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Abstract Downy mildew (DM) caused by the biotrophic obligate oomycete Peronospora

arborescens (Berk.) is one of the most economically limiting diseases of opium poppy

(Papaver somniferum L.) worldwide. The first symptoms appear as small chlorotic leaf

lesions, which can evolve to curled and thickened tissues that become deformed and

necrotic as the disease develops. The present study explored the use of high-resolution

thermal and multi-spectral imagery as an indicator of DM infection. Work was conducted

in two opium poppy field plots artificially infected by P. arborescens. Airborne thermal

and multi-spectral imagery were acquired at 200 mm resolution on three dates in spring of

2009 using an unmanned aerial vehicle (UAV). Leaf reflectance and transmittance spectra

of DM asymptomatic and symptomatic opium poppy leaves were measured using an

integrating sphere. Simulation work was conducted with the coupled PROS-

PECT ? SAILH radiative transfer model to assess the effects of the variability found in an

opium poppy plot developing a DM epidemic on the normalized difference vegetation

index (NDVI) and the green/red index (R550/R670) calculated from the multi-spectral

imagery. The airborne flights enabled DM detection by using image-derived canopy

temperature (Tc) normalized by air temperature (Tc - Ta) and the green/red index (R550/

R670). Tmin for each grid unit was calculated to estimate pure-vegetation temperature

removing background and soil effects. Tmin - Ta and R550/R670 were assessed as a

function of aggregated NDVI clusters to compare asymptomatic and symptomatic plants

normalized by similar growth levels. Results demonstrated that Tc - Ta and the R550/R670

index were related to physiological stress caused by DM infection. In addition, Tmin - Ta

was found to decrease as the NDVI increased and symptomatic plants reached significantly

higher (P \ 0.05) temperatures for an NDVI C0.6. The R550/R670 index was positively

correlated with the NDVI, showing significantly higher values (P \ 0.05) in symptomatic

plants with an NDVI C0.5. These results demonstrate the feasibility of detecting P.
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arborescens infection in opium poppy plants using high-resolution thermal and multi-

spectral imagery acquired with an UAV.

Keywords Thermal � Multi-spectral � High resolution � UAV � Opium

poppy � Downy mildew � Peronospora arborescens

Introduction

Downy mildew (DM) of opium poppy (Papaver somniferum L.), caused either by the

biotrophic obligate oomycete Peronospora arborescens (Berk.) (Landa et al. 2005) or P.

cristata (Scott et al. 2004), is one of the most economically restrictive diseases for this crop

worldwide (Yossifovitch 1929; Khristov 1943; Kapoor 1995; Landa et al. 2007). Opium

poppy is a strategic crop for the pharmaceutical industry because it is the only source of the

alkaloid drugs morphine, codeine and thebaine.

In Spain, the fourth largest global producer, DM is caused by P. arborescens (Landa

et al. 2005). The severity of P. arborescens attacks strongly depends on the duration of

optimal environmental conditions for disease development and pathogen sporulation, that

is, high relative humidity and moderate temperature (Weltzien 1981; Montes-Borrego et al.

2009a). Over the last few years, the incidence and severity of DM attacks have steadily

increased. This is mainly due to the expansion of the crop to new cooler and irrigated areas

in central Spain in order to improve harvest yields (Landa et al. 2007).

DM pathogens can cause local or systemic infections in plants. Such infections can

evolve producing large numbers of short-lived sporangia and/or oospores, which are

thought to be dispersed from a few hundred meters up to hundreds of kilometers by air

currents in viable conditions. According to research findings, the main sources of primary

inoculum are diseased plant parts carrying sporangia and oospores or soil harboring

oospores (Navas-Cortés et al. 2009; Montes-Borrego et al. 2011). The sporangia of P.

arborescens formed on infected plants are effective as inoculum to produce secondary

local infections, which trigger a sequence of different symptoms. After infecting the leaf,

the pathogen colonizes the mesophyll, forming haustoria in parenchymatic cells and

causing the first symptoms: small, chlorotic to light-yellow leaf lesions with intense

sporulation on the abaxial surface. These initial symptoms can evolve to a second stage in

which affected tissues are irregularly shaped, curled and thickened and become deformed

and necrotic as the disease develops. Lesions expand in size and often coalesce, eventually

giving rise to large necrotic areas in leaves or death of entire leaves (Populer 1981; Landa

et al. 2005). Moreover, in wet weather or under high relative humidity conditions, a dense

felt of sporangiophores with sporangia is produced on the abaxial leaf surface and occa-

sionally on the adaxial surface (Landa et al. 2005).

Infection by DM pathogens results in changes in the metabolic processes of plant tissues

including shifts in respiration, photosynthesis and transpiration (Ingram 1981). Lindenthal

et al. (2005) conducted laboratory studies using digital infrared thermography. They

reported an increase in transpiration rate and a decrease in leaf temperature at early stages

of infection of cucumber leaves by Pseudoperonospora cubensis; yet, the opposite

occurred with further DM development, where the authors recorded the appearance of

chlorotic and necrotic tissue, increased water loss and the inability of plant tissue to

regulate stomatal opening. Oerke et al. (2006) used a similar experimental approach to

explore this pathosystem. Similarly, they reported that the highest temperature difference
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within a leaf increased during pathogenesis with the formation of necrotic tissue. They

found that this was related to disease severity and that it could be used to discriminate

between healthy and infected areas in thermograms, even before the appearance of visible

DM symptoms.

Use of remote sensing methods for crop management (e.g. disease detection) requires

high spatial and spectral resolution. Current satellite-based imagery has limited application

in crop management due to the low spatial and spectral resolutions provided and the long

revisit periods. High spatial resolution imagery acquired in the visible and near infrared

regions is relatively feasible with current airborne and satellite sensors. By contrast,

thermal imaging is still limited to medium-resolution sensors due to the technical limita-

tions of micro-bolometer technology (Berni et al. 2009a). As an example, the Landsat Data

Continuity Mission launched in February 2013 delivers two thermal infrared bands at

100 m resolution. Although it is useful for certain global monitoring studies, the low

resolution of the thermal bands is a clear limitation for precision agriculture methods.

Alternatives based on manned airborne platforms have demonstrated capabilities for

vegetation condition monitoring due to the high spatial resolution used (0.5–2 m pixel

sizes). However, their use is limited because of their high operational costs (Berni et al.

2009b). Remote sensors on board unmanned aerial vehicle (UAV) platforms provide sub-

meter spatial resolution (Herwitz et al. 2004; Sugiura et al. 2005; Berni et al. 2009b). This

allows retrieving of pure canopy temperature and spectral indices, thus minimizing

background and shadow effects.

In previous studies, remote sensing has been used for the detection of illegal narcotics

crops such as opium poppy in Central Asia. Zaitseva et al. (1997) showed that the

brightness spectra of particular phyto-elements of opium poppy have specific properties

that are characteristic of certain vegetative stages and can successfully be used to detect

poppy crops and distinguish them from other crops such as wheat. The weighted difference

vegetation index has also proven to be useful in discriminating between winter wheat and

opium poppy crops, considering that the NDVI is limited due to its saturation when crop

density or LAI is high (Srinivas et al. 2004).

Remote sensing has also been used to detect, monitor and quantify a wide variety of

diseases in different crops. Comprehensive reviews are available on the use of remote

sensing to detect plant diseases (e.g. Nilsson 1995; West et al. 2003; Sankaran et al. 2010;

Barton 2012). Most of these studies have focused on powdery mildew and leaf rust dis-

eases in cereals and few studies have dealt with DM pathogens. In greenhouse experiments,

Plasmopara viticola caused a pre-symptomatic increase in leaf temperature at the site of

infection in irrigated grapevine, whereas drought-stressed plants showed a localized drop

in temperature 2–3 days before the typical symptoms of DM appeared (Stoll et al. 2008a).

In another study, spatial and temporal analysis of leaf temperature was successfully used to

distinguish between healthy and infected leaves irrespective of their water status (Stoll

et al. 2008b). However, under field conditions, cucumber plants infected by P. cubensis

exhibited differential changes in leaf temperature and chlorophyll content only at high

levels of DM infection (Oerke et al. 2005).

The main objective of this research was to evaluate the use of high-resolution canopy

temperature and multi-spectral indices related to chlorophyll content and canopy structure

as indicators of DM infection. The hypothesis under study was that thermal imagery, the

green/red ratio (R550/R670) and the NDVI structural index acquired from airborne imagery

are sensitive to physiological changes induced by the infection and colonization of opium

poppy by P. arborescens.
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Materials and methods

Experimental site description

The experimental area was located in Cordoba, in southern Spain, a region of Mediter-

ranean climate characterized by warm and dry summers and cool and wet winters, with an

average annual rainfall exceeding 550 mm. Two experiments were conducted in two fields

(45 9 20 m) at Alameda del Obispo Research Station (37�5102100 N, 4�4800300W) to

account for differences in sources of P. arborescens primary inoculum. These fields had

never been sown with opium poppy before and no commercial opium poppy crops were

being grown within a radius of 50 km. An opium poppy certified seed lot of cv. Nigrum

was used. The opium poppy seeds were sown in February 2009 at a spacing of

80 mm 9 0.50 m (ca. 22 500 plants per plot with a plant density of approximately 25

plants per m2). The plots were sown with a precision seeder Hege 80 (Wintersteiger Gmbh,

Ried, Austria) and irrigated by sprinkler irrigation as needed.

Peronospora arborescens inoculum and disease assessment

In Plot 1, the inoculum source of the disease was soil obtained from an opium poppy field

highly infected by downy mildew at Ecija (Seville province, Spain). The soil contained

debris of opium poppy leaves with oospores of P. arborescens (Montes-Borrego et al.

2009b). Before sowing in 2009, 200 kg of infested soil were sieved and thoroughly mixed

with the uppermost 100 mm soil layer covering an area of 1 m2 of the plot. This source of

inoculum was placed in two different areas of the plot at a distance of 15 and 30 m from

the central line running along the length of the plot.

In Plot 2, the inoculum source was opium poppy plants artificially inoculated with P.

arborescens showing profuse sporulation on the abaxial surface of the leaves. Three plants

were planted with the following arrangement: row 4, 4 m from the edge; row 36, 4 m from

the edge; and row 20, 10 m from the edge, forming a triangle. To obtain infected plants for

use as a source of inoculum, four-week-old opium poppy plants with 6–8 true leaves were

drop-inoculated with a 25-ll-drop containing 104 sporangia of P. arborescens placed at the

junction of each leaf petiole with the stem. After inoculation, plants were placed inside a

moistened transparent polyethylene bag to provide a confined environment with high

relative humidity (RH). Inoculated and control plants were incubated at 17 ± 1 �C in the

dark for 24 h and at the same temperature under a 10-h photoperiod of fluorescent light and

70/90 % RH thereafter. Plants were removed from the bags three days after inoculation and

kept in the conditions referred to above until sporulation (15 days approximately).

DM incidence was assessed by visually inspecting every plant for disease symptoms

and the signs described above in the plots at approximately 4-week intervals from February

to June. Plant growth stages evaluated included rosette, shooting, flowering and capsule

formation.

Leaf-level measurements

Reflectance and transmittance measurements of opium poppy leaves were taken from 20

asymptomatic leaves and 20 leaves showing a range of severity of DM symptoms (initial

small chlorotic to light-yellow leaf lesions to complete chlorosis of the entire leaf). This

was done with a Li-Cor 1800-12 Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA),
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coupled by a 200-lm diameter single mode fiber to a spectrometer (Ocean Optics Inc.,

Dunedin, FL, USA) with a 2048 element detector array, 0.5 nm sampling interval and

7.5 nm spectral resolution in the 350–1 000 nm range. Single leaf reflectance (q) and

transmittance (s) values were acquired as described in Zarco-Tejada et al. (2005). As an

example of spectra measured with this methodology, Fig. 1 shows opium poppy leaf

reflectance and transmittance spectra measurements taken from a DM asymptomatic

(Fig. 1a) and a DM symptomatic leaf (Fig. 1b) and 5 leaf reflectance measurements from

leaves showing a gradient in DM severity between asymptomatic and severely affected

leaves (Fig. 1c). The leaf optical measurements taken with the Li-Cor 1800-12 integrating

sphere used in this study were used to detect spectral differences between DM asymp-

tomatic and symptomatic leaves.

Airborne imagery and remote sensing indices

Imagery was acquired from both experimental plots on three dates (21 April, 24 April and

4 May 2009) using multi-spectral and thermal cameras. Multi-spectral and thermal images

were always acquired at the same time (i.e. 11.00 and 14.00 GMT, respectively) to min-

imize differences due to sun angle effects. Flights were conducted with an UAV operated

by the Laboratory for Research Methods in Quantitative Remote Sensing (Quantalab, IAS-

CSIC, Spain) (Zarco-Tejada et al. 2008; Berni et al. 2009b; Zarco-Tejada et al. 2012). The

UAV platform operated in this study consisted of a 2-m wingspan fixed-wing platform

capable of 1-h flight duration at 5.8 kg take-off weight (MX-SIGHT, UAV Services and

Systems, Germany). The UAV was controlled by an autopilot system (AP04, UAV Nav-

igation, Madrid, Spain) that provided autonomous flight based on waypoints programmed

during the mission planning.

The multi-spectral sensor was a 3-band multi-spectral camera (ADC Lite, Tetracam,

Inc., California, USA) flown 200 m above ground level (AGL). The camera had a single

CMOS sensor that was designed to capture images at 550, 670 and 800 nm wavelengths.

Image resolution was 2 048 9 1 536 pixels with 10-bit radiometric resolution and an

optical focal length of 8.5 mm. Atmospheric correction and radiometric calibration

methods were applied to the imagery to calculate the spectral reflectance. The multi-

spectral images were radiometrically calibrated with a uniform light source system (an

integrating sphere, CSTM-USS-2000C Uniform Source System, LabSphere, NH, USA) at

four levels of illumination and six integration times. Atmospheric correction was per-

formed with the SMARTS simulation model (Gueymard, 1995; 2001) using aerosol optical

depth measured at 500 nm with a Micro-Tops II sunphotometer (Solar LIGHT Co.,

Philadelphia, PA, USA) in the experimental areas at the time of the flights (as in Berni

et al. 2009a, b; Suárez et al. 2010 and Zarco-Tejada et al. 2012).

Mean radiance and reflectance spectra calculated for the three spectral bands (B1

centered at 550 nm; B2 at 670 nm; and B3 at 800 nm) obtained by the multi-spectral

camera were used to calculate the Normalized Difference Vegetation Index, NDVI ¼
R800 � R670ð Þ= R800 þ R670ð Þ (Rouse et al. 1974) and the green/red ratio, R550/R670 (this

study).

The 640 9 480 pixel thermal camera used in this study (MIRICLE 307, Thermoteknix

Systems Ltd, Cambridge, UK) was flown at 100 m AGL. It was a 14.25 mm f1.3 lens

camera connected to a computer via a USB 2.0 protocol (see Berni et al. 2009a for further

details). Radiometric calibration was performed in the laboratory using blackbodies at

varying target and ambient temperatures to develop radiometric calibration algorithms

along with an internal calibration for non-uniformity correction (NUC). Local atmospheric

Precision Agric (2014) 15:639–661 643
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conditions were determined using a portable weather station (Model WXT510, Vaisala,

Finland) by measuring air temperature, relative humidity and barometric pressure at the

time of each flight.
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Fig. 1 Sample leaf reflectance
(R) and transmittance
(T) measured in DM
asymptomatic (a) and
symptomatic (b) Papaver
somniferum L. leaves with the
integrating sphere and protocol
described in Zarco-Tejada et al.
(2005). The bottom plot
(c) shows 5 leaf reflectance
measurements for opium poppy
leaves ranging from
asymptomatic leaf reflectance to
4 reflectances corresponding to
gradual states of DM symptom
severity in leaves
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Multi-spectral (Fig. 2a, b) and thermal images (Figs. 2c, d, 3a) were acquired at

200 mm pixel resolution. A uniform grid (Fig. 3b) was created with the same dimensions

of each plot so that each cell of the grid measured the exact planting distance

(80 mm 9 500 mm). Each cell was used to retrieve the thermal and multi-spectral data

from its corresponding area of the image (Fig. 3c). In particular, the grid for both multi-

spectral and thermal images on each flight date was generated and the average, minimum

and maximum temperatures (from the thermal imagery), and the average, minimum and

maximum NDVI and R550/R670 indices (from the multi-spectral imagery) were extracted

for each cell, assessing the relationship with DM incidence. Soil pixels showing higher

temperature values can be observed in Fig. 4, illustrating the average (Tavg), minimum

(Tmin) and maximum (Tmax) temperature maps. The maps of the minimum temperature per

cell intended to reduce the effects caused by soil and background on the canopy

temperature.

Modeling the effects of LAI and chlorophyll levels on the NDVI and the R550/R670

index

Opium poppy plants infected by P. arborescens at initial stages of development (until

rosette stage and before stalk formation) showed a reduction in growth, which resulted in

lower LAI levels and chlorophyll content degradation (assessed by visual inspection). The

potential effects of such leaf density and chlorophyll decrease on the multi-spectral indices

used in this study were assessed using radiative transfer modeling methods. The aim of the

simulations was to obtain further insight on the changes observed in the airborne-derived

multi-spectral indices due to disease stress and to verify whether they were consistent with

the simulations. Moreover, the relationship between the NDVI and the R550/R670 ratio used

later for the quantitative assessment of the airborne imagery required a closer evaluation to

understand the effects of chlorophyll in the red region and the decrease in the infrared

region due to reduced scattering (lower LAI) in affected pixels.

Simulations were conducted with the PROSPECT leaf model (Jacquemoud and Baret

1990) coupled with the canopy-level SAILH model (Verhoef 1984) to simulate the canopy

reflectance of the opium poppy field as a function of varying leaf pigment content and

canopy LAI. The coupled PROSPECT ? SAILH model has been used to assess the effects

of plant growth variability (LAI) and leaf Ca?b content levels on the NDVI and the R550/

R670 ratio used in this study to detect the effects of DM. The inputs used to run the

PROSPECT ? SAILH model in this study are shown in Table 1.

Synthetic spectra were generated with the PROSPECT ? SAILH model using as input

parameters the chlorophyll content Cab (20–80 lg/cm2 in 20 lg/cm2 steps) and the leaf

area index LAI (1–5 in 1 steps) (Fig. 5). The NDVI and R550/R670 indices were calculated

for each simulated spectrum using 670 nm and 800 nm bands for the NDVI and 550 nm

and 670 nm bands for the R550/R670 index. Canopy reflectance simulations enabled the

assessment of the chlorophyll content and leaf area index changes in these vegetation

indices. For clusters of similar NDVI values, the variation of the R550/R670 index and

canopy temperature as a function of disease incidence was assessed in each field on each

flight date.

Data analyses

The airborne data and indices calculated were subjected to a standard analysis of variance

(ANOVA) using the general linear model (GLM) SAS 9.2 procedure (SAS Institute Inc.,
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NC, USA). The ANOVA test was used to determine significant differences between

asymptomatic and symptomatic plants for each NDVI step at P \ 0.05 for (i) the canopy

temperature indicators (T - Ta) and (ii) the green/red index (R550/R670).

Results

Downy mildew development

In Plot 1, the first symptoms of DM appeared in plants at the young rosette stage (8 to

10 leaves) by early March, reaching a global disease incidence of 0.084 %. Most

diseased plants were located in the proximity of the original inoculum sources.

Affected plants in Plot 1 showed typical DM symptoms indicative of systemic

infection by oospores (Montes-Borrego et al. 2009b). In Plot 2, the first symptoms of

DM appeared in plants at the end of the rosette stage by end of March, with a global

disease incidence of 0.067 %; symptoms included small chlorotic to light-yellow leaf

lesions with sporulation on the abaxial surface. By the end of April, at the end of the

rosette or shooting stages in both field plots, airborne dispersion of sporangia favored

Plot 2Plot 1 ba

dc

Fig. 2 Multi-spectral (a, b) and thermal (c, d) scenes obtained on 4 May 2009 with the multi-spectral and
thermal cameras, respectively, on board the UAV platform at 200-mm resolution, showing Plots 1 (a, c) and
2 (b, d)
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the development of several small leaf lesions with intense sporulation on the abaxial

surface. At this time, disease incidence had increased up to 12.0 % in both field plots

and symptomatic plants were in distinct foci of disease patches throughout the fields.

Later on, in early May, at the mid-flowering and capsule formation stages, disease

symptoms included small chlorotic to light-yellow leaf lesions with sporulation and

generalized chlorosis, curling and deformation of the young leaf blade with abundant

sporulation and deformations and curling of the main flower peduncle and capsule

stalk. Disease incidence reached 13.3 and 12.6 % in plots 1 and 2, respectively.

Meters

0 10 205 Meters

0 0.5 10.250 10 20 Meters5

a 

cb

Fig. 3 Thermal scene of Plot 2 (a) showing the grid (b) that enabled single plant identification. The red
square (b) shows the grid cells in detail in (c) (Color figure online)
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Leaf measurement results

Reflectance spectra obtained by the integrating sphere for DM asymptomatic and symp-

tomatic leaves are shown in Fig. 1a, b. Reflectance of symptomatic leaves in the visible

Fig. 4 Maps of Plot 2 on 4 May
showing average (a), minimum
(b) and maximum temperature
(c)
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(VIS) green range (550 nm) and red-edge region (650–720 nm) was higher than that of

asymptomatic leaves due to the decrease in Cab content caused by DM infection. There-

fore, these differences in reflectance spectra between asymptomatic and symptomatic

leaves were detected using the NDVI and R550/R670 indices calculated from the imagery.

DM asymptomatic leaves showed significantly higher or lower (P \ 0.05) NDVI and

Table 1 PROSPECT ? SAILH model inputs used in this study to assess the effects of downy mildew on
spectral indices in opium poppy

PROSPECT-SAILH inputs Values

Leaf optical and structural parameters

Leaf structural parameter (N) 1.25

Chlorophyll content (Cab) 20–80 lg/cm2

Water equivalent thickness (Cw) 0.025 cm

Dry matter content (Cm) 0.01 g/cm2

Brown pigment content (Cs) 0

Canopy layer and structural parameters

Leaf area index (LAI) 1–5

Leaf angle distribution (LAD) Plagiophile

Hot spot size (h) 0.1

Background and viewing geometry

Solar zenith angle (Sza) 30�
Viewing zenith angle (Vza) 0�

Relative azimuth angle (Raz) 0�
Soil reflectance (qs) From image

Parameters Cab and LAI varied randomly within the range indicated on the table
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Fig. 5 Simulated canopy
reflectance at 1 nm resolution
using the PROSPECT ? SAILH
model. The effects of LAI and
chlorophyll content Cab on
canopy reflectance are shown
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R550/R670 values than DM symptomatic leaves (Fig. 6). These results agree with those of

the simulation study described above.

Modeling results

The modeling results for the NDVI and R550/R670 indices calculated for each simulated

spectrum as a function of LAI and leaf Cab variation are shown in Fig. 7. The NDVI was

positively related to LAI and Cab content (Fig. 7a). Changes in LAI between 1 and 5 were

captured by the NDVI; yet, the differences in Cab content had small effects on the NDVI,

reaching a saturation on the NDVI for Cab [ 40 lg/cm2. In addition, the effects on the

NDVI due to Cab degradation were extremely low even for Cab \ 40 lg/cm2. However, the

second index proposed in this study—R550/R670—was inversely related to Cab content and

showed high sensitivity to Cab content changes (Fig. 7b). The sensitivity of the R550/R670

ratio to Cab content increased with higher LAI values, showing large effects on this index

for lower Cab content levels. The simulations demonstrated that the proposed R550/R670

ratio is sensitive to chlorophyll content but is also affected by LAI, while the NDVI is a

primary indicator of LAI only.

The R550/R670 vs. NDVI chart (Fig. 8) for various pigment content and LAI levels

shows that, for a given NDVI value, chlorotic pixels deviated towards the upper part of the

chart. Thus, the NDVI vs. R550/R670 relationship obtained as a function of LAI and Cab

ranges illustrates the potentially expected deviation of the relationship from healthy (high

chlorophyll content and high LAI values) to diseased plants (i.e. chlorotic plants with

lower Cab and lower growth yielding lower LAI values). The R550/R670 index was related

to the NDVI, yielding the same value (for example R550/R670 = 1.5) for both low

(NDVI = 0.7, LAI = 2, Cab = 20) and high NDVI values (NDVI = 0.93, LAI = 5,

Cab = 80). Simulations demonstrated that, for a specific NDVI value, higher R550/R670

values could be expected for plants with lower chlorophyll content. Due to the relationship

obtained between the R550/R670 index and the NDVI, the assessment of DM infection using

the R550/R670 ratio was conducted at the image level as a function of the NDVI in clusters

with values between 0.4 and 1.0. Therefore, after this simulation study was conducted, the
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hypothesis under study was that, for each NDVI cluster, the image blocks showing higher

R550/R670 values would probably be more affected by DM. The statistical analysis assessed

the distinction between diseased and healthy image blocks as a function of NDVI step.

These results are consistent with those obtained at leaf level.
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Fig. 7 Modeling simulations performed with the PROSPECT ? SAILH model to assess the effects of LAI
and Cab on the NDVI (a) and R550/R670 (b) indices used in this study
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Results of the statistical analysis conducted on the thermal and multi-spectral airborne

imagery

The grid created from the high-resolution multi-spectral and thermal imagery enabled the

assessment of each single image block by comparing it against DM incidence recorded in

the field. The maps generated represent the spatial pattern of canopy temperature nor-

malized by air temperature (Tc - Ta), the NDVI and the R550/R670 index as indicators of

DM incidence for each opium poppy plot (Figs. 9, 10). Such maps showed a negative

correlation between Tc - Ta and the NDVI and between Tc - Ta and the R550/R670

index. Thus, areas with low NDVI values showed high temperatures due to the low LAI

and large soil effects on the image blocks with low canopy densities.

Table 2 shows the statistical assessment of Tavg, Tmax, Tmin normalized by Ta and of the

R550/R670 ratio calculated from each image block for healthy and DM symptomatic plants

on both dates and fields according to an ANOVA (P \ 0.05) as a function of NDVI step.

The ANOVA shows that Tavg and Tmax were not able to distinguish between the two

classes; Tmin was the only temperature value that was sensitive to both DM symptomatic

and healthy plants. Thus, Tmin of asymptomatic plants was lower and showed greater

variability compared to that of DM symptomatic plants. Results for Tmin - Ta are shown

in Fig. 11, which shows that Tmin - Ta tended to decrease as NDVI increased in DM

symptomatic plants, showing a significantly higher (P \ 0.05) temperature than asymp-

tomatic plants at NDVI steps [ 0.6. In Field plot 1, the temperature was significantly

higher (P \ 0.05) in symptomatic plants than in asymptomatic plants for

0.6 B NDVI \ 0.9 on 24 April and 4 May (Fig. 11a, b). In Field plot 2, higher temperature

values for symptomatic plants at significant levels (P \ 0.05) were recorded for

0.6 B NDVI \ 0.9 and 0.6 B NDVI B 1.0 on 24 April and 4 May, respectively

(Fig. 11c,d). At low NDVI values (NDVI \ 0.6), canopy temperature in symptomatic and

asymptomatic plants did not differ significantly (P C 0.05), probably due to structural

changes, plant senescence and death in plants severely damaged by the pathogen.
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Results obtained for the R550/R670 index as a function of the same NDVI steps (Table 2;

Fig. 12) showed an upward trend as NDVI increased. R550/R670 was able to detect DM,

showing significantly higher values (P \ 0.05) for symptomatic plants at an NDVI C 0.5.

In Field plot 1, these differences were recorded for 0.5 B NDVI B 0.9 in images taken on

24 April and 4 May (Fig. 12a, b); in Field plot 2, significant differences were found for

0.3 B NDVI B 0.9 and 0.4 B NDVI B 1.0 on 24 April and 4 May, respectively (Fig. 12c,

d). Thus, the R550/R670 index detected a decrease in chlorophyll content at high NDVI steps

for DM symptomatic plants. As happened with temperature, no significant differences

(P C 0.05) were found between DM symptomatic and asymptomatic plants in the R550/

R670 index at low NDVI values. This was probably due to structural changes related to

plant death in blocks that were severely affected by the pathogen and had large back-

ground/soil effects on the calculated index. Nevertheless, the combination of the NDVI

Fig. 9 Spatial distribution of canopy Tc - Ta (a, b), NDVI (c, d) and R550/R670 (e, f) for Plot 1 on 24 April
(a, c, e) and 4 May (b, d, f)
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with the R550/R670 index was more effective in distinguishing between DM symptomatic

and asymptomatic plants at lower NDVI steps than when using thermal indicators. In Field

plot 2, for instance, DM symptomatic and asymptomatic plants were differentiated along

the entire NDVI range for virtually all classes, while the thermal data failed at low LAI

levels.

The relationship between the R550/R670 ratio and the NDVI shown in Fig. 12 was

consistent with the simulation analysis conducted with the coupled PROSPECT ? SAILH

model shown in Fig. 8. In both figures, for a given NDVI step, a decrease in Cab content

(symptomatic plants) was accompanied by an increase in the R550/R670 index.

Fig. 10 Spatial distribution of canopy Tc - Ta (a, b), NDVI (c, d) and R550/R670 (e, f) for Plot 2 on 24
April (a, c, e) and 4 May (b, d, f)
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Discussion

DM infected plants show a physiological reaction to infection by the pathogen that results

in a change of spectral reflectance due to the decreasing chlorophyll content and changing

internal structure. Chlorophyll content tends to decrease in DM infected plants, showing a

higher reflectance in the visible green region that is correlated with the severity of

symptoms. Plants under disease stress also show internal structural changes that lead to a

decrease of spectral reflectance in the near-infrared (NIR) range. In addition, DM patho-

gens penetrate stomata and cause excessive transpiration that rapidly leads to a decrease in

water content. This malfunction of stomata eventually results in the desiccation of leaf

tissue and an increase in temperature (Lindenthal et al. 2005; Oerke et al. 2006). Con-

sidering these changes, the hypothesis was that DM disease symptoms could be detected

remotely in the following regions: the visible (400–700 nm) and red-edge (670–750 nm)

spectral region, due to the necrotic and chlorotic lesions caused by chlorophyll degrada-

tion; the NIR region (800 nm) due to changes in canopy density and leaf area; and the

thermal-infrared region because of the changes in the transpiration rate that affect canopy

temperature. Despite the various potential remote sensing indices that can be used for

disease detection, very few studies have been conducted with combined indices from

different spectral domains (i.e. structural, chlorophyll and thermal spectral regions).

Consequently, three indices including these spectral regions were explored in this study:

the R550/R670 for the detection of chlorophyll content, the NDVI to detect structural

changes and the Tc - Ta as an indicator of canopy transpiration levels.

Remote sensing has been extensively applied to detecting foliar diseases in annual

agricultural crops, mostly using the NDVI, which is closely related to green biomass

(Bravo et al. 2003; Steddom et al. 2005; Franke and Menz 2007; Mahlein et al. 2010;

Rumpf et al. 2010). In DM infected canopies, visible reflectance increases and NIR

reflectance decreases, resulting in lower green canopy biomass and consequently lower

NDVI values. However, few studies have examined the relationship between chlorophyll

content and spectral reflectance obtained from a diseased canopy. Although chlorosis and

necrosis have long been assumed to be associated with DM infection, no studies have been

Table 2 Results of statistical analyses for Tavg, Tmax, Tmin normalized by Ta, and for the R550/R670 ratio
calculated from each image block on both dates and in both fields as a function of NDVI step

NDVI
range

Tmin - Ta Tavg - Ta Tmax - Ta R550/R670

Plot 1 Plot 2 Plot 1 Plot 2 Plot 1 Plot 2 Plot 1 Plot 2

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

04/
24

05/
04

0.3–0.4 *

0.4–0.5 * *

0.5–0.6 * * * *

0.6–0.7 * * * * * * * * * * *

0.7–0.8 * * * * * * * *

0.8–0.9 * * * * * * * * *

0.9–1.0 * * *

Asterisks indicate significant differences between DM asymptomatic and symptomatic plants according to
an ANOVA test at P \ 0.05
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conducted to directly explore the impact of DM on chlorophyll content in plants growing

under field conditions. Distinct color changes are evident on the aboveground parts of DM

infected plants (green leaves become chlorotic, yellow and brown), demonstrating the

potential of remote sensing for DM detection.

Thermal imagery has successfully been used to identify water stress at early stages

(Berni et al. 2009a, b; Zarco-Tejada et al. 2012). Moreover, foliar temperature of DM

infected cucumber plants has been proven to rise when chlorotic and necrotic tissues

appear (Lindenthal et al. 2005; Oerke et al. 2006). Therefore, the importance of thermal

imagery as an adequate indicator of low transpiration rates induced by water or disease

stress is evident. However, thermal imaging is restricted to medium-resolution sensors in

current satellites due to technical limitations (Berni et al. 2009a) and provides spatial

resolutions of 90 and 100 m pixel size. This limited resolution of thermal imagery acquired

from satellites is a clear drawback when very high resolution (VHR) imagery is needed.

Manned and unmanned airborne platforms are the alternative for vegetation monitoring
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Fig. 11 Relationship between minimum temperature Tc - Ta and the NDVI on 24 April 2009 (a, c) and 4
May 2009 (b, d) for DM asymptomatic and symptomatic plants in Field Plot 1 (a, b) and plot 2 (c, d).
Asterisks indicate significant differences between symptomatic and asymptomatic plants according to an
ANOVA at P \ 0.05. On 24 April, 15 153 and 18 026 healthy plants and 1 811 and 2 290 DM symptomatic
plants were analyzed for plot 1 and 2, respectively. On 5 May, 13 713 and 11 411 healthy plants and 1 936
and 1 665 symptomatic plants were analyzed for plot 1 and 2, respectively. Error bars indicate standard
errors
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using thermal imagery due to the sub-meter spatial resolution they provide. Similarly, the

low spatial resolution acquired in the visible and NIR regions is acceptable for classifying

crops in large farms (Zaitseva et al. 1997; Srinivas et al. 2004). Yet, VHR imagery is

required for stress detection within individual crop fields (Berni et al. 2009a, b; Suárez

et al. 2010; Zarco-Tejada et al. 2012). In this study, VHR airborne imagery was acquired to

obtain pure vegetation pixels and to minimize background, shadow and soil effects on the

pixels used to detect small differences between asymptomatic and symptomatic plants in

thermal and multi-spectral indices. Indeed, VHR acquired from airborne platforms is the

alternative to medium-resolution imagery, which aggregates pixels and makes it difficult to

assess intra-plot variability and detect focal points of the disease.

Simulations conducted with PROSPECT ? SAILH for varying chlorophyll content and

canopy LAI were consistent with the image-retrieved indices used to assess DM infection.

Infected plants showed leaf chlorosis and necrosis, which resulted in chlorophyll content
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Fig. 12 Relationship between the R550/R670 and the NDVI on 24 April 2009 (a, c) and 4 May 2009 (b,
d) for DM asymptomatic and symptomatic plants in Plot 1 (a, b) and Plot 2 (c, d). Asterisks indicate
significant differences between symptomatic and asymptomatic plants according to an ANOVA at P \ 0.05.
On 24 April, 15 153 and 18 026 healthy plants and 1 811 and 2 290 DM symptomatic plants were analyzed
for plot 1 and 2, respectively. On 5 May, 13 713 and 11 411 healthy plants and 1 936 and 1 665
symptomatic plants were analyzed for plot 1 and 2, respectively. Error bars indicate standard errors
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degradation and canopy density and leaf area reduction as well as higher R550/R670 and

lower NDVI values. Simulation results confirmed those obtained from leaf-level mea-

surements and multi-spectral imagery. Leaf measurements conducted with the integrating

sphere were able to distinguish between DM asymptomatic and symptomatic leaves due to

the significant spectral differences registered in the visible, red edge and near infrared

regions. Airborne flights conducted with thermal and multi-spectral cameras enabled

accurate DM detection at high NDVI steps by using the Tc - Ta and R550/R670 indicators.

At low NDVI steps, differences in Tc - Ta and R550/R670 between asymptomatic and

symptomatic plants were not detected, probably due to the effect of structural and back-

ground effects on the pixels (a decrease in green biomass caused by senescence and death

in plants severely damaged by DM). To the extent of the authors’ knowledge, no studies

have been conducted to identify DM infection using chlorophyll content indices. However,

studies with foliar temperature have been conducted by (Lindenthal et al. 2005) and Oerke

et al. (2006) in cucumber plants affected by DM at leaf level, showing a decrease in the

transpiration rate and a consequent rise in temperature with the appearance of chlorotic and

necrotic tissues. The results presented were obtained from imagery acquired with a low-

cost multi-spectral camera and a miniaturized thermal camera on board a 2-m wingspan

UAV. This demonstrates the potential relevance and implications for disease detection at

field level based on reliable remote sensing methods. Further studies should focus on the

use of hyperspectral sensors that provide a larger number of physiological indices. Narrow-

band indices calculated from hyperspectral data have been proven to have more variability

for detecting physiological changes than wide-band multi-spectral indices (Yang et al.

2009).

Conclusions

In the present study, the ability of remote sensing methods to detect DM symptoms in two

opium poppy plots with two different initial sources of inoculum was assessed. Techniques

were applied based on the detection of the effects of P. arborescens infection and leaf

colonization on transpiration rate using the thermal and multi-spectral domains. High-

resolution imagery was acquired with a thermal and a multi-spectral camera installed on

board a UAV to extract mean thermal and spectral reflectance for each plant by using a

grid with the same dimensions as each plot. This grid made possible the assessment of each

single block by comparing the incidence of DM recorded in the field. Results demonstrated

that canopy temperature (Tc - Ta) and the green/red ratio (R550/R670) were related to

physiological stress caused by DM infection at high NDVI steps. At low NDVI values,

Tc - Ta and the R550/R670 index were not significantly different (P C 0.05) between

symptomatic and asymptomatic plants; this was probably due to structural changes, plant

senescence and death in plants severely damaged by the pathogen. Leaf measurements

showed higher reflectance in the visible, red-edge and near infrared spectral ranges for

symptomatic leaves due to their lower chlorophyll content and greater structural damage.

This enabled the identification of infected plants by using the NDVI and R550/R670 indices,

which recorded significant differences (P \ 0.05) between asymptomatic and symptomatic

leaves. Modeling simulations were conducted with the coupled PROSPECT ? SAILH

model to simulate the effects of varying chlorophyll content and canopy LAI on the NDVI

and R550/R670 indices extracted from the multi-spectral imagery, confirming the results

obtained from the leaf measurements and the multi-spectral airborne flights using an UAV.

This study represents progress in the development of methods to detect P. arborescens
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infection in opium poppy plants using high-resolution thermal and multi-spectral imagery

acquired with low-cost cameras on board UAVs for remote sensing purposes.
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