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A B S T R A C T   

Holm oak decline is a complex phenomenon mainly influenced by the presence of Phytophthora cinnamomi and 
water stress. Plant functional traits (PTs) are altered during the decline process — initially affecting the physi-
ological condition of the plants with non-visual symptoms and subsequently the leaf pigment content and canopy 
structure — being its quantification critical for the development of scalable detection methods for effective 
management. This study examines the relationship between spectral-based PTs and oak decline incidence and 
severity. We evaluate the use of high-resolution hyperspectral and thermal imagery (< 1 m) together with a 3-D 
radiative transfer model (RTM) to assess a supervised classification model of holm oak decline. Field surveys 
comprising more than 1100 trees with varying disease incidence and severity were used to train and validate the 
model and predictions. Declining trees showed decreases of model-based PTs such as water, chlorophyll, 
carotenoid, and anthocyanin contents, as well as fluorescence and leaf area index, and increases in crown 
temperature and dry matter content, compared to healthy trees. Our classification model built using different PT 
indicators showed up to 82% accuracy for decline detection and successfully identified 34% of declining trees 
that were not detected by visual inspection and confirmed in a re-evaluation 2 years later. Among all variables 
analysed, canopy temperature was identified as the most important variable in the model, followed by chloro-
phyll fluorescence. This methodological approach identified spectral plant traits suitable for the detection of pre- 
symptomatic trees and mapping of oak forest disease outbreaks up to 2 years in advance of identification via field 
surveys. Early detection can guide management activities such as tree culling and clearance to prevent the spread 
of dieback processes. Our study demonstrates the utility of 3-D RTM models to untangle the PT alterations 
produced by oak decline due to its heterogeneity. In particular, we show the combined use of RTM and machine 
learning classifiers to be an effective method for early detection of oak decline potentially applicable to many 
other forest diseases worldwide.   

1. Introduction 

Plant functional traits (PTs), such as biochemical composition, 
chlorophyll fluorescence, water and dry matter content, crown tem-
perature, and vegetation structure, are closely linked to plant health 
conditions and the responses to environmental and biotic stressors 
(Ahrens et al., 2020). Changes in PTs may alert managers to biotic and 
abiotic stressors and thus enable timely management interventions 

(Cunniffe et al., 2016). Hyperspectral signatures of plants provide an 
efficient alternative to standard field surveys by enabling monitoring of 
vegetation status (including biochemical and functional assessments) 
over large areas at a reduced cost (Homolová et al., 2013; Rocha et al., 
2019). Recent studies provide evidence that the quantification of PTs 
from hyperspectral and thermal images can successfully detect pre- 
visual symptoms of harmful crop pathogens, such as Xylella fastidiosa 
(Xf) infection in olive trees (Zarco-Tejada et al., 2018). 
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Retrieving PTs from spectra obtained in non-agricultural contexts, 
such as forest canopies, is challenging because of their high variability. 
Natural forests, for example, are highly heterogenous in species 
composition and canopy structure, resulting in spectral mixture effects 
produced by forest canopy structure, shadows, and understory. 
Furthermore, they may have high levels of intraspecific variability, 
driven by microsite and ecophysiological conditions (Fernández i Marti 
et al., 2018; Navarro-Cerrillo et al., 2018). The spectral mixing produced 
in heterogeneous forest canopies reduces the accuracy of PTs retrieved 
from images, especially those derived from narrow regions of the 
spectrum such as the chlorophyll fluorescence emission region 
(Hernández-Clemente et al., 2017). 

Forest decline is a pervasive decrease of forest health resulting from a 
complex interaction of a potentially large number of biotic and abiotic 
factors (Hutchings et al., 2000), including stresses such as water deficit, 
air pollution, and invasive pests (Manion and Lachance, 1992; Trumbore 
et al., 2015). In the case of oak decline on the Iberian Peninsula, water 
stress and root rot caused by Phytophthora cinnamomi (Pc) and related 
oomycetes are thought to be the main drivers of tree death (Ruiz-Gómez 
et al., 2019). This pathogen is one of the most pervasive invasive alien 
species in forest ecosystems of the northern hemisphere (Burgess et al., 
2017). It is a challenge to identify the relationship between water stress 
and root rot. But it has been observed that the reduction in water 
availability caused by water stress increases susceptibility to Pc infection 
(Corcobado et al., 2013). Infected trees exhibit regressive decline 
immediately after showing visual symptoms such as defoliation, crown 
or canopy discolouration, and brown foliage remaining attached to the 
canopy (Camilo-Alves et al., 2013). After these symptoms are detected, 
there is no opportunity for forest management to prevent tree death. For 
this reason, it is critical to developing accurate methods for the early 
detection of oak decline that maximises the effectiveness of silvicultural 
treatments such as calcium soil fertilisers, biofumigant crops, or fosetyl- 
aluminium treatments (Romero et al., 2019). Understanding the early 
phase as a pre-symptomatic or non-symptomatic stage, where trees may 
be affected but have not yet developed symptoms. 

Several spectral-based strategies have been developed to quantify 
critical PTs in natural forest canopies, as recently reviewed by Hernán-
dez-Clemente et al. (2019). Methodologies range from those based on 
empirical relationships between field observations and specific spectral 
bands or vegetation indices (VIs) to approaches involving 3-D radiative 
transfer models (RTMs) or machine learning (ML) techniques. While 
empirical relationships can be readily developed for a wide range of 
traits of interest, 3-D RTM requires significant computational effort. A 
main disadvantage of the empirical approach is its limited general-
isability to different spatial and temporal contexts. By contrast, RTMs 
are causal models robust to variations in geometry, illumination, and 
scene components (i.e., canopy, understory, soil), helping incorporate 
context dependency and enabling generalisation to different environ-
ments. These properties are important for deriving PTs from forest 
canopies, where 3-D RTMs such as FLIGHT (North, 1996) or DART 
(Gastellu-Etchegorry et al., 1996) represent the spatial heterogeneity of 
forest canopies fairly effectively (Hernández-Clemente et al., 2017, 
2012; Kötz et al., 2004; Liu et al., 2020; Roberts et al., 2020). A recent 
study using FLIGHT8 has shown the need to account for effects of shrub 
and/or grass understories in addition to tree canopies in quantifying 
variables such as chlorophyll fluorescence (Hornero et al., 2021). 

A semi-causal method is the combined use of PTs retrieved with 
RTMs and VIs (Zarco-Tejada et al., 2018). Numerous VIs have been 
formulated and tested for quantifying biomass loss related to advanced 
stages of plant diseases (Castrignano et al., 2020). Some formulations, 
such as the soil-adjusted vegetation index (SAVI) or the modified chlo-
rophyll absorption ratio index (MCARI), have been shown to minimise 
the background and atmospheric effects and perform better for forest 
canopies than traditional formulations such as NDVI (Hornero et al., 
2020). Zarco-Tejada et al. (2001) demonstrated that a red edge spectral 
index, R750/R710, reduced forest shadow effects better than other 

standard chlorophyll indicators used to estimate chlorophyll a and b 
content. 

The diagnosis of plant diseases requires quantifying not only forest 
biomass but also the physiological condition of that biomass (Cunniffe 
et al., 2016). Functional PTs such as photosynthetic rate, water stress, 
leaf anthocyanin, chlorophyll a and b, and carotenoid content may be 
used for early detection of diseases (Hernández-Clemente et al., 2019). 
Also, a group of carotenoids, the xanthophyll cycle carotenoids, plays a 
photoprotective role, preventing damage from excess light to photo-
synthetic systems, and are potentially detected through the photo-
chemical reflectance index (PRI), thus serving as a proxy for forest 
health (Hernández-Clemente et al., 2011; Sims and Gamon, 2002). 
Other useful indicators of plant health include sun-induced chlorophyll 
fluorescence (SIF) emission and canopy temperature, which are often 
used as powerful non-invasive markers to track the status, resilience, 
and recovery of vegetation (Gonzalez-Dugo et al., 2014; Mohammed 
et al., 2019; Zarco-Tejada et al., 2012). 

However, the relative importance of different PT indicators for 
detecting disease remains largely unknown for many forest species and 
ecosystems. Understanding the sensitivity of different spectral-based 
physiological indicators for detecting forest decline in these heteroge-
neous environments will help guide management and future monitoring 
campaigns. In this study, we i) expanded our understanding of the 
contributions of different PTs in detecting symptomatic and asymp-
tomatic trees affected by biotic and abiotic stressors in a holm oak forest 
and ii) used this information to construct a PT-based analytical approach 
for the early detection and severity assessment of forest decline. 

2. Materials and methods 

2.1. Study site and field data collection 

The study was conducted in an open Mediterranean-like oak 
savannah or dehesa located in Andalusia, southern Spain (37◦36′45′′ N, 
7◦21′8′′ W, 148 ha, Fig. 1). The dominant species in the forest was holm 
oak, Quercus ilex subsp. ballota (Desf.) Samp. Tree density ranged from 
30 to 40 trees ha− 1. There was an understory of annual plants and 
typical Mediterranean sclerophyllous and sub-sclerophyllous shrub 
species, i.e., Cistus spp., Pistacia spp., Phillyrea spp., and Rosmarinus 
officinalis. The climate at the study site is dry thermo-Mediterranean, 
with mild winters and hot summers, including approximately 120–150 
biologically dry days, a mean annual rainfall of 570 mm, and an average 
annual temperature of 16.8 ◦C, according to the Agroclimatic Informa-
tion Network of Andalusia (Meteorological Station of Puebla de 
Guzmán, 37◦33′07′′ N, 07◦14′54′′ W). The bedrock is calcareous, and the 
terrain is characterised by smooth hills (slope < 15%). Soils are Eutric 
Cambisols, Chromic Luvisols, and Lithosols with Dystric Cambisols and 
Rankers (REDIAM, Junta de Andalucía, 2021). The study area is also 
affected by the combined effect of water deficiency and erosion, soil 
compaction, and nutrient losses (Moralejo et al., 2009). 

Two field surveys were conducted in the study site in summer 2017 
and summer 2019. During the surveys, disease severity (DS) and disease 
incidence (DI) were assessed for 1146 individual holm oak trees. Seem 
(1984) defined DS as the quantity of disease affecting entities within a 
sampling unit; DI is a quantal measure, defined as the proportion or 
percentage of diseased entities within a sampling unit. DS thus accounts 
for disease severity, while DI considers only whether a tree is affected or 
not. 

Based on visual inspection, we assigned individual trees to one of the 
four DS categories available (Fig. 2) depending on the proportion of the 
crown affected by defoliation (Eichhorn et al., 2017) and other typical 
Pc-induced symptoms, including dead branches in the crown, stem 
cankers, and adventitious epicormic sprouts (Jung et al., 2000). DS 
ranged from 0, indicating the absence of visual symptoms, to 3, in which 
most of the branches in the crown were dead, following the classification 
of the Andalusian Forest Damage Monitoring Network (Consejería de 
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Medio Ambiente y Ordenación del Territorio, 2018) (Table 1; Fig. 2). 
According to this classification, defoliation refers to both reduced leaf 
retention and premature loss compared to regular tree growth cycles. 
The part of the crown that is evaluated includes all live branches and 
thin branches that are dead but still bear leaves. However, it excludes 
thick branches that have been dead for years and have already lost their 
natural buds, epicormic shoots below the crown, and gaps in the crown 
where branches have never existed. DI was either 0 or 1, indicating non- 
symptomatic trees and symptomatic trees, respectively, where non- 
symptomatic trees corresponded to a DS of 0 and symptomatic trees to 
any other severity (DS ≥ 1). 

The presence of Pc on holm oak roots was confirmed through mo-
lecular analyses in the study area. Soil samples were collected on three 
different trees located in the centre of the study area. The analysis and 
the results are detailed in Ruiz-Gómez et al. (2019). 

2.1.1. Leaf pigment quantification 
Biochemical measurements were taken on leaves from 15 selected 

trees in the study area in the summers of 2013, 2015, and 2017, in which 
the chlorophyll (Cab), carotenoid (Car), and anthocyanin (Anth) contents 
were measured (Table 2). Leaf pigment content was measured by 
destructive methods on 12 samples per tree (three biological replicates 
per orientation, i.e., North, East, South, and West). Samples were 
collected from the sunlit branches at the top of the crown during a 1- 
hour window around solar noon. Leaves were immediately frozen in 
liquid nitrogen in the field and kept below − 20 ◦C until the analysis of 
pigment concentration was performed in the laboratory. Photosynthetic 
pigment extracts (chlorophylls and carotenoids) were obtained from a 
mixture of 2-cm2 ground leaf material per sample (four discs of 0.5 cm2); 
the leaves were milled in a mortar bed on ice with liquid nitrogen and 

diluted in acetone to 5 mL (in the presence of sodium ascorbate). Ex-
tracts were then filtered through a 0.45-μm PTFE hydrophobic filter to 
separate pigment extracts from remaining fractions. Extractions and 
measurements were performed under reduced light conditions to avoid 
degradation of the pigments, with five technical replications conducted 
per biological sample. Photosynthetic pigment quantification was done 
through absorbance measurement after separation by high-precision 
liquid chromatography (HPLC) following the methodology detailed by 
Hernández-Clemente et al. (2012). 

Anthocyanins were extracted by suspending two 0.5-cm2 leaf discs in 
acidic solution (methanol 1% HCl) following Murray and Hackett 
(1991). The absorbance of anthocyanins (AAs) in the samples was 
calculated by subtracting 24% of the maximum absorbance of chloro-
phylls (653 nm) from the maximum absorbance of the anthocyanins 
(532 nm) (1) 

AA = A532 − 0.24A653 (1) 

Concentrations were estimated using a molar extinction coefficient 
of 30 mL mol− 1 cm− 1 (Steele et al., 2009). Five technical replicates were 
performed for each biological sample, and results are shown in units of 
μg cyanidin-3-glucoside equivalents per cm2 (Lee et al., 2008). 

2.1.2. Plant functional traits 
Steady-state leaf fluorescence (Fs) was measured for 15 trees using 12 

leaves per tree (three per orientation) with a FluorPen FP100 (Photon 
Systems Instruments, Drásov, Czech Republic). These measurements 
were used as a proxy of the airborne SIF retrievals and a field-level 
assessment of plant functional stress for each severity level. 

In July 2013, the leaf area index (LAI) was measured using an LAI- 
2000 Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA) for the 

Fig. 1. Location of the study site selected for PT retrieval through high-resolution imaging (top). The square shaded in red represents the area of the field survey, and 
the grey dots indicate individual evaluation. Photographs illustrating the heterogeneity of the landscape within the study area are shown below. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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same 15 trees as above. At each tree, the device was placed with the 
optical sensor in eight different orientations under the canopy, 1 m 
above the ground, and using a 90◦ view-restricting cap. Measurements 
for LAI estimation included a reference reading above the canopy and 
several readings below the canopy. All measurements were made at 
dawn. The coordinates for all trees (both sampled and visually scored) 
were recorded using a GPS (Garmin GPSMAP 64s) device with a spatial 
accuracy below 3 m. 

2.2. Airborne hyperspectral and thermal imagery 

2.2.1. High-resolution image data collection 
We collected high-resolution images on 19 July 2017 using a visible 

near-infrared (VIS-NIR) hyperspectral imager (Hyperspec model, 
Headwall Photonics Inc., Fitchburg, MA, USA), a hyperspectral sensor 
covering NIR and short-wave infrared (SWIR) regions (Hyperspec NIR- 
100, Headwall Photonics), and a thermal camera (FLIR SC655, FLIR 
Systems, Wilsonville, OR, USA) installed in tandem onboard a Cessna 
aircraft operated by the Laboratory for Research Methods in Quantita-
tive Remote Sensing (QuantaLab), Spanish National Research Council 
(CSIC). The imagery was acquired at 350 m above ground level with the 
aircraft flying on the solar plane, with a track width of 185 m, resulting 
in 720 ha of ground surface covered (Fig. 3). The VIS-NIR camera 
operated with 260 spectral bands (400–885 nm) and a radiometric 
resolution of 12 bits at a 1.865-nm centre wavelength (CWL) interval, 

Fig. 2. Examples of the four forest disease severity (DS) levels assigned to holm oak trees (N = 1146) during a field survey in 2017, which was repeated in 2019. The 
classes range from apparently healthy trees (DS = 0) to trees whose canopies show a prevalence of dead branches (DS = 3). 

Table 2 
Summary of field measurements and surveys.  

Year Tree-health field survey Cab Car Anth Fs LAI 

2013  ✓ ✓ ✓ ✓ ✓ 
2015  ✓ ✓  ✓  
2017 ✓ ✓ ✓  ✓  
2019 ✓      

Cab: chlorophyll a + b content; Car: carotenoids; Anth: anthocyanins; Fs: steady- 
state leaf fluorescence; LAI: leaf area index. 

Table 1 
Forest health condition assessment: crown-level severity and incidence levels.  

DS  
Level 

Severity Description Defoliation Incidence 

0 Healthy Symptomless or low  
symptom incidence 

0–15% No incidence 

1 Low to  
moderate  
severity 

Low to moderate  
defoliation and no or  
few additional symptoms  
affecting a limited part of  
the canopy 

15–50% Incidence 

2 Medium to  
high severity 

Medium to high defoliation of  
the crown and several  
additional symptoms 

50–85% Incidence 

3 High to  
extreme  
severity 

High defoliation uniformly  
distributed all over the crown,  

totally defoliated trees, and  
additional symptoms 

85–100% Incidence  
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yielding 6.4-nm full-width at half-maximum (FWHM) spectral resolu-
tion with a 25-μm slit. The acquisition frame rate on board the aircraft 
was 50 frames per second with an integration time of 18 ms. The focal 
length was 8 mm, producing an angular field of view (FOV) of 49.82◦. 
The images derived from this sensor resulted in a ground resolution of 
60 cm, allowing us to distinguish individual oak tree crowns from the 
background. Further details regarding the platform and sensor config-
uration can be found in Zarco-Tejada et al. (2013). The NIR-SWIR sensor 
was operated with 165 spectral bands (950–1750 nm), yielding 6.05 nm 
FWHM (25-μm slit size) and 16-bit radiometric resolution. The sensor 
was configured with an acquisition rate of 25 fps with an integration 
time of 40 ms. The 12.5-mm-focal-length lens resulted in an angular FOV 
of 38.6◦, with a 90 cm/px spatial resolution. The FWHM and the centre 
wavelength for each spectral band were derived after spectral calibra-
tion using a monochromator (Cornerstone 260 1/4 m, model 74,100, 
Newport Oriel Instrument, CA, USA) and an XE-1 Xenon calibration light 
source (Ocean Optics, USA). 

The thermal sensor (FLIR SC655, FLIR Systems, Inc., USA) had a 
resolution of 640 × 480 pixels and was connected to an acquisition 
board via the Gigabit Ethernet protocol. It was equipped with a 24.5- 
mm F-number 1.0 lens providing an angular FOV of 45 × 33.7◦. The 
detector is a focal plane array uncooled microbolometer and has a 
spectral range from 7.5 to 14 μm. This camera is equipped with a 
thermoelectric cooling (TE) stabilisation system, which enables a ther-
mal sensitivity below 50 mK. The characteristics of the sensors on board, 
as well as their specific setup in this study, are detailed in Table 3. 

2.2.2. Image post-processing 
Both hyperspectral sensors were radiometrically calibrated by means 

of an integrating sphere (Uniform Source System, model CSTM-USS- 
2000C, Labsphere Inc., North Sutton, NH, USA) using coefficients 
derived from the calibrated light source at four constant levels of illu-
mination. Atmospheric correction for the VIS-NIR sensor was performed 
using the total incoming radiance measured with a field spectroradi-
ometer (ASD HandHeld Pro, Malvern Panalytical Ltd., Malvern, En-
gland). Atmospheric correction was simulated with the SMARTS model 
(Gueymard, 1995, 2001) for the NIR-100 sensor, which allowed the 
conversion of the radiance images to reflectance for the full range of 
both sensors. Optical thickness measurements from a Microtops II sun-
photometer (Solar Light Co., Philadelphia, PA, USA) and meteorological 
measurements from a weather station (model WXT510, Vaisala 

Corporation, Vantaa, Finland) were used as input parameters for the 
model. Additionally, the effects of illumination and viewing angle were 
also adjusted using cross-track correction (San and Süzen, 2011) in both 
hyperspectral processing chains (Fig. 4). 

Thermal calibration was conducted in the laboratory using a black 
body calibration source (LANDCAL model P80P, Land Instruments In-
ternational Ltd., Dronfield, England) and by indirect calibration using 
ground temperature measurements with a handheld infrared ther-
mometer (LaserSight from Optris GmbH, Berlin, Germany) as described 
by Calderón et al. (2015) (Fig. 4). Standardised canopy temperature 
(Tc–Ta) was calculated by subtracting weather station air temperature 
(Ta) from canopy temperature derived from calibrated thermal imagery 
(Tc). 

Orthorectification of hyperspectral images was performed using 
PARGE (ReSe Applications LLC, Wil, Switzerland) image rectification 
software for airborne optical scanner systems. Data from inertial mea-
surement units installed on each sensor (IG-500N, SBG Systems S.A.S., 
Carrières-sur-Seine, France) were synchronised with each camera's 
imager and used as inputs for the software. Orthomosaicing thermal 
imagery was performed using Pix4D (version 3.1.23, Lausanne, 
Switzerland) photogrammetry software. Data pre-processing and image 
correction were as described in detail by Hernández-Clemente et al. 
(2012) and Zarco-Tejada et al. (2013). 

2.2.3. Spectral-based indicators 
The high-resolution imagery acquired from each airborne sensor 

allowed us to identify and delineate tree crowns independently, seeking 
to minimise the effect of background and shadowing. This image seg-
mentation was achieved using object-based methods through Niblack's 
threshold (Niblack, 1986) and Sauvola's binarisation techniques (Sau-
vola and Pietikäinen, 2000). Finally, we applied a binary watershed 
analysis using the Euclidean distance map for individual objects to 
automate the separation of the trees with overlapping crowns (Fig. 5). 

Mean reflectance values for each tree were used to calculate 96 
spectral-based indicators, including: i) VIs related to tree crown struc-
ture, chlorophyll, carotenoid, anthocyanin and water contents, and the 
epoxidation state of the xanthophyll cycle (detailed in Appendix A.); ii) 
chlorophyll fluorescence emission through the Fraunhofer line depth 
(FLD) method as described by Maier et al. (2003) using three bands for 
the in (L763 nm) and out (L750 nm; L780 nm) bands (3FLD); and iii) thermal 
dissipation using Tc–Ta, as previously described. We selected indicators 
mainly related to pigment composition and physiological variables to 
intensify the discriminatory capability of the models detecting healthy 
trees from trees with low severity levels (e.g. DS0 to DS1). 

Fig. 3. Flight path for image acquisition. White arrows and line indicate the 
flight path and the hashed green square is framed over the study area. The 
background shows the VIS-NIR hyperspectral mosaic, overlaid on an ortho-
photo from the Spanish National Geographic Institute (IGN, OrtoPNOA 2017 
CC-BY 4.0). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 3 
Technical characteristics of the airborne imaging sensors and operational 
settings.   

Hyperspectral Thermal 

VNIR NIR-100 SC655 

Wavelength range (μm) 0.4–0.885 0.95–1.75 7.5–14 
Spectral bands 260 165 1 
Spatial bands 1004 320 640 × 480 
Focal plane array detector Silicon CCD InGaAs VOx 
TE cooling No Yes Yes 
Detector pixel pitch (μm) 7.4 12 17 
FWHM (nm) 6.4 6.05 – 
Slit size (μm) 25 25 – 
Radiometric resolution (bits) 12 16 16 
Integration time (ms) 18 40 8 
Frame period (ms) 55.55 18 1000 
Aperture F/1.4 F/2.0 F/1.0 
Focal length (mm) 8 12.5 24.5 
Spatial resolution (cm/px) 60 90 60 
FOV (deg) 49.82 38.6 45 × 33.7 
Communication protocol CameraLink USB GigE  
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2.3. Model simulation analysis and plant trait retrieval 

Canopy structural traits and biochemical composition were quanti-
fied by inverting the 3-D RTM FLIGHT8 model, using the pixels 
extracted from the tree crowns. We selected this model to minimise the 
impact of structural canopy variations, soil background, shadows and 
understory affecting the retrieval of PTs in heterogeneous forest 

canopies (Hernández-Clemente et al., 2017; Hornero et al., 2021). The 
model simulations were conducted using the atmospheric and ground 
data set collected during the image acquisition. Input variables for the 
model (Table 4) were established according to the field measurements, 
estimates from existing literature, and nominal parameters to ensure 
that the generated look-up table (LUT) covered the range of spectral 
variability in the tree crowns. The ill-posed problem generated when a 

Fig. 4. From left to right, the images from the VIS-NIR, NIR-SWIR, and thermal sensors are shown over the study area. Bottom row contains zoomed-in views of 
scenes above (green rectangle). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Overview of the entire crowns in the study area. Zoomed-in views (of the area in the yellow box) in the bottom row show the tree-crown segmentation for 
each sensor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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wide range of PTs can be obtained from the same spectrum was allevi-
ated using restricting ranges of input parameters based on field data 
measurements (Combal et al., 2003). The LUT calculation is processed in 
two phases, with the purpose of sequencing the inversion process to 
minimise the improperly posed problem and using the inversion 
methods best suited to each step, as detailed in Fig. 6. FLIGHT8 is 
coupled to leaf model FLUSPECT-B in the first phase to allow the 
retrieval of sun-induced fluorescence quantum efficiency (Fi) and with 
PROSPECT-D in the second phase to allow the retrieval of anthocyanins 
content. 

In the first phase of analysis (Fig. 6 top), we determined LAI, Cab, Car, 
and the sun-induced fluorescence quantum efficiency (Fi). We built a 
LUT of +800k simulations coupling the FLUSPECT-B (Vilfan et al., 
2016) leaf reflectance model with the FLIGHT8 (Hornero et al., 2021) 
canopy model. FLUSPECT-B considers the pigment concentrations in the 
leaf and its photosynthetic efficiency, and FLIGHT8 takes into account 
the structural properties of the canopy and the effect of the soil and the 
understory. The senescence material, water (Cw), and dry matter (Cdm) 
contents, and the structural parameter N were set to nominal values 
using a value previously determined on this particular species in the 
same study area following Hernández-Clemente et al. (2017) (Table 4 – 
Phase 1). For comparisons with airborne hyperspectral images, we used 
convoluted model simulations assuming Gaussian band spectral 
response functions for their corresponding FWHM, centred on the band 
locations of each imager. The LUT-based inversion followed a multi-step 
approach in which the LAI values were determined first, followed by Cab, 
Car, and finally, Fi, using the MSR, PSSRb, CRI700m, and 3FLD spectral- 
based indicators as proxies for each PT, respectively. 

In the second phase, parameterisations retrieved from each tree were 
used to build a LUT of +200k simulations by coupling the PROSPECT-D 
(Féret et al., 2017) leaf reflectance model with the FLIGHT8 canopy 
model. The leaf reflectance model was used to specifically quantify Anth, 
as well as Cw and Cdm (Fig. 6 bottom). For the simulations and images, a 
smoothing algorithm based on local polynomial regression fitting 
(Cleveland et al., 1992) was applied to eliminate the noise affecting the 
model inversion. Through the use of wavelets (Strang and Nguyen, 
1996), we decomposed the hyperspectral signatures into frequency 
components at different spectral scales, allowing us to identify the LUT 
spectra that showed a closer correspondence to the image spectra, which 
enhances the retrieval of the spectral features and hence plant traits. The 
continuous wave transformation was performed over three spectral 
ranges, a) 470–710 nm, b) 670–850 nm, and c) 1000–1300 nm and 
1500–1700 nm, for the retrieval of Anth, Cdm, and Cw, respectively. At 
this stage, Kattenborn et al. (2017) and, more recently, Suarez et al. 

(2021) used a similar method to obtain the PTs from hyperspectral 
images; however, the methods used in this study differ in that a) an 
extended spectral range was used based on double-coupled hyper-
spectral imagers, and b) only the first four transformation scales were 
used to characterise more specific spectral regions of interest, instead of 
the whole range of the signal. The performance of the model-based PTs 
was evaluated based on the Normalised Root Mean Square Error 
(NRMSE) (2) with the field data (LAI, Cab, Car, Anth). Fs/Fi were excluded 
from this comparison since they are both unitless. 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1

(

yi − ŷi

)2
√

1
y

(2)  

where n is the number of observations, yi represents the ith actual 
observation of the PT y, y its mean and ŷi the predicted value from the 
model-based retrieval. 

2.4. Plant trait selection and classification model approach 

Once the PTs were obtained for each tree, feature selection was 
performed using a random forest (RF) classifier (Breiman, 2001; Liaw 
and Wiener, 2002) combined with an adaptation of an algorithm 
developed by Kursa and Rudnicki (2010), henceforth referred to as the 
Boruta algorithm. In the Boruta algorithm, shadow variables (permuted 
copies) are created by shuffling the original ones. The RF classifier is 
then applied to the initial data set, which is composed of the original 
variables and their shadow counterparts at the same time. The Boruta 
algorithm evaluates iteratively the importance of each original variable 
against the shadow variables to determine which variables are essential 
and at what magnitude. Variables are marked “Unconfirmed” when they 
are significantly lower than the shadows and are permanently discarded, 
while variables that are significantly higher than the shadows are 
marked “Confirmed”. The process is repeated by re-generating the 
shadow variables and continues until only confirmed variables are left 
or until the maximum number of iterations defined at this stage is 
reached (set at 100 iterations). If the second scenario occurs, some 
variables may remain undecided, and they are considered “Tentative.” 
The confidence level defined in the Boruta algorithm was established at 
99% with a multiple comparisons adjustment using the Bonferroni 
method (Haynes, 2013) to control false positives. Once this process was 
completed, the importance of each PT in the severity and incidence 
classification process was obtained. 

As an initial step, we performed the Boruta analysis using the field- 
based PT measurements, combining 2013, 2015, and 2017 

Table 4 
Inputs for the model simulation analysis.  

Variable Units Acronym Phase 1 Phase 2 

Chlorophyll a + b content μg cm− 2 Cab 10–60 21–33 
Carotenoid content μg cm− 2 Car 1–20 1–7 
Water content Cm Cw 0.013 0–0.03 
Dry matter content g cm− 2 Cdm 0.024 0.003–0.018 
Anthocyanin content g cm− 2 Anth NA* 0–6 
Senescence material Fraction Cs 0 0 
Mesophyll structure – N 2.1 2.1 
Fluorescence quantum efficiency – Fi 0–0.2 NA* 
Leaf area index m2 m− 2 LAI 0–4 0.1–2.5 
Leaf size m LFS 0.05 0.05 
Leaf angle distribution – LAD Spherical Spherical 
Fractional cover % FC 70 70 
Soil reflectance % Soil 1 sample 1 sample 
Understory reflectance % US 4 samples 4 samples 
Crowns shape – CSh Ellipsoid Ellipsoid 
Solar Zenith deg. SZA 25.84 25.84 
Solar Azimuth deg. SAA 108.98 108.98  

* NA: Fi and Anth are not modelled in PROSPECT-D and in Fluspect-B, respectively. 
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evaluations, using only the three variables that were measured in all 
three years (Fs, Cab, and Car) on 45 observations (15 evaluations and 
physiological measurements per year) and comparing them to the levels 
of severity and incidence. The purpose of this analysis was to understand 
the sensitivity of field-based PT to forest decline. 

The feature selection process started using all the model-based PTs 
retrieved for each tree, including 8 variables and 1146 observations. 
Then, the Boruta analysis was repeated for all the spectral-based in-
dicators (N = 96). The objective was to improve the reliability of the 
model using complementary information added by VIs to the initial 
model-based PT feature selection. Due to the high fluctuations in the 
importance calculation when a large number of variables are used, the 
process in Boruta starts with three rounds, in which only the selected 
shadow variables are compared, while in the remaining rounds — up to 
100 iterations — the original variables are compared with all the 

shadow variables. Fig. 7a presents an overview of the entire process for 
the selection of variables conducted in this study. 

To strengthen the selection of features used in the classification 
model, the PTs were set in the established order according to their 
importance, and the VIs were added based on their previously calculated 
importance as well. At each stage of accumulation, the variance inflation 
factor (VIF) — an indicator that measures the extent to which the 
variance of an estimated regression coefficient increases due to collin-
earity (James et al., 2013) — was calculated to avoid multicollinearity 
among the predictor variables. The variable was included only if the 
VIFs for all variables were below the threshold of 10. The final set of 
selected variables (PTs + VI) was used in the next screening stage. 

Finally, Pearson's correlation analysis and p-values were used to 
determine the degree of relationship between the previously selected 
variables. Through the calculated correlation matrix, the variables to be 

Fig. 6. Model simulation approach diagram.  
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excluded were chosen to reduce the pair-wise correlations establishing a 
cutoff filter of 0.85 (Dormann et al., 2013). The Boruta algorithm was 
applied to the remaining variables to determine the importance of each 
selected variable. A principal component analysis (PCA) was also con-
ducted to determine to what extent the components capture the majority 
of the variance and to identify the variables that provide the most in-
formation and whether the less relevant ones could be discarded to 
reduce the dimensionality of the data set. The filtered variables were 
retained for the development of the classification model, as shown in 
Fig. 7. 

Two ML algorithms were used to classify disease incidence and 
severity levels: a supervised non-linear support vector machine (SVM) 
with a Gaussian kernel radial base function (Scholkopf et al., 1997) and 
the RF algorithm (Breiman, 2001), which were reported as the pre-
dominant classifiers on airborne imaging (Gigović et al., 2019; Gualtieri 
et al., 1999; Liu et al., 2017; Pal, 2005). 

We evaluated models for two different cases (Fig. 7b), assessing 
incidence and severity classification from i) CASE 1, all trees assessed in 
2017 (N = 1146), and ii) CASE 2, only confirmed trees, which were 
either still affected or unaffected again in 2019 (N = 506). To validate 
the selected models, we performed 100 iterations in which the data set 
was randomly divided into two samples, the training and the test sam-
ples by 80% and 20%, respectively, including k-fold cross-validation, in 
which the original sample was randomly partitioned into 10 equal-sized 
subsamples and repeated five times. Training data were subsampled for 
each iteration to avoid disproportionate frequencies of classes, which 
could negatively impact the model fit. Finally, we assessed the classifi-
cation accuracy by calculating the overall accuracy (OA) and the 
Cohen's kappa coefficient (κ), which is based on comparing the observed 
agreement in a data set compared to what could occur by mere 
randomness (Richards and Jia, 1999). 

After assessing the models' accuracy, we evaluated the anticipation 
capability using the visual evaluation 2 years later. In particular, we 
analysed whether the model was able to predict the unconfirmed cases 
— trees that were assessed at a given incidence level and in the subse-
quent assessment, 2 years later, were assessed at the opposing level — 
and refined towards those that improve or worsen, i.e., those that 
change from having incidence to not having it and the opposite, 
respectively. This last analysis helped us understand the applicability of 
the model to predict a subsequent evaluation of forest decline using the 
data from previous images and evaluations. 

3. Results 

In this section, we present the results of the evaluation of the field 
and PT indicators to predict oak decline. The predictions of the remote 
sensing spatial model are described below, focusing on the ability to 
discriminate between damage levels as a function of PT alterations 
caused by oak decline. 

3.1. Plant trait indicator assessment based on forest health field 
measurements 

The bi-annual empirical data collected from 2013 to 2017 show the 
capability of the field-based PTs — Cab, Car, and Fs — to discriminate 
different levels of severity. Trees with low disease severity levels 
consistently had high values for Fs, Cab, and Car content (Fig. 8). Fs was 
identified as having importance values two times higher than Cab and Car 
in both severity and incidence levels (Fig. 8 right side). 

Fig. 7. Overview of the methodology used for a) the feature selection using the Boruta algorithm, including the iterative reduction of variables and the correlation 
analysis; and b) the classification approach based on 2017 with the different cases assessed and a final comparison with a subsequent evaluation in 2019. 
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3.2. Spectral- and model-based plant trait predictors of oak decline 

As with empirical measurements, model-based values of Fi and 
pigment content (Cab and Car) were inversely related to severity level 
(Fig. 9). The model-based PTs corresponded well with field data, having 
relatively low normalised error (NRMSELAI = 0.13, NRMSECab = 0.16, 
NRMSECar = 0.2, and NRMSEAnth = 0.12) and values within the expected 
range (data not shown). In Fig. 9, we also included the model-based 
retrievals of three other PTs (Cw, Cdm, and Anth) and Tc–Ta derived 
from thermal data. Severity level was positively associated with Tc–Ta 
and Cdm but negatively associated with LAI, Anth, and Cw. These results 
are also consistent with the classification of incidence and severity ob-
tained from field-based PT measurements, described in the previous 
section, where Fs was one of the most relevant variables to detect oak 
decline. 

Variable importance scores for model-based PTs and Tc–Ta are 
presented in Fig. 10. Tc–Ta and Fi had the highest importance scores in 
models discriminating the first and second severity levels, while LAI and 
Cdm were determined to be the most important for differentiating the 
remaining severity levels (Fig. 11a). 

The principal components PC1 and PC2 explain 59.2% of the total 
variability, with 42.5% for PC1 and 16.7% for PC2 (Fig. 11b). The PTs 
Tc–Ta and LAI were strongly negatively correlated in PC1 and PC2 
space, having nearly the same magnitude and angle but different di-
rections. These results may indicate that the more abundant the vege-
tation, the greater the transpiration capacity and the lower the 
temperature difference. On an orthogonal ray, we find Car, which is 
scarcely related to them, and its importance indicates its limited 
contribution to the model. The projection of Fi in the first two compo-
nents was opposite that of Car, and this variable contributed substan-
tially to model performance. This variable was more important than LAI 
for the development of an incidence classification model as well as 
distinguishing the first two severity levels. 

3.3. Remote sensing spatial model predictions of oak decline 

To find the best variables for predicting oak decline, the model-based 
PTs were combined with 95 VIs, of which only four passed the iterative 
VIF screening and pair-wise correlation threshold: LIC3, CI2, GnyLi, and 
MND (Fig. 12a). The variables with the lowest correlation coefficient 

Fig. 8. Relationship between the level of severity and field-based plant traits – chlorophyll content (Cab), carotenoid content (Car), and steady-state leaf fluorescence 
(Fs) – in N = 45 trees measured in 2013, 2015, and 2017. Importance scores for field-based plant traits in detecting oak decline computed via the Boruta algorithm are 
shown at right. 

Fig. 9. Relationship between severity and plant traits retrieved from hyperspectral and thermal images in 2017.  
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Fig. 10. Overall importance scores for each plant trait when classifying both incidence and severity disease levels using the Boruta algorithm.  

Fig. 11. Severity subsampling importance scores for each plant trait (PT) (a) and spectral-based principal component (PC) predictors' analysis (b) for both incidence 
(0–1) and severity (0–3) levels using the model-based PTs (Cab, Car, Anth, Cw, Cdm, LAI, and Fi) and the thermal-image-based PT (Tc–Ta). The bidimensional plots 
display each variable's loading, with vectors and the tree samples as points coloured by severity and incidence levels. The vectors' length approximates the variance 
represented by each variable, whereas the angles between them represent their correlations. 
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(<0.05) were Car with LAI, Anth, and MND, a result that is consistent 
with the PCA showing Car as largely independent from other variables. 

The variable selection process yielded 12 final indicators with a VIF 
below the established threshold. Two indicators were associated with 
photosynthesis regulation: Fi and Tc–Ta. Four indicators were related to 
pigment content: Cab, Car, Anth, and CI2. One indicator was related to 
fractional cover, namely, LAI. Five indicators were related to water 
content: Cw, Cdm, GnyLi, MND, and LIC3. Among all the indicators, the 
variables contributing the most to detecting different levels of incidence 
and severity were Tc–Ta and Fi. These PTs were included as predictors 
for the final classification model of oak decline; their importance scores 
are presented in Fig. 12b. Variables with the highest importance 
included Tc–Ta, Fi, and CI2. 

Model accuracy was estimated on the basis of the total number of 

trees evaluated and confirmed cases reported in the subsequent survey 
(Fig. 13). Models classifying severity had an overall accuracy of 0.71 (κ 
= 0.51) in the best case (sampling of confirmed cases with RF algo-
rithm). Models classifying incidence were more accurate (OA = 0.82; κ 
= 0.62) for this same scenario. The SVM algorithm was slightly more 
accurate when we used the complete data set (all trees; N = 1146), while 
RF performed better with the reduced-input data set (confirmed cases; N 
= 506). For models predicting incidence, the OAs were greater than 0.75 
(thus considered ‘high’), and the Cohen's kappa scores were fair to 
excellent, according to Cicchetti and Sparrow (1981). 

The findings obtained when evaluating the anticipation capabilities 
(Table 5) indicate a better behaviour of the RF algorithm when building 
the model with both confirmed cases — in which the best result is found 
— and all cases. When we analyse the prediction rate while segregating 

Fig. 12. Plant traits (PTs) and vegetation indices (VIs) correlations (a) and variable importance scores for spectral-based PT and VIs with severity and incidence (b) to 
detect oak decline. 

Fig. 13. Overall accuracy (OA) and Cohen's kappa scores for classification models. Results were obtained from 100 iterations of random data subsets for training and 
validation (80/20). Average OA and kappa values are shown as horizontal bars, the former in colour and the latter as narrower grey bars with dotted edges. The error 
bars indicate the minimum and maximum OA values across iterations. 
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between trees that worsen (incidence: 0 → 1) and those that improve (1 
→ 0), for the former, the RF algorithm behaves better, and for the latter, 
SVM. 

Example predictions from a final incidence classification model using 
the SVM algorithm are presented in Fig. 14, with results within the ex-
pected performance (OA = 0.81; κ = 0.62); comprehensive statistics are 
detailed in Appendix B. Through this map and the field evaluations, the 
differences found can be appreciated, as well as their spatial variability. 

4. Discussion 

The first objective of this study was to identify the PTs that are most 

useful for detecting the incidence and severity of decline symptoms in 
holm oak. One of the main challenges encountered in quantifying PTs in 
heterogeneous forest canopies was to minimise the impacts of shadows, 
soil background, and understory, which dilute the spectral signature of 
pure crowns (Hernández-Clemente et al., 2019; Liu et al., 2020; Markiet 
et al., 2016; Pisek et al., 2015). For this reason, advanced 3-D simulation 
models designed specifically for heterogeneous forest canopies were a 
major methodological component of this study. The critical step resided 
in the successful retrieval of model-based PTs that allowed us to un-
derstand the contribution to each PT and complete the ML modelling 
approach with additional information derived from other spectral- 
based, uncorrelated variables. 

Table 5 
Prediction rate for non-confirmed cases (NC) using models built with all cases or only confirmed ones. The 
best results for each case are highlighted in light green and in darker green overall. 

Fig. 14. Field evaluation and spatial prediction map from the model output. Yellow and green filling indicates incidence or not, respectively. Tree crowns with a red 
outline are those that differ between the field evaluation and the model output. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Field data confirmed the association between Q. ilex status and 
several key PTs. Trees with lower disease incidence had higher values of 
Cab, Car, and Fs. As symptom severity increases, the concentration of 
these pigments and the chlorophyll fluorescence decrease. The decrease 
rate we observed in chlorophyll fluorescence and pigment content 
associated with disease incidence are consistent with declines associated 
with drought and root rot stress found in other experiments under 
controlled conditions (Früchtenicht et al., 2018; Koller et al., 2013; Ruiz 
Gómez et al., 2018) and field surveys (Baquedano and Castillo, 2007; 
Camarero et al., 2012). 

It is notable that we found Fs to be more important than the other two 
PTs in identifying disease incidence from field data. Among model-based 
PTs retrieved from hyperspectral images, Fi similarly had a higher 
importance score than any other pigment content indicator for 
discriminating severity. This pattern is consistent with the variable 
importance ranking of variables in Zarco-Tejada et al. (2018) for 
detecting Xf-induced symptoms in olive trees. 

Including spectral-based PT indicators in our analysis provided 
insight into the functional responses of oak trees to different disease 
levels. Tc–Ta was the most important indicator, regardless of whether 
we discriminate by incidence or severity. Thermal imaging has 
improved the detection of several crop diseases in other studies, 
including Verticillium wilt in olive orchards (Calderón et al., 2015), 
water stress in peach orchards (Gonzalez-Dugo et al., 2020), and red leaf 
blotch in almond orchards (López-López et al., 2016). In this study, 
other important PTs included LAI and Fi, followed by Cdm, Cw, and Anth, 
and to a lesser extent Cab and Car. 

Focusing on the discrimination capacity of each PT between the 
different stages of severity, Tc–Ta was generally an important predictive 
variable for determining disease incidence, but LAI and Cdm were more 
relevant for discriminating mild and advanced severity classes. PCA 
showed that Tc–Ta and LAI contributed strongly to the same component 
but in opposite directions. Severity subsampling supports that while 
canopy temperature is particularly important for early incidence 
detection, LAI may provide more information about severity levels when 
a tree is infected. 

Another important aspect of this study is the consideration of VIs 
alongside other model-based PTs for classification. CI2, GnyLi, MND, 
and LIC3 were variables that passed through selection criteria, providing 
additional information and avoiding collinearity with other variables. In 
the final model, Fs was selected as highly important, since part of the 
weight of LAI was distributed among other indicators such as CI2 or LIC3. 
The importance of indicators from the SWIR region (MND and GnyLi) 
also exceeded that of Cab, Car, Cdm, and Anth. 

This study showed that remotely derived PTs can support the early 
detection of holm oak decline, which was the second objective of this 
work. By applying a combination of 3-D model simulation and statistical 
analysis using ML approaches, we found that oak forest decline can 
potentially be detected at an earlier stage and that severity levels can be 
accurately assessed at broad scales. Predictive model accuracy was high, 
with an OA > 0.8 and κ > 0.6, indicating that the PTs we identified may 
be helpful for understanding physiological responses to disease and 
other stressors. The model accuracy achieved in this study is comparable 
to that of prediction models developed for olive trees by Zarco-Tejada 
et al. (2018). Taking advantage of a subsequent field evaluation per-
formed 2 years later, the model's anticipation ability was evaluated, 
which brought us significantly improved results since it managed to 
anticipate up to 40% in the best scenario. 

These results help bridge a gap in the understanding of how forest 
decline alters PTs via complex interactions between biotic and abiotic 
factors. Unlike in agricultural studies, where factors such as nutrient 
deficiency or water availability can be controlled, in forests these in-
teractions are difficult to dissociate. Forest canopy heterogeneity poses a 
challenge for spectral data modelling, due to discontinuous architec-
tures and interference from shadows, understory, and soil composition. 
The utility of satellite-based spectral indicators for detecting diseases 

has been examined by Hornero et al. (2020) in olive trees and 
Hernández-Clemente et al. (2017) in holm oak. A common finding in 
these studies was that the soil and the understory both influence the 
spectral signature and the fluorescence signal of aggregated pixels. In 
this work, we used the FLIGHT8 model, a recently improved version of 
the FLIGHT model, which minimises background effects by considering 
the spectral contribution of the understory. The success of the methods 
presented here may be partially due to the high spatial resolution of 
hyperspectral images collected and to the open nature of the woodland 
landscape. However, the FLIGHT8 model also accounts for increasing 
levels of pixel aggregation (e.g., using medium- to low-resolution sat-
ellite imagery) in heterogeneous canopies (Hornero et al., 2021). Future 
work should investigate the assessment and validation of the methods 
presented here performed with satellite imagery and/or different types 
of forest canopies. 

In a practical level for the management of holm oak decline, the 
results show that Tc–Ta, Fi, LAI and Cdm are sensitive indicators to 
discriminate between DI levels [0–1]. However, being able to quantify 
between DS [0–4] is clearly advantageous for effective management and 
mitigation of forest decline. According to the results, monitoring holm 
oak decline should include the analysis of the transition between 
severity levels based on indicators such as Tc–Ta, Fi and LAI to 
discriminate between DS [0–1]; LAI, Cdm, and Tc–Ta between DS [1–2]; 
and LAI, Cdm and Cw between DS [2–3]. The transition between DS [0–1] 
is particularly important, as it indicates the progression between non- 
symptomatic to symptomatic trees. 

The proposed methodology has been validated on holm oak decline 
affected jointly by the presence of Pc and abiotic stress, mainly water 
stress. But the methods proposed here should be further tested to analyse 
the sensitivity of PTs to disentangle the interactive biotic and abiotic 
effects. Future studies should thus include the analysis of a wider range 
of holm oak forest locations solely affected by either abiotic or abiotic 
factors. This situation is quite unlikely, as it has been shown that holm 
oak decline is often linked to a combination of factors (Camilo-Alves 
et al., 2013; Corcobado et al., 2014). However, each factor may have 
different contribution in the decline process (Colangelo et al., 2018). 
Therefore, the discrimination between both factors should be considered 
in future studies. Furthermore, the sensitivity of PTs in oak forest 
affected by other types of pathogens or abiotic stress could be different. 
This work provides a breakthrough in analysing the spectral changes 
caused by xylem-limited factors such as root rot, water stress or soil 
compaction in heterogeneous forest stands. The challenge is to evaluate 
other types of forest decline processes on the methodological and 
empirical basis shown in this work. 

Large-scale monitoring may be further improved by including mul-
titemporal data to track disease evolution. However, such data will in-
crease the complexity of analyses, particularly due to variation in 
understory and soil reflectance from image to image, their impact on 
aggregated pixels, and the need to account for those variations with 
RTM. The methodology presented here may be particularly relevant for 
the Sentinel-2 mission, which provides multitemporal data in the visible, 
infrared, and short infrared regions, and the FLEX mission, which will 
provide fluorescence data after 2022. 

5. Conclusions 

This study develops a new methodology that integrates field data, 
airborne imagery, physical RTM, and empirical modelling to retrieve 
PTs and assess their association with forest decline and provides a tool to 
detect early-onset symptoms of decline in holm oak. Hyperspectral 
image data, including VNIR and SWIR spectral regions, combined with 
thermal imaging and RTM can be used to monitor the spread of forest 
decline over large areas. Thermal-based canopy temperature (Tc–Ta) 
was the most important PT in the model to discriminate between 
different levels of severity and incidence, followed by the fluorescence 
(Fi) and LAI, whereas LAI and Cdm were the most relevant indicators for 
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discriminating advanced stages of severity. Additional spectral in-
dicators such as CI2 or LIC3 complemented LAI, and VIs in the SWIR 
region (GnyLi and MND) were more important than PTs such as Cab, Car, 
or Anth. Overall, our results demonstrate that an integrated approach 
combining spectral- and model-based PT retrievals using 3-D RTM and 
classification methods is needed for the large-scale monitoring of forest 
decline. This approach enabled the successful prediction of holm oak 
decline at an early stage; it is essential to monitor harmful forest dis-
eases, and this task can be augmented through the retrieval of accurate 
forest health traits from advanced airborne imagery and satellite data 
observations. 

Author statement 

AH, PZT and RHC conceived the idea and designed the airborne 
campaign and data analysis. AH, JQ, FRG, RSC and RHC collected field 
data. PZT, PN, JQ and RHC provided background information. AH 
performed the sensor calibration, pre-processing chain. AH wrote the 
manuscript; all authors helped to review and updating the manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Data collection was partially supported by the QUERCUSAT 
(CGL2013-40790-R) and ESPECTRAMED (CGL2018-86161-R) projects, 
part of the Spanish Research Agency, Ministry of Science and Innova-
tion. A. Hornero was supported by research fellowship DTC GEO 29 
“Detection of global photosynthesis and forest health from space” from 
the Science Doctoral Training Centre (Swansea University, United 
Kingdom). P. North was supported by the NERC National Centre for 
Earth Observation (United Kingdom). F.J. Ruiz-Gómez was supported by 
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Appendix A. Vegetation indices derived from airborne imagery included in this study and their formulations  

Vegetation index Equation Reference 

Structural 
Normalized Difference Vegetation Index NDVI = (R800 − R670)/(R800 + R670) (Rouse Jr. et al., 1974) 
Near-Infrared Reflectance of Vegetation NIRV = R800(R800 − R670)/(R800 + R670) (Badgley et al., 2017) 
Renormalized Difference Vegetation Index RDVI = (R800 − R670)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(R800 + R670)

√ (Roujean and Breon, 1995) 
Simple Ratio SR = R800/R670 (Jordan, 1969) 
Modified Simple Ratio MSR = (R800/R670 − 1)/(〖(R800/R_670)〗 ^ 0.5 + 1) (Chen, 1996) 
Optimized Soil-Adjusted Vegetation Index OSAVI = (1+0.16)

R800 − R670

R800 + R670 + 0.16  
(Rondeaux et al., 1996) 

Modified Soil-Adjusted Vegetation Index MSAVI = (1+L)
R800 − R670

R800 + R670 + L  
(Qi et al., 1994) 

Modified Triangular Vegetation Index 1 MTVI1 = 1.2(1.2(R800 − R550) − 2.5(R670 − R550)) (Haboudane et al., 2004) 
Modified Triangular Vegetation Index 1 

MTVI2 = 1.5
1.2(R800 − R550) − 2.5(R670 − R550)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2
−
(
6R800 − 5

̅̅̅̅̅̅̅̅̅̅
R670

√ )
− 0.5

√
(Haboudane et al., 2004) 

Modified Chlorophyll Absorption Ratio Index 
MCARI = ((R700 − R670) − 0.2(R700 − R550) )

(
R700

R670

)
(Haboudane et al., 2002) 

Modified Chlorophyll Absorption Ratio Index 1 MCARI1 = 1.2(2.5(R800 − R670) − 1.3(R800 − R550)) (Haboudane et al., 2004) 
Modified Chlorophyll Absorption Ratio Index 2 

MCARI2 = 1.5
2.5(R800 − R550) − 1.3(R670 − R550)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2 −
(
6R800 − 5

̅̅̅̅̅̅̅̅̅̅
R670

√ )
− 0.5

√
(Haboudane et al., 2004) 

Enhanced Vegetation Index EVI = 2.5(R800 − R670)/(R800 + 6R670 − 7.5R400 + 1) (Huete et al., 2002) 
Lichtenthaler 1 LIC1 = (R800 − R680)/(R800 + R680) (Lichtenthaler, 1996)  

Pigments 
Vogelmann 1 VOG1 = R740/R720 (Vogelmann, 1993) 
Vogelmann 2 VOG2 = (R734 − R747)/(R715 + R726) (Vogelmann, 1993) 
Vogelmann 3 VOG3 = (R734 − R747)/(R715 + R720) (Vogelmann, 1993) 
Gitelson and Merzlyak 1 GM1 = R750/R550 (Gitelson and Merzlyak, 1996) 
Gitelson and Merzlyak 2 GM2 = R750/R700 (Gitelson and Merzlyak, 1996) 
Transformed Chlorophyll Absorption Ratio 

TCARI = 3

⎛

⎜
⎝

(R700 − R670)−

− 0.2 (R700 − R550)
R700

R670

⎞

⎟
⎠

(Haboudane et al., 2002) 

TCARI/OSAVI TCARI/OSAVI =
TCARI
OSAVI  

(Haboudane et al., 2002) 

Chlorophyll Index CI =
R750

R710  

(Zarco-Tejada et al., 2001) 

Triangular Vegetation Index TVI = 0.5(120(R750 − R550) − 200(R670 − R550)) (Broge and Leblanc, 2001) 
Simple Ratio Pigment Index SRPI = R430/R680 (Penuelas et al., 1995) 
Normalized Phaeophytinization Index NPQI = (R415 − R435)/(R415 + R435) (Barnes et al., 1992) 
Normalized Pigment Chlorophyll Index NPCI = (R680 − R430)/(R680 + R430) (Penuelas et al., 1995) 
Simple Ratio 695/420 Carter CTR = R695/R420 (Carter, 1994) 
Simple Ratio Carotenoids CAR = R515/R570 (Hernández-Clemente et al., 2012) 
Datt Cab Cx + c Index DCabxc = R672/(3 R550R708) (Datt, 1998) 
Datt NIR Cab Cx + c Index DNCabxc = R860/(R550R708) (Datt, 1998) 

(continued on next page) 
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(continued ) 

Vegetation index Equation Reference 

Structure Insensitive Pigment Index SIPI = (R800 − R445)/(R800 + R680) (Penuelas et al., 1995) 
Carotenoid Reflectance Index 550 CRI550 = 1/R510 − 1/R550 (Gitelson et al., 2006, 2003) 
Carotenoid Reflectance Index 700 CRI700 = 1/R510 − 1/R700 (Gitelson et al., 2006, 2003) 
Modified Carotenoid Reflectance Index 550 CRI550m = 1/R515 − 1/R550 (Gitelson et al., 2006, 2003) 
Modified Carotenoid Reflectance Index 700 CRI700m = 1/R515 − 1/R700 (Gitelson et al., 2006, 2003) 
Near-Infrared Carotenoid Reflectance Index 550 RCRI550 = 1/R510 − (1/R550) R770 (Gitelson et al., 2006, 2003) 
Near-Infrared Carotenoid Reflectance Index 700 RCRI700 = 1/R510 − (1/R700) R770 (Gitelson et al., 2006, 2003) 
Plant Senescence Reflectance Index PSRI = (R680 − R500)/R750 (Merzlyak et al., 1999) 
Lichtenthaler 3 LIC3 = R440/R740 (Lichtenthaler, 1996)  

PRIs 
Photochemical Reflectance Index PRI = (R570 − R531)/(R570 + R531) (Gamon et al., 1992) 
Photochemical Reflectance Index 515 PRI515 = (R515 − R531)/(R515 + R531) (Hernández-Clemente et al., 2011) 
Modified Photochemical Reflectance Index 1 PRIM1 = (R512 − R531)/(R512 + R531) (Gamon et al., 1992) 
Modified Photochemical Reflectance Index 2 PRIM2 = (R600 − R531)/(R600 + R531) (Gamon et al., 1992) 
Modified Photochemical Reflectance Index 3 PRIM3 = (R670 − R531)/(R670 + R531) (Gamon et al., 1992) 
Modified Photochemical Reflectance Index 4 PRIM4 = (R570 − R531 − R670)/(R570 + R531 + R670) (Gamon et al., 1992) 
Normalized PRI PRIn = PRI/(RDVI R700/R670) (Zarco-Tejada et al., 2013) 
PRI⨯CI PRI ⨯ CI = PRI(R760/R700 − 1) (Garrity et al., 2011)  

BGR 
Blueness Index B = R450/R490 – 
Greenness Index G = R550/R670 (Zarco-Tejada et al., 2001) 
Redness index R = R700/R670 (Gitelson et al., 2000) 
Blue/Green Index 1 BGI1 = R400/R550 (Zarco-Tejada et al., 2012, 2005) 
Blue/Green Index 2 BGI1 = R450/R550 (Zarco-Tejada et al., 2012, 2005) 
Blue Fraction 1 BF1 = R400/R410 – 
Blue Fraction 2 BF2 = R400/R420 – 
Blue Fraction 3 BF3 = R400/R430 – 
Blue Fraction 4 BF4 = R400/R440 – 
Blue Fraction 5 BF5 = R400/R450 – 
Blue/Red Index 1 BRI1 = R490/R690 (Zarco-Tejada et al., 2012) 
Blue/Red Index 2 BRI2 = R450/R690 (Zarco-Tejada et al., 2012) 
Relative Greenness Index RGI = R690/R550 (Ceccato et al., 2001) 
Ratio Analysis of Reflectance Spectra RARS = R746/R513 (Chappelle et al., 1992) 
Lichtenthaler 2 LIC2 = R440/R690 (Lichtenthaler, 1996) 
Healthy Index HI = (R534 − R698)/(R534 + R698) − R704/2 (Mahlein et al., 2013) 
Curvature Optical Index CUR = (R675 R690)/(R683)2 (Zarco-Tejada et al., 2000)  

NIR-VIS 
Pigment Specific Simple Ratio A PSSRa = R800/R680 (Blackburn, 1998) 
Pigment Specific Simple Ratio B PSSRb = R800/R635 (Blackburn, 1998) 
Pigment Specific Simple Ratio C PSSRc = R800/R470 (Blackburn, 1998) 
Pigment Specific Normalized Difference C PSNDc = (R800 − R470)/(R800 + R470) (Blackburn, 1998)  

Anthocyanins 
Visible Atmospherically Resistant Index VARI = (R555 − R650)/(R555 + R650 − R475) (Gitelson et al., 2001) 
Visible Atmospherically Resistant Index 2 VARI2 = (R560 − R668)/(R560 + R668 − R475) (Gitelson et al., 2001) 
Anthocyanin Reflectance Index 1 ARI1 = 1/R550 − 1/R700 (Gitelson et al., 2001) 
Anthocyanin Reflectance Index 2 ARI2 = 1/R550 − 1/R700 (Gitelson et al., 2002) 
Modified Anthocyanin Reflectance Index mARI = R760:800(1/R540:560 − 1/R690:710) (Gitelson et al., 2006) 
Modified Anthocyanin Reflectance Index 1 ARI1m = R760:800(1/R550 − 1/R700) – 
Modified Anthocyanin Reflectance Index 2 ARI1m2 = R800(1/R550 − 1/R700) –  

Nitrogen 
Double-peak Canopy Nitrogen Index DCNI = (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) (Chen et al., 2010)  

SWIR 
Gnyp and Li Index 

GnyLi =
(R900 R1050) − (R955 R1220)

(R900 R1050) + (R955 R1220)

(Gnyp et al., 2014) 

CI1 CI1 = (R736 − R735) R990/R720 (Bao et al., 2013) 
CI2 CI2 = (R736 − R735) R900/R720 (Bao et al., 2013) 
Modified Chlorophyll Absorption Ratio Index 1510 

MCARI1510 = ((R700 − R1510) − 0.2(R700 − R550) )

(
R700

R1510

)
(Herrmann et al., 2010) 

Transformed Chlorophyll Absorption Ratio 1510 
TCARI1510 = 3

⎛

⎜
⎝

(R700 − R1510)−

− 0.2 (R700 − R550)
R700

R1510

⎞

⎟
⎠

(Herrmann et al., 2010) 

Optimized Soil-Adjusted Vegetation Index 1510 OSAVI1510 = (1+0.16)
R800 − R1510

R800 + R1510 + 0.16  
(Herrmann et al., 2010) 

TCARI/OSAVI 1510 T/O1510 = TCARI1510 OSAVI1510 (Herrmann et al., 2010) 
Normalized Ratio Index 1510 NRI1510 = (R1510 − R660)/(R1510 + R660) (Herrmann et al., 2010) 
Ratio Spectral Index 990,720 RSI990,720 = R990)/R720 (Yao et al., 2010) 
Normalized Ratio Index 1770 NRI1770 = (R1770 − R693)/(R1770 + R693) (Ferwerda et al., 2005) 
Normalized Difference Nitrogen Index 

NDNI =
log10(1/R1510) − log10(1/R1680)

log10(1/R1510) + log10(1/R1680)

(Serrano et al., 2002) 

Sulphur index 1080 S1080 = (R1080 − R660)/(R1080 + R660) (Mahajan et al., 2014) 
Sulphur index 1260 S1260 = (R1260 − R660)/(R1260 + R660) (Mahajan et al., 2014) 
Normalized 1645 1715 N1645, 1715 = (R1645 − R1715)/(R1645 + R1715) (Pimstein et al., 2011) 
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(continued ) 

Vegetation index Equation Reference 

Normalized 8,701,450 N870, 1450 = (R870 − R1450)/(R870 + R1450) (Pimstein et al., 2011) 
Normalized 8,501,510 N850, 1510 = (R850 − R1510)/(R850 + R1510) (Camino et al., 2018) 
Middle-infrared Normalized Difference MND = (R1080 − R1675)/(R1080 + R1675) (Malthus et al., 1993) 
Normalized Difference Water Index NDWI = (R860 − R1240)/(R860 + R1240) (Gao, 1996)  

Fluorescence 
3FLD 3FLD =

Eout ⋅Lin − Ein⋅Lout

Eout − Ein  

(Maier et al., 2003; Plascyk, 1975)  

Appendix B. Confusion matrix and statistics from the example predictions  

Observation Prediction 0 1  Accuracy 0.8116 

Kappa 0.6227 

0 310 78  95% Confidence Interval (0.783, 0.838) 
1 72 336  No-information rate 0.5201     

Sensitivity 0.8115     
Specificity 0.8116  
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Ruiz-Gómez, F.J., Navarro-Cerrillo, R.M., Oβwald, W., Vannini, A., Morales- 
Rodriguez, C., 2019. Assessment of functional and structural changes of soil fungal 
and oomycete communities in holm oak declined dehesas through metabarcoding 
analysis. Sci. Rep. 9, 5315. https://doi.org/10.1038/s41598-019-41804-y. 

San, B.T., Süzen, M.L., 2011. Evaluation of cross-track illumination in EO-1 Hyperion 
imagery for lithological mapping. Int. J. Remote Sens. 32, 7873–7889. https://doi. 
org/10.1080/01431161.2010.532175. 
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