
ww.elsevier.com/locate/rse
Remote Sensing of Environme
Assessing vineyard condition with hyperspectral indices: Leaf and canopy

reflectance simulation in a row-structured discontinuous canopy
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Abstract

Methods for chlorosis detection and physiological condition monitoring in Vitis vinifera L. through accurate chlorophyll a and b content (Cab)

estimation at leaf and canopy levels are presented in this manuscript. A total of 24 vineyards were identified for field and airborne data collection

with the Compact Airborne Spectrographic Imager (CASI), the Reflective Optics System Imaging Spectrometer (ROSIS) and the Digital Airborne

Imaging Spectrometer (DAIS-7915) hyperspectral sensors in 2002 and 2003 in northern Spain, comprising 103 study areas of 10�10 m in size,

with a total of 1467 leaves collected for determination of pigment concentration. A subsample of 605 leaves was used for measuring the optical

properties of reflectance and transmittance with a Li-Cor 1800-12 Integrating Sphere coupled by a 200 Am diameter single mode fiber to an Ocean

Optics model USB2000 spectrometer. Several narrow-band vegetation indices were calculated from leaf reflectance spectra, and the PROSPECT

leaf optical model was used for inversion using the extensive database of leaf optical properties. Results showed that the best indicators for

chlorophyll content estimation in V. vinifera L. leaves were narrow-band hyperspectral indices calculated in the 700–750 nm spectral region (r2

ranging between 0.8 and 0.9), with poor performance of traditional indices such as the Normalized Difference Vegetation Index (NDVI). Results

for other biochemicals indicated that the Structure Insensitive Pigment Index (SIPI) and the Photochemical Reflectance Index (PRI) were more

sensitive to carotenoids Cx+c and chlorophyll–carotenoid ratios Cab /Cx+c than to chlorophyll content Cab. Chlorophyll a and b estimation by

inversion of the PROSPECT leaf model on V. vinifera L. spectra was successful, yielding a determination coefficient of r2=0.95, with an

RMSE=5.3 Ag/cm2. The validity of leaf-level indices for chlorophyll content estimation at the canopy level in V. vinifera L. was studied using the

scaling-up approach that links PROSPECT and rowMCRM canopy reflectance simulation to account for the effects of vineyard structure, vine

dimensions, row orientation and soil and shadow effects on the canopy reflectance. The index calculated as a combination of the Transformed

Chlorophyll Absorption in Reflectance Index (TCARI), and the Optimized Soil-Adjusted Vegetation Index (OSAVI) in the form TCARI/OSAVI

was the most consistent index for estimating Cab on aggregated and pure vine pixels extracted from 1 m CASI and ROSIS hyperspectral imagery.

Predictive relationships were developed with PROSPECT–rowMCRM model between Cab and TCARI/OSAVI as function of LAI, using field-

measured vine dimensions and image-extracted soil background, row-orientation and viewing geometry values. Prediction relationships for Cab

content with TCARI/OSAVI were successfully applied to the 103 study sites imaged on 24 fields by ROSIS and CASI airborne sensors, yielding

r2=0.67 and RMSE=11.5 Ag/cm2.
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1. Introduction
Current research efforts in precision viticulture and on the

temporal and spatial monitoring of Vitis vinifera L. show a

growing interest in remote sensing methods due to its potential
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for estimating vine biophysical variables such as shape, size

and vigor, potential indicators of fruit quality and yield (a full

review of optical remote sensing methods for vineyard

monitoring can be found in Hall et al., 2002).

Successful mapping of vineyard leaf area index (LAI) using

high spatial IKONOS satellite imagery was shown by Johnson

et al. (2003), enabling the monitoring of plant growth for

irrigation support and canopy management through temporal

relationships between Normalized Difference Vegetation Index

(NDVI) and Leaf Area Index (LAI) (Johnson, 2003). This

index and other ratios were tested by Dobrowski et al. (2002;

2003) such as the Perpendicular Vegetation Index (PVI) and

the Ratio Vegetation Index (RVI) derived from field data and

multispectral aerial photography to estimate canopy density

and dormant pruning weight prediction, suggesting consistency

across growing seasons. As a result of these and other studies,

broad-band multispectral remote sensing imagery of high

spatial resolution shows potential applications for vineyard

canopy structure characterization, leading to a successful

estimation of vine canopy size, shape and row identification

(Hall et al., 2003), vineyard mortality detection and missing

vinestock recognition (Lagacherie et al., 2001), vineyard

classification methods (Lanjeri et al., 2001), and vine canopy

cover estimation for water management (Montero et al., 1999).

These studies point toward the application of new techniques in

viticulture based on precision agriculture, introducing methods

focused on describing homogeneous management zones

derived from remotely sensed biophysical variable estimates

(Hall et al., 2002), connecting the within-field variability and

the suggested classification of the field into different vigor

classes with a potential wine quality production (Johnson et al.,

2001).

Nevertheless, and despite the cited work conducted mainly

with aerial photography, analogue camera systems, and digital

sensors with a limited number of broad bands, little progress

has been made on the remote sensing detection of vineyard

physiology and condition due to the specific characteristics of

the sensors needed, requiring simultaneous narrow-band

capabilities and high spatial resolution. Progress on crop

condition in vineyards has been made at the leaf-level studying

absorptance in the visible region in the field (Schultz, 1996),

and detecting phenology and grape color at harvest to gather

information about berry phenolics (Lamb et al., 2004). For this

reason, and due to such limited work achieved on the remote

sensing of vine physiology and condition at canopy level,

current research efforts are warranted toward the investigation

of physical methods applied to high-spatial resolution hyper-

spectral remote sensing imagery to estimate leaf biochemical

constituents and canopy biophysical variables to gather

information related to vine status and functioning (Zarco-

Tejada et al., 2003). Several studies indicate that the estimation

of leaf biochemistry may be used as indicators of chlorosis due

to plant stress and nutritional deficiencies caused by micro and

macro elements (Fernandez-Escobar et al., 1999; Jolley &

Brown, 1994; Marschner et al., 1986; Tagliavini & Rombolà,

2001; Wallace, 1991). As an example, element deficiencies

such as iron and nitrogen may result in vine chlorosis and may
cause a decrease of fruit yield and quality in the current and the

subsequent year as fruit buds develop poorly (Tagliavini &

Rombolà, 2001).

Leaf biochemistries, such as the concentration of chloro-

phyll a+b (Cab), water (Cw), and dry matter (Cm), are

indicators of stress and growth that may be estimated by

empirical methods (indices) and analytical techniques (physical

methods) from remote sensing data in the 400–2500 nm

spectral region. Several studies demonstrate the feasibility of

chlorosis detection in vegetation through Cab estimation using

spectroscopy and leaf optical properties (Carter & Spiering,

2002; Gitelson et al., 2003; Jacquemoud et al., 1996; le Maire

et al., 2004; Sims & Gamon, 2002). Recently, several new

optical indices have been proposed to relate crop physiological

status with hyperspectral data through their relationship to

biochemical constituent concentrations such as chlorophyll

(Carter, 1994; Gitelson & Merzlyak, 1996; Vogelmann et al.,

1993; Zarco-Tejada et al., 2001, 2004, 2005), carotenoids

(Fuentes et al., 2001; Sims & Gamon, 2002), and water content

(Gao, 1996; Peñuelas et al., 1997).

A large number of the new narrow-band optical indices that

might be used with leaf and canopy hyperspectral reflectance

have been tested on specific crop and forest species with

success (Haboudane et al., 2002, 2004; Zarco-Tejada et al.,

2001; a full review of indices can be found in Zarco-Tejada et

al., 2005). Red edge reflectance indices, spectral and derivative

indices, and derivative ratios have demonstrated good results

for Cab estimation from canopy reflectance using airborne

hyperspectral data. Recently, combinations of indices based on

the Transformed Chlorophyll Absorption in Reflectance Index,

TCARI (Haboudane et al., 2002), Modified Chlorophyll

Absorption in Reflectance MCARI (Daughtry et al., 2000),

and the Optimized Soil-Adjusted Vegetation Index, OSAVI

(Rondeaux et al., 1996), such as TCARI/OSAVI and MCARI/

OSAVI, have been demonstrated to successfully minimize soil

background and LAI variation in crops, providing predictive

relationships for precision agriculture applications with hyper-

spectral imagery in closed crops (Haboudane et al., 2002) and

open tree canopy orchards (Zarco-Tejada et al., 2004).

Nevertheless, and despite the successful relationships obtained

between specific optical indices and leaf biochemistry in closed

crops, estimation of such biochemical components in vineyards

at a canopy level from remote sensing requires appropriate

modeling strategies accounting for its row-structure and large

shadow and soil effects on the bi-directional reflectance

(BRDF) signature. The application of previously validated leaf

optical indices to discontinuous crop canopies such as V.

vinifera L. needs extensive research with airborne hyperspec-

tral data of optimum spatial and spectral resolution, i.e. one

meter or better spatial resolution to obtain pure vine reflectance

in selected spectral bands sensitive to pigment absorption. Vine

row geometry leads to large variations in shadow scene

proportions as a function of sun azimuth and zenith angles

relative to row orientation, affecting the vegetation index and

the estimated leaf biochemical constituent. It is required,

therefore, that successful vine leaf-level indices are investigat-

ed at the canopy level through scaling-up simulation using
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appropriate physical methods and very high spatial resolution.

This approach (Haboudane et al., 2002; Zarco-Tejada et al.,

2001, 2003) uses physical models at leaf and canopy levels to

scale-up optical indices that are sensitive to specific biochem-

ical constituents, therefore modeling the indices as function of

canopy structure, viewing geometry and background effects.

This manuscript reports on a study of the optical properties

of V. vinifera L. for Cab estimation using narrow-band indices

and radiative transfer model inversion. The work describes in

detail the methods for accurate measurements of the leaf optical

properties, testing the behavior of several indices for successful

Cab estimation. The successful leaf optical indices are proposed

for scaling-up simulation with the Markov-Chain Canopy

Reflectance Model (MCRM) (Kuusk, 1995a,b) with additions

to simulate the row crop structure, called rowMCRM, and

developed within the frame of the Crop Reflectance Opera-

tional Models for Agriculture (CROMA) project. The linked

PROSPECT–rowMCRM model is assessed to model vineyard

scene component proportions, row orientations, vineyard

dimensions and background effects with high spatial resolution

hyperspectral airborne imagery.

2. Airborne and field campaigns for data collection

2.1. Airborne campaigns with ROSIS and CASI hyperspectral

sensors

Data acquisition campaigns were conducted in July 2002

under the European Union HySens-2002 project intended to

investigate physical methods with the Reflective Optics System

Imaging Spectrometer (ROSIS) and the Digital Airborne

Imaging Spectrometer (DAIS-7915) airborne hyperspectral

sensors to estimate leaf biochemical constituents in vineyard

canopies. In July 2003 the Compact Airborne Spectrographic

Imager (CASI) sensor was flown over Spain in collaborative

research with York University (Canada) and the Spanish

aerospace institute Instituto Nacional de Técnica Aeroespacial

(INTA). Both campaigns took place in study areas of V.

vinifera L. in Ribera del Duero D.O. in Northern Spain.

ROSIS imagery were acquired at 1 m spatial resolution, and

calibrated to at-sensor radiance by the German Aerospace

Center (DLR). CASI imagery were collected on two airborne

missions, each with a specific sensor mode of operation: i) the

Mapping Mission, with 1 m spatial resolution and 8 user-

selected spectral bands placed in the spectrum to enable the

calculation of specific narrow-band indices sensitive to

pigment concentration (bands were centered at 490, 550,

670, 700, 750, 762, 775 and 800 nm with full-width at half

maximum (FWHM) ranging between 7 and 12 nm); and the

Hyperspectral Mission, with 4 m spatial resolution, 72

channels and 7.5 nm spectral resolution. The 12-bit radiometric

resolution data collected by CASI were processed to at-sensor

radiance using calibration coefficients derived in the laboratory

by the Earth Observations Laboratory (EOL), York University,

Canada. Aerosol optical depth data at 340, 380, 440, 500, 670,

870, and 1020 nm were collected using a Micro-Tops II

sunphotometer (Solar Light Co., Philadelphia, PA, USA) in the
study area at the time of data acquisition to derive aerosol

optical depth at 550 nm. Atmospheric correction was applied to

ROSIS radiance imagery using MODTRAN, whereas the

CAM5S atmospheric correction model (O’Neill et al., 1997)

was used for CASI imagery. Reflectance data were geo-

referenced using GPS data collected onboard the aircraft. Soil

reflectance spectra were used to perform a flat-field correction

(Ben-Dor & Levin, 2000) that compensated for residual effects

on derived surface reflectance estimations in atmospheric water

and oxygen absorption spectral regions. Fig. 1 shows

vegetation and soil spectra extracted from CASI mapping

mission image on selected sites after processing to surface

reflectance, observing the large variability in soil brightness

levels, as well as the pure vine and the mixed soil+vine+

shadow spectra.

Concurrent with the airborne overflights, field sampling

campaigns were conducted in summer 2002 and 2003 for

biochemical analysis of leaf Cab, as well as to measure

reflectance (R) and transmittance (T) from leaf samples to

study the vine optical properties.

2.2. Study site description and leaf sampling methods

The study sites of V. vinifera L. used for ground and

airborne collection were carefully selected from a plot network

currently monitored by the local government to assure a

gradient in the leaf biochemistry as sought for this study. A

total of 10 fields were selected in 2002 and 14 fields in 2003

for leaf sampling collection, comprising a total of 103 study

areas of 10�10 m in size. In 2002, 10 leaves per site were used

for Cab sampling and reflectance and transmittance measure-

ments. In 2003, a total of 80 leaves were sampled from each

10�10 m study area, using 50 leaves for measuring dry matter

and elements N, P, K, Ca, Mg, Fe, 20 leaves for Cab

determination, and 10 leaves per site for conducting reflectance

and transmittance measurements. A total of 1467 leaves were

used for determination of Cab on the 103 study sites comprised

by the 2002 and 2003 campaigns, and 605 leaves for measuring

the optical properties. Leaves used for measuring optical

properties were taken to the laboratory and reflectance and

transmittance measurements made on the same day to avoid

pigment degradation. Dry matter was measured placing the

samples in a pre-heated oven at 40 -C until a stable dry weight

was reached. Structural measurements on each study site

consisted of grid size, number of vines within the 10�10 m

site, trunk height, vegetation height and width, and row

orientation. Soil samples were collected at each site for

laboratory analysis. Fig. 2 illustrates a CASI image acquired

from vineyard fields, showing 15 out of the total 103 blocks of

10�10 m used for leaf sampling and ground data collection.

2.3. Leaf pigment determination by destructive sampling

The leaves from the V. vinifera L. sites were sampled from

the top of the canopy, eliminating the small leaves indicative of

low expansion. Leaves were placed in paper bags to allow

tissue respiration and conservation, then stored at 4 -C prior to
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Fig. 1. Airborne CASI image collected at 1 m spatial resolution and 8 bands selected for calculation of narrow-band indices sensitive to pigment concentration. Pure

vine reflectance and soil spectra extracted from the image show the within-field variability.
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analysis of reflectance and transmittance, and then stored in a

freezer at �8 -C prior to pigment determination. A 1.6 cm

circle from each leaf sample was cut out for grinding with 4 ml

acetone at 80%, and adding 8 ml acetone to a total of 12 ml in

each tube. Tubes were stored in the dark at 4 -C for 48 h prior
Fig. 2. Airborne hyperspectral CASI image acquired from one of the Vitis vinifera L

and ground data collection.
to spectrophotometer measurements. Each sample for pigment

determination was filtered, placed in a cuvette and the

absorbance measured between 400 and 700 nm with 2 nm

fixed resolution at 1 nm interval with a Jasco V-530 UV-VIS

spectrophotometer (Jasco Inc., Great Dunmow, UK). Chloro-
. fields in this study, showing 15 blocks of 10�10 m selected for leaf sampling



Table 1

Range of variation for the leaves sampled from the 103 study sites of Vitis

vinifera L. used in this study

Ca Cb Cab Cx+c Ca /Cb Ca /Cx+c Cb /Cx+c Cab /Cx+c

Max 54.03 19.87 73.45 13.98 4.29 5.08 1.77 6.75

Min 1.74 1.25 3.40 1.39 1.05 0.74 0.33 1.06

Average 26.01 8.98 34.99 7.90 2.92 3.20 1.11 4.31

Values in Ag/cm2 (n =1467).

Table 3

Sequence of measurements with the Li-Cor 1800 integrating sphere and fiber
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phyll a (Ca), chlorophyll b (Cb), and total carotenoid (Cx+c)

concentrations were calculated using the extinction coefficients

derived by Wellburn (1994) and the absorbance measured at

470, 646, and 663 nm with Eqs. (1)–(3).

Ca ¼ 12:21IA663 � 2:81IA646 ð1Þ

Cb ¼ 20:13IA646 � 5:03IA663 ð2Þ

Cxþc ¼ 1000IA470 � 3:27ICa � 104ICbð Þ=198: ð3Þ

These measurements resulted in a mean Cab of l =34.99 Ag/
cm2, with a wide range between 3.4 and 73.45 Ag/cm2

(n =1467). Table 1 shows the range of variation of Ca, Cb,

Cab and Cx+c used later for determination of pigment content at

each study site. The range of variation of the subset of 605

leaves used for optical measurements, correlation with optical

indices and modelling are shown in Table 2.

2.4. Protocol for optical measurements of V. vinifera L. leaves

Reflectance and transmittance measurements of vine leaves

were conducted on the subsample of 605 leaves with a Li-Cor

1800-12 Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA),

coupled by a 200 Am diameter single mode fiber to an Ocean

Optics model USB2000 spectrometer (Ocean Optics Inc.,

Dunedin, FL, USA), with a 2048 element detector array, 0.5

nm sampling interval, and 7.3 nm spectral resolution in the

350–1000 nm range. Software was designed for signal

verification, adjustment of integration time, and data acquisi-

tion. An integration time of 13 ms was used for all sample

measurements. Spectral bandpass characterization performed

using a mercury spectral line lamp source yielded FWHM

bandwidth estimates of 7.3 at 546.1 nm. Fiber spectrometer

wavelength calibration was performed using the Ocean Optics

HG-1 Mercury–Argon Calibration Source that produces Hg

and Ar emission lines between 253 and 922 nm. Single leaf

reflectance and transmittance measurements were acquired

following the methodology described in the manual for the Li-

Cor 1800-12 system (Li-Cor Inc., 1984) modified by Harron
Table 2

Range of variation for the subsample of Vitis vinifera L. leaves used for optical

measurements and correlations with optical indices

Ca Cb Cab Cx+c Ca /Cb Ca /Cx+c Cb /Cx+c Cab /Cx+c

Max 53.79 19.49 70.83 13.98 4.29 4.31 1.67 5.98

Min 1.74 1.25 3.40 1.39 1.05 0.96 0.35 1.50

Average 25.43 8.80 34.23 7.99 2.91 3.09 1.08 4.17

Values in Ag/cm2 (n =605).
(2000) to correct for stray-light in the integrating sphere. For

clarity, the protocol is described here with the steps required to

calculate the stray-light corrected leaf hemispherical reflectance

(R) and transmittance (T) using a reference target in the

integrating sphere. The protocol consisted of a total of five

measurements modifying the position of the collimated light,

dark and white plugs in the integrating sphere to measure the

transmittance signal (TSP), the reflectance signal (RSS), the

reflectance internal standard (RTS), the reflectance ambient

(RSA), and the dark measurement (DRK) (Table 3)). For clarity

of the protocol used in this study and for future reference, a

schematic view of the integrating sphere with lamp and port

placement is shown in Fig. 3. Stray-light corrected reflectance

and transmittance were then calculated assuming a constant

center wavelength and spectral bandpass, using the set of

equations described by Harron (2000) for stray-light correction

in broadleaves without the requirement of sample carriers (Eqs.

(4)–(8)). Another measurement protocol and a different set of

equations are proposed in Harron (2000) when measuring

needle samples or broad leaves smaller than the sphere sample

port.

R ¼ RV
GTfi þ RV

RBaSO4

SiRwTf

GTfi þ SiRwTf
ð4Þ

T ¼ T V 1þ SiRwRTf

GTfiRBaSO4

��
ð5Þ

with RV, TVand G given in Eqs. (6), (7) and (8),

RV ¼ RSS � RSA

RTS � RSA
RBaSO4

ð6Þ

T V ¼ TSP � DRK

RTS � RSA
RBaSO4

ð7Þ

G ¼ 1�WfRw � BfRBaSO4
ð Þ ð8Þ

with the following coefficients measured for the sphere used in

this study,

Wf is the fraction of the sphere which is interior wall (0.968)

Bf is the fraction of the sphere which is BaSO4 reference

(0.009)
spectrometer to enable the calculation of reflectance and transmittance with

Eqs. (4)– (8) and the schematic view shown in Fig. 3

Step Setup Lamp White plug Dark plug Sample

1 RSA C (ON) B A OUT

2 RSS C (ON) B A IN@

3 RTS B (ON) C A IN@

4 TSP A (ON) C B INY

5 DRK OFF B A OUT

IN Y: adaxial leaf surface facing sample port A.

IN @: adaxial leaf surface facing sphere.
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Fig. 3. Schematic view of the Li-Cor 1800-12 integrating sphere attached to an USB2000 fiber spectrometer used for reflectance and transmittance measurements.
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Tfi is the fraction of the sphere which is target and directly

illuminated (0.006)

Tf is the fraction of the sphere which is target (0.009)

Si is the fraction of light scattered into the sphere from the

illuminator (0.0001)

RBaSO4
is the reflectance of the BaSO4 reference (0.98)

Rw is the reflectance of sphere walls (0.9).

Experimental measurements made with the Li-Cor 1800-12

integrating sphere used in this study were employed to calculate

the fraction of light scattered into the sphere from the

illuminator (Si), a function of the optical properties of the

sphere and light lamp used. The Si value obtained for the sphere

used in this study was 10�4, indicating that such correction

factor had a very small effect on the calculated reflectance and

transmittance. Nevertheless, on another integrating sphere used

on this same study with different design and configuration (data

not shown), the Si correction was critical for an accurate

calculation of the leaf optical properties corrected for stray-

light, and therefore it has to be seriously taken into consider-

ation in such cases. As an example of spectra measured with this

methodology, Fig. 4 shows vine leaf reflectance and transmit-

tance spectra with pigment content of 26.68 Ag/cm2, and 4 leaf

reflectance measurements from leaves containing a gradient in

chlorophyll concentration between 15 and 54 Ag/cm2.

3. Vegetation indices and model inversion for Cab

estimation in V. vinifera L. at the leaf-level

Leaf-level spectroscopy enables the calculation of narrow-

band indices potentially related to specific light absorptions

caused by leaf biochemical constituents, such as chlorophyll a

and b (Carter & Spiering, 2002; Sims & Gamon, 2002; Zarco-

Tejada et al., 2005), carotenoids/chlorophyll and anthocyanins/

chlorophyll ratios (Fuentes et al., 2001; Gamon & Surfus,

1999; Peñuelas et al., 1995), dry matter (Fourty & Baret, 1997),

and water content (Carter, 1991; Ceccato et al., 2001; Danson

et al., 1992; Gao, 1996; Peñuelas et al., 1997). Several optical

indices are currently used with success for Cab estimation from

leaf optical properties on different crop and forest species,

exploiting the differences in reflectance between healthy and
stressed vegetation in the visible and the red edge spectral

region (Carter, 1994; Carter & Spiering, 2002; Horler et al.,

1983; Vogelmann et al., 1993; Zarco-Tejada et al., 2001). A full

review of these chlorophyll indices can be found in Zarco-

Tejada et al. (2001, 2004, 2005) and summarized in Table 4.

These indices are generally classified into visible and visible /

NIR ratios, red edge indices and spectral and derivative
f



Table 4

Hyperspectral optical indices used in this study

Vegetation index Equation Reference

Normalized Difference Vegetation Index (NDVI) NDVI ¼ RNIR � Rredð Þ= RNIR þ Rredð Þ Rouse et al. (1974)

Simple Ratio Index (SR) SR ¼ RNIR=Rred
Jordan (1969); Rouse et al. (1974)

Modified Simple Ratio (MSR)
MSR ¼ RNIR=Rred � 1

RNIR=Rredð Þ0:5 þ 1

Chen (1996)

Modified Triangular Vegetation Index (MTVI1) MTVI1 ¼ 1:2* 1:2* R800 � R550ð Þ � 2:5* R670 � R550ð Þ½ � Haboudane et al. (2004)

Modified Triangular Vegetation Index (MTVI2)
MTVI2 ¼

1:5* 1:2* R800 � R550ð Þ � 2:5* R670 � R550ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2*R800 þ 1ð Þ2 � 6*R800 � 5*

ffiffiffiffiffiffiffiffiffi
R670

p� �q
� 0:5

Haboudane et al. (2004)

Renormalized Difference Vegetation Index (RDVI)
RDVI ¼ R800 � R670ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R800 þ R670ð Þ

p Rougean and Breon (1995)

Greenness Index (G) G ¼ R554=R677
–

Triangular Veg. Index (TVI) TVI ¼ 0:5* 120* R750 � R550ð Þ � 200* R670 � R550ð Þ½ � Broge and Leblanc (2000)

Improved SAVI with self-adjustment

factor L (MSAVI) MSAVI ¼ 1

2
2*R800 þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2*R800 þ 1ð Þ2 � 8* R800 � R670ð Þ

q� 	
Qi et al. (1994)

Optimized Soil-Adjusted Vegetation Index (OSAVI) OSAVI ¼ 1þ 0:16ð Þ* R800 � R670ð Þ= R800 þ R670 þ 0:16ð Þ Rondeaux et al. (1996)

Modified Cab Absorption in Reflectance

Index (MCARI)
MCARI ¼ R700 � R670ð Þ � 0:2* R700 � R550ð Þ½ �* R700=R670ð Þ Daughtry et al. (2000)

Transformed CARI (TCARI) TCARI ¼ 3* R700 � R670ð Þ � 0:2* R700 � R550ð Þ* R700=R670ð Þ½ � Haboudane et al (2002)

Modified Chlorophyll Absorption in Reflectance

Index (MCARI1)
MCARI1 ¼ 1:2* 2:5* R800 � R670ð Þ � 1:3* R800 � R550ð Þ½ � Haboudane et al. (2004)

Modified Chlorophyll Absorption in Reflectance

Index (MCARI2)
MCARI2 ¼

1:5* 2:5* R800 � R670ð Þ � 1:3* R800 � R550ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2*R800 þ 1ð Þ2 � 6*R800 � 5*

ffiffiffiffiffiffiffiffiffi
R670

p� �q
� 0:5

Haboudane et al. (2004)

Zarco and Miller (ZM) ZM ¼ R750=R710
Zarco-Tejada et al. (2001)

Blue/Green and Blue/Red Pigment

ndices (RGI, BGI, BRI)
RGI ¼ R690=R550

BGI1 ¼ R400=R550

BGI2 ¼ R450=R550

BRI1 ¼ R400=R690

BRI2 ¼ R450=R690

Zarco-Tejada et al. (this study)

Simple Ratio Pigment Ind. (SRPI) SRPI ¼ R430=R680
Peñuelas et al. (1995)

Normalized Phaeophytinization Index (NPQI) NPQI ¼ R415 � R435ð Þ= R415 þ R435ð Þ Barnes (1992)

Photochemical Reflectance Index (PRI) PRI1 ¼ R528 � R567ð Þ= R528 þ R567ð Þ
PRI2 ¼ R531 � R570ð Þ= R531 þ R570ð Þ
PRI3 ¼ R570 � R539ð Þ= R570 þ R539ð Þ

Gamon et al. (1992)

Normalized Pigment Chlorophyll Index (NPCI) NPCI ¼ R680 � R430ð Þ= R680 þ R430ð Þ Peñuelas et al. (1994)

Carter Indices (CTR) CTR1 ¼ R695=R420 CTR2 ¼ R695=R760
Carter (1994,1996)

Lichtenthaler Indices (LIC) LIC1 ¼ R800 � R680ð Þ= R800 þ R680ð Þ
LIC2 ¼ R440=R690

LIC3 ¼ R440=R740

Lichtenthaler et al. (1996)

Structure Insensitive Pigment Index (SIPI) SIPI ¼ R800 � R450ð Þ= R800 þ R650ð Þ Peñuelas et al. (1995)

Vogelmann Indices (VOG) VOG1 ¼ R740=R720

VOG2 ¼ R734 � R747ð Þ= R715 þ R726ð Þ
VOG3 ¼ R734 � R747ð Þ= R715 þ R720ð Þ

Vogelmann et al. (1993);

Zarco-Tejada et al. (2001)

Gitelson and Merzlyak (GM) GM1 ¼ R750=R550 GM2 ¼ R750=R700
Gitelson and Merzlyak (1997)

Curvature Index (CUR) CUR ¼ R675IR690ð Þ= R2
683

� � Zarco-Tejada et al. (2000)
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analysis indices. Other traditional indices related to vegetation

structure and condition, such as NDVI or the Simple Ratio

(SR), normally show low relationships with leaf biochemical

constituents (Zarco-Tejada et al., 2001) and consistently show

unsuccessful performance in detecting physiological stress

condition.

Despite the demonstrated success of these narrow-band leaf

indices for Cab estimation, spectral reflectance signatures from

agricultural canopies are characterized by large contributions

from the soil background and LAI variation at different growth
stages. In these cases, scaling-up methods through canopy

reflectance models are needed to account for crop structure,

viewing geometry and soil and shadow effects on the

reflectance. The study of indices at both leaf and canopy

levels demonstrates that successful indices developed at the

leaf-level do not necessarily perform well at the canopy level

due to the soil and structural effects mentioned (Zarco-Tejada

et al., 2001, 2004). Therefore, combined indices have been

proposed to minimize background soil effects while maximiz-

ing the sensitivity to Cab (Haboudane et al., 2002) and LAI



Table 5

Nominal values and range of parameters used for leaf and canopy simulation

with PROSPECT and rowMCRM for the vine study sites

PROSPECT

Leaf parameters Nominal values and range

Chlorophyll a+b (Cab) 5–95 Ag/cm2

Dry matter (Cm) 0.0035 mg/cm2

Equivalent water thickness (Cw) 0.025 mg/cm2

Structural parameter (N) 1.62

rowMCRM

Canopy layer and structure parameters Nominal values and range

Row Leaf Area Index (LAI) 1–5

Leaf Angle Distribution Function (LADF) e =0.95; hn=45- (plagiophile)
Relative leaf size (hs) 0.083

Markov parameter (kz) 1.1

Leaf transmittance coefficient (t) 0.9

Leaf hair index (lh) 0.1

Canopy height (CH) 1.2–1.8 m

Crown width (CW) 0.6–1.3 m

Visible soil strip length (Vs) 1.7–2.3 m

Diff. between sun azimuth and row

direction (w)

11–95.2-

Background and viewing geometry Nominal values and range

Soil reflectance (qs) From images (Fig. 7)

Angstrom turbidity factor (b) 0.18

Viewing geometry (hshv /) Calculated for each image and site

Canopy structural parameters were used in the rowMCRM model fo

simulation of the canopy reflectance by radiative transfer. Leaf structura

parameters, and leaf biochemical parameters were used for leaf-level simulation

of reflectance and transmittance using PROSPECT.
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(Haboudane et al., 2004) and to yield prediction relationships

directly applicable to hyperspectral imagery. As an example,

CARI (Chlorophyll Absorption in Reflectance Index) (Kim et

al., 1994) was shown to reduce the variability induced on

photosynthetically active radiation inferences due to non-

photosynthetic materials. MCARI (Modified Chlorophyll Ab-

sorption in Reflectance Index) (Daughtry et al., 2000) was a

modification of CARI to minimize the combined effects of the

soil reflectance and the non-photosynthetic materials. SAVI

(Soil-Adjusted Vegetation Index) (Huete, 1988) and OSAVI

(Optimized Soil-Adjusted Vegetation Index) (Rondeaux et al.,

1996) were proposed as soil-line vegetation indices that could

be combined with MCARI to reduce background reflectance

contributions (Daughtry et al., 2000). As a result of the

development of these indices, successful Cab estimation on

corn agricultural canopies at different growing stages was

achieved using the TCARI/OSAVI combined index in forward

leaf-canopy modelling, proving its robustness due to the low

sensitivity to effects caused by LAI variation and background

influence (Haboudane et al., 2002). Other indices, such as the

modified chlorophyll absorption ratio index (MCARI2), are

discussed in depth in Haboudane et al. (2004). All these

mentioned indices that can be found in Table 4 have proven

different degrees of success in crop and forest species for

pigment estimation at the leaf-level. Relationships between all

these single and combined indices calculated from the 605 leaf

R and T measurements in 2002 and 2003 campaigns (Table 4)

and pigment content measurements Ca, Cb, Cab, Cx+c, and

pigment ratios Ca /Cb, Ca /Cx+c, Cb /Cx+c and Cab /Cx+c (Table

2) were calculated using linear, exponential, and 3rd order

polynomial functions to allow for both linear and non-linear

relationships between indices and leaf pigment concentrations

in grape leaves. The large database available of leaf optical

measurements as part of this study addresses the lack of

previous studies on investigating appropriate leaf optical

indices in V. vinifera L. crop.

In addition to the generally accepted relationships existing

between leaf optical indices and Cab, model inversion

methods using radiative transfer simulation have been

successfully used to simulate leaf optical properties. Due to

its extensive validation, the PROSPECT model (Jacquemoud

& Baret, 1990), based on the plate model (Allen et al., 1969,

1970), was used in this study to simulate the leaf optical

properties of V. vinifera L. leaves, testing the feasibility of

Cab estimation. Several studies demonstrate successful retrie-

vals of pigment concentration from leaf optical properties

with PROSPECT (Jacquemoud & Baret, 1990; Jacquemoud

et al., 1996; le Maire et al., 2004) although limited simulation

work has been conducted with extensive measurements on V.

vinifera L leaves. The large database of leaf reflectance and

transmittance spectra measured in 2002 and 2003, comprising

a total of 605 measurements, were used for PROSPECT

model inversion. The model inversion was performed by

iterative optimization, varying input parameters N (structural

parameter) from 1 to 2.5, Cab between 5 and 95 Ag/cm2, Cm

in the range 0.001 and 0.04 mg/cm2, and Cw for 0.001 and

0.04 mg/cm2, obtaining the root mean square error (RMSE)
function n(N) to be minimized using both R and T in the

400–800 nm range using Eq. (9),

RMSE ¼ n N ;Cab;Cm;Cwð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~
k

RPROSPECT � Rmð Þ2k þ TPROSPECT � Tmð Þ2k
h i

n

vuut

ð9Þ

where Rm and Tm are reflectance R and transmittance T

measured from n leaf samples with the Li-Cor integrating

sphere and fiber spectrometer. Estimated Cab values from

each R and T spectra by inversion were then compared with

leaf destructive measurements of pigment concentration, and

the RMSE for Cab estimation from the entire database was

calculated.

4. Application of leaf-level hyperspectral indices at canopy

level in V. vinifera L. with the rowMCRM model

PROSPECT was linked to the rowMCRM model, which

refers to the Markov-Chain Canopy Reflectance Model

(MCRM) (Kuusk, 1995a,b) with additions to simulate the

row crop structure. The rowMCRM model was developed

within the frame of the Crop Reflectance Operational Models
r

l
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Fig. 5. Canopy reflectance simulation conducted with PROSPECT–

rowMCRM as function of soil background (qs) and visible soil strip (Vs).
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for Agriculture project (CROMA), with a goal to successfully

simulate different scene component proportions, as a function

of row orientations and crop dimensions, and soil background

and shadow effects as function of viewing geometry in row-

structured crop canopies. Therefore the rowMCRM canopy

reflectance model was considered an optimum candidate for

the scaling-up of narrow-band indices in row-structured

vineyard canopies. The inputs required to the link PROS-
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Fig. 6. Effects on TCARI/OSAVI for: i) vine width (Cw) and height (CH) as function

as function of row LAI and soil background (qs) (bottom left); and iii) row LAI an
PECT–rowMCRM used in this study are shown in Table 5: i)

leaf parameters for simulating the leaf optical properties, such

as chlorophyll a+b (Cab), dry matter (Cm), water content (Cw),

and structural parameter (N); ii) canopy layer and structure

parameters such as the row leaf area index (LAI), leaf angle

distribution function (LADF), relative leaf size (hs), Markov

parameter (kz), leaf transmittance coefficient (t), leaf hair index

(lh), canopy height (CH), crown width (CW), visible soil strip

length (Vs), and the angular difference between sun azimuth

and row direction (w); and iii) background and viewing

geometry parameters such as soil reflectance (qs), Angstrom

turbidity factor (b), and the viewing geometry (hs, hv, /).

Without an intention to provide an in-depth sensitivity

analysis for rowMCRM (work conducted as part of CROMA

project), an exploratory analysis was carried out to study the

effects of the different input parameters for PROSPECT–

rowMCRM on the canopy reflectance and selected optical

indices. The soil background and distance between rows

(visible soil strip) input for this row-structured canopy are

shown to have large effects on the canopy reflectance (Fig. 5).

As expected, soil brightness effects are greater as function of

the visible soil strip, suggesting the importance of the vineyard

architecture for successful simulation of the canopy reflectance.

Typical vineyard canopies are planted in grids with a distance

between rows of around 2 m (1.7 to 2.3 m range in the 103

study sites in this study), resulting in reflectance differences of
0 1 2 3 4

Vs

0.00

0.01

0.02

0.03

0.04

T
C

A
R

I/O
S

A
V

I

Ch=3
Ch=1.5
Ch=0.5

CW=1.5

CW=1

CW=0.5

LAI=5

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100

Cab

T
C

A
R

I/O
S

A
V

I

Bright soil
Medium soil
Dark Soil

LAI=5

LAI=1

LAI=3

of visible soil strip (Vs) and row LAI (top left and right); ii) visible soil strip (Vs)

d soil background (qs) on TCARI/OSAVI as function of Cab (bottom right).
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for the simulation methods.
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5–7% at 700 nm as function of the soil brightness levels. The

effects of row LAI, vineyard row width and height, visible soil

strip, and chlorophyll content were then studied for the TCARI/

OSAVI index, a combined ratio that has previously proven

successful in minimizing background effects for Cab retrieval.

The study of vine width and height on TCARI/OSAVI as

function of visible soil strip and row LAI (Fig. 6, top left and

right) indicates that larger effects are expected due to vine width

than to vine height, with larger effects on TCARI/OSAVI as

LAI increases. As the visible soil strip increases, vine width

effects decrease due to the greater contribution effects of soil

reflectance, with lower contribution of vegetation. As LAI

increases, large effects on TCARI/OSAVI are found when the

visible soil strip is small, i.e. close to 1 m (Fig. 6, bottom left).

Nevertheless, for visible soil strips greater than 1 m, i.e. 2 or 3 m

(an average of 2 m in the vine sites of this study) simulations

suggest a small effect of LAI variation. These simulations

indicate that larger effects are found on the index as function of

the visible soil strip (background effects) than due to the LAI

variation, suggesting the importance for properly describing the

vineyard architecture and soil characteristics. When LAI is
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Fig. 8. Example of 3 predictive relationships (left) developed for study sites with ex

row LAI values between 1 and 5, Cab ranging between 5 and 95 Ag/cm2 and structur

values shown in Table 5.
greater than 1, i.e. 3 or 5 (Fig. 6, bottom right) simulation results

suggest the low effects of LAI on TCARI/OSAVI as function of

Cab in vineyards with average dimensions (height=1.5 m;

width=1 m; visible soil strip=2 m). In addition, in low LAI and

low Cab sites (Fig. 6, bottom left and right) soil backgrounds are

shown to be important, decreasing the effects on TCARI/

OSAVI as row LAI and Cab increase.

These simulations indicate the importance of properly

describing the vineyard architecture and dimensions, and the

soil background for accurate estimates of chlorophyll concen-

tration. Therefore, in this study vineyard structural parameters

and airborne-sun viewing geometry angles that varied between

fields were taken into account as inputs for scaling-up methods

with the rowMCRM canopymodel for simulation on each one of

the 103 study plots. Vineyard planting grids ranged between

2.5�1 and 3�1.5 m, vine height between 1.2 and 1.8 m, vine

width between 0.6 and 1.3 m, visible soil strip between 1.7 and

2.3 m, difference between sun azimuth and row direction

between 11- and 95-, and sun zenith angle between 31.5- and
46.7- for all images collected on the airborne campaigns for the 2

years and 103 sites. In addition, simulation methods for Cab

estimation employed the input of soil reflectance spectra

obtained directly from the imagery on areas of canopy openings

or missing vines within the field. Fig. 7 shows a range of soil

spectra extracted from the CASI imagery from each of the 14

fields acquired in the 2003 campaign, illustrating the gradient in

soil brightness and differences greater than 10% reflectance.

Predictive relationships were calculated for each field study

site between Cab and optical indices, using image and field-

measured parameters for the vineyard structure, soil back-

ground and viewing geometry. Scaling-up methods used here

are similar to the ones described in Zarco-Tejada et al. (2001)

for forest canopies, Haboudane et al. (2002, 2004) for corn

crops using PROSPECT-SAILH, and Zarco-Tejada et al.

(2004) for open tree canopy crops using PROSPECT-SAILH-

FLIM models. Scaling-up relationships were developed for

each study site using a range of LAI values between 1 and 5,

and between 5 and 95 Ag/cm2 for Cab, fixing the remaining leaf
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parameters to the values estimated by model inversion from the

leaf samples previously described, with the field structural

measurements describing the vineyard canopy structure on

each study site (Table 5; Fig. 8). Estimated Cab for each of the

103 study sites was then compared with the field-measured

values of pigment content obtained by destructive sampling

and described in the previous section.

5. Results

Analysis conducted on the 605 leaves where optical

properties and leaf biochemical constituents Ca, Cb, Cab,

Cx+c and ratios Ca /Cb, Ca /Cx+c, Cb /Cx+c, Cab /Cx+c were
Table 6

Determination coefficients (r2) found for linear relationships (left on each cell), expon

biochemical constituents (n =605)

Ca Cb Cab Cx+c

NDVI 0.26 0.52 0.37 0.23 0.43 0.35 0.26 0.50 0.37 0.25 0.41

RDVI 0.34 0.60 0.56 0.31 0.50 0.54 0.33 0.58 0.57 0.33 0.50

SR 0.36 0.56 0.37 0.34 0.52 0.35 0.36 0.56 0.37 0.31 0.42

MSR 0.34 0.58 0.36 0.32 0.52 0.35 0.34 0.57 0.36 0.30 0.44

G 0.53 0.32 0.60 0.50 0.36 0.57 0.53 0.34 0.60 0.44 0.32

ZM 0.89 0.83 0.89 0.84 0.82 0.84 0.89 0.84 0.89 0.76 0.74

VOG1 0.89 0.84 0.89 0.84 0.82 0.84 0.89 0.85 0.89 0.76 0.74

VOG2 0.87 0.76 0.87 0.82 0.76 0.82 0.87 0.78 0.87 0.73 0.69

VOG3 0.86 0.75 0.87 0.82 0.75 0.83 0.87 0.76 0.87 0.73 0.68

GM1 0.87 0.82 0.88 0.84 0.82 0.84 0.88 0.84 0.88 0.76 0.74

GM2 0.81 0.85 0.82 0.77 0.82 0.78 0.81 0.85 0.82 0.69 0.73

CTR1 0.16 0.25 0.22 0.14 0.22 0.20 0.16 0.25 0.22 0.15 0.20

CTR2 0.41 0.71 0.65 0.37 0.61 0.61 0.41 0.69 0.65 0.38 0.56

RGI 0.35 0.12 0.54 0.35 0.17 0.53 0.35 0.14 0.55 0.27 0.14

BGI1 0.10 0.10 0.14 0.09 0.09 0.13 0.09 0.10 0.14 0.08 0.08

BGI2 0.77 0.64 0.77 0.72 0.64 0.72 0.77 0.65 0.77 0.66 0.59

BRI1 0.01 0.02 0.02 0.00 0.02 0.01 0.01 0.02 0.02 0.00 0.01

BRI2 0.35 0.53 0.36 0.31 0.46 0.31 0.35 0.52 0.35 0.33 0.42

CUR 0.33 0.41 0.33 0.30 0.40 0.30 0.33 0.41 0.33 0.27 0.31

LIC1 0.23 0.48 0.33 0.21 0.38 0.31 0.23 0.46 0.33 0.23 0.38

LIC2 0.25 0.39 0.28 0.22 0.34 0.24 0.25 0.38 0.27 0.23 0.31

LIC3 0.08 0.21 0.10 0.08 0.17 0.09 0.08 0.20 0.10 0.08 0.17

SIPI 0.36 0.62 0.43 0.34 0.54 0.42 0.36 0.61 0.44 0.33 0.48

PRI1 0.41 0.34 0.44 0.40 0.37 0.42 0.41 0.36 0.44 0.25 0.22

PRI2 0.13 0.02 0.17 0.13 0.04 0.16 0.13 0.03 0.17 0.06 0.01

PRI3 0.35 0.44 0.36 0.34 0.44 0.34 0.36 0.45 0.36 0.23 0.27

NPCI 0.04 0.11 0.05 0.03 0.08 0.04 0.03 0.11 0.05 0.03 0.08

SRPI 0.03 0.09 0.05 0.02 0.06 0.04 0.03 0.08 0.05 0.02 0.06

NPQI 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01

MCARI 0.66 0.66 0.79 0.61 0.67 0.74 0.65 0.68 0.79 0.54 0.54

TCARI 0.74 0.73 0.83 0.69 0.74 0.78 0.74 0.75 0.83 0.61 0.60

OSAVI 0.29 0.56 0.47 0.27 0.46 0.45 0.29 0.54 0.47 0.29 0.45

MCARI1 0.23 0.44 0.31 0.20 0.35 0.29 0.22 0.41 0.31 0.25 0.39

MCARI2 0.23 0.46 0.34 0.20 0.37 0.31 0.22 0.44 0.34 0.25 0.39

MTVI1 0.02 0.12 0.09 0.01 0.07 0.07 0.02 0.11 0.08 0.04 0.11

MTVI2 0.00 0.02 0.01 0.00 0.00 0.08 0.00 0.01 0.02 0.01 0.02

TVI 0.01 0.04 0.21 0.01 0.01 0.19 0.01 0.03 0.20 0.00 0.03

MSAVI 0.36 0.62 0.54 0.33 0.53 0.52 0.36 0.61 0.54 0.35 0.51

MCARI/OSAVI 0.68 0.82 0.87 0.62 0.78 0.81 0.68 0.82 0.86 0.58 0.65

TCARI/OSAVI 0.70 0.90 0.89 0.64 0.83 0.83 0.69 0.90 0.89 0.62 0.73

MCARI1/OSAVI 0.16 0.36 0.18 0.14 0.29 0.16 0.15 0.34 0.18 0.13 0.24

MCARI2/OSAVI 0.09 0.15 0.12 0.09 0.14 0.11 0.10 0.15 0.12 0.06 0.08

MTVI1/OSAVI 0.44 0.66 0.50 0.41 0.60 0.48 0.44 0.65 0.50 0.37 0.50

MTVI2/OSAVI 0.60 0.70 0.67 0.56 0.69 0.64 0.60 0.71 0.67 0.49 0.55

TVI/OSAVI 0.53 0.70 0.62 0.49 0.66 0.60 0.53 0.70 0.62 0.45 0.54

Highlighted are results for r2>0.7.
measured are presented in this section. Results for the

regression analysis between leaf reflectance indices and

biochemical constituents, leaf model inversion with PROS-

PECT on vine leaves, and Cab estimation at canopy level with

PROSPECT–rowMCRM models through scaling-up methods

are described.

5.1. Relationships between optical indices and Cab for V.

vinifera L. leaves

Results of the relationships found between 45 narrow-band

optical indices calculated from leaf reflectance spectra (Table

4), and biochemical constituents Ca, Cb, Cab, Cx+c and ratios
ential (center) and 3rd order polynomial (right) between leaf optical indices and

Ca /Cb Ca /Cx+c Cb /Cx+c Cab /Cx+c

0.31 0.05 0.09 0.08 0.37 0.48 0.48 0.18 0.22 0.31 0.33 0.41 0.45

0.51 0.05 0.09 0.08 0.40 0.50 0.53 0.20 0.24 0.35 0.36 0.44 0.50

0.31 0.01 0.02 0.07 0.46 0.53 0.49 0.29 0.33 0.31 0.44 0.50 0.46

0.31 0.02 0.04 0.08 0.46 0.54 0.48 0.26 0.31 0.31 0.42 0.50 0.45

0.51 0.00 0.00 0.04 0.27 0.20 0.39 0.23 0.20 0.26 0.28 0.21 0.37

0.76 0.00 0.00 0.04 0.68 0.64 0.75 0.45 0.46 0.47 0.65 0.62 0.71

0.76 0.00 0.01 0.05 0.69 0.65 0.75 0.46 0.46 0.47 0.66 0.63 0.71

0.73 0.00 0.00 0.03 0.63 0.57 0.74 0.43 0.43 0.46 0.60 0.56 0.69

0.74 0.00 0.00 0.03 0.62 0.56 0.74 0.42 0.42 0.47 0.59 0.55 0.69

0.76 0.00 0.00 0.05 0.66 0.62 0.73 0.45 0.45 0.47 0.63 0.61 0.69

0.70 0.00 0.01 0.05 0.70 0.68 0.73 0.46 0.48 0.46 0.66 0.66 0.69

0.20 0.01 0.02 0.02 0.19 0.22 0.25 0.09 0.12 0.14 0.17 0.20 0.23

0.55 0.05 0.09 0.09 0.52 0.64 0.66 0.27 0.33 0.42 0.47 0.57 0.62

0.48 0.02 0.03 0.06 0.12 0.06 0.29 0.14 0.11 0.20 0.14 0.08 0.28

0.13 0.00 0.000 0.00 0.08 0.08 0.10 0.05 0.05 0.06 0.07 0.07 0.10

0.66 0.00 0.00 0.00 0.51 0.46 0.58 0.35 0.35 0.39 0.49 0.45 0.56

0.01 0.00 0.00 0.00 0.02 0.03 0.03 0.01 0.01 0.01 0.02 0.02 0.02

0.33 0.03 0.05 0.05 0.40 0.46 0.44 0.21 0.25 0.23 0.36 0.42 0.39

0.28 0.00 0.00 0.01 0.36 0.39 0.38 0.24 0.28 0.24 0.35 0.38 0.36

0.29 0.05 0.10 0.08 0.32 0.42 0.43 0.15 0.18 0.27 0.28 0.36 0.41

0.26 0.02 0.04 0.06 0.30 0.35 0.37 0.15 0.19 0.19 0.27 0.32 0.33

0.10 0.02 0.04 0.08 0.14 0.19 0.17 0.06 0.08 0.08 0.12 0.16 0.15

0.37 0.03 0.06 0.08 0.47 0.56 0.51 0.26 0.31 0.34 0.43 0.51 0.49

0.29 0.01 0.01 0.00 0.43 0.39 0.43 0.32 0.34 0.32 0.43 0.40 0.43

0.11 0.01 0.01 0.05 0.07 0.03 0.13 0.07 0.06 0.09 0.07 0.04 0.12

0.23 0.01 0.00 0.01 0.49 0.51 0.50 0.34 0.38 0.34 0.48 0.50 0.48

0.06 0.03 0.04 0.05 0.09 0.12 0.11 0.02 0.04 0.03 0.07 0.09 0.08

0.06 0.02 0.03 0.05 0.07 0.10 0.11 0.02 0.03 0.03 0.06 0.08 0.08

0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.66 0.00 0.00 0.02 0.60 0.57 0.61 0.40 0.43 0.43 0.57 0.57 0.59

0.70 0.01 0.00 0.01 0.65 0.61 0.65 0.45 0.48 0.45 0.62 0.62 0.62

0.41 0.05 0.09 0.08 0.38 0.49 0.52 0.19 0.23 0.34 0.34 0.43 0.49

0.32 0.05 0.09 0.08 0.25 0.33 0.28 0.10 0.13 0.16 0.21 0.28 0.25

0.34 0.05 0.09 0.08 0.27 0.37 0.32 0.12 0.15 0.19 0.24 0.31 0.30

0.10 0.05 0.09 0.08 0.04 0.09 0.11 0.00 0.01 0.03 0.03 0.06 0.09

0.07 0.05 0.08 0.08 0.00 0.02 0.06 0.00 0.01 0.04 0.01 0.001 0.03

0.19 0.05 0.09 0.08 0.00 0.03 0.18 0.01 0.01 0.09 0.00 0.01 0.16

0.48 0.04 0.08 0.08 0.43 0.53 0.53 0.22 0.27 0.35 0.39 0.47 0.50

0.74 0.01 0.02 0.02 0.70 0.73 0.72 0.44 0.49 0.46 0.66 0.70 0.68

0.77 0.02 0.04 0.06 0.72 0.78 0.74 0.43 0.49 0.47 0.67 0.74 0.70

0.17 0.03 0.06 0.07 0.30 0.38 0.31 0.15 0.18 0.17 0.27 0.33 0.28

0.09 0.00 0.00 0.01 0.18 0.18 0.19 0.12 0.12 0.12 0.17 0.18 0.18

0.40 0.02 0.04 0.05 0.56 0.63 0.59 0.33 0.38 0.38 0.52 0.58 0.56

0.53 0.00 0.01 0.03 0.62 0.64 0.64 0.42 0.46 0.44 0.60 0.63 0.62

0.50 0.01 0.02 0.04 0.59 0.64 0.63 0.37 0.42 0.42 0.56 0.61 0.60
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are shown in Table 6. The determination coefficients obtained

for regression analysis using linear, exponential and 3rd order

polynomials demonstrate the non-linearity between specific

indices and the biochemical constituents. Red edge ratio

indices are generally linear, such as the Vogelmann (VOG2)

or ZM index, yielding r2=0.87 and r2=0.89, respectively for

Cab (Fig. 9, top). Other indices showed a clear non-linear

relationship with Cab, such as those calculated from visible

bands only or in addition to red edge wavelengths (OSAVI,

MCARI1, MCARI2, MSAVI, PRI3), and those indices calcu-

lated as combined with OSAVI (MCARI/OSAVI, TCARI/
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behavior with PRI3 (center left) and TCARI/OSAVI (center right), SIPI with Cx+c
OSAVI, etc) (Fig. 9, center for PRI3 and TCARI/OSAVI). The

best optical indices for correlation with Cab in V. vinifera L.

leaves were ZM (r2=0.89, linear), VOG1 (r2=0.89, linear),

VOG2 (r2=0.87, linear), VOG3 (r2=0.87, linear), GM1

(r2 = 0.88, linear), GM2 (r2 = 0.85, exponential), BGI2
(r2=0.77, linear), MCARI (r2=0.79, 3rd order polynomial),

TCARI (r2=0.83, 3rd order polynomial), MCARI/OSAVI

(r2 = 0.86, 3rd order polynomial), and TCARI/OSAVI

(r2=0.9, exponential). As expected, indices traditionally used

for vegetation monitoring, such as NDVI, SR or MSR did not

obtain as good results as red edge and combined indices,
C
ab

 (
  g

/c
m

)
µ

C
ab

 (
  g

/c
m

)
µ

y = 22.87x - 18.248
r2 = 0.89

0

20

40

60

80

0 1 2 3 4 5

Z & M (R750) / (R710)

y = 63.541e-2.1792x

r2 = 0.9

0

20

40

60

80

0 0.5 1 1.5
TCARI / OSAVI

y = 4.2206e-9.1789x

r2 = 0.5

1

3

5

7

-0.05 0 0.05 0.1
PRI3 (R570 – R539)/(R570 + R539)

C
ab

 / 
C

x+
c

flectance spectra VOG2 (upper left) and ZM (upper right), showing a non-linear

(bottom left) and PRI3 with Cab /Cx+c (bottom right).



0

0.2

0.4

0.6

400 500 600 700 800

Wavelength (nm)

R
 &

 T
Measured R Modeled R
Measured T Modeled T

R

T

y = 0.937x - 2.6738
r2 = 0.95

RMSE=5.3 µg/cm2

0

20

40

60

80

0 20 40 60 80

Cab (µg/cm2) (estimated)

C
ab

 (
  

g/
cm

2 )
 (

m
ea

su
re

d)
µ

Fig. 10. Leaf reflectance and transmittance spectra measured with the Li-Cor

1800-12 integrating sphere and simulated with PROSPECT (top). Relationship

obtained between the Cab measured by destructive sampling and estimated by

PROSPECT inversion using the leaf optical properties (bottom).

Table 7

Determination coefficients (r2) obtained between ROSIS and CASI airborne

optical indices and Cab for the 103 study sites imaged

Indices calculated from

ROSIS and CASI images

Chlorophyll content (Cab)

All pixels

(soil+vegetation)

Pure vegetation

pixels

NDVI 0.00 0.36

ZM 0.00 0.24

VOG1 0.00 0.25

VOG2 0.03 0.31

VOG3 0.03 0.30

GM1 0.11 0.07

GM2 0.00 0.21

CTR2 0.21 0.14

MCARI 0.40 0.54

TCARI 0.43 0.58

MCARI/OSAVI 0.61 0.53

TCARI/OSAVI 0.59 0.55

MTVI2/OSAVI 0.25 0.51

TVI/OSAVI 0.23 0.49

Highlighted are results for r2>0.5.
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yielding r2=0.5 (NDVI, exponential), r2=0.56 (SR, exponen-

tial), and r2=0.57 (MSR, exponential). Indices developed for

maximizing its sensitivity to LAI while decreasing Cab effects,

such as MCARI2 and MTVI2 (Haboudane et al., 2004),

demonstrated a low relationship with Cab, as expected. Among

these structural indices that are demonstrated to be highly

related to LAI, MTVI2 was shown in this study to be less

affected by Cab variations (r2=0.02) than the MCARI2 index

(r2=0.44, exponential).

Regression results for indices and Cx+c and ratios Cab /Cx+c

generally showed poorer relationships, obtaining r2=0.49 for

Cx+c with SIPI, and r2=0.5 for Cab /Cx+c with PRI3 (Fig. 9,

bottom). The PRI index developed for xanthophyll cycle

pigment change detection (Gamon et al., 1992) was shown to

be more related to the Cab /Cx+c ratio (r2=0.5, exponential)

than to Cab alone (r2=0.45) and Cx+c (r2=0.27). This result

agrees with Sims and Gamon (2002) who suggested PRI as a

potential indicator for carotenoid /chlorophyll ratio monitoring.

With respect to chlorophyll a and b ratios, none of the indices

proposed were related to the chlorophyll ratio Ca /Cb, all

yielding poor results.
5.2. Estimation of Cab by PROSPECT inversion in V. vinifera

L. leaves

The V. vinifera L. leaf reflectance and transmittance

database used for inversion with PROSPECT yielded a good

agreement with the modeled spectra, obtaining an average

RMSE=0.025 for the 605 leaves (Fig. 10, top). The input

variables N, Cab and Cm for PROSPECT, estimated for each

leaf spectra by inversion using the iterative optimization

method between 400 and 800 nm, yielded average values for

the 605 leaves for N (l =1.62, r =0.14), Cab (l =39.4,

r =13.4), and Cm (l =0.0035, r =0.0012). The relationship

between the measured Cab for each vine leaf, and the

PROSPECT-inverted Cab from the optical measurements on

the same leaves yielded a determination coefficient of r2=0.95

and RMSE=5.3 Ag/cm2 (Fig. 10, bottom). The PROSPECT

model was shown to be valid for simulating the leaf optical

properties of V. vinifera L. leaves, although a slight overesti-

mation of Cab was found when compared to the 1 : 1

relationship (yielding the RMSE=5.3 Ag/cm2 mentioned).

The RMSE obtained is within the normal range of variation

found in similar studies with other species that, in conjunction

with the high determination coefficient obtained for this large

database, demonstrates the applicability of PROSPECT to

simulate the optical properties of V. vinifera L. leaves.

5.3. Estimation of Cab by PROSPECT–rowMCRM in V.

vinifera L. fields

The narrow-band indices that obtained the best relationships

in the leaf-level study for Cab estimation, plus the traditional

index NDVI (Table 6), were calculated from the 103 sites of

10�10 m imaged by ROSIS and CASI sensors. Relationships

were obtained between field-measured Cab and the indices

calculated from the airborne reflectance for all pixels falling

within the 10�10 m site (pure vine+soil+shadows) and for
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the pure vine reflectance only at each study site as extracted

with the high-resolution imagery (Table 7). Consistent with

previous studies in non-homogeneous crop canopies (Zarco-

Tejada et al., 2004), MCARI, TCARI, and combined indices

MCARI/OSAVI and TCARI/OSAVI indices yielded the best

relationships for both aggregated and pure vegetation pixels.

MCARI (TCARI) yielded r2=0.40 (r2=0.43) for aggregated

pixels, and r2=0.54 (r2=0.58) for pure vine pixels, showing

the effects of soil and shadows on both indices (Fig. 11, top and

bottom left for TCARI). Combined indices MCARI/OSAVI

and TCARI/OSAVI showed less sensitivity to background

effects, as expected, yielding r2=0.61 and r2=0.59 for

aggregated pixels, respectively (Fig. 11 top and bottom right

for TCARI/OSAVI). The TCARI/OSAVI index showed the

greatest consistency when calculated for aggregated and pure

vine pixels (r2=0.59 for aggregated pixels; r2=0.55 for pure

vine pixels), suggesting this as the most robust narrow-band

index for vineyard pigment content monitoring. Other vegeta-

tion indices that show significant results at the leaf-level, such

as ZM (r2=0.89 at leaf-level), VOG1, 2, 3 (r2=0.8), GM1, 2

(r2=0.8), and CTR2 (r2=0.69), were shown to be totally

unsuccessful when applied to image-level aggregated pixels

due to their high sensitivity to soil background (r2¨0.1),

generating a maximum of r2¨0.3 when applied to pure vine

pixels. The traditional NDVI index, generally used for

vegetation biomass and vigor monitoring, yielded r2¨0 on
aggregated pixels and r2=0.36 on pure vine pixels, demon-

strating that it is not appropriate for vineyard condition

monitoring on non-homogeneous canopies imaged with spatial

resolutions lower than 1 m pixel size due to the large

background effects and low sensitivity to pigment concentra-

tion as indicator of physiological status.
/



Fig. 13. Airborne CASI image of 1 m spatial resolution and 8 spectral bands

(top) showing Cab estimated with TCARI/OSAVI index through PROSPECT–

rowMCRM linked models (bottom).
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Prediction relationships obtained with PROSPECT–

rowMCRM models as explained in the Methods section (Table

5; Fig. 8) when applied to the 103 study sites imaged by ROSIS

and CASI airborne sensors yielded r2=0.67 (RMSE=11.5 Ag/
cm2) for Cab estimation (Fig. 12). These results at leaf, canopy

level for specific indices, and through scaling-up methods,

suggest the successful retrieval capability of Cab in row-

structured vineyard canopies. An example of the natural

variability detected in Cab at the vine level in different fields

imaged by the CASI sensor in July 2003 can be seen in Fig. 13,

illustrating the Cab product in 5 ranges of chlorophyll

concentration. The provision of a Cab product map in 5 steps

is considered consistent with the RMSE=11.5 Ag/cm2 retrieval

accuracy expected.

6. Conclusions

This study investigated the optical properties of V. vinifera

L. leaves through reflectance and transmittance measurements,

optical index calculation, and destructive determination of

pigments using a large database of 1467 leaves collected in

summer 2002 and 2003. Airborne campaigns imaged a total of

103 study sites from 24 vineyard fields with the ROSIS and
CASI hyperspectral sensors at 1 m spatial resolution, studying

the validity of optical indices generally used with success in

other species at leaf and canopy levels through scaling-up

simulation with PROSPECT and rowMCRM row-structured

canopy reflectance model.

A measurement protocol using a Li-Cor 1800-12 integrating

sphere attached to an Ocean Optics model USB2000 fiber

spectrometer for stray-light corrected reflectance and transmit-

tance measurements was presented. The measurement protocol

consisted of a total of five measurements modifying the

position of the collimated light, dark and white plugs of the

integrating sphere to measure the reflectance and transmittance

signals, reflectance internal standard, reflectance ambient, and

dark measurement. The best optical indices for correlation with

Cab in V. vinifera L. leaves were ZM, VOG1, VOG2, VOG3,

GM1, GM2, BGI2, MCARI, TCARI, MCARI/OSAVI, and

TCARI/OSAVI (r2 ranging between 0.8 and 0.9), with poor

performance of traditional indices NDVI, SR or MSR. Linear

relationships were found between red edge ratio indices such as

ZM and VOG indices, whereas generally non-linear relation-

ships were derived with combined indices and ratio indices

with visible bands. Results for Cx+c and Cab /Cx+c ratios

yielded r2=0.49 for Cx+c with SIPI, and r2=0.5 for Cab /Cx+c

with PRI3. The PRI index was shown as a potential indicator

for carotenoid /chlorophyll ratio monitoring.

The inversion of PROSPECT model for N, Cab, Cm and Cw

estimation, using the large subset database of 605 vine leaf

spectra, obtained an averaged RMSE of 0.025, yielding mean

values of N =1.62, Cab=39.4, Cw=0.02, and Cm=0.0035

(r2=0.95 and RMSE=5.3 Ag/cm2 for Cab estimation by

inversion). Therefore these results demonstrate that the PROS-

PECT leaf model is valid for simulation of the optical properties

of vine leaves as function of different pigment levels.

The leaf-level indices that produced the best correlations

with Cab were tested at the canopy level on vineyard

reflectance spectra extracted from CASI and ROSIS hyper-

spectral images collected from 103 sites in 24 fields over 2

years. Results at the canopy level demonstrated that MCARI,

TCARI, and combined indices MCARI/OSAVI and TCARI/

OSAVI indices generated the best relationships for both

aggregated and pure vegetation pixels. Combined indices

MCARI/OSAVI and TCARI/OSAVI showed less sensitivity

to background effects, yielding r2=0.61 and r2=0.59 for

aggregated pixels containing pure vine, soil and shadow

components. TCARI/OSAVI was the most consistent index

for estimating Cab on aggregated and pure vine pixels, yielding

r2=0.59 for aggregated pixels and r2=0.55 for pure vine

pixels. Physical methods based on PROSPECT linked to

rowMCRM model enabled accounting for vineyard structure,

row orientation, viewing geometry and background effects,

indicating the large effects of the background and vine

dimensions on the canopy reflectance. Predictive relationships

were developed using PROSPECT–rowMCRM model be-

tween Cab and TCARI/OSAVI as function of LAI, using field-

measured vine dimensions and image-extracted soil back-

ground, row-orientation and viewing geometry. Model-based

prediction relationships for Cab content were successfully
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applied to the 103 study sites imaged by ROSIS and CASI

airborne sensors, yielding r2=0.67 (RMSE=11.5 Ag/cm2).

Results presented in this manuscript indicate the validity of

narrow-band indices for Cab estimation and chlorosis detection

at the leaf and canopy levels in V. vinifera L., demonstrating

the validity of PROSPECT and rowMCRM models for leaf and

canopy level estimations. This methodology for scaling-up

leaf-level sensitive indices enabled conclusions to be reached

on the effectiveness of biochemical constituent retrievals in

canopies where model inversions are complex due to the large

number of input parameters required to feed the linked leaf-

canopy model.

Acknowledgments

The authors gratefully acknowledge the HySens HS2002-E1

project support provided through the Access to Research

Infrastructures EU Program. Financial support from the

Spanish Ministry of Science and Technology (MCyT) for the

project AGL2002-04407-C03, and financial support to P.J.

Zarco-Tejada under the Ramón y Cajal and Averroes Programs

are also acknowledged. Financial support from the Natural

Sciences and Engineering Research Council (NSERC) of

Canada to permit contributions by J.R. Miller is gratefully

acknowledged. We thank S. Holzwarth, A. Müeller and the rest
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