
Author's personal copy

Automatic identification of agricultural terraces through object-
oriented analysis of very high resolution DSMs and multispectral
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a b s t r a c t

Agricultural terraces are features that provide a number of ecosystem services. As a result, their main-
tenance is supported by measures established by the European Common Agricultural Policy (CAP). In the
framework of CAP implementation and monitoring, there is a current and future need for the devel-
opment of robust, repeatable and cost-effective methodologies for the automatic identification and
monitoring of these features at farm scale. This is a complex task, particularly when terraces are asso-
ciated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this
study we present a novel methodology for automatic and cost-efficient identification of terraces using
only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs).
Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface
models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were
used to identify terraces using a multi-scale object-oriented classification method. Results show the
potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction
and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m
when the height of the terraces was assessed against field GPS data. The subsequent automated terrace
classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived
from the UAV imagery.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the European Common Agricultural Policy (CAP)
has been integrating environmental concerns and moving towards
the enhancement of agricultural services provided to society as
well as innovation and support of rural sustainable development
(European Commission, 2012a). In this framework, since 2005
farmers have had to comply with common rules and standards
regarding the environment as well as public, animal and plant
health and animal welfare. Such standards are known as ‘cross-
compliance’ (Council Regulation EC No 73/2009). In addition,

further measures are under discussion regarding the ‘greening’ of
direct payments (COM(2001) 625).

As a component of cross-compliance, in order to obtain full
‘single farm payments,’ farmers are required to keep agricultural
land in Good Agricultural and Environmental Condition (GAEC) by
respecting a number of minimum requirements regarding the
prevention of soil erosion, the conservation of soil organic matter
and structure and the maintenance of habitats and landscape fea-
tures. Furthermore, one of themeasures proposed for the ‘greening’
of payments establishes that farmers shall ensure that a certain
amount of their agricultural land is kept as ‘Ecological Focus Areas’
(EFAs), which refers to a set of elements that deliver habitat and
water protection.

Agricultural terraces are among the elements taken into account
in both the GAEC and the EFA proposals. In fact, agricultural ter-
races provide several ecosystem services when they are properly
built and managed. Most of these services are related to ground
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surface leveling and stabilization of slopes by enhancing water
infiltration and reducing erosion risks (McNeill, 1992; Rey Benayas
et al., 2007). However, agricultural terraces also increase landscape
diversity and can function as habitat providers and biodiversity
corridors (Pereira et al., 2006). By contrast, when such terraces are
poorly designed or managed or degraded, they can collapse and
aggravate erosion processes (Martínez-Casasnovas et al., 2010;
Dunjó et al., 2003).

European national authorities manage subsidies granted to
farmers and verify whether legal requirements are met through the
Integrated Administration and Control System (IACS). In the frame-
work of GAEC, they must ensure that farmers maintain terraces in
good condition and do not remove them. This requires identifying
terraces andmonitoring their presence and conservation status over
the years. In the context of the proposed EFAs, land occupied by ter-
races must also be quantified to calculate the EFA at farm level.

Therefore, in the framework of CAP implementation and
monitoring, there is a current and future need for the development
of robust, repeatable and cost-effective methodologies for the
automatic identification and monitoring of features that provide
ecosystem services at farm scale. So far, most efforts have focused
on the automatic identification of linear or point features such as
tree lines, hedges or field margins from very high resolution im-
agery using spectral, textural and shape features (Sheeren et al.,
2009; Aksoy et al., 2010) or including additional information from
digital terrain and surface models (Tansey et al., 2009). In this re-
gard, use of high-resolution 3D information and particularly of very
high resolution digital surface models (DSMs, i.e. models that
represent the earth’s surface and include any objects on it) has
shown potential for the identification and monitoring of linear
landscape features (Bailly and Levavasseur, 2012).

Few studies have specifically been aimed at identifying and
monitoring agricultural terraces at a detailed scale (see some ex-
amples in Karydas et al., 2005; or Martínez-Casasnovas et al., 2010).
By contrast, examples of terrace identification from large-scale
remote sensing imagery or digital elevation models are far more
frequent in the context of geomorphology studies (see, e.g.
Demoulin et al., 2007; or Clarke et al., 2010). In the particular case of
agricultural terrace identification, most studies are based on the
visual interpretation of orthoimages (Faulkner et al., 2003;
Martínez-Casasnovas et al., 2010; Agnoletti et al., 2011) while
automated approaches are much scarcer (Karydas et al., 2005; Li
et al., 2012; Bailly and Levavasseur, 2012).

Use of unmanned aerial vehicles (UAVs) for civil applications
such as high-resolution image acquisition has emerged as an
attractive andflexible option for themonitoring of various aspects of
agriculture and the environment (see, e.g. Amorós López et al., 2011;
Laliberte et al., 2010; Reid et al., 2011; Wallace et al., 2012; Zaman
et al., 2011). Progress made in the miniaturization and cost-
reduction of inertial sensors, GPS devices and embedded com-
puters has enhanced the possibilities of remote sensing using a new
generation of commercial off-the-shelf (COTS) instruments (Berni
et al., 2009a) with a wide range of potential applications. Recent
studies have demonstrated the feasibility of applying quantitative
remote sensing methods to vegetation monitoring using miniature
thermal cameras (Berni et al., 2009a, 2009b; González-Dugo et al.,
2012), narrow-band multispectral imagery (Zarco-Tejada et al.,
2009; Suárez et al., 2010; Guillén-Climent et al., 2012) and micro-
hyperspectral imagery (Zarco-Tejada et al., 2012, 2013a; 2013b).

The generation of accurate orthoimages (2D) and DSMs (3D)
usually relies on rigorous photogrammetric methods orein the case
of 3D images e on laser scanners such as LIDAR. Both options
require expensive and precise technology and/or highly qualified
users. An alternative to traditional photogrammetry or active
sensor technologies is to take advantage of the information

contained in large sets of multi-angle images obtained by
consumer-grade cameras and referenced by low-cost miniature
GPS receivers and inertial sensors operating on UAV platforms. In
fact, state-of-the-art computer vision techniques enable the gen-
eration of reliable 2D and 3D imagery from these collections using
3D photo-reconstruction algorithms based on structure-form mo-
tion and multiview-stereo analysis algorithms (James and Robson,
2012; Küng et al., 2011).

The classification of spatial clusters of pixels generated through
image segmentation has become a popular alternative to classic
single-pixel-oriented classifications in the field of remote sensing.
These spatial clusters, often referred to as ‘image objects’ or ‘image
segments,’ are usually defined as discrete regions of images that are
internally coherent and different from their surroundings (Castilla
and Hay, 2008). Object-oriented analysis has shown important
advantages over traditional pixel-oriented analysis, particularly in
very high resolution imagery classification (Blaschke, 2010; Dr�agut
et al., 2010). In fact, object-oriented analysis of meaningful spatial
entities is a way of including image texture or context information
while allowing an easy integration of several scales of analysis. This
strategy successfully takes into account the multi-scale perception
of landscape and the heterogeneity of its components, thus facili-
tating its classification (Burnett and Blaschke, 2003).

Considering the above-mentioned points, the aim of the present
study was to generate and validate cost-efficient methodologies for
the identification of agricultural terraces using very high resolution
imagery. Our specific objectives were i) to evaluate the potential of
low-cost non-metric cameras on board a UAV for DSM relief
reconstruction in areas with agricultural terraces; and ii) to develop
and validate a methodology for object-oriented automatic identi-
fication of agricultural terraces usingmultispectral information and
DSMs generated from the above-mentioned imagery.

2. Material and methods

2.1. Overview of the analyses

The workflow of this study can be summarized into four main
stages: i) acquisition of the imagery, ii) pre-processing of the UAV
imagery to generate the green-red-near infrared orthomosaic and
the digital surface model along with derived products, iii) classifi-
cation of the imagery in order to create a binary Terrace/No terrace
map and iv) ground truth data collection and validation of both the
DSM and the classification accuracy (Fig. 1).

2.2. Study area and datasets

The analyses were conducted in a test area of about 120 ha
located in the province of Cordoba (southern Spain) covering an
agricultural setting mainly occupied by olive orchards. Olive trees
are cultivated either in rows or in patterns both on terraced and non-
terraced land (Fig. 2). The elevation of the study site ranges from 370
to 550 m above sea level (ASL) with predominant east and south
slope aspects. Relief can be considered rough from an agronomic
point of view, with slope values ranging from flat to a maximum of
37�, a mean slope of 12� and a standard deviation of 4.2�.

The airborne campaign was conducted in 2012 with an un-
manned aerial vehicle (UAV) operated by the Laboratory for
ResearchMethods in Quantitative Remote Sensing (QuantaLab, IAS-
CSIC, Spain). The UAV carried a CIR Panasonic Lumix DMC-GF1
camera (Berni et al., 2009a; Zarco-Tejada et al., 2008, 2012,
2013a) with a 4000x3000 pixel detector that captured images at f/
3.2 and 1/2500 s with an angular FOV of 47.6� � 36.3� and provided
11 cm pixel resolution at an altitude of 500 m above ground level
(AGL). The ground footprint size for an individual image was
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Fig. 1. Analysis flowchart. The image pre-processing block shows the UAV data processing used to generate the inputs for classification. The classes generated for each classification
level (L1, L2 and L3) are specified in the classification block. The ground truth validation illustrates the accuracy assessments of the DSM reconstruction and terrace classification
respectively.

Fig. 2. Study area (Base map source: ESRI Inc.; Bing maps).
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approximately 325� 430 m. The camerawas modified from RGB to
CIR by removing the internal NIR filter. The UAV platform operated
was a 2-m wingspan fixed-wing platform with up to 1-hour
endurance at 5.8 kg take-off weight (TOW) and 63 km/h ground
speed (mX-SIGHT, UAV Services and Systems, Germany). It was
controlled by an autopilot for autonomous flying (AP04, UAV Nav-
igation, Madrid, Spain) and followed a flight plan using waypoints
to acquire imagery from the study area. The autopilot had a dual
CPU controlling an integrated Altitude Heading Reference System
(AHRS) based on a L1 GPS board, 3-axis accelerometers, gyros and a
3-axis magnetometer (Berni et al., 2009a). The ground control
station and the UAV were radio linked, transmitting position, alti-
tude and status data at 20 Hz frequency. This tunneling trans-
mission link was used for the operation of the cameras from the
ground station deployed near the study sites.

2.3. Image processing

The 432 airborne images acquired during the flight were used to
generate theorthomosaic and theDSMreconstructionusingPix4UAV
software (Ecublens, Switzerland). In this image processing stage, the
input was the imagery and the altitude data acquired during the
flight, using synchronized GPS position and roll, pitch and yaw for
each single image. The point clouddensificationparameterwas set to
highand thegrid samplingdistance in theDEMpoint cloudwas set to
100 cm. The orthomosaicwas obtained in 5000x5000pixel tileswith
a blending factor of 0.5. The camera parameters were optimized
internally in the initial stage. An orthomosaic and a DSM, bothwith a
spatial resolutionof 0.11m,were obtained in this process andused in
the subsequent classification stage. The Normalized Difference
Vegetation Index (NDVI, Equation (1)) was calculated from the raw
red and NIR band radiance values of the generated orthomosaic as a
measure of the vigor of the vegetation cover.

NDVI ¼ ðNIR � RÞ=ðNIR þ RÞ (1)

where

R ¼ pixel value of the red image band
NIR ¼ pixel value of the near infrared image band

Several terrain parameters were also derived from the
computed DSM, namely the difference from the minimum value
(DifMin) in a search circle of 2 m around the target pixel (Equation
(2)) and a topographic position index (TopIndex) based on the
concept developed by McNab (1989) of the Terrain Shape Index
using a circular neighborhood of 5 m (Equation (3)). These pa-
rameters were preferred to the gradient slope because the latter is
more prone to fine-scale artifacts. Gradient slope is also more
sensitive to the presence of inclination in the plane of the terrace
leveled surface. These indices were used to identify the various
terrain irregularities associated with terrace slopes, trees and
buildings in the classification procedure (see Section 2.4).

DifMin ¼ hi=hmin (2)

TopIndex ¼ hi=have (3)

where

hi ¼ DSM value for the target pixel
hmin ¼ Minimum DSM value for a given neighborhood around
the target pixel
have ¼ Average DSM value for a given neighborhood around the
target pixel

2.4. Terrace classification

In order to identify the terraces, we conducted an object-
oriented classification using eCognition Developer 8� software (�
TRIMBLE Germany Gmbh), where the features to be classified are
not single pixels but spatial pixel clusters defined through an ag-
gregation algorithm known as ‘multiresolution segmentation’
(Baatz et al., 2004; Benz et al., 2004). The algorithm is based on a
bottom-up iterative spatial aggregation of objects with low spatial
entity (i.e. individual pixels) so as to minimize heterogeneity and is
weighted by the final segment size. The segmentation algorithm
integrates texture criteria by considering size uniformity, pixel
values and local contrast for the elements contained in a given
segment. In practice, the segmentation process is controlled by the
user by setting scale and homogeneity parameters. Scale parame-
ters control the final size of the segments while homogeneity pa-
rameters control the internal heterogeneity of the segments, both
in terms of spectral (or color) and shape characteristics (see Burnett
and Blaschke, 2003 for a more thorough discussion on the topic).
We used this classification approach due to its versatility to inte-
grate context information and perform a multi-scale analysis, given
that it enables the identification of topological relationships be-
tween image objects at a given scale level and also across spatial
scales at different hierarchical levels.

We started from the assumption that terraces could be delin-
eated by identifying their slopes, defined as long linear elements
with an abrupt change in elevation. The classification process was
conducted in two stages: segmentation of the image into mean-
ingful objects (i.e. spatial aggregation of pixels) in the context of the
classification targets and classification of these elements (i.e.
assigning objects to the semantic classes Terrace/No terrace).

In the first stage, we used a simple level of segmentation,
adjusting the parameters so that image objects would fit with real-
world target elements (basically groups of pixels corresponding to
sections of terrace slopes and also buildings and small trees). We
located these elements in the image by visual inspection and sub-
sequently verified them in the field. We used this manual proce-
dure instead of other more automated approaches (see, e.g. Dr�agut
et al., 2010) as we targeted very specific elements that represent a
small share of the image, that is, the ‘building blocks’ of the final
classes to be identified (Hofman et al., 2011), rather than the scale
-or scales- representing the most prominent levels of organization
within the whole image.

Segmentation parameter values were adjusted iteratively using
a trial-error procedure, comparing segment edges against known
reference areas. A certain degree of over-segmentationwas allowed
in order to enable a good delineation of the elements in the image.
The data layers Surface elevation, DifMin and NDVI were weighted
by onewhile the Red, Green and NIR image bands and the TopIndex
data layer wereweighted by 0.5. The shape parameter (i.e. shape vs.
spectral importance, ranging from 0 to 1) was set to 0.2 while the
compactness parameter (i.e. compactness vs. smoothness of seg-
ments, ranging from 0 to 1) was set to 0.5.

In the second stage, a classification model was constructed
based on conceptual rules with a three-level hierarchical structure
using a bottom-up approach. In a first step of the classification,
buildings and their shadowswere identified andmasked out for the
subsequent classification steps. Hence, building primitives were
identified in the basic level (referred to as L1 in the block classifi-
cation of Fig. 1) as objects with low NDVI and high TopIndex values.
Next, adjacent building primitives were merged at a new higher
hierarchical level (referred to as L3 in the block classification of
Fig. 1), where composite objects larger than a certain area and
significantly higher that their surroundings (i.e. with high border
contrast in the DSM) were finally assigned to the Building class.
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Shadows of building primitives were identified as L1 objects with
low NIR values and subsequently merged in L3 composite building
shadow candidates. After that, they were classified as building
shadows if they shared more than 20% of their border with ele-
ments of the Building class.

In a second step, slope anomalies corresponding to abrupt
changes in elevationwere calculated from the DSM and used for the
identification of terrace slope candidates. These slope anomalies
were defined as objects with relatively high DifMin values as a
feature potentially related to the occurrence of terrace slopes. From
this point, the discrimination of large trees, large tree margins and
small trees was addressed. A class of tree candidates was defined at
L1 as slope anomalies with high NDVI and TopIndex values. L1 tree
candidates were then merged at a higher hierarchical level
(referred to as L2 in the block classification of Fig. 1) and reclassified
as large or small trees using the L2 object area and DifMin as
discrimination criteria (i.e. tree crown size and height). Slope
anomalies surrounding large trees were finally classified as large
tree margins.

The remaining objects of the Slope anomaly class were merged
with the Small trees class at L2. These two classes were aggregated
because of the characteristics of the study area, where terraces are
mainly planted with small olive trees. A morphological opening
filter was then applied to the resulting L2 objects in order to smooth
their contour and avoid artifacts in these elements. At this point, a
collection of terrain anomalies semantically likely to correspond to
the slope of terraces (terrace candidates) was identified. Yet, in
some cases these elements could still be confused with the tran-
sition between tree crowns and the ground surface as recorded by
the DSM. We therefore introduced a new rule at L2 level in order to
retain only terraces with high length and length/width values. In a
final classification refinement, L2 terrace candidates with a high
relative share of small tree sub-objects were excluded from the
final terrace class in order to avoid confusions between rows of
trees with crown closure or with vegetated terraces.

The final extent of terraces was calculated by applying a buffer of
6 m around the objects on the terrace slope, resulting in compact

polygons covering the targeted terrace area. This buffer width was
chosen as a slightly higher value than 1/2, the standardwidth of the
terraces for this particular area study area. Polygons with a surface
of less than 1 ha were masked out of the Terrace class as they were
likely to correspond to roadside slopes, tree clumps or other fea-
tures instead of terraced land.

2.5. Validation

The validation was conducted at two levels: i) a first level to
assess the actual accuracy of the UAV-derived DSM in identifying
the morphology of terraces and ii) a second level to assess the ac-
curacy of the categorical binary map of the Terrace/No terrace
classification method.

In the first case, a series of 14 transects (see Fig. 3) with lengths
from 100 to 200 mwas established as independent reference data;
absolute ground elevationwas recorded at horizontal intervals ca. 1
m and characteristic points were covered along the terrace profile
(i.e. at least at the beginning and end of slopes and flat surfaces).
Measures were taken with a differential TRIMBLE R6 GPS receiver
in RTK (Real-Time Kinematic) mode with an XY precision of 8 mm
and a Z precision of 15 mm. The transects were designed to cover
the possible variations in slope, aspect and degree of terrace defi-
nition across the area. The DSM was co-registered to the transect
reference system and the modeled DSM elevationwas extracted for
all the transect points. As the DSM used relative XYZ coordinates
and our interest was to check relative ground differences between
real ground elevation and the DSM so as to identify terraces,
elevation differences between sequential pairs of points along the
transects were compared. Therefore, the Root Mean Square Error
(RMSE) for each transect was computed taking into account the
residuals (DSM against ground truth) of the height differences
between pairs of points. The squared Pearson correlation coeffi-
cient between the DSM and ground truth elevation for each tran-
sect was also calculated as an alternative measure of DSM accuracy.

Terrace classification accuracy was computed from a reference
set of independent validation points distributed randomly in the

Fig. 3. DSM validation transects (in blue) numbered from TR_1 to TR_14 and terrace classification validation points (yellow crosses) in the study area. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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study area. We used a classic approach using random validation
points as the objective was to determine the accuracy of the final
classification (ensured by the use of the appropriate accuracy
indices and a probabilistic sampling with sufficient number of
samples) rather than assessing the performance of the segmenta-
tion procedure in terms of the delineation of geometrical elements
(i.e. segments). Points were located in the field using the same GPS
device used in the transect surveying and the presence/absence of
terraces was ascertained by field inspection. Sample size was
calculated based on the expression applicable to multinomial tests
and variables (Tortora, 1978) for a two-class classification scheme, a
0.1 probability of Type I error and 95% precision in the results. The
highest class frequency was set to 50% as the worst case scenario of
class frequency. The minimum sample size was 384 and a final
sampling size of 400 verification points was adopted in order to
exceed this minimum number. Classification values were retrieved
for these point locations by field inspection and compared with
reference data by cross-tabulation in an error matrix. Several ac-
curacy statistics where then computed, namely overall classifica-
tion accuracy and Cohen’s Kappa coefficient, along with omission/
commission errors and the conditional Kappa coefficient at class
level (Bishop et al., 1975; Congalton, 1991).

3. Results

3.1. Orthorectification and digital surface model

For the process of orthorectification, mosaicking and DSM
interpolation, 430 out of the 432 original images were used. The
resulting mosaic covered an area of 192.5 ha, of which a core area of
120 has was extracted for the analyses. The mean GSD (i.e. size of a
pixel on the ground) of the original images was computed at
10.97 cm. The bundle block adjustment process took into account
257 040 key points, using a total of 85 400 points for the 3D bundle
block adjustment. Mean re-projection error was estimated at

0.9163 pixels (ca. 10.05 cm). A visual example of the general
appearance of the DSM along with detailed views of areas with and
without terraces is shown in Fig. 4.

Fig. 5 shows the along-slope profiles of two areas compared: one
corresponds to terraced land and the other corresponds to non-
terraced land. Despite the differences between the two transects
in overall height ranges and the existence of some noise due to the
presence of tree protrusions in the DSM, differences in the under-
lying ground surface between land with (A) and without terraces
(B) are clearly seen.

Results of the elevation difference accuracy assessment showed
a high agreement between the DSM and the reference data (Fig. 6).
In fact, most of the transects evaluated (10 out of 14) had an RMSE
lower than 0.60m, while the average RMSE for the 14 transects was
0.49 m. Likewise, the squared Pearson correlation between model
and reference data (R2) reached values equal to or higher than 0.99
for all the transects evaluated.

3.2. Terrace classification

An overview of the terrace classification results is presented in
Fig. 7. According to the classification results, 27.75% of the area was
labeled as terraces (33.31 out of 120 ha). Terrace areas were clus-
tered in the south part of the study area, where some potential
omission errors were apparent as small gaps in terrace plots. The
rest of the area was assigned to the No terrace class. The commis-
sion errors of the Terrace class were far more uncommon in this
sector.

The confusion matrix and per-class classification accuracy sta-
tistics are summarized in Table 1. Overall accuracy and Kappa sta-
tistics reached 90.25% and 0.77 respectively. According to the
qualitative scale developed by Landis and Koch (1977) for the
Kappa coefficient, both the overall classification and the No terrace
class reached a substantial agreement with the reference data
(Kappa values in the 0.61e0.80 interval) while the Terrace class

Fig. 4. 3D Block detailed view of two areas without (A) and with (B) terraces and general overview (C) of the DSM and othomosaic generated in the study. The 3D block was
obtained with ENVI 5.0 software (� 2012 Exelis Visual Information Solutions Inc.).
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reached an almost perfect agreement with the reference data
(Kappa values higher than 0.81). According to the other quantita-
tive scale widely used in remote sensing (Fleiss, 1981), the overall
Kappa and the Terrace class conditional Kappa values can be

considered to show excellent agreement with the reference data
(i.e. Kappa values higher than 0.75) while the No terrace class
conditional Kappa exhibited a good agreement with the reference
data (i.e. Kappa values in the 0.40e0.75 interval).

Fig. 5. Surface profiles extracted from the DSM image. A: Terraced area; B: Non-terraced area. X axis: distance in m; Y axis: relative elevation in m.

Fig. 6. RMSE (left) and squared Pearson correlations (right) between the DSM and reference values for the 14 transects measured.

Fig. 7. Overview of the terrace classification output. Blue shading represents areas classified as terraces. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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4. Discussion

Automatic identification of agricultural terraces using remote
sensing is not a trivial issue, particularly in the case of complex
landscape patterns and diverse vegetation cover. The scale of the
target elements hampers the applicability of methods and
datasets frequently used in geomorphology and landform anal-
ysis (see, e.g. Tagil and Jenness, 2008.). In addition, the use of
spectral data only can be insufficient for reaching the accuracy
standards required for agricultural policy implementation at
farm level. The use of high-resolution imagery along with
elevation data in the classification process is a promising
approach for the identification of small-scale landscape features
in general (Hou and Walz, 2013) and agricultural terraces in
particular (Bailly and Levavasseur, 2012). In this paper, we
explored the possibilities of low-cost high-resolution UAV im-
agery for solving this complex problem. In the first stage of the
research, we obtained accurate results for surface relief recon-
struction, a key issue for further implementation of the auto-
matic classification procedure. More specifically, we obtained an
average disagreement (i.e. RMSE after horizontal bias correction)
of less than 50 cm between the DSM and the GPS ground survey.
It should be noted that these results were obtained without
Ground Control Point surveying, that is, using a fully automatic
method in the aerial photo reconstruction and therefore opti-
mizing the time devoted to data acquisition and processing and
overall cost effectiveness. The accuracy achieved was therefore
comparable to that of very high resolution DSMs obtained using
much more expensive technologies, such as LIDAR with point
density higher than one point per square meter (Artuso et al.,
2003). Taking into account the roughness of the ground and
other possible artifacts, the error can be considered low for the
following reasons: first, the target features (i.e. terrace slopes)
typically range between 1.5 and 2.5 m in height in the area, and
second, ground surface irregularities smaller than 0.5 m can
hardly be considered as terraces.

The potential of stereo imagery for the control of CAP measures
using remote sensing has been tested from different points of view
(Åstrand et al., 2012). In general, one-dimension orthoimagery
derived from high-resolution satellite stereo pairs (e.g. WorldView-
2, with ground pixel size around 0.5 m) easily meets the standards
for CAP monitoring with remote sensing for plot identification
(European Commission, 2012b), that is, 2.5 m maximum error in X
and Y coordinates, provided that a good quality DEM is used. Digital
surface models generated from the same data source also can reach
these standards, with Z (elevation) RMSE as lowas 2e3m, provided
that state-of-the-art DSM creation software and accurate ground
control points are used (Capaldo et al., 2010; Åstrand et al., 2012). In
our case study and taking into account the dimensions of the target
elements, use of higher-resolution and especially higher-accuracy
DSMs might be advisable for the identification and analysis of
agricultural terraces. This is particularly true when there is the
additional difficulty of heterogeneous vegetation coverage that
might distort ground surface relief, as discussed below.

In the second stage of the analysis, we integrated spectral and
surface information in order to accurately identify the area of ter-
races. Spatial context and multiple scale analyses were performed
to maximize the classification performance, taking into account
previous experiences in landscape feature identification (Tansey
et al., 2009; Aksoy et al., 2010) and terrain morphology analysis
(Dr�aguţ and Blaschke, 2006). In several examples of DSM analysis
(e.g. urban or forest areas), the normalized digital surface model
(NDSM, as the difference between DSM and DEM) is often calcu-
lated prior to the classification in order to identify off-terrain ele-
ments such as trees or buildings (Waser et al., 2008). This can be
easily done when an adequate resolution and co-registered DEM is
available by using simple algebraic difference or alternatively by
using algorithms such as different types of morphological filtering
(Krauß et al., 2011). In our case, no very high resolution DEMs were
available. Thus, for the sake of simplicity and in order to maximize
control of the process and take full advantage of the multiscale
object-oriented analysis, we chose to include the raw DSM and
several derived topographic features in the classification alongwith
spectral information, all taken in a single data acquisition.

The classification was conducted as a multiscale iterative pro-
cess, where large size elements corresponding to surface height
anomalies (i.e. buildings, large trees and tree clumps and lines)
were first masked out to identify terraces and trees growing on
their leveled surfaces. A key stage in this classification was the
identification of closed-canopy lines of trees on non-terraced
slopes and their discrimination against real terraces with tree
rows along their flat surfaces. To overcome this problem, we used
multi-scale classification rules based on spatial context and object
morphological operators.

The classification results confirmed the potential of low-cost
imagery for the accurate identification and further monitoring of
terraces in the framework of CAP implementation, exceeding the
commonly recommended targets in remote sensing land cover
classification of 85% minimum overall accuracy and 75% individual
accuracy (Foody, 2002). We obtained an overall accuracy of 90% and
a kappa index indicating a substantial agreement between classi-
fication and field reference data. From a per-class point of view,
both users’ and producers’ accuracies (complementary to the
omission and commission errors respectively) were at or above 75%
for all classes.

As regards the implications of classification quality for CAP
implementation and monitoring, it is worth highlighting that the
omission error for the No terrace class was lower than 2%. There-
fore, the ‘specificity’ of the prediction, that is, the probability that a
real absence site was correctly predicted (Fielding and Bell, 1997),
was higher than 98%. Commission errors also remained at relatively
low values for the Terrace class (less than 5%) and the No terrace
class (less than 12%). This means that there were few chances of
predicting inclusion in the classes when the element should be
excluded. By contrast, omission errors were higher (25%) for the
Terrace class. This means that the classification settings were very
conservative in terms of reducing the risk of classifying non-
terraced land as terraces while maintaining quite high accuracies

Table 1
Error matrix and per-class accuracy statistics of the terrace classification. Reference: reference (ground truth) frequencies (in columns); Classification: per-class classification
frequencies (in rows); Class. Totals: per-class classification totals; Ref. totals: per-class reference totals; Prod. Ac.: Producers’ accuracy; User Ac.: Users’ accuracy; Omi. Er.:
Omission error; Com. Er.: Commission error; Cond. Kappa: Per-class conditional Kappa.

Classification Reference Class. totals Prod. Ac. User. Ac. Omi. Er. Com. Er. Cond. Kappa

No terraces Terraces

No terraces 259 34 293 98,11 88,40 1,89 11,60 0,66
Terraces 5 102 107 75,00 95,33 25,00 4,67 0,93
Ref. totals 264 136 400
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for both classes from the final user viewpoint (Congalton and
Green, 1999), at the risk of missing some actual terraced land in
the classification. As a consequence, it would be unlikely to miss a
situation of possible terrace removal when comparing time series
of maps generated using this method for the monitoring of terrace
persistence. In fact, we were able to accurately predict the true
presence of terraces for a specific initial reference date, as we ob-
tained a commission error lower than 5% for the Terrace class (i.e. a
positive predictive power higher than 95%). Likewise, it would be
very unlikely to miss the No terrace class for a final reference date,
as very low omission errors were foreseen using this methodology
(i.e. omission errors for the No terrace class were lower than 2%).

The methodology presented in this work can easily be trans-
ferred to other terrace identification problems, provided that some
key classification parameters are refined and that the dimensions
and coverage of the tree crops are smaller than the terrace slopes
and flat surfaces respectively. Parameters most in need of refine-
ment are those related to the geometry of the targeted elements
(i.e. the width of the leveled surface of terraces or the height dif-
ference of the terrace slope) and those related to the structure of
the vegetation cover or crops on the terraced area. In addition,
although they were not the main targets of the classification, other
landscape features classified, such as ‘large trees,’ could correspond
to GAEC and EFA elements. This underlines the potential of this
methodology to be extended for the identification of other ele-
ments of interest in the CAP framework. Finally, the accuracy of the
DSM elevations obtained in this study also opens possibilities for a
more detailed characterization of such landscape features,
measuring aspects such as size or volume as a proxy for the amount
of environment services supplied.

5. Conclusions

The implementation of the European Common Agricultural
Policy requires the development of cost-effective and flexible
methods for the identification andmonitoring of features providing
ecosystem services, such as agricultural terraces. In this work we
proposed and tested a low-cost methodology for the automatic
classification of agricultural terraces using high-resolution imagery
acquired by non-metric cameras on board a low-cost unmanned
aerial vehicle (UAV). The premises of this experiment were i) to
minimize the cost of image acquisition in the field and ii) to avoid
ancillary datasets while exploring innovative methods currently
available for remote sensing of vegetation monitoring. Therefore,
the imagery was acquired and pre-processed without ground
control points so as to minimize flight planning costs and user
interaction, while the classification was based exclusively on the
spectral and altitudinal information derived from the imagery us-
ing 3D photo-reconstruction methods.

Results obtained demonstrate the effectiveness of this kind of
technology even in high complex agricultural areas, both regarding
the digital surface model reconstruction and the subsequent
terrace classification stage. We obtained an average RMSE lower
than 0.5 m in the DSM local elevation gradients and an overall
classification accuracy of 90% using an object-oriented approach. In
this approach, altitudinal and spectral information was analyzed at
different scales taking into account the spatial context and
morphology of the objects on the image. Therefore, this method-
ology can be used for the implementation and monitoring of CAP
measures. Indeed, its application to time series of images makes it
possible to monitor the persistence of agricultural terraces as
ecosystem service providers. This method can also be extended for
the identification and monitoring of other elements such as land-
scape features (e.g. isolated trees, tree lines, hedgerows) on agri-
cultural land, as an interesting topic for further research.

Use of very high resolution UAV imagery has advantages
compared to traditional photogrammetric or satellite remote
sensing data. Most of these advantages are related to its fast on-the-
spot data acquisition and simple processing requirements. This
makes it particularly advisable for quick and cost effective verifi-
cation in areas comprising several hundred of hectares.
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