot as the ratio between the horizontal 
distance to maximum and minimum water stress lines. 

2.5. Statistical analysis 

Statistical analyses were carried out to assess the potential of the 

different indices for estimating N and water status with low effect from 
the N-water interaction. In the first step, the structural, photosynthetic 
pigment and canopy VIs were tested as proxy for N status, and the water 
indices as proxy for water status. The predictive ability of the VIs to 
estimate crop status in each sampling campaign was evaluated by 
calculating the coefficient of determination (R2) and root mean square 
error (RMSE) from the linear relationships. The crop parameter used to 
define the N status was the NNI, calculated from biomass measurements. 
The crop parameter that described the water status was leaf stomatal 
conductance (mmol m− 2 s-1) measured with a leaf porometer. The 
different water levels were established at flowering stage both years, 
therefore, the water status was only determined at this stage. In the 
second step, the indices that best described the NNI and water status 
were combined using a multiple lineal regression model fitted to the NNI 
to develop a new index for N status assessment. Finally, the ability of the 
VIs to distinguish between N levels without confounding effects was 
evaluated at flowering using the least squares means contrasted with the 
Tukey test (P ≤ 0.05) with the N level as the factor. The same meth-
odology was applied to validate the performance for water status but 
using the water level as the factor for each N level. In addition, a two- 
way ANOVA was conducted to analyze the effect of N, water and N ×
Water in the indices. The statistical analyses were conducted with R 
software (version 4.0.5; R Core Team, 2021). 

3. Results 

3.1. Crop response to water and nitrogen supply 

Different climatic conditions between experimental years, particu-
larly rainfall distribution, had a large effect on crop growth. The total 
amount of water received by W2 plots until biomass collection at 
flowering stage was 304 mm in 2018 and 216 mm in 2019. Differences 
in water availability between experimental years were also observed at 
tillering and stem elongation (Fig. 2). Since no water was available for 
irrigation for several weeks of the 2019 growing season, the wheat 
suffered severe water stress, which later limited the crop response to N 
supply. Biomass accumulation and %N (Table 2) were greatly affected 
by the different climatic conditions, widening the range in the crop 
variables investigated and creating a suitable dataset for testing the 
relationships between crop performance and spectral measurements. 

Shoot biomass increased with growth stages and %N decreased 
(Table 2). This N dilution effect was also observed when comparing the 
crop parameters between years; the biomass accumulation tended to be 
higher in 2018, with significant differences between years at mid stem 
elongation and flowering (P ≤ 0.05). In contrast, the %N was higher in 
2019 with significant differences between years in the same dates as 
biomass. The effect of the different N fertilization rates was observed in 
the relative position with the CDC: data from low N levels remained 
below the critical requirements, whereas high N levels tended to 
approach or surpass the %Nc (Fig. 3a). 

Increasing N levels had a positive effect on biomass, %N and NNI in 
the two experimental years (Table 2). The NNI distinguished between N- 
deficit plots (N0 and N1), plots with the recommended rate (N2), and the 
overfertilized plots (N3) in all the 2018 GSs. The NNI distinguished 
between the nonfertilized plots and the overfertilized plots in all the 
2019 GSs, but the discriminatory capacity of intermediate N levels 
varied with the GS. Treatments N1 and N2 had a similar NNI at mid stem 
elongation in 2019, but a different NNI at final stem elongation. At 
flowering, NNI differences between N1 and N2 treatments were clearer 
in the W2 level than in the W1 (Table 2). Differences in the NNI between 
the water levels established in each N level were only found in the 2019 
N2 treatment, yielding higher a NNI in the W2 plots. The effect of water 
levels was clear in reducing %N in the N2 and N3 treatments but was 
also accompanied by a reduction in biomass. Increasing water level was 
associated with an increase in the spikes’ N content (kg N ha− 1): it was 
12 % higher in W2 than in W1 in 2018 and 9% higher in N3-W2 plots 
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with respect to N3-W1 in 2019 (data not shown). 
A strong crop response to water levels was observed in the leaf 

conductance measured at flowering in 2019 (Table 2). Treatments with 
a higher irrigation level showed higher conductance than treatments 
with lower water application across all the N levels (P ≤ 0.05). For each 

water level, no differences in leaf conductance were observed between N 
levels. The greatest difference between water levels was observed in N0, 
which obtained the highest leaf stomatal conductance mean value 
among the W2 plots. 

Table 2 
Biomass (kg DM ha− 1), N concentration (N conc, %), Nitrogen Nutrition Index (NNI) and flag leaf conductance (mmol m-2 s− 1) for the various N and water levels at 
different Zadoks stages for the two experimental years. Within a year and growth stage, values followed by the same letter are not significantly different according to 
Tukey’s test at P ≤ 0.05.    

2018 2019   

Treatment Biomass N conc. NNI Biomass N conc. NNI Conductance  

Water N (kg DM ha− 1) (%)  (kg DM ha− 1) (%)  (mmol m− 2 s-1) 

Mid stem elongation  
N0 1568 a 2.46 a 0.55 a 1521 a 2.83 a 0.63 a –  
N1 2091 a 2.63 a 0.68 a 1683 a 3.23 ab 0.74 ab –  
N2 2843 b 3.00 a 0.88 b 1531 a 3.58 bc 0.8 bc –   
N3 3322 b 3.96 b 1.25 c 1771 a 3.70 c 0.89 c – 

Final stem elongation  

N0 4256 a 1.04 a 0.37 a 4068 a 1.48 a 0.53 a –  
N1 5924 a 1.14 a 0.47 a 5107 ab 1.65 ab 0.58 a –  
N2 8242 b 1.68 b 0.79 b 6456 bc 1.85 bc 0.78 b –  
N3 8593 b 2.29 c 1.1 c 7456 c 2.00 c 0.9 b – 

Flowering W1 N0 8108 a 0.69 a 0.33 a 6576 a 0.94 a 0.4 a 144 ab   
N1 9830 ab 0.8 ab 0.41 a 9667 ab 1.12 abc 0.57 ab 151 ab   
N2 12,965 c 1.06 bc 0.61 b 9970 ab 1.17 abc 0.6 bc 175 abc   
N3 11,851 bc 1.51 e 0.84 c 10,551 b 1.56 d 0.83 d 141 a  

W2 N0 8797 a 0.69 a 0.33 a 7412 a 0.92 a 0.41 a 297 d   
N1 11,101 abc 0.8 ab 0.43 a 9487 ab 1.12 ab 0.56 ab 245 cd   
N2 12,979 c 1.14 cd 0.66 b 10,877 b 1.37 cd 0.74 cd 240 cd   
N3 13,713 c 1.40 de 0.83 c 11,654 b 1.36 bcd 0.75 d 266 cd  

Fig. 3. a) Pair values of aerial biomass (Mg 
ha− 1) and N concentration (%) for all N levels 
(symbols), water levels (colors) and sampling 
dates of the experiment. The continuous line is 
the critical N dilution curve (CDC) (%Nc = 5.35 
x Biomass -0.442) for winter wheat, and the 
dashed lines the envelop curves (Nmax = 8.3 x 
Biomass -0.442 and Nmin = 2.2 x Biomass -0.442) 
according to Justes et al. (1994). b) Comparison 
of the CDC proposed by Justes et al. (1994) 
(solid black line) with the CDC fitted to the N2 
treatments in this study (%Nc = 4.42 x Biomass 
-0.483, R2 

= 0.88) (dashed line); the gray area 
indicates the envelop curves at 95 % confidence 
intervals (Nmax = 4.14 x Biomass -0.532 and 

Nmin = 4.73 x Biomass -0.433). The green line is the CDC under water limited conditions proposed by Neuhaus et al. (2017) (%Nc =0.7 × 3.91 x Biomass -0.32), and the 
yellow line the CDC proposed by Hoogmoed and Sadras (2018) (%Nc =6.75 x Biomass -0.66).   

Table 3 
Coefficient of determination (R2) of the linear relationship between Nitrogen Nutrition Index (NNI) and the different spectral vegetation indices extracted from the 
airborne imagery (AB) and the ground-level FieldSpec (FS). Bold numbers were significant at P ≤ 0.001.  

Spectral indices 

Mid stem elongation Final stem elongation Flowering 

2018 2019 2018 2019 2018 2019 

FS AB FS AB FS AB FS AB FS AB FS 

NDVI 0.51 0.02 0.10 0.53 0.41 0.52 0.39 0.59 0.59 0.40 0.41 
GNDVI 0.50 0 0.20 0.57 0.54 0.54 0.51 0.62 0.48 0.52 0.49 
OSAVI 0.53 0.03 0.11 0.60 0.53 0.56 0.41 0.65 0.46 0.39 0.41 
EVI 0.54 0.03 0.11 0.65 0.59 0.57 0.43 0.68 0.33 0.38 0.39 
PRI 0.52 0.02 0.15 0.59 0.61 0.28 0.51 0.61 0.59 0.27 0.28 
CI 0.48 0 0.20 0.58 0.67 0.59 0.53 0.65 0.63 0.40 0.42 
TCARI 0.30 0.27 0.10 0.26 0.48 0.35 0.44 0.20 0.20 0.16 0.42 
DCNI 0.45 0.40 0.22 0.28 0.69 0.46 0.59 0.42 0.61 0.42 0.49 
mND705 0.53 0.02 0.22 0.56 0.58 0.62 0.60 0.64 0.63 0.38 0.45 
mSR705 0.48 0.02 0.22 0.58 0.69 0.62 0.55 0.64 0.62 0.38 0.40 
NDRE 0.51 0.07 0.27 0.57 0.64 0.58 0.64 0.65 0.66 0.50 0.51 
N850, 1510 – – – – – 0.31 – 0.45 – 0.18 – 
TCARI/OSAVI 0.46 0.39 0.25 0.46 0.57 0.53 0.64 0.56 0.51 0.59 0.58 
CCCI 0.50 0.56 0.44 0.54 0.67 0.53 0.73 0.64 0.65 0.62 0.59  
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3.2. Vegetation indices as proxy of NNI across growth stages 

Most of the VIs based on the red edge region had a significant rela-
tionship with the NNI, showing variations in R2 and RMSE according to 
the various GSs and sensors (Table 3 and Supplementary material S2). 
The NDRE index, based on red edge and NIR reflectance, yielded R2 >

0.5 with the NNI in most cases, except for mid stem elongation 2019. 
The suitability of the red edge region as an N status indicator was also 
supported by the performance of other photosynthetic pigment VIs 
based on reflectance in red edge and visible regions: the DCNI, mND705 
and mSR705. Also, the CI, which used two wavelengths to calculate the 
slope of the red edge region, was related to the NNI and behaved simi-
larly to mSR705: the difference in RMSE between the two VIs was less 
than 0.006 in all cases (Supplementary material S2). Additionally, the 
PRI, based only on reflectance from the visible (or the pigment ab-
sorption region) presented a high R2 value with the NNI, but its per-
formance varied widely between acquisition dates. In this study, the VI 
based on the NIR-SWIR bands (N850, 1510) showed a weak correlation 
with the NNI, as well as the TCARI. 

The suitability of the red edge region combined with NIR to estimate 
NNI is supported when observing the better performance of NDRE with 
respect to the structural VIs NDVI and GNDVI in almost all cases. 
Structural VIs are calculated with an equation similar to NDRE but 
switching red edge reflectance by red or green. Among them, the GNDVI 
performed better than the NDVI at final stem elongation with the two 
sensors for both years, especially with the FieldSpec. When analyzing 
the EVI, which was calculated with the same wavelengths as the NDVI 
but adding blue reflectance, it was observed that the airborne data ob-
tained a higher R2 and lower RMSE than the FieldSpec in most cases; 
also, the correlation enhanced with respect to the NDVI at mid stem 
elongation 2018 and final stem elongation both years. Similarly, the 
OSAVI, which was calculated with the same wavelengths as the NDVI 
but adding a factor, performed better than the NDVI the same dates as 
the EVI. 

Overall, the best correlation with the NNI was obtained with the 
canopy indices, as the R2 were among the highest in all stages. Partic-
ularly, the CCCI was the only index that reached R2 > 0.72 in one of the 
sampling campaigns (Table 3). The low R2 of most VIs at mid stem 
elongation 2019 was attributed to the effects caused by the soil back-
ground at low ground cover stages. This effect was compensated with 
the canopy VIs, especially with the CCCI, supporting the suitability of 
the planar domain VIs to remove the soil background influence. At mid 
stem elongation 2018 most VIs performed similarly (R2 ~ 0.5) and no 
improvement was achieved with the canopy indices because the amount 

of biomass was higher than at mid stem elongation 2019 (Table 2). Most 
structural and photosynthetic pigment VIs performed poorly at flower-
ing 2019, suggesting that they were inaccurate under water stress. This 
was particularly evident with the PRI with the two sensors. 

The CCCI showed a significant correlation with the NNI when 
calculated with the aircraft or FieldSpec in all stages. In this study, the 
CCCI calculated with the two hyperspectral sensors behaved similarly: 
they were significantly correlated in all dates (P ≤ 0.001) with a 
R2 = 0.64 (P ≤ 0.001) when all dates are analyzed together (Supple-
mentary material S3). The equations of the upper (NDREmax) and lower 
(NDREmin) lines that involved the data from both campaigns were 
similar with the two sensors (Fig. 4) and with the equations reported by 
Fitzgerald et al. (2010) for winter wheat in Australia (NDRE-
max = 0.61 ×NDVI; NDREmin = 0.34 ×NDVI), who also used a 
FieldSpec. 

3.3. Spectral analysis at different water levels to assess leaf conductance 

The effect of the water levels on the reflectance spectra was consis-
tently detected in the SWIR as a function of different N rates (Fig. 5). As 
expected, low water availability increased the spectral reflectance in the 
regions centered at 1240 nm and 1640 nm. Smaller differences in the 
NIR reflectance appeared in most cases. In the visible region, differences 
in the red region were evident, detected for all N levels in 2019 and for 
N0 in 2018. For this reason, the normalized difference between the NIR 
and SWIR, proposed by Gao et al. (2015) was tested to detect crop water 
status. 

The distribution of all observations at flowering in the VIT plotted in 
the two dimensional space formed by the SAVI and the temperature 
difference obtained from the thermal camera clearly distinguished 
among data from W1 and W2 water levels in both experimental years 
(Fig. 6). The location in the VIT also stated that the water stress suffered 
by all plots was lower in 2018 than in 2019, with significant differences 
in the WDI between years (P ≤ 0.05), in agreement with comments 
above on climate conditions. 

Ground-based measurements of leaf stomatal conductance were 
better correlated with the WDI than with canopy-air temperature dif-
ferences (Table 4), supporting the improvement of the crop water status 
estimation when canopy temperature is corrected by the ground cover 
(Fig. 7). The relationship of VIs based on SWIR reflectance with leaf 
stomatal conductance was significant only for NDWI1640 (P ≤ 0.001), 
but the R2 < 0.34 for both indices (Table 4). The trend of the linear 
relationships between the index related to water stress (WDI) and the 
indices related to water content (NDWI1240, NDWI1640) were negative 

Fig. 4. Graphical representation of the Canopy Chlorophyll Content Index (CCCI) developed with the mean value of the NDVI and NDRE of each plot extracted from 
a) the airborne imagery and b) with the FieldSpec in all remote sensing campaigns. The CCCI value of each plot with a certain NDVI was calculated as CCCI = (NDRE 
– NDREmin)/(NDREmax – NDREmin). 

J.L. Pancorbo et al.                                                                                                                                                                                                                             



European Journal of Agronomy 127 (2021) 126287

8

with a R2 > 0.55 when indices were extracted from the airborne spectra. 
Between them, the best correlation was obtained with the NDWI1640 
(R2 = 0.63). In addition, the NDWI1640 was the only VI based on SWIR 
bands that found differences in water status between years (P ≤ 0.05). 
Therefore, the optical indices involving SWIR bands were able to detect 
water status, but the best indicator of crop water status was the WDI. 

3.4. Development of a N status indicator combining N and water indices 

The best hyperspectral VI for the NNI (CCCI) and temperature-based 
indicator for water status (WDI) were combined using a multiple lineal 
regression model to develop a new indicator for N status monitoring 
(Fig. 8). The assessment capacity was enhanced when the NNI was 
estimated based on the CCCI and WDI rather than only on the CCCI 
alone, as the R2 increased and the RMSE was reduced. When analyzing 
each year individually, a similar performance in the assessment capacity 
was obtained at flowering 2018 (RMSE = 0.123 and R2 = 0.64 for the 
CCCI versus RMSE = 0.127 and R2 = 0.62 for f(CCCI, WDI)), and sub-
stantial improvement was achieved at flowering 2019, the year that the 
crop experienced a more severe water stress (RMSE = 0.091 and 
R2 = 0.62 for CCCI versus RMSE = 0.081 and R2 = 0.70 for f(CCCI, 
WDI)). 

The effect of the N and water levels in the VIs and the temperature- 
based indicators was tested using the aircraft imagery acquired at 
flowering for both years (Fig. 9 and Supplementary material S4, S5). 
Most VIs distinguished between N-deficit (N0 and N1) and N-sufficient 
plots (N2 and N3); nevertheless, the CCCI also distinguished between the 
nonfertilized plots (N0) and the plots with the reduced dose (N1), as well 

Fig. 5. Average canopy reflectance acquired with the airborne hyperspectral sensors in the 400-1750 nm region at 300 m above ground level at flowering separated 
by N and water levels each year. 

Fig. 6. Representation of all observations at flowering in the Vegetation Index-Temperature (VIT) trapezoid plotted in the two dimensional space formed by the soil 
adjusted vegetation index (SAVI) and the difference between canopy (Tc) and air temperature (Tair). Symbols are the mean value for each plot. 

Table 4 
Coefficient of determination (R2) and root mean square error (RMSE) of the 
linear relationship between leaf conductance (mmol m− 2 s-1) and Water Deficit 
Index (WDI) with different spectral and temperature-based indices extracted 
from the airborne imagery at flowering 2019. Bold numbers indicate signifi-
cance level P ≤ 0.001.   

Conductance WDI  

R2 RMSE (mmol m− 2 s-1) R2 RMSE 

WDI 0.66 39.56 – – 
Tc-Tair 0.59 43.26 – – 
NDWI1240 0.31 56.20 0.56 0.175 
NDWI1640 0.34 54.76 0.63 0.162  
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as between the N1 and N3 plots. The new index based on spectral and 
thermal information performed similarly to the CCCI when identifying N 
levels. The ANOVA test indicated that all spectral VIs were highly 
affected by N fertilization (P ≤ 0.001), except the TCARI (Supplemen-
tary material S4). The capacity of NNI and f(CCCI,WDI) to distinguish 
between the N levels within the W2 plots was similar: both indicators 
distinguished between N1 and N2 plots and identified the N-deficit (N0 
and N1) and N-sufficient (N2 and N3) treatments at flowering both 
years. 

As water availability was similar in W1 and W2 in 2018, the VIs 
behaved similarly in both water levels; however, differences in water 
availability in W1 and W2 caused differences in VI behaviour between 
water levels in 2019 (Supplementary material S4). That year, the 
structural and photosynthetic pigment VIs at W1 and W2 were different 
for most N levels, showing that these indices were sensitive to the water 
effect. However, the canopy VIs reduced these differences across all N 
levels; most particularly differences in the CCCI between water levels 
were significant only for N0 in 2019 (Fig. 9b). No differences in f(CCCI, 
WDI) between water levels were found in any N level and year (Fig. 9e, 
f) showing the robustness of the new indicator in estimating crop N 
status under different water stress conditions. In addition, the ANOVA 
test indicated that all spectral indices were affected by the water levels at 
the 0.001 probability level, whereas the CCCI was at 0.05 and f(CCCI, 
WDI) was the only index not affected (Supplementary material S4). 

Differences between water levels in 2018 were only detected with 
information retrieved from thermal imagery (Supplementary material 
S4, S5). The WDI quantified the water status with a reduced effect of the 
N levels, showing that for W2 all N levels in the same year suffered a 
similar water stress, whereas, for W1 the water stress was higher for N0 
and decreased with increasing N level, especially in 2018 (Fig. 9c, d). 
Compared to the canopy-air temperature difference, the WDI increased 
the differences between water levels and mitigated the effect of the N 
levels (Supplementary material S5). This was particularly evident in the 
N0 level, in which the high temperature associated with higher soil 
exposure but not with lower water availability was compensated by the 
WDI. The two VIs based on SWIR reflectance behaved similarly when 
identifying water and N levels; they distinguished between the water 
levels established in each N level in 2019, but in 2018, they displayed 
differences between N levels but not between water levels. These results 
emphasize that the WDI was the most reliable indicator to determine 
crop water stress with a minimum effect of N status. 

The robustness of the CCCI for estimating N levels under various 
water conditions was evident in the CCCI map obtained by the airborne 
hyperspectral imagery both in 2018 and 2019 (Fig. 10). No differences 
in the CCCI were observed between the W1 and W2 areas with equal N 
application, whereas the N levels were easily identifiable in both water 
levels (in agreement with Fig. 9a, b). On the other hand, the WDI was 
particularly sensitive to crop water status, and even in 2018 was able to 

Fig. 7. Pair values of leaf stomatal conductance 
(mmol m− 2 s-1) and a) canopy-air temperature 
difference (Tc - Tair) or b) the Water Deficit 
Index (WDI) extracted from the airborne im-
agery at flowering 2019 (symbols). Blue sym-
bols are the pair values from plots that were 
irrigated at flowering (W2) and red symbols 
pair values of plots not irrigated at flowering 
(W1). The solid lines are the linear regression 
with the corresponding equation, coefficient of 
determination (R2) and root mean square error 
(RMSE).   

Fig. 8. The NNI observed versus the estimated NNI based on a linear relationship based on a) the CCCI and b) a combination of the CCCI and WDI. Symbols are the 
pair values for the various N treatments, circles for 2018 and triangles for 2019. The solid lines are the linear regression with the corresponding equations, coefficient 
of determination (R2) and root mean square error (RMSE). 
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distinguish between the W1 and W2 sectors of the field experiment. The 
effect of N on the WDI map was relatively minor compared to the in-
fluence of the water level (in agreement with Fig. 9c, d). 

4. Discussion 

This study confirmed the difficulty of disentangling crop N and water 
status using only spectral information, as the confounding effect was 
evident in the spectra. Determining the cause of the stress suffered by the 
crop is a key issue for guiding fertilization and water management 
(Gonzalez-Dugo et al., 2009). The NNI was a reliable indicator of crop N 
status and proved to be robust under different water levels, even if %N in 
shoots decreased in well fertilized treatments with lower water avail-
ability. However, the CDC fitted to the data from this study showed that 
the %Nc was lower than the reference values proposed by Justes et al. 
(1994) for winter wheat under no water limitation (Fig. 3b). Because of 
that, the NNI values were low even for the well fertilized plots (N2 
treatments; Table 2). Similar results were reported for the CDC curves 
obtained under water-limited conditions in Australia (Neuhaus et al., 
2017; Hoogmoed and Sadras, 2018) leading to Hoogmoed and Sadras 
(2018) to hypothesize that water-limited crops exhibit lower N uptake 
than well-watered crops and may require specific %Nc values. The %Nc 
proposed by these curves lay within the 95 % confidence interval of our 
CDC when biomass > 4.5 Mg DM ha− 1 (Fig. 3b). Nevertheless, more 
research is needed to clarify if the lower %Nc values reported are due to 
water limited conditions and to solve the discrepancies in the %Nc at 
biomass < 4 Mg DM ha-1. This issue is highly relevant, as we hypothesize 
that using the CDC obtained for winter wheat under no water limitation 
could lead to overfertilization in water limited environments. 

In this study we propose the use of different remote sensing indices 
based on spectral and thermal information to determine the N and water 
status separately and therefore, to adjust N fertilization and irrigation 
according to crop demands. However, certain limitations were observed 
when applying most VIs based on spectral information: i) they were 
highly affected by the soil background signal at early crop growth stages, 
when decisions on N fertilization application are made, ii) their per-
formance was reduced when the crop experienced water stress, and iii) 
the value of the indices decreased when the crop suffered from N or 
water stress, making it difficult to identify the reason behind the crop 
deficiencies. This study demonstrated that these limitations can be 
overcome by simultaneous analyses of the CCCI and WDI. 

In this regard, the CCCI, which relates a structural and a chlorophyll 
index, showed a robust and consistent correlation with the NNI within a 
wide range of ground cover and water status when canopy reflectance 
was measured at ground level or 300 m above the experiment. These 
results are in agreement with Fitzgerald et al. (2010), who obtained 
good CCCI performance at estimating crop N status in winter wheat, and 
with El-Shikha et al. (2007) and Bronson et al. (2017), who reported the 
low effect of crop water status on the CCCI. The good match between the 
lines used to calculate the CCCI in this experiment and in Fitzgerald et al. 
(2010) provides new insight for the normalization of the equations. 

Our study validated the use of the WDI to estimate water status and 
pointed out the convenience of compensating canopy temperature by 
the ground cover to isolate the plant signal. The WDI correction had 
more effect in the areas with low ground cover, in which the thermal 
difference between air and dry soil > 8 ◦C. It is well known that the 
amount of water needed to supply crop demand increases with biomass 
(Tanner and Sinclair, 1983), but in this experiment the WDI suggested 

Fig. 9. Canopy Chlorophyll Content Index (CCCI), Water 
Deficit Index (WDI) and the new combined indicator proposed 
for N status assessment retrieved from the aircraft imagery for 
each N and water level (W1 and W2) at flowering in both 
experimental years. Symbols are mean values and bars stan-
dard errors. Capital letters above the error bars indicate dif-
ferences among N levels and lower case letters next to the 
means indicate differences between water levels in each N 
level according to Tukey test 95 %.   
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that N0 plots were the most water stressed, even though the amount of 
water received was the same as the plots with more biomass. Several 
reasons could explain this apparent contradiction. Seligman et al. (1983) 
indicated that N deficit plants increase leaf temperature because the 
biological processes to maturity are accelerated. This effect was also 
reported in other studies (Heitholt et al., 1991; Tilling et al., 2007; Fois 
et al., 2009; Mon et al., 2016). Additionally, in N-deficient cereals of 
semiarid environments it was reported that a moderate increase in N 
supply enhances WUE (Cossani et al., 2012). Finally, the proof that it is 
necessary to correct the effect of N fertilization or biomass in thermal 
indices is that the leaf stomatal conductance was better correlated with 
the WDI than with the thermal difference (Tc-Tair). In agreement with 
these results, field studies showed that variable-rate irrigation based on 
maps of planar indices such as the WDI could greatly enhance WUE 
(O’Shaughnessy et al., 2015). In this study, the thermal camera was the 
only sensor that detected differences between water levels in 2018; the 
non-limited water scenario. 

This study reported that the sensitivity of the CCCI to winter wheat N 

status increased when it was combined with the temperature-based in-
dicator (WDI), because this combination mitigated the effect of the crop 
water status. These results led us to propose a new indicator for N status 
monitoring by combining spectral and thermal information. Similarly, 
Quemada et al. (2014) reported better grain yield prediction in maize 
when spectral and thermal information was combined. It is well known 
that the NNI and grain yield are correlated and affected by N and water 
availability (Sadras and Lemaire, 2014). To ensure that the crop uptakes 
the applied N and to mitigate N losses to the environment, the water 
status of the crop has to be considered before N fertilization (Quemada 
and Gabriel, 2016). For field application of the proposed method, it is 
advised to simultaneously measure reflectance in the VNIR region and 
canopy temperature to provide a map of the CCCI and WDI to calculate 
the proposed N status-related index as f(CCCI,WDI). In irrigated fields 
with the option of variable water delivery, irrigation should be applied 
in areas with a high WDI that do not experience N deficit (high CCCI and 
f(CCCI,WDI)) because the possibility of enhancing crop growth is 
higher. In contrast, areas with a high WDI in which N is a relevant 

Fig. 10. Canopy Chlorophyll Content Index (CCCI) and Water Deficit Index (WDI) maps retrieved from a hyperspectral and a thermal imager on-board an aircraft at 
the flowering stage of both experimental years. Plot values in the CCCI and WDI maps represent the Nitrogen Nutrition Index (NNI) and leaf conductance (mmol m− 2 

s-1), respectively (no data available for WDI 2018). 
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limiting factor would be less likely to profit from the additional water 
applied and the risk of diminishing water use efficiency would be higher. 
The areas in which applied N will be prone to N uptake will be those with 
a low f(CCCI,WDI) and a low WDI, indicating that the area experiences N 
deficit and has sufficient water availability (Zillmann et al., 2006; Tilling 
et al., 2007). In contrast, N applications should be avoided in 
water-limited areas (i.e. a low f(CCCI,WDI) with a high WDI) as the crop 
would likely not use the N applied and the risk of increasing losses would 
be higher. Similarly, a high CCCI or f(CCCI, WDI) areas should not 
receive N fertilization given that the crop N deficit is low. Besides 
multiple linear regression, the spectral and thermal information could 
be used by emerging machine learning techniques based on ensemble 
methods (i.e. random forest, neuronal networks) that already showed 
potential in obtaining robust outcomes from the combination of multiple 
variables in agri-environmental studies (Mutanga et al., 2012; Leb-
ourgeois et al., 2017). 

Using two different airborne sensors simultaneously (i.e. covering 
the VNIR + thermal regions) is more complex than when one camera is 
used (e.g. collecting imagery with a VNIR camera only) due to the 
different spatial resolutions obtained and co-registration issues between 
non-aligned detectors. Nevertheless, this study and others clearly 
demonstrate the need for acquiring imagery covering the VNIR portion 
of the electromagnetic spectrum where photosynthetic pigments can be 
quantified due to their link with nutrient status, and the spectral region 
more directly related with canopy transpiration for its direct connection 
with water status and water stress detection. New multispectral cameras 
are becoming available which can be installed on board manned and 
unmanned vehicles which acquire images with co-registered detectors 
covering the VNIR and thermal infrared regions, overcoming some of the 
issues indicated above. 

The proposed approach is an application of the N and water co- 
limitation concept (Sadras, 2004; Cossani and Sadras, 2018). Because 
of the empirical basis of the proposed indicators, their reliability for 
improving N fertilization and water management should be tested in 
different cultivars, soils, and climate conditions. 

5. Conclusion 

The confounding effect of crop N and water status in the spectral 
reflectance was evident and the results of this study point out the dif-
ficulty of using only reflectance-based vegetation indices to discriminate 
between N and water stress. This limitation can be overcome by 
combining spectral reflectance with canopy thermal information to 
accurately adjust N fertilization and irrigation to crop requirements. The 
reliability of the WDI in estimating water status was demonstrated in 
this study, because the WDI correlated with leaf stomatal conductance 
and showed robustness at detecting irrigation levels while reducing the 
influence of soil background. The best VI to assess crop N status was the 
CCCI, which presented significant relationship with the NNI in all cases, 
even at early stages when the CCCI compensated for soil background 
effect. The CCCI distinguished between N fertilization levels and it was 
only slightly affected by crop water status. The effect of water status on 
the CCCI was mitigated when it was combined with the WDI to provide a 
robust indicator (f(CCCI, WDI)) that identified N levels regardless of the 
water regime. The RMSE of assessing the NNI was reduced from 0.130 
when based on the CCCI to 0.109 when based on f(CCCI, WDI). This 
study demonstrates that simultaneous analysis of CCCI and WDI data 
derived from remote sensing technology may greatly contribute to site- 
specific adjustment of N fertilization and irrigation; however, the 
robustness of the indicators must be tested in different environments and 
cultivars. 
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